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ABSTRACT

The Ensemble Streamflow Prediction (ESP) system, developed by the National Weather Service (NWS), uses
conceptual hydrologic models and historical data to generate a set, or ensemble, of possible streamflow scenarios
conditioned on the initial states of a given basin. Using this approach, simulated historical probabilistic forecasts
were generated for 14 forecast points in the Colorado River basin, and the statistical properties of the ensembles
were evaluated. The median forecast traces were analyzed using ‘‘traditional’’ verification measures; these
forecasts represented ‘‘deterministic ESP forecasts.’’ The minimum-error and historical traces were examined
to evaluate the median forecasts and the forecast system. Distribution-oriented verification measures were used
to analyze the probabilistic information contained in the entire forecast ensemble. Using a single-trace prediction,
for example, the median, resulted in a loss of valuable uncertainty information about predicted seasonal volumes
that is provided by the entire ensemble. The minimum-error and historical traces revealed that there are errors
in the data, calibration, and models, which are part of the uncertainty provided by the probabilistic forecasts,
but are not considered in the median forecast. The simulated ESP forecasts more accurately predicted future
streamflow than climatology forecasts and, on average, provided useful information about the likelihood of
future streamflow magnitude with a lead time of up to 7 months. Overall, the forecast provided stronger probability
statements and became more reliable at shorter lead times. The distribution-oriented verification approach was
shown to be applicable to ESP outlooks and appropriate for extracting detailed performance information, although
interpretation of the results is complicated by inadequate sample sizes.

1. Introduction and scope

In the southwest United States, water supply outlooks
of naturalized, or unimpaired, volumes are issued jointly
by the National Weather Service (NWS) River Forecast
Centers (RFCs) and the Natural Resources Conservation
Service. Each agency generates forecasts individually
and then meets with other interested forecasting parties
to subjectively evaluate each forecast for combination
into one product (Hartmann et al. 1999, 2002a). Water
supply forecasts have been issued for many decades and
are important for making a wide variety of decisions,
including water allocation for urban and agricultural
uses and reservoir operations.

Current water supply forecasts for the western United
States are based largely on statistical regression equa-
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tions that are developed mostly from monthly precipi-
tation, recent snow-water equivalent, and past stream-
flow observations (Day 1985). Shafer and Huddleston
(1984) conducted a comprehensive assessment of op-
erational hydrologic forecasts in the west and concluded
that, while the regression forecasts would continue to
be useful, overall large improvement in the forecast ac-
curacy could not be expected through the refinement of
regression techniques. In addition, Day (1985) stated
that the value of deterministic regression forecasts is
limited because they do not provide information about
the uncertainty of the predictions. To provide an objec-
tive means with which to generate streamflow forecasts
with uncertainty, the NWS Ensemble Streamflow Pre-
diction (ESP) method was developed (Day 1985). ESP
uses physically based conceptual hydrologic models,
with states set to current basin conditions, and multiple
meteorological inputs to create a probabilistic outlook
consisting of a distribution of possible future events.

Forecast verification is important for assessing fore-
cast quality and performance trends, improving the fore-
casting procedures, and providing users with informa-
tion helpful in applying the forecasts (Murphy and
Winkler 1987). Verification is particularly important for
understanding new forecasting methods. Because ESP
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FIG. 1. The Colorado River basin and the forecast points used in
this study.

TABLE 1. Descriptions of the forecast points and forecast data.

Forecast point
Basin size,

sq. mi.
Gauge

elevation, ft
Median

discharge, AF
Evaluation

period
Traces per

forecast
Forecasts
evaluated

Upper basin (Apr–Jul)
Crystal River, near Redstone, CO
East River, near Almont, CO
Fish Creek, near Steamboat Springs, CO
New Fork River, near Big Piney, WY
White River, near Buford, CO

174
285

26
1215

255

6900
8000
7200
6800
7000

166 000
183 700

37 200
373 400
131 600

1956–97
1949–97
1983–94
1955–94
1952–94

48
48
45
43
45

42
49
12
40
43

Animas River, near Durango, CO
Lemon Reservoir, Florida River Valley, CO
San Juan River, Pagosa Springs, CO
Vallecito Reservoir, Los Pinos Rv, near Bayfield, CO

705
68

286
252

6500
8100
7100
7600

352 800
55 000

198 400
179 000

1949–94
1966–94
1949–94
1965–94

45
45
45
45

46
29
46
30

Lower basin (Jan–May)
Gila River, near Gila, AZ
Carizzo Creek, near Show Low, AZ
Tonto Creek, near Roosevelt, AZ
Verde River, near Paulden, AZ
North Fork of Virgin River, near Springdale, UT

1853
491
729

2161
348

4700
5000
2500
4100
4000

52 600
18 600
44 400

8500
33 000

1949–93
1968–98
1951–98
1964–98
1951–98

44
47
47
47
47

45
31
48
35
48

is a fairly recent advancement in hydrologic forecasting,
there is a limited database with which to test analytical
methods and produce statistical information. Using the
NWS Ensemble Streamflow Prediction Verification Sys-
tem (ESPVS) (Riverside Technology, Inc. 1999), sim-
ulated historical forecasts, or ‘‘hindcasts’’, were created
for select locations in the Colorado River basin. The
hindcasts allowed testing of several verification methods
ranging from simple, more traditional measures, to more
advanced distribution-oriented techniques, and an initial
assessment of the ESP forecasts’ information and qual-
ity. From these analyses, insight into information pro-
vided by ESP and appropriate verification techniques
can be acquired.

The objectives of this paper are as follows:

• to examine the applicability of traditional statistical
techniques and distribution-oriented measures for the
evaluation of ESP forecasts, and

• to give insight into potential operational forecast per-
formance based on simulated historical ESP forecasts
for the Colorado River basin.

2. Methods

a. Forecast locations

The Colorado River basin is located in the western
United States; its drainage area (242 000 square miles)
covers one-fifth of the area of the country and includes
seven states (Bureau of Reclamation 1998). In consul-
tation with the Colorado Basin RFC (CBRFC), nine
forecast points located in the upper basin (comprising
Colorado, Nevada, Utah, and Wyoming) and five in the
lower basin (comprising Arizona, California, and New
Mexico) were chosen (Fig. 1 and Table 1). The locations
were selected because all are headwater reaches with
an unregulated flow record, calibrated and formatted for
use in the ESP forecasting system by the NWS, and
important water supply forecast points within the region.
The stream systems of the upper basin forecast points
used in this study experience continuous baseflow and
low discharge variance compared to the lower basin
forecast points, which may have zero baseflow at times
and are highly variable (Table 2).

b. Forecast generation

The NWS CBRFC issues volumetric water supply
forecasts of naturalized flows for the Colorado River
basin bimonthly beginning 1 January of each year
through the end of the snowmelt and spring/summer
rainfall seasons (Table 3). A volumetric forecast reports
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TABLE 2. Basin statistics averaged over all forecast points and
years used in this study.

Upper basin Lower basin

Mean annual temperature [8C (8F )]
Mean precipitation (mm yr)*

7 (44)
304

14 (57)
1000

Discharge (Apr–July) (Jan–May)
Mean (AF)
Median (AF)
Standard deviation (AF)
Maximum (AF)
Minimum (AF)
Coefficient of variance

200 000
186 000

75 600
367 500

56 100
0.37

51 100
31 400
52 000

214 600
7500

1.06

* Sheppard et al. (1999)

TABLE 3. Forecast information. The Virgin River is an exception
in the lower basin. (Dates given as month/day.)

Day forecast
issued Forecast window

Length of
forecast (days)

Length of forecast
period (days)

Upper basin
1/1
1/15
2/1
2/15
3/1

4/1–7/31
4/1–7/31
4/1–7/31
4/1–7/31
4/1–7/31

122
122
122
122
122

212
198
181
169
155

3/15
4/1
4/15
5/1
5/15
6/1

4/1–7/31
4/1–7/31

4/15–7/31
5/1–7/31

5/15–7/31
6/1–7/31

122
122
108

92
78
61

139
122
108

92
78
61

Lower basin
1/1
1/15
2/1
2/15
3/1
3/15
4/1

1/1–5/31
1/15–5/31

2/1–5/31
2/15–5/31

3/1–5/31
3/15–5/31

4/1–5/31

151
137
120
106

92
78
61

151
137
120
106

92
78
61

Virgin River (Lower basin)
1/1
1/15
2/1
2/15
3/1

4/1–7/31
4/1–7/31
4/1–7/31
4/1–7/31
4/1–7/31

122
122
122
122
122

212
198
181
169
155

3/15
4/1
4/15
5/1

4/1–7/31
4/1–7/31

4/15–7/31
5/1–7/31

122
122
108

92

139
122
108

92

the total volume of water that is predicted to pass
through a specific point on the river over a specific
seasonal period, or forecast window (Brandon 1998).
Approximately 75% of the annual streamflow discharge
in the western United States comes from melting of
mountain snowpack during the spring and summer
(Palmer 1988), supplying the majority of the yearly wa-
ter supply for the region. The forecast window is de-
signed to account for the seasonality of the snowmelt
and thus the source of water supplies and to take ad-
vantage of winter and early spring snowpack measure-
ments. Upper basin forecasts report a forecast window
covering the spring months, and lower basin forecasts
report both winter and spring runoff with a variable
forecast window. The combination of the forecast win-
dow and lead time is referred to as the forecast period.

The NWS ESP system uses the Sacramento Soil
Moisture Accounting Model (SAC-SMA) (Burnash et
al. 1973; Burnash 1995) and the SNOW-17 model (An-
derson 1973), along with streamflow routing algorithms
to simulate streamflow. Starting the models at current
basin conditions, historical sets of temperature and pre-
cipitation time series, assumed to be a sample of possible
future events, are input into the models to produce an
ensemble of streamflow outputs (traces) (Fig. 2). The
input data span only the same calendar days as those of
the forecast period (e.g., 1 Jan–31 Jul). A model run
stops on the last day of the forecast period, and the
model states are reset to the current initial conditions
before the next historical year’s data are inputted; thus,
each trace is conditioned on the current basin states.
Statistical analysis of the ensemble’s distribution results
in a probabilistic forecast (Day 1985).

Although the CBRFC has been archiving the input
data required for ESP for many decades, ESP output
has not been systematically archived until recently mak-
ing forecast evaluation difficult. The ESPVS was de-
signed to produce historical ESP forecasts (hindcasts)
for verification purposes and was employed to recon-
struct water supply outlooks for the 14 study locations
discussed above. All available temperature and precip-
itation data (required for forecast generation) and dis-
charge data (required for verification) were used to gen-

erate and evaluate as many hindcasts as possible (Table
3). There were an average of 47 traces per ensemble
forecast and an average of 39 forecast years studied for
each location. The ESP forecast trace values examined
in this study are discrete totals of seasonal streamflow,
aggregated from daily values. The use of the ESPVS,
NWS River Forecast System (NWSRFS) models, data
and site files obtained from CBRFC, and the same fore-
cast dates and lead times produced by CBRFC allowed
the historical forecast generation process to resemble,
as closely as possible, operational procedures of the
NWS. It should be noted that, in operational forecasting,
the model states might undergo real-time manual ad-
justments to reflect short-term meteorological forecasts
and/or recent observations. These adjustments have an
unknown effect on forecast quality and were not in-
cluded in these hindcasts, because records of such ad-
justments do not exist for the time periods studied.

A deterministic outlook is a forecast that predicts a
single value of a variable (Croley 2000); with respect
to ESP, a deterministic outlook could be obtained, for
example, from choosing a single ensemble member. The
streamflow volume forecast traces that were singled out
for analyses were the median, the minimum-error, and
the historical. The median trace was chosen from each
ensemble to examine the effects of transforming the
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FIG. 2. Diagram of an ESP forecast and description of parts. MAP
5 mean areal precipitation. MAT 5 mean areal temperature. SAC-
SMA 5 Sacramento Soil Moisture Accounting Model.

probabilistic ESP forecasts into deterministic forecasts
and was considered the most appropriate ensemble sta-
tistic given the often-skewed distribution of streamflow.
The minimum-error trace is the ensemble member that
produces the lowest absolute error in predicted seasonal
volume. Finally, the historical trace represents the mod-
eling system accuracy when simulating actual obser-
vations. This trace is the result of running the models
with temperature and precipitation observations from
the forecast year itself. The accuracy, or inaccuracy, of
the ‘‘historical’’ trace reflects errors in the input data,
model structure, model calibration of parameters, and
initial states at the beginning of the run.

A probabilistic forecast provides a predicted value,
or values, of a variable and the associated distribution
function that reflects the likelihood of the event (Croley
2000); a probabilistic ESP forecast results from consid-
ering the distribution of the entire ensemble. To generate
forecast probability from the ESP ensembles, the cu-
mulative distribution function of all available historical
observations (climatology) was used to predetermine
threshold streamflow values for non-exceedance prob-
ability categories. Based on the probability intervals tra-
ditionally referred to in historical official forecasts, the
thresholds were set at 10%, 30%, 70%, and 90%, re-
sulting in five intervals (0%–10%, .10%–30%, .30%–
70%, .70%–90%, and .90%–100% nonexceedance).
Forecast traces were placed into these categories ac-
cording to their individual values. The probabilistic
forecast for a given forecast period was obtained from
calculating the relative frequency of the traces in each
category.

c. Traditional statistical analysis

Three commonly used forecast evaluation statistics
were used for analysis of the deterministic ESP fore-

casts. The mean absolute error (MAE) is a measure of
the average correspondence between forecast and ob-
served seasonal water supply values. The MAE was
divided by the standard deviation of the respective ob-
servations [relative-mean absolute error (RMAE)] to al-
low comparison among forecast points; the optimal val-
ue of the RMAE is 0. Percent Bias (PBias) measures
the difference between the average forecasted and the
average observed seasonal water supply values (Wilks
1995). A PBias of 0% is desirable. A positive PBias
indicates that forecasts tend to assign forecast values
that are greater than the observations (overforecasting);
a negative PBias indicates underforecasting. The cor-
relation coefficient (R) is a measure of how the forecasts
and observations vary together and is the ratio of the
sample covariance to the product of their standard de-
viations. A perfect score of R equal to 1 indicates that
the forecasts and observations vary linearly.

d. Probabilistic verification measures

Probabilistic verification methods have been used in
the evaluation of meteorologic and climate forecasts
(Murphy et al. 1989; Wilks 2000; Hartmann et al.
2002b); however, they have not been used extensively
in the field of hydrology. There are many measures that
can be used to evaluate forecasts (Wilks 2000; Croley
2000); however, a comparative analysis of all their at-
tributes or application to the hindcasts is beyond the
scope of this paper. In general, the statistics chosen show
a progression in information content from simple mea-
sures to the more complicated distribution-oriented
measures. The measures outlined in this section [ranked
probability score (RPS), discrimination, and reliability]
have been ‘‘field-tested’’ with stakeholders to ensure
that users could understand the information that the ver-
ification measures provided and the practical implica-
tions for real-world decisions (Hartmann 2001).

RPS was used to assess the overall performance of
the probabilistic forecasts (Epstein 1969; Wilks 1995).
To calculate the RPS, the ensemble members were dis-
tributed into the streamflow nonexceedance categories
discussed in part b of this section. The forecast cu-
mulative distributions (Fm) were then calculated:

m

F 5 f , m 5 1, . . . , J, (1)Om j
j51

where f j is the relative frequency of the forecast traces,
and J is the number of nonexceedance categories (Wilks
1995). The observation (o) occurs in only one of the
flow categories, which is given a value of 1; the re-
maining categories are given a value of 0. The cumu-
lative distribution of the observations was then calcu-
lated (Wilks 1995):

m

O 5 o , m 5 1, . . . , J. (2)Om j
j51
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FIG. 3. Example reliability diagram describing the behavior of fore-
casts that fall in particular regions of the diagram. The light vertical
lines demarcate forecast probability categories.

The RPS for one forecast is the sum of the squared
differences of the cumulative distributions:

J

2RPS 5 (F 2 O ) . (3)O m m
m51

For a group of n forecasts, the RPS is the average
( ) of the n RPSs:RPS

n1
RPS 5 RPS . (4)O kn k51

A perfect forecast would assign all of the probability
to the same streamflow category in which the event
occurs, resulting in an RPS value of 0 (Wilks 1995).

RPS is calculated in much the same way as the Brier
score (Brier 1950; Wilks 1995) (mean square error);
however, the RPS allows multiple observation catego-
ries and cumulative forecast probabilities to be consid-
ered at once. In addition, the RPS is said to be ‘‘sensitive
to distance’’ because it increasingly penalizes forecasts
that assign probability to streamflow categories further
from the observation (Wilks 1995). In contrast, the Brier
score focuses only on one category, lumping the prob-
ability for all other categories while examining one
(Hartmann et al. 2002b). RPS is useful to decision mak-
ers interested in overall forecast quality rather than how
the forecasts perform in a particular flow category.

The quality of forecasts is difficult to assess based on
the RPS alone (Wilks 1995); therefore, the ESP forecasts
were compared to a reference forecast. Due to a lack
of other available probabilistic streamflow forecasts, cli-
matology forecasts were generated from the historical
observations to serve as a reference forecast (the cli-
matological periods were equal to the evaluation periods
in Table 1). The relative skills of the ESP forecasts were
evaluated against the climatology forecasts through the
use of the ranked probability skill score (RPSS):

RPS 2 RPSf clRPSS 5 3 100%, (5)
0 2 RPScl

where f is the average RPS of the forecasts for aRPS
particular forecast period, and cl is the average RPSRPS
of the climatology forecasts for the same period (Wilks
1995). A positive RPSS indicates that the forecast of
interest more closely predicted the observation than the
climatology did, which is defined as ‘‘improvement over
climatology.’’ A perfect RPSS score is 100%. A neg-
ative RPSS indicates that the ESP forecasts performed
worse than climatology.

Discrimination and reliability (Murphy and Winkler
1992, 1987; Murphy et al. 1989; Wilks 1995) were used
to assess the prediction capabilities of the forecasts in
specific categories. The streamflow volume categories
examined in this part of the study were the lowest 30%,
middle 40%, and highest 30% of the historical distri-
butions and are referred to as low-, middle-, and high-
flow categories. The same five forecast probability cat-
egories used for RPS were used to represent the mag-

nitude of the probability given to each of the three flow
categories.

Reliability summarizes the information contained in
the conditional distribution [p(o | f )] and describes how
often an observation occurred given a particular fore-
cast. Ideally:

p(o 5 1 | f ) 5 f (6)

(Murphy and Winkler 1987). That is, for a set of fore-
casts where a forecast probability value f was given to
a particular observation o, the forecasts are considered
perfectly reliable if the relative frequency of the obser-
vation equals the forecast probability (Murphy and
Winkler 1992). For example, given all the times in
which high flows were forecasted with a 50% proba-
bility, the forecast system would be considered perfectly
reliable if the actual flows turned out to be high in 50%
of the cases.

The reliability diagram is used to display forecast
reliability (Fig. 3). The conditional distribution
[(p(o | f )] of a set of perfectly reliable forecasts will fall
along the 1:1 line on the diagram. Forecasts that fall to
the left of the perfect reliability line are underforecasting
or not assigning enough probability to the subsequent
observation. Those that fall to the right of the line are
overforecasting. Forecasts that fall on the no-resolution
line are unable to identify occasions when the event is
more or less likely than the overall climatology (Wilks
1995). Conditional distributions of forecasts lacking res-
olution plot along the horizontal line associated with
their climatology value.

As forecasts become sharper, or more refined, the
forecast probability becomes more narrowly distributed
and is more frequently assigned to the extreme nonex-
ceedance categories (i.e., 0%–10% and .90%–100%)
(Murphy et al. 1987). Thus, the sample sizes within the
middle probability categories become smaller with
sharper forecasts. A relative frequency diagram displays
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FIG. 4. Examples of discrimination diagrams for forecasts issued
prior to low-flow observations: (a) forecasts properly discriminated
for low flows (low flows are forecasted with 90%–100% probability,
and middle and high flows are forecasted with 0% probability, at
close to 100% frequency), and (b) forecasts that have no discrimi-
nation for low flows (all flow categories tend to be predicted with
similar probabilities).

forecast resolution and also allows the user to determine
which reliability results may be most valid based on the
sample size within the probability category (bin). Sta-
tistics calculated from a small number of forecasts are
more susceptible to being dominated by sampling var-
iations and make assessing forecast quality difficult
(Wilks 1995). In addition, with smaller sample sizes, it
is more likely that some bins have no data because there
are not enough forecasts to represent all combinations
of forecast probability and flow categories, resulting in
erratic-looking diagrams.

The likelihood that a particular forecast would have
been issued prior to a specific observation is expressed
in the conditional distribution of the forecasts given the
observed category [p( f | o)] (Wilks 1995). If the value
of p( f | o) for a particular observation category is similar
to that for a different observation, the forecasts are not
discriminatory for that observation. On the other hand,
when p( f | o) equals zero for all possible observations
except one, the forecast procedure is perfectly discrim-
inatory for forecasts of that observation (Murphy and
Winkler 1987).

The discrimination diagram displays the conditional
probability distributions [p( f | o)] of each possible flow
category as a function of forecast probability (Fig. 4).
Note that each diagram includes only forecasts issued
prior to a specific observation. If the forecasts are dis-
criminatory, then the probability distribution functions
of the forecasted flow categories will not overlap to a
great degree on the discrimination diagram (Murphy et
al. 1989). Ideally, a forecast issued prior to an obser-
vation of a low flow should say that there is 100%
chance of having a low flow and 0% chance of having
high or middle flows. A set of forecasts that consistently
provide such strong and accurate statements will pro-
duce a discrimination diagram similar to that given in
Fig. 4a. If there is little discrimination, then there will

be considerable overlapping of the probability distri-
butions (Murphy et al. 1989). A case where the sample
of forecasts is unable to consistently assign the largest
probability to the occurrence of low flows versus the
other two is illustrated in Fig. 4b. Users of forecasts
from such a system could have no confidence in the
predictions.

A discrimination diagram is produced for occurrences
of observations in each flow category; therefore, fore-
casts that were issued prior to observations that occurred
in the lowest 30% (low flows) are plotted on a separate
discrimination diagram than forecasts that were issued
prior to observations that occurred in the middle 40%
(midflows), etc. The number of forecasts represented on
each plot is dependent upon the number of historical
observations in the respective flow category.

Discrimination and reliability provide the user with
comprehensive forecast evaluations and allow perfor-
mance in all streamflow categories to be examined in-
dividually. In addition, these forecast quality measures
examine the actual probability value within each cate-
gory in contrast to ‘‘hit’’ and ‘‘miss’’ scores that convert
the probability to an implied 100% probability for the
category of interest (Hartmann et al. 2002b). However,
their sensitivity to small sample sizes is an acknowl-
edged limitation.

3. Results

Because of the large number of forecast locations,
forecasts, and statistics included in this study, it is im-
possible to show all of the results from each analysis.
Wherever possible, statistics for all locations are pro-
vided for select dates. When inclusion of all locations
was impractical, results for four basins (Gila River,
Verde River, Animas River, and East River) were pro-
vided. These locations are representative of both the
upper and lower basins and are of interest to forecast
users for a variety of reasons, including recreation, water
supply, and power generation. In addition, the East Riv-
er has the largest sample size of all the locations (49
years), and the Verde River emphasizes forecast system
issues. Results for all locations and issue dates studied
can be found in Franz et al. (2003).

a. Traditional statistical analysis

PBias and correlation coefficients are provided for
the median trace forecasts for three dates: the first and
last forecasts of the season, and a midseason forecast
that coincides with the typical occurrence of significant
snowmelt within the respective basins (Figs. 5 and 6).
Overall, both the upper and lower basin median fore-
casts showed a trend toward improved performance as
the season progressed. In addition, the forecasts for the
upper basin locations performed better than those in the
lower basin. For most locations and lead times, the me-
dian underforecasted the seasonal volumes; the bias was
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FIG. 5. Percent bias for the median volume forecast for (a) the lower basin forecast points and (b) the upper basin
forecast points. Note scale difference between the two plots.

FIG. 6. Correlation coefficient for the median volume forecast for (a) the lower basin forecast points and (b) the
upper basin forecast points.
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FIG. 7. Average mean absolute error divided by the standard deviation of the observations
(RMAE) for the median trace forecasts, minimum-error (min-error) traces, and historical traces.

highest for Tonto Creek, Carizzo Creek, and the Verde
River. Correlation between the median and observation
increased as lead times decreased for all forecast points
except for the Verde River, which showed very low
values throughout. In general, correlation values were
higher in the upper basin than in the lower basin.

Median forecasts for both basins show a trend toward
improved performance (lower RMAE) into the forecast
season (see Fig. 7 for example basins). The upper basin
median forecasts had higher errors than the lower basin
in the beginning of the season, but showed similar ac-
curacy during the 1 March–1 April period. The RMAE
of the minimum-error traces increased with shorter lead
times for the Gila and Verde rivers, but were lower than
the historical and median traces throughout the season.
The RMAE of the historical traces, which represent the
quality of the calibration, were relatively constant for
the upper basin locations and decreased for the lower
basin during the March–April simulations.

b. Probabilistic verification

Overall ESP forecast performance, analyzed using the
RPSS, was better than the climatology forecasts for all
basins except the Virgin and the Verde rivers at the start
of the forecast season (Fig. 8). The upper basin forecasts
performed better than the lower basin forecasts and on
average improved as the season progressed. In the lower
basin, only the Virgin River and Tonto Creek showed
marked improvement in the RPSS from the first to the
last forecast. The Verde River forecasts never showed
improvement over climatology at any time.

In general, the reliability diagrams for the Animas
River forecasts are typical of those for other upper basin
points and will be used to illustrate the results for this

section (Fig. 9). Similarly, the Gila River forecasts are
typical of those for other lower basin locations (Fig.
10). The forecasts in both the upper and lower basin
display fair reliability early in the forecast season, par-
ticularly for forecast probabilities less than 70% (Figs.
9 and 10a,b,c). By 15 March in the upper basin and 1
February in the lower basin, the forecasts display near
perfect reliability for low flows and a tendency to ov-
erforecast middle flows and underforecast high flows
(Figs. 9 and 10d,e,f). In general, reliability of forecasts
issued after these dates decrease (Figs. 9 and 10g,h,i);
however, forecasts that assign less than 10% or greater
than 90% nonexceedance probability continue to show
good reliability.

Plots of the relative frequency of the forecasts are
embedded within the reliability diagrams. As indicated
by the increased bin sizes in the 0%–10% and .90%–
100% probability categories for 1 June and 1 April fore-
casts, late season forecasts tend to give extreme prob-
ability values most frequently and therefore display high
resolution and confidence. In contrast, early in the sea-
son (1 January), the forecasts almost exclusively assign
probability in the middle to low forecast probability
categories. The problems that arise when sample sizes
within the bins are small are illustrated in Fig. 9i; the
data look scattered because the three center bins contain
a small sample of forecasts, some of which obviously
performed poorly with respect to reliability.

Early season ESP forecasts issued prior to high flows
for the Animas and Gila rivers show little discrimination
between the likelihoods for middle and high flows but
some degree of discrimination between the likelihoods
for high and low flows, which was typical of many
forecast points (Figs. 11d,g). Forecasts issued midsea-
son and later seldom assign probabilities greater than
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FIG. 8. RPSS for (a) and (b) the upper and (c) the lower basin
forecast points. RPSS is interpreted at the percent improvement over
climatology forecasts and a value greater than zero is desired.

10% to the occurrence of low flows (Figs. 11b,e,h). The
forecasts do not show perfect discrimination for high
flows at any time, because probability .30% is occa-
sionally given to flows in the middle category through-
out the season. Discrimination of the Verde River fore-
casts for high flows was significantly poorer than all
other locations, especially for late-season forecasts
(Figs. 11k,l). There was a general trend for all lower
basin forecasts to display a decrease in discrimination

for high flows after 1 March, as illustrated by the Gila
River (Figs. 11h,i) (about 25% of the time, the forecasts
predict middle flows with 90%–100% probability). Dis-
crimination results for forecasts issued prior to flows in
the middle 40% category are on average worse than
those for the other two categories. Results for this cat-
egory are not shown but can be found in Franz et al.
(2003).

Forecasts issued prior to low-flow observations
showed some discrimination between the likelihoods for
low flows versus high flows early in the season; how-
ever, there is little discrimination between the likeli-
hoods for middle and low flows in most basins (Fig.
12). The later upper basin forecasts improve and, by 1
April, never assign probabilities higher than 30% to high
flows (Figs. 12b,e). By 1 June, the forecasts are infre-
quently assigning high probabilities to middle flows
(Figs. 12c,f). There is no discrimination between the
likelihoods for the middle and low flows for most lower
basin forecasts until late in the season, and there are
still problems as late as 1 April (Fig. 12i). The Verde
River forecasts perform relatively well for discrimina-
tion of low flows (Figs. 12k,l) in contrast to some of
the poorer verification results seen earlier for this lo-
cation.

4. Discussion
For the basins studied, the upper basin forecasts per-

formed better than the lower basin forecasts, even at the
longer lead times. Because the upper basin hydrology
is less variable, this result is not unexpected. Shafer and
Huddleston (1984) found that the highest errors of the
historical regression forecasts occurred for forecast
points in Arizona (in the lower Colorado basin) and
concluded that forecast accuracy potential is highly de-
pendent on the variability of the streamflow.

In general, statistics for the probabilistic ESP fore-
casts improved as the season progressed and forecast
lead times became shorter. Day et al. (1992) stated that,
at the beginning of the season, the future meteorology
is the main source of uncertainty. As the season pro-
gresses, the relative importance of the initial states and
meteorological inputs changes. With shorter model runs,
the initial conditions dominate, because there is less
opportunity (time) for the meteorological inputs to over-
come the influence of the initial state values. Because
the actual meteorology experienced by the basin be-
comes ‘‘stored’’ in the model states as snowpack, base-
flow, and soil storages, it is expected that the forecasts
would become more accurate later in the season when
the initial states are better known. However, forecasts
for some lower basin locations tended to show a re-
duction in accuracy for late season forecasts. Because
the majority of the snowpack in these locations has melt-
ed by this time, the impact of snowpack on streamflow
is minimal. Without the large snowmelt runoff domi-
nating the projected hydrograph and dampening the ef-
fects of individual precipitation events, the value of the
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FIG. 9. Reliability diagrams for the (a)–(c) 1 Jan, (d)–(f ) 15 Mar,
and (g)–(i) 1 Jun forecasts issued for the Animas River. Reliability
data are plotted as circles, and the y axis plots the relative frequency
of observations. Diagrams depict forecast probability assigned to low
flows (lowest 30%), middle flows (middle 40%), and high flows (high-
est 30%). The relative frequency of the forecasts is displayed by the
bar graph.

FIG. 10. As in Fig. 9, except reliability diagrams for the (a)–(c) 1
Jan, (d)–(f ) 1 Feb, and (g)–(i) 1 Apr forecasts issued for the Gila
River.

ensemble members may become more disparate, pro-
ducing ensembles that reflect meteorological variability
rather than the initial conditions. Further investigation
is needed to better understand the relative importance
of the snowpack and initial states on forecast accuracy.

The median forecasts showed large biases in predicted
seasonal volumes for several forecast points, particu-
larly those in the lower basin. The performance of the
median with respect to PBias, correlation, and RMAE
improved with decreased lead time. Analysis of the me-
dian and minimum-error traces revealed that there was
at least one other trace that performed better than the
median, which alone is not surprising. However, it was
surprising that the minimum-error trace occurred con-
sistently closer in value to the observed volume than
the historical trace. This result indicates that there are
forecast system errors (model, calibration, data, initial
states) such that meteorology from a totally unrelated
year produces a trace that matches the observation more
closely than the trace produced using meteorology from
the forecast year itself. Information available from com-
paring the historical trace to the best trace would be
useful to forecasters and modelers for investigating
modeling improvements and the effects of system errors
on forecast accuracy.

The minimum-error trace is not a viable operational
forecast because it is identified by comparison to the
observation and cannot be determined prior to the oc-
currence of the observation. However, it is useful for
revealing forecast system performance issues; for ex-
ample, if the minimum-error trace performed the best
because of system biases rather than the input meteo-
rology being similar to the forecast year, a basis for
forecast or system adjustments can be developed. If the
minimum-error trace is found to consistently occur with-
in the same percentile (e.g., the 60th percentile trace
generally has the lowest absolute error), models or pa-
rameters could be altered to reflect this information.
Additionally, the streamflow volume indicated by the
mean percentile of the minimum-error traces could be
used as an expected-value alternative to a biased median
trace.

Overall, the probabilistic ESP forecasts provided
more accurate forecast information than could be ob-
tained from climatology, as illustrated by the RPSS sta-
tistics. Forecast reliability peaks at about 15 March for
all basins and then appears to become worse as the
season progresses, particularly in the middle forecast
probability categories. As mentioned, empty or low
sample sizes can cause irregular-looking diagrams. Even
though there was a ‘‘large’’ sample set for the Animas
River, compared to what is generally available for ver-
ification of operational forecasts, the effect of the low
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FIG. 11. Discrimination diagrams for forecasts issued prior to high-flow observations (highest 30% of streamflow
distribution) for issue dates shown. The number of forecasts for each basin are: East, 15; Animas, 14; Gila, 13; and
Verde, 10.

FIG. 12. Discrimination diagrams for forecasts issued prior to low-flow observations (lowest 30% of streamflow
distribution) for issue dates shown. The number of forecasts for each basin are: East, 15; Animas, 14; Gila, 14; and
Verde, 11.
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sample size in probability categories between 10% and
90% is apparent. Because the forecast resolution in-
creases for late season forecasts, fewer forecasts were
made with middle range probabilities. As a result, it is
difficult to determine whether the poor reliability in the
middle probability categories is a result of problems
with the forecast system or a poor sample. However,
from a practical perspective, the lack of middle range
probabilities is nonproblematic because the extreme
probabilities have high reliability (i.e., strong probabil-
ity statements with high reliability are preferable to
weak probability statements with high reliability).

Early season ESP hindcasts were not able to fully
discriminate among the likelihoods for high, middle, or
low flows, thus giving no indication which type of flow
was most likely. The forecasts do, however, clearly in-
dicate a tendency to give lower likelihood to the extreme
opposite flows for some forecasts (i.e., low flows were
given low probability for cases when the subsequent
observation was high). This information may give fore-
cast users an early indication of what type of flow con-
ditions not to expect. For example, during a several year
period of drought, forecasts that tend to properly predict
that high flows will not occur at 7- to 11-month lead
times would give water resource managers an early in-
dication that a large runoff should not be anticipated.
Although the flow intervals used in this study may not
be precise enough for some applications, the distribu-
tion-oriented measures are flexible enough that the bins
can be adjusted as necessary. Later in the season, dis-
crimination improves, providing more accurate predic-
tions for users (such as flood managers) that require
short lead times. The ESP hindcasts were limited in their
ability to give useful information for the prediction of
middle flows; however, this flow range is likely of least
concern to forecast users because it represents ‘‘normal’’
conditions, where the consequences of uninformative
forecasts are least problematic.

While creating a deterministic forecast simplified the
statistical analysis and allowed the use of traditional
statistics with which many people are familiar, these
statistics are deficient for fully analyzing ESP forecasts.
The traditional statistical methods applied to the median,
minimum-error, and historical volume traces only eval-
uate whether the forecast is right or wrong (Wilks 1995).
Distribution-oriented measures provided a method for
verifying the probabilistic ESP hindcasts, which are
considered to be never completely right or wrong. In
addition, it was shown that the median volume trace did
not most closely predict the observation; therefore, us-
ing only this value gave a suboptimal forecast. More
important, considering only a single trace ignored useful
predictive information in the entire ensemble distribu-
tion as illustrated by the skill in the probabilistic hind-
casts.

While this paper attempts to advance discussion about
evaluation of probabilistic hydrologic outlooks, a com-
prehensive discussion about forecast performance

should also consider confidence limits on the estimated
forecast quality measures. This aspect of verification
was not addressed here and represents an important next
step in the verification process. In addition, the use of
climate forecasts, El Niño–Southern Oscillation states,
or other climate information for generating trace weight-
ing schemes comprise important opportunities for ad-
vancing ESP forecasting research. Although beyond the
scope of this work, initial investigations indicated that
trace weighting based on the ENSO state improved the
RPS in both the upper and lower basins (Franz et al.
2003).

5. Conclusions and summary

Probabilistic water supply forecast capabilities, based
on conceptual models and an ensemble approach, have
evolved in the NWS to the extent that forecast gener-
ation is operationally feasible. ESP forecasts require
more data processing and modeling than the regression-
based products currently issued as the official forecasts,
but theoretically offer advantages through their more
sophisticated incorporation of current basin states and
meteorological uncertainty. However, lack of verifica-
tion precludes routine issuance and application of ESP
products with any quantitative basis for confidence. Us-
ing hindcasting to simulate operational forecast gener-
ation as closely as possible, we evaluated ESP forecasts
for nine headwater locations in the upper Colorado Riv-
er basin and five in the lower basin, all unaffected by
streamflow regulation. Probabilistic forecasts have fun-
damentally different character than single-value deter-
ministic forecasts, yet need to be compared to traditional
forecasts in judging which products warrant continued
generation or are better for different applications.

We evaluated the ESP hindcasts using a mix of ver-
ification criteria, including traditional statistics and dis-
tribution-oriented measures. Evaluations based on tra-
ditional statistics require selection of a single value to
represent the entire forecasted distribution of potential
streamflow volumes. The median forecast volume is an
intuitive choice for representing the entire distribution,
but our analyses confirm that such forecasts are biased
and suboptimal compared to forecasts derived from oth-
er distribution percentiles. Further, examination of spe-
cific ensemble traces (e.g., minimum-error and historical
traces) can provide insight about the limitations of the
forecast system and process, including proper model
identification and parameterization, and the respective
roles of initial conditions and meteorological uncertain-
ty in affecting basin response.

However, single-value forecasts necessarily ignore
important information embodied in the entire distribu-
tion produced by use of ESP techniques, and from that
perspective we recommend that they not be considered
the standard ESP forecast product. Instead, we recom-
mend that forecasting agencies issue probabilistic fore-
cast products that describe the entire forecasted distri-
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bution, or at least several portions of the distribution
that have meaning for practical applications. Evaluation
of such forecasts requires techniques not typically ap-
plied to hydrologic forecasts, such as the RPSS and
distribution-oriented measures. The RPSS is most useful
for decision makers concerned with forecast perfor-
mance across the full range of possible conditions, rather
than performance focused only on specific conditions
(e.g., high or low flows). Distribution-oriented measures
(e.g., reliability and discrimination) provide the most
comprehensive evaluation of forecast characteristics,
but are most affected by small sample sizes. RPSS, re-
liability, and discrimination are practical for real-time
computation within the NWSRFS and ESPVS frame-
work, and we recommend that frequently updated ver-
ification statistics be issued with any operational prob-
abilistic forecast products. From a user’s perspective, a
good option would be an interactive Web site that allows
users to evaluate hindcasts and forecasts that cover the
periods and lead times relevant to their situation, using
the specific forecast performance measures that reflect
their sensitivity to different forecast qualities.

Our ESP forecast evaluations provide insights about
the forecast system and performance of interest to fore-
casters and water resource decision makers. Clearly,
forecasts for the Verde River should not be relied upon
for decision making until fundamental issues of data
quality or model identification and parameterization can
be resolved. In general, the headwater locations showed
different forecast performance behavior across the upper
and lower Colorado basins, but common behavior with-
in the basins. Overall, forecasts are better for locations
in the upper basin, and forecasts issued 15 March and
later are generally the best. However, most locations in
the lower basin did show forecast skill, compared to the
use of climatology forecasts based on historical stream-
flow volumes, even for the earliest forecast issue dates.

The ESP hindcasts showed good reliability for most
locations and forecast issue dates, with the caveat that
additional work is required to develop confidence limits
for the reliability statistics. With the same caveat, the
hindcasts show that discrimination is excellent for late
season forecasts. Additionally, as indicated by the dis-
crimination diagrams, forecasts for all locations were
able to indicate that extreme opposite conditions were
less likely to occur even in forecasts issued 1 January,
representing important information for water resource
applications unavailable in extant products. Further im-
provements in the probabilistic forecasts may be pos-
sible by adjusting forecast ensembles to reflect climate
forecasts or persistent forcing, or combining ensemble
and regression-based forecasts.

Based on our hindcast evaluations, we recommend
that water managers begin to consider probabilistic fore-
casts in their operations. Water managers should also
consider how to exploit nontraditional information, such
as embodied in discrimination diagrams, in their oper-
ations; they should also begin to distinguish among the

confidence levels required for each of their myriad de-
cisions (e.g., emergency preparedness versus reservoir
releases). Because probabilistic forecasts, and their ver-
ification criteria, are different in character than tradi-
tional forecast products, we recommend education ef-
forts focused on the proper interpretation, evaluation,
and application of new products.
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