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Abstract—Motivated by security and privacy consid- In this paper, we consider opacity with respect to pred-
erations in a variety of applications of discrete event icates that are state-based. More specifically, we consider
systems, we describe and analyze the computational com-g scenario where we are given a discrete event system
plexity required for verifying the notion of K-step opacity (pgS) that can be modeled as a non-deterministic finite
for systems that are modeled as non-deterministic finite o, 1o naton with partial observation on its transitions:
automata with partial observation on their transitions. . - . .
Specifically, a system isk-step opaque if,at any specific 25SUMING that_the initial state of th_e system is (partially)
point within the last & observations the entrance of the Known, we define the secret behavior of the system as the
system state to a given set afecret statesemains opaque €Vvolutionof the system’s state within a known subset of
(uncertain) to an intruder who has complete knowledge secret states. Examples to motivate the study of such
of the system model and observes system activity through state-based notions of opacity are provided in our earlier
some natural projection map. We provide two methods for work [5], and are briefly reviewed later in this paper for
verifying K-step opacity using two differen.tstate estimat(_)r completeness. Among other applications, they include
constructions, and analyze the computational complexity encryption using key strings provided by pseudo-random
of both. generators, coverage properties of mobile agents in sen-

l. INTRODUCTION sor networks, and anonymity requirements in protocols

The increased reliance of many applications on sharked web transactions.
cyber-infrastructures (ranging from defense and bankingThe paper defines and analyzes the state-based notion
to health care and power distribution systems) has lefl K-step opacity(for KX > 0) by requiring that the
to various notions ofecurity and privacyA number of entrance of the system state to the set of secret sfates
such notions focus on characterizing thiermation flow at any observation point within the past observations,
from the system to the intruder [1], [2Dpacityfalls in remain opaque to the intruder. In other words, ida
this category and aims at determining whether a givetep opaque system the intruder (which is assumed to
system’ssecretbehavior (i.e., a subset of the behavidnave full knowledge of the system model and to be
of the system that is considered critical and is usual@ple to track the observable transitions in the system via
represented by a predicate) is kept opaque to outsiddre observation of associated labels) cannot determine
[3], [4]. More specifically, this requires that the intrudewith certainty that the state of the systeimi,..., or
(modeled as a passive observer of the system’s behavisrjobservations ago belonged to the set of secret states
never be able to establish the truth of the predicate. S. Our analysis starts by first establishing that a system

is K-step opaque if and only if none of thedelayed,
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Apart from our own work in [4]-[6] (which looked is a subset of finite-length strings iB*. A language
at various state-based notions of opacity), the work is finite if it contains only a finite number of strings.
this paper is related to some of the existing securitye say that a finite language is of length K if the
work in the area of DESs. In particular, [7] focuses omaximum length of the strings ik is K. For a string
finite state Petri nets and defines opacity with respect @ denotes therefix-closureof w and is defined as
to state-based predicates; our work in [4], [6] and i@ = {t € ¥* | Is € ¥*{ts = w}} wherets denotes the
this paper essentially studies and solves this problemncatenation of stringsands. The post-stringu/t of
for the case of (non-deterministic) finite automata, also aftert € @ is defined asv/t = s wherets = w [11].
introducing in the process the notion af-step opacity A DES is modeled in this paper as a non-deterministic
(not present in either [3] or [7]). The authors of [8finite automatonG = (X,3,6, X,), where X =
consider multiple intruders modeled as observers wiflo, 1,..., N — 1} is the set of states} is the set of
different observation capabilities (namely different-natvents,s : X x ¥ — 2X (where2X is the power set
ural projection maps) and require that no intruder hsf X) is the non-deterministic state transition function,
able to determine that the actual trajectory of the systeand X, C X is the set of possible initial states. The
belongs to the secret language assigned to that intrudenction § can be extended from the domala x 3 to
Assuming that the supervisor can observe/control @le domainX x ¥* in the routine recursive manner:
events, sufficient conditions for the existence of a sifi, ts) := Ujes(in 00,s), for ¢ € ¥ ands € X7
pervisor with a finite number of states are subsequentljth §(i,¢) := i.The behavior of DES5 is captured
proposed. The assumptions on the controllability amy L(G) := {s € ¥* | Ji € Xo{d(i,s) # 0}}. We use
observability of events are partially relaxed in [9] where, (G, i) to denote the set of all traces that originate from
the authors consider a single intruder that might obsersatei of G (so thatL(G) = {J,.x, L(G, ).
different events than the ones observed/controlled by|n general, only a subséf,,, of the events can be

the supervisor. In contrast to [8] and [9] (which followphserved, so that is partitioned into two sets, the set
a language-based approach), opacity in our framew@sk observable events,,; and the set of unobservable
assumes that the states of the system can be pafiientsy,, (note thaty ;s N X, = 0 and X s U Xy =
tioned into secretand non-secretones; this state-baseds). The natural projectiorP : ©* — ¥ . is typically
formulation is what leads to the use of various stalgsed to map any trace executed in the system to the
estimators to verify opacity. Also, note that the notionsequence of observations associated with it. This projec-
of opacity introduced here are not considered in [§bn is defined recursively a®(ts) = P(t)P(s), t €

and [9], and (as explained in [6]) they cannot be easily s ¢ x* with P(t) = t if t € S, and P(t) = ¢
captured by the language framework of [8], [9] except ¢+ ¢ %, U {e} [11]. [More general projections of the
for very special cases. Related to our work here is alg§fm P - > — LU {e} that may map multiple events to
the work in [10] where the authors partition the evenhe same label from the sét can also be handled in a
set into high level and low level events, and considefraightforward manner; to keep notation simple we only
the verification of intransitive interferencea property discuss the natural projection in this paper.]

that captures the allowed information flow from high ypon observing some string (sequence of observa-
level events to low level events through a downgradifgs) o, ¢ ., the state of the system might not be
process (i.e., the inference of the occurrence of certgiantifiable uniquely due to the lack of precise knowl-
high level events from low level events). Our model Afqge of the initial state, the non-determinism that is
the intruder’s capability (in terms of observability poWerpresent in the state transition function, and the partial
is different from [10] which makes the two frameworkgpservation of events. We denote the set of states that
hard to compare. However, for the case when theretis system is possibly igiven thatw was observeds

no downgrading process, the notion of non-interferenggs (current) state estimaqu‘(w). Similarly, we denote
can be translated to an instance of O-step opacity [fle set of states that the system was possibly in when
Note that, in general, one cannot formulate the notion pfgenerated thei** to last output (i.e., the state of
K-step opacity fork > 0 in the framework of [10].  the systemK observations ago) following a sequence
of observationsv = apgay ..., (n > K) as theK-

delayed state estimaﬁé‘w‘_K(w) and define it formally

Let ¥ be an alphabet and denote By the set of pejlow! Note that the current-state estimate can also be
all finite-length strings of elements af, including the

empty _stringe. For any stringt, [t| denotes the length 1y _gejayed state estimation in discrete event systems iteceta
of ¢ (with |e¢| taken to be zero). A language C X* fixed-lag smoothingn discrete-time systems [12].

[l. PRELIMINARIES AND BACKGROUND



seen as the 0-delayed state estimate. 2X” for state mappingsn;, my € 25 as

Definition 1 (K-Delayed State Estimatelsiven a non- o . o
T = , Jjoe X , € my,

deterministic finite automatod = (X, 3,4, X,) and Lems {(‘7(1. ‘73.))‘ ijn 1 {1, 72) € ma

a natural projection mag@ with respect to the set of J2:73 253

observable event&,,; (Xops € X)), the K-delayed For anyZ C X and K > 2, we define the operator

state estimate after observing string= aga; ..., G :2¥ — 2X" asor(2) = {(4,i,...,i) | i € Z}

(n > K) is defined asX"w‘_K(w) ={j e X |3¢,t" € where the tuples involvé identical elements.

Y% e Xo{j € 6G,t),0(5,t") # O,P{H) = The 2-dimensional state mapping induced by a se-
apay . ..ok, P(t") = ap_g41...an}}. B quence of observations is defined as

Based on Definition 1, thé{-delayed state estimate i s X . .
X,_x(w) after observings = apas ..., (n > K) Mw) ={(5,) 4,5 € X, 3t € {P(t) = w,j €00, )}}.
is the set of all states that (i) are reachableGirfrom I1l. PROBLEM FORMULATION
(at least one pair of) initial stateand a stringt’ with
projectionP(¢') equal to the firsh— K observable events
in w (in the same order) and (ii) for which there exist
at least one continuatiot! with projection P(¢”) equal
to the lastK observable events i (in the same order).
Note that the set of states reachablednvia a string

In this section, we formally define the notion &f-
step opacity.
Definition 2 (K-Step Opacity) Given a non-
deterministic finite automatonG = (X,%,4, Xy),
a projection mapP with respect to the set of observable
¥ with projection P(t') = agay ... an x = o is the eventsX s (Zops € X), and a set of secret states

. : . S C X, automatonG is K-step opaque (for a
Cl/Jrrent state estlmaFe tha}/t is obtained aﬂer_()bs,,?rv'ﬂgnnegative integeis) with respect toS and P (or
w’ but before observing(t") = an—+1... an = w"; (S, P, K)-opaque), if for allt € ©*, ¢’ € £, andi € X
thus, X, |-k (w) € X (') and the K-delayed state * "’ ' ' ’ ’
estimate can be seen as the subset of statég in(w’) {|P(t)/P(t)] < K,3j € S{j € 6(i,t'),6(j,t/t') # 0}}
from which the postK observationsy,, xi1...q, are o . g _
possible. Note that Definition 1 implies thatufe X7, ~ {35 € X735 €530 € Xo, 37 € 000, s){P(s) =
is not a valid sequence of observations @ then  P(t), P(s") = P(t'),j' € X — 5,8(j',s/s') # 0}} @

Xjoj-x(w) = 0. Also, by convention.Xj,|_(w) IS Note that while the definition of(-step opacity stud-
taken to beXy(w) for [w| < K. ied in [6] is simpler and more intuitive, it is only suitable
Given a non-deterministic finite automato@ = for deterministic automata; Definition 2, however, can
(X,%,0,Xp), X (K > 2) denotes the set dk-tuples be used for non-deterministic automata. Eor € L(G)
of states of DES, i.e.,, X* := X x X x ... x X = with P(s) = P(t) we say thatt passes through state
{(G1,--,Jx) | Jr € X,1 < k < K}. We call j whens passes through stafg if there existst’ € £,
m C XK a K-dimensional state mapping. Note that @ ¢ 3, andi,i’ € X such thatj € 6(i,t'), j' € 6(i', s)
2-dimensional state mapping was calledtate mapping while (i) P(t') = P(s’) and (i) t/¢’ ands/s’ have con-
in [5] and was introduced to analyze initial-state opacitynuations from stateg and j/, respectively. According
The set of states included as the first (last) componéatDefinition 2, DESG is (S, P, K)-opaque if for every
in a K-dimensional state mapping is called the set stringt in L(G) that visits a statg in S within the past
of starting (ending) states of.. We denote the set of K observations (and has a continuation frgin there
starting states forK-dimensional state mapping. by exists a strings in L(G) with P(s) = P(t) such that
m(K —1) and the set of ending states by0). We also when stringt passes through the stafein .S, string s
denote bym(k),0 < k < K — 1, the set of intermediate passes through a statein X —S (and has a continuation
states in thei(-tuple, i.e., from j'). Note thats could be the same as in which
caset would be passing through both secret and non-
secret states.

We define theshift operator>>: 2X* x 2" — 2X™ for Remark 3. The notion of K-step opacity is suitable

a K-dimensional state mapping; < 2X" and a state for cases where there exists a bounded delay, after
mappingm; € 2% as which one does not care if the outside observer can
infer information about behavior that was previously
considered secret (e.g., because the secret transacsion ha
completed or because the intrusion will be detected).
We also define the composition operatar2X” x2X* —  Motivated by applications where the existence of such

m(k) = {jk—k | (J1,---,Jrx) €EM,0 <k < K — 1},

mp >>mg 1= {(j27"'>jK7jK+1) |
(j17j27' .. >]K) € ma, (ijjK—i—l) € m2}‘



y

(d) Fig. 2. DESG modeling a communication protocol for a bank

() . ; ; .
transaction discussed in Section I1I-B.

Fig. 1. (a) A 2-dimensional grid in which a vehicle can movea; ( SENSOr.
Kinematic modelH for a vehicle in the grid in (a); (c) Automata@ One of the questions that might arise in the above con-

modeling the vehicle kinematic model and the correspondeWsor eyt js that of characterizing all trajectories (sequences
readings; (d) DESY in Section IlI-B. .
of states) that a vehicle can follow such that the passage
of each trajectory from specific locations at specific
bound might not be viable, we introduced in [13] thgbs_ervation points (_points in time with respect to obser-
notion of infinite-step opacitywhich can be seen aSvat_lon) remain amblg_uous to the sensor network. These
(S, P, K)-opacity with K& — oo but requires different trajectories can be of interest for avarllety of reasons. For
techniques for its verification. exz_:lmple, they can be employed_ to hide t.he origin of a
trajectory from an observer who is employing the sensor
network (e.g., an observer who is observing the labels in
A. Motivational Example Figure 1-c) trying to identify whether the origin belongs
There are many areas whefé-step opacity can beto a set of secret (strategically important) locations or
used to characterize security requirements of interegtether the vehicle passed from this particular set of
In the sequel, we discuss an example in the contextlotations at some specific instant of time. Such questions
tracking problems in sensor networks. More details c@an be answered using the opacity framework of this
be found in [5]. paper.
Example4. Consider a vehicle capable of moving on 'NOté that a number of tools are already available for
a two-dimensional space modeled as a 2-dimensioN§fiYing notions of opacity, includings-step opacity
array of cells (in Figure 1-a we show a tayx 2 grid). (€€ for example [14]). u
The vehicle possible movements in this space can be
described via a kinematic model (a finite state machin®) Related Notion: Trajectory-Based-Step Opacity
whose states are associated with the state (position) oft is easy to verify that the system in Figure 1-d is 2-
the vehicle and whose transitions correspond to the pagep opaque with respect = {1,6}; however, upon
sible movements of the vehicle at this position. Figure bbservinga«, the intruder is certain that, regardless of
b depicts an example of a kinematic modél for a the state sequence that has occurred, the system has vis-
vehicle that moves in the grid in Figure 1-a. ited a secret state within the lasbbservations (although
Typically, the sensor network that is deployed in thisne cannot determine exactly when this happened). This
space will not capture all movements of the vehiclgystem can be considered as insecure if the attacker
and hence the observation of movements will be parti@. only interested in determining whether the system
If each sensor detects the presence of the vehiclehas reached secret states at any point during the last
a cell or in some aggregation of cells, then when th€ = 2 observations. We refer to a system for which
vehicle passes through a cell within the coverage tifis scenario does not occur astrajectory-basedk-
a sensor, this sensor emits a signal that indicates thiep opaquesystem. It is not hard to see that DES
event. Thus, we can enhance the kinematic model sytrajectory-based(-step opaque if and only if for any
assigning labetv to all transitions that end in a cell thatgiven sequence of observationsthere always exists at
belongs to the coverage area of sensoiSince sensor least one sequence of states tGatan follow such that
coverages may overlap, the label of transitions endinganly non-secret states are visited while generating the
areas which are covered by more than one sensor ¢ast K events inw. Moreover, a system that is trajectory-
be chosen to be a special label that indicates the based K-step opaque is alsd’-step opaque; but the
of all the sensors covering that location. In Figure Xonverse is not necessarily true.
¢, we depict the (non-deterministic) automatGnthat Note that the essential difference betwegnstep
models both the kinematic model of the vehicle and tlapacity and trajectory-baseld-step opacity is the time
corresponding sensor readings for a particular choiaewhich the state of the system is exposed. Depending
of sensor coverage areas. Dotted arrows correspondiothe application -step opacity might be a more suit-
transitions in locations that are not covered by argble requirement than trajectory-bas&dstep opacity



for characterizing security requirements. For instance,Existing state estimation techniques cannot vefify
suppose the DE&: in Figure IlI-B is a communication step opacity since they are not tracking thelelayed
protocol for a bank transaction where a user has twtate estimate$, < k£ < K. For this reason, in this paper
options: communicate important account informatiowe introduce thek -delay state estimatofKDE) which
while at state 1 (secret state) and dummy informatias a (deterministic) finite automaton that reconstructs the
while at states 3 and 5 (non-secret states), or coidelayed state estimate8 € k£ < K) associated with
municate dummy information at states 2 and 4 (noa-given sequence of observatians In the sequel, we
secret states) and important account information whiletroduce two methods for constructinig-delay state
at state 6 (secret state). If an eavesdropper does aestimators: (i) by storing the possible sequences of the
know which of the two options the user has followethst (K + 1)-visited states vid K + 1)-dimensional state
(due to the unobservable event,), then (even though mappings, (ii) by storing thé-delayed state estimates,
she/he knows that important account information has< k < K, and remembering the sequence of the last
been communicated) she/he does not know when ttiisobservations. We also discuss the state complexity of
was done. Therefore, the fact that the system is notthe KDEs that result from these two methods once we
step opaque is critical (despite the fact that the systdrave the opportunity to describe them formally.
is not trajectory-based 2-step opaque).
As another example, consider a pseudo-random gen%r—State Mapping-Basel -Delay State Estimator (SM-
ator that is used for generating a key string in encrypUcﬁ’P
applications. Such a pseudo-random generator is usuallyfhe SM-KDE utilizes (K + 1)-dimensional state
implemented as an autonomous finite state machine thappings to capture th&'-delayed state estimates as
cycles through a large number of states. In this cagellows: each state of the SM-KDE is associated with
knowing that the system was in a particular state atunique(K + 1)-dimensional state mapping, with the
a specific point in the past (as captured Bystep initial state m, of the SM-KDE associated with the
opacity) is indeed important because this exposes tt¥¢ + 1)-dimensional state mapping g 1(Xo); with
subsequent sequence of states and thus the key stanglight abuse of notation we denote this by, =
used for encryption. On the other hand, knowing that thex1(Xo). When observatiomx € ¥, is made, this
system has been in a particular state in the recent padial (K + 1)-dimensional state mapping, is shifted
(as captured by trajectory-basédtstep opacity) offers with the induced state mappinyf (o) corresponding to
little information (in fact it offers zero information ifi’ observationy, resulting in a(/ + 1)-dimensional state
is larger than the number of states of the pseudo-randomppingm; that associates with the next state of the
generator). state estimator, i.emm; = mgy >> M(«). Similarly,
for each subsequent observatiGne X, the current
state of the SM-KDE that is associated wit{/d + 1)-
dimensional state mapping transitions into the state
associated with thé K + 1)-dimensional state mapping
In this section, we show that for a DES to be K-/ = m >> M(3). From the structure of K + 1)-
step opaque, it is necessary and sufficient that éﬂChdlmensmnaI state mappings and the nature of the shift
delayed state estimaf§|,|_,(w), 0 < k < min(K, |w|), operator, we can establish that a sequence of observations
associated with a sequence of observatiorsntain at causes the SM-KDE to transition through a sequence
least one state outside the set of secret stét@snless of (K + 1)-dimensional state mappings to(& + 1)-
the sequence of observationscannot be generated bydimensional state mapping such that, at a given time
G in which Cas‘3X|w| 1(w) = 0). The proof is straight step, the set of states in the state mappingorrespond
forward and is not included due to space limitaitons. The delayed state estimates. More specifically, the set of
reader can find it in [15]. ending statesn(0) corresponds to zero-delayed state es-
Theorem 5. Given a non-deterministic finite automatonimates, the set of intermediate stategk),1 < k < K,
G = (X,%,4,Xp), a projection mapP’ with respect to corresponds tdi-delayed state estimates, and the set
the set of observable events,; (X.s C X), and a set of of starting statesn(K) corresponds td<-delayed state
secret statess C X, automatonG is (S, P, K')-opaque estimates. In this manner, we can build a structure which,
if and only if for aII w € Xy, 0 <k < min(K, [wl) at any time following a given sequence of observations,
Xjo-r(w) € S or X _x(w) =0, (1) maintains information about the-delayed, 1-delayed,
whereXM_k( ) is thek: -delayed state estimate associ-. ., and K-delayed state estimates through t#é+ 1)-
ated with the sequence of observations B dimensional state mappings associated with each of its

IV. VERIFICATION OF K-STEP OPACITY USING
STATE ESTIMATORS



states. In fact, the estimator also contains compledeneral, we can graphically represent an induéed
information about the possible system state trajectoridgnensional state mapping using a K-dimensional
during the lastK observations. trellis diagram i.e., a K-partite graph where the nodes
o ) in the state sefX are replicatedk” times and ordered
Definition 6 (State Mapping-Based -Delay State ES- jn, ¢ vertical slices ranging from slice 0 to slidé — 1

timator (SM-KDE)) Given a non-deterministic fipite (hence ak -dimensional trellis diagram has - N nodes
automatonG = (X,X,4,Xp) and a natural projec- with N = |X|). Each node at slicé (1 < k < K — 2)

tion map P with respect to the set of observablgs either isolated or connected to (at least) one node at
eventso,s (Nops © X), we define thek-delay state gjice 1. _ 1 and (at least) one node at sliée+ 1. The

esﬂmit(c})(rmas the deterministic automato}kbo(b(sm]) nodes at slice OK — 1) are either isolated or connected
AC(2 » Xobs, 0K obs; X 1¢,0) With state set ' to (at least) one node at slice K (— 2). [

event seb,, initial state X o = X)), and state :
ransition ?Gsnctioné ' g)ﬁml?ﬁjé( 0)_> o XD In the following theorem, we show that the SM-KDE
Kobs - obs statem that is reached via a sequence of observations

defined fora € Y5 asm’ = dg ops(m, ) == m >> . . ) . .
p D o is associated with &K + 1)-dimensional state mapping
M{a), wherem, m’ € 2 - [AC denotes the Statessuch that the firsfw| — K observations would have

g;thﬁ automaton that are accessible starting from St%?(en the system to the starting states of the-+ 1)-
K,0-

| der th N 4 with dimensional state mapping and, in addition, the last
Example7. Consider t g DES in Figure 1- V\Qt observations could have taken place from these starting
Xo = {0,1,2,3,4} and S, - {O"_ﬁ}' For this states, visiting in the process the intermediate states
system, the 2-delay state estimator is representedidnthe tuple, in the order captured by the elements of

Figure 3-a along with the3-dimensional state map-y,, (K + 1)-dimensional state mapping. The proof is
pings mg,m1,...,myg needed in the ConStrUCt'on'provided in [15].

The initial state of the system isXo = X and Thegrem 9. Suppose SM-KDE state (as constructed
the initial state of the 2-delay state estimator Cags pefinition 6) is reachable from the SM-KDE initial
tures this inmg via a 3-dimensional state mappinggiate X 4 o = Or+1(Xo) via the stringw = o . . . ay,
that maps each system state to itself @s(X) = , . Then, SM-KDE state: can be characterized as
{(0, O, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}5 mg. follows:

Starting from the initial state, assume that we obsery§ || < K: m = {(jo,j1,...,jx) € Xo x XX | (0 <
a. The state mapping/(«) induced by observing: is | < |w| - 1,0 < w < K — |w| — 1) : jut1 = ju, I €
{(0,2),(0,3),(2,2), (4,4)} which implies thatx can be y+{p(¢;) = s Gkl 11 € SRl )} -
observed only from state® 2 and4. Moreover, if the (i) |w| > K: m = {(o.ji,....jx) €
initial state was 0, the current state can only be one gfx+1 | (0 < | < K — 1) : 3 € S*{P() =
the states if2, 3}; however, if the initial state was 2, they,, ;.\ 51 € 6(j;, t)}, i € Xo, 3t € SH{PY) =
current state could only bg; finally, if the initial state ga, ... q,_g,jo € 0(i,t')}}.
was 4, the current state would be 4. Following observ@i) = () when there is not € L(G) such that

tion «, the next staten’ in the 2-delay state estimatorp () = . m
can be constructed as8’ = Jx ops(m0, @) = Mo >> The proof of the following corollaries can also be
M(a): {(O’ 0, 2)7 (070’ 3)7 (2’ 2, 2)7 (4a 4, 4)} =mj. found in [15]. A

Next, consider the case when following observation Corollary 10. The k-delayed state estimat&|,_(w),
we observe3. As the induced state mapping(3) = 0 < k < min(K,|w|), after observingw =
{(0,1),(1,4),(3,4)}, we havem’ = 0k ops(m1,8) = aoai...an is given by X, _(w) = m(k) where
my >> M(B)= {(0,3,4)} = my. This implies that m = 0k obs( Xk 0, w). [ |

a3 can only be observed if the system follows the state Corollary 10 proves that the SM-KDE captures the
trajectory 0 — 3 — 4. Using this approach for all set of all k-delayed state estimate8,< k < K, via
possible observations (from each state), the 2-delay sté$e(/ + 1)-dimensional state mappings and, hence, by
estimator construction can be completed as shown Theorem 5, it can be used for verifying-step opacity.
Figure 3-a. Note that we have not included the sta§eorollary 11. Discrete event system G is5, P, K)-
that corresponds to the all empty state mapping (and @#adue if and only if for allm € Xgops k €

transitions from/to it) to avoid cluttering the diagral. {0,..., K},
Remark 8. On the right of Figure 3-a, we use 3- m(k) ¢ S or m(k) =0, 2

dimensional trellis diagrams to describe the triples aghere Xx ., is the set of states itk s that are
sociated with states of the 2-delay state estimator. feachable from the initial stat& o = ©x11(Xp). W



Fig. 3. (a) State mapping-based 2-delay state estimatoesmonding to DESG; (b) State mapping-based 1-delay state estimator
corresponding to DE&:.

Example 122 DES G in Figure 1-d with X, = record the sequences of states that are possible; however,
{0,1,2,3,4} is not ({0}, P, 2)-opaque due to the exis-knowledge of the lask™ observations (together with the
tence of stateny (or mg) in the state mapping-basedinderlying system model) allows one to reconstruct these
2-delay state estimator depicted in Figure 3-a. If treequences if required. We now discuss the systematic
system generates the sequence of observatighgor construction ofG‘}?fOel;”“”"”. For brevity, we define the
(), then (since the only state from whiel or 33 can functiond, : X xE,,, — 2% foranyi € X anda € 3,

be observed is state 0) we can conclude with certairdg

that the system was in state 0 two steps ago. This violatgs(i,a) = {j € X | 3s € ¥*{P(s) = a,j € (i, 5)}}.

the 2-step opacity requirement since state 0 is a secret (3)
state. The unit-delay state estimator for this system The function §, can be extended from the domain
shown in Figure 3-b (again we have not included the stakex ¥, to the domainX x X¥, _ in the routine recursive
that corresponds to the empty state mapping); it can banner: fort € Y, and s € %%, 6,(i,ts) =
verified that for each of the-dimensional state mappings J, o, (it) Oo(J, ), With 6o (i, €) := 7. With a slight abuse

m associated with its states, every set of mtermedlage notatlon we use), : 2% x Y, — 2% to also

statesm(k),0 < k < 1, contains at least one elemengenote its extension from states to sets of states as
outsides. Hence, DES is ({0}, P, 1)-opaque. B foliows: for all Z C X definedy(Z,a) = U, ., (2, a).

For clarity, we also introduce the following notation:
B. Observation Sequence-BasEeDelay State Estima- let w = af,...a), with n > K denote the sequence
tor (OS-KDE) of observations that have been seen so far (from the

In this section, we introduce the construction of adbitialization of the system); we will rename the last
tomaton Gobservatzon which capturesk-delayed state K observatlonSan Kal---0p 10 a g1 g (e,
estimates by remembering the sequence of the lasti = a;,_; for i = 0, 1 ;K — 1) to make the
K observations (this should be contrasted (g s discussion mdependent mf (the total number of ob-
which captures the compatible sequences of theAast servations seen so far). Also note that in the following
visited states vig K + 1)-dimensional state mappings)definition stringse_or— 1o Q0 of length less thar
At each state ofG:yr*ion, we store a(K + 2)- are represented as*ta_a_j41 ... ao.
tuple Q € gobse x 2X x ... x 2X consisting of the Definition 13 (Observation Sequence-Baséd-Delay
following information: (i) the lasti observationsX,;, . State Estimator (OS-KDE))Given a non-deterministic
denotes the seE,;, U {¢}), and (i) all the k-delayed finite automatonG = (X, ¥,4, Xo) and a natural pro-
state estimates fok = 0,1,..., K. Upon observing a jection map P with respect to the set of observable
new event, thet-delayed state estimates are updated &€nts X5 (Xops € X), we define the observation
ensure that estimates that are not consistent with $Rguence-based-delay state estimator as the determin-
last observation are removed. Finally, the string thific automatorGesevation — AC((Bh,  x 2% x ... x

stores the lasf observations is updated by adding thg*), X, 5??2%2”““0” X ghaervation) with
last observation to the end of it and by removing th@ set of states’ obs,e X 92X % ... x 2% where each state

first one. The main difference here is trﬁggs;gwtwn is a(K + 2)-tuple conS|st|ng of one string of lengtki
only remembers the sets of states that are possibleless, andK + 1 subsets ofX;
0, 1, ..., K observations ago but does not explicitlyii) event set¥,,;



can only be observed fronf0,2,4}, Z; = {0,2,4}.
Also, since only one observation has been matie—
Zy = {0,2,4}; finally, & = wa/a_s = ea/e, SO
that the next OS-KDE state upon observindecomes
(Oé, {07 27 4}7 {07 27 4}7 {27 37 4}) = Ql

Note that at OS-KDE stat€,, Zy = {2,3,4}, 71
{0,2,4}, Zy = {0,2,4}, © = « and hencen_; = «
anda_s = e. If §is observed at OS-KDE statg, i.e.,
Fig. 4. Observatic_m s_equence-based 2-delay state estimatee- ap = 3, the next OS-KDE staté) — (Q 227 217 Zo) =
sponding to DES~ in Figure 1-d. Q. can be obtained via

(e, X, X, X)
(a{(J24} {0,2,4},{2,3,4})
Eﬁ {0,1,3}, }{] L, 3}} {{1 4}})
ng aa, {0,2, 2,4}, {2,4

= (af, %0 3 {3}, E

= (Ba, {13}, {4}, {4})
st(ﬂﬁ {0}, {1}, {4})

= (aa,{2,4},{2,4},{2,4})
Qs = (ﬁa {3}, {4, {4})
Qo= (ﬁa {1},{4}.{4})
Qo = (aa, {4}, {4}, {4})

(iii) initial state X 25" = (€, Xo, ..., Xo); and G (T ) — 5.(12.3.4 1y

(iv) state transition functionsgbscruation . (25)55 x  2o=OolZn ) ) o T b0 =14

2% % .x 2%) X B — (Eggse x 2% x ... x 2%) Zy={z € Zy |32 € Zo{Z € do(2,0) }}

defined as follows: if the current state is thK +2)- ={2€{2,3,4} [z € {4}{2 € 6o(2, B)}} = {3}
tL;(PIe Q = (Q>ZK7--->ZO) € Z‘obse X 2X X oo X ZQ = {Z IS4 | dz € 21{2 S 50(z,oz_1)}}
2,WhereQ:aK a1620bs€ande€ — {2€{0,2,4) |32 € {32 € 6,(z a)}} = {0
2X,0 < k < K, then the next state fory € S, tzed i (312 € 00(z a)}} = {0},

is Q = gouscrvation(Q, ag) = (Q, Z, ..., Zy) where With Q=Qap/a_s=afB/e=ap.
Q) = Qag/a_g, and the setik are defined recursively OS-KDE stateQ), = (a3, {0}, {3}, {4}) conveys the
asZy ={z|z€ Z_ 1,32 € Zy_1:%€d5(z,a_py1)} Tollowing information: the current state estimate{is},

for k =1,2,..., K with Zy = 6,(Zo, ). the previous state estimate i}, and the estimate
[Note that AC denotes the states of this automaton tieft the system state two observations ago{(3. Also

are accessible starting from initial staxg@é’servatw" ] ® «f captures the last two observations (observed in that
Remarkl4. The OS-KDE introduced in Definition 13 isorder). Using this approach for the remaining possible
related to the inverter with delay that was introduce@Pservations, the observation sequence-based 2-delayed
in [16]. Assuming that the system is invertible wittState estimator can be completed as shown in Figure 4
delay, the inverter in [16] acts as amline algorithm (states associated with empty state estimates of the form

which, for a given time index, stores tHé subsequent (£2,0,0,....,0) and transitions from/to these state have
observations (wher& is the fixed delay in the defini- Not been included). Note that the SM-KDE and OS-KDE
tion of invertibility with delay) in order to be able toin Figures 3-a and 3-b respectively are identical automata
refine the state estimate at this time index (using babkt as clarified later on, this will not necessarily be the
propagation). The refined state estimate that is obtairfépe in general. u

is used along with the plant model to reconstruct the In the sequel, we obtain a characterization of each set
executed sequence of events. The observation sequentsstatesZ;, 0 < k£ < K, in the OS-KDE state) =
based KDE is a finite structure thedpturesall estimates ({2, Zk, ..., Zp) reached via a sequence of observations
with delay for any observation sequence. In other words, Specifically, if |w| > k, we show thatj € Z;, 0 <
what we do here can be seen asddiine approach for £ < K, if and only if there exists a stringin L(G) that
refining the current state estimate using any possilllas projectionv, and visits statg exactlyk observations
sequence of observations ardd future observations. ago; if there does not existc L(G) such thatP(t) =

This is necessary when trying to verify system properti¢sen Z;, = (), 0 < k < K. Furthermore, ifw| < k, then
that depend on delayed state estimates (sucR-asep Zx, |
opacity). B for |w|+ 1 <k < K. The following theorem states this
Example15. Consider the DES in Figure 1-d. For thiformally; the proof is provided in [15].

system, the observation sequence-based 2-delayed sthgorem 16. Consider the OS-KDE constructed
estlmatorGObse’”““tw" is represented in Figure 4. Theas in Definition 13 and suppose that stat@
initial state XO X and hence the OS-KDE initial-is reachable from the OS-KDE initial state
stateng’OS”mtm" becomes(e, X, X, X) = Qo which, ngf]m“m" = (¢, Xo, Xo,...,Xo) via the string
using the notation in Definition 13, implies thdy = X, w = apai...a,. Then, the OS-KDE stat@ can be

71 = X, Zy = X, Q) =¢eanda_; = a_y = e. Characterized as follows:

Upon observinga (o9 = «), the current (system)() || < K: Q@ = (Q2k,...,%)) €
state estimate becomes, = {2,3,4} and sincea (2}, 2%,...,2%) with




1) Q=ag...ay,, number of states of the given automat@nHowever, as

2) Zo={je€ X |IHe¥, JiecX{Pt)=wj€ weargue next, its state complexity ¥ (|S,ps| +1)% x
5(i, 1)}, 2V) which is significantly lower.

3) for 1 < k < |w|, Zx = {j € X | 3t € Theorem 20.Given a non-deterministic finite automaton
It e t,3i € Xo{ P(t) = w, P(t)/P(t') = G=(X,%,6,Xp) and a natural projection mag with
Qp_ji1---Qm,y J €0(i,t), 8(4,t/t') #0}}, and  respect to the set of observable events; (X, C ),

4) for |w|+1 <k <K, Z = Z,. the state complexity c(ﬂ‘;?fjl;”“”o” (constructed accord-
(i) lw| > K Q = (22Zk,...,7%) € ing to Definition 13) isO((|Ses| + 1)* x 2V), where
(Bl 2%, 2%) with N = |X| denotes the number of states of the given

1) Q= an_kii...an, automatonG. _ u

2) Zo={j€ X |3texicXo{Pt)=w,je Proof: We establl_sh the stgte space complexity of

(i, )}, G‘;?fjg‘s”“t“’” by observing that given (i) the sequence of

3yfor 1 < k < K, Zy = {j € X | 3t ¢ the pastK observations? = a_x 11 ...ag, and (i) the
S, 3t € £,3i € Xo{ P(t) = w, P(t)/P(t') = K-delaye_d state estimafy, the intermediaté-delayed
Qptos1 - Oy 5 € 0(i, ), 84, t/1) # D} ). stgte estlmgteik (0 <k < K) can be reconstructgd
iy Z, =0, 0 < k < K, when there is nd € L(G) uniquely using our knovyledge of the plant mod_el. First,
such thatP(’t) e ' note that given (i) and (ii), the current-state estimate, by
definition, is readily available vizy = 6,(Zx, ). Next,

The proof for the following corollary can also be . . .
found in [15]. we construct the intermediatedelayed state estimates

Corollary 17. Thek-delayed state estimat& |, (w), Zy, (0 <k < K) in two steps:
0 < k < min(K,|w|), after observingw (1) constructK sets of statest 0 <k < I_{) as
the set of states reachable @, from states inZx

Qo ...ap IS given by X, _p(w) = Z; where ° _ _
5%’soebzvation(X})(bservation’w) — (2, Zir .., Z0). m Viaastring that produces the sequence of observations

’0 . . .
Corollary 17 proves that the OS-KDE captures the s&t K+1- - - @—. Following the notation in (3), we have
of all k-delayed state estimate8, < k < K, via its Xip = 0o(Zr; g1+ - p);

(K +2)-tuples and hence, by Theorem 5, it can be uséd) update all X, with their post observations
for verifying i -step opacity a_gy1 ... g to construct thek-delayed state estimate

Corollary 18. Discrete event system G iS, P, K)- Z. To accomplish this, we can use an approach similar
opaque if and only if for allQ = (Q, Zx,...,Z) € to the recursive state transition function introduced in
Xobseration | (0K} Y Definition 13: by definition,Z; is the same a¥. Next,
fobs Z/L ¢ ’S or Z, = 0 4) Wwe start fromX; and remove all those estimates that are
where X.?(b,so%?atm is the set of states im%}g{fﬁatm not consistent with observing, (i.e., their transitions

that are reachable from the initial statX}’é’,%eT%’“”"” do nqt ger.lergte observatimzb_ or do not result ir.] a
(e, Xo Xo, Xo) state inZy); this way, we obtainz;. Then, we consider

Example19. As discussed in Example 12, DES in X> and remove all stateg in XZ_ from which a_»
Figure 1-d with X, — {0,1,2,3,4} is not ({0}, P,2)- cannot occur (|.e._, statgsfrom which §,(y, a_») = 0)
opague since observing the sequence of observadiiﬁnso_r statesy forhWE'Eh 0‘—; leads to ads'Fate ou_t3|d51
(or 573) reveals that the system was in state 0 two ste £, states whic h_ave eeg rerr}c(;}/e n g;ewous s(;[eps).
ago and state O is a secret state. Note that in the obse &. can repeat El'rlls p;oce ure 3’|' o clIKZ_l an
tion sequence-based 2-delay state estimator (depicte(ﬁ"'rrf” -0 @-K+1. 1 NETElore, using only2 an K, We
Figure 4) the states reachable vig@ (or 3) are Q4 — can construct all intermediate-delayed state estimates
(a3, {0}.{3},{4}) (or Qs = (3B, {0}, {1}, {4})). The 7, that were explicitly stored at each state of the
2-délayéd st7ate estimate associ’ateoi Witl’1 either of thfjseéayed estimator in our earlier con_struction. the that
states is{0} and falls entirely within the set of secre or thehcaszwhen[éess thdﬁlobservatlonhs are at\)/allatl)(le,
states, which indicates that the system is ({08, P, 2)- e, when[Q)f < o a S|m|ar approach can (_9 taken
opaque to construct the intermediate-delayed state estimates,
I. < of oxity | 0<k<|Q| [

C. Anaygls of State-Space Complexity fhr-Delay Example21. For the DESG in Example 15 with the
State Estimators sequence-basetdelayed state estimator in Figure 4,

1) State Complexity of OS-KDEhe construction of the state (aa, {0,2,4},{2,4},{2,4}) can simply be
Gg@f;g;atw" suggests that its number of states could be aspresented by(aa, {0,2,4}). We can easily obtain
high as(|Sops|+1)% x (2V)(E+D whereN denotes the the missing unit-delayed and current state estimates as
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described above. Note that based on the above notati@),f(Q) € Xk .»s and,

in state (ac, {0,2,4},{2,4},{2,4}), we haveZ, = (b) for eachm € Xk s, there exists at least one
{0,2,4} anda_sa_1 = a«. Using this, we can obtain @ € Xf}’f)%’;““tw" such thatf(Q) = m.

X, = 60(Zy,a_3) = 6,({0,2,4}, ) = {2,3,4} and The establishment of these two properties proves that
Xo = 60(Zo,a—n0_1) = 6,({0,2,4}, acr) = {2,4}. We the number of elements in the sEi ., is less than or
can then setZ, = X, and reflect the post observatiorequal to the number of elements in the sgpsrvation,
(a1 = a) made after the previous estimation, which 7

updatesX; to Z; = {2,4}. u We define the mapping : X ghscrvation —, X" a5
The above discussion not only demonstrates that stésllows:

ing the intermediate state estimates is not necessaryijador @ = apa1...q,, [ < K, Q@ =

long as the plant model is readily available and oH&, Zjq; - - Zia), Zja)s Zja|—1; - - - » Zo) € Xagrretion:

is willing to do some computation) but also implies . _

. L . = —Q<k<

that keeping this information as part of the state jabel (@) = {0,710, 7x) | (K —102] < & = K,

does not generate new states (even if the plant model &< ! < |9 = 1,0 Sw < K — [Q = 1) : jix € Zk s,
unavailable). In other Words(;%’fjljsmtm with reduced  j,11 = jw, 3t € Z{P(t)) = ay,

state labels (constructed without explicitly storing the;

) : ) ) J—|Q+1+1 € O(FK— |+ t) } -
intermediate delayed state estimates as described above) o o

is isomorphic to the one that stores them explicitli)) For & = 04n—K+1bOén—I§+2---Oém’Q\ = K, Q =
(described in Definition 13). (Q,Zk, ..., Zo) € Xpop et

2) State Complexity of SM-KDEEach state of the (e s . .
_ , _ = {(jo, j1s - i) (0< k< K,0<I< K —1):

state mapping-basef -delay state estimata i s iS ]_C(Q) {Go. 21 *jK)K )

a (K + 1)-dimensional state mapping. This suggesfs € 25—k 3t € X {P (1) = an—r+141,

that the state complexity of this automaton is boundegi1 € 6(ji. t:)}}-

by 2NV " s.ince there areVE+! (K + 1)_-dimensiona| Functionf maps an OS-KDE stat@ to a set of K +1)-
state mappings over th¥ states of the given automator}ugles of statesjo, ..., jx) such that each statg, in

(each SM-K.DE state iS. assoc_iated with a subset of th IS tuple is chosen from the corresponding delayed
state mappings). In this section, we use the results Shte estimatéZ; ;. and also such that the system can
the state complexity oG%’fjg"smm" that we established N

. o ) . visit the sequence of statgs, ..., jx and produce the
in the bgglnnlng of t.h's section to p;?ve t]i}at the Stageequence of observatiois We can show the function
complexity of Gk ops iS O((|Zeps| +1)" x 2°V). More

specifically, we introduce a function which maps ea satisfies property (a) by using the characterization
' : . in Theorem 16 and property (b) by using the
state ofG%ijI;m”O" to a state inG'k ., and then show @ property  (b) by 9

5 . . characterization ofn in Theorem 9. [ |
that the range of this function covers all state€:Qf ;.

This implies that the number of states Gfc s iS less  Note that for DESG in Figure 1-d, the number of
than or equal to the number of states Gf2%"*"" states for both estimators is the same (indeed they are
and hence establishes that the state space complexitysgorphic) which shows that the introduced mapping
GKobs 18 @ISO O((|Saps| + 1) x 2V). The following petween the states of these two estimators can be one-
theorem states and proves this formally. Due to spaggone. Note, however, that this is not necessarily the
limitations, only a sketch of the proof is provided. Thease. Consider, for example, the DESin Figure 5-a

detailed proof can be found in [15]. with initial state setX, = {0,1} = X. Figures 5-b and
Theorem 22. Given a non-deterministic finite automatorns_c depictGovscrvation and Gy ., respectively. As can
,008 ’ 1 )

G = (X,X,4, Xo) and a natural projection mag” with pe seen, storing the last observation results in creating
respect to the set of observable evenits; (X005 € X),  more states compared to storing the 2-dimensional state

the state complexity @ o»s (Constructed according to mapping corresponding to the last 2 states visited.
Definition 6) isO((|Xops|+1)% x 2V), whereN denotes

the number of states of the given automaten B Remark23. The exponential complexity of the algo-

Sketch of the Proof:To prove that the set of stategithms proposed in this paper for verifying’-step
of the SM-KDE, denoted byXy .5, has cardinality opacity is not desirable for implementation purposes.
equal to or less than the set of states of the OBowever, in [6], we showed that deciding whether the
KDE, denoted byXgsirvation, we define a function non-deterministic finite automato@ is K-step opaque
[ Xgbservation 9X Y and show that for all IS NP-hard for |, > 1. This implies that it is
Q¢ X?{bi%guation: _unllkely the_lt any algorithm can vgrlf)K -step opacity

’ in polynomial time. For more details, refer to [6].H
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¢ most K observations as long &8 > 2N* _ 1. Note that
q @ here we are concerned with the information conveyed by

a8 % . «5  thesetof all sequences of observations of length at most
Mw /\ @ K, and not a specific sequence of observations.

*0 5 N\ s Theorem 24. Consider a non-deterministic finite au-

@ ‘ ®) @ tomaton G = (X,%,4,Xp) with |[X|] = N and

Fig 5. E e d wating that th ber of stats i construct the K-delayed state estimator&'x s and
ig. 5. Example demonstrating that the number of statesin,,. . _ oN? ) ’
can be less than the number of states@gPssroetom: (a) G; (b) Gg-ops for K > K* = 2 1 as described in

,obs

Gebservation: () Gy .. Definition 6. Then, for any K + 1)-dimensional state

' mappingm associated with the SM-KDE state reached
iNn Grobs Via w = agoy ...y With |w| > oV? 1
and for eachm(k), 2V° < k < min(K,|w|), there

In this section, we show that fok’ > K > 2V* —1, =" s (" 4 1) onal stat A
K-step opacity and{’-step opacity are equivalent. Note 1>t a(K* + 1)-dimensional state mapping:’ as-

that K-step opacity does not in general imply’-step sc/)C|ated with a St?te reache/d 1071 obs V,'a some

opacity for K’ > K (in fact, Example 12 demonstrates’,, 01" - “n=k%n—pr1-- G for somen’ < ne

this for the system in Figure 1-d) though the converse — 1~k and W't,h On—p € Zobs; k=1 <p<n—mn,

is trivially true (K’-step opacity impliesk-step opacity SUC" thatm(k) = m'(k + n’ —n). u

for K’ > K). Proof: Recall that in anyK-delay state estimator
The idea behind the proof is the following: fix alk.bs: the k-delayed state estimate due to observa-

point in the system’s state trajectory. In tHe-step tON w is captured via the sei(k), wherem is the
opacity problem we are interested in finding how mucHs + 1)-dimensional state mapping associated with
we can say regarding the membership of the state,!3¢ State reached ity s Via w = agar...an (k
that fixed point in time, to the set of secret state§alisfies0 < k < min(K,|w[)). Now consider the
after we makek additional observations. We can gaiﬁ'xed point in time after the sequence of observations
insight to this question by considering the estimate 601 - -- @k has been observed. Onéemore obser-
the state at this fixed point as titial uncertaintyfor Vations are made (i.e., ON@€, j41nki2. ..o, are
aninitial-state estimatiorproblem. In [5], we studied the OPserved), the setn(k) denotes thek-delayed state
problem of initial-state estimation for a non-determiigist €Stimate at that fixed point due to the sequence of

finite automaton: given a sequence of observations OPServationsw = apai ... an pn k41 ... Q. SiMi-
apas ...an and a set of possible initial stateX, larly, m’(l) denotes thé-delayed state estimates of that

initial-state estimation requires the enumeration of dj€d point due to the sequence of observatians=
states that belong t&, and that could have generated0®1 -~ On—kQp 1 - -y forn’—l'=n—Fk. In other
this sequence of observations We called these statesVords, m(k) represents the:-delayed state estimate,
the initial state estimateX,(w) associated with the I after the passage of the system through the state
sequence of observations In [5], we employed state & that fixed pointa, k100 2. an is observed,
mappings and showed thal(w) = m(1) wherem = whereaSm’(l)_ de_:notes thel-dela_lyed state estimate at
mo o M(ag) o M(ay). ..o M(ay) andmg = @a(Xp). s same point i, ., ...aj, is observed. To prove
Our analysis in [5] resulted in ainitial-state estimator Theorem 24, we need to show that assuming 2",
(ISE), i.e., a deterministic finite automaton that is drivetiiere exists a < 2V° —1 such that the-delayed state

by observable events and whose states are essenti%ﬂﬁ'}mate at that same fixed time due to a shorter sequence
state mappings (its initial state is the state mappiffj Observations.’ = agay ... o _kay_y oy ... oy, With

mo = ®2(Xy)). More specifically, the set of starting” = l+n—k is the same as thie-delayed state estimate
states in the state mapping associated with the ISE st@tdhat fixed point due to the sequence of observations
reached via stringu is the set of states from which av = @oQ1 ... Ap—gQn—f41 - .- An.

sequence of events that generates the observed sequenbenote the estimate of the system’s (current)
w could have originated (i.eXo(w) = m(1) wherem state at that point (i.e., the estimate after observing
is the state mapping (state) reached fram via w). apa;...q,_) by Z C X. The problem ofk-delayed
Since the ISE has at mogt’” states (because there arestimation of the state of the system at the fixed point
that many different state mappings for an automaton wiith time after observing = aga ... o, can be viewed

N = | X| states), we are guaranteed that each (reachalals)an initial-state estimation problem where (due to the
ISE state can be reached via a string that generateslagervationsyga; . .. a,_ that have been made before
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reaching that fixed point) the initial uncertainty about2] S. Schneider and A. Sidiropoulos, “CSP and anonymity,” i

the “initial state” is the sef. Hence, the set:(k) after

observingw = apa; ...a, is the same as the set of
starting states of the state mapping that is associated with

the state that is reached vig, ;110 —gt2 ...y IN

the ISE whose initial state is associated with the sta

mapping ®2(Z). Note that the stringu, k104, kio

...a, has lengthk > 2V° — 1. Since the ISE has

at most2V’ states, strings of length at mogt” — 1

can be chosen to visit any (reachable) ISE state. Thig!
implies that the state reached in this ISE via the string

Proc. of the 4th European Symposium on Research in Computer
Security September 1996, pp. 198-218.

J. Bryans, M. Koutny, L. Mazare, and P. Ryan, “Opacity
generalised to transition systemdfiternational Journal of
Information Security vol. 7, no. 6, pp. 421-435, November
2008.

A. Saboori and C. N. Hadjicostis, “Notions of securitydan
opacity in discrete event systems,” Rroc. of the 46th IEEE
Conference on Decision and ControDecember 2007, pp.
5056-5061.

——, “Verification of initial-state opacity in securitypplica-
tions of DES,” inProc. of the 9th International Workshop on
Discrete Event Systemblay 2008, pp. 328-333.

Qp—k+10n—k+2 -- -0y Of length & can also be reached [6] —, “Verification of K-step opacity and analysis of its e

via a string of length less than or equal 2 — 1,

which we denote by, ;. o) . ,...q;, for some
n’ < n+ 2V — 1 — k. Since the states reached in the
ISE via either of these strings are identical, fhdelayed

state estimate due tois the same as thg — (n —n’))-

delayed state estimate due dd. This completes the

proof. [ |

The above result can be used to show thdtstep
opacity is equivalent tds-step opacity forK’ > K >
2N* _1. We prove this by showing that fdt > 2V, K-
step opacity is equivalent t&*-step opacity withiK™* =
2NV* _ 1. The proof can be found in [15].

Theorem 25. For a non-deterministic finite automaton[ll]

G = (X,%,0,Xp), K-step opacity is equivalent t&*-
step opacity fork > K* = 2V* — 1 where N = | X|. 1

VI. CONCLUSION

In this paper, we defined, analyzed, and characteriz[ég]
the notion of K-step opacity for discrete event systems
that can be modeled as non-deterministic finite automa[tlaA]
The notion of K-step opacity, forK > 0, requires that

the entrance of the system to a set of secret siéites

any time during the past’ observations, remains opaque
(uncertain) to outsiders. To verifyK-step opacity, we

plexity,” in Proc. of the 48th IEEE Conference on Decision and
Control, December 2009, pp. 205-210.

] J. W. Bryans, M. Koutny, and P. Y. A. Ryan, “Modelling ofigc

using Petri nets,’Electronic Notes in Theoretical Computer
Sciencevol. 121, pp. 101-115, February 2005.

] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Cailthu

and P. Darondeau, “Concurrent secretdjscrete Event Dy-
namic Systems/ol. 17, no. 4, pp. 425-446, December 2007.

[9] J. Dubreil, P. Darondeau, and H. Marchand, “Opacity erifay

control synthesis,” irProc. of the 9th International Workshop
on Discrete Event Systemday 2008, pp. 28—-35.

N. Hadj-Alouane, S. Lafrance, L. Feng, J. Mullins, and ¥éd-
des, “On the verification of intransitive noninterferenae i
multilevel security,”|[EEE Transactions on Systems, Man and
Cybernetics, Part B (Cyberneti¢sjol. 35, no. 5, pp. 948-958,
October 2005.

C. Cassandras and S. Lafortuhetroduction to Discrete Event
Systems Kluwer Academic Publishers, 2008.

J. S. Meditch, “A survey of data smoothing for linear and
nonlinear dynamic systemsfutomaticavol. 9, no. 2, pp. 151—
162, March 1973.

A. Saboori and C. N. Hadijicostis, “Verification of infteistep
opacity and analysis of its complexity,” iRroc. of the 2009
Workshop on Dependable Control of Discrete Systednse
2009, pp. 51-56.

TAKOS: A Java toolbox for analyzing thé& -opacity of sys-
tems. [Online]. Available: http://toolboxopacity.gf@gnria.fr/

A. Saboori and C. N. Hadijicostis, “Supplement material
for the paper "Verification of K-step opacity and
analysis of its complexity”” to be made available:
http://www.eng.ucy.ac.cy/hadjicostis/publicatiorimh

introduced theK-delay state estimator which providesis] c. M. Ozveren and A. S. Willsky, “Invertibility of discrete
K-delayed state estimates. These are the estimates of event dynamic systemsiathematics of Control, Signals, and

the state of the syster observations agd(< k < K)

and are consistent with all observations so far (including
the lastk observations). We show that for a system to
be K-step opaque, alk-delayed state estimates (asso-
ciated with states of thé{-delay state estimator) need
to contain at least one state outside the secretSset
The proposed verification method has state complexity
O((|Zops| + 1) x 2V), where N denotes the number of

states of the given automat@n
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