
Verification of Object-Oriented

Programs with Invariants

Mike Barnett, Robert DeLine, Manual

Fahndrich, K. Rustan M. Leino an

Wolfram Shulte

1

Overview

• Goal: design a sound methodology for

specifying object invariants that can then be

automatically verified (statically or dynamically)

• Object invariants describe a programmer

intentions

2

Design by Contract

• Routine specifications describe a contract

between a program and clients of that

program

• Postconditions on constructors

• Pre and postconditons on methods

• Modifies clauses

– All methods can modify newly allocated fields

3

Common View

• Callers need not be concerned with

establishing preconditions of class T provided:

– Fields are only modified within methods of T

– Invariants established in postconditions of

methods

• What’s the problem?

4

Invariants May be Temporarily Violated!

5

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public T ()

 {

 x = 0; y = 1;

 }

 public method M ()

 modifies x, y;

 {

 x=x+3;

 P();

 y=4*y;

 }

 public method P ()

 {

 M();

 }

}

Invariant violated: x=3, y=1

Include Explicit Pre-conditions?

6

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public T ()

 {

 x = 0; y = 1;

 }

 public method M ()

 requires 0 ≤ x < y;

 modifies x, y;

 {

 x=x+3;

 P();

 y=4*y;

 }

 public method P ()

 {

 M();

 }

}

Exposes internal fields!

Bad information hiding

practices.

Proposed Solution

• Each object gets a special public field

st = {Invalid, Valid}

– If o.st = Valid, o’s invariant is known to hold

– If o.st = Invalid, o’s invariant is not known to hold

• InvT(o) holds ≡ the invariant declared in T

holds for o (within a state)

7

Proposed Solution

• Fields can only be modified between unpack

and pack statements

8

Back to Our Example

9

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public T ()

 ensures st = Valid;

 {

 x = 0; y = 1;

 pack this;

 }

}

 public method M ()

 requires st = Valid;

 modifies x, y;

 {

 unpack this;

 x=x+3;

 P();

 y=4*y;

 pack this;

 }

 public method P ()

 {

 M();

 }

}

Precondition

Postcondition

Back to Our Example

10

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public T ()

 ensures st = Valid;

 {

 x = 0; y = 1;

 pack this;

 }

}

 public method M ()

 requires st = Valid;

 modifies x, y;

 {

 unpack this;

 x=x+3;

 P();

 y=4*y;

 pack this;

 }

 public method P ()

 {

 M();

 }

} Modifies still exposes

some fields to the client.

Why Not Just Check Invariant?

11

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public method M ()

 requires st = Valid;

 modifies x, y;

 {

 …

 unpack this;

 x=x+3;

 y=4*y;

 pack this;

 …

 }

}

class T{

 private x, y: int ;

 invariant 0 ≤ x < y;

 public method M ()

 modifies x, y;

 {

 checkInv ();

 …

 x=x+3;

 y=4*y;

 …

 checkInv ();

 }

 public method checkInv()

 {

 assert (0 ≤ x < y);

 }

}

We Can Prove a Program Invariant

• If

– field updates are only allowed when o.st is invalid

(i.e., between pack and unpack)

– we only allow the invariant to depend on fields of

this (for now)

• Then

12

Extending to Components

13

class T{

 private f: U ;

 invariant 0 ≤ f.g;

 …

 public method M ()

 requires st = Valid;

 {

 f.N () ;

 }

 …

}

class U{

 private g: int ;

 …

 public method N()

 requires st = Valid;

 {

 unpack this;

 g = -1 ;

 pack this;

 }

 …

}

T’s invariant violated in
a Valid state!

Include f.st in Precondition of T?

14

class T{

 private f: U ;

 invariant 0 ≤ f.g;

 …

 public method M ()

 requires st = Valid;

 requires f.st = Valid;

 {

 unpack this;

 f.N () ;

 pack this;

 }

 …

}

class U{

 private g: int ;

 …

 public method N()

 requires st = Valid;

 {

 unpack this;

 g = -1 ;

 pack this;

 }

 …

}

Bad information hiding!

Solution?

• t refers to u, so commit u to t

15

• Prevent a class from being unpacked without
regard to a class that might refer to it.

Committing

• Components identified with rep modifier

• st = {Valid, Invalid, Committed}

16

Back to Our Example

17

class T{

 private rep f: U ;

 invariant 0 ≤ f.g;

 public T ()

 {

 f.g = 10;

 pack this;

 }

 public method M ()

 requires st = Valid;

 {

 unpack this;

 f.N () ;

 pack this;

 }

 …

}

class U{

 private g: int ;

 …

 public method N()

 requires st = Valid;

 {

 unpack this;

 g = -1 ;

 pack this;

 }

 …

} Commits u to t

Takes t from Committed to Valid

So what?

• If

– field updates are only allowed when o.st is invalid

(i.e., between pack and unpack)

– object invariant can depend on fields of this and

component fields declared with rep (this.f1.f2….g)

• Then

– We can prove a stronger program invariant:

18

Proving Program Invariant

• Requires all committed object have unique

owners

• Can transfer owners from t to u via:

19

Still Too Restrictive!

• If

– field updates are only allowed when o.st is invalid

(i.e., between pack and unpack

– object invariant can depend on fields of this and

component fields declared with rep (this.f1.f2….g)

• Then

– We can prove a stronger program invariant:

20

Subclasses

• Problem

– o: B

– class frame

• Possible sets:

– {object}

– {object, A}

– {object, A, B}

Object Y Y Y Y N N N N

A Y Y N N Y Y N N

B Y N N Y Y N Y N

Specifying them is enough

Subclasses

• Solution

– Abandon st field

– Introduce fields

• inv: the most derived class whose class frame is valid

• committed: boolean that indicates whether the object

is committed

Subclasses

• Example

Replace “st” statement

Subclasses

• pack and unpack Abandon st

Introduce inv, committed

Routine specifications

• What is routine specification?

– A contract between its callers and implementations, which

describes what is expected of the caller at the time of call,

and what is expected of the implementation at the time of

return.

Routine specifications

• Writing modifies clauses

– Definitions

• o: object

• f: field name of o

• Heap[o, f]:

• W: modifies clause

– Policy

Routine specifications

• Writing preconditions of methods and overrides

– Dynamically dispatched method

– Define 1 as type(this)

 w: inv=type(A) w: inv=1

w: inv = type(A)

w: inv = type(A)

w: inv = type(A)

w: inv = type(B)

Example - readers

Not committed to

anyone else

By Default

Example – array readers

inv = type(Reader)

this.{type(Reader)}

inv = type(ArrayReader)

this.{type(ArrayReader)}

Example – parameter passing

source.committed goes

from false to true violating

the precondition

Now What?

31

Spec#

• Specifications integrated into Spec# which

extends C#

• Spec# compiler integrated into Visual Studio

• Boogie statically verifies correctness and finds

errors

32

Thanks!

33

