
 Open access Book Chapter DOI:10.1007/11750734_15

Verification of protocol conformance and agent interoperability — Source link

Matteo Baldoni, Cristina Baroglio, Arabella Martelli, Viviana Patti

Institutions: University of Turin

Published on: 27 Jun 2005 - Lecture Notes in Computer Science (Springer, Berlin, Heidelberg)

Topics: Interaction protocol, Finite-state machine, Interoperability, Protocol (object-oriented programming) and
Formal language

Related papers:

 Nonmonotonic causal theories

 Protocol conformance for logic-based agents

 A priori conformance verification for guaranteeing interoperability in open environments

 Verifying the conformance of web services to global interaction protocols: a first step

 Declarative Agent Languages and Technologies IV

Share this paper:

View more about this paper here: https://typeset.io/papers/verification-of-protocol-conformance-and-agent-
2r95k7oyby

https://typeset.io/
https://www.doi.org/10.1007/11750734_15
https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby
https://typeset.io/authors/matteo-baldoni-1uuezz79ep
https://typeset.io/authors/cristina-baroglio-5a6lngobfz
https://typeset.io/authors/arabella-martelli-3hfddjyqns
https://typeset.io/authors/viviana-patti-23zaysvq7x
https://typeset.io/institutions/university-of-turin-juqin0x9
https://typeset.io/journals/lecture-notes-in-computer-science-toobp8l4
https://typeset.io/topics/interaction-protocol-m87my5t7
https://typeset.io/topics/finite-state-machine-9vl6oeyj
https://typeset.io/topics/interoperability-sv3adnju
https://typeset.io/topics/protocol-object-oriented-programming-4qcvzrfw
https://typeset.io/topics/formal-language-im36qldj
https://typeset.io/papers/nonmonotonic-causal-theories-46hdy652b6
https://typeset.io/papers/protocol-conformance-for-logic-based-agents-2mzqkhj4ct
https://typeset.io/papers/a-priori-conformance-verification-for-guaranteeing-1apxqzy153
https://typeset.io/papers/verifying-the-conformance-of-web-services-to-global-41y3k5buip
https://typeset.io/papers/declarative-agent-languages-and-technologies-iv-19ivc6j86j
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby
https://twitter.com/intent/tweet?text=Verification%20of%20protocol%20conformance%20and%20agent%20interoperability&url=https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby
https://typeset.io/papers/verification-of-protocol-conformance-and-agent-2r95k7oyby

Verification of protocol conformance and agent

interoperability⋆

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino (Italy)
{baldoni,baroglio,mrt,patti}@di.unito.it

Abstract. In open multi-agent systems agent interaction is usually ruled
by public protocols defining the rules the agents should respect in mes-
sage exchanging. The respect of such rules guarantees interoperability.
Given two agents that agree on using a certain protocol for their interac-
tion, a crucial issue (known as “a priori conformance test”) is verifying if
their interaction policies, i.e. the programs that encode their communica-
tive behavior, will actually produce interactions which are conformant to
the agreed protocol. An issue that is not always made clear in the exist-
ing proposals for conformance tests is whether the test preserves agents’
capability of interacting, besides certifying the legality of their possi-
ble conversations. This work proposes an approach to the verification
of a priori conformance, of an agent’s conversation policy to a protocol,
which is based on the theory of formal languages. The conformance test
is based on the acceptance of both the policy and the protocol by a
special finite state automaton and it guarantees the interoperability of
agents that are individually proved conformant. Many protocols used in
multi-agent systems can be expressed as finite state automata, so this
approach can be applied to a wide variety of cases with the proviso that
both the protocol specification and the protocol implementation can be
translated into finite state automata. In this sense the approach is gen-
eral. Easy applicability to the case when a logic-based language is used
to implement the policies is shown by means of a concrete example, in
which the language DyLOG, based on computational logic, is used.

1 Introduction

Multi-agent systems (MASs) often comprise heterogeneous components, that
differ in the way they represent knowledge about the world and about other
agents, as well as in the mechanisms used for reasoning about it. Protocols rule
the agents’ interaction. Therefore, they can be used to check if a given agent can,
or cannot, take part into the system. In general, based on this abstraction, open

⋆ This research is partially supported by MIUR Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems” national project and by the European
Commission and by the Swiss Federal Office for Education and Science within the
6th Framework Programme project REWERSE number 506779.

systems can be realized, in which new agents can dynamically join the system.
The insertion of a new agent in an execution context is determined according
to some form of reasoning about its behaviour: it will be added provided that it
satisfies the body of the rules within the system, intended as a society.

In a protocol-ruled system of this kind, it is, however, not necessary to check
the interoperability (i.e. the capability of actually producing a conversation) of
the newly entered agent with the other agents in the system if, as long as the
rules are satisfied, the property is guaranteed. The problem which amounts to
verify if a given implementation (an agent interaction policy) respects a given
abstract protocol definition is known as conformance testing. A conformance
test can, then, be considered as a tool that, by verifying that agents respect a
protocol, should certify their interoperability. In this perspective, we expect that
two agents which conform to a protocol will produce a conversation, that is legal
(i.e. correct w.r.t. the protocol), when interacting with one another.

The design and implementation of interaction protocols are crucial steps in
the development of a MAS [18, 19]. Following [17], two tests must be executed
in the process of interaction protocol engineering. One is the already mentioned
conformance test, the other is the validation test, which verifies the consistency of
an abstract protocol definition w.r.t. the requirements, derived from the analysis
phase, that it should embody. In the literature validation has often been tackled
by means of model checking techniques [7, 6, 22], and two kinds of conformance
verifications have been studied: a priori conformance verification, and run-time
conformance verification (or compliance) [9, 10, 15]. If we call a conversation a
specific interaction between two agents, consisting only of communicative acts,
the first kind of conformance is a property of the implementation as a whole
–intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification– while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal.

In this work we focus on a priori conformance verification, defining a confor-
mance test, based on the acceptance, of both the agent’s policy and the public
protocol, by a special finite state automaton. Many protocols used in multi-
agent systems can be expressed as finite state automata, so this approach can
be applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation (policy) can be translated into
finite state automata. In this sense the approach is general.

The test that we defined guarantees agent interoperability (see Theorem 1
in Section 3). The communicative behavior of an agent (the decision of which
specific action to take) normally relies also on information like the private state
of the agent and the social commitments. We will see that our notion of confor-
mance is orthogonal to the framework in which one reasons about communica-
tion (mentalistic or social [15]). So, our approach works on sets of conversations
without caring about the information used to obtain them.

The application of our approach is particularly easy in case a logic-based
declarative language is used to implement the policies. In logic languages indeed
policies are usually expressed by Prolog-like rules, which can be easily converted

in a formal language representation. In Section 4 we show this by means of a
concrete example where the language DyLOG [5], based on computational logic,
is used for implementing the agents’ policies. On the side of the protocol specifi-
cation languages, currently there is a great interest in using informal, graphical
languages (e.g. UML-based) for specifying protocols and in the translation of
such languages in formal languages [8, 11]. By this translation it is, in fact, pos-
sible to prove properties that the original representation does not allow. In this
context, in [4] we have shown an easy algorithm for translating AUML sequence
diagrams to finite state automata thus enabling the verification of conformance.

In [4] we already faced the problem of a priori conformance verification as a
verification of properties of formal languages, but proposing a different approach
with some limitations due to focussing on the legality issue. In fact, interpreting
(as we did) the conformance test as the verification that all the conversations,
allowed by an agent’s policy, are also possible according to the protocol speci-
fication, does not entail interoperability. The next section is devoted to explain
the expected relations among conformance and the crucial interoperability issue.

2 Conformant and interoperable agents

A conversation policy is a program that defines the communicative behavior of
a specific agent, implemented in some programming language. A conversation
protocol specifies the desired communicative behavior of a set of agents and it
can be specified by means of many formal tools, such as (but not limited to)
Petri nets, AUML sequence diagrams, automata.

In this work we face the problem of conformance verification and interpret
a priori conformance as a property that relates two formal languages, the lan-
guage of the conversations allowed by the conversation policy of an agent, and
the language of the conversations allowed by the specification of a communi-
cation protocol. They will respectively be denoted by L(pag

lang) and L(pspec),
where spec is the specification language, lang is the language in which the pol-
icy executed by agent ag is written, and p is the name of the policy or of the
protocol at issue. The assumption that we make throughout this paper is that
the two languages are regular sets. This choice restricts the kinds of protocols to
which our proposal can be applied, because finite state automata cannot repre-
sent concurrent operations, however, it is still significant because a wide family
of protocols (and policies) of practical use can be expressed in a way that can
be mapped onto such automata. Moreover, the use of regular sets ensures de-
cidability. Another assumption is that the conversation protocol encompasses
only two agents. The extension to a greater number of agents will be tackled as
future work. Notice that when the MAS is heterogeneous, the agents might be
implemented in different languages.

A conversation protocol specifies the sequences of speech acts that can pos-
sibly be exchanged by the involved agents, and that we consider as legal. In
agent languages that account for communication, speech acts often have the
form m(ags, agr, l), where m is the performative, ags (sender) and agr (receiver)

are two agents and l is the message content. It is not restrictive to assume that
speech acts have this form and to assume that conversations are sequences of
speech acts of this form. Depending on the semantics of the speech acts, the
conversation will take place in a framework based either on the mentalistic or on
the social state approach [12, 21, 14]. The speech acts semantics, actually, does
not play a part in our proposal, which fits both the approaches.

In the following analysis it is important to distinguish the incoming messages,
w.r.t. a specific agent ag of the MAS, from the messages uttered by it. We
respectively denote the former, where ag plays the role of the receiver, by m(←−ag),
and the latter, where ag is the sender, by and m(−→ag). We will also simply write
←−m (incoming message) and −→m (outgoing message) when the agent that receives
or utters the message is clear from the context. Notice that these are just short
notations, that underline the role of a given agent from the individual perspective
of that agent. So, for instance, m(ags, agr, l) is written as m(←−agr) from the point
of view of agr, and m(−→ags) from the point of view of the sender but the three
notions denote the same object.

A conversation, denoted by σ, is a sequence of speech acts that represents a
dialogue of a set of agents. We say that a conversation is legal w.r.t. a protocol
specification if it respects the specifications given by the protocol. Since L(pspec)
is the set of all the legal conversations according to p, the definition is as follows.

Definition 1 (Legal conversation). We say that a conversation σ is legal
w.r.t. a protocol specification pspec when σ ∈ L(pspec).

We are now in position to explain, with the help of a few simple examples,
the intuition behind the terms “conformance” and “interoperability”, that we
will, then, formalize.

Interoperability is the capability of an agent of actually producing a con-
versation when interacting with another.

Often the introduction of a new agent in an execution context is determined ac-
cording to some form of reasoning about its behaviour: it will be added provided
that it satisfies the body of the rules within the system, intended as a society.
As long as the rules are satisfied, the property is guaranteed and it will not be
necessary to verify interoperability with the single components of the system.
This can be done by checking the communicative behavior of the agent against
the rules of the society, i.e. against an interaction protocol. Such a proof is known
as conformance test. Intuitively, this test must guarantee the following definition
of interoperability. This work focuses on it.

We expect that two agents, that conform to a protocol, will produce a
legal conversation, when interacting with one another.

Let us begin with considering the following case: suppose that the communicative
behavior of the agent ag is defined by a policy that accounts for two conversations
{m1(−→ag)m2(←−ag),m1(−→ag)m3(←−ag)}. This means that after uttering a message m1,
the agent expects one of the two messages m2 or m3. Let us also suppose that

the protocol specification only allows the first conversation, i.e. that the only
possible incoming message is m2. Is the policy conformant? According to Def.
1 the answer should be no, because the policy allows an illegal conversation.
Nevertheless, when the agent will interact with another agent that is conformant
to the protocol, the message m3 will never be received because the other agent
will never utter it. So, in this case, we would like the a priori conformance test
to accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case, in
which the protocol specification states that after the agent ag has uttered m1, the
other agent can alternatively answer m2 or m4 (agent ag’s policy, instead, is the
same as above). In this case, the expectation is that ag’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the one
with answer m4) that can be enacted by the interlocutor (which is not under the
control of ag), which, however, ag cannot handle. So it does not comply to the
specifications.

As a first observation we expect the policy to be able to handle any in-
coming message, foreseen by the protocol, and we ignore those cases in
which the policy foresees an incoming message that is not supposed to
be received at that point of the conversation, according to the protocol
specification.

Let us, now, suppose that agent ag’s policy can produce the following conversa-
tions {m1(←−ag)m2(−→ag), m1(←−ag)m3(−→ag)} and that the set of conversations allowed
by the protocol specification is {m1(←−ag)m2(−→ag)}. Trivially, this policy is not con-
formant to the protocol because ag can send a message (m3) that cannot be
handled by any interlocutor that is conformant to the protocol.

The second observation is that we expect a policy to never utter a message
that, according to the specification, is not supposed to be uttered at that
point of the conversation.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(←−ag)m2(−→ag)} while the protocol states that ag can answer to m1 alternatively
by uttering m2 or m3, conformance holds. The reason is that at any point of its
conversations the agent will always utter legal messages. The restriction of the set
of possible alternatives (w.r.t. the protocol) depends on the agent implementor’s
own criteria. However, the agent must foresee at least one of such alternatives
otherwise the conversation will be interrupted. Trivially, the case in which the
policy contains only the conversation {m1(←−ag)} is not conformant.

The third observation is that we expect that a policy always allows the
agent to utter one of the messages foreseen by the protocol at every point
of the possible conversations. However, it is not necessary that a policy
envisions all the possible alternatives.

To summarize, at every point of a conversation, we expect that a conformant
policy never utters speech acts that are not expected, according to the proto-
col, and we also expect it to be able to handle any message that can possibly

be received, once again according to the protocol. However, the policy is not
obliged to foresee (at every point of conversation) an outgoing message for every
alternative included in the protocol (but it must foresee at least one of them).
Incoming and outgoing messages are, therefore, not handled in the same way.

These expectations are motivated by the desire to define a minimal set of con-
ditions which guarantee the construction of a conformance test that guarantess
the interoperability of agents. Let us recall that one of the aims (often implicit)
of conformance is, indeed, interoperability, although sometimes research on this
topic restricts its focus to the legality issues. We claim –and we will show– that
two agents that respect this minimal set of conditions (w.r.t. an agreed protocol)
will actually be able to interact, respecting at the same time the protocol. The
relevant point is that this certification is a property that can be checked on the
single agents, rather than on the agent society. This is interesting in application
domains (e.g. web services) with a highly dynamic nature, in which agents are
searched for and composed at the moment in which specific needs arise.

3 Conformance test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown
by means of the above examples, it is necessary to prove mutual properties
of both L(pag

lang) and L(pspec). The method that we propose, for proving such
properties, consists in verifying that both languages are recognized by a special
finite state automaton, whose construction we are now going to explain. Such an
automaton is based on the automaton that accepts the intersection of the two
languages. All the conversations that belong to the intersection are certainly
legal. This, however, is not sufficient, because there are further conditions to
consider, for instance there are conversations that we mean to allow but that
do not belong to the intersection. In other words, the “intersection automaton”
does not capture all the expectations reported in Section 2. We will extend
this automaton in such a way that it will accept the converations in which the
agent expects messages that are not foreseen by the specification as well as those
which include outgoing messages that are not envisioned by the policy. On the
other hand, the automaton will not accept conversations that include incoming
messages that are not expected by the policy nor it will accept conversations
that include outgoing messages, that are not envisioned by the protocol (see
Fig. 1).

3.1 The automaton Mconf

If L(pag
lang) and L(pspec) are regular, they are accepted by two (deterministic)

finite automata, that we respectively denote by M(pag
lang) and M(pspec), that we

can assume as having the same alphabet (see [16]). An automaton is a five-tuple
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a transition

function mapping Q × Σ to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata to
show the following property: the edges that lead to the same state must all be
labelled either by incoming messages or by outgoing messages w.r.t. ag.

Definition 2 (IO-automaton). Given an automaton M = (Q,Σ, δ, q0, F), let
Eq = {m | δ(p,m) = q} for q ∈ Q. We say that M is an IO-automaton iff
for every q ∈ Q, Eq alternatively consists only of incoming or only of outgoing
messages w.r.t. an agent ag.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state q that is
reached only by incoming messages by the notation ←−q (we will call it an I-state),
and a state q that is reached only by outgoing messages by −→q (an O-state).

Finally, let us denote by M×(pag
lang, pspec) the deterministic finite automa-

ton that accepts the language L(pag
lang) ∩ L(pspec). It is defined as follows. Let

M(pag
lang) be the automaton (QP , Σ, δP , qP

0
, FP) and M(pspec) the automaton

(QS , Σ, δS , qS
0
, FS):

M×(pag
lang, pspec) = (QP × QS , Σ, δ, [qP

0
, qS

0
], FP × FS)

where for all qP in QP , qS in QS , and m in Σ, δ([qP , qS],m) = [δP (qP ,m), δS(qS ,m)].
We will briefly denote this automaton by M×.

Notice that all the conversations that are accepted by M× are surely con-
formant (Def. 1). For the so built automaton, it is easy to prove the following
property.

Proposition 1. M×(pag
lang, pspec) is an IO-automaton if M(pag

lang) and M(pspec)
are two IO-automata.

Definition 3 (Automaton Mconf). The finite state automaton Mconf (pag
lang,

pspec) is built by applying the following steps to M×(pag
lang, pspec) until none is

applicable:

(a) if ←−q = [
←−
aP ,

←−
dS] in Q is an I-state, such that

←−
aP is an alive state and

←−
dS is

a dead state, we set δ(←−q ,m) = ←−q for every m in Σ, and we put ←−q in F ;

(b) if ←−q = [
←−
dP ,

←−
aS] in Q is an I-state, such that

←−
dP is dead and

←−
aS is alive, we

set δ(←−q , m) = ←−q for every m in Σ, without modifying F ;

(c) if −→q = [
−→
aP ,

−→
dS] in Q is an O-state, such that

−→
aP is alive and

−→
dS is dead, we

set δ(−→q , m) = −→q for every m in Σ (without modifying F);

(d) if −→q = [
−→
dP ,

−→
dS] in Q is an O-state, such that

−→
dP is dead and

−→
dS is alive, we

set δ(−→q , m) = −→q for every m in Σ, and we put −→q in F .

−→m3

←−m4

[aP , aS]

←−m1

[qP
0

, qS
0
] [fP , fS]

[
−→

aP ,
−→

dS] [
−→

dP ,
−→

aS]

[
←−

dP ,
←−

dS] [
←−

aP ,
←−

dS]

−→m2

Fig. 1. A general schema of the Mconf automaton. From bottom-right, anticlockwise,
cases (a), (b), (c), and (d).

These four transformation rules can, intuitively, be explained as follows. Rule
(a) handles the case in which, at a certain point of the conversation, according
to the policy it is possible to receive a message that, instead, cannot be received
according to the specification (it is the case of message ←−m1 in Fig. 1). Actu-
ally, if the agent will interact with another agent that respects the protocol, this
message can never be received, so we can ignore the paths generated by the
policy from the message at issue onwards. Since this case does not compromise
conformance, we want our automaton to accept all these strings. For this reason
we set the state as final. Rule (b) handles the symmetric case (Fig. 1, message
←−m4), in which at a certain point of the conversation it is possible, according to
the specification, to receive a message, that is not accounted for by the imple-
mentation. In this case the state at issue is turned into a trap state (a state that
is not final and that has no transition to a different state); by doing so, all the
conversations that are foreseen by the specification from that point onwards will
not be accepted by Mconf . Rule (c) handles the cases in which a message can
possibly be uttered by the agent, according to the policy, but it is not possible
according to the specification (Fig. 1, message −→m3). In this case, the policy is
not conformant, so we transform the current state in a trap state. By doing so,
part of the conversations possibly generated by the policy will not be accepted
by the automaton. The symmetric case (d) (Fig. 1, message −→m2), instead, does
not prevent conformance, in fact, an agent is free not to utter a message fore-
seen by the protocol. However, the conversations that can be generated from
that point according to the specification are to be accepted as well. For this
reason the state is turned into an accepting looping state. Finally, since a policy
is expected to envision at least one of the messages forseen by the protocol, we
require that for those states qS ∈ QS , that emit edges labelled with outgoing
messages, w.r.t. ag, which are part of strings accepted by M(pspec) (legal con-
versations according to the protocol specification), there is at least one m(−→ag)
such that δS(qS ,m(−→ag)) = pS and pS is an alive state. We will denote by MessqS

the set of all such messages. In this case, we say the automaton is complete.

Definition 4 (Complete automaton). We say that the automaton Mconf is
complete iff for all states of form [qP , qS] of Mconf , such that MessqS 6= ∅, there
is a message m(−→ag)′ ∈ MessqS such that δ([qP , qS],m(−→ag)′) is a state of Mconf

composed of two alive states.

One may wonder if the application of rules (b) and (c) could prevent the
reachability of states, that have been set as accepting states by the other two
rules. Notice that their application, cannot prevent the reachability of alive-alive
accepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and interoperability

We can now discuss how to check that an agent conforms to a given protocol.
The following is our definition of conformance test. It guarantees the expectations
that we have explained by examples in Section 2.

Definition 5 (Policy conformance test). A policy p
ag
lang is conformant to a

protocol specification pspec iff the automaton Mconf (pag
lang, pspec) is complete and

it accepts both languages L(pag
lang) and L(pspec).

We are now in position to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Proposition 2. Given a policy p
ag
lang that is conformant to a protocol specifi-

cation pspec, according to Def. 5, for every prefix σ′ that is common to the two
languages L(pspec) and L(pag

lang), there is a conversation σ = σ′σ′′ such that σ

is in the intersection of L(pag
lang) and L(pspec).

Proof. (sketch) If σ’ is a common prefix, then it leads to a state of the automaton
Mconf of the kind [aP , aS] (see Figure 1). If there is a conversation σ = σ′σ′′

in L(pag
lang), then this must be a legal conversation. In fact, let us consider the

general schema of Mconf in Figure 1. If p
ag
lang is conformant, L(pag

lang) is accepted

by Mconf . Then, by construction Mconf does not contain any state [
−→
aP ,

−→
dS]

due to illegal messages uttered by the agent nor it contains any state [
←−
dP ,

←−
aS]

due to incoming messages that are not accounted for by the policy. Obviously,

no conversation σ in L(pag
lang) can be accepted by states of the kind [

−→
dP ,

−→
aS]

because the agent does not utter the messages required to reach such states.
Finally, no conversation produced by the agent will be accepted by states of the

kind [
←−
aP ,

←−
dS] if the interlocutor is also conformant to the protocol, because the

latter cannot utter illegal messages. Now, at every step after the state [aP , aS]
mentioned above, due to policy conformance all the incoming messages (w.r.t.

the agent) must be foreseen by the policy. Moreover, due to the completeness of
Mconf , in the case of outgoing messages, the policy must foresee at least one of
them. Therefore, from [aP , aS] it is possible to perform one more common step.
q.e.d.

Notice that the intersection of L(pag
lang) and L(pspec) cannot be empty because of

policy conformance, and also that Proposition 2 does not entail that the two lan-
guages coincide (i.e. the policy is not necessarily a full implementation of the pro-
tocol). As a consequence, given that the conversation policies of two agents ag1

and ag2, playing the different roles of an interaction protocol pspec, are confor-
mant to the specification according to Def. 5, and denoting by I the intersection
∩i=1,2

agi
L(pagi

langi
), we can prove ag1 and ag2 interoperability. The demonstration

is similar to the previous one. Roughly, it is immediate to prove that every pre-
fix, that is common to the two policies, also belongs to the protocol, then, by
performing reasoning steps that are analogous to the previous demonstration,
it is possible to prove that a common legal conversation must exist when both
policies satisfy the conformance test given by Def. 5.

Theorem 1 (Interoperability). For every prefix σ′ that is common to the two
languages L(pag1

lang1
) and L(pag2

lang2
), there is a conversation σ = σ′σ′′ such that

σ ∈ I.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mconf and allow the verification of policy conformance,
are decidable and the following theorem holds.

Theorem 2. Policy conformance is decidable when L(pag
lang) and L(pspec) are

regular languages.

Notice that if we do not require Mconf to be complete, we could not guarantee
the third expectation reported in Section 2, which requires that, at every state
of the conversation, if a role is supposed to utter a message out of a set of
possibilities, the agent’s policy envisions at least one of them. Thus, we could
not guarantee that the two agents, playing the two roles of a same protocol,
would be able to lead to an end their conversations. On the other hand, the
definition would be sufficient to satisfy the first two expectations. In other words,
we can prove that whatever conversation is in the intersection I, it is legal, but
we cannot prove that I is not empty.

Proposition 3. All the conversations that a policy p
ag
lang, that is conformant

according to Def. 5 (without requiring Mconf to be complete) to a protocol spec-
ification pspec, will produce when it interacts with any agent that is equally con-
formant to pspec, are always legal w.r.t. this protocol, according to Def. 1.

4 The DyLOG language: a case study

In this section we show how the presented approach particularly fits logic lan-
guages, using as a case of study the DyLOG language [5], previously developed

in our group. The choice is due to the fact that this language explicitly supplies
the tools for representing communication protocols and that we have already
presented an algorithm for turning a DyLOG program in a regular grammar
(therefore, into a finite state automaton) [4]. This is, however, just an example.
The same approach could be applied to other logic languages. For this reason
we will confine its description to the strict necessary.

DyLOG [5] is a logic programming language for modeling rational agents,
based upon a modal logic of actions and mental attitudes, in which modalities
represent actions as well as beliefs that are in the agent’s mental state. It accounts
both for atomic and complex actions, or procedures, for specifying the agent
behavior. DyLOG agents can be provided with a communication kit that specifies
their communicative behavior [3]. In DyLOG conversation policies are represented
as procedures that compose speech acts (described in terms of their preconditions
and effects on the beliefs in the agent’s mental state). They specify the agent
communicative behavior and are expressed as prolog-like procedures of form:

p0 is p1; p2; . . . ; pm

where p0 is a procedure name, the pi’s in the body are procedure names, atomic
actions, or test actions, and ‘;’ is the sequencing operator.

Besides speech acts, protocols can also contain get message actions, used
to read incoming communications. From the perspective of an agent, expect-
ing a message corresponds to a query for an external input, thus it is natural
to interpret this kind of actions as a special case of sensing actions. As such,
their outcome, though belonging to a predefined set of alternatives, cannot be
predicted before the execution. A get message action is defined as:

get message(agi, agj , l) is
speech act

1
(agj , agi, l) or . . .or speech actk(agj , agi, l)

On the right hand side the finite set of alternative incoming messages that the
agent agi expects from the agent agj in the context of a given conversation. The
information that is actually received is obtained by looking at the effects that
occurred on agi’s mental state.

From the specifications of the interaction protocols and of the relevant speech
acts contained in the domain description, it is possible to trigger a planning ac-
tivity by executing existential queries of form Fs after p1; p2; . . . ; pm, that intu-
itively amounts to determine if there is a possible execution of the enumerated
actions after which the condition Fs holds. If the answer is positive, a conditional
plan is returned. Queries of this kind can be given an answer by a goal-directed
proof procedure that is described in [3].

The example that we consider involves a reactive agent. The program of its
interlocutor is not given: we will suppose that it adheres to the public protocol
specification against which we will check our agent’s conformance. The example
rephrases one taken from the literature, that has been used in other proposals
(e.g. [13]) and, thus, allows a better comprehension as well as comparison. We
just set the example in a realistic context. The agent is a web service [2] that
answers queries about the movies that are played. Its interlocutor is the requester

Fig. 2. AUML sequence diagram.

of information (that we do not detail supposing that it respects the agreed
protocol). This protocol is described in Fig. 2 as an AUML sequence diagram
[20]. It is very simple: the agent that plays the role “cinema” waits for a request
from another agent (if a certain movie is played), then, it can alternatively
send the requested information (yes or no) or refuse to supply information; the
protocol is ended by an acknowledgement message from the customer to the
cinema. Hereafter, we consider the implementation of the web service of a specific
cinema, written as a DyLOG communication policy. This program has a different
aim: it allows answering to a sequence of information requests from the same
customer and it never refuses an answer.

(a) get info movie(cine, customer) is

get request(cine, customer, available(Movie));
send answer(cine, customer, available(Movie));
get info movie(cine, customer)

(b) get info movie(cine, customer) is get ack(cine, customer)

(c) send answer(cine, customer, available(Movie)) is

Bcinemaavailable(Movie)?; inform(cine, customer, available(Movie))
(d) send answer(cine, customer, available(Movie)) is

¬Bcinemaavailable(Movie)?; inform(cine, customer,¬available(Movie))

(e) get request(cine, customer, available(Movie)) is

request(customer, cine, available(Movie)
(f) get ack(cine, customer, ack) is inform(customer, cine, ack)

The question that we try to answer is whether this policy is conformant
to the given protocol, and we will discuss whether another agent that plays
as a customer and that is proved conformant to the protocol will actually be
able to interoperate with this implementation of the cinema service. For what
concerns the AUML sequence diagram, we have proved in [4] that diagrams
containing only message, alternative, loop, exit, and reference to a subprotocol
operators can be represented as a right-linear grammar, that generates a regular
language. The automaton reported in Fig. 3(b) is obtained straightforwardly
from this grammar. For what concerns the implementation, by applying the
results reported in [4] it is possible to turn a DyLOG program in a context-free
language. This grammar captures the structure of the possible conversations

disregarding the semantics of the speech acts. When we have only right-recursion
in the program, then, the obtained grammar is right-linear. So also in this case
a regular language is obtained, hence the automaton in Fig. 3(a). Notice that all
the three automata are represented from the perspective of agent cine, so all the
short notation for the messages are to be interpreted as incoming or outgoing
messages w.r.t. this agent.

qS
0

qS
3

(b)

qS
1

qS
2

inform(
←−−
cine)

inform(
−−→
cine)

refuse(
−−→
cine)

qP
0

qP
2

inform(
−−→
cine)

qP
1

(a)

inform(
←−−
cine)

request(
←−−
cine)request(

←−−
cine)

(c)

[qP
1

, qS
1
]

[dP , qS
2
]

[qP
0

, qS
2
] [qP

2
, qS

3
]

inform(
←−−
cine)inform(

−−→
cine)

[qP
0

, qS
0
]

refuse(
−−→
cine)

request(
←−−
cine)

inform(
←−−
cine)

request(
←−−
cine)

[dP , qS
2
]

[qP
2

, dS]

Fig. 3. (a) Policy of agent cine; (b) protocol specification; (c) Mconf automaton. Only
the part relevant to the discussion is shown.

The protocol allows only two conversations between cine and customer (the
content of the message is not relevant in this example, so we skip it): request(cus-
tomer, cine) inform(cine, customer) inform(customer, cine) and request(customer,
cine) refuse(cine, customer) inform(customer, cine). Let us denote this protocol
by get info movieAUML (AUML is the specification language).

Let us now consider an agent (cine), that is supposed to play as cinena.
This agent’s policy is described by the above DyLOG program. The agent has a
reactive behavior, that depends on the message that it receives, and its policy
allows an infinite number of conversations of any length. Let us denote this
language by get info moviecine

DyLOG. In general, it allows all the conversations that

begin with a (possibly empty) series of exchanges of kind request(
←−−
cine) followed

by inform(
−−→
cine), concluded by a message of kind inform(

←−−
cine).

To verify its conformance to the protocol, and then state its interoperabil-
ity with other agents that respect such protocol, we need to build the Mconf

automaton for the policy of cine and the protocol specification. For brevity, we
skip its construction steps and directly report Mconf in Fig. 3(c).

Let us now analyse Mconf for answering our queries. Trivially, the automaton
is complete and it accepts both languages (of the policy and of the specification),
therefore, get info moviecine

DyLOG is policy conformant to get info movieAUML. More-
over, when the agent interacts with another agent customer whose policy is con-
formant to get info movieAUML, the messages request(

←−−
cine) and inform(

←−−
cine) will

not be received by cine in all the possible states it expects them. The reason is
simple: for receiving them it is necessary that the interlocutor utters them, but
by definition (it is conformant) it will not. The fact that refuse(

−−→
cine) is never

uttered by cine does not compromise conformance.

5 Conclusions and related work

In this work we propose an approach to the verification of the conformance of
an agent’s conversation policy to a public conversation protocol, which is based
on the theory of formal languages. Differently than works like [1], where the
compliance of the agents’ communicative behavior to the protocol is verified at
run-time, we tackled the verification of a priori conformance, a property of the
policy as a whole and not of the on-going conversation only.

This problem has been studied by other researchers, the most relevant anal-
ysis probably being the one by Endriss et al. and reported in [10]. Here, the
problem was faced in a logic framework; the authors introduce three degrees
of conformance, namely weak, exhaustive, and robust conformance. An agent is
weakly conformant to a protocol iff it never utters any dialogue move which is
not a legal continuation (w.r.t. the protocol) of any state of the dialogue the
agent might be in. It is exhaustively conformant to a protocol iff it is weakly
conformant to it and, for every received legal input, it will utter one of the
expected dialogue moves. It is robustly conformant iff it is exhaustively confor-
mant and for any illegal input move received it will utter a special dialogue move
(such as not-understood) indicating this violation. Under the assumption that
in their conversations the agents strictly alternate in uttering messages (ag1 tells
something to ag2 which answers to ag1 and so on), Endriss and collegues show
that by their approach it is possible to prove weak conformance in the case of
logic-based agents and shallow protocols 1.

Our Policy conformance (Def. 5) guarantees that an agent, at any point of
its conversations, can only utter messages which are legal w.r.t. the protocol,
because of the Mconf construction step, given by rule (c). In this respect it
entails weak conformance [10], however, our notion of conformance differs from
it because it also guarantees that whatever incoming message the agent may
receive, in any conversation context, its policy will be able to handle it.

The second very important property that is guaranteed by our proposal is
that, given two policies each of which is conformant to a protocol specification,

1 A protocol is shallow when the current state is sufficient to decide the next action
to perform. This is not a restriction.

their interoperability is guaranteed. In other words, we captured the expectation
that conformance, a property of the single policy w.r.t. the public protocol,
should in some way guarantee agents (legal) interoperability. Interoperability is
not mentioned by Endriss et al., who do not formally prove that it is entailed
by (all or some of) their three definitions.

Moreover, we do not limit in any way the structure of the conversations
(in particular, we do not require a strict alternation of the uttering agents)
nor we focus on a specific class of implementation or specification languages.
One further characteristic is that, according to Def. 5, a policy may also expect
incoming messages, that are not expected by the protocol specification, for this
does not prevent the correct interaction with another conformant agent, and it
is not requested to implement a whole set of alternative outgoing messages that
are considered possible by the protocol.

This work is, actually, a deep revision of the work that the authors presented
at [4], where the verification of a priori conformance was faced only in the specific
case in which DyLOG [5] is used as the policy implementation language and
AUML [20] is used as the protocol specification language. Basically, in that work
the idea was to turn the problem into a problem of formal language inclusion.
The two considered languages are the set of all the possible conversations foreseen
by the protocol specification, let us denote it by L(pAUML), and the set of all
the possible conversations according to the policy of agent ag, let us denote it by
L(pag

dylog). The conformance property could then be expressed as the following

inclusion: L(pag
dylog) ⊆ L(pAUML). The current proposal is more general than

the one in [4], being independent from the implementation and specification
languages. Moreover, as we have explained in the introduction, the interpretation
of conformance as an inclusion test is too restrictive, on a hand, and not sufficient
to express all the desiderata connected to this term, which are, instead, well-
captured by our definitions of policy conformance.

Finally, to the best of our knowledge, in those works that address the prob-
lem of verifying the conformance in systems of communicating agents by using
model checking techniques (e.g. [13]), the issue of interoperability is not tackled
or, at least, this does not clearly emerge. For instance, Giordano, Martelli and
Schwind [13] based their approach on the use of a dynamic linear time logic.
Protocols are specified, according to a social approach, by means of temporal
constraints representing permissions and commitments. Following [15] the paper
shows how to prove that an agent is compliant with a protocol, given the program
executed by the agent, by assuming that all other agents participating in the
conversation are compliant with the protocol, i.e. they respect their permissions
and commitments. However, this approach does not guarantee interoperability.

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
ACM SAC 2004, pages 72–78. ACM, 2004.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and

others: communicating agents in a modal action logic. In ICTCS’2003, volume
2841 of LNCS, pages 228–241. Springer, October 2003.

4. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying proto-
col conformance for logic-based communicating agents. In Proc. of 5th Int. Work-

shop on Computational Logic in Multi-Agent Systems, CLIMA V, LNCS, 2005.
5. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents

in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special

issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.
6. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational

model for conversation policies for agent communication. In Pre-Proc. of CLIMA

V, pages 66–81, 2004.
7. R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking AgentS-

peak. In Proc. of AAMAS 2003, 2003.
8. L. Cabac and D. Moldt. Formal semantics for auml agent interaction protocol

diagrams. In Proc. of AOSE 2004, pages 47–61, 2004.
9. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based

agents. In Proc. of IJCAI-2003, pages 679–684, 2003.
10. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication

protocols. In Advances in agent communication languages, volume 2922 of LNAI,
pages 91–107. Springer-Verlag, 2004. invited contribution.

11. R. Eshuis and R. Wieringa. Tool support for verifying UML activity diagrams.
IEEE Trans. on Software Eng., 7(30), 2004.

12. FIPA. Fipa 97, specification part 2: Agent communication language. Technical
report, FIPA (Foundation for Intelligent Physical Agents), November 1997.

13. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In JELIA’04, volume 3229 of LNAI,
pages 57–69, Lisbon, Portugal, 2004. Springer-Verlag.

14. F. Guerin. Specifying Agent Communication Languages. PhD thesis, Imperial
College, London, April 2002.

15. F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98–
112. Springer, 2003.

16. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and

computation. Addison-Wesley Publishing Company, 1979.
17. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In Communication

in Multiagent Systems, LNAI 2650, pages 179–193. Springer, 2003.
18. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-

velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

19. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-based protocols:
new trends in agent communication languages. Knowledge engineering review,
17(2), 2002.

20. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Proc.

of the Agent-Oriented Information System Workshop at AAAI’00. 2000.
21. M. P. Singh. A social semantics for agent communication languages. In Proc. of

IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.
22. C. Walton. Model checking agent dialogues. In Int. Workshop on Declarative Agent

Languages and Technology, pages 156–171, 2004.

