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Abstract. A state/event modelis a concurrent version of Mealy machines used for describing embedded reactive
systems. This paper introduces a technique that usescompositionalityanddependency analysisto significantly
improve the efficiency of symbolic model checking of state/event models. It makes possible automated verification
of large industrial designs with the use of only modest resources (less than 5 minutes on a standard PC for a model
with 1421 concurrent machines). The results of the paper are being implemented in the next version of the
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1. Introduction

Symbolic model checking is a powerful technique for formal verification of finite-state
concurrent systems. The technique has proven very efficient for verifying hardware sys-
tems: circuits with an extremely large number of reachable states have been verified.
However, it is not clear whether model checking is effective for other kinds of concur-
rent systems as, for example, software systems. One reason that symbolic model check-
ing may not be as efficient is that software systems tend to be both larger and less reg-
ularly structured than hardware. For example, many of the results reported for verify-
ing large hardware systems have been for linear structures like stacks or pipelines (see,
e.g., [7]) for which it is known that the size of the transition relation (when
represented as an ROBDD) grows linearly with the size of the system [22]. Only
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recently have the first experiments on larger realistic software systems been reported
[3, 24].

This paper presents a technique that significantly improves the performance of symbolic
model checking of large embedded reactive systems modeled using astate/event model.
The model can be viewed as a simplified version of StateCharts [15] or RSML [18]. The
state/event model is a concurrent version of Mealy machines. It consists of a fixed number
of concurrent finite state machines that have pairs of input events and output actions as-
sociated with the transitions of the machines. The model is synchronous: each input event
is reacted upon by all machines in lock-step; the total output is the multi-set union of the
output actions of the individual machines. Further synchronization between the machines
is achieved by associating a guard with the transitions. Guards are Boolean combinations of
conditions on the local states of the other machines. In this way, the firing of transitions in
one machine can be made conditional on the local state of other machines. If a machine
has no enabled transition for a particular input event, it simply does not perform any state
change.

The state/event model is capable of modeling both synchronous and asynchronous sys-
tems. If two guards in different machines share an input event, the transitions fire simulta-
neously, i.e., synchronously, on that event. If two enabled transitions in different machines
have different input events, they can fire in either order, i.e., asynchronously.

The state/event model is convenient for describing the control portion of embedded
reactive systems, including smaller systems as cellular phones, hi-fi equipment, and cruise
controls for cars, and large systems as train simulators, flight control systems, telephone
and communication protocols. The model is used in the commercial tool visualSTATETM

[21]. This tool assists in developing embedded reactive software by allowing the designer
to construct and manipulate a state/event model. The tool is used to simulate the model,
check the consistency of the model, and from the model automatically generate code for
the hardware of an embedded system. Theconsistency checkeris in fact a verification tool
that checks for a range of properties that any state/event model should have. Some of the
checks must be passed for the generated code to be correct, for instance, it is crucial that
the model is deterministic. Other checks are issued as warnings that might be design errors
such as transitions that can never fire.

State/event models can be extremely large and, unlike in traditional model checking,
the number of checks is at least linear in the size of the model. This paper reports results
for models with up to 1421 concurrent state machines (10476 states). For systems of this
size, traditional symbolic model checking techniques fail, even when using a partitioned
transition relation [8] and backwards iteration. We present acompositionaltechnique that
initially considers only a few machines in determining satisfaction of the verification task
and, if necessary, gradually increases the number of considered machines. The machines
considered are determined using adependency analysisof the structure of the system.

The results are encouraging. A number of large state/event models from industrial appli-
cations have been verified. Even the largest model with 1421 concurrent machines can be
verified with modest resources (it takes less than 5 minutes on a standard PC). Compared
with the current version of visualSTATETM, the results improve on the efficiency of checking
smaller instances and dramatically increase the size of systems that can be verified.
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Related work

The use of ROBDDs [6] in model checking was introduced by Burch et al. [9] and Coudert
et al. [13]. Several improvements have been developed since, such as using a partitioned
transition relation [8, 14] and simplifying the ROBDD representation during the fixed-point
iteration [12]. Many of these improvements are implemented in the tool SMV [22]. Other
techniques like abstraction [10] and compositional model checking [11] further reduce the
complexity of the verification task, but require human insight and interaction.

Our compositional technique is efficient because it only considers subsets of the model.
Several other techniques attempt to improve the efficiency of the verification in this way. For
example, [4] presents a conservative technique for showing emptiness of L-processes based
on including only a subset of the processes. The technique is based on analyzing an error
trace from the verifier, and use this trace to modify the considered subset of L-processes.
Pardo and Hachtel [23] utilizes the structure of a given formula in the propositional
µ-calculus to find appropriate abstractions whereas our technique depends on the structure
of the model.

Another technique, based on ROBDDs, that also exploits the structure of the system is
presented in [17]. On the surface this technique is very close to the one presented here and
thus we will discuss it in more detail. The technique in [17] uses a partitioned transition
relation and a greedy heuristic is used to select subsets of the transition relation. For each
chosen subset, a complete fixed-point iteration is performed. If the formula cannot be proven
after this iteration, a larger subset is chosen. In case of an invalid formula the algorithm only
terminates when the full transition relation has been constructed (or memory or time has
been exhausted). To compare this approach with the one presented here, we can consider a
subset of the transition relation as being similar to a subset of the machines in the state/event
model. The approach of [17] differs from ours in several central aspects:

– In selecting a new machine to include in the transition relation, [17] uses a greedy
strategy involving a fixed-point iteration for each of the remaining machines. (If the
system only has a single initial state—as in state/event systems—the greedy strategy
reduces to selecting an arbitrary machine.) We chose a new machine based on an initial
dependency analysis and thus avoid any extraneous fixed-point iterations.

– Due to a central monotonicity result (lemma 1), we can reuse the previously computed
portion of the state space instead of having to start from scratch each time a new machine
is added.

– In case the property to be verified is invalid, we only include those machines that are
actually dependent on each other in the transition relation. In these cases, [17] may have
to include all machines to disprove the property.

– Even when all machines are needed, experiments have shown that our technique of
including machines one at a time (exploiting the monotonicity property) isfaster than
performing a traditional fixed-point iteration using a partitioned transition relation and
early variable quantification. The technique of [17] does not have this property.

The compositional technique presented here shares ideas with partial model checking
[1, 2, 16], but explicitly analyzes the structure of the system. Finally, experiments by
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Anderson et al. [3] and Sreemani and Atlee [24] verified large software systems using
SMV. The technique presented here significantly improves on the results we have obtained
using SMV and makes it possible to verify larger systems.

Outline

The state/event model is formally described in Section 2. Section 3 explains how the range of
consistency checks performed by visualSTATETM are reduced to two simple types of checks.
Section 4 shows how state/event systems are encoded by ROBDDs. The compositional
technique and the dependency analysis is introduced in Section 5, and further developed in
Section 6. The technique is evaluated in Section 7 and Section 8 draws some conclusions.

2. State/event systems

A state/event system consists ofn machinesM1, . . . ,Mn over an alphabet of input eventsE
and an output alphabetO. Each machineMi is a triple(Si , s0

i , Ti ) of local states, an initial
state, and a set of transitions. The set of transitions is a relation

Ti ⊆ Si × E × Gi ×M(O)× Si ,

whereM(O) is a multi-set of outputs, andGi is the set of guards not containing references
to machinei . These guards are generated from the following simple grammar for Boolean
expressions:

g ::= l j = p | ¬g | g∧ g | t t.

The atomic predicatel j = p is read as “machinej is at local statep” and t t denotes a
true guard. The global state set of the state/event system is the product of the local state sets:
S= S1×S2×· · ·×Sn. The guards are interpreted straightforwardly overS: for anys ∈ S,
s |= l j = p holds exactly when thej ′th component ofs is p, i.e.,sj = p. The notation
g[sj / l j ] denotes thatsj is substituted forl j , with occurrences of atomic propositions of the
form sj = p replaced byt t or¬t t depending on whethersj is identical top.

Considering a global states, all guards in the transition relation can be evaluated. We
define a version of the transition relation in which the guards have been evaluated. This
relation is denoteds

e o−→i s′i expressing that machinei when receiving input eventemakes
a transition fromsi to s′i and generates outputo. Formally,

s
e o−→i s′i ⇔ ∃g. (si , e, g, o, s

′
i ) ∈ Ti ands |= g .

Two machines can be combined into one. More generally ifMI andMJ are compositions
of two disjoint sets of machinesI andJ, I , J ⊆ {1, . . . ,n}, we can combine them into one
MIJ = MI ×MJ = (SIJ, (s0

IJ), TIJ), whereSIJ = SI × SJ ands0
IJ = (s0

I , s
0
J). The transition

relationTIJ is a subset ofSIJ × E × GIJ ×M(O) × SIJ, whereGIJ are the guards in the
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composite machine. By construction ofTIJ, the guardsGIJ will not contain any references
to machines inI ∪ J. To defineTIJ, we introduce the predicateidle:

idle(TI , sI , e) =
∧
{¬g | ∃o, s′I · (sI , e, g, o, s

′
I ) ∈ TI },

which holds for states in which no transitions inMI are enabled at statesI when receiving
the input evente. The transition relationTIJ is defined by the following inference rules (the
symbol] denotes multi-set union):

(sI , e, g1, o1, s′I ) ∈ TI (sJ, e, g2, o2, s′J) ∈ TJ

((sI , sJ), e, g, o1 ] o2, (s′I , s
′
J)) ∈ TIJ

g = g1[sJ/ l J ] ∧ g2[sI / l I ]

(sI , e, g1, o1, s′I ) ∈ TI

((sI , sJ), e, g, o1, (s′I , sJ)) ∈ TIJ
g = g1[sJ/ l J ] ∧ idle(TJ, sJ, e)[sI / l I ]

(sJ, e, g2, o2, s′J) ∈ TJ

((sI , sJ), e, g, o2, (sI , s′J)) ∈ TIJ
g = idle(TI , sI , e)[sJ/ l J ] ∧ g2[sI / l I ].

The rules show the synchronous behavior of state/event systems. The first rule represents
the case where there exists an enabled transition with input evente in bothTI andTJ and
the resulting transition inTIJ represents the synchronization one. The other two cases occur
if no enabled transition exists in eitherTI or TJ . Figure 1 shows two machines and the
parallel composition of them. Notice how the two machines synchronize on the common
input evente.

The full combination of alln machines,T = ∏n
i=1 Ti , yields a Mealy machine. We

extend the transition relation ofT to a total relations
e o−→ s′ as follows:s

e o−→ s′ if there
exists a true guardg such that(s, e, g, o, s′) ∈ T . If no such guard exists, i.e., all machines
idle on input evente, the relation contains an idling step,s

e ∅−→ s.

Figure 1. Two state/event machines and the corresponding parallel combination. The guards, which formally
should be of the forml j = p, are simply written as the statep since the locationl j is derivable from the name of
the state (the reference tor is a requirement to a state in a third machine not shown). The small arrows indicate
the initial states.
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3. Consistency checks

The consistency checker in visualSTATETM performs seven predefined types of checks,
each of which can be reduced to verifying one of two types of properties. The first type
is areachability property. For instance, visualSTATETM performs a check for “conflicting
transitions” i.e., it checks whether two or more transitions can become enabled in the same
local state, leading to non-determinism. This can be reduced to questions of reachability by
considering all pairs of guardsg1 andg2 of transitions with the same local statesi and input
evente. A conflict can occur if a global state is reachable in which(l j = si ) ∧ g1 ∧ g2 is
satisfied.

In total, five of the seven types of checks reduce to reachability checks. Four of these, such
as check for transitions that are never enabled and check for states that are never reached,
generate a number of reachability checks which is linear in the number of transitions,t . In the
worst-case the check for conflicting transitions gives rise to a number of reachability checks
which is quadratic in the number of transitions. However, in practice very few transitions
have the same starting local state and input event, thus in practice the number of checks
generated is much smaller thant .

The remaining two types of consistency checks reduce to a check for absence oflocal
deadlocks. A local deadlock occurs if the system can reach a state in which one of the
machines idles forever on all input events. This check is made for each of then machines.
In total at leastt + n checks have to be performed making the verification of state/event
systems quite different from traditional model checking where typically only a few key
properties are verified.

We attempt to reduce the number of reachability checks by performing animplicational
analysisbetween the guards of the checks. If a guardg1 implies another guardg2 then
clearly, if g1 is reachable so isg2. To use this information we start by sorting all the guards
in ascending order of the size of their satisfying state space. In this way the most specific
guards are checked first and for each new guard to be checked we compare it to all the
already checked (and reachable) guards. If the new guard includes one of them, then we
know that it is satisfiable. In our experiments, between 40% and 94% of the reachability
checks are eliminated in this manner.

4. ROBDD representation

This section describes how Reduced Ordered Binary Decision Diagrams (ROBDDs) [6]
are used to represent sets of states and the transition relation. We also show how to perform
a traditional forward iteration to construct the set of reachable states from which it is
straightforward to check each of the reachability checks.

To construct the ROBDD̃T for the transition relationT , we first construct the local
transition relationsT̃i for each machineMi . The variables of the ROBDD represent an
encoding of the input events, the current states, and the next-states. The variables are ordered
as follows: The first‖E‖ variables encode the input eventsE (‖X‖ denotesdlog2 |X|e) and
are denotedVE. Then follows 2‖Si ‖ variablesVi,1,V ′i,1, . . . ,Vi,‖Si ‖,V ′i,‖Si ‖ encoding the
current- (unprimed variables) and the next-states (primed variables) for machinei . The
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machines are ordered in the same order in which they occur in the input, although other
orders may exist which might improve performance.

The transition relatioñTi for machinei is constructed as an ROBDD predicate over these
variables. The ROBDD for a transition

(si , e, g, o, s
′
i ) ∈ Ti

is constructed as the conjunction of the ROBDD encodings ofsi ,e, g, ands′i . (The outputs are
not encoded as they have no influence on the reachable states of the system.) The encoding
of si , e, ands′i is straightforward and the encoding of the guardg is done by converting all
atomic predicatesl j = p to ROBDD predicates over the current-state variables for machine
M j and then performing the Boolean operations in the guard. The encoding of all transitions
of machinei is obtained from the disjunction of the encoding of the individual transitions:

t̃i =
∨

(si ,e,g,o,s′i )∈Ti

s̃i ∧ ẽ∧ g̃∧ s̃′i ,

whereẽ is the ROBDD encoding of input evente ands̃i ands̃′i are the ROBDD encodings
of the current-statesi and next-states′i , respectively.

To properly encode the global transition relationT , we need to deal with situations where
no transitions ofTi are enabled. In those cases we want the machinei to stay in its current
state. We construct an ROBDDnegi representing that no transition is enabled by negating
all guards in machinei (including the input events):

negi =
∧

(si ,e,g,o,s′i )∈Ti

¬(s̃i ∧ g̃∧ ẽ).

The ROBDDequi encodes that machinei does not change state by requiring that the
next-state is identical to the current-state:

equi =
‖Si ‖∧
j=1

Vi, j ↔ V ′i, j .

The local transition relation for machinei is then:

T̃i = t̃i ∨ (negi ∧ equi ).

The ROBDD T̃ for the full transition relation is the conjunction of the local transition
relations:

T̃ =
n∧

i=1

T̃i .

One way to check whether a states is reachable is to construct the reachable state space
R. The construction ofR can be done by a standard forward iteration of the transition
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relation, starting with the initial states0:

R0 = s̃0

Rk = Rk−1 ∨ (∃V,VE. T̃ ∧ Rk−1)[V/V ′]

where V is the set of current-state variables,V ′ is the set of next-state variables, and
(· · ·)[V/V ′] denotes the result of replacing all the primed variables inV ′ by their unprimed
versions.

The construction of the full transition relationT can be avoided by using apartitioned
transition relation[8] together with early variable quantification. This is done by identi-
fying setsI j of transition relations that, when applied in the correct order, allow for early
quantification of the state variables that no other transition relations depend on. IfVI j are
these variables and we havem sets, then we get:

R0 = s̃0

Rk = Rk−1 ∨
(
∃VE.∃VI1.

∧
i∈I1

T̃i ∧ · · · ∧
(
∃VIm.

∧
i∈Im

T̃i ∧ Rk−1

))
[V/V ′].

Both approaches have been implemented and tested on our examples as shown in
Section 7. Here we see that the calculation of the reachable state space using the full
transition relation is both fast and efficient for the small examples. However, for models
with more than approximately 30 machines, both approaches fail to complete.

5. Compositional backwards reachability

The problems of forwards iteration can typically be solved by using a backwards reachability
analysis. The verification task is to determine whether a guardg can be satisfied. Instead
of computing the reachable state space and check thatg is valid somewhere in this set,
we start with the set of states in whichg is valid and compute in a backwards iteration,
states that can reach a state in whichg is satisfied. The goal is to determine whether the
initial state is among these states. Our novel idea is to perform the backwards iteration in
a compositional manner considering only a minimal number of machines. Initially, only
machines mentioned ing will be taken into account. Later also machines on which these
depend will be included.

Notice that compared to the forwards iteration, this approach has an apparent drawback
when performing a large number of reachability checks: instead of justone fixed-point
iteration to construct the reachable state spaceR (and then trivially verify each of the
properties), a new fixed-point iteration is necessary foreachproperty that is checked.
However, our experiments clearly demonstrate that when using a compositional backwards
iteration, each of the fixed-point iterations can be completed even for very large models
whereas the forwards iteration fails to complete the construction ofR for even medium
sized models.

To formalize the backwards compositional technique, we need a semantic version of the
concept of dependency. For a subset of the machinesI ⊆ {1, . . . ,n}, two statess, s′ ∈ S
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are I-equivalent, written s =I s′, if for all i ∈ I , si = s′i (the primes are here used to
denote another state and is not related to the next-states). For example, the equivalence
(p1,q2, r1) =I (p1,q2, r2) holds for I = {1, 2} but not for I = {2, 3}. If a subsetP of the
global statesS only is constrained by components in some index setI we can think ofP
as havingI as asort.This leads to the following definition: a subsetP of S is I -sortedif
for all s, s′ ∈ S,

s ∈ P ands=I s′ ⇒ s′ ∈ P.

As an example, consider a guardg which mentions only machines 1 and 3. The set of
states defined byg is I -sorted for anyI containing 1 and 3.1 Another understanding of the
definition is that if a setP is I -sorted, it only depends on machines inI .

From anI -sorted set defined byg we perform a backwards reachability computation by
including states which, irrespective of the states of the machines inĪ , can reachg. One
backward step is given by the functionBI (g) defined by:

BI (g) = {s ∈ S | ∀s′ ∈ S. s=I s′ ⇒∃e, o, s′′. s′
e o−→ s′′ ands′′ ∈ g}. (1)

By definition BI (g) is I -sorted. The setBI (g) is the set of states which independently of
machines in̄I , by some input evente, can reach a state ing. Observe thatBI (g) is monotonic
in bothg and I . Figure 2 shows how a statesI of a machine is included inBI (g) although
it syntactically seems to depend on machines outsideI .

By iterating the application ofBI , we can compute the minimum set of states containing
g and closed under application ofBI . This is the minimum fixed-pointµX.g ∪ BI (X),
which we refer to asB∗I (g). Note thatB∗{1,...,n}(g) becomes the desired set of states which
can reachg.

A set of indicesI is said to bedependency closedif none of the machines inI depend
on machines outsideI . Formally, I is dependency closedif for all i ∈ I , statess′, s, si ,
input eventse, and outputso, s

e o−→i si ands′ =I s impliess′
e o−→i si . We say that one

machineMi is dependent on anotherM j if Mi has a transition with a guard that refers to
a state in machineM j . We use this syntactic notion of dependency to determine whether a
set of indicesI is dependency closed. For example, from the dependency graph in figure 3
we observe that the setI = {1, 2, 3, 6} is dependency closed.

Figure 2. An example showing the effect ofBI (g). If X is the guardl j = p andY the guardlk = q with
j, k 6∈ I then the transitions fromsI seem to depend on machinesM j andMk outsideI . However, the guardsX,
¬X Y, and¬Y together span all possibilities and therefore, by selecting eithere1, e2, or e3, the statesI can reach
g irrespective of the states of the machinesM j andMk.



14 LIND-NIELSEN ET AL.

Figure 3. This figure illustrates the dependencies between 9 state machines taken from a real example (the
example “HI-FI” of Section 7). An arrow from one machineMi to anotherM j indicates thatMi depends onM j ,
i.e., thatMi has a transition with a guard that refers to a state in machineM j .

The basic properties of the setB∗I (g) are captured by the following lemma:

Lemma 1 (Compositional Reachability Lemma). Assume g is an I -sorted subset of S.
For all subsets of machines I, J with I ⊆ J the following holds:

(i) B∗I (g) ⊆ B∗J(g)
(ii) B∗J(g) = B∗J(B

∗
I (g))

(iii) I dependency closed⇒ B∗I (g) = B∗J(g).

Proof: We first observe directly from the definition thatBI (g) is monotonic in bothI and
g, i.e., for anyJ with I ⊆ J andg′ with g ⊆ g′ we have:

BI (g) ⊆ BJ(g) (2)

BI (g) ⊆ BI (g
′). (3)

The operation of taking minimum fixed points is also monotonic, therefore for anyI andJ
with I ⊆ J we have from (2):

B∗I (g) = µX.g ∪ BI (X) ⊆ µX.g ∪ BJ(X) = B∗J(g)

proving thatB∗I (g) is monotonic in the index set of machinesI , which is (i) of the lemma.
To prove (ii) of the lemma, first observe from the definition ofB∗I (g) that g ⊆ B∗I (g),

hence by monotonicity ofB∗J( ) andB∗ (g) it follows that

B∗J(g) ⊆ B∗J(B
∗
I (g)) ⊆ B∗J(B

∗
J(g)) = B∗J(g) .

The last equality follows from the fact thatB∗J(g) is a fixed-point. We have proved (ii) of
the lemma.

To prove (iii) we first observe that the inclusion⊆ holds by (i). We therefore concentrate
on the other inclusion⊇. We employ the following fixed point induction principle (due to
David Park):

F(X) ⊆ X impliesµY.F(Y) ⊆ X.
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Recalling that a setX for which F(X) ⊆ X is called a pre-fixed point ofX we can phrase
this as: “µY.F(Y) is the minimumpre-fixedpoint of F , therefore ifX is some other prefixed
point of F , then it must include the minimum one.” We must therefore just argue that

g ∪ BJ(B
∗
I (g)) ⊆ B∗I (g)

in order to have proven (iii). A further simplification is obtained by observing that by
definitiong ⊆ B∗I (g) and we therefore only need to prove that

BJ(B
∗
I (g))\g ⊆ B∗I (g).

(If the setsx andy are contained in a third setz then also their least upper boundx ∪ y is
contained withinz.) Assume now thats is some state inBJ(B∗I (g))\g. Then by definition
of BJ( ) the following holds:

∀s′ ∈ S. s=J s′ ⇒ ∃e, o, s′′. s′
e o−→ s′′ ands′′ ∈ B∗I (g) . (4)

To show thats is in B∗I (g) we need to prove that the following holds:

∀s′ ∈ S. s=I s′ ⇒ ∃e, o′, s′′′. s′
e o′−→ s′′′ ands′′′ ∈ B∗I (g) . (5)

From (4), takings′ = s, it follows that

∃e, o, s′′. s
e o−→ s′′ ands′′ ∈ B∗I (g) . (6)

Consider a states′ such thats=I s′. Lets′′ be the state reached by firinge from s, s
e o−→ s′′

and similarly, lets′′′ be the state reached froms′, s′
e o′−→ s′′′ (s′′ ands′′′ are well-defined

since the transition relation is total). Then from the definition of dependency closure ofI , it
follows that for alli ∈ I , s′′i = s′′′i and thuss′′ =I s′′′. From (6),s′′ ∈ B∗I (g) ands′′ =I s′′′,
it follows thats′′′ ∈ B∗I (g) sinceB∗I (g) is I -sorted. We have proved (5) and thus also (iii)
of the lemma. 2

The results of the lemma are applied in the following manner. To check whether a guard
g is reachable, we first consider the set of machinesI1 syntactically mentioned ing. Clearly,
g is I1-sorted. We then computeB∗I1

(g) by a standard fixed-point iteration. If the initial state
s0 belongs toB∗I1

(g), then by (i)s0 ∈ B∗{1,...,n}(g) and thereforeg is reachable froms0 and
we are done. If not, we extendI1 to a larger set of machinesI2. We then reuseB∗I1

(g) to
computeB∗I2

(g) as B∗I2
(B∗I1

(g)) which is correct by (ii). We continue like this untils0 has
been found in one of the sets or an index setIk is dependency closed. In the latter case we
have by (iii) B∗Ik

(g) = B∗{1,...,n}(g) andg is unreachable unlesss0 ∈ B∗Ik
(g). The algorithm

for performing a compositional backwards analysis is shown in figure 4.
We extendI by adding machines that are syntactically mentioned on guards in transitions

of machines inI , i.e., machines are included inI by traversing the dependency graph in a
breadth-first manner. As an example, assume that we want to determine whether the guard
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REACHABLE(M1,M2, . . . ,Mn, g) =
I ← {i : g contains an atomic predicatel i = p }
R← g
repeat

Rnew← B∗I (R)

/∗ Check for property(i ): early positive termination∗/
if s0 ∈ Rnew then return true

/∗ Check for property(i i i ): early negative termination∗/
if I is dependency closedthen return false

ExtendI with at least one machine.

/∗ Apply property(i i ): reuse of previously computed states∗/
R← Rnew

forever

Figure 4. Algorithm performing a compositional backwards analysis for determining whether a set of states
given by the predicateg is reachable.

g = (l1 = p ∧ l3 6= q) is reachable in the example of figure 3. The initial index set is
I1 = {1, 3}. If this is not enough to showg reachable, the second index setI2 = {1, 3, 6, 2}
is used. Since this set is dependency closed,g is reachable if and only if the initial state
belongs toB∗I2

(B∗I1
(g)).

The above construction is based on a backwards iteration. A dual version ofBI for a
forwards iteration could be defined. However, such a definition would not make use of
the dependency information sinces0 is only I -sorted for I = {1, . . . ,n}. Therefore all
machines would be considered in the first fixed-point iteration reducing it to the complete
forwards iteration mentioned in the previous section.

Seemingly, the definition ofBI (g) requires knowledge of the global transition relation
and therefore does not seem to yield any computational advantage. However, as explained
below, using ROBDDs this can be avoided leading to an efficient computation ofBI (g).
The ROBDDB̃I (g̃) representing one iteration backwards from the states represented by the
ROBDD g̃ can be constructed immediately from the definition (1):

B̃I (g̃) = ∀VĪ . ∃VE,V ′. T̃ ∧ g̃[V ′/V ] , (7)

whereg̃[V ′/V ] is equal tog̃ with all variables inV replaced by their primed versions. It
is essential to avoid building the global transition relationT̃ . This is done by writing∃V ′
as∃V ′I .∃V ′Ī and T̃ = T̃I ∧ T̃Ī whereT̃I =

∧
i∈I T̃i . This allows us to push the existential

quantification ofV ′
Ī

to T̃Ī sinceg is I -sorted and thus independent of the variables inV ′
Ī
.

As ∃V ′
Ī
.T̃Ī is a tautology (since the transition relation is total), equation (7) reduces to:

B̃I (g̃) = ∀VĪ . ∃VE,V ′I . T̃I ∧ g̃[V ′/V ] ,

which only uses the local transition relations for machines inI . EachTi refers only to primed
variables inV ′i , allowing early variable quantification for each machine individually:

B̃I (g̃) = ∀VĪ . ∃VE. ∃V ′i1.T̃i1 ∧
(∃V ′i2.T̃i2 ∧ · · · ∧

(∃V ′i k .T̃ik ∧ g̃[V ′/V ]
) · · · )
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for I = {i1, i2, . . . , i k}. This equation efficiently computes one step in the fixed-point
iteration constructing̃B∗I (g̃).

Notice, that the existential quantifications can be performed in any order. We have chosen
the order in which the machines occur in the input, but other orders may exist which might
improve performance.

6. Local deadlock detection

In checking for local deadlocks we use a construction similar to backwards reachability. To
make the compositional backwards lemma applicable we work with the notion of a machine
beinglive which is the exact dual of having a local deadlock. In words, a machine is live
if it always is the case that there exists a way to make the machine move to a new local
state. Formally, a global states is live for machinei if there exists a sequence of states
s1, s2, . . . , sk with s = s1 andsj e o−→ sj+1 (for somee ando) such thatsk

i 6= s1
i . Machine

i is live if all reachable states are live for machinei . A simple example of a state/event
system with a machine that is not live, i.e., contains a local deadlock, is shown in figure 5.

The check is divided into two parts. First, the set of all live statesL∗i for machinei
is computed. Second, we check that all reachable states are inL∗i . A straightforward but
inefficient approach would be to compute the two sets and check for inclusion. However, we
will take advantage of the compositional construction used in the backwards reachability
in both parts of the check.

Similar to the definition ofBI (g), we defineL I ,i (X) to be the set of states that are
immediately live for machinei ∈ I (independently of the machines outsideI ) or which
leads to states inX (i.e., states already assumed to be live for machinei ):

L I ,i (X) = {s∈ S | ∀s′. s=I s′ ⇒∃e, o, s′′. s′
e o−→ s′′ and(si 6= s′′i or s′′ ∈ X)}. (8)

Compared to definition (1) the only difference is the extra possibility that the state is
immediately live, i.e.,si 6= s′′i . The set of states that are live for machinei independently of
machines outsideI is then the setL∗I ,i (∅)whereL∗I ,i (Y) is the minimum fixed point defined
by L∗I ,i (Y) = µX.Y ∪ L I ,i (X).

The three properties of the lemma also holds forL∗I ,i (Y) whenY is I -sorted. IfI is de-
pendency closed it follows from property (iii) of the lemma thatL∗I ,i (∅) equalsL∗{1,...,n},i (∅)
which is precisely the set of live states of machinei . This gives an efficient way to compute
the setsL∗I ,i (∅) for different choices ofI . We start withI1 equal to{i } and continue with

Figure 5. A state/event system with a local deadlock. The global states= (p2,q1) is not live for the machine to
the right since for all input events the guardp1 remains false. The states is reachable (e.g., by initially receiving
e1) and thus the machine to the right has a local deadlock.
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LOCALDEADLOCK(M1,M2, . . . ,Mn, i ) =
I ← {i }
L ← ∅
repeat

Lnew← L∗I ,i (L)
if S= Lnew then return false /∗ No local deadlock∗/
if I is dependency closedthen

return REACHABLE(M1,M2, . . . ,Mn, S\Lnew)

ExtendI with at least one machine.
L ← Lnew

forever

Figure 6. Algorithm determining whether machinei has a local deadlock.

larger Ik’s exactly as for the backwards reachability. The only difference is the termination
conditions. One possible termination case is ifL∗Ik,i

(∅) becomes equal toS for somek.
In that case it is trivial that the set of reachable states is contained inL∗Ik,i

(∅). From the
monotonicity property (i) of the lemma it follows that machinei is live and thus free of
local deadlocks. The other termination case is whenIk becomes dependency closed. Then
we have to check whether there exists reachable states not inL∗Ik,i

(∅). This is done by a
compositional backwards reachability check withg = S\L∗Ik,i

(∅). The algorithm is shown
in figure 6.

7. Experimental results

The technique presented above has been applied to a range of real industrial state/event
systems and a set of systems constructed by students in a course on embedded systems.
The examples are all constructed using visualSTATETM [21]. They cover a large range of
different applications and are structurally highly irregular.

The characteristics of the state/event systems are shown in Table 1. The examplesHI-FI,
AVS, FLOW, MOTOR, INTERVM, DKVM , N8, TRAIN1 andTRAIN2 are all industrial examples.
HI-FI is the control part of an advanced compact hi-fi system,AVS is the control part of an
audio-video system,FLOW is the control part of a flow meter,MOTOR is a motor control,
INTERVM and DKVM are advanced vending machines, andTRAIN1 andTRAIN2 are both
independent subsystems of a train simulator. The remaining examples are constructed by
students. TheVCR is a simulation of a video recorder,CYBER is an alarm clock,JVC is the
control of a compact hi-fi system,VIDEO is a video player, andVOLVO is a simulation of the
functionality of the dashboard of a car.

The experiments were carried out on a 350 MHz Pentium II PC with 64 MB RAM
running Linux. To implement the ROBDD operations, we use the BuDDy package [19]. In
all experiments we limit the total number of ROBDD nodes to three millions corresponding
to 60 MB of memory. We check for each transition whether the guard is reachable and
whether it is conflicting with other transitions. Furthermore, we check for each machine
whether it has a local deadlock. The total runtime for these checks, including loadtime and
the time to construct the dependency graphs, are shown in Table 2. The memory consumption
is typically 3 MB and never more than 10 MB for the analyses that completes within the
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Table 1. The state/event systems used in the experiments. The last two columns show the size of the declared
and reachable state space. The size of the declared state space is the product of the number of local states of each
machine. The reachable state space is only known for those systems where the forwards analysis completes.

System Machines Local states Transitions Declared Reachable

INTERVM 6 182 745 106 15144

VCR 7 46 85 105 1279

CYBER 8 19 98 103 240

JVC 8 25 106 104 352

DKUM 9 55 215 106 377568

HI-FI 9 59 373 107 1416384

FLOW 10 232 1146 105 17040

MOTOR 12 41 295 106 34560

AVS 12 66 1737 107 1438416

VIDEO 13 74 268 108 1219440

VOLVO 20 84 196 1011 9.2× 109

N8 111 321 1419 1040 –

TRAIN1 373 931 2988 10136 –

TRAIN2 1421 3204 11166 10476 –

limits. The total number of checks is far from the quadratic worst-case, which supports the
claim that in practice only very few checks are needed to check for conflicting rules (see
Section 3).

As expected, the forwards iteration with a full transition relation is efficient for smaller
systems. It is remarkable that the ROBDD technique is superior to explicit state enumera-
tion even for systems with a very small number of reachable states. Using the partitioned
transition relation in the forwards iteration works poorly.

For the largest system, only the compositional backwards technique succeeds. In fact,
for the three largest systems it is the most efficient and for the small examples it has
performance comparable to the full forward technique. This is despite the fact that the
number of checks is high and the backward iterations must be repeated for each check.
From the experiments it seems that the compositional backwards technique is better than
full forwards from somewhere around 30 machines.

In order to understand why the compositional backwards technique is successful we
have analyzed the largest systemTRAIN2 in more detail. The dependency graph is shown
in figure 7 to give an impression of the complexity and irregularity of the system. The
largest dependency closed set contains 234 machines. For each guard we have computed
the size of its smallest enclosing dependency closed set of machines, see figure 8. During
the backwards iterations we have kept track of how many times the set of machinesI (used
in B∗I (g)) needed to be enlarged and how many machines were contained in the setI when
the iteration terminated. The dependency closed sets of cardinality 63, 66, 85, 86, 125, 127
all contain at least one machine with a guard that is unreachable. As is clearly seen from
the figure, in these cases the iteration has to include the entire dependency closed set in
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Table 2. The runtime of the experiments in CPU seconds. The second column of the table shows the total number
of guards that are checked for reachability after this number has been reduced by the implicational analysis. The
forward columns show results using a forward iteration with a full and a partitioned transition relation. The
backward columns show the results of a backwards iteration using the full transition relation, the full dependency
closure and the compositional backwards reachability. The visualSTATE column shows the runtimes obtained
using an explicit state enumeration as implemented in version 3.0 of visualSTATETM. A “−” denotes that we ran
out of BDD nodes.

Forward Backward

System
Guards
checked Full Part. Full D.C. Comp. visualSTATE

INTERVM 185 0.4 1.9 6.0 5.3 4.3 4

VCR 50 0.1 0.2 0.4 0.3 0.2 <1

CYBER 16 0.1 0.1 0.1 0.1 0.1 <1

JVC 22 0.1 0.1 0.1 0.1 0.1 <1

DKVM 63 0.2 4.5 1.2 1.1 0.8 82

HI-FI 120 0.4 7.2 2.6 2.1 1.3 240

FLOW 230 0.4 1.2 2.4 1.7 1.6 5

MOTOR 123 0.3 3.3 3.2 3.1 0.7 6

AVS 173 2.4 37.4 4.1 2.9 2.0 679

VIDEO 122 0.5 11.0 1.3 0.8 0.5 –

VOLVO 83 1.4 355.0 1.9 0.6 0.6 –

N8 710 – – 673.5 207.1 37.8 –

TRAIN1 1335 – – 471.2 11.1 10.8 –

TRAIN2 4708 – – – – 273.0 –

order to prove that the initial state cannot reach the guard. But even then much is saved,
as no more than 234 machines out of a possible 1421 are ever included. In fact,only in
the case of unreachable guards are more than 32% of the machines in a dependency closed
set ever needed (ignoring the small dependency closed sets with less than 12 machines). A
reduction to 32% amounts to a potential reduction in runtime much larger than a third due to
the potential exponential growth of the ROBDD representation in the number of transition
relationsT̃i .

Our experience with the compositional backward technique is encouraging: It is gener-
ally efficient on industrial applications. It is implemented in the newer versions of visual-
STATETM and has drastically increased the size of models that the customers can verify.

However, theory tells us to expect that there are examples where the execution time and
memory requirement ofanyexhaustive verification algorithm will grow exponentially with
the size of the design. Therefore, the quality of a verification technique must be judged
on its ability to solve problems in real applications. As described above the compositional
backwards technique has been very successful in this respect. However, we have encoun-
tered a problem with a state/event model of a compact zoom camera. Although it contains
only 36 state machines, none of the techniques—including the use of dynamic variable
ordering—are capable of fully verifying this application even using all the resources
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Figure 7. The dependency graph forTRAIN2. Each vertex in the graph represents a state machine and an edge
from vertexi to j indicates that machineMi depends on machineM j , i.e., thatMi has a transition with a guard
that refers to a state in machineM j .

Figure 8. The fraction of machines actually used in the compositional backwards reachability analysis of the
guards of the largest systemTRAIN2. For each size of dependency closed set, a line between is drawn between the
minimum and maximum fraction of machines used in verifying guards with dependency closed sets of that size.
For instance, for the guards with dependency closed sets with 234 machines (the right-most line) only between
1% and 32% of the machines are needed to prove that the guard is reachable.
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available to us. This points out that the exponentially growing examples can be encountered
in practice and simply counting the number of machines is a bad measure of the complexity
of the verification task. It is an active area of research to find better measures for predicting
the difficulty of verifying a given design with a given technique.

8. Conclusion

We have presented a verification problem for state/event systems which is characterized by
a large number of reachability checks. A compositional technique has been presented which
significantly improves on the performance of symbolic model checking for large state/event
systems. This has been demonstrated on a number of industrial systems of which the largest
could not be verified using traditional symbolic model checking.

We have shown how the backward compositional technique is used to check for two
types of properties, namely reachability and deadlocks. The check for local deadlock shows
how some properties requiring nesting of fixed points can be checked efficiently with the
compositional backwards analysis. Based on these ideas, we have recently shown how the
compositional technique can be extended to handle full CTL [20].

Other models of embedded control systems, such as StateCharts [15] and RSML [18],
are often structured hierarchically, i.e., states may contain subcomponents. It is possible to
extend the compositional backwards technique to not only handle hierarchical models but
also to take advantage of the hierarchy to improve the efficiency of the verification [5].

In general, we believe that the compositional backwards technique works well when
the model can be decomposed into independent components. On the other hand, if all
components of the model are mutually dependent, the dependency closure will include
all components and the compositional technique reduces to the standard model checking
approaches. For example, in some models the components can communicate by using signals
(or internal events). The signals are placed in a queue and only when this queue becomes
empty can the components react on external events. In such a model, all components become
mutually dependent due to synchronization with the centralized queue, resulting in a severe
degradation in performance. In current research, we attempt to avoid the queue by using a
difference semantics which allows the signals to be statically eliminated by turning them
into state synchronizations. The goal is to allow the use of signals in the model without
degrading the efficientcy of the verification.

Note

1. If the guard is self-contradictory (always false), it will beI -sorted for anyI . This reflects the fact that the
semantic sortedness is more precise than syntactic occurrence.
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