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Verification of K-Step Opacity and Analysis of its
Complexity

Anooshiravan Saboori and Christoforos N. Hadjicostis

Abstract—Motivated by security and privacy consid-
erations in a variety of applications of discrete event
systems, we describe and analyze the computational com-
plexity required for verifying the notion of K-step opacity
for systems that are modeled as non-deterministic finite
automata with partial observation on their transitions.
Specifically, a system isK-step opaque if,at any specific
point within the last K observations, the entrance of the
system state to a given set ofsecret statesremains opaque
(uncertain) to an intruder who has complete knowledge
of the system model and observes system activity through
some natural projection map. We provide two methods for
verifying K-step opacity using two different state estimator
constructions, and analyze the computational complexity
of both.

I. INTRODUCTION

The increased reliance of many applications on shared
cyber-infrastructures (ranging from defense and banking
to health care and power distribution systems) has led
to various notions ofsecurity and privacy. A number of
such notions focus on characterizing theinformation flow
from the system to the intruder [1], [2].Opacity falls in
this category and aims at determining whether a given
system’ssecretbehavior (i.e., a subset of the behavior
of the system that is considered critical and is usually
represented by a predicate) is kept opaque to outsiders
[3], [4]. More specifically, this requires that the intruder
(modeled as a passive observer of the system’s behavior)
never be able to establish the truth of the predicate.
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In this paper, we consider opacity with respect to pred-
icates that are state-based. More specifically, we consider
a scenario where we are given a discrete event system
(DES) that can be modeled as a non-deterministic finite
automaton with partial observation on its transitions;
assuming that the initial state of the system is (partially)
known, we define the secret behavior of the system as the
evolutionof the system’s state within a known subset of
secret statesS. Examples to motivate the study of such
state-based notions of opacity are provided in our earlier
work [5], and are briefly reviewed later in this paper for
completeness. Among other applications, they include
encryption using key strings provided by pseudo-random
generators, coverage properties of mobile agents in sen-
sor networks, and anonymity requirements in protocols
for web transactions.

The paper defines and analyzes the state-based notion
of K-step opacity(for K ≥ 0) by requiring that the
entrance of the system state to the set of secret statesS,
at any observation point within the pastK observations,
remain opaque to the intruder. In other words, in aK-
step opaque system the intruder (which is assumed to
have full knowledge of the system model and to be
able to track the observable transitions in the system via
the observation of associated labels) cannot determine
with certainty that the state of the system0, 1, . . . , or
K observations ago belonged to the set of secret states
S. Our analysis starts by first establishing that a system
is K-step opaque if and only if none of thek-delayed,
0 ≤ k ≤ K, state estimates (i.e., estimates of the state
of the systemk observations ago which are consistent
with all observations, including the lastk observations)
fall entirely within the set of secret statesS. In order to
capture thek-delayed state estimates (0 ≤ k ≤ K), we
construct theK-delay state estimator(KDE) using two
methods: (i) by storing the compatibleK-delayed state
estimate and remembering the lastK observations, and
(ii) by storing the compatible sequences of the lastK-
visited states. We compare the space complexity of the
KDEs that result from these two methods and show that
it is more state space efficient to store the compatible
sequences of the lastK-visited states than to store the
sequence of the lastK observations.
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Apart from our own work in [4]–[6] (which looked
at various state-based notions of opacity), the work in
this paper is related to some of the existing security
work in the area of DESs. In particular, [7] focuses on
finite state Petri nets and defines opacity with respect
to state-based predicates; our work in [4], [6] and in
this paper essentially studies and solves this problem
for the case of (non-deterministic) finite automata, also
introducing in the process the notion ofK-step opacity
(not present in either [3] or [7]). The authors of [8]
consider multiple intruders modeled as observers with
different observation capabilities (namely different nat-
ural projection maps) and require that no intruder be
able to determine that the actual trajectory of the system
belongs to the secret language assigned to that intruder.
Assuming that the supervisor can observe/control all
events, sufficient conditions for the existence of a su-
pervisor with a finite number of states are subsequently
proposed. The assumptions on the controllability and
observability of events are partially relaxed in [9] where
the authors consider a single intruder that might observe
different events than the ones observed/controlled by
the supervisor. In contrast to [8] and [9] (which follow
a language-based approach), opacity in our framework
assumes that the states of the system can be parti-
tioned intosecretand non-secretones; this state-based
formulation is what leads to the use of various state
estimators to verify opacity. Also, note that the notions
of opacity introduced here are not considered in [8]
and [9], and (as explained in [6]) they cannot be easily
captured by the language framework of [8], [9] except
for very special cases. Related to our work here is also
the work in [10] where the authors partition the event
set into high level and low level events, and consider
the verification of intransitive interference, a property
that captures the allowed information flow from high
level events to low level events through a downgrading
process (i.e., the inference of the occurrence of certain
high level events from low level events). Our model of
the intruder’s capability (in terms of observability power)
is different from [10] which makes the two frameworks
hard to compare. However, for the case when there is
no downgrading process, the notion of non-interference
can be translated to an instance of 0-step opacity [6].
Note that, in general, one cannot formulate the notion of
K-step opacity forK > 0 in the framework of [10].

II. PRELIMINARIES AND BACKGROUND

Let Σ be an alphabet and denote byΣ∗ the set of
all finite-length strings of elements ofΣ, including the
empty stringǫ. For any stringt, |t| denotes the length
of t (with |ǫ| taken to be zero). A languageL ⊆ Σ∗

is a subset of finite-length strings inΣ∗. A language
is finite if it contains only a finite number of strings.
We say that a finite languageL is of lengthK if the
maximum length of the strings inL is K. For a string
ω, ω denotes theprefix-closureof ω and is defined as
ω̄ = {t ∈ Σ∗ | ∃s ∈ Σ∗{ts = ω}} wherets denotes the
concatenation of stringst ands. The post-stringω/t of
ω after t ∈ ω̄ is defined asω/t = s wherets = ω [11].

A DES is modeled in this paper as a non-deterministic
finite automatonG = (X,Σ, δ,X0), where X =
{0, 1, . . . , N − 1} is the set of states,Σ is the set of
events,δ : X × Σ → 2X (where 2X is the power set
of X) is the non-deterministic state transition function,
and X0 ⊆ X is the set of possible initial states. The
function δ can be extended from the domainX × Σ to
the domainX × Σ∗ in the routine recursive manner:
δ(i, ts) :=

⋃
j∈δ(i,t) δ(j, s), for t ∈ Σ and s ∈ Σ∗

with δ(i, ǫ) := i.The behavior of DESG is captured
by L(G) := {s ∈ Σ∗ | ∃i ∈ X0{δ(i, s) 6= ∅}}. We use
L(G, i) to denote the set of all traces that originate from
statei of G (so thatL(G) =

⋃
i∈X0

L(G, i)).
In general, only a subsetΣobs of the events can be

observed, so thatΣ is partitioned into two sets, the set
of observable eventsΣobs and the set of unobservable
eventsΣuo (note thatΣobs ∩Σuo = ∅ andΣobs ∪Σuo =
Σ). The natural projectionP : Σ∗ → Σ∗

obs is typically
used to map any trace executed in the system to the
sequence of observations associated with it. This projec-
tion is defined recursively asP (ts) = P (t)P (s), t ∈
Σ, s ∈ Σ∗, with P (t) = t if t ∈ Σobs and P (t) = ǫ
if t ∈ Σuo ∪ {ǫ} [11]. [More general projections of the
form P : Σ → L∪ {ǫ} that may map multiple events to
the same label from the setL can also be handled in a
straightforward manner; to keep notation simple we only
discuss the natural projection in this paper.]

Upon observing some string (sequence of observa-
tions) ω ∈ Σ∗

obs, the state of the system might not be
identifiable uniquely due to the lack of precise knowl-
edge of the initial state, the non-determinism that is
present in the state transition function, and the partial
observation of events. We denote the set of states that
the system is possibly ingiven thatω was observedas
the (current) state estimatêX|ω|(ω). Similarly, we denote
the set of states that the system was possibly in when
it generated theKth to last output (i.e., the state of
the systemK observations ago) following a sequence
of observationsω = α0α1 . . . αn (n ≥ K) as theK-
delayed state estimatêX|ω|−K(ω) and define it formally
bellow1. Note that the current-state estimate can also be

1
K-delayed state estimation in discrete event systems is related to

fixed-lag smoothingin discrete-time systems [12].
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seen as the 0-delayed state estimate.
Definition 1 (K-Delayed State Estimate). Given a non-
deterministic finite automatonG = (X,Σ, δ,X0) and
a natural projection mapP with respect to the set of
observable eventsΣobs (Σobs ⊆ Σ), the K-delayed
state estimate after observing stringω = α0α1 . . . αn

(n ≥ K) is defined asX̂|ω|−K(ω) := {j ∈ X | ∃t′, t′′ ∈
Σ∗,∃i ∈ X0{j ∈ δ(i, t′), δ(j, t′′) 6= ∅, P (t′) =
α0α1 . . . αn−K , P (t′′) = αn−K+1 . . . αn}}. �

Based on Definition 1, theK-delayed state estimate
X̂|ω|−K(ω) after observingω = α0α1 . . . αn (n ≥ K)
is the set of all states that (i) are reachable inG from
(at least one pair of) initial statei and a stringt′ with
projectionP (t′) equal to the firstn−K observable events
in ω (in the same order) and (ii) for which there exists
at least one continuationt′′ with projectionP (t′′) equal
to the lastK observable events inω (in the same order).
Note that the set of states reachable inG via a string
t′ with projectionP (t′) = α0α1 . . . αn−K ≡ ω′ is the
current state estimate that is obtained after observing
ω′ but before observingP (t′′) = αn−K+1 . . . αn ≡ ω′′;
thus, X̂|ω|−K(ω) ⊆ X̂|ω′|(ω

′) and theK-delayed state
estimate can be seen as the subset of states inX̂|ω′|(ω

′)
from which the postK observationsαn−K+1 . . . αn are
possible. Note that Definition 1 implies that ifω ∈ Σ∗

obs

is not a valid sequence of observations inG, then
X̂|ω|−K(ω) = ∅. Also, by convention,X̂|ω|−K(ω) is
taken to beX̂0(ω) for |ω| < K.

Given a non-deterministic finite automatonG =
(X,Σ, δ,X0), XK (K ≥ 2) denotes the set ofK-tuples
of states of DESG, i.e., XK := X × X × . . . × X =
{(j1, . . . , jK) | jk ∈ X, 1 ≤ k ≤ K}. We call
m ⊆ XK a K-dimensional state mapping. Note that a
2-dimensional state mapping was called astate mapping
in [5] and was introduced to analyze initial-state opacity.

The set of states included as the first (last) component
in a K-dimensional state mappingm is called the set
of starting (ending) states ofm. We denote the set of
starting states forK-dimensional state mappingm by
m(K−1) and the set of ending states bym(0). We also
denote bym(k), 0 < k < K − 1, the set of intermediate
states in theK-tuple, i.e.,

m(k) = {jK−k | (j1, . . . , jK) ∈ m, 0 ≤ k ≤ K − 1}.

We define theshift operator>>: 2XK

×2X2

→ 2XK

for
a K-dimensional state mappingm1 ∈ 2XK

and a state
mappingm2 ∈ 2X2

as

m1 >> m2 := {(j2, . . . , jK , jK+1) |
(j1, j2, . . . , jK) ∈ m1, (jK , jK+1) ∈ m2}.

We also define the composition operator◦ : 2X2

×2X2

→

2X2

for state mappingsm1,m2 ∈ 2X2

as

m1 ◦ m2 := {(j1, j3) | ∃j2 ∈ X{(j1, j2) ∈ m1,
(j2, j3) ∈ m2}}.

For any Z ⊆ X and K ≥ 2, we define the operator
⊙K : 2X → 2XK

as⊙K(Z) = {(i, i, . . . , i) | i ∈ Z}
where the tuples involveK identical elements.

The 2-dimensional state mapping induced by a se-
quence of observationsω is defined as

M(ω) = {(i, j) | i, j ∈ X,∃t ∈ Σ∗{P (t) = ω, j ∈ δ(i, t)}}.

III. PROBLEM FORMULATION

In this section, we formally define the notion ofK-
step opacity.
Definition 2 (K-Step Opacity). Given a non-
deterministic finite automatonG = (X,Σ, δ,X0),
a projection mapP with respect to the set of observable
events Σobs (Σobs ⊆ Σ), and a set of secret states
S ⊆ X, automaton G is K-step opaque (for a
nonnegative integerK) with respect toS and P (or
(S,P,K)-opaque), if for allt ∈ Σ∗, t′ ∈ t̄, andi ∈ X0,

{|P (t)/P (t′)| ≤ K,∃j ∈ S{j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}

⇒ {∃s ∈ Σ∗,∃s′ ∈ s̄,∃i′ ∈ X0,∃j′ ∈ δ(i′, s′){P (s) =

P (t), P (s′) = P (t′), j′ ∈ X − S, δ(j′, s/s′) 6= ∅}}.
�

Note that while the definition ofK-step opacity stud-
ied in [6] is simpler and more intuitive, it is only suitable
for deterministic automata; Definition 2, however, can
be used for non-deterministic automata. Fort, s ∈ L(G)
with P (s) = P (t) we say thatt passes through state
j when s passes through statej′ if there existst′ ∈ t̄,
s′ ∈ s̄, andi, i′ ∈ X0 such thatj ∈ δ(i, t′), j′ ∈ δ(i′, s′)
while (i) P (t′) = P (s′) and (ii) t/t′ ands/s′ have con-
tinuations from statesj and j′, respectively. According
to Definition 2, DESG is (S,P,K)-opaque if for every
string t in L(G) that visits a statej in S within the past
K observations (and has a continuation fromj), there
exists a strings in L(G) with P (s) = P (t) such that
when stringt passes through the statej in S, string s
passes through a statej′ in X−S (and has a continuation
from j′). Note thats could be the same ast, in which
caset would be passing through both secret and non-
secret states.

Remark 3. The notion of K-step opacity is suitable
for cases where there exists a bounded delay, after
which one does not care if the outside observer can
infer information about behavior that was previously
considered secret (e.g., because the secret transaction has
completed or because the intrusion will be detected).
Motivated by applications where the existence of such
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Fig. 1. (a) A 2-dimensional grid in which a vehicle can move; (b)
Kinematic modelH for a vehicle in the grid in (a); (c) AutomatonG
modeling the vehicle kinematic model and the correspondingsensor
readings; (d) DESG in Section III-B.

bound might not be viable, we introduced in [13] the
notion of infinite-step opacitywhich can be seen as
(S,P,K)-opacity with K → ∞ but requires different
techniques for its verification. �

A. Motivational Example

There are many areas whereK-step opacity can be
used to characterize security requirements of interest.
In the sequel, we discuss an example in the context of
tracking problems in sensor networks. More details can
be found in [5].

Example4. Consider a vehicle capable of moving on
a two-dimensional space modeled as a 2-dimensional
array of cells (in Figure 1-a we show a toy2 × 2 grid).
The vehicle possible movements in this space can be
described via a kinematic model (a finite state machine)
whose states are associated with the state (position) of
the vehicle and whose transitions correspond to the pos-
sible movements of the vehicle at this position. Figure 1-
b depicts an example of a kinematic modelH for a
vehicle that moves in the grid in Figure 1-a.

Typically, the sensor network that is deployed in this
space will not capture all movements of the vehicle
and hence the observation of movements will be partial.
If each sensor detects the presence of the vehicle in
a cell or in some aggregation of cells, then when the
vehicle passes through a cell within the coverage of
a sensor, this sensor emits a signal that indicates this
event. Thus, we can enhance the kinematic model by
assigning labelα to all transitions that end in a cell that
belongs to the coverage area of sensorα. Since sensor
coverages may overlap, the label of transitions ending in
areas which are covered by more than one sensor can
be chosen to be a special label that indicates the set
of all the sensors covering that location. In Figure 1-
c, we depict the (non-deterministic) automatonG that
models both the kinematic model of the vehicle and the
corresponding sensor readings for a particular choice
of sensor coverage areas. Dotted arrows correspond to
transitions in locations that are not covered by any
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Fig. 2. DESG modeling a communication protocol for a bank
transaction discussed in Section III-B.

sensor.
One of the questions that might arise in the above con-

text is that of characterizing all trajectories (sequences
of states) that a vehicle can follow such that the passage
of each trajectory from specific locations at specific
observation points (points in time with respect to obser-
vation) remain ambiguous to the sensor network. These
trajectories can be of interest for a variety of reasons. For
example, they can be employed to hide the origin of a
trajectory from an observer who is employing the sensor
network (e.g., an observer who is observing the labels in
Figure 1-c) trying to identify whether the origin belongs
to a set of secret (strategically important) locations or
whether the vehicle passed from this particular set of
locations at some specific instant of time. Such questions
can be answered using the opacity framework of this
paper.

Note that a number of tools are already available for
verifying notions of opacity, includingK-step opacity
(see for example [14]). �

B. Related Notion: Trajectory-BasedK-Step Opacity

It is easy to verify that the system in Figure 1-d is 2-
step opaque with respect toS = {1, 6}; however, upon
observingαα, the intruder is certain that, regardless of
the state sequence that has occurred, the system has vis-
ited a secret state within the last2 observations (although
one cannot determine exactly when this happened). This
system can be considered as insecure if the attacker
is only interested in determining whether the system
has reached secret states at any point during the last
K = 2 observations. We refer to a system for which
this scenario does not occur as atrajectory-basedK-
step opaquesystem. It is not hard to see that DESG
is trajectory-basedK-step opaque if and only if for any
given sequence of observationsω, there always exists at
least one sequence of states thatG can follow such that
only non-secret states are visited while generating the
lastK events inω. Moreover, a system that is trajectory-
basedK-step opaque is alsoK-step opaque; but the
converse is not necessarily true.

Note that the essential difference betweenK-step
opacity and trajectory-basedK-step opacity is the time
at which the state of the system is exposed. Depending
on the application,K-step opacity might be a more suit-
able requirement than trajectory-basedK-step opacity
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for characterizing security requirements. For instance,
suppose the DESG in Figure III-B is a communication
protocol for a bank transaction where a user has two
options: communicate important account information
while at state 1 (secret state) and dummy information
while at states 3 and 5 (non-secret states), or com-
municate dummy information at states 2 and 4 (non-
secret states) and important account information while
at state 6 (secret state). If an eavesdropper does not
know which of the two options the user has followed
(due to the unobservable eventδuo), then (even though
she/he knows that important account information has
been communicated) she/he does not know when this
was done. Therefore, the fact that the system is not 2-
step opaque is critical (despite the fact that the system
is not trajectory-based 2-step opaque).

As another example, consider a pseudo-random gener-
ator that is used for generating a key string in encryption
applications. Such a pseudo-random generator is usually
implemented as an autonomous finite state machine that
cycles through a large number of states. In this case,
knowing that the system was in a particular state at
a specific point in the past (as captured byK-step
opacity) is indeed important because this exposes the
subsequent sequence of states and thus the key string
used for encryption. On the other hand, knowing that the
system has been in a particular state in the recent past
(as captured by trajectory-basedK-step opacity) offers
little information (in fact it offers zero information ifK
is larger than the number of states of the pseudo-random
generator).

IV. V ERIFICATION OF K-STEP OPACITY USING

STATE ESTIMATORS

In this section, we show that for a DESG to be K-
step opaque, it is necessary and sufficient that eachk-
delayed state estimatêX|ω|−k(ω), 0 ≤ k ≤ min(K, |ω|),
associated with a sequence of observationsω contain at
least one state outside the set of secret statesS (unless
the sequence of observationsω cannot be generated by
G in which caseX̂|ω|−k(ω) = ∅). The proof is straight
forward and is not included due to space limitaitons. The
reader can find it in [15].
Theorem 5. Given a non-deterministic finite automaton
G = (X,Σ, δ,X0), a projection mapP with respect to
the set of observable eventsΣobs (Σobs ⊆ Σ), and a set of
secret statesS ⊆ X, automatonG is (S,P,K)-opaque
if and only if for all ω ∈ Σ∗

obs, 0 ≤ k ≤ min(K, |ω|)
X̂|ω|−k(ω) * S or X̂|ω|−k(ω) = ∅, (1)

whereX̂|ω|−k(ω) is thek-delayed state estimate associ-
ated with the sequence of observationsω. �

Existing state estimation techniques cannot verifyK-
step opacity since they are not tracking thek-delayed
state estimates,0 ≤ k ≤ K. For this reason, in this paper
we introduce theK-delay state estimator(KDE) which
is a (deterministic) finite automaton that reconstructs the
k-delayed state estimates (0 ≤ k ≤ K) associated with
a given sequence of observationsω. In the sequel, we
introduce two methods for constructingK-delay state
estimators: (i) by storing the possible sequences of the
last (K +1)-visited states via(K +1)-dimensional state
mappings, (ii) by storing thek-delayed state estimates,
0 ≤ k ≤ K, and remembering the sequence of the last
K observations. We also discuss the state complexity of
the KDEs that result from these two methods once we
have the opportunity to describe them formally.

A. State Mapping-BasedK-Delay State Estimator (SM-
KDE)

The SM-KDE utilizes (K + 1)-dimensional state
mappings to capture theK-delayed state estimates as
follows: each state of the SM-KDE is associated with
a unique(K + 1)-dimensional state mapping, with the
initial state m0 of the SM-KDE associated with the
(K + 1)-dimensional state mapping⊙K+1(X0); with
a slight abuse of notation we denote this bym0 =
⊙K+1(X0). When observationα ∈ Σobs is made, this
initial (K + 1)-dimensional state mappingm0 is shifted
with the induced state mappingM(α) corresponding to
observationα, resulting in a(K + 1)-dimensional state
mappingm1 that associates with the next state of the
state estimator, i.e.,m1 = m0 >> M(α). Similarly,
for each subsequent observationβ ∈ Σobs, the current
state of the SM-KDE that is associated with a(K + 1)-
dimensional state mappingm transitions into the state
associated with the(K + 1)-dimensional state mapping
m′ = m >> M(β). From the structure of(K + 1)-
dimensional state mappings and the nature of the shift
operator, we can establish that a sequence of observations
causes the SM-KDE to transition through a sequence
of (K + 1)-dimensional state mappings to a(K + 1)-
dimensional state mappingm such that, at a given time
step, the set of states in the state mappingm correspond
to delayed state estimates. More specifically, the set of
ending statesm(0) corresponds to zero-delayed state es-
timates, the set of intermediate statesm(k), 1 < k < K,
corresponds tok-delayed state estimates, and the set
of starting statesm(K) corresponds toK-delayed state
estimates. In this manner, we can build a structure which,
at any time following a given sequence of observations,
maintains information about the0-delayed, 1-delayed,
. . ., andK-delayed state estimates through the(K +1)-
dimensional state mappings associated with each of its
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states. In fact, the estimator also contains complete
information about the possible system state trajectories
during the lastK observations.

Definition 6 (State Mapping-BasedK-Delay State Es-
timator (SM-KDE)). Given a non-deterministic finite
automatonG = (X,Σ, δ,X0) and a natural projec-
tion map P with respect to the set of observable
eventsΣobs (Σobs ⊆ Σ), we define theK-delay state
estimator as the deterministic automatonGK,obs =

AC(2X(K+1)

,Σobs, δK,obs,XK,0) with state set2X(K+1)

,
event setΣobs, initial stateXK,0 = ⊙K+1(X0), and state
transition functionδK,obs : 2X(K+1)

× Σobs → 2X(K+1)

defined forα ∈ Σobs as m′ = δK,obs(m,α) := m >>

M(α), wherem,m′ ∈ 2X(K+1)

. [AC denotes the states
of this automaton that are accessible starting from state
XK,0.] �

Example7. Consider the DESG in Figure 1-d with
X0 = {0, 1, 2, 3, 4} and Σobs = {α, β}. For this
system, the 2-delay state estimator is represented in
Figure 3-a along with the3-dimensional state map-
pings m0,m1, . . . ,m10 needed in the construction.
The initial state of the system isX0 = X and
the initial state of the 2-delay state estimator cap-
tures this in m0 via a 3-dimensional state mapping
that maps each system state to itself as⊙3(X) =
{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}≡ m0.

Starting from the initial state, assume that we observe
α. The state mappingM(α) induced by observingα is
{(0, 2), (0, 3), (2, 2), (4, 4)} which implies thatα can be
observed only from states0, 2 and 4. Moreover, if the
initial state was 0, the current state can only be one of
the states in{2, 3}; however, if the initial state was 2, the
current state could only be2; finally, if the initial state
was 4, the current state would be 4. Following observa-
tion α, the next statem′ in the 2-delay state estimator
can be constructed asm′ = δK,obs(m0, α) = m0 >>
M(α)= {(0, 0, 2), (0, 0, 3), (2, 2, 2), (4, 4, 4)} ≡ m1.

Next, consider the case when following observationα
we observeβ. As the induced state mappingM(β) =
{(0, 1), (1, 4), (3, 4)}, we havem′ = δK,obs(m1, β) =
m1 >> M(β)= {(0, 3, 4)} ≡ m4. This implies that
αβ can only be observed if the system follows the state
trajectory 0 → 3 → 4. Using this approach for all
possible observations (from each state), the 2-delay state
estimator construction can be completed as shown in
Figure 3-a. Note that we have not included the state
that corresponds to the all empty state mapping (and any
transitions from/to it) to avoid cluttering the diagram.�

Remark 8. On the right of Figure 3-a, we use 3-
dimensional trellis diagrams to describe the triples as-
sociated with states of the 2-delay state estimator. In

general, we can graphically represent an inducedK-
dimensional state mappingm using a K-dimensional
trellis diagram, i.e., aK-partite graph where the nodes
in the state setX are replicatedK times and ordered
into K vertical slices ranging from slice 0 to sliceK−1
(hence aK-dimensional trellis diagram hasK ·N nodes
with N = |X|). Each node at slicek (1 ≤ k ≤ K − 2)
is either isolated or connected to (at least) one node at
slice k − 1 and (at least) one node at slicek + 1. The
nodes at slice 0 (K − 1) are either isolated or connected
to (at least) one node at slice 1 (K − 2). �

In the following theorem, we show that the SM-KDE
statem that is reached via a sequence of observationsω
is associated with a(K + 1)-dimensional state mapping
such that the first|ω| − K observations would have
taken the system to the starting states of the(K + 1)-
dimensional state mapping and, in addition, the lastK
observations could have taken place from these starting
states, visiting in the process the intermediate states
in the tuple, in the order captured by the elements of
the (K + 1)-dimensional state mapping. The proof is
provided in [15].
Theorem 9. Suppose SM-KDE statem (as constructed
in Definition 6) is reachable from the SM-KDE initial
stateXK,0 = ⊙K+1(X0) via the stringω = α0α1 . . . αn,
ω 6= ǫ. Then, SM-KDE statem can be characterized as
follows:
(i) |ω| ≤ K: m = {(j0, j1, . . . , jK) ∈ X0 × XK | (0 ≤
l ≤ |ω| − 1, 0 ≤ w ≤ K − |ω| − 1) : jw+1 = jw,∃tl ∈
Σ∗{P (tl) = αl, jK−|ω|+l+1 ∈ δ(jK−|ω|+l, tl)}}.
(ii) |ω| ≥ K: m = {(j0, j1, . . . , jK) ∈
XK+1 | (0 ≤ l ≤ K − 1) : ∃tl ∈ Σ∗{P (tl) =
αn−K+1+l, jl+1 ∈ δ(jl, tl)},∃i ∈ X0,∃t′ ∈ Σ∗{P (t′) =
α0α1 . . . αn−K , j0 ∈ δ(i, t′)}}.
(iii) m = ∅ when there is not ∈ L(G) such that
P (t) = ω. �

The proof of the following corollaries can also be
found in [15].
Corollary 10. Thek-delayed state estimatêX|ω|−k(ω),
0 ≤ k ≤ min(K, |ω|), after observing ω =
α0α1 . . . αn is given by X̂|ω|−k(ω) = m(k) where
m = δK,obs(XK,0, ω). �

Corollary 10 proves that the SM-KDE captures the
set of all k-delayed state estimates,0 ≤ k ≤ K, via
its (K + 1)-dimensional state mappings and, hence, by
Theorem 5, it can be used for verifyingK-step opacity.
Corollary 11. Discrete event system G is(S,P,K)-
opaque if and only if for allm ∈ XK,obs, k ∈
{0, . . . ,K},

m(k) * S or m(k) = ∅, (2)
where XK,obs is the set of states inGK,obs that are
reachable from the initial stateXK,0 = ⊙K+1(X0). �
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Fig. 3. (a) State mapping-based 2-delay state estimator corresponding to DESG; (b) State mapping-based 1-delay state estimator
corresponding to DESG.

Example 12. DES G in Figure 1-d with X0 =
{0, 1, 2, 3, 4} is not ({0}, P, 2)-opaque due to the exis-
tence of statem4 (or m6) in the state mapping-based
2-delay state estimator depicted in Figure 3-a. If the
system generates the sequence of observationsαβ (or
ββ), then (since the only state from whichαβ or ββ can
be observed is state 0) we can conclude with certainty
that the system was in state 0 two steps ago. This violates
the 2-step opacity requirement since state 0 is a secret
state. The unit-delay state estimator for this system is
shown in Figure 3-b (again we have not included the state
that corresponds to the empty state mapping); it can be
verified that for each of the2-dimensional state mappings
m associated with its states, every set of intermediate
statesm(k), 0 ≤ k ≤ 1, contains at least one element
outsideS. Hence, DESG is ({0}, P, 1)-opaque. �

B. Observation Sequence-BasedK-Delay State Estima-
tor (OS-KDE)

In this section, we introduce the construction of au-
tomaton Gobservation

K,obs which capturesK-delayed state
estimates by remembering the sequence of the last
K observations (this should be contrasted toGK,obs

which captures the compatible sequences of the lastK-
visited states via(K + 1)-dimensional state mappings).
At each state ofGobservation

K,obs , we store a(K + 2)-
tuple Q ∈ ΣK

obs,ǫ × 2X × . . . × 2X consisting of the
following information:(i) the lastK observations (Σobs,ǫ

denotes the setΣobs ∪ {ǫ}), and (ii) all the k-delayed
state estimates fork = 0, 1, . . . ,K. Upon observing a
new event, thek-delayed state estimates are updated to
ensure that estimates that are not consistent with the
last observation are removed. Finally, the string that
stores the lastK observations is updated by adding the
last observation to the end of it and by removing the
first one. The main difference here is thatGobservation

K,obs

only remembers the sets of states that are possible
0, 1, . . . , K observations ago but does not explicitly

record the sequences of states that are possible; however,
knowledge of the lastK observations (together with the
underlying system model) allows one to reconstruct these
sequences if required. We now discuss the systematic
construction ofGobservation

K,obs . For brevity, we define the
functionδo : X×Σobs → 2X for anyi ∈ X andα ∈ Σobs

as
δo(i, α) = {j ∈ X | ∃s ∈ Σ∗{P (s) = α, j ∈ δ(i, s)}}.

(3)
The function δ0 can be extended from the domain
X×Σobs to the domainX×Σ∗

obs in the routine recursive
manner: for t ∈ Σobs and s ∈ Σ∗

obs, δo(i, ts) :=⋃
j∈δo(i,t)

δo(j, s), with δo(i, ǫ) := i. With a slight abuse
of notation, we useδo : 2X × Σobs → 2X to also
denote its extension from states to sets of states as
follows: for all Z ⊆ X defineδo(Z,α) =

⋃
z∈Z δo(z, α).

For clarity, we also introduce the following notation:
let ω = α′

0 . . . α′
n with n ≥ K denote the sequence

of observations that have been seen so far (from the
initialization of the system); we will rename the last
K observationsα′

n−K+1 . . . α′
n to α−K+1 . . . α0 (i.e.,

α−i = α′
n−i for i = 0, 1, . . . ,K − 1) to make the

discussion independent ofn (the total number of ob-
servations seen so far). Also note that in the following
definition stringsα−kα−k+1 . . . α0 of length less thanK
are represented asǫK−k−1α−kα−k+1 . . . α0.
Definition 13 (Observation Sequence-BasedK-Delay
State Estimator (OS-KDE)). Given a non-deterministic
finite automatonG = (X,Σ, δ,X0) and a natural pro-
jection mapP with respect to the set of observable
events Σobs (Σobs ⊆ Σ), we define the observation
sequence-basedK-delay state estimator as the determin-
istic automatonGobservation

K,obs = AC((ΣK
obs,ǫ × 2X × . . .×

2X),Σobs, δobservation
K,obs ,Xobservation

K,0 ) with
(i) set of statesΣK

obs,ǫ × 2X × . . .× 2X , where each state
is a (K + 2)-tuple consisting of one string of lengthK
or less, andK + 1 subsets ofX;
(ii) event setΣobs;
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Q3Q6 = (ββ, {0}, {1}, {4})
Q7 = (αα, {2, 4}, {2, 4}, {2, 4})

Q10 = (αα, {4}, {4}, {4})

Q9 = (βα, {1}, {4}, {4})

Q8 = (βα, {3}, {4}, {4})

Q3 = (αα, {0, 2, 4}, {2, 4}, {2, 4})

Q0 = (ǫ, X, X, X)
Q1 = (α, {0, 2, 4}, {0, 2, 4}, {2, 3, 4})
Q2 = (β, {0, 1, 3}, {0, 1, 3}, {1, 4})

Q4 = (αβ, {0}, {3}, {4})
Q1

Q0

Q2α

α

β

Q4 Q5 Q6

α

α α

αα

Q7 Q8 Q9Q10

α ααα

β

β

Q5 = (βα, {1, 3}, {4}, {4})

Fig. 4. Observation sequence-based 2-delay state estimator corre-
sponding to DESG in Figure 1-d.

(iii) initial state Xobservation
K,0 = (ǫ,X0, . . . ,X0); and

(iv) state transition functionδobservation
K,obs : (ΣK

obs,ǫ ×

2X × . . . × 2X) × Σobs → (ΣK
obs,ǫ × 2X × . . . × 2X)

defined as follows: if the current state is the(K + 2)-
tuple Q = (Ω, ZK , . . . , Z0) ∈ ΣK

obs,ǫ × 2X × . . . ×

2X , where Ω = α−K . . . α−1 ∈ ΣK
obs,ǫ and Zk ∈

2X , 0 ≤ k ≤ K, then the next state forα0 ∈ Σobs

is Q̂ = δobservation
K,obs (Q,α0) = (Ω̂, ẐK , . . . , Ẑ0) where

Ω̂ = Ωα0/α−K , and the setŝZk are defined recursively
as Ẑk = {z | z ∈ Zk−1,∃ẑ ∈ Ẑk−1 : ẑ ∈ δo(z, α−k+1)}
for k = 1, 2, . . . ,K with Ẑ0 = δo(Z0, α0).
[Note that AC denotes the states of this automaton that
are accessible starting from initial stateXobservation

K,0 .] �

Remark14. The OS-KDE introduced in Definition 13 is
related to the inverter with delay that was introduced
in [16]. Assuming that the system is invertible with
delay, the inverter in [16] acts as anonline algorithm
which, for a given time index, stores theK subsequent
observations (whereK is the fixed delay in the defini-
tion of invertibility with delay) in order to be able to
refine the state estimate at this time index (using back
propagation). The refined state estimate that is obtained
is used along with the plant model to reconstruct the
executed sequence of events. The observation sequence-
based KDE is a finite structure thatcapturesall estimates
with delay for any observation sequence. In other words,
what we do here can be seen as anoffline approach for
refining the current state estimate using any possible
sequence of observations andK future observations.
This is necessary when trying to verify system properties
that depend on delayed state estimates (such asK-step
opacity). �

Example15. Consider the DES in Figure 1-d. For this
system, the observation sequence-based 2-delayed state
estimatorGobservation

2,obs is represented in Figure 4. The
initial state X0 = X and hence the OS-KDE initial-
stateXobservation

2,0 becomes(ǫ,X,X,X) ≡ Q0 which,
using the notation in Definition 13, implies thatZ0 = X,
Z1 = X, Z2 = X, Ω = ǫ and α−1 = α−2 = ǫ.
Upon observingα (α0 = α), the current (system)
state estimate becomeŝZ0 = {2, 3, 4} and sinceα

can only be observed from{0, 2, 4}, Ẑ1 = {0, 2, 4}.
Also, since only one observation has been made,Ẑ2 =
Ẑ1 = {0, 2, 4}; finally, ω̂ = ωα/α−2 = ǫα/ǫ, so
that the next OS-KDE state upon observingα becomes
(α, {0, 2, 4}, {0, 2, 4}, {2, 3, 4}) ≡ Q1.

Note that at OS-KDE stateQ1, Z0 = {2, 3, 4}, Z1 =
{0, 2, 4}, Z2 = {0, 2, 4}, Ω = α and henceα−1 = α
andα−2 = ǫ. If β is observed at OS-KDE stateQ1, i.e.,
α0 = β, the next OS-KDE statêQ = (Ω̂, Ẑ2, Ẑ1, Ẑ0) ≡
Q4 can be obtained via

Ẑ0 = δo(Z0, α0) = δo({2, 3, 4}, β) = {4}

Ẑ1 = {z ∈ Z0 | ∃ẑ ∈ Ẑ0{ẑ ∈ δo(z, α0)}}

= {z ∈ {2, 3, 4} | ∃ẑ ∈ {4}{ẑ ∈ δo(z, β)}} = {3}

Ẑ2 = {z ∈ Z1 | ∃ẑ ∈ Ẑ1{ẑ ∈ δo(z, α−1)}}

= {z ∈ {0, 2, 4} | ∃ẑ ∈ {3}{ẑ ∈ δo(z, α)}} = {0},

with Ω̂=Ωα0/α−2=αβ/ǫ=αβ.

OS-KDE stateQ4 ≡ (αβ, {0}, {3}, {4}) conveys the
following information: the current state estimate is{4},
the previous state estimate is{3}, and the estimate
of the system state two observations ago is{0}. Also
αβ captures the last two observations (observed in that
order). Using this approach for the remaining possible
observations, the observation sequence-based 2-delayed
state estimator can be completed as shown in Figure 4
(states associated with empty state estimates of the form
(Ω, ∅, ∅, . . . , ∅) and transitions from/to these state have
not been included). Note that the SM-KDE and OS-KDE
in Figures 3-a and 3-b respectively are identical automata
but, as clarified later on, this will not necessarily be the
case in general. �

In the sequel, we obtain a characterization of each set
of statesZk, 0 ≤ k ≤ K, in the OS-KDE stateQ =
(Ω, ZK , . . . , Z0) reached via a sequence of observations
ω. Specifically, if |ω| ≥ k, we show thatj ∈ Zk, 0 ≤
k ≤ K, if and only if there exists a stringt in L(G) that
has projectionω, and visits statej exactlyk observations
ago; if there does not existt ∈ L(G) such thatP (t) = ω
thenZk = ∅, 0 ≤ k ≤ K. Furthermore, if|ω| < k, then
Zk, 0 ≤ k ≤ |ω|, is as described above andZk = Z|ω|

for |ω| + 1 ≤ k ≤ K. The following theorem states this
formally; the proof is provided in [15].
Theorem 16. Consider the OS-KDE constructed
as in Definition 13 and suppose that stateQ
is reachable from the OS-KDE initial state
Xobservation

K,0 = (ǫ,X0,X0, . . . ,X0) via the string
ω = α0α1 . . . αn. Then, the OS-KDE stateQ can be
characterized as follows:
(i) |ω| < K: Q = (Ω, ZK , . . . , Z0) ∈
(ΣK

obs,ǫ, 2
X , . . . , 2X) with
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1) Ω = α0 . . . αn,
2) Z0 = {j ∈ X | ∃t ∈ Σ∗,∃i ∈ X0{P (t) = ω, j ∈

δ(i, t)}},
3) for 1 ≤ k ≤ |ω|, Zk = {j ∈ X | ∃t ∈

Σ∗,∃t′ ∈ t̄,∃i ∈ X0{ P (t) = ω, P (t)/P (t′) =
αn−k+1 . . . αn, j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}, and

4) for |ω| + 1 ≤ k ≤ K, Zk = Z|ω|.

(ii) |ω| ≥ K: Q = (Ω, ZK , . . . , Z0) ∈
(ΣK

obs,ǫ, 2
X , . . . , 2X) with

1) Ω = αn−K+1 . . . αn,
2) Z0 = {j ∈ X | ∃t ∈ Σ∗,∃i ∈ X0{P (t) = ω, j ∈

δ(i, t)}},
3) for 1 ≤ k ≤ K, Zk = {j ∈ X | ∃t ∈

Σ∗,∃t′ ∈ t̄,∃i ∈ X0{ P (t) = ω, P (t)/P (t′) =
αn−k+1 . . . αn, j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}.

(iii) Zk = ∅, 0 ≤ k ≤ K, when there is not ∈ L(G)
such thatP (t) = ω. �

The proof for the following corollary can also be
found in [15].
Corollary 17. Thek-delayed state estimatêX|ω|−k(ω),
0 ≤ k ≤ min(K, |ω|), after observing ω =
α0α1 . . . αn is given by X̂|ω|−k(ω) = Zk where
δobservation
K,obs (Xobservation

K,0 , ω) = (Ω, ZK , . . . , Z0). �

Corollary 17 proves that the OS-KDE captures the set
of all k-delayed state estimates,0 ≤ k ≤ K, via its
(K +2)-tuples and hence, by Theorem 5, it can be used
for verifying K-step opacity.
Corollary 18. Discrete event system G is(S,P,K)-
opaque if and only if for allQ = (Ω, ZK , . . . , Z0) ∈
Xobservation

K,obs , k ∈ {0, . . . ,K},
Zk * S or Zk = ∅, (4)

where Xobservation
K,obs is the set of states inGobservation

K,obs

that are reachable from the initial stateXobservation
K,0 =

(ǫ,X0, . . . ,X0,X0). �

Example19. As discussed in Example 12, DESG in
Figure 1-d withX0 = {0, 1, 2, 3, 4} is not ({0}, P, 2)-
opaque since observing the sequence of observationsαβ
(or ββ) reveals that the system was in state 0 two steps
ago and state 0 is a secret state. Note that in the observa-
tion sequence-based 2-delay state estimator (depicted in
Figure 4) the states reachable viaαβ (or ββ) areQ4 =
(αβ, {0}, {3}, {4}) (or Q6 = (ββ, {0}, {1}, {4})). The
2-delayed state estimate associated with either of these
states is{0} and falls entirely within the set of secret
states, which indicates that the system is not({0}, P, 2)-
opaque. �

C. Analysis of State-Space Complexity forK-Delay
State Estimators

1) State Complexity of OS-KDE:The construction of
Gobservation

K,obs suggests that its number of states could be as
high as(|Σobs|+1)K ×(2N )(K+1), whereN denotes the

number of states of the given automatonG. However, as
we argue next, its state complexity isO((|Σobs|+1)K ×
2N ) which is significantly lower.
Theorem 20.Given a non-deterministic finite automaton
G = (X,Σ, δ,X0) and a natural projection mapP with
respect to the set of observable eventsΣobs (Σobs ⊆ Σ),
the state complexity ofGobservation

K,obs (constructed accord-
ing to Definition 13) isO((|Σobs| + 1)K × 2N ), where
N = |X| denotes the number of states of the given
automatonG. �

Proof: We establish the state space complexity of
Gobservation

K,obs by observing that given (i) the sequence of
the pastK observationsΩ = α−K+1 . . . α0, and (ii) the
K-delayed state estimateZK , the intermediatek-delayed
state estimatesZk (0 ≤ k < K) can be reconstructed
uniquely using our knowledge of the plant model. First,
note that given (i) and (ii), the current-state estimate, by
definition, is readily available viaZ0 = δo(ZK ,Ω). Next,
we construct the intermediatek-delayed state estimates
Zk (0 < k < K) in two steps:
(1) constructK sets of statesXk (0 ≤ k < K) as
the set of states reachable inG, from states inZK

via a string that produces the sequence of observations
α−K+1 . . . α−k. Following the notation in (3), we have
Xk = δo(ZK , α−K+1 . . . α−k);
(2) update all Xk with their post observations
α−k+1 . . . α0 to construct thek-delayed state estimate
Zk. To accomplish this, we can use an approach similar
to the recursive state transition function introduced in
Definition 13: by definition,Z0 is the same asX0. Next,
we start fromX1 and remove all those estimates that are
not consistent with observingα0 (i.e., their transitions
do not generate observationα0 or do not result in a
state inZ0); this way, we obtainZ1. Then, we consider
X2 and remove all statesy in X2 from which α−2

cannot occur (i.e., statesy from which δo(y, α−2) = ∅)
or statesy for which α−2 leads to a state outsideZ1

(i.e., states which have been removed in previous steps).
We can repeat this procedure forX3, . . . ,XK−1 and
α−3, . . . , α−K+1. Therefore, using onlyΩ andZK , we
can construct all intermediatek-delayed state estimates
Zk that were explicitly stored at each state of theK-
delayed estimator in our earlier construction. Note that
for the case when less thanK observations are available,
i.e., when |Ω| < K, a similar approach can be taken
to construct the intermediatek-delayed state estimates,
0 ≤ k < |Ω|.
Example21. For the DESG in Example 15 with the
sequence-based2-delayed state estimator in Figure 4,
the state (αα, {0, 2, 4}, {2, 4}, {2, 4}) can simply be
represented by(αα, {0, 2, 4}). We can easily obtain
the missing unit-delayed and current state estimates as
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described above. Note that based on the above notation,
in state (αα, {0, 2, 4}, {2, 4}, {2, 4}), we haveZ2 =
{0, 2, 4} andα−2α−1 = αα. Using this, we can obtain
X1 = δo(Z2, α−2) = δo({0, 2, 4}, α) = {2, 3, 4} and
X0 = δo(Z2, α−2α−1) = δo({0, 2, 4}, αα) = {2, 4}. We
can then setZ0 = X0 and reflect the post observation
(α−1 = α) made after the previous estimation, which
updatesX1 to Z1 = {2, 4}. �

The above discussion not only demonstrates that stor-
ing the intermediate state estimates is not necessary (as
long as the plant model is readily available and one
is willing to do some computation) but also implies
that keeping this information as part of the state label
does not generate new states (even if the plant model is
unavailable). In other words,Gobservation

K,obs with reduced
state labels (constructed without explicitly storing the
intermediate delayed state estimates as described above)
is isomorphic to the one that stores them explicitly
(described in Definition 13).

2) State Complexity of SM-KDE:Each state of the
state mapping-basedK-delay state estimatorGK,obs is
a (K + 1)-dimensional state mapping. This suggests
that the state complexity of this automaton is bounded
by 2NK+1

since there areNK+1 (K + 1)-dimensional
state mappings over theN states of the given automaton
(each SM-KDE state is associated with a subset of these
state mappings). In this section, we use the results on
the state complexity ofGobservation

K,obs that we established
in the beginning of this section to prove that the state
complexity of GK,obs is O((|Σobs| + 1)K × 2N ). More
specifically, we introduce a function which maps each
state ofGobservation

K,obs to a state inGK,obs and then show
that the range of this function covers all states ofGK,obs.
This implies that the number of states ofGK,obs is less
than or equal to the number of states ofGobservation

K,obs

and hence establishes that the state space complexity of
GK,obs is also O((|Σobs| + 1)K × 2N ). The following
theorem states and proves this formally. Due to space
limitations, only a sketch of the proof is provided. The
detailed proof can be found in [15].
Theorem 22.Given a non-deterministic finite automaton
G = (X,Σ, δ,X0) and a natural projection mapP with
respect to the set of observable eventsΣobs (Σobs ⊆ Σ),
the state complexity ofGK,obs (constructed according to
Definition 6) isO((|Σobs|+1)K ×2N ), whereN denotes
the number of states of the given automatonG. �

Sketch of the Proof:To prove that the set of states
of the SM-KDE, denoted byXK,obs, has cardinality
equal to or less than the set of states of the OS-
KDE, denoted byXobservation

K,obs , we define a function

f : Xobservation
K,obs → 2X(K+1)

and show that for all
Q ∈ Xobservation

K,obs :

(a) f(Q) ∈ XK,obs and,
(b) for each m ∈ XK,obs, there exists at least one
Q ∈ Xobservation

K,obs such thatf(Q) = m.
The establishment of these two properties proves that
the number of elements in the setXK,obs is less than or
equal to the number of elements in the setXobservation

K,obs .

We define the mappingf : Xobservation
K,obs → 2X(K+1)

as
follows:
i) For Ω = α0α1 . . . αn, |Ω| < K, Q =
(Ω, Z|Ω|, . . . , Z|Ω|, Z|Ω|, Z|Ω|−1, . . . , Z0) ∈ Xobservation

K,obs :

f(Q) ≡ {(j0, j1, . . . , jK) | (K − |Ω| ≤ k ≤ K,

0 ≤ l ≤ |Ω| − 1, 0 ≤ w ≤ K − |Ω| − 1) : jk ∈ ZK−k,

jw+1 = jw,∃tl ∈ Σ∗{P (tl) = αl,

jK−|Ω|+l+1 ∈ δ(jK−|Ω|+l, tl)}}.

ii) For Ω = αn−K+1αn−K+2 . . . αn, |Ω| = K, Q =
(Ω, ZK , . . . , Z0) ∈ Xobservation

K,obs :

f(Q) ≡ {(j0, j1, . . . , jK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) :

jk ∈ ZK−k,∃tl ∈ Σ∗{P (tl) = αn−K+1+l,

jl+1 ∈ δ(jl, tl)}}.

Functionf maps an OS-KDE stateQ to a set of(K+1)-
tuples of states(j0, . . . , jK) such that each statejk in
this tuple is chosen from the corresponding delayed
state estimateZK−k and also such that the system can
visit the sequence of statesj0, . . . , jK and produce the
sequence of observationsΩ. We can show the function
f satisfies property (a) by using the characterization
of Q in Theorem 16 and property (b) by using the
characterization ofm in Theorem 9.

Note that for DESG in Figure 1-d, the number of
states for both estimators is the same (indeed they are
isomorphic) which shows that the introduced mapping
between the states of these two estimators can be one-
to-one. Note, however, that this is not necessarily the
case. Consider, for example, the DESG in Figure 5-a
with initial state setX0 = {0, 1} = X. Figures 5-b and
5-c depictGobservation

1,obs andG1,obs, respectively. As can
be seen, storing the last observation results in creating
more states compared to storing the 2-dimensional state
mapping corresponding to the last 2 states visited.

Remark 23. The exponential complexity of the algo-
rithms proposed in this paper for verifyingK-step
opacity is not desirable for implementation purposes.
However, in [6], we showed that deciding whether the
non-deterministic finite automatonG is K-step opaque
is NP-hard for |Σobs| > 1. This implies that it is
unlikely that any algorithm can verifyK-step opacity
in polynomial time. For more details, refer to [6].�
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Fig. 5. Example demonstrating that the number of states inGK,obs

can be less than the number of states inG
observation
K,obs : (a) G; (b)

G
observation
1,obs ; (c) G1,obs.

V. ROLE OF DELAY IN K-STEP OPACITY

In this section, we show that forK ′ > K ≥ 2N2

− 1,
K-step opacity andK ′-step opacity are equivalent. Note
that K-step opacity does not in general implyK ′-step
opacity for K ′ > K (in fact, Example 12 demonstrates
this for the system in Figure 1-d) though the converse
is trivially true (K ′-step opacity impliesK-step opacity
for K ′ > K).

The idea behind the proof is the following: fix a
point in the system’s state trajectory. In theK-step
opacity problem we are interested in finding how much
we can say regarding the membership of the state, at
that fixed point in time, to the set of secret states,
after we makeK additional observations. We can gain
insight to this question by considering the estimate of
the state at this fixed point as theinitial uncertainty for
an initial-state estimationproblem. In [5], we studied the
problem of initial-state estimation for a non-deterministic
finite automaton: given a sequence of observationsω =
α0α1 . . . αn and a set of possible initial statesX0,
initial-state estimation requires the enumeration of all
states that belong toX0 and that could have generated
this sequence of observationsω. We called these states
the initial state estimateX̂0(ω) associated with the
sequence of observationsω. In [5], we employed state
mappings and showed that̂X0(ω) = m(1) wherem =
m0 ◦ M(α0) ◦ M(α1) . . . ◦ M(αn) andm0 = ⊙2(X0).
Our analysis in [5] resulted in aninitial-state estimator
(ISE), i.e., a deterministic finite automaton that is driven
by observable events and whose states are essentially
state mappings (its initial state is the state mapping
m0 = ⊙2(X0)). More specifically, the set of starting
states in the state mapping associated with the ISE state
reached via stringω is the set of states from which a
sequence of events that generates the observed sequence
ω could have originated (i.e.,̂X0(ω) = m(1) wherem
is the state mapping (state) reached fromm0 via ω).
Since the ISE has at most2N2

states (because there are
that many different state mappings for an automaton with
N = |X| states), we are guaranteed that each (reachable)
ISE state can be reached via a string that generates at

mostK observations as long asK ≥ 2N2

−1. Note that
here we are concerned with the information conveyed by
thesetof all sequences of observations of length at most
K, and not a specific sequence of observations.

Theorem 24. Consider a non-deterministic finite au-
tomaton G = (X,Σ, δ,X0) with |X| = N and
construct theK-delayed state estimatorsGK,obs and
GK∗,obs for K > K∗ = 2N2

− 1 as described in
Definition 6. Then, for any(K + 1)-dimensional state
mappingm associated with the SM-KDE state reached
in GK,obs via ω = α0α1 . . . αn with |ω| > 2N2

− 1
and for eachm(k), 2N2

≤ k ≤ min(K, |ω|), there
exists a (K∗ + 1)-dimensional state mappingm′ as-
sociated with a state reached inGK∗,obs via some
ω′ = α0α1 . . . αn−kα

′
n−k+1 . . . α′

n′ for somen′ ≤ n +

2N2

− 1− k and withα′
n−p ∈ Σobs, k − 1 ≤ p ≤ n−n′,

such thatm(k) = m′(k + n′ − n). �

Proof: Recall that in anyK-delay state estimator
GK,obs, the k-delayed state estimate due to observa-
tion ω is captured via the setm(k), where m is the
(K + 1)-dimensional state mapping associated with
the state reached inGK,obs via ω = α0α1 . . . αn (k
satisfies0 ≤ k ≤ min(K, |ω|)). Now consider the
fixed point in time after the sequence of observations
α0α1 . . . αn−k has been observed. Oncek more obser-
vations are made (i.e., onceαn−k+1αn−k+2 . . . αn are
observed), the setm(k) denotes thek-delayed state
estimate at that fixed point due to the sequence of
observationsω = α0α1 . . . αn−kαn−k+1 . . . αn. Simi-
larly, m′(l) denotes thel-delayed state estimates of that
fixed point due to the sequence of observationsω′ =
α0α1 . . . αn−kα

′
n−k+1 . . . α′

n′ for n′− l = n−k. In other
words, m(k) represents thek-delayed state estimate,
if after the passage of the system through the state
at that fixed pointαn−k+1αn−k+2 . . . αn is observed,
whereasm′(l) denotes thel-delayed state estimate at
this same point ifα′

n−k+1 . . . α′
n′ is observed. To prove

Theorem 24, we need to show that assumingk ≥ 2N2

,
there exists anl ≤ 2N2

− 1 such that thel-delayed state
estimate at that same fixed time due to a shorter sequence
of observationsω′ = α0α1 . . . αn−kα

′
n−k+1 . . . α′

n′ with
n′ = l+n−k is the same as thek-delayed state estimate
of that fixed point due to the sequence of observations
ω = α0α1 . . . αn−kαn−k+1 . . . αn.

Denote the estimate of the system’s (current)
state at that point (i.e., the estimate after observing
α0α1 . . . αn−k) by Z ⊆ X. The problem ofk-delayed
estimation of the state of the system at the fixed point
in time after observingω = α0α1 . . . αn can be viewed
as an initial-state estimation problem where (due to the
observationsα0α1 . . . αn−k that have been made before
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reaching that fixed point) the initial uncertainty about
the “initial state” is the setZ. Hence, the setm(k) after
observingω = α0α1 . . . αn is the same as the set of
starting states of the state mapping that is associated with
the state that is reached viaαn−k+1αn−k+2 . . . αn in
the ISE whose initial state is associated with the state
mapping⊙2(Z). Note that the stringαn−k+1αn−k+2

. . . αn has lengthk > 2N2

− 1. Since the ISE has
at most2N2

states, strings of length at most2N2

− 1
can be chosen to visit any (reachable) ISE state. This
implies that the state reached in this ISE via the string
αn−k+1αn−k+2 . . . αn of length k can also be reached
via a string of length less than or equal to2N2

− 1,
which we denote byα′

n−k+1α
′
n−k+2 . . . α′

n′ for some
n′ ≤ n + 2N2

− 1 − k. Since the states reached in the
ISE via either of these strings are identical, thek-delayed
state estimate due toω is the same as the(k− (n−n′))-
delayed state estimate due toω′. This completes the
proof.

The above result can be used to show thatK ′-step
opacity is equivalent toK-step opacity forK ′ > K ≥
2N2

−1. We prove this by showing that forK ≥ 2N2

, K-
step opacity is equivalent toK∗-step opacity withK∗ =
2N2

− 1. The proof can be found in [15].
Theorem 25. For a non-deterministic finite automaton
G = (X,Σ, δ,X0), K-step opacity is equivalent toK∗-
step opacity forK > K∗ = 2N2

− 1 whereN = |X|.�

VI. CONCLUSION

In this paper, we defined, analyzed, and characterized
the notion ofK-step opacity for discrete event systems
that can be modeled as non-deterministic finite automata.
The notion ofK-step opacity, forK ≥ 0, requires that
the entrance of the system to a set of secret statesS, at
any time during the pastK observations, remains opaque
(uncertain) to outsiders. To verifyK-step opacity, we
introduced theK-delay state estimator which provides
K-delayed state estimates. These are the estimates of
the state of the systemk observations ago (0 ≤ k ≤ K)
and are consistent with all observations so far (including
the lastk observations). We show that for a system to
be K-step opaque, allk-delayed state estimates (asso-
ciated with states of theK-delay state estimator) need
to contain at least one state outside the secret setS.
The proposed verification method has state complexity
O((|Σobs|+1)K ×2N ), whereN denotes the number of
states of the given automatonG.
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