
Verification of Mathematical Formulae Based on
a Combination of Context-Free Grammar and

Tree Grammar

Akio Fujiyoshi1, Masakazu Suzuki2, and Seiichi Uchida3

1 Department of Computer and Information Sciences, Ibaraki University
fujiyosi@mx.ibaraki.ac.jp

2 Faculty of Mathematics, Kyushu University
suzuki@math.kyushu-u.ac.jp

3 Faculty of Information Science and Electrical Engineering, Kyushu University
uchida@is.kyushu-u.ac.jp

Abstract. This paper proposes the use of a formal grammar for the
verification of mathematical formulae for a practical mathematical OCR
system. Like a C compiler detecting syntax errors in a source file, we want
to have a verification mechanism to find errors in the output of math-
ematical OCR. Linear monadic context-free tree grammar (LM-CFTG)
was employed as a formal framework to define “well-formed” mathe-
matical formulae. For the purpose of practical evaluation, a verification
system for mathematical OCR was developed, and the effectiveness of
the system was demonstrated by using the ground-truthed mathematical
document database INFTY CDB-1.

1 Introduction

Grammatical analysis is useful for many types of verification problems. For ex-
ample, a C compiler grammatically analyzes a source file and returns error mes-
sages with the location and type of errors. For mathematical OCR [1], it is
natural to think that such grammatical analysis helps to detect misrecognitions
of characters and structures in mathematical formulae. This paper proposes a
mathematical-formulae verification method for a practical mathematical OCR
system based on a combination of context-free grammar [2] and tree grammar [3].

Grammatical analysis can be classified into two levels: syntactic analysis
and semantic analysis. This paper concentrates only on the syntactic analysis
of mathematical formulae because we wanted to build a very fast verification
system. Needless to say, semantic analysis is also very important for the im-
provement of mathematical OCR. However, we will leave this task for another
time. We use the term “well-formed” to mean syntactic correctness. Since syn-
tactic correctness doesn’t necessarily mean semantic correctness, we can consider
unsatisfiable formulae, e.g., “1+2 = 5”, and tautological formulae, e.g., “x = x”,
as “well-formed” formulae if they are syntactically correct.

The final aim of this study is to completely define “well-formed” mathe-
matical formulae. In other words, we want to have a grammar to verify any

2 A. Fujiyoshi, M. Suzuki and S. Uchida

Scanned image

Σ

n

i = 0

i =

2

n (n + 1)

Tree representation

Fig. 1. A result of structural analysis of a mathematical formula

Fan-out rules Context-free rules

ExpExp Exp+

ExpInit Exp=

TermExp

FactorTerm

Factor 1

Factor n

Factor)(ExpTermTerm Term

Σ

Init

Exp

Sum

Exp

Exp

Frac

Fig. 2. Some rules of the grammar

mathematical formula that has appeared, or will appear, in a long-term build-
up of mathematical documents. There were other grammatical approaches to the
verification of mathematical formulae such as [4–6]. The proposed verification
method will extend the coverage of those approaches.

In order to define “well-formed” mathematical formulae, we employed linear
monadic context-free tree grammar (LM-CFTG) [3] as a formal framework. As
shown in Fig. 1, a mathematical OCR system offers a tree representation of a
mathematical formula from a scanned image. Therefore, we needed a grammar
formalism to define a set of tree structures. An LM-CFTG defines a set of tree
structures by arranging fan-out rules and context-free rules, where fan-out rules
are used to describe the structural growth of a tree, and context-free rules are
used to describe linear growth. For example, some fan-out rules and context-
free rules of the grammar defining “well-formed” mathematical formulae are
illustrated in Fig. 2.

The proposed verification method allows us to build a very fast verification
system. Theoretically, the verification process of most mathematical formulae
will be completed in linear time depending on the size of the input, though some
exceptional mathematical formulae require cubic time. We need a very fast ver-
ification system because verification should be done for numerous recognition
candidates to improve the reliability of mathematical OCR. We experimentally
built a verification system and executed the system on the ground-truthed math-
ematical document database INFTY CDB-1 [7]. The verification of 21, 967 math-
ematical formulae (size: 48.1MB) was finished within 10 seconds by a PC (CPU:
Pentium4 3.06GHz, RAM: 1GB).

Verification of Mathematical Formulae Based on Formal Grammar 3

The accomplishment of this very fast verification system mainly resulted from
the following two features of the proposed verification method:

– Division of a mathematical formula into sub-formulae; and
– A grammar formalism with a fast recognition algorithm.

The idea of the division of a formula into sub-formulae is common to well-
known algorithm design paradigms such as “Divide and Conquer” and “Dynamic
Programming.” The employment of LM-CFTG enables us to use not only parsing
algorithms for LM-CFTG [8] but also well-established parsing techniques for
context-free grammar (CFG) [2, 9].

Although the proposed verification method may be useful in general, this
paper mainly discusses the implementation of a verification system created to
be used with InftyReader [10]. The information about InftyReader and other
supporting software can be found on the Infty Project website [11].

This paper is organized as follows: In Section 2, the grammar defining “well-
formed” mathematical formulae is explained; in Section 3, the outline of the
proposed verification method is described; in Section 4, the results of the exper-
iment are shown; in Section 5, LM-CFTG is introduced as a formal framework
for the grammar defining “well-formed” mathematical formulae; and in Section
6, the conclusion is drawn and future work determined.

2 “Well-Formed” Mathematical Formulae

In order to define “well-formed” mathematical formulae, linear monadic context-
free tree grammar (LM-CFTG) [3] was employed as a formal framework. The
definition and the formal properties of LM-CFTG will be introduced in Sec-
tion 5. To choose an appropriate grammar formalism, it was necessary for a
grammar formalism to have sufficient descriptive power to process a diversity of
mathematical formulae. In addition to descriptive power, we also required that
a grammar formalism be accompanied by a very fast parser.

An LM-CFTG is defined by arranging fan-out rules and context-free rules.
Fan-out rules are used to define possible structural configuration of mathemati-
cal formulae. We should arrange them for symbols which are possibly connected
with adjunct symbols. Examples of those symbols are “capital sigma” for sum-
mation, “capital pi” for product, “radical sign” for square root, “long bar” for
fraction, “integral sign” for definite integral, etc. Because any variable may have
a subscript, we arranged a fan-out rule for all italic alphabet symbols. Context-
free rules are used to define possible linear sequences of symbols of mathematical
formulae. Context-free rules constitute a context-free grammar (CFG) [2], and
thus we can use well-established parsing techniques for CFG [9].

We experimentally developed a grammar defining “well-formed” mathemat-
ical formulae. The grammar consists of 35 fan-out rules and 170 context-free
rules. The number of rules will be increased with the refinement of the gram-
mar. A representative sample of the grammar is illustrated in the appendix at
the end of this paper.

4 A. Fujiyoshi, M. Suzuki and S. Uchida

Table 1. Grammatical categories

Category Explanation and Example

Math Acceptable mathematical formula
“u(a, b) = Int Frac”

Range Range of value of a variable
“1 ≤ i ≤ n”

Init Initialization of a variable
“i = 0”, “i = k”

Exp Acceptable expression
“2 + 3”, “n(n + 1)”

ExpList List of expressions connected with signs
“a < b < c < d”, “z = x + y”

Subscript Subscript of a variable
“2”, “n”, “1, 2”, “1, 2, 3, 4”

Supscript Supscript of a variable and expression
“′”, “′′”, “2”, “n”, “1, 2”

On the development of the grammar, we tried to arrange context-free rules so
that they constitute a deterministic context-free grammar (DCFG) [2] because
we could take advantage of a linear-time parsing technique for DCFG [9]. Unfor-
tunately, we needed to add some context-free rules, which break the condition
of DCFG, and this is the reason why a verification process of some exceptional
mathematical formulae requires cubic time. Most of those context-free rules are
related to the vertical-bar symbol because the usage of vertical bar is too diverse:
absolute value, divides, conditional probability, norm of a vector, etc.

Table 1 shows the grammatical categories defined by the context-free rules
of the grammar.

3 Outline of the Verification Method

In this section, we describe the outline of the proposed verification method. We
start with the input to the verification system, that is to say, the output of
mathematical OCR.

The output of InftyReader is given in InftyCSV format. An example of an
InftyCSV text expressing a mathematical formula is shown in Table 2. Each
line corresponds to a symbol in the formula, where: “ID” is the number uniquely
assigned to the symbol; “x1, x2, x3, x4” are the coordinates of the rectangular
area; “Mode” is a flag showing if the symbol is a part of a mathematical formula;
“Link” expresses the relationship with the parental symbol; “Parent” is the ID
of the parental symbol; and “Code” is the internal character code of the symbol.
The original image and the rectangular representation of the formula are shown
at (1) and (2) in Fig. 3.

Verification of Mathematical Formulae Based on Formal Grammar 5

Table 2. An example of an InftyCSV text

ID x1 y1 x2 y2 Mode Link Parent Code

1, 1487, 708, 1535, 766, 1, -1, -1, 0x426C

2, 1542, 685, 1559, 758, 1, 0, 1, 0x1980

3, 1563, 704, 1603, 742, 1, 0, 2, 0x4161

4, 1610, 732, 1622, 753, 1, 0, 3, 0x142C

5, 1646, 683, 1679, 742, 1, 0, 4, 0x4162

6, 1686, 685, 1703, 758, 1, 0, 5, 0x1981

7, 1728, 708, 1780, 724, 1, 0, 6, 0x1D3D

8, 1801, 624, 1858, 812, 1, 0, 7, 0x33F0

9, 1853, 782, 1881, 810, 1, 2, 8, 0x4161

10, 1868, 622, 1891, 658, 1, 1, 8, 0x4162

11, 1909, 717, 2053, 722, 1, 0, 8, 0x33D1

12, 1945, 629, 1985, 689, 1, 5, 11, 0x4164

13, 1986, 650, 2016, 689, 1, 0, 12, 0x4163

14, 1911, 736, 1967, 800, 1, 6, 11, 0x0248

15, 1977, 740, 1994, 813, 1, 0, 14, 0x1980

16, 1999, 757, 2029, 796, 1, 0, 15, 0x4163

17, 2035, 740, 2051, 813, 1, 0, 16, 0x1981

3.1 Construction of a Tree Representation

First, the verification system converts an InftyCSV text into a linked list called a
tree representation. A node of a linked list is illustrated in Fig. 4. By preparing
nodes for all symbols and connecting them in accordance with “Link” and “Par-
ent” information in an InftyCSV text, the tree representation of a mathematical
formula is constructed. The InftyCSV text in Table 2 is converted into the tree
representation shown at (3) in Fig. 3.

3.2 Division of a Mathematical Formula into Strings

Secondly, strings are extracted from a tree representation of a mathematical
formula. Strings are obtained by concatenating symbols horizontally connected
in a tree representation. From the tree representation shown in Fig. 3, the
following five strings are extracted:

“u (a , b) = Int Frac”,
“b”,
“a”,
“d c”, and
“Θ (c)”.

3.3 Grammatical Analysis

Grammatical analysis is executed in two stages: linear sequence analysis and
structural inspection. In the linear sequence analysis, a parser for a context-free

6 A. Fujiyoshi, M. Suzuki and S. Uchida

(2) Rectangular representation (1) Original image

= ∫
Θ

d c

(aµ b),

(c)a

b

(3) Tree representation

Fig. 3. The mathematical formula

upper

under

supscriptR _

subscriptR _

horizontal

subscriptL_

supscriptL _

Fig. 4. A node

grammar (CFG) [2] is utilized, and, for each string extracted from a tree repre-
sentation of a mathematical formula, the fitness to the grammatical categories is
examined. In Table 3, the fitness to the grammatical categories for the strings
is shown. The linear sequence analysis is the most time-consuming task in the
proposed verification method, and may cost cubic time depending on the size of
the input in the worst case, while the other tasks can be done in linear time.

After the linear sequence analysis, the structural inspection takes place. In
the structural inspection, the connectivity of nodes is examined by searching
for matching fan-out rules. The structural inspection process is illustrated in
Fig. 5. The connection of the adjunct strings, “b” and “a”, and the integral sign
are inspected. The connection of the adjunct strings, “d c” and “Θ (c)”, and
the long bar are also inspected.

The mathematical formula in the example was successfully verified as a “well-
formed” mathematical formula.

Verification of Mathematical Formulae Based on Formal Grammar 7

Table 3. Fitness to the grammatical categories

Strings Math Range Init Exp ExpList Subscript Supscript

u (a , b) = Int Frac yes yes yes no yes no no
b yes yes no yes yes yes yes
a yes yes no yes yes yes yes

d c yes yes no yes yes yes yes
Θ (c) yes yes no yes yes yes yes

Exp

Exp

Frac

d c

=(aµ b),

Θ (c)a

b

∫
Exp

Exp

Int

Int Frac

Fig. 5. Structural inspection

4 Experimental Results

We experimentally built a verification system in accordance with the proposed
verification method. For implementation of the system, the program was written
in C language, and GNU Bison [12], a parser generator for CFG, was utilized.
For evaluation, we executed the system on the ground-truthed mathematical
document database INFTY CDB-1 [7].

The verification of 21, 967 mathematical formulae in INFTY CDB-1 (size:
48.1MB) was finished within 10 seconds by a PC (CPU: Pentium4 3.06GHz;
RAM: 1GB). The speed of the proposed verification method was experimentally
confirmed. Theoretically, a verification process of most mathematical formulae
will be finished in linear time depending on the size of the input, though some
exceptional mathematical formulae require cubic time.

The verification system produces verification results in XHTML format with
MathML inclusions and displays error messages on a web browser such as Mozilla
Firefox [13]. An error message identifies the position and type of suspicious
mathematical-formula error as enlarged and colored red.

(1), (2), (3) and (4) in Fig. 6 are error messages produced by the verifica-
tion system. Original images corresponding to the error messages are shown in
Fig. 7. As for (1), the verification system successfully detected the misrecogni-
tion of a comma before the letter ‘b’. The comma was misrecognized as a period.
With regard to (2), the verification system detected a faulty correspondence of

8 A. Fujiyoshi, M. Suzuki and S. Uchida

 (1)

(2)

(3)

(4)

Fig. 6. Error messages produced by the verification system

parentheses. Looking at the original image, we noticed that this was an error
from the original document. Concerning (3), the verification system successfully
detected the misrecognition of the angle bracket. The angle bracket was misrec-
ognized as a less-than sign. And about (4), a structural error was detected since
a left parenthesis may not have a superscript. A portion of the left parenthesis
was misrecognized as a prime symbol.

5 Formal Framework

In this section, we introduce the formal definitions of tree and linear monadic
context-free tree grammar (LM-CFTG). LM-CFTG was employed as a formal
framework to define “well-formed” mathematical formulae. We also introduce
known results for LM-CFTG.

5.1 Tree

A ranked alphabet is a finite set of symbols in which each symbol is associated
with a natural number, called the arity of a symbol. Let Σ be a ranked alphabet.
For n ≥ 0, let Σn = {a ∈ Σ | the arity of a is n}. A ranked alphabet is monadic
if the arity of each its element is at most 1.

The set of trees over Σ, denoted by TΣ , is the smallest set of strings over
elements of Σ, parentheses and commas defined inductively as follows:

Verification of Mathematical Formulae Based on Formal Grammar 9

(1)

(2)

(3)

(4)

Fig. 7. Original images

(1) Σ0 ⊆ TΣ , and
(2) if a ∈ Σn for some n ≥ 1, and t1, t2, . . . , tn ∈ TΣ , then a(t1, t2, . . . , tn) ∈ TΣ .

Let x be a variable. TΣ(x) is defined as TΣ∪{x} taking the rank of x to be 0.
For t, u ∈ TΣ(x), t[u] is defined as the result of substituting u for the occurrences
of the variable x in t. A tree t ∈ TΣ(x) is linear if x occurs exactly once in t.

5.2 Linear Monadic Context-Free Tree Grammar

An linear monadic context-free tree grammar (LM-CFTG) is a four-tuple G =
(N, Σ, P, S), where:

– N is a monadic ranked alphabet of nonterminals,
– Σ is a ranked alphabet of terminals, disjoint with N ,
– S ∈ N0 is the initial nonterminal, and
– P is a finite set of production rules of one of the following forms:

(1) A → u

with A ∈ N0 and u ∈ TN∪Σ , or

(2) A(x) → u

with A ∈ N1 and a linear tree u ∈ TN∪Σ(x).

For an LM-CFTG G, the one-step derivation G⇒ is the relation over TN∪Σ(x)
such that, for t ∈ TN∪Σ(x), (1) if A → u is in P and t = t′[A] for some linear

10 A. Fujiyoshi, M. Suzuki and S. Uchida

x
x

A u
⇒
G

t′

A

t ′′

t′

t ′′

u

Fig. 8. One-step derivation

(4)

x
1−iC 1+iC1C n

C

b
A

x

(3)
x

B

A

x

C

(1)

B

A

C
(2)

aA

Fig. 9. Chomsky-like normal form

tree t′ ∈ TN∪Σ(x), then t G⇒ t′[u], and (2) if A(x) → u is in P and t = t′[A(t′′)]
for some linear trees t′, t′′ ∈ TN∪Σ(x), then t G⇒ t′[u[t′′]]. See Fig. 8.

Let G
∗⇒ denote the reflexive transitive closure of G⇒ . The tree language gen-

erated by G is the set L(G) = {t ∈ TΣ | S G
∗⇒ t}.

5.3 Known Results for LM-CFTG

First, we introduce normal forms for LM-CFTG. The reason fan-out rules and
context-free rules are sufficient to define an LM-CFTG is based on Theorem 1.

Theorem 1. (Fujiyoshi [14]) [Chomsky-like normal form] Any LM-CFTG can
be transformed into an equivalent one whose rules are in one of the following
forms:

(1) A → B(C) with A,C ∈ N0 and B ∈ N1,
(2) A → a with A ∈ N0 and a ∈ Σ0,
(3) A(x) → B(C(x)) with A,B, C ∈ N1, or
(4) A(x) → b(C1, . . . , Ci−1, x, Ci+1, . . . , Cn) with A ∈ N1, n ≥ 1, b ∈ Σn, 1 ≤

i ≤ n and C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0.

See Fig. 9.

Theorem 2. (Fujiyoshi [14]) [Greibach-like normal form] Any LM-CFTG can
be transformed into an equivalent one whose rules are in one of the following
forms:

Verification of Mathematical Formulae Based on Formal Grammar 11

(3)

x

2B

m
B

1B
1−iC 1+iC1C n

C

b

A

x(1)

aA
2B

m
B

1B
1−iC 1+iC1C n

C

b

A

D

(2)

Fig. 10. Greibach-like normal form

(1) A → a with A ∈ N0 and a ∈ Σ0,
(2) A → b(C1, . . . , Ci−1, u, Ci+1, . . . , Cn) with A ∈ N0, n ≥ 1, b ∈ Σn, 1 ≤ i ≤ n,

C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0 and u ∈ TN , or
(3) A(x) → b(C1, . . . , Ci−1, u, Ci+1, . . . , Cn) with A ∈ N1, n ≥ 1, b ∈ Σn, 1 ≤

i ≤ n, C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ N0, and u ∈ TN1(x).

See Fig. 10. Since N is monadic, all trees in TN and TN1(x) may be written
as B1(B2(· · · (Bm(D)) · · ·)) and B1(B2(· · · (Bm(x)) · · ·)), respectively, for some
m ≥ 0, B1, B2, . . . , Bm ∈ N1 and D ∈ N0. Note that m may be 0.

LM-CFTG is related to the tree adjoining grammar (TAG) [15–17], one of
the most famous and well-studied mildly context-sensitive grammar formalisms.
The definition of “weakly equivalent” is found in [3].

Theorem 3. (Fujiyoshi & Kasai [3]) LM-CFTG is weakly equivalent to TAG.

There exists an effective recognition algorithm for LM-CFTG.

Theorem 4. (Fujiyoshi [8]) There exists a recognition algorithm for LM-CFTG
that runs in O(n4) time, where n is the number of nodes of an input tree.

It is known that a recognition algorithm that runs in O(n3) time can be
obtained with some modifications to the O(n4)-time algorithm in [8].

6 Conclusion and Future Work

We have proposed a verification method of mathematical formulae for a practical
mathematical OCR system based on a combination of context-free grammar and
tree grammar. Though we have recognized the usefulness of the proposed verifica-
tion method by experimental results, we know the necessity of the improvement

12 A. Fujiyoshi, M. Suzuki and S. Uchida

of the grammar defining “well-formed” mathematical formulae. Moreover, in or-
der to avoid the ambiguity of the grammar, the inclusion of semantic analysis
needs to be considered.

In the future, we plan to internalize a verification system within the recogni-
tion engine of a mathematical OCR system. Because the flexibility of the gram-
mar is important, we want to allow users to manipulate the grammar. Therefore,
we will reflect on ways users can update the grammar by themselves.

References

1. Chan, K.F., Yeung, D.Y.: Mathematical expression recognition: a survey. Int. J.
Document Analysis and Recoginition 3(1) (2000) 3–15

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Reading, Massachusetts (1979)

3. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of
Computing Systems 33(1) (2000) 59–83

4. Anderson, R.: Syntax-directed recognition of hand-printed two-dimensional math-
ematics. In: Interactive Systems for Experimental Applied Mathematics. Academic
Press (1968) 436–459

5. Chou, P.A.: Recognition of equations using a two-dimensional stochastic context-
free grammar. In: Proc. SPIE. Volume 1199. (1989) 852–863

6. Kanahori, T., Sexton, A., Sorge, V., Suzuki, M.: Capturing abstract matrices
from paper. In: Proceedings of the 5th International Conference on Mathematical
Knowledge Management (MKM 2006), LNCS 4108 (2006) 124–138

7. Suzuki, M., Uchida, S., Nomura, A.: A ground-truthed mathematical character
and symbol image database. In: Proceedings of the 8th International Conference
on Document Analysis and Recognition (ICDAR 2005). Volume 2. (2005) 675–679

8. Fujiyoshi, A.: Application of the CKY algorithm to recognition of tree structures
for linear, monadic context-free tree grammars. IEICE Trans. Inf. & Syst. E90-
D(2) (2007) 388–394

9. Sikkel, K., Nijholt, A.: Parsing of Contex-Free Languages. In: Handbook of Formal
Languages. Volume 2. Springer-Verlag, Berlin (1997) 61–100

10. Suzuki, M., Tamari, F., Fukuda, R., Uchida, S., Kanahori, T.: Infty - an integrated
OCR system for mathematical documents. In: Proceedings of ACM Symposium
on Document Engineering 2003. (2003) 95–104

11. Infty Project, http://www.inftyproject.org/en/
12. Donnelly, C., Stallman, R.: Bison: The yacc-compatible parser generator. Available

on: http://www.gnu.org/software/bison/manual/ (2006)
13. Mozilla Firefox, http://www.mozilla.com/firefox/
14. Fujiyoshi, A.: Analogical conception of chomsky normal form and greibach normal

form for linear, monadic context-free tree grammars. IEICE Trans. Inf. & Syst.
E89-D(12) (2006) 2933–2938

15. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Computer &
System Sciences 10(1) (1975) 136–163

16. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Handbook of Formal
Languages. Volume 3. Springer-Verlag, Berlin (1997) 69–124

17. Abeillé, A., Rambow, O., eds.: Tree adjoining grammars: formalisms, linguistic
analysis and processing. CSLI Publications, Stanford, California (2000)

Verification of Mathematical Formulae Based on Formal Grammar 13

Appendix: Representative Sample of the Grammar
Defining “Well-Formed” Mathematical Formulae

Fan-Out Rules:

∫
Exp

Exp

Int∫Int

Exp

Exp

∫Int

Range

∫
Range

Int

Σ
Init

Exp

Sum ΣSum

Init

Exp

Σ
Range

Sum ΣSum

Range

∏

Init

Exp

Prod ∏

Range

Prod ∏Prod

Range

Prod

Init

Exp

∏

Letter a

Subscript

Supscript

Letter b

Subscript

Letter c

Supscript

Exp

Exp

Frac

Exp

SqrtNumeric 1

Exp

Range

Lim lim

Subscript

Log log

Range

Lim lim

14 A. Fujiyoshi, M. Suzuki and S. Uchida

Context-Free Rules:

Math → ExpList
→ Sign ExpList

ExpList → Exp
→ ExpList Sign Exp

Exp → Term
→ UnaryOp Term

Term → Factor
→ Term Factor
→ Term BinaryOp Factor
→ ‘∞’

Range → Exp
→ Exp Sign Exp
→ Exp Sign Factor Sign Exp

Init → Exp ‘=’ Exp

SubScript→ Exp
→ Sign
→ SubScript ‘,’ Exp
→ SubScript ‘,’ Sign
→ Exp ‘=’ Exp

SupScript→ Exp
→ Sign
→ ‘′’ //prime
→ ‘′′’ //doubleprime
→ ‘′′′’ //tripleprime

Sign → ‘=’
→ ‘ 6=’
→ ‘<’
→ ‘≤’
→ ‘>’
→ ‘≥’
→ ‘∈’
→ ‘3’
→ ‘ 63’
→ ‘⊂’
→ ‘ 6⊂’
→ ‘⊃’
→ ‘ 6⊃’
→ ‘≡’
→ ‘∼=’
→ ‘∼’
→ ‘→’
→ ‘⇒’
→ ‘↔’
→ ‘⇔’
→ ‘ 7→’
→ ‘,’ //comma
→ ‘;’ //semicolon
→ ‘|’ //vert

UnaryOp → ‘+’
→ ‘−’
→ ‘±’
→ ‘∓’
→ ‘∀’
→ ‘∃’

BinaryOp→ ‘+’
→ ‘−’
→ ‘×’
→ ‘/’
→ ‘∩’
→ ‘∪’
→ ‘·’
→ ‘•’
→ ‘:’ //colon

Verification of Mathematical Formulae Based on Formal Grammar 15

Factor → V ariable
→ Number
→ ∅
→ ∗
→ 4
→ ∇
→ ℵ
→ ‘(’ ExpList ‘)’
→ ‘[’ ExpList ‘]’
→ ‘{’ ExpList ‘}’
→ ‘(’ ExpList ‘]’
→ ‘[’ ExpList ‘)’
→ ‘〈’ ExpList ‘〉’
→ Frac
→ Sqrt
→ ‘|’ Term ‘|’
→ TrigOp Factor
→ SumOp Factor
→ FuncOp Factor

V ariable → Letter

Letter → ‘a’
→ ‘b’
...
→ ‘z’

Number → Integer
→ Integer ‘.’ Integer
→ ‘.’ Integer

Integer → Numeric
→ Integer Numeric

Numeric → ‘0’
→ ‘1’
...
→ ‘9’

TrigOp → Sin
→ Cos
→ Tan

Sin → ‘sin’
Cos → ‘cos’
Tan → ‘tan’

SumOp → Int
→ Sum
→ Prod
→ Bigcap
→ Bigcup

Int → ‘
∫

’
Sum → ‘

∑
’

Prod → ‘
∏

’
Bigcap → ‘

⋂
’

Bigcup → ‘
⋃

’

FuncOp → Lim
→ Log
→ Min
→ Max

Lim → ‘lim’
Log → ‘log’
Min → ‘min’
Max → ‘max’

