
Verification of RTL Generated from Scheduled Behavior
in a High-Level Synthesis Flow

Pranav Ashar Subhrajit Bhattacharya Anand Raghunathan
Akira Mukaiyama

C&C Research Labs, NEC USA, Princeton, NJ

Abstract

We propose a complete procedure for verifying register-transfer
logic against its scheduled behavior in a high-level synthesis en-
vironment. Our proposal advances the state of the art because it is
the first such verification procedure that is both complete and prac-
tical. Hardware verification is known to be a hard problem and the
proposed verification technique leverages off the fact that high-
level synthesis - performed manually or by means of high-level
synthesis software - proceeds from the algorithmic description of
the design to structural RTL through a sequence of very well de-
fined steps, each limited in its scope. The major contribution is
the partitioning of the equivalence checking task into two simpler
subtasks, verifying the validity of register sharing, and verifying
correct synthesis of the RTL interconnect and control. While state
space traversal is unavoidable for verifying validity of the register
sharing, we automatically abstractout irrelevant portions of the de-
sign, significantly simplifying the task that must be performed by a
back-end model checker. The second task of verifying the RTL is
not only shown to reduce to a combinational equivalence check,we
present a novel and fast RTL technique for combinational equiv-
alence check instead of using slower gate level techniques. The
verification procedure has been applied to several large circuits,
and is illustrated on the implementation of a sort algorithm.

1 Introduction

The trend for the future is for designers to start their designs
with design descriptions more abstract than structural RTL. The
ultimate focus of our work is to provide methodologies and tools
for equivalence checking between structural RTL and their more
abstract higher level initial descriptions. These techniques must
exploit knowledge of circuit properties and the synthesis flow to
be viable.

We are aware of various efforts in the verification of designs
generated from high-level descriptions[1, 2, 3]. Without going
into the details of these methods, it should suffice to say that these
methods are either not complete or do not derive any efficiency
out of their knowledge of the high-level synthesis domain, limit-
ing their applicability. Similarly, technologies like symbolic model
checking, language containment, theorem proving, techniques for
modeling arithmetic in the verification context, are extremely pow-
erful but must be applied wisely and in the proper context to be
effective.

We wish to eventually develop a strategy for structural RTL
validation in which the equivalence between structural RTL and
its most abstract initial description is established by proving the
equivalence between the initial and final descriptions at each syn-
thesis step [4]. As in the case of formal equivalencechecking tools

at the purely structural level, we must make assumptions about the
scope of each synthesis step and the properties of the synthesized
designs. Our basic assumption is that synthesis proceeds in the
well defined steps of algorithmic transformations, followed by
scheduling, finally followed by structural RTL synthesis. Taking
a bottom up approach, we have taken the first step of developing
an equivalence checking procedure for the validation of structural
RTL against scheduled behavior which we equivalently call func-
tional RTL. This is the problem we address in this paper.

At the level of scheduled behavior, each data path operation
is clearly associated with the state in which it will be executed.
The transition between states as a function of the present state,
primary inputs and the results of data path operations is also clearly
defined. What is not defined is the association of variables with
registers, and the actual circuit implementation of the control/data
flow in each state. The assignment of registers to variables (with
registers possibly being shared among variables), the generation
of hardware to enable the register assignment and sharing, and
the generation of hardware to enable the sharing of functional
blocks among data path operations are exactly the synthesis steps
performed in the generation of structural RTL from scheduled
behavior. In this paper, we propose algorithms which can be
used to check the correctness of these synthesis steps applied to
scheduled behavior. The algorithms are novel in that they are
tuned specifically to the synthesis steps that they are supposed
to check. That is what makes them practical without sacrificing
completeness.

In essence, our algorithms are based on the observation that
the state space explosion in most designs is caused by the data-
path registers rather than the number of control states. Given
the clear delineation between data-path and control in the high-
level synthesis environment, we are able to divide the equivalence
checking task into the checking of (1) local properties which are
checked on a per control state basis, and (2) non-local properties
which require a traversal of the control state space. The non-
local properties are checked in the following manner: A number
of assertions are generated for each non-local property such that
checking all the assertions is equivalent to checking the non-local
property. Each assertion is then checked separately on a model of
the design relevant to the assertion being checked, with the rest of
the design abstracted out. A number of model checking tools can
be used for the purpose, e.g. [5]. The abstraction of the design for
the assertion being checked is key. Again, this is made possible by
the clear delineation between data-path and control and the small
number of control states. Details of our algorithms are provided
in the following sections.

2 Verifying RTL Implementation of a Schedule

In this section, we develop an algorithm to verify the correct-
ness of a structural register-transfer level (RTL) implementation
of a scheduled behavioral specification or schedule. We formally
define the verification problem that we are addressing. We prove
that the implementation is equivalent to the specification if two
key properties can be verified. The two properties, the valid reg-
ister sharing property, and the intra cycle equivalence property,
thus allow us to partition a complex verification problem into two
simpler subproblems. The problem formulation and the two prop-
erties are discussed in Section 2.1. Algorithms for checking the
two properties are discussed in Sections 2.2 and 2.4.

2.1 Problem Formulation and Partitioning

We first define an RTL specification. An RTL specification can
be defined in terms of variables V, operations O, and clocks, the
clocks governing the updating of the value of variables. Variables
are divided into 4 sets V = (PI, PO, R, T). PI is the set of primary
inputs, PO is the set of primary outputs, R is the set of register
variables, and T is the set of temporary variables. Operations are
categorized into two types O = (C, A), C being the set of control
operations, and A being the set of assignment operations. The
result of a control operation is boolean, and the results are used
to control execution of other operations. Assignment operations
assign to and change value of variables. Every operation opi has
a corresponding condition ci associated with it. The condition
ci is a logical expression and may be composed using the results
of other assignment and control operations. The operation opi is
executed only if ci is true. The definition holds for functional RTL
specifications, such as the schedule in Figure 1 which has been
taken from[6], as well as for structural RTL specifications, such as
the RTL circuit in Figure 6.

The updating of values of variables is controlled by the clock.
The clock splits time into discrete integral values starting at time
t = 0, with t being incremented by 1 at every clock tick. At
time t = 0, some register variables are initialized. The value of
a register variable at any given time t = T , t > 0, is fixed and
independent of operations taking place at that time. If a register
variable is assigned a value at t = T , the register variable assumes
the value at t = T + 1. If no assignment is made to a register
variable at t = T , it retains its value from t = T � 1. The value
of a temporary variable or primary output is defined at t = T only
if an assignment is made to it at that time. Primary inputs are not
assigned to and can only be used as inputs for an operation.

Schedules of a behavioral specifications have some additional
properties. The scheduleconsists of a distinguished variable called
the state variable. The state variable can attain a fixed set of known
values. A state of the schedule corresponds to a particular value
of the state variable. It is assumed that at t = 0, the state variable
is initialized to s0. The initialization is not shown in Figure 1(a).
Corresponding to each state, there is a set of next state operations
which assigns a constant value from the known set of values to
the state variable. If the schedule is in a particular state at time
t = T , the next state operations define the possible values of the
state variable at time t = T + 1. Depending upon the conditions,
only one of the next state operations is executed at any time. For
each state of the schedule, there is a set of operations which are
conditionally executed only in the state they belong to. Thus,

the condition for execution of op6 is c6 = (state == s1) AND
(p == 0).

The schedulespecification properties, Property 1, and the prop-
erties of the RTL synthesis procedure, Property 2, stated next are
important for our verification algorithms to work successfully.

(b)

case state 1

ir=
data+1

2

p[0,1]=
ir[0,1]

3

state=
s1

4

s0
s1 s2

5

raddr1=
stack

addr=
stack+off1

state=
s2

z=p[0]

case p

6

7

8

9

0

raddr=
raddr2

if z19

21

maddr=
addr+off220

1

case state 1

ir=
data+1

2

p[0,1]=
ir[0,1]

3

state=
s1

4

s0
s1 s2

5case p

0

raddr1=
stack

state=
s2

z=p[0]

7

8

9

raddr=
raddr2

if z19

21

1

(c)

(a)

case state 1

ir=
data+1

2

p[0,1]=
ir[0,1]

3

state=
s1

4

s0 s2

state=
stop

raddr=
raddr2

raddr=
raddr1

maddr=
addr

maddr=
addr+off2

if z19

20

21

22
23

24

0

1

s1

5 16

raddr1=
stack

addr=
stack+off1

addr=
stack+1

state=
s2

raddr1=
stack

raddr2=
addrI

raddr2=
addrI

addr=
0

addr=
off1

z=p[0]

z=p[1]

z=p[1]

z=p[0]

case p

6

7

8

9

10

11

12

13

14

15

17

18

0
1

2 3

PI = {data, stack, off1, off2} PO = {maddr, raddr} T = {ir} R = {state, p, addr, raddr1, raddr2, z}

Figure 1: (a) The schedule of a behavioral description. raddr11 and
raddr21 share register R1. (b) Subgraph containing conflicting gen-
use pair, op21 and op7. (c) Subgraph derived from (b) after removing
operations not essential for proving whether the gen-use pair is benign or
not.

Property 1 (Specification) The following properties are for any
RTL specification.

1. We assumethat at any time, only one assignmentcan be made
to a variable.

2. If any register variable is used in an operation at t = T ,
T > 0, then it must have been initialized or assigned at
some time t < T . Note that at t = 0, none of the register
carry a valid value due to initialization, since if a register
is assigned a value at t = T , it contains the value only at
t = T + 1. Thus, none of the operations at t = 0 can use a
register operand, and can use only primary inputs.

Property 2 (Transformation Invariants) The following proper-
ties are assumed for an RTL implementation synthesized from an
RTL specification.

1. There is a 1 to 1 mapping between INPUTS and OUTPUTS
in the two representations.

2. There is a many to one mapping from the variables in the
set R of the specification and the variables in the set R of
the implementation. Let Ri be a register variable in the
implementation, and Mi be the set of register variables of
the specification which have been mapped to Ri. If Mi has
more than one element, we say that Ri is being shared. For

ease of explanation, if a variablex belongs to Mi, we simply
rename it xi.

Problem Statement. Given a functional RTL specification and a
structural RTL specification which satisfies Property 1 and Prop-
erty 2, verify that at any time t = T , if an output variable of the
specification is assigned a value, the same value is assigned to the
corresponding output variable of the implementation.

We next present two properties, Property 3 and Property 4, and
prove in Lemma 1 that if the two properties are satisfied by the
implementation, then the implementation’s outputs are assigned
the same values as the corresponding outputs of the specification,
as is required by the problem statement.

Definition 1 (Path in Schedule) We say that there is a path in
a schedule from state si to sj , if there are next state transitions
which can change the state from si to sj .

Definition 2 (Conflicting Gen-Use pair) Let two specification
variables xi and yi, xi 6= yi, be mapped to the same register
Ri in the implementation. Let operation opm in state sj generate
xi and operation opn use yi in state sk , the two operations being
executed in different clock cycles, and there is a path P from state
sj to sk such that no assignment to Ri takes place in any of the
states between sj and sk . Then we say that the operation pair
opm and opn is a conflicting gen-use pair for registerRi along P.

Definition 3 (Benign Gen-Use Conflict) Let there be a conflict-
ing gen-use pair opm in state sj and opn in state sk along path
P

00

. Let there be a pathP
0

from s0 to sj . For the pathP
0

followed
byP

00

, let state = sj at t = T1 and state = sk at t = T2. Then
when the sequence of transitions in P

0

is executed followed by the
sequence of transitions in P

00

, if either c
0

m is FALSE at t = T1 or
c
0

n is FALSE at t = T2, the gen-use conflict is said to be benign.

Property 3 (Valid register mapping) An implementation is said
to satisfy the valid register mapping property if for any register
Ri in the implementation, either the corresponding set Mi has
only one element, or Mi has multiple elements, but all conflicting
gen-use pairs for such registers are benign.

The structural RTL circuit of Figure 6 which is an imple-
mentation of the schedule of Figure 1(a) shares register R1

amongst specification variables raddr1 and raddr2. Hence,
M1 = fraddr11 ; raddr21g. Since raddr11 is assigned by oper-
ation op7 in state s1 and raddr21 is used by operation op21 in state
s2, and there is a state transition from s1 to s2, there is a possible
conflicting gen-use pair. However, as we will show later, execu-
tion of op7 is never followed by execution of op21 in a subsequent
cycle due to the existence of a false path. Thus, the conflicting
gen-use pair for R1 is actually benign.

Definition 4 (Operation modulus using register mapping)
An operation in the specification modulus the register mapping
is another operation derived from the specification operation by
replacing all operandsxiwhich are register variables with the cor-
responding registersRi to which the variables have been mapped
in the implementation.

As an example,consider operation op7 in Figure 1. Assume that
in the implementation of Figure 6 variables stack, and raddr1 are
mapped to registersRstack , andR1. Thusop7 which is raddr1 :=
stack modulus the register mapping is R1 := Rstack.

Property 4 (Intra-Cycle Equivalence Property) An implemen-
tation is said to satisfy the intra-cycle equivalence property if, at
any time t � 0, the set of assignment operations executed in the
specification modulus the register mapping is the same as the set
of assignment operations performed in the implementation.

Definition 5 (Variable contained in register) For an imple-
mentation registerRi, and the corresponding setMi , the variable
contained inRi is an element ofMi. For a sequence of operations
from time t = 0 until t = T , different elements of Mi may have
been assigned at different times t, t < T . For the given operation
sequence, the element of Mi assigned for the largest t, t < T , is
defined to be contained in Ri at t = T .

Consider again Figure 1. As stated before but not shown in the
figure, at t = 0, the state variable is initialized to s0. If operations
op1 . . . op4 are executed at t = 1, and operations op5; op6; . . . op9

at t = 2, then R1 contains raddr11 at t = 3. If operations
op5; op13; . . . ; op15; op9 are executed at t = 2, then R1 contains
raddr21 at t = 3.

Lemma 1 For an implementation of a schedule specification and
a register mapping which satisfies Property 3 and Property 4, at
t = T , T > 0, if Ri contains xi, then Ri contains the correct
value of xi, that is, Ri contains the same value as the value of xi
in the schedule specification at t = T .

Theorem 1 If an implementation of a specification satisfies Prop-
erties 3 and 4, then if at any time t = T , an output variable of the
specification is assigned a value, the same value is assigned to the
corresponding output variable of the implementation.

Proof: The proof for t = 0 follows from Properties 1 and 2. The
proof for t > 1 follows from Lemma 1. Details are omitted.

In the next two sections,Section 2.2 and Section 2.4,algorithms
for verifying Property 3 and Property 4 are discussed. These
two algorithms combined will give us a complete algorithm for
verifying that the implementation of a specification is correct as
required by the problem statement presented earlier in this section.

2.2 Algorithm for Verifying Validity of Register Sharing

In this section, we present an algorithm for verifying the valid-
ity of register mapping for schedules of behavioral descriptions.
Definitions 2, and 3 and the statement in Property 3 form the basis
of the algorithm.

The first step involves identifying paths along which conflict-
ing gen-use pairs occur, as defined in Definition 2. Suppose an
operation node opn is a gen node for a variable xi, and Mi has
more than 1 element. There may be many paths along which
conflicts arise involving opn. Instead of enumerating each path
separately, we identify a conflict subgraph CSG which contains all
the conflicting paths involving opn . The procedure for identifying
CSG is a constrained depth-first search (DFS), DFS CSG, as
given in Figure 2. Let uset(opn; xi) = fyijyi 6= xi; yi 2Mi; yi

input to opng), and gset(opn; xi) = fyijyi 2 Mi; yi assigned
by opng. Let opk be a node visited during the forward traversal
phase of the DFS. If uset is not empty, then a conflicting use

operation has been identified and DFS marks the node as a CSG
node and returns the value MARKED. If gset for opk is not empty,
an assignment is being made to Ri in opk . Since this violates the
condition for a conflicting gen-use pair, node opk can not be on a
conflicting path. Thus, the DFS routine does not mark the node
and returns with the value NOTMARKED. If neither of the above
conditions hold, then the DFS marks the node opk only if one of
its successors returns MARKED.

Procedure DFS CSG(opk , xi)
if (uset(opk ; xi) 6= ;) f
opk->mark := 1;
return MARKED; g

if (gset(opk; xi) 6= ;) f
opk->mark := 0;
return NOTMARKED; g

for all successors opj of opk f
if (DFS CSG(opj , xi) == MARKED) f
opk->mark := 1;
return MARKED; g g

Figure 2: Algorithm for identifying subgraph with paths containing
conflicting gen-use pairs.

To verify that the gen-use conflicts are benign, as per defini-
tion 3, the reachability subgraph RG containing paths from the
start state of the schedule to opn is identified, and is added to
the CSG subgraph to form the conflict graph CG. Let there be
a path (op0; . . . ; opi1; . . . ; opi2; . . . opi3; . . . ; opi4) in the CG. Let
opi1; opi2 and opi3; opi4 be two conflicting gen-use pairs. It is
sufficient to prove that the path segment (op0; . . . ; opi1; . . . ; opi2)
is false, since it implies that the complete path must be false. We
do not include paths which contain a conflicting gen-use pair for
the same register when generating the RG, since the CSG already
consists of paths with a conflicting gen-use pair for a given shared
register. The reachability subgraph RG is identified with another
constrained DFS routine, DFS RG, details of which are omitted in
this paper. The procedure Extract Marked Nodes identifies nodes
marked by DFS CSG and DFS RG, and adds the marked nodes
and edges between the marked nodes to create the CG.

Consider the schedule shown in Figure 1(a) and the mapping
of it’s variables raddr11 and raddr21 to register R1. There are
several gen-use conflicts for register R1. One conflicting pair
is given by op7 which assigns to raddr11 and op21 which reads
raddr21. The CSG consisting of paths with conflicting gen-
use operations involving raddr11 in op7 includes the following
operations (op6; op7; op8; op9; op19; op20; op21) and edges between
the operations, while the correspondingRG consists of operations
(op1; op2; op3; op4; op5) and edges between them. TheCG which
is a union of the CSG and RG is shown in Figure 1(b).

To prove that a gen-use conflict is benign, we need to prove
that the paths in the graph CG are false. Thus, we are primarily
interested in relationships between operations which control the
execution of the path such as op5 and op9 in Figure 1(b). Any
operation which does not affect the control conditions in the CG
can be removed from the subgraph, except for the operations which
cause the gen-use conflict, thus reducing the size of the subgraph.
Consider the subgraph of Figure 1(b). Since op6 does not affect

any conditions in the subgraph, so it can be removed from the
subgraph. For the subgraph of Figure 1(b), the pruned subgraph
is shown in Figure 1(c). The subgraph pruning is implemented
by the function Prune SubGraph. Prune SubGraph first creates
data dependency arcs between CG operations opi and opj if the
result of opi is used by opj . Subsequently, a DFS using the data
dependency arcs is used to identify all operations which affect the
control conditions in CG.

The pseudo-code for the algorithm verifying the validity of a
register mapping is given in Figure 3

Procedure CHECK REG MAPPING(SchedG, RegMapping)
opset := all opn with gen(xi), jMij > 1
for each opn in opset f

DFS CSG(opn , xi);
DFS RG(opn);
CG := Extract Marked Nodes(SchedG);
PG := Prune SubGraph(CG, opn);
if (Benign Mapping(PG, opn) 6= TRUE)

Declare mapping to be invalid. g
Declare mapping to be valid.

Figure 3: Algorithm for verifying validity of register mapping

2.3 Verifying the Benignness of a Gen-Use Conflict

The subgraph extracted for each gen-use conflict encapsulates
all the paths which must be proved to be unsensitizable (false) for
the gen-use conflict to be benign. Doing the analysis by simulation
or other means on a path by path basis is obviously not viable
given the presence of a large number of paths and loops. We use
symbolic model checking techniques in Computation Tree Logic
(CTL) [7, 5] for the purpose. Without going into the details of
CTL symbolic model checking, suffice to say that it allows us to
check properties like if some specific event happens in a state,
another specific event will never happen in the future. This is
exactly the type of property we wish to check on the subgraph
since we would like to ensure that gen is never followed by use.
The approach is called symbolic since it effectively builds a single
BDD-based representation for the entire state transition relation.
The resulting analysis is performed implicitly on all paths together
rather than on a path by path basis. To make the symbolic model
checking viable, it might be necessary to abstract the bit-width of
the arithmetic operations in some cases. In the future, it will also be
possible avoid this abstraction by using model checking techniques
that integrate efficient techniques for modeling arithmetic with
symbolic model checking.

In practice, the subgraph for each gen-use conflict is generated
in Verilog syntax. Two additional state variables called gen and
use are introduced in the verilog. gen and use are set to 1 when
their corresponding gen and use events take place. The Verilog
code is compiled into the VIS symbolic model checking system [5].
In VIS, we check the property AG(gen == 1 ! AG(use ==

0)) (please refer to [5] for CTL syntax). The property states that
if in any state the variable gen becomes 1, then the variable use
must be 0 in all subsequent states.

The major contribution of our work is that by dividing up the
task of equivalence checking into the task of checking multiple
simple assertions, and by abstracting out the irrelevant portions
of the design in checking each assertion, we have significantly
simplified the task that must be performed by the symbolic model

checker.

2.4 Verifying Intra-Cycle Equivalence Between the Schedule
and its RTL Implementation

We perform the intra-cycle equivalence check state-by-state,
i.e., for each state Si in the schedule, we prove that the compu-
tations performed in Si (Schi) are equivalent to those performed
in the RTL implementation in the same state. In doing so, we
exploit the fact that while the number of states in the complete
RTL (control and data path) circuit can be very large, the number
of schedule states (control steps or control states) in scheduled
behavioral descriptions is typically limited 1. We assume that the
register variable Rstate in the RTL circuit, corresponding to the
schedule state variable State is identified, and that the encod-
ing (mapping of symbolic values of State to Boolean values of
Rstate) is known. Without a knowledge of the controller state
encoding, the problem becomes significantly more complex and
may, in general, require sequential FSM checking techniques.

One approach to establishing the equivalence of RTL and
Schi could be to obtain gate-level netlists and use BDD or ATPG
based equivalence checking techniques (e.g. [8]). However, these
techniques may not be viable for repeated application (for each
schedule state) on large designs, especially when they contain a
composition of control logic and arithmetic, or when the struc-
tural similarity between the netlists is limited as a result of the
application of resource sharing.

We present an alternative approach to checking the equivalence
between RTL and Schi, that exploits the nature of the various
transformations that are applied to the schedule in generating the
RTL circuit. The typical optimizations that may be performed
during this step consist of register and functional unit (operation)
sharing, multiplexer generation, and control logic optimization.
An important invariant that is preserved by the above optimizations
is the atomic nature of word-level operators (including arithmetic
operations, comparison operations, etc).

Our equivalence checking technique works at the RT level.
First, the set of computations performed in state Si of the sched-
ule (Schi) is converted to an equivalent representation called the
structure graph, which we formally define later. The structure
graph corresponding to Schi (the RTL circuit) is called SSGi

(RSG). For example, the structure graphs for state s2 of the
schedule of Figure 1(a) and the complete RTL implementation are
shown in Figures 4 and 6, respectively. We verify that SSGi is
equivalent to RSG when the state variable of RSG is set to the
encoded value of state Si . The process is repeated for every state
of the schedule.

Our algorithm for proving equivalence of structure graphs is
based on a symbolic simulation of RSG and SSGi . However, a
key difference of our approach from the gate-level combinational
equivalence checking approaches is that we leave the known-good
macro-blocks uninterpreted, thus avoiding reasoning about them
or building representations for their functionality. That is achieved
by using the notion of conditional equivalence relationships be-
tween signals in RSG and SSGi . A similar symbolic simulation
approach was presented in [9] for modeling and evaluation of data-
paths for implementing a given DFG. The reader might also wish to

1The state transition graph (STG) for the schedule is typically explicitly
specified by the designer or generated by the scheduling algorithm.

explore the similarities and differences between our approach and
the approaches in [10, 11]. The algorithm starts with equivalence
relationships between input variables. It then propagates equiva-
lence relationships forward through the structure graphs until the
outputs are reached, and checks for unconditional equivalence
between the output signals of the RSG and SSGi .

We apply the following pre-processing refinements in order to
enable the comparison of Schi againstRTL:

� The occurrence of each register variable xj in Schi is re-
placed with the RTL circuit register variable Rj to which it
is mapped. Thus, Schi and RTL now use the same set of
register variables.

� Register variables are re-named when they appear as the
target of an assignment operation, in order to distinguish
between the present cycle and next cycle values. Whenever
a register variable v appears on the left hand side of an
assignment, we re-name it to v next. This is done for both
Schi and RTL.

� The encoding of the symbolic variableState next is applied
to replace State next in Schi with a vector of Boolean
variables. All assignments of symbolic state constant values
to State next in Schi are replaced with the corresponding
constant bit-vectors. This is done to enable comparison of
the next-state control logic in the RTL circuit against the state
transitions specified in the schedule.

� The variable Rstate in RTL is set to the constant encoded
value corresponding to the state under consideration (Si).
This is done since we are only interested in the computations
performed by the RTL in state Si .

We next define structure graphs to represent the computations
in the schedule and RTL, and outline their generation.

Definition 6 (Structure Graph) A structure graph is a directed
graphG = (V;A), where the set of verticesV representhardware
components that execute the operations of the specification,and the
edges represent the structural connectivity of the components. A
vertexv 2 V has a type attribute, which may assume the following
values: IN (to represent primary input variables and current
cycle values of register variables), OUT (to represent primary
output variables and next cycle values of register variables), OP
(to represent arbitrary word-level operators, including arithmetic
operators and comparison operators), LOGIC (to represent the
control or random logic), and MUX . The edges in the structure
graph are annotated with their bit-widths.

The process of constructing a structure graph from a set of com-
putations is similar to inferring hardware structures from Hardware
Description Languages (HDLs). IN and OUT nodes are created
to represent primary input and output variables, constant values,
and present and next cycle values of register variables. OP nodes
are created corresponding to assignment operations that involve
word-level computation and conditional operations (e.g. compar-
ison operations, case operation, etc.). The use of a Boolean opera-
tor on single bits or bit-vectors results in the creation of LOGIC
nodes in the structure graph. MUX nodes are constructed when
different assignment statements assign to the same variable, under
different conditions. The outputs of the OP or LOGIC nodes

that correspond to these conditions are used as select inputs to the
MUX node to decide which assignment is executed in a given
clock cycle. For example, consider the computations performed
in state S2 of the schedule shown in Figure 1. The corresponding
structure graph is shown in Figure 4(a).

+ ++

stack off1

0
CASE

3 2 1 0

OR OR OR OR

p

z_next

addr_next

R1_next

addrI

s2

State_next

u1u2u3 u0

u5 u6

u7 u8 u9 u10

u11

u12
u13

Figure 4: Structure graph for state S2 in the scheduled behavioral

description of Figure 1
Our algorithm for equivalence checking of structure graphs

exploits the following assumptions:

� The atomic nature of the OP nodes is preserved when gen-
erating the RTL circuit from the behavioral description.

� If the RTL circuit instantiates macro-block components from
an RTL library, it is assumed that the library components have
been verified during library development, hence they imple-
ment their specified functionality (e.g. a library component
ripple carry adder does perform the addition operation
correctly).

� Arithmetic transformations (e.g. distributivity, replacing
multiply by shifts and adds, etc.) are not performed. Note
that while typical high-level synthesis tools do perform these
transformations, they are performed prior to or concurrent
with the scheduling step which generates the schedule.

Definition 7 (Conditional equivalence) A signal v in RSG is
said to be conditionally equivalent to signals u1; u2; . . . ; un in
SSGi , if there exist corresponding conditions c1; c2; . . . ; cn (a
condition represents a non-empty set of value assignments to
input variables in SSGi or RSG) such that under condition
ck , the value at signal v in RSG is guaranteed to be the
same as the value at signal uk in SSGi . We use the notation
(v �= f(u1; c1); . . . ; (un; cn)g) to represent conditional equiva-
lence relationships.

We use BDDs to represent the conditions involved in condi-
tional equivalence relationships. In general, the conditions them-
selves may be expressed in terms of the input variables, and may
involve the results of various arithmetic and conditional opera-
tions. However, we express conditions in terms of the outputs of
OP andMUX nodes, in addition to IN nodes, which we collec-
tively refer to as basis variables. In effect, BDDs are constructed
only for the control logic (including the next state logic that feeds
the PO, Rstate next, and the logic that determines which paths

through theMUX nodes are sensitized or how multi-function FUs
are configured).

Procedure COMPARE STRUCTURE GRAPHS(RSG, SSGi)
Arr1 := DFS SORT(SSGi)
Arr2 := DFS SORT(RSG)
Identify basis variables in SSGi ;
Symbolic simulate SSGi to express non-basis vars in

terms of basis vars;
Construct equivalence lists for IN nodes in RSG;
For each element(Arr2, v) f

switch(TYPE(v)) f
case Mux:

For each data input vfanin of v f
For each entry (u,c) in equivalence list of vfanin

ADD EQUIVALENCE(v, u, c
S

select cond);
case OP :

For each pair of entries in equivalence lists of inputs f
cond = conjunction of conditions;
if cond 6= 0 f

identify correspondingOP vertex uop in SSGi ;
ADD EQUIVALENCE(v, uop , cond); g g

case LOGIC:
convert input lists into BDD nodes and propagate;

case PO:
If equivalence exists with correspondingPO in SSGi

and condition is 1
continue;

else
return(Error); g g

return(Equivalent);

Figure 5: Symbolic simulation algorithm for equivalence checking of
structure graphs

The pseudo-codefor the algorithm to compareSSGi andRSG
is shown in Figure 5. The algorithm starts with equivalence re-
lationships for the IN nodes of RSG (these relationships are
available since a 1-to-1 mapping exists between the IN nodes in
RSG and SSGi). The algorithm generates and propagates condi-
tional equivalence relationships forward through the intermediate
signals in RSG until the PO nodes are reached, and checks for
unconditional equivalencebetween the output signals ofRSG and
SSGi .

First, ordered sets Arr1 (Arr2) are populated to contain all
the nodes in SSGi (RSG) such that each node appears only after
all the nodes in its transitive fanin. This is done by performing a
backwarddepth first search traversal from theOUT nodes towards
the IN nodes. Next the basis variables in SSGi are identified as
the outputs of PI , OP , and MUX nodes. A traversal through
Arr1 is then performed, and for each node whose output does
not correspond to a basis variable (i.e. each LOGIC node), we
get the BDD for the output of the node in terms of the BDDs at
its inputs. We associate eachRSG node with an equivalence list
to represent the conditional equivalence relationships between its
output and signals in SSGi . An entry in the equivalence list is a
pair (u,c) where u is an identifier for a SSGi signal, and c is a
BDD representing the conditions for equivalence. The correspon-
dence between the inputs of SSGi and RSG are used to create
the equivalence lists for the IN nodes in RSG. Next, Arr2 is
traversed, and each node is processed to propagate the equivalence
lists from its inputs to its output. The techniques for propagating
equivalence lists through OP , LOGIC , and MUX nodes are

explained below. When a PO node of RSG is reached, the al-
gorithm checks to see if an equivalence has been established with
the corresponding OUT node in SSGi , and if the corresponding
condition is a tautology. If not, the algorithm reports theRSG and
SSGi as not being equivalent. Only if unconditional equivalences
are obtained for all the OUT nodes of RSG does the algorithm
declare RSG and SSGi to be equivalent.

Propagating equivalence relationships through OP nodes.
Consider a two-input OP node v in RSG, whose in-
puts have equivalence lists f(x1; c1); . . . ; (xm; cm)g and
f(y1; d1); . . . ; (yn; dn)g. For each pair of entries (say, (xj; cj)
and (yk; dk)) in the input equivalence lists, we check whether the
conjunction of the BDDs representing cj and dk results in a con-
stant 0. If not, we identify all correspondingOP nodes in SSGi

with inputs xj and yk , that perform the same operation (i.e. +,
�, <, etc). For each OP node ul identified, we add the entry
(ul ,cj

T
dk) to the equivalence list of v.

Propagating equivalence relationships through LOGIC

nodes. Since control logic may be introduced or removed by
the process of transforming the schedule to the RTL circuit, it may
not be possible to find equivalence relationships for the outputs of
LOGIC nodes in RSG. Hence, rather than trying to compute
equivalence relationships for LOGIC nodes, we compute BDDs
which represent their outputs as functions of basis variables in
SSGi . Each fanin of a LOGIC node can have either an associ-
ated equivalence list (if it is a IN , MUX , or OP node), or an
associated BDD (if it is another LOGIC node). We first convert
equivalence lists for the LOGIC node inputs to BDDs as follows.
An equivalence list f(x1; c1); . . . ; (xn; cn)g is converted to the
expression

Sn

i=1 xi

T
ci, for which we compute a BDD using the

BDDs for the conditions ci and BDDs representing the functions
f(xi) = xi. Once we have BDDs for all the inputs of theLOGIC
node, we can compute the BDD for its output by composing them
appropriately.
Propagating equivalence relationships through MUX nodes.
Consider a MUX node v with n data inputs v1 . . . vn. If v is
a decoded MUX node (there is a dedicated select input corre-
sponding to each data input), we identify the sensitization condi-
tions Sel1 ; . . .Seln for its data inputs as the BDDs for the nodes
feeding the corresponding select inputs. If v is an encodedMUX

node (the select conditions for each data input are specified as a
combination of values at the select inputs), we compose the BDDs
for the nodes feeding the select inputs appropriately to obtain the
sensitization conditions. The entries in the equivalence lists at the
data inputs of the MUX node are then propagated to its output by
taking the conjunction of the equivalence conditions with the sen-
sitization condition for the appropriate data input. For example,
consider an entry (u1,c1) in the equivalence list of v1. A corre-
sponding entry (u1, c1

T
Sel1) is added to the equivalence list for

v. Note that multiple data inputs of a MUX may have equiva-
lence relationships with the same SSGi signal, which may result
in multiple entries with the same signal in the output equivalence
list. The procedure for adding an entry to the equivalence list of a
RSG signal avoids this by merging entries that refer to the same
SSGi signal, as explained below.

We next explain procedure ADD EQUIVALENCE of Figure 5,
which is used to add an entry to the equivalence list of a RSG
node. When adding an entry (u; c) into an equivalence list

f(u1; c1); . . . ; (un; cn)g forRSG node v, the procedure performs
the following tasks:

� If u feeds the input of a MUX node in SSGi whose out-
put is u0 , the equivalence relationship between v and u is
converted to an equivalence relationship between v and u0 ,
with equivalence condition c

T
Selu , where SELu is the

condition for u to be sensitized to u
0, and is computed as

described in the previous paragraph. If u0 itself fans out to
other MUX nodes, this step is repeated. This step ensures
that when the algorithm reaches an OP node in RSG, all
relationships between its inputs and inputs of corresponding
OP nodes in SSGi have been identified so that it can be
processed just once.

� It first checks to see if signal u is the same as any of the
signals u1 . . . un . If u = ui; i 2 [1;n], the entry (ui; ci)

is updated to (ui; ci
S
c). This step helps reduce the size

of equivalence lists, and thus improves the computational
efficiency of the algorithm.

3 Experiments

There are three components to our verification system: (1)
state-by-state checking, (2) gen-use conflict extraction, with the
Verilog code of the corresponding subgraph as output, and (3)
assertion checking using the VIS [5] symbolic model checkerback
end. We have implemented prototypes for (1) and (2) so that the
state-by-state checking, and the gen-use conflict and subgraph
extraction is totally automatic. There might be situations where
no gen-usesubgraphsare generatedeven in the presenceof register
sharing. In that case, VIS would not need to be called. We give
our experiences with two illustrative example designs.

stack

+

0 1 0 1

++

0 1

addr off1 off2

CASE
3 2 1 0

0 1 1 0

ir_next

ir

p

0 1

0off1

0 1

0 1

addr

addr_next

0 1

0 1

maddr

maddr_next

addr

0 1

ir[0,1]

p_next

0 1

0 1

R1

R1_next

addrIstack

0 1

0 1

z

z_next

p[1]p[0]

0 1

raddr_next

R1raddr

NS0=PS0
NS1=PS1⊕PS0
x0=PS0.PS1
x1=PS0.PS1
x2=PS0.PS1
Sel(0)=Sel(5)= x1.c1
Sel(1)=Sel(2)=x2.c4
Sel(3)=Sel(4)=x0
Sel(6)=x1.c3
Sel(7)=Sel(11)=

x1.c2+x1.c3
Sel(8)=Sel(12)=

Sel(14)=x1
Sel(9)=x2.c4
Sel(10)=Sel(15)=x2
Sel(13)=x1.c1+x1.c2

!=

0z (0) (1) (2)
(3)

(4)
(5) (6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
(15)

c0c1c2c3c4 Sel(1)

Sel(15)

v1
v2

NS1
NS0

PS1
PS0

data

Figure 6: Structure graph for RTL implementation of the schedule shown
in Figure 1(a)

The first example that we consider is the schedule of Figure 1.
Its RTL implementation is shown as a structure graph in Figure 6.
For the sake of clarity, all LOGIC nodes have been converted
to the Boolean equations inside the box. Also, the multiplexer
marked (i) has its select input connected to signal Sel(i) and its
output is namedm(i). We focus on variables raddr1 and raddr2
which are mapped to the same register,R1, in the RTL implemen-
tation. Our algorithm for identifying gen-use conflicts (Figure 2)

identified four sub-graphs with gen-use conflicts, resulting from
the assignment of raddr1(raddr2) to in state s1 and the use of
raddr2(radd1) in state s2. In this example, all four cases are
benign gen-use conflicts due to the correlation between the value
of variable p used in the CASE operation in s1 and the variable
z used in the if construct in state s2. One such sub-graph, after
the pruning of irrelevant operations, is shown in Figure 1(c). We
generated Verilog code for the sub-graph, and the CTL assertion
for verifying its benignness. The VIS symbolic model checking
system [5] was able to easily prove the assertion to be true in 2.2
seconds on a Sun Ultra 10 workstation with 246MB memory.

We also performed the state-by-state equivalence check be-
tween the schedule (Figure 1) and the RTL implementation (Fig-
ure 6). We illustrate the process for state s1, whose structure
graph, SSG1 , is shown in Figure 4. For each of the variables not
shown in Figure 4 (maddr, raddr, ir, p), SSG1 contains a PI
node that directly feeds a corresponding PO node, requiring the
variable to retain the previous cycle’s value. The pre-processing
steps assign the values 0 and 1 at the present state lines PS1 and
PS0 in the RTL circuit, and replace the State next and s2 in the
schedule with the bit-vector hNS1;NS0i and the constant h0;1i,
respectively. The symbolic simulation of SSG1 results in the
construction of BDDs for the outputs of the four LOGIC nodes
(u7 . . . u10) of Figure 4 in terms of the basis variables u0 . . . u3.
The equivalence lists of the IN nodes of the RSG are created
based on the input corrrespondences with SSG1. The conditions
for the input equivalence relationships is set to the function 1.
First, the algorithm considers the CASE node in the RSG. The
correspondingCASE node in SSG1 has an equivalent input sig-
nal, c3 . . . c0 inRSG are set to be equivalent tou3 . . . u0 in SSG1 .
Next, the LOGIC nodes corresponding to the Boolean equations
in the box of Figure 6 are processed, leading to the following ex-
pressions: NS1=1, NS0=0, Sel(0)= Sel(5)=u1, Sel(6)=u3, Sel(7)
= Sel(11)=u2, Sel(13)=u1+u2, Sel(1) = Sel(2) = Sel(3) = Sel(4)
= Sel(9) = Sel(10) = Sel(15)=0, Sel(8) = Sel(12) = Sel(14)=1.

The remaining nodes in the RSG

are evaluated leading to the following sequence of conclusions:
m(0) �= (stack; u1); (data;u1) m(1) �= (stack; 1)
m(2) �= (off1;1) m(3) �= (p; 1)
v1 �= (addr next; u1) v2 �= (addr next; u0)
m(5) �= (addr next; uo+ u1) m(4) �= (ir; 1)
m(6) �= (addr next; u2 + u3) m(7) �= (addr next; 1)
m(8) �= �do� m(9) �= (addr next; u0)
m(10) �= (maddr; 1) m(11) �= (R1 next; 1)
m(12) �= �do� m(13) �= (z next; 1)
m(14) �= �do� m(15) �= (raddr; 1)

It can be easily seen that propagating the equivalence lists through
the PO nodes in RSG leads to the desired result.

The second example we would like to discuss is an implemen-
tation of a binary-tree sort algorithm. We cannot give the code
here for lack of space. Suffice to say that the algorithm consists
of two parts: the first part generates the sorted binary tree, while
the second part walks the tree and outputs the data values in the
correct order. The two parts follow each other in time, making it
possible to share registers between variables whose life times are
restricted to one of the two parts. There is little arithmetic in this
algorithm except incrementing the input data index when data is
read in, the < operator when two data are compared, and incre-
menting and decrementing the stack pointer during the tree walk.

The state-by-state comparison is, therefore, quite straightforward
and the schedule and implementation passed this test. The gen-use
test, on the other hand, told us that a gen-use conflict did exist and
that at least one path from gen to use was actually sensitizable.
When we looked at the schedule carefully, we found that an as-
signment to one of the variables sharing the register and the use
of that variable had been incorrectly placed in the same control
state in the tree-walk part of the algorithm. This was, therefore,
a case of a bad specification that got highlighted because it led
to incorrect register sharing. After we corrected the schdule, the
gen-use check also passed trivially since no gen-use subgraph was
generated.

4 Conclusions

We have proposed a complete procedure for verifying register-
transfer logic against its scheduledbehavior in a high-level synthe-
sis environment as the first step in our overall strategy to develop
tools for validating a structural RTL implementation against its
highest level initial description. We believe it is the first such
verification procedure that is both complete and practical. We use
of knowledge of the scope of the synthesis steps to partition the
equivalence checking task into that of proving multiple subprop-
erties, some of which can be checked locally in each control state,
while the others must be checked by checking simple assertions
on the entire state space using a symbolic model checker. By
checking only simple assertions at a time, and by abstracting out
the irrelevant portions of the design in checking each assertion,
we have significantly simplified the task that must be performed
by the symbolic model checker. The entire process of identifying
the assertions to check, performing the abstractions, and carrying
out the checks is automatic. We believe that this practice of taking
advantage of the limitations in the scope of each synthesis step
can be used for validating against levels of abstraction higher than
scheduled behavior.

References

[1] J. Gong, C. T. Chen, and K. Kucukcakar, “Multi-dimensional rule
checking for high-level design verification,” in Proc. Int. High-level
Design Validation & Test Wkshp., Nov. 1997.

[2] R. A. Bergamaschi and S. Raje, “Observable time windows: Verify-
ing high-level synthesis results,” IEEE Design & Test of Computers,
vol. 8, pp. 40–50, Apr. 1997.

[3] S. Minato, “Generation of BDDs from hardware algorithm descrip-
tions,” in Proc. ICCAD, pp. 644–649, Nov. 1996.

[4] R. Camposano and W. Wolf, High-Level VLSI Synthesis. Norwell,
Massachusetts: Kluwer Academic Publishers, 1991.

[5] R. K. Brayton et al., “VIS: A system for verification and synthesis,”
in Proc. CAV, July 1996.

[6] R. A. Bergamaschi, “The Effects of False Paths in High-Level Syn-
thesis,” in Proc. ICCAD, Nov. 1991.

[7] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill, “Symbolic model checking for sequential circuit verification,”
IEEE Transactions on Computer-Aided Design, vol. 13, Apr. 1994.

[8] W. Kunz, “HANNIBAL: an efficient tool for logic verification based
on recursive learning,” in Proc. ICCAD, pp. 538–543, Nov. 1993.

[9] C. Monahan and F. Brewer, “Symbolic modeling and evaluation of
data paths,” in Proc. DAC, pp. 389–394, June 1995.

[10] R. Jones, D. Dill, and J. Burch, “Efficient Validity Checking for
Processor Verification,” in Proc. ICCAD, Nov. 1994.

[11] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based
Procedures for a Theory of Equality with Uninterpreted Functions,”
in Proc. CAV, July 1998.

