

Verification of soundness and other properties of business
processes
Citation for published version (APA):
Oanea, O. I. (2007). Verification of soundness and other properties of business processes. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR631345

DOI:
10.6100/IR631345

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://doi.org/10.6100/IR631345
https://doi.org/10.6100/IR631345
https://research.tue.nl/en/publications/91b31273-0c66-4899-99a9-98553f07ffd4

Verification of Soundness and

Other Properties of Business Processes

Olivia Oanea

Copyright© 2007 by Olivia Oanea. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Oanea, Olivia Ionela

Verification of soundness and other properties of business processes / door
Olivia Ionela Oanea.
Eindhoven : Technische Universiteit Eindhoven, 2007.
Proefschrift. ISBN 978-90-386-11662
NUR 993
Subject headings: Petri nets / software verification / programming / formal
methods
CR Subject Classification (1998): D.2.2, D.2.4, H.4.1, D.3.1, F.1.2, F.3.2, F.4.1,
D.2.5, D.2.11
Keywords: Verification / Modeling / Business processes / Petri nets / Workflow
/ Soundness

The work reported in this thesis has been carried out under the auspices of
Beta Research School for Operations Management and Logistics.

This research was supported by the NWO Open Competition project MoVeBP,
project number 612.000.315

Beta Dissertation Series D101

Printed by University Press Facilities, Eindhoven

Verification of Soundness and

Other Properties of Business Processes

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op dinsdag 11 december 2007 om 14.00 uur

door

Olivia Ionela Oanea

geboren te Iaşi, Roemenië

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. K.M. van Hee

Copromotor:

dr. N. Sidorova

Table of Contents

1 Introduction . 1

1.1 Motivation and Background. 2

1.2 Research Questions . 5

1.3 Related Work . 7

1.4 Overview . 9

2 Preliminaries . 11

2.1 Notions of Set and Graph Theory . 12

2.2 Transition Systems and Behavioral Equivalences 15

2.3 Petri Nets . 17

2.4 Workflow Nets . 21

2.5 Timed Colored Petri Nets . 22

2.6 Convex Geometry . 24

3 Generalized Soundness . 27

3.1 Introduction . 28

3.2 Soundness of Batch Workflow Nets . 29

3.3 Decision Procedure . 31

3.4 Implementation of the Decision Procedure . 36

3.5 Conclusion . 38

4 Adaptive Workflow Nets . 41

4.1 Introduction . 42

4.2 Example: a Medical Protocol . 43

4.3 Adaptive Workflow Nets . 47

4.3.1 Exception Workflow Nets . 47

4.3.2 Adaptive Workflow Nets . 53

4.3.3 Correctness Properties of Adaptive Workflow Nets 57

4.4 Checking Properties of Adaptive Nets . 62

4.4.1 Abstraction . 62

4.4.2 Checking Soundness and Circumspectness . 69

4.5 Related Work . 74

4.6 Conclusion . 74

5 Verifying Extended Event-driven Process Chains . . . 77

5.1 Introduction . 78

5.2 Syntax of Extended Event-driven Process Chains 79

5.2.1 Syntax of EPCs . 80

vi Contents

5.2.2 Syntax of Extended EPCs . 80

5.3 Semantics of eEPCs . 84

5.4 Verification of eEPCs Using CPN Tools . 92

5.4.1 Transformation of eEPCs into TCPNs . 92

5.4.2 Verification . 108

5.5 Related Work and Conclusions . 115

6 Modeling History-dependent Business Processes . . . 117

6.1 Introduction . 118

6.2 LogLogics . 119

6.3 Abstract Timed Words . 123

6.4 Algorithm . 134

6.5 Typical Guards of Interest . 136

6.6 Conclusion . 138

7 Conclusion and Future Work . 139

Bibliography . 143

Index . 153

Summary . 155

Samenvatting . 157

Acknowledgments . 159

Curriculum Vitae . 161

1

Introduction

2 Introduction

1.1 Motivation and Background

Business process modeling

Business processes are nowadays recognized as cornerstones of successful or-
ganizations. Business processes modeling has emerged due to the need of doc-
umenting, communication and knowledge transfer regarding processes in the
business world. Nowadays, companies put more stress on the evaluation, verifi-
cation, optimization and redesign of their processes in order to keep companies
at a competitive level.

In the last two decades a great need for automation of business processes
has risen. In the past, every aspect of business was handled manually and
all the knowledge transfer necessary for supporting the continuity of business
processes and information exchange was done through written or oral commu-
nication. Due to the emergence of ICT and the globalization of enterprises,
more effort has been invested in automating almost every aspect of business
that can be automated, to reduce the time and the costs of human resources. A
typical example are travel agencies, where internet booking has removed human
agents handling the booking. In parallel to this, the need to formalize business
processes has arisen in order to incorporate them into the applications running
the business.

A business process is a set of coordinated tasks or activities, conducted
by both people and other resources, that leads to accomplishing a specific
organizational goal, typically a product or a service.

During the nineties, the focus of Business Process Management has been
on the development of a new type of software components for the enactment
of business processes, so-called WorkFlow Management Systems (WFMSs).
WFMSs are configured by process models; therefore many process modeling
tools have interfaces with workflow management systems in order to develop,
execute and exchange these models. WFMSs can be used stand alone (e.g.
Staffware Process Suite, Filenet, FLOWer, WebSphere MQ Workflow), but
mostly they are integrated with other software components like document
management systems, (e.g. BizTalk). Most enterprise information systems (e.g.
ERP-systems) have nowadays a workflow engine as a component as well. For
instance, SAP WebFlow is the workflow component of SAP offering all the func-
tionality typically present in custom workflow products. WFMSs have appeared
in other application domains, like healthcare creating, but no breakthrough has
happened yet.

Many ad-hoc languages for specification of business processes have been
proposed, e.g. event-driven process chains (EPCs) [41] or flowcharts [108]. The
important vendors of software such as IBM and Microsoft joined forces to de-
velop standard languages to exchange process models (WSBPEL [17], BPMN,
UML activity diagrams [143, 48]). The semantics of business process modeling
languages is mostly often given by a simulator as a part of a modeling tool
(like it is given by compilers for programming languages). At the same time,

1.1 Motivation and Background 3

there exist many academic process modeling languages that do have formal
semantics but they are less appropriate for being used in concrete industrial
application domains.

One of the most well-established process modeling languages in academia is
Petri nets. Petri nets [110, 118] are a well-known formalism for concurrent pro-
cesses, with an intuitive graphical representation which makes them suitable
for the use by both verification specialists and domain experts. Several exten-
sions of Petri nets have been proposed to enhance the modeling power of Petri
nets. One extension is the addition of color [74], which allow to manipulate
data in diverse forms. Special classes of (high level) Petri nets, e.g. hierarchi-
cal colored Petri nets [74] and modular Petri nets [30], have been proposed
to allow compositional modeling of Petri nets. To reflect the object-oriented
paradigm, new Petri net classes have been developed: classes of object oriented
Petri nets [85, 24], “nets in nets” [136], nested nets [93], etc.

In this thesis, we study business process models taking Petri nets as an
underlying concept.

Verification of business processes

As business processes have become more complex, the probability of making
errors in their design has increased. Errors in business processes can cause big
financial losses, therefore the need for identifying and correcting the errors has
become critical. Business process analysis is often performed by walkthroughs
only. Many business process tools have a built-in simulator, which is usually
used for performance analysis (e.g. the Aris Toolset). Simulations can also be
used for model validation and testing, but verification is needed to guarantee
behavioral properties like compliance w.r.t. law regulations. Real-life business
processes are too large and complex to be verified manually, and automated
support is therefore essential.

There are many verification techniques developed for embedded systems
and hardware, which share many features with business processes: they all are
concurrent systems where resources play an essential role. Therefore, verifica-
tion techniques developed for them can be used for the verification of business
processes as well. There are however a number of properties specific for busi-
ness processes. One important correctness criterion is proper termination, which
means that the workflow is always able to finish its job in a proper way and
no garbage is left in the workflow after the workflow has terminated. Another
important correctness criterion is non-redundancy of the tasks of the workflow
which means that all the tasks of the workflow are potentially used in the
execution.

For the verification of business processes a special class of Petri nets has
proven to be useful: the workflow nets [11]. Workflow nets have a special struc-
ture: there is one initial place (with no input transitions) and one final place
(with no output transitions) and all other nodes are on a path from the initial
place to the final place. Workflow nets have been extensively studied in the

4 Introduction

literature [9, 59, 60, 133, 134]. One very important sanity check for workflow
nets is soundness [3], which corresponds to a combination of proper termination
and non-redundancy of transitions.

From the verification point of view, (high-level) Petri nets offer a variety
of verification techniques. Structural properties, e.g. presence of siphons and
traps, can be checked directly on the Petri net and have the advantage of
low computational complexity. Behavioral properties, e.g. reachability, bound-
edness, deadlock-freedom and home markings require often the analysis of the
whole behavior of the net (represented by the set of reachable markings), which
can be infinite. In spite of the large expressive power of Petri nets, most behav-
ioral properties of interest are decidable [51]. However they tend to have high
complexity. For many extensions of Petri nets, however, most of the behavioral
properties become undecidable.

In the remainder we discuss the main directions in tackling the verification
problem.

Model checking

Exhaustive verification, also called model checking [33, 34, 115], has been suc-
cessfully applied to the verification of finite state systems. The main advantage
of model checking is that it can be fully automated and it can reproduce er-
roneous behavior (counterexamples) when the requirements are violated. Petri
nets have the advantage that model checking is decidable for many interesting
properties even when the state space is infinite [51]. For (high-level) Petri nets
with finite state space, model checking properties expressed in temporal logics
(e.g. LTL and CTL) has been thoroughly investigated [125, 87].

The main problem with the application of model checking in practice is
the state space explosion. Several additional methods have been proposed to
alleviate its effects.

Reduction

Reductions are transformations of nets that reduce the size of the state space
or of the net while preserving the properties to be verified. Reductions are
mainly used as an optimization technique before applying exhaustive verifica-
tion. Ideally, reductions should produce a net that is smaller than the orig-
inal net and has the “same” behavior, i.e. has the same behavioral proper-
ties. For instance, symmetry reduction [125] and fusion and replacement under
place bisimulation [126] preserve branching-time behavior. Structural reduc-
tion techniques preserving such behavioral properties as boundedness and live-
ness [22, 21, 57, 22, 44] have been studied thoroughly for Petri nets .

Abstraction

Abstractions [39, 36] define a finite abstract state domain and a transition rela-
tion between the abstract states, which is an approximation of a given behavior

1.2 Research Questions 5

of a system. An abstraction function defines the relation between an abstract
state and its corresponding concrete state(s). Depending on the abstraction
function, the model can have less behavior than the original system (underap-
proximation) or more behavior than the original system (overapproximation).
There are three types of property preservation: weak preservation (when ev-
ery property that is true on the abstract model is true on the concrete model),
strong preservation (when the same properties hold on both the abstract model
and the concrete model) and error preservation (when a property that is vio-
lated on the abstract model is also violated on the concrete model). For Petri
nets, certain abstract domains, e.g. convex polyhedra, polynomials [32], down-
ward closed sets (for the Karp-Miller coverability tree [55]) have been success-
fully applied for proving several properties of nets, like deadlock-freedom and
boundedness.

Compositional verification

Compositional verification has been proposed as a natural way of taking ad-
vantage of the modular design for large nets. Traditionally, there are two ways
to tackle compositional verification: the bottom-up approach and the top-down
approach. In the bottom-up approach, also called modular abstraction, a net
is decomposed into subnets, and each component is model checked separately,
eventually abstracting its environment (the subnets with which it interacts).
Subsequently, following a divide-and-conquer reasoning, properties of the whole
system can be derived from checking properties of the abstracted subnets. The
complementary approach — compositional refinement — starts from some ab-
stract/underspecified net, and by stepwise refinement replaces parts of the orig-
inal net by more detailed net descriptions.

The multitude of verification techniques enumerated above place Petri nets
as relevant candidates for approaching different issues in modeling and analysis
in the business processes domain.

1.2 Research Questions

In this section we identify important issues in business process modeling and
verification that we address in this thesis.

Modular verification of soundness

For large workflow nets, verification can be very expensive. For workflow nets,
the parametrized notion of soundness, called generalized soundness was intro-
duced to build workflows by using refinements [59, 60] in a compositional way.
Generalized soundness guarantees that every marking reachable from an initial
marking with k tokens on the initial place terminates properly, i.e. it can reach
a marking with k tokens on the final place, for an arbitrary natural number

6 Introduction

k. An expensive decision procedure for generalized soundness was described
in [60].

The first research question is to integrate different verification techniques
in order to verify proper termination (soundness) of very large workflows in
an efficient way. In particular we are interested in developing a more efficient
algorithm for the verification of generalized soundness.

Modeling and verification of adaptive workflow

Languages for modeling adaptive business processes have appeared due to the
need of companies to have more flexibility in their business environment as
opposed to classical workflow, where the structure of the business process is
known at design time. A typical example of an adaptive workflow is the medi-
cal guideline-based workflow, where decisions and process changes made at the
level of a doctor have to be transferred to the medical assistant level. Another
important aspect of medical workflows is exception handling [58, 96]. For in-
stance, an exceptional situation at a medical assistant level must be reported
immediately to the doctor level.

Our objective is to propose a method for modeling and verification of adap-
tive workflows appropriate for applications in healthcare.

Modeling and verification of time and data-dependent industrial
business processes

Extended event-driven process chains (eEPCs) form a language for modeling
business processes in ARIS and SAP, documenting industrial reference models
and designing workflows. Like many other business process languages in indus-
try, the semantics of eEPCs are given by the simulator (ARIS ToolSet). Several
formalizations of the EPC semantics were made [2, 86, 78], but none of them
takes data and time into account.

Our research goal is to perform verification of eEPCs by taking data and
time aspects into account. In particular, we are interested in a translation to
colored Petri nets for performing verification of eEPCs with data and time.

Modeling history-dependent business processes

Nowadays, most workflow management systems record events in event logs,
also known as transaction logs, or audit trails. Logs are naturally used to mon-
itor running business processes for performance analysis and decision making,
where decisions depend on the previous execution of the workflow [117, 8]. Our
objective is to specify formally and evaluate history-based guards in business
processes. As a side question, we would like to find the most common patterns
for specifying such guards.

Figure 1 shows an overview of the reseach questions we are tackling in this
thesis.

1.3 Related Work 7

Fig. 1: Overview of the research topics

1.3 Related Work

In this section, we review some related work. Each separate chapter will discuss
relevent literature in more detail.

Modular verification of soundness

Many classes of nets that preserve properties by refinement/abstraction were
introduced, e.g. well-formed nets [135], well-behaved nets [129], modules [26],
open interface nets [27] and re-entrant nets [28]. Most of these results focus
on defining properties that subnets should possess in order to preserve gen-
eral properties like boundedness, liveness or deadlock-freedom, and discuss
the decidability status of those properties and not the practical application
to specific properties of business processes. Other approaches, e.g. incremental
verification [90] and modular verification [88], focus on finding better represen-
tations of modular state spaces with respect to some temporal or net property
to be verified. For workflow nets, a parametrized notion of soundness (gen-
eralized soundness) was introduced to verify soundness of workflows by using
refinement [59, 60] in a compositional way. Furthermore, in [60] a procedure
is described that uses abstraction for the check of generalized soundness for
workflow nets. Workflow soundness check is implemented in Woflan [138].

Modeling and verification of adaptive workflow

Adaptive workflow concepts have been introduced due to the need of companies
to support dynamic changes in their business processes [50]. Many formalisms
and corresponding compliance criteria have been proposed in order to cope with
the so-called “dynamic change bug” that appears when transferring the state
of the old workflow to the state of the changed workflow [4, 142, 121]. There

8 Introduction

are several trends: total change of the structure of the workflow with history-
based compliance [121] and structured change using Petri net transformations
that preserve properties of the initial workflow [5]. Another approach to deal
with adaptive workflows was proposed in [109], where the user can modify
behavior at runtime by introducing new requirements specified in a graphical
language based on the linear time logic (LTL). These approaches struggle with
large workflows, where separation of concerns and reuse of existing workflows is
crucial. A lot of attention has been devoted to adaptive medical workflow with
exception handling [58, 96] in the attempt to implement adaptive workflow
using the object-oriented approach. However, these approaches do not support
any verification of workflows.

Modeling and verification of time and data-dependent business pro-
cesses

Many industrial languages are very close or even inspired by Petri nets, e.g.
UML activity diagrams [48] and EPCs [41]. There exist workflow management
systems that use (extensions of) Petri nets as a process modeling language, e.g.
ARIS, Cosa and Staffware. There are academic tools which use (colored) Petri
nets within WFMS for simulation purposes, e.g. CPN Tools [37], Exspect [13]
(used in Protos) and Yasper [63]. Since simulation cannot cover all the behavior
of a business process, not all errors can be found automatically.

There are many translations of informal business process languages to for-
mal languages for verification purposes, e.g. WS-BPEL to Petri nets [71] verified
with LoLA [124], EPCs without data and time to Petri nets [2, 43] verified with
Woflan [138] and LoLA [124]. However most of them concentrate on the control
flow and “abstract” from data and time. Abstractions from data and time are
not reliable since they result in both removal and addition of behavior. There-
fore performing verification on the “abstraction” can give false errors which
cannot be encountered in the model with data and time for some models, and
positive verification report for other models whose original is erroneous.

Modeling history-dependent business processes

Most WFMSs typically support logging capabilities that register the execution
of business processes by means of audit trails or history logs. There are sev-
eral purposes of using logs: for monitoring and administration, for performance
analysis, redesign of business processes and process mining [83], for the support
of dynamic changes in adaptive workflows [121], and for control-flow decisions
during workflow executions [105]. Most approaches for querying logs at runtime
use database querying methods (e.g. [105, 83]), which is not suitable for the
verification of temporal properties. Moreover, timing of logged events is essen-
tial, whereas in database languages there are very few constructs to deal with
it. The suitability of using Petri nets with history logs was motivated in [66].

1.4 Overview 9

1.4 Overview

Chapter 2 provides a review of some mathematical notions and some notions
from computer science that are used in the rest of the thesis.

In Chapter 3, we improve the decision procedure from [60] for the problem
of generalized soundness of workflow nets. We report on experimental results
obtained with the prototype implementation we made. Furthermore, we show
how this procedure can be used to prove soundness by reduction of generalized
sound subworkflow nets. Since the generalized soundness check is still expen-
sive, we show how we can use transformation techniques that preserve liveness
and boundedness of the workflow and incorporate these transformations in the
soundness check for large workflows.

In Chapter 4, we consider adaptive workflow nets, a subclass of nested nets
that allows more comfort and expressive power for modeling adaptation and
exception handling in workflow nets. We illustrate our new modeling approach
by choosing a running example from the healthcare domain, which is a typical
domain for adaptive workflow. We define several behavioral properties of adap-
tive workflow nets, among which soundness and proper handling of exceptions.
For adaptive workflows, we employ compositional verification of soundness and
circumspectness by using abstractions.

In Chapter 5 we consider Extended Event-driven Process Chains (eEPCs),
a language which is widely used for modeling business processes, documenting
industrial reference models and designing workflows. We describe how to trans-
late eEPCs into timed colored Petri nets in order to verify processes given by
eEPCs with the CPN Tools.

Chapter 6 treats choices in business processes that are based on the process
history saved as a log-file listing events and their time stamps. We introduce
LogLogics, a finite-path variant of the Timed Propositional Temporal Logic
with Past, which can be in particular used for specifying guards in business
process models. We reduce the check of the truth value of a LogLogics formula
to a check on a finite abstraction and present an evaluation algorithm. We also
define LogLogics patterns for commonly occurring properties.

Chapter 7 draws general conclusions and gives directions for future work.

2

Preliminaries

This chapter reviews some mathematical notions and some notions
from computer science that will be used in the remainder of the
thesis.

12 Preliminaries

2.1 Notions of Set and Graph Theory

We review here some basic notions of the set and graph theory (see [91] for
more details).

Set theory

We use standard notation for sets and set operations. We recall some notations:
the empty set is denoted by g, element inclusion by >, set intersection by 9,
set union by 8, set difference by �, set inclusion by b and strict set inclusion
is denoted by `.

We denote the set of natural numbers by N, the set of non-zero natural

numbers by N� def� N��0�, the set of integers by Z, the set of rational numbers
by Q, the set of non-negative rational numbers by Q�, the set of real numbers
by R, and the set of positive real numbers by R�.

Definition 2.1. [Binary relation]
A binary relation R over two sets S and S� is a subset of S � S�. The do-

main of the relation R, denoted by Dom�R�, is given by Dom�R� def� �a >
SS§b > S�� �a, b� > R� and the codomain of R, denoted by Ran�R�, is given by

Ran�R� def� �b > S�S§a > S� �a, b� > R�. If S � S�, we say that R is a relation over
S. We write a R b iff �a, b� > R.

Let R,R� be binary relations over S.

– R0 � ��s, s�Ss > S� is called the identity relation over S;

– R�1 denotes the converse relation of R, i.e. R�1 def� ��b, a�S�a, b� > R�;
– R 8R� def� ��a, b�S�a, b� > R - �a, b� > R�� is the union of R and R�;

– R X R� def� ��a, c�S§b > S� �a, b� > R , �b, c� > R�� is the composition of the
relations R and R�.

– Rj�1 def� Rj XR, for j C 0;

– R� def� �jC1 Rj is the transitive closure of R;

– R� def� �jC0 Rj is the transitive reflexive closure of R;

– �R 8R�1�� is the symmetric, reflexive and transitive closure of R.

A binary relation f over A and B is called a partial function if�¦a1, a2 > A¦b1, b2 > B���a1, b1� > f , �a2, b2� > f , a1 � a2 � b1 � b2�.
We write f �A 9 B iff f is a partial function with Dom�f� b A and Ran�f� b B

and f�a� � b iff �a, b� > f . A partial function f �A 9 B is called a function,
denoted by f �A� B if Dom�f� � A.

Let f �A� B be a function and A� b A. We define the restriction of f to A�

as the function fSA� �A� � B such that for all a > A�, f ��a� � f�a�.

2.1 Notions of Set and Graph Theory 13

Let f �A 9 B be a partial function, a > A and b > B. We define the (partial)
function f�a(b��A 9 B as:

f�a(b��y� � ¢̈̈̈̈̈¦̈̈̈̈̈¤
b if y � a;

f�y� if y > Dom�f� � �a�.
Definition 2.2. [Bag]
A bag (multiset) over a non-empty finite set S is a mapping m�S � N. The
non-negative number m�s� > N denotes the number of occurrences of the element
s > S in bag m. The set of all bags over S is NS.

Let m,m� > NS .

– m � m��S � N is the sum of bags m and m� defined as �m � m���s� def�
m�s� �m��s� for all s > S;

– m�m��S � N is the difference of bags m and m� defined as �m�m���s� def�
max�0,m�s� �m��s�� for all s > S;

– m � m� iff m�s� � m��s� for all s > S;
– m B m� iff m�s� B m��s� for all s > S;
– m @ m� iff m B m� and m ~� m�.

We overload g and > to denote the empty bag and element inclusion, i.e. m � g
if m�s� � 0 for any s > S and s > m iff m�s� A 0, respectively. We write
m � 2�a� � �b� for a bag m with m�a� � 2, m�b� � 1 and m�x� � 0 for any
x > S � �a, b�.
Definition 2.3. [sequence] Let Σ be a finite set and ε ¶ Σ.

– A finite sequence of length n > N� over Σ is a mapping σ��1, . . . , n� � Σ.
We write ã for the sequence �1�� �a�, for some a > Σ.

– The empty sequence (of length 0) over Σ is the mapping σ� g� Σ, denoted
by ε.

– An infinite sequence over Σ is a mapping σ�N� � Σ and we say that the
length of an infinite sequence is ω (infinite), where we define ω A n, for all
n > N.

We denote the length of a sequence σ by SσS.
We denote the set of all finite sequences (of length n C 0) over Σ by Σ�.
The concatenation of two sequences σ,σ� > Σ�, denoted by σσ�, is ε if σ �

σ� � ε and the sequence σσ���1, . . . , SσS � Sσ�S�� Σ otherwise, where

�σσ���i� � ¢̈̈̈̈̈¦̈̈̈̈̈¤
σ�i� if 1 B i B SσS
σ��i � SσS� if SσS @ i B SσS � Sσ�S.

14 Preliminaries

Let Σ and Σ� be two finite sets (alphabets). Let h�Σ � Σ�� be a function
assigning to each element of a > Σ a finite word σ over Σ�. The homomorphic
extension of h to Σ��, is the function h�Σ� � Σ�� defined by h�ε� � ε and
h�σσ�� � h�σ�h�σ�� for all σ,σ� > Σ�.

We define the projection from sequences over Σ to sequences over Σ1 b Σ as
a homomorphic extension of σSΣ1

�Σ � Σ�
1 such that h�ã� � ε for all ã > Σ �Σ1

and h�ã� � ã for all a > Σ1.

Lemma 2.1. [Dickson [46]]
Every infinite set of bags over a finite set contains an infinite increasing (w.r.t.
@) sequence.

Graph Theory

Definition 2.4. [directed graph]
A directed graph is a tuple G � �V,A�, where V is a set of vertices and A b V �V

is a set of arcs. Every arc a > A is a pair �v1, v2� > V �V consisting of the input
vertex v1 and the output vertex v2.

Definition 2.5. [bipartite graph]
A bipartite graph is a directed graph G � �V1 8 V2,A�, where V1 9 V2 � g and
A b �V1 � V2� 8 �V2 � V1�.
Definition 2.6. [multigraph]
A multigraph is a tuple G � `V,A,W e, where �V,A� is a graph and W is a bag
of arcs over A.

Definition 2.7. [path]
A path σ of length n > N in a graph G � �V,A� is a finite sequence of vertices
σ � v1 . . . vn (vj > V for j � 1, . . . , n) such that each pair �vj , vj�1� > A (j �
1, . . . , n � 1). We call n the length of path σ and denote it by SσS. The empty
path is the empty sequence ε that has the length SεS � 0.

We denote the set of all finite, possibly empty, paths by V � and the set of all
finite non-empty paths by V �.

A path σ is a prefix of a path γ if there is a path σ� such that γ � σσ�.

Definition 2.8. [weakly connected, strongly connected]
A graph G � �V,A� is weakly connected if for every two vertices v1, v2 > V ,�v1, v2� > �A8A�1��. A graph G � �V,A� is strongly connected if for every two
vertices v1, v2 > V , �v1, v2� > A�.

We denote the set of output vertices of v > V as vY, i.e. vY def� �v�S�v, v�� > A�.
Similarly, Yv def� �v�S�v�, v� > A� is the set of input vertices of v > V . Given a set

of vertices X b V , we define YX def� �v>X Yv and XY def� �v>X vY. We also write
vY � y, when vY � �y�.

2.2 Transition Systems and Behavioral Equivalences 15

We denote the set of ingoing arcs of a vertex v > V as Ain
v , i.e. Ain

v ���x, v�Sx > Yv� and the set of outgoing arcs of v as Aout
v , i.e. Aout

v � ��v, x�Sx >
vY�. In case Ain

v is singleton, ain
v denotes the ingoing arc of the vertex v. Simi-

larly, if Aout
v is singleton, aout

v denotes the outgoing arc of the vertex v.

2.2 Transition Systems and Behavioral Equiva-

lences

In this section, we define labeled transition systems and semantic equivalences
on them. First we provide some necessary definitions about transition systems
and their traces and then introduce some equivalence relations.

Definition 2.9. [Labeled transition system]
A labeled transition system is a tuple U � `S,Σ,�, s0e where S is a set of
states, Σ is a finite set of labels, �b S � Σ � S is a transition relation and
s0 > S is an initial state.

We denote �s1, a, s2� >� as s1

a� s2, and we say that s2 is reachable from s1

by an action labeled by a. For a sequence of labels σ � a1�an > Σ� we write

s1

σ� s2 when s1 � s0
a1� s1

a2� . . .
an� sn � s2, and s1

σ� when s1

σ� s2 for some

s2. In this case we say that σ is a trace of U . Finally, s1

�� s2 means that s2 is

reachable from s1, i.e. there exists a sequence σ > Σ� such that s1

σ� s2.
When analyzing a transition system, we may vary the level of detail at which

it is observed. We thus distinguish between visible and invisible behavior. We
use the label τ > Σ to denote invisible actions and write s1 � s2 when s1 � s2

or s1

τ� � τ� s2. We write s1

a� s2 if s1 � s�1
a� s�2 � s2. For a sequence of

labels σ � a1�an > Σ� we write s1

σ� s2 when s1 � s0
a1� s1

a2� . . .
an� sn � s2,

and s1

σ� when s1

σ� s2 for some s2. In this case we say that σ is a trace of U .

Finally, s1

�� s2 means that s2 is reachable from s1, i.e. there exists a sequence

σ > Σ� such that s1

σ� s2.
To compare the behavior of two transition systems a number of equivalences

have been proposed in the literature (see [56] for an overview).

Definition 2.10. [strong trace equivalence]

The strong trace set of a labeled transition system U is �σ > Σ�Ss0

σ��. Two
labeled transition systems are strongly trace equivalent iff their strong trace sets
are equal.

Definition 2.11. [weak trace equivalence]

The weak trace set of a labeled transition system U is �σ > �Σ � �τ���Ss0

σ��.
Two labeled transition systems are weakly trace equivalent iff their weak trace
sets are equal.

16 Preliminaries

Definition 2.12. [simulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a simulation iff for all s1, s
�
1 > S1, s2 > S2 such

that s1 R s2 and s1

a�1 s�1, there exists s�2 > S2 such that s2

a�2 s�2 and s�1 R s�2,
and moreover s1

0 R s2
0. We say that U2 can simulate U1 if there exists such a

simulation relation R between them.

Definition 2.13. [weak simulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a weak simulation iff for all s1, s
�
1 > S1, s2 > S2

such that s1 R s2 and s1

a�1 s�1, there exists s�2 > S2 such that s2

a�2 s�2 and
s�1 R s�2, and moreover s1

0 R s2
0. We say that U2 weakly simulates U1 if there

exists such weak simulation relation R between them.

Definition 2.14. [branching simulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a branching simulation iff s1
0 R s2

0 and for all

s1, s
�
1 > S1, s2 > S2 such that s1 R s2 and s1

a�1 s�1, either

1. a � τ and s�1 R s2 or

2. there exist s1, . . . , sn, s�2 > S2 such that s2

τ�2 s1 τ�2 . . .
τ�2 sn a�2 s�2, s1 R si

for all i � 1..n, and s�1 R s�2.

Definition 2.15. [bisimulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a bisimulation iff R and R�1 are simulations.
We say that U1 and U2 are bisimilar and write U1 -s U2 iff there exists a
bisimilation R between them.

Definition 2.16. [weak bisimulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a weak bisimulation if R and R�1 are weak
simulations. We say that U1 and U2 are weakly bisimilar and write U1 -w U2

iff there exists a weak bisimilation R between them.

Definition 2.17. [branching bisimulation]
Let U1 � `S1,Σ,�1, s

1
0e and U2 � `S2,Σ,�2, s

2
0e be two labeled transition sys-

tems. A relation R b S1 � S2 is a branching bisimulation iff if R and R�1 are
branching bisimulations. We say that U1 and U2 are branching bisimilar and
write U1 -br U2 iff there exists a branching bisimilation R between them.

2.3 Petri Nets 17

2.3 Petri Nets

This section presents an introduction to Petri nets as a formalism for modeling
and analysis of concurrent systems. Further, some basic structural and behav-
ioral properties of nets that are used in this thesis are defined (see [110, 104, 118]
for more details).

Petri nets were introduced by Carl Adam Petri in [111] and have been
intensively applied in many fields like communication, manufacturing, hardware
and software engineering, and business process management (see [45] for a
review).

Definition 2.18. [(Labeled) Petri nets]
A Petri net is a tuple N � `P,T,F �, F �e, where

– P and T are two disjoint non-empty finite sets of places and transitions
respectively;

– F � and F � are mappings �P �T �� N called flow functions from transitions
to places and from places to transitions respectively.

A labeled Petri net is a tuple `P,T,F �, F �, le, where `P,T,F �, F �e is a Petri
net and l�T � Σ is a labeling function mapping each t > T to some label l�t� > Σ,
where Σ is a finite label set.

A Petri net can be represented graphically as a bipartite multigraph, i.e.
a directed multigraph where the set of vertices is partitioned into two sets
(places and transitions). When the multiplicity of the arcs is 1, i.e. F � and
F � are defined on �P � T � � �0,1�, we also write N � `P,T,A, le, where
A b �P � T � 8 �T � P � is the set of arcs between places and transitions and
conversely, called the flow relation of N .

Definition 2.19. [incidence matrix]
Let N � `P,T,F �, F �e be a Petri net. We say that F � F ��F � is the incidence
matrix of net N .

Definition 2.20. [Parikh vector]
Let N � `P,T,F �, F �e be a Petri net and σ be a sequence of transitions. The
Parikh vector Ð�σ �T � N of σ maps every transition t of σ to the number of
occurrences of t in σ.

We use the following notations:

– �pY�N
def� Pt>T F ��p, t��t� is the bag of output transitions of a place p > P ;

– �tY�N
def� Pp>P F ��p, t��p� is the bag of output places of a transition t > T ;

– �QY�N
def� �p>Q�tSt > pY� is the set of output transitions of a set of places

Q b P in N ;

– �Yp�N
def� Pt>T F ��p, t��t� denotes the bag of input transitions of a place

p > P in N ;

18 Preliminaries

– �Yt�N
def� Pp>P F ��p, t��t� denotes the bag of input places of a transition

t > T in N ;

– �YQ�N
def� �p>Q�tSt > Yp� the set of input transitions of a set of places Q b P

in N .

We write Yp (Yt), pY (tY), YQ and QY, respectively when N is clear from the
context. A place p with Yp � g is called a source place and a place q with qY � g
is called a sink place.

The state (configuration) of a net is given by its marking that represents
the distribution of tokens in the places:

Definition 2.21. [marking, marked net]
A marking of a (labeled) Petri net N is a mapping m�P � N that assigns a
number of tokens to each place p > P . A (labeled) marked Petri net is a tuple�N,m�, where N is a (labeled) Petri net and m is a marking.

We interpret markings both as P -dimensional column vectors and as bags
over P . Let p > P ; then p̄ denotes the vector such that p̄�p� � 1 and p̄�p�� � 0 for
all p� > P such that p� ~� p. Let the vector 0̄ represent the zero vector (marking)
whose length is context-defined, i.e. 0̄�i� � 0, for all i > �1, . . . , SP S�. Similarly,
we interpret the flow functions as bags over P �T and as SP S� ST S matrices over
N with the usual matrix operations.

Definition 2.22. [enabling condition, firing]

1. A transition t > T is enabled in a marking m, denoted by m
tÐ�, if

F ��p, t� B m�p�, for all p > P .
2. If t is enabled in a marking m, t may fire yielding a new marking m�,

denoted by m
tÐ� m�, where m��p� � m�p� � F ��p, t� � F ��p, t�, for all

p > P .

We extend the firing rule homomorphically to sequences of transitions σ > T �,
denoted by m

σÐ�m�:

– m
εÐ�m for all m;

– if m
σÐ�m� and m� tÐ�m�� for some markings m,m�,m��, σ > T � and t > T ,

then m
σtÐ�m��.

Let �N,m� be a marked labeled Petri net. We extend the labeling function l

homomorphically to sequences of transitions, i.e. l�σ� � l�t1� . . . l�tn� for some
σ � t1 . . . tn > T � and n C 1.

Definition 2.23. [reachable marking]

We say that a marking m� is reachable from a marking m and write m
�Ð�m�

if there exists σ > T � such that m
σÐ�m�.

We denote the set of all markings of N reachable from m by R�N,m�, i.e.

R�N,m� def� �m�Sm �Ð� m��. Similarly, S�N,m� denotes the set of markings

2.3 Petri Nets 19

of N that can reach m, i.e. S�N,m� def� �m�Sm� �Ð� m�. The set of markings
reachable from (that can reach) m by firings of transitions from T � b T is
denoted by RST ��N,m� (SST ��N,m�).

The transition system of �N,m� is `R�N,m�, T,Ð�,me, which is also known
as the reachability graph of �N,m�.
Definition 2.24. [home marking, home space]
Let �N,m0� be a marked Petri net, m a marking and M a set of markings of
N . We say that m is a home marking iff m is reachable from all markings of
R�N,m0�. We say that M is a home space iff for every marking m >R�N,m0�,
there is a marking m� > M such that m

�Ð�m�.

Definition 2.25. [t-quasi-liveness, quasi-liveness]
A marked net �N,m0� is t-quasi-live, i.e. t is not dead iff there exists a marking

m > R�N,m0� such that m
tÐ�. A marked net �N,m0� is quasi-live iff N is

t-quasi-live for all t > T .

Definition 2.26. [t-liveness, liveness]
A marked net �N,m0� is t-live iff for all markings m > R�N,m0� there exists

a marking m� such that m
�Ð�m� and m

tÐ�. A marked net �N,m0� is live iff�N,m0� is t-live for all t > T .

Definition 2.27. [boundedness]
A marked net �N,m0� is bounded iff there exists n > N such that for all m >
R�N,m0�, m�p� B n for all p > P .

Proposition 2.1. [Marking equation][103]
Let N � `P,T,F �, F �e be a Petri net. For every finite sequence σ of transitions

such that m
σÐ�m�, the following equation holds: m� � m � F �Ð�σ .

Note that the reverse is not true: not every marking m� that can be represented
as m � F � x, for some x > NT , is reachable from the marking m.

Definition 2.28. [trap, siphon][35]
Let N � `P,T,F �, F �e be a Petri net. A subset of places Q b P is called a trap
if QY b YQ. A subset Q b P is called a siphon if YQ b QY. A trap or a siphon is
called proper iff it is nonempty.

Traps have the property that once marked they remain marked, whereas un-
marked siphons remain unmarked whatever transition sequence occurs:

Proposition 2.2. [Fundamental properties of traps/siphons][44]
Let N be a Petri net and m be a marking of N .

20 Preliminaries

Algorithm 1: MaxSiphon(N,P �)
Input: N , P � b P

Output: Q b P �

Q �� P �;
while there exists a q > Q and t > Yq such that t ¶ QY do

Q �� Q � �q�
end

return Q

Algorithm 2: MaxTrap(N,P �)
Input: N , P � b P

Output: Q� b P �

Q� �� P �;
while there exists a q > Q� and t > qY such that t ¶ YQ do

Q� �� Q� � �q�
end

return Q�

1. Marked traps remain marked, i.e. if Q is a proper trap of N and Pq>Q m�q� A
0 then Pq>Q m��q� A 0 for all m� >R�N,m�.

2. Unmarked siphons remain unmarked, i.e. if Q is a proper siphon of N and

Pq>Q m�q� � 0 then Pq>Q m��q� � 0 for all m� >R�N,m�.
The existence of a siphon/trap within a given set of places can be checked

using Starke’s algorithm [128] which is polynomial in the size of the net. Algo-
rithm 1 computes the largest siphon Q that is contained in a given set of places
P � b P . The largest trap Q� contained in a given set of places P � b P can be
computed similarly (see Algorithm 2).

Definition 2.29. [Place invariants][89]
Let N � `P,T,F �, F �e be a Petri net. A place invariant is a row vector I � P � Q

such that I � F � 0̄. The solutions to the equation I � F � 0̄ form the space of all
place invariants. We denote by I a matrix whose rows are vectors forming a
basis1of the space of place invariants.

We say that markings m and m� agree on a place invariant I if I � m � I � m�.

Proposition 2.3. [marking conservation][44]

Let N be a net and m,m� two markings such that m
�Ð�m�. Then m1 and m2

agree on all place invariants, i.e. I � m � I � m�.

1 A maximal linearly independent set of vectors

2.4 Workflow Nets 21

i f i f

t̄

Fig. 2: Example of a sound WF net (left) and its closure (right)

2.4 Workflow Nets

Workflow management systems [9, 11] can be modeled by workflow nets (WF-
nets), i.e. Petri nets with one initial and one final place and every place or
transition being on a directed path from the initial to the final place.

Definition 2.30. [Workflow net]
A net N is a workflow net (WF-net) iff

– N has two special places i and f . The initial place i is a source place, i.e.
Yi � g, and the final place f is a sink place, i.e. fY � g.

– Every vertex v > P 8 T is on a path from i to f .

The execution of a case is represented as a firing sequence that starts from
the initial marking consisting of a single token on the initial place. The token
on the final place with no garbage (tokens) left on the other places indicates the
proper termination of the case execution. A workflow is called sound iff every
reachable marking can terminate properly and all transitions can eventually
fire.

Definition 2.31. [Soundness][9]
A WF-net N is sound iff

1. R�N, ī� b S�N, f̄�;
2. �N, ī� is quasi-live.

Definition 2.32. [closure of a WF-net][9]
The closure of a WF-net N � `P,T,F �, F �e is a net N̄ � `P,T 8 �t̄�, F̄ �, F̄ �e,
where F̄ ��i, t̄� � F̄ ��f, t̄� � 0, F̄ ��i, t̄� � F̄ ��f, t̄� � 1, F̄ ��p, t� � F ��p, t� and
F̄ ��p, t� � F ��p, t� for all �p, t� > P � T .

Figure 2 shows a sound WF net and its closure.

Lemma 2.2. [9] A WF-net N is sound iff its closure N̄ is live and bounded.

22 Preliminaries

2.5 Timed Colored Petri Nets

This section introduces the notion of timed colored Petri net [74].

Let U be a finite set of colors (types) which we call untimed and T ¶ U be a
non-negative integer domain which we call time domain. A timed color (type) is
a color Y �T, where Y > U . We denote the non-timed color of a timed type Y by
π1�Y �. Let Const be a finite set of constants and V a finite set of variables. Let
Expr be a set of expressions built over the constants and variables from Const
and V having the form te � e@� e�, where e is an expression over variables and
constants and e� > T. We denote the type of an expression e > Expr by Type�e�
and the set of variables of e by Var�e�. In the sequel, we denote the timed part
of timed expressions te by tet. If te � e@ � 0, we write te � e.

Definition 2.33. [timed bag]
A timed bag tm over a non-empty set S is a function tm� �S � T� � N such

that the sum tm�s� def� Pι>T tm�s, ι� is finite for all s > S.

We denote the number of occurrences of the element s > S in the bag tm by
tm�s� and the time list of s by tm�s� � �ι1, ι2, . . . , ιtm�s��, i.e. tm�s� contains
the time values ι > T for which tm�s, ι� ~� 0. Each ι appears tm�s, ι� times
in the list, which is sorted such that ιi B ιi�1 for 1 B i B tm�s� � 1. A timed
bag is represented by Ps>S tm�s��s@tm�s� and an untimed bag is represented
as Ps>S tm�s��s. For an ordinary bag m and a time value ι, m�s�ι denotes

the timed bag obtained from tm�s� by adding time stamp ι, i.e. m�s�ι def�
Ps>S m�s��s@�ι, . . . , ι�. Similarly, tm�s��ι is the timed list obtained from tm�s�
by adding ι to all time stamps in the list and tm�r is the bag obtained from
tm where all timed elements of tm have their time stamps increased by ι.

We define comparison and subtraction of time lists l and l�. We write l ��l1, . . . lm� B l� � �l�1, . . . , l�n� iff m B n and li C l�i for all i > �1, . . . ,m�. When
l B l�, l� � l is defined as a list of length n �m obtained from l� in the following
way: we remove from l� the largest element which is smaller than l1; from the
remaining list, we remove the largest time value which is smaller than l�2, etc.
For all timed bags tm1, tm2:

– tm1 B tm2 iff ¦s > S, tm1�s� B tm2�s�;
– if tm1 B tm2, tm1 � tm2 � Ps>S�tm1�s� � tm2�s���s@�tm1�s� � tm2�s��.

Definition 2.34. [TCPN]
A timed colored Petri net (TCPN) is a tuple N � `P,T,A,E ,Gd,C, cd,V, le,
where

– `P,T,A, le is a labeled Petri net;

– C is a set of timed colors (types);

– cd�P � C is a color mapping for places;

2.5 Timed Colored Petri Nets 23

– E is an arc expression function which maps each arc to a bag of expressions
which the same type as the color of the place of the arc, i.e. for all �p, t� >�P � T � 9 A, E�p, t� > N�e>ExprSType�e��cd�p�,et�0� and for all �t, p� > �T �
P � 9A, E�t, p� > N�e>ExprSType�e��cd�p��;

– Gd�T � Expr is a guard function satisfying Type�Gd�t�� � �true, false�;
by default guards are set to true;

– V is a finite set of variables.

A binding b of t > T maps variables v > �a>A9��P��t��8��t��P �� Var�E�a�� 8
Var�Gd�t�� to some value b�v� > Type�v�. The set of all bindings of t is denoted
by B�t�.
– A timed token element is a pair ��p, c�, ι�, where p > P and �c, ι� > cd�p�.
– A binding element is a pair �t, b�, where t is a transition and b > B�t�.

We extend the bindings of t to guards, i.e. b�Gd�t�� > �true, false�; to the
untimed part of timed arc expressions, i.e. b�e� > π1�cd�p�� for all e > E�p, t� and�p, t� > A9�P �T � and b�e� > π1�cd�p�� for all e > E�t, p� and �t, p� > A9�T �P �.

A marking is a bag of timed token elements. A step is a bag of binding
elements.

A state of a TCPN N is a pair �M, ι�, where M is a marking and ι is a
time value called the creation time. The initial state is the pair s0 � �M0, ι0�.

Let M be a marking. We denote the bag over the color set of the place by

M�p� def� P��p,c�,ι�>M M��p, c�, ι���c, ι��.
We define the transition relation which consists of two kinds of steps —

untimed and timed2:

– A binding element �t, b� is enabled in a state �M, ι� at time ι iff b�Gd�t�� �
true and

¦p > P � Q
e>E�p,t��p,t�>A9�P�T �E�p, t��e��b�e�ι� B M�p�.

Then the binding element �t, b� can fire resulting in state �M �, ι� and we

write �M, ι� �t,b�Ð� �M �, ι�, so that for all p > P

M ��p� � M�p� � Q
e>E�p,t��p,t�>A9�P�T �E�p, t��e��b�e�ι��

Q
e>E�t,p��t,p�>A9�T�P �E�t, p��e��b�e�ι�et�.

– Let ι� A ι be the smallest time at which a binding element �t, b� can become
enabled in a state �M, ι�. Then, a clock step takes place increasing the

global time. We write �M, ι� ι��ιÐ� �M, ι��.
2 We make the time step explicit in contrast with the semantics from [74] in order

to be able to verify properties which take time into account.

24 Preliminaries

Note that the above definitions hold when all places have a timed type.
For the case when the color of a place p is untimed, we also write �p, c� for
token elements and the definitions above hold by leaving time stamp out. In
the sequel, we use both notations for untimed places.

We write �M, ι� �t,b�Ð� �M �, ι��, and �M, ι� t� �M �, ι�� if there exists a binding

b > B�t� such that �M, ι� �t,b�Ð� �M �, ι��. As usual, we extend this relation to

sequences of binding elements and time values σ and write �M, ι� σÐ� �M �, ι��
and �M, ι� �Ð� �M �, ι�� if there exists a sequence of binding elements and time

values such that �M, ι� σÐ� �M �, ι��. We denote the set of reachable states of N

by S�N, s0� � �sSs0

�Ð� s�. The labeled transition system ofN is `S�N , s0�,Σ8
T,Ð�, s0e.
2.6 Convex Geometry

Here we give some mathematical definitions and results we need (see e.g. [127]
for more details). Let D > �N,N�,Z,Q,R� denote a generic numerical domain.
For n > N�, we denote by Dn the set of vectors with n components which take
their values over D.

Definition 2.35. [convex set]
A vector u � α1 � u1 �α2 � u2 � . . . �αk � uk where the αi are nonnegative scalars
from D such that Pk

i�1 αi � 1 is called a convex combination of the vectors
u1, u2, . . . , uk from Dn.

A set Q b Qn is convex iff for all pairs of vectors u1, u2 any convex combi-
nation of them is also in Q.

Definition 2.36. [cone]
A set of vectors C b Dn is called a cone if, for every vector u > C and every
nonnegative λ, λ � u > C.

There are two equivalent definitions of convex polyhedral cones.

Definition 2.37. [convex polyhedral cone]

– constraint representation A convex cone C is polyhedral if C � �x S
A � x B 0̄� for some matrix A > Dn�m, i.e. C is the intersection of finitely
many linear half-spaces.

– generator representation A convex polyhedral cone C over Dn with a

finite set of generators E b Dn is C
def� �Pe>E αe � eSαe > D��.

A trivial generator is a vector j, for some 1 B j B n, such that j�j� � 1 and
j�j�� � 0 for all j� > �1, . . . , n� � �j�.

For any two convex polyhedra X,Y > Dn, the intersection of X and Y is
defined as the set intersection X 9 Y and the sum of X and Y is defined as
X � Y

def� �x � y > DnSx > X , y > Y �.

2.6 Convex Geometry 25

Lemma 2.3. [127] Let X,Y be convex polyhedral cones. Then X�Y and X9Y

are convex polyhedral cones.

Computing the intersection of two polyhedra is easier if the polyhedra are
given in the constraint representation, whereas the addition of two polyhedra
is computed easier in the generator representation.

26 Preliminaries

3

Generalized Soundness

We improve the decision procedure from [60] for the problem of
generalized soundness of workflow nets. A workflow net is gen-
eralized sound iff every marking reachable from the initial mark-
ing with k tokens on the initial place terminates properly, i.e. it
can reach a marking with k tokens on the final place, for an ar-
bitrary natural number k. Our new decision procedure not only
reports whether the net is sound or not, but also returns a coun-
terexample in case the workflow net is not generalized sound. We
report on experimental results obtained with the prototype we
made and explain how the procedure can be used for the compo-
sitional verification of large workflows.

The chapter is based on [64].

28 Generalized Soundness

3.1 Introduction

The traditional notion of soundness from [3] is not compositional [59]. For
example if we refine the place d of the sound net N with the sound net N � from

Figure 3, the obtained net (Figure 4) is not sound any more since ī
�Ð�c̄ � ē �

2 � ī� �Ð�c̄ � ē � ā� � c̄� � 2 � b̄� yÐ� c̄ � ē � 2 � b̄� � f̄ � ~�Ð� 2 � f̄ �.

A notion of generalized soundness was introduced in [59] and it amounts to
the proper termination of all markings obtained from markings with multiple
tokens on the initial place, which corresponds to the processing of batches of
cases in the WF-net. It was proved that generalized soundness is compositional
w.r.t. refinement, which allows the verification of soundness in a compositional
way.

The generalized soundness problem is decidable and [60] gives a decision
procedure for it. The problem of generalized soundness is reduced to two checks.
First, some linear equations for the incidence matrix are checked. Secondly,
the proper termination of a finite set of markings is checked. This finite set
of markings is computed from an over-approximation of the set of reachable
markings that has a regular algebraic structure. In practice, this set turns out to
be very large, which seriously limits the applicability of the decision procedure
given in [60].

In this chapter we show that the check of generalized soundness can be
reduced to checking proper termination for a much smaller set of markings,
namely minimal markings of the set from [60]. We describe a new decision pro-
cedure for soundness. Additionally, our procedure produces a counterexample
in case a WF-net turns out to be unsound, showing a reachable marking that
cannot terminate properly and a trace leading to it.

We implemented our decision procedure in a prototype tool and performed
a series of experiments with it. The experimental results confirmed that the
new procedure is considerably more effective than the old one. When applied
together with standard reduction techniques in a compositional way, it allows
us to check soundness of real-life models.

i f

a

b

c

d

e

g

h

i′ f ′t

u

v

x

y

z

a′

b′

c′

N N ′

Fig. 3: Two sound nets

3.2 Soundness of Batch Workflow Nets 29

i f

a

b

c

e

g

h

i′ f ′t

u

v

x

y

z

a′

b′

c′

Fig. 4: The net obtained by refining place d of N with N � is not sound

Related work

For some subclasses of workflow nets (e.g. well-handled, free-choice, extended
free-choice, asymmetric choice where every siphon includes at least one trap,
extended non-self controlling workflow nets), 1-soundness implies generalized
soundness (see [112]). A decidability proof for generalized soundness was pre-
sented in [132, 134], where the generalized soundness problem is reduced to
the home marking problem in an extension of the workflow net, which is an
unbounded net. The home marking problem is shown to be decidable in [42]
by reducing it to the reachability problem for a finite set of markings. Check-
ing generalized soundness in this way can however hardly be done in practice,
since the complexity of the reachability problem for unbounded nets is still
an open question, and the procedure for checking reachability, though known
from 1981 [99], has never been implemented due to its complexity (the known
algorithms require non-primitive recursive space) [119]. In our procedure we
also check reachability for a finite set of markings, but reachability is checked
on bounded nets only.

The chapter is structured as follows. Section 3.2 introduces basic notions.
Section 3.3 presents the new decision procedure, and Section 3.4 provides de-
tails about the implementation and experimental results. Section 3.5 covers
conclusions and directions for future work.

3.2 Soundness of Batch Workflow Nets

In [60], two structural correctness criteria for WF-nets based on siphons and
traps were introduced:

Definition 3.1. [non-redundancy, non-persistency][60]
Let N be a workflow net.

– A place p > P is non-redundant iff there exists k > N and m > NP such that

k � ī �Ð�m , m�p� A 0.

30 Generalized Soundness

– A transition t > T of N is called non-redundant if there exists a k > N and

m > NP such that k � ī �Ð�m
tÐ�. N is called non-redundant iff it does not

contain any non-redundant place.

– A place p > P is non-persistent iff there exists k > N and m > NP such that

m�p� A 0,m
�Ð� k � f̄ . N is called non-persistent iff it does not contain any

non-persistent place.

Non-redundancy means that every place can be marked and every tran-
sition can fire, provided there are enough tokens on the initial place, while
non-persistency means that all places can become empty again. As proven in
[60], non-redundancy and non-persistency are behavioral properties which im-
ply restrictions on the structure of the net: all proper siphons of the net should
contain i and all proper traps should contain f . If N contained a proper siphon
without i, the output transitions for the places in the siphon would be dead due
to Proposition 2.2.2. Similarly, if N contained a trap without f , the workflow
could not reach the final marking with tokens in �f�, as all the tokens on the
places of the trap remain within the trap (Proposition 2.2.1).

Following [60], we define a class of nets called batch workflow nets (BWF-
nets).

Definition 3.2. [Batch workflow net]
A Batch Workflow net (BWF-net) N is a Petri net having the following prop-
erties:

1. N has a single source place i and a single sink place f .

2. Every transition of N has at least one input and one output place.

3. Every proper siphon of N contains i.

4. Every proper trap of N contains f .

It was shown in [60] that the last two conditions imply the path property
of WF-nets in Definition 2.30, i.e. that every vertex is on the path from i to f .
Actually, BWF-nets are WF-nets without redundant and persistent places, i.e.
workflow nets that satisfy minimal correctness requirements.

Workflow nets were originally used to model the execution of one case. In
[60], we defined a generalized notion of soundness for modeling the execution
of batches of cases in WF-nets.

Definition 3.3. [k-soundness, generalized soundness]
A WF-net N is called k-sound for some k > N iff

R�N,k � ī� b S�N,k � f̄�.
A WF-net N is called generalized sound iff

¦k > N�R�N,k � ī� b S�N,k � f̄�.

3.3 Decision Procedure 31

For the sake of brevity, we omit the word “generalized” in the rest of this
chapter. In [60], it has been shown that a WF-net N is sound iff a certain
derived BWF-net N � is sound. The derivation is straightforward and only uses
structural analysis of the net.

We further remind the procedure from [60] of obtaining BWF-nets from
WF-nets that have the same behavior. Let N be a WF-net.

– Find a maximal siphon X in P � �i� using Algorithm 1. All places from X

are redundant and the transitions from XY are redundant as well. �N �, k � ī�
obtained by removing places from X and transitions from XY is either not
a WF-net any more and so N was ill-designed, or it is a WF-net, which is
an improved version of N .

– Check whether N � has persistent places by finding the largest trap X � in
P ��f� using Algorithm 2. If X � ~� g, N � is not a sound WF-net. Otherwise,
we can work with the BWF-net N � instead of N .

3.3 Decision Procedure

In this section, we describe our decision procedure for checking generalized
soundness of BWF-nets. Our decision procedure improves the one from [60]
since we check proper termination for a much smaller set of markings. We give
an algorithm for computing this set of markings and enhance the procedure
with a backward reachability algorithm that checks whether these markings
are backward reachable from some final marking. If not, our procedure returns
a counterexample.

We start by briefly discussing the decision procedure from [60]. We first give
some necessary conditions of soundness:

Lemma 3.1. [60] Let N be a sound BWF-net. Then,

1. I � ī � I � f̄ (i and f agree on the basis place invariants);
2. I � x � 0̄ for x > �Q��P iff x � 0̄.

The conditions of Lemma 3.1 can be easily checked by standard algebraic
techniques. Further on, we consider only nets that meet these two conditions.

The set of all markings reachable from some initial marking of N is given
by R � �k>NR�N,k � ī�. Due to the marking equation, R�N,k � ī� is a subset of
Gk � �k � ī � F � v S v > ZT � 9NP . Note that the reverse is not true.

Let m > Gk, for some k > N. Then I � m � I � �k � ī�. Since condition 2 of
Lemma 3.1 holds, Gk 9 Gℓ � g for all k, ℓ > N, with k ~� l, and we can define
the i-weight function w�m� for m as k. Now consider the set G � �k>N Gk, i.e.
G � �k � ī � F � v S k > N , v > ZT � 9 NP . We will say that a marking m > G
terminates properly if m

�Ð� w�m� � f̄ .

Lemma 3.2. [60] Let m1,m2 > G be markings that terminate properly and
m � λ1 � m1 � λ2 � m2 for some λ1, λ2 > N. Then m > G and it terminates
properly.

32 Generalized Soundness

Theorem 3.1. [60] Let N be a BWF-net. Then N is sound iff for any m > G,

m
�Ð� w�m� � f̄ .

G is an infinite set, but unlike R it has a regular algebraic structure, which
allows to reduce the check of proper termination to a check on a finite set of
markings.

The following lemma is proved by using convexity analysis [127], notably
the Farkas-Minkowski-Weyl theorem.

Lemma 3.3. [60] Let H
def� �a � ī�F � v S a > Q� , v > QT �9 �Q��P . Then there

exist a finite set EG b G of generators of H, i.e. H � �Σe>EGλe � e S λe > Q��.
The soundness check can now be reduced to the check of proper termination

for a finite set of markings:

Theorem 3.2. [60] Let N be a BWF-net such that the conditions of Lemma

3.1 hold and let Γ
def� �Pe>EG αe � e S 0 B αe B 1 , e > EG� 9 G, where EG b G

is a finite set of generators. Then N is sound iff all markings in Γ terminate
properly.

In fact, Γ represents the set of integer points of the bounded convex poly-
hedral cone (also called polytope) having the set EG as generators.

The decision procedure from [60] comprises the following steps:

1. Find an invariant matrix I and check whether I � ī � I � f̄ and whether
I � x � 0̄ has only the trivial solution on NP ;

2. Find a set EG ` G of generators of H;
3. Compute the set of markings Γ ;

4. Check for all markings m > Γ that m
�Ð� w�m� � f̄ .

Example 1. We illustrate the main steps of the algorithm on the BWF-net
from Figure 5. First we compute I � �4,1,1,4�. The first two conditions are
satisfied: �4,1,1,4� � ī � �4,1,1,4� � f̄ and �4,1,1,4� �x � 0̄ implies x � 0̄. Further
we computeH � �a�̄i�F �vSa > Q�, v > QT �9�Q��P � �A�B�9C, where A, B and
C are polyhedra having the generators �̄i�, ���3 � ā� b̄� ī�,��ā� b̄�,��̄i� ā�3 � b̄��
and �̄i, f̄ , ā, b̄�, respectively. Next we compute the generators of the polytope:
EG � �̄i, f̄ ,8 � ā,8 � b̄�. The markings of Γ have the following form:

Γ � �m�S�m� � Q
m>EG8�3�ā�b̄,ā�3�b̄�

αm>N

αm �m� , �0̄ B m� B Q
e>EG

e��
The size of Γ is very large compared to the size of the net: SΓ S � 44. Furthermore
in order to check whether all markings of Γ terminate properly, we need to build
the backward reachability sets S�N,k �̄i� for 0 B k B maxm>Γ w�m� � 6 and check
whether they include all markings of Γ . We observe that 8 � b̄ ¶ S�N,2 � f̄� and
therefore the net is not sound.

3.3 Decision Procedure 33

i f
3 2

2

3

t
u v

Fig. 5: Example of a BWF-net

Steps 1�2 are not computationally costly. The set of markings Γ turns out
to be very large in practice. Step 3 and 4 are typically very expensive for real-
life examples. We shall reduce the check of proper terminations of markings
from Γ to a check of a smaller set of markings by replacing the last two steps
with the following steps:

3’. Compute the set Υ of minimal markings of G� def� �k>N� G�k � ī�, i.e.

Υ
def� �m S ¦m� > G� � m� B m�m� � m�.

4’. Check that for all markings m > Υ , m
�Ð� w�m��f̄ . In case this does not hold,

give a counterexample, i.e. a trace σ such that w�m�� � ī σÐ� m� ~�Ð� w�m�� � f̄ ,
for some m�.

To show that Υ can be used instead of Γ , we first prove an auxiliary lemma.

Lemma 3.4. Let N be a BWF-net, m1 > Gk1
, m2 > Gk2

, for some k1, k2 > N,
and m2 A m1. Then k2 A k1.

Proof. Since m2 > Gk2
and m1 > Gk1

, m1 � k1 � ī � F � v and m2 � k2 � ī � F � v2

for some v1 and v2. Hence, I � m1 � I � k1 � ī and I � m2 � I � k2 � ī and by
linearity I�m2 �m1 � �k1 � k2�̄i� � 0̄. Since condition 2 of Lemma 3.1 holds for
N , m2 �m1 � �k1 � k2� � ī ¶ �Q��P � �0̄�. Since m2 �m1 and ī are in �Q��P , we
deduce that k1 � k2 @ 0. A@

The set of markings Υ has the following properties:

– Let EG b G be a set of minimal generators of H in G (i.e. for any e > EG

and e� > G, e� B e implies e � e�). Then EG b Υ . Note that in particular ī,
f̄ > EG b Υ .

– G1 b Υ . Suppose that there is an m > G1 such that m ¶ Υ . Then, there is
m� > Υ such that m� @ m. By Lemma 3.4, w�m�� @ w�m� � 1, contradiction.

We now formulate our main theorem.

Theorem 3.3. Let N be a BWF-net such that I � ī � I � f̄ , I � x � 0̄ has only

the trivial solution in �Q��P , G� def� �k � ī � F � v S k > N� , v > ZT � 9 NP ,
H � �a � ī � F � v S a > Q�, v > QT � 9 �Q��P , EG b G� be a set of minimal
generators of H in G�, Γ � �Pe>EG αe � e S 0 B αe B 1, e > EG�9G, and Υ be the
set of minimal markings of G�. Then:

34 Generalized Soundness

1. N is sound iff for any marking m > Υ , m
�Ð� w�m� � f̄ .

2. Each marking m > Υ satisfies m @ M , where M�p� � maxe>EG e�p�, for
every p > P .

3. Υ ` Γ .

Proof. (1) ��� Since N is sound, all markings of G terminate properly (by
Theorem 3.1). Since Υ b G, all markings of Υ terminate properly.�
� Let m

�Ð� w�m� � f̄ for every marking m from Υ . We will prove that

m
�Ð� w�m� � f̄ for every marking m from Γ , which implies then that N is

sound (by Theorem 3.2).

Let m > Γ . We have two cases: m > Υ and m > Γ � Υ . If m > Υ , then

m
�Ð� w�m� � f̄ . If m > �Γ � Υ �, m A ∆0 for some ∆0 > Υ and by Lemma 3.4,

w�m� A w�∆0�, which also implies that �m �∆0� > G�.
Set m0 � m �∆0. In case m0 > Υ , m0 �Ð� w�m0� � f̄ . By Lemma 3.2, since

∆0 �Ð� w�∆0� � f̄ , m
�Ð� w�m� � f̄ . In case m0 ¶ Υ , m0 can be further written

as m0 � ∆1 �m1, where ∆1 > Υ and m1 > G�.
We continue until we reach an ml�1 � ml � ∆l with ∆l > Υ and ml > Υ .

Note that the process is finite since 0 @ mi�1 @ mi, for 0 B i B l. Therefore
m � Pl

i�0 ∆i �ml, where ml > Υ and ∆i > Υ for all i � 0 . . . l. Since the markings
of Υ terminate properly, we can apply Lemma 3.2 to Pl

i�0 ∆l �m0. As a result,

m
�Ð� w�m� � f̄ .

(2) Suppose that there is a marking m > Υ such that m C M . Since M C e for
every generator e > EG , we have ¦e > EG �m C e. That means that m and e are
comparable, which contradicts the hypothesis.
(3) Υ b Γ follows trivially from (2) and the definition of Γ . Furthermore,
M̄ � Pe>EG e > Γ . However M̄ A M and from �2�, we have that M̄ ¶ Υ , hence
Υ ` Γ . A@

Now we can describe the implementation of the steps 2,3� and 4�.

Computing generators of the convex polyhedral cone H

H is given as the intersection of two polyhedra: A with the set of generators�̄i�8��F �t� S t > T� (column vectors of the matrices F and �F) and B with the
set of generators �p̄ S p > P� (trivial generators). Let E be a (minimal) set of
generators of the convex polyhedral coneH � �a�̄i�F �v S a > Q�, v > QT �9�Q��P .
All generators of H can be represented as a � ī � F � v, where a > Q and v > QT

can be found by solving linear equations. In order to find the set of generators
that are in G (EG), the generators of H need to be rescaled. The rescaling
factor of each generator is the lcm of the denominators of a and vt, for all t > T

divided by the gcd of the numerators of them. ī and f̄ are generators of H with
rescaling factor 1.

3.3 Decision Procedure 35

Computing Υ

The next step is to find Υ — the set of minimal markings of G. Note that
the markings of Υ are smaller than the marking M whose components are the
maxima of the respective components of the rescaled generators (statement 2
of Theorem 3.3).

We compute Υ by an optimized enumeration of all vectors m from NP which
are smaller than M and checking whether m � k � ī�F � v has a solution in N�,
i.e. whether m > G. The optimization is due to avoiding the consideration of
markings which are greater than some markings already added to Υ .

Checking proper termination for markings of Υ

We need to check whether m
�Ð� w�m� � f̄ for all m > Υ . Since condition 2 of

Lemma 3.1 holds, we conclude that S�k � f̄� is a finite set for any k. Therefore
we employ a backward reachability algorithm to check proper termination of
markings in Υ . Let J be the (finite) set of weights of markings from Υ . The
backward reachability algorithm constructs for each i-weight j > J , starting
from weight 1, the backward reachability set Bj . We start from the marking
j �f̄ and continue by adding markings �m�Ft S m > Bj,m�F �

t C 0̄,t > T�, where
Ft is column of F corresponding to transition t, until Bj contains all markings
from Υj or we reach the fixpoint S�N, j � f̄�. In the first case all markings of
Υj terminate properly; as a result the BWF-net is sound. In the latter case the
markings in Υj do not terminate properly; therefore the net is not sound. Note
that the backward reachability sets Bj are distinct (since Gk 9 Gℓ � g for any
k x ℓ).

This check results either in verdict “sound” (if all markings from Υ terminate
properly), or “unsound” together with some marking that does not terminate
properly otherwise.

Finding a counterexample

Let m be a marking from Υj returned by the check above as non-properly termi-
nating. Like all markings from Υj , m does not necessarily belong to R�N, j � ī�.
To give a counterexample, we search through R�N,k � i� (k C w�m�) to find a
marking m� reachable from w�m�� � ī and not terminating properly and show a

trace σ such that w�m�� � ī σÐ�m�. There are few classes of nets for which the
all solutions are reachable. Such a class are the equal-conflict systems [130].

Example 1 continued. We compute Υ for the example from Figure 5:

Υ � �̄i, f̄ ,8 � a,8 � b, a � 3 � b,3 � a � b�
Note that SΥ S � 6, while SΓ S � 44. Moreover, the maximal i-weight of the mark-
ings of Υ is a lot smaller than that of the markings of Γ : maxm>Υ w�m� � 2 @
maxm>Γ w�m� � 6. Hence, we need to compute only S�N, f̄� and S�N,2 � f̄�

36 Generalized Soundness

Algorithm 3: Backward reachability check

Input: N � �P,T,F �, Υ , J � �w�m� S m > Υ�
Output: “the BWF-net is sound” or “the BWF-net is not sound, m,k” where

m > Gk and m ~�Ð� k � f̄ .

for j > J do

Bj � �j � f̄�;
repeat

Bj � Bj 8 �m � Ft S ¦p > P � m�p� C F �p, t� ,m > Bj , t > T�
until a fixpoint is reached or Υj b Bj ;
if Υj ~b Bj then

pick m > Υj �Bj ;
return (“the BWF-net is not sound”, m,j)

end

end

return (“the BWF-net is sound”)

instead of S�N,k � f̄� for k � 1 . . .6. We find a counterexample 8 � b̄ >R�N,2 � ī�:
2 � ī ttÐ� 6 � a � 2 � b uuuÐ� 8 � b and conclude that the net is not sound. Figure 5
shows the dead marking.

Example 2. The net N � from Figure 3 shows a Petri net which is 1-sound,
but not 2-sound. In this case Υ � Υ1 � �̄i, f̄ , a, b, c� � EG . Using the backward
reachability algorithm, we find that the net is not sound and b > Υ1 such that

b ~�Ð� f̄ . However, b ¶R�N, ī�. We find 2�b�f̄ A b such that 2�̄i tvyÐ� 2�b�f̄ ~�Ð� 2�f̄ .

3.4 Implementation of the Decision Procedure

In this section, we discuss how to check soundness for large nets compositionally
by using reduction techniques and give some details on the implementation of
the procedure and experimental results.

Using reduction rules to verify soundness

We can apply our procedure in combination with reduction techniques that
preserve soundness in order to reduce the size of the net for which we are
checking soundness.

We start with introducing the notion of k-closure of a BWF-net, which is
the strongly connected net obtained by adding a transition whose only input
place is the final place, the only output place is the initial place, and the weights
of the arcs equal k.

Definition 3.4. [k-closure]
The k-closure of a WF-net N � `P,T,F �, F �e is a net `P,T 8 �t̄�, F̄ �, F̄ �e,

3.4 Implementation of the Decision Procedure 37

where F̄ ��i, t̄� � F̄ ��f, t̄� � 0, F̄ ��i, t̄� � F̄ ��f, t̄� � k, F̄ ��p, t� � F ��p, t� and
F̄ ��p, t� � F ��p, t� for all �p, t� > P � T .

Lemma 3.5. The k-closure of a BWF-net N is bounded and t̄-live iff N is
k-sound.

Proof. ��� Since the closure of N is t̄-live, for all m > R�N,k � ī�, there exists

an m� such that m
�Ð� m� t̄Ð� m��. Boundedness of N implies m� � k � f̄ and

m�� � k � ī. Thus, N is sound.�
� Suppose the closure of N is unbounded. Then there exists m >R�N,k �̄i�
such that m

�Ð� m� and m @ m�. Since N is k-sound, m
�Ð� k � f̄ and m� �Ð�

k � f̄ � m � m�, which contradicts soundness of N . Hence N is bounded. By

k-soundness of N , for all m >R�N,k � ī�, m
�Ð� k � f̄ . Hence, m

�Ð� k � f̄ t̄Ð� k � ī.
Thus the closure of N is t̄-live. A@

Thus, natural candidates for preserving soundness are rules that preserve
t̄-liveness and boundedness of the closure of the net in both directions, i.e. the
closure of the BWF-net is t̄-live and bounded iff the reduced closure of the
BWF-net is t̄-live and bounded. Such rules have been intensively investigated;
among them, we recall the place substitution rule and the identical transitions
rule of Berthelot [22] and the reduction rules Murata [104] (fusion of series
places/transitions, fusion of parallel places/transitions, elimination of self loop
transitions).

Let R be a set of transformation rules between two k-closures of a BWF-net
which preserve boundedness and t̄-liveness in both directions (we also assume
that t̄, i and f are not reduced). Note that since the only initially marked place
is i, the transformations from R are applied to unmarked places only.

Soundness is preserved by applying rules from R to the closure a BWF-net:

Theorem 3.4. A BWF-net is sound iff the BWF-net obtained by applying
reductions from the set R is sound.

Proof. By Lemma 3.5 soundness of a BWF-net is equivalent to the boundedness
and t̄-liveness of the k-closure of the BWF-net, for all k > N. The latter is
equivalent to the boundedness and t̄-liveness of the k-closure of the reduced
BWF-net, for all k > N. By applying again Lemma 3.5, this is equivalent to the
soundness of the reduced BWF-net. A@

Compositional verification of soundness

In practice it is often needed to verify soundness of large workflow nets that
cannot be handled by current verification tools. Therefore, a more efficient
approach is needed to handle these cases. Applying simple reduction rules that
preserve soundness, like the ones from [104], facilitates the task a lot. The
reduced net can then be checked using a compositional approach:

38 Generalized Soundness

1. Identify BWF-subnets in the original workflow by using classical graph
techniques (e.g. by detecting strongly connected components).

2. Check whether the found BWF-subnets are generalized sound using the
procedure described in Section 3.3.

3. Reduce every sound BWF-subnet to one place and repeat the procedure
iteratively, till the soundness of the whole net is determined.

Correctness of the reduction part of Step 3 in the procedure above is justified
by Theorem 6 from [59].

The procedure above has been has been implemented and integrated in the
Petri net editor Yasper [144], which now supports arbitrary on-the-fly reduc-
tions (see [141] for more details) and uses the prototype check for generalized
soundness which we will describe in the next paragraph.

Implementation and experimental results

In this section we focus on the implementation of the decision procedure de-
scribed in Section 3.3. The tool uses the Yasper editor [63, 144] for input of
batch workflow nets and gives as output whether the net is sound and a coun-
terexample in case the net is not sound. The prototype is written in C++ and
uses the Parma Polyhedra Library [18, 20] for the computation of the minimal
set of generators of the convex polyhedral cone H.

The complexity of the procedure is dominated by the complexity of the
reachability problem; however, for BWF-nets modeling real-life business pro-
cesses the performance turned out to be acceptable. We have run our prototype
on a series of examples. The nets were first reduced with standard reduction
rules from [104], which preserve soundness. Table 1 shows the experimental
results comparing the size of Γ with the size of Υ . In most of the experiments
Υ turned out to be equal to the set of rescaled generators. Our experiments
showed that our tool can handle models of business processes of realistic size
in reasonable time; a typical case: for a (reduced) BWF-net with SP S � 18 andST S � 22, our algorithm checks soundness within 8 seconds.

It can be seen that the number of reachability checks can be improved with
a factor 57, even when the nets are of relatively small size (P � 9~T � 10).
For our examples, the size of Γ dominates the size of Υ on an average of 17
times. The size of Υ turns out to be generally polynomial in size of the net.
Moreover, the weight of the markings in Υ is typically 1, which means that
most of the time the backward reachability check needed to be performed only
once (starting from f̄), whereas for γ the weight of the markings is extremely
high (up to 75).

3.5 Conclusion

In this chapter, we have presented an improved procedure for deciding gener-
alized soundness of BWF-nets. We showed that the problem can be reduced to

3.5 Conclusion 39

Net Soundness SP S ST S SΓ S~SΥ S maxm>Γ w�m� maxm>Υ w�m� SΥ S Time(ms)

1 sound 23 27 19 75 1 75 (� SEG S) 19909

2 sound 18 22 11 70 1 70 (� SEG S) 8005

3 sound 12 12 46 14 1 14 (� SEG S) 131

4 sound 11 12 19 5 1 43 133

5 sound 11 8 12 7 1 16 334

6 sound 9 10 57 9 1 9 (� SEG S) 16

7 sound 9 9 18 10 1 10 (� SEG S) 26

8 sound 7 8 18 8 2 7 (� SEG S) 9

9 sound 9 6 8 11 1 11 (� SEG S) 48

10 sound 6 6 6 6 1 6 (� SEG S) 9

11 sound 7 5 5 6 1 6 (� SEG S) 5

12 sound 6 5 6 4 1 6 8

13 not 2-sound 5 6 6 5 1 5 (� SEG S) 5

14 sound 5 5 8 5 1 5 7

15 not 2-sound 4 3 7 6 2 6 8

Table 1: Experimental results

checking proper termination for a set of minimal markings from the set found
in [60], which significantly reduces the number of markings for which proper
termination has to be checked. Further, we described a backwards reachability
algorithm for checking proper termination for the found set of markings.

As discussed in Section 3.4, soundness of workflow nets can be checked in
a compositional way. In addition to that, our soundness check can be used
for compositional verification of Petri net properties. By adapting the proof of
Theorem 6 from [59], it is easy to prove that if a Petri net has a subnet which
is a generalized sound net whose transitions are labelled by invisible labels, the
net obtained by reducing this subnet to one place is branching bisimilar to the
original net.

40 Generalized Soundness

4

Adaptive Workflow Nets

In this chapter, we consider Adaptive Workflow Nets, a subclass
of nested nets that allows for more comfort and expressive power
for modeling adaptation and exception handling than hierarchi-
cal nets. Flexibility is achieved by creating new nets out of ex-
isting ones and by allowing to change net structure at runtime.
A typical domain with a great need for this kind of workflows is
healthcare. Our running example is inspired by challenges in this
domain.
We define two important behavioral properties of adaptive work-
flow nets: Soundness and Circumspectness. Soundness means that
a proper final marking (state) can be reached from any mark-
ing which is reachable from the initial marking, and no garbage
will be left. Circumspectness means that the upper layer is al-
ways ready to handle any decision or exception triggered at a
lower layer. We employ an abstraction to reduce the problem of
verifying soundness and circumspectness to a finite one. We show
that even for adaptive workflow nets with infinite state space,
these properties can be analyzed.

The chapter is based on [62, 68]. A previous version of [68] appeared as [67].

42 Adaptive Workflow Nets

4.1 Introduction

In this chapter we consider adaptive workflows. In classical workflow manage-
ment systems the process structure is determined at design time. During exe-
cution no structural changes are possible. This implies that designers need to
take into account all possible executions, exceptional situations and combina-
tions of them. In case of so-called ad hoc workflows [5, 6, 52, 120] the algorithm
for processing cases is not known at design time, so it is impossible to use a
classical workflow management system and so-called case handling systems are
used instead. These systems have no formal process semantics which makes
testing and verification impossible.

We propose adaptive workflow systems [62] as a solution with more flexibility
for adaptation than classical workflow systems and more structure than ad hoc
workflow systems. We assume a given library of protocols to be used as basic
building blocks for constructing complex protocols. Then we model complex
protocols in an adaptive way by using nested Petri nets [93, 94, 95]. Nested
nets are an instance of “nets in nets” paradigm [136], where tokens in a (higher-
level) net, called a system net, can be nets themselves, called token nets. Firings
of the system net can depend on the synchronization with firings of the token
nets. We allow a token net to be destroyed (made unusable) at an arbitrary
marking that is determined at runtime. This situation cannot be easily modeled
by hierarchical Petri nets, while inhibitor and reset arcs would make the model
unreadable. Moreover, tokens in adaptive workflow systems can be modified in
a structured way, for instance by extending it with another process from the
library or by modifying the library of protocols at runtime.

As explained above, the adaptivity comes from the ability of the process
to modify itself. Our framework is flexible enough to incorporate adaptability,
which is the property of a process to be modified by an external party. In such a
setting, the owner of a process would be able to use a breakthrough procedure,
more reliable than existent from the library as long as the expected results are
the same.

Using adaptive workflow systems one can achieve separation of concerns in
modeling processes for different user groups. For instance, a doctor can follow
a medical guideline that prescribes a blood test to be performed (system net)
but he does not need to know how exactly the test is performed in the lab
(token net). The further course of doctor’s actions will however depend on the
test results (synchronization).

Exception handling is an important feature in adaptive systems. In [14],
the authors suggested to extend workflow systems with an exception handling
mechanism that would allow to reason about the robustness (ability of the
system to recover from error conditions) of such workflow. However, in their case
no formal reasoning involving exceptions is possible. We extend the traditional
workflow paradigm by introducing a mechanism for exception handling [62]. In
our exception workflow nets we introduce exceptional transitions whose firings
reflect exceptional situations.

4.2 Example: a Medical Protocol 43

We defined in [62] a non-recursive extension of nested nets [94] that have
the same power as Turing machines, extended synchronization mechanism (in
comparison to [94]) and furthermore special operations on (token) nets defined
by expressions on arcs. Adaptive nets [62] were derived from this class, by re-
stricting the structure of nested workflow nets (exceptional paths are reduced
arcs between places of the workflow and exception transitions) and by restrict-
ing the coloring of the net, i.e. the expressions and guards allowed were proper
termination and exception guards. In [68], we defined a subclass of adaptive
nets from [62], by restricting the coloring of a net to black tokens and net
tokens and allowing exception transitions to be connected only to places that
belong to paths from the initial place to the final place. Adaptive workflow nets
provide modeling comfort and are expressive enough to model many adaptive
workflow applications and medical protocols.

We study two correctness properties of adaptive workflow nets: soundness
and circumspectness. Similar to classical workflow nets, an adaptive workflow
net is sound iff from any marking reachable from the initial marking (without
firings of exception transitions) it is possible to reach the final marking (without
firings of exception transitions or synchronizing on exceptions). Circumspect-
ness means that any exception or final transition enabled in a token net of an
adaptive workflow net can synchronize with a corresponding transition of the
system net, i.e. any exception/decision in a lower layer can be handled by the
upper layer of the system.

We identify subclasses of adaptive nets for which soundness and circum-
spectness is decidable and show how to reduce the verification of soundness and
circumspectness of these adaptive nets (with possibly an infinite state space)
to the verification of properties of their finite abstractions. The abstraction we
use maps a token net to the set of exceptions specified in this net. We give
a necessary and sufficient condition for soundness and circumspectness formu-
lated in terms of the behavior of abstracted nets. This allows us to verify this
nets in a compositional manner, by verifying an abstraction of every net token
net and of the system net in the model.

The remainder of the chapter is organized as follows. Section 4.2 describes
the running example as a motivation for introducing adaptive nets. In Sec-
tion 4.3, we give a formalization of adaptive nets and in Section 4.4, we give
some verification results. Section 4.6 concludes the chapter.

4.2 Example: a Medical Protocol

Nowadays medical protocols have the form of guidelines. There have been sev-
eral attempts to formalize guidelines as flowcharts and decision diagrams and
incorporate them into medical decision support systems (MDSS). For example,
GLIF [108] and GUIDE [114] support medical processes by enacting guidelines.

As a motivating example we consider the process of diagnosis and treatment
of a small-cell lung cancer (SCLC). The example is inspired by the medical

44 Adaptive Workflow Nets

start tests

CT of brain positive

positive

bone scan

i f

u

v

final

Fig. 6: Mandatory test protocol (MandT`positiveee)
guideline for SCLC [53] created by the National Comprehensive Cancer Net-
work (SUA) and modified by the University of Texas M.D. Anderson Cancer
Center for their patient population.

The guideline is built on the basis of a library of standard protocols. A pro-
tocol may describe the decision process for establishing a diagnosis, treatment
schemes and tests used in the process of diagnosis or after the treatment. Each
protocol has an initial point, a final point and it handles exceptional situations
by terminating the process. For instance, the protocol used for mandatory tests
in the initial diagnosis stage describes the process of executing two tests (com-
puter tomography of brain and the bone scan) and evaluating their results.
An exceptional situation is considered when the result of at least one of the
tests turns out positive. We model such a protocol as an exception workflow
net, i.e. a workflow net extended with special exception transitions, which are
transitions without output places. These transitions carry an exception label
indicating an exceptional situation. Figure 6 shows an extended workflow net
modeling the mandatory test protocol; u and v are exception transitions with
label positive.

The interfaces of protocols in the library are given as Prot`Σeee, where Prot
is the name of the protocol and Σe are the sets of exception labels.

Figure 7 shows another protocol net (STests`partial response, relapseee),
modeling the test protocol used in the surveillance stage with two exception
labels partial response and relapse. The process performs some tests such as
CXR test, creatine test and liver function test. The progress of the cancer and
the response to the treatment are evaluated: the cancer either relapses (mod-
eled by the transition labeled relapse) or the treatment has a partial response
(modeled by transition labeled accordingly).

Protocols can make use of other protocols, create new protocols from the
existing ones or modify them. For this purpose, we consider nets as colored to-
kens and call such protocols extended workflow nets. The protocols can be built
of more primitive ones by using the operations ‘.’, ‘Y’ and ‘�’. The operation
init initializes an extended workflow net with its initial marking �i�.

Consider the surveillance protocol in Figure 8. The protocol makes use
of other therapy and test protocols, namely Radiotherapy, STests`partial re-

4.2 Example: a Medical Protocol 45

sponse, relapseee, Cisplatin, Etoposide, Prophylactic and RadControl`radiation
scarringee. The protocol iterates the surveillance treatment scheme until the
results of the surveillance tests show signs of relapse. A regular surveillance
treatment is started at runtime by creating a process token (denoted by the
constant str � init�Radiotherapy. STests`partial response, relapseee� on the
outgoing arc of the transition start surveillance). The process of this token
consists of the protocol Radiotherapy followed by the STests`partial response,
relapseee protocol. The transition labeled by partial response in the token net
located in place p is synchronized with a transition having the same label in
the upper level net (Surveillance).

In case of a partial response, a new net token is created, namely ((CI.
ET�SSRadiotherapy). ST , �i�� (radiotherapy performed in parallel with chemo-
therapy — cisplatin treatment followed by an etoposide treatment — followed
by the ST protocol).

Additionally to the application of a surveillance treatment, a radiation con-
trol protocol (RadControl`radiation scarringee) is used to monitor the radiation
effect on the patient. In case the patient shows signs of scars due to the radi-
ation (the exception radiation scarring is signaled), a prophylactic treatment
(Prophylactic) is conducted in parallel with the actual surveillance protocol
(stSSinit�Prophylactic��.

The protocol from the library describing the main process is depicted in
Figure 9. The process starts with the decision whether the patient has small-cell
lung cancer (SCLC) or non-small cell lung cancer (Non-SCLC). The transition
Non-SCLC models an exception that allows finishing the guideline.

Once the diagnosis has been established, the stage of the illness needs to
be assessed. The stage is determined by the extent of spread of the cancer
basing on the test results. Here, the protocol makes use of and combines some
standard test procedures depending on the preliminary diagnosis of the phase
of the cancer. In case the patient shows signs of the extensive stage, a proce-
dure with mandatory tests MandT`positiveee (Figure 6) is created. Once the

CXR

BUN tests

creatine tests

liver function tests

relapse

good response

hystorical and

physical test

start

tests

evaluate

results

partial response

i f

Fig. 7: Surveillance test protocol (STests`partial response, relapseee)

46 Adaptive Workflow Nets

start surveillance final(s4)

c1

s2

s4

s3

c2

v3

c3

c2

r

r

c1 = init(Radiotherapy.ST)
c2 = init(RadCon〈radiation scarring〉e)
v2 = init(((CI.ET ‖ Radiotherapy.ST)

v3 = s3 ‖ init(Prophylactic)

Var r, s2, s3, s4

g2 = partial response(s2)
g3 = radiation scarring(r)

g2

g3

bb

ET = Etoposide

i fpt1

t2

t3

t4

q

ST = STests〈partial response, relapse〉e

CI = Cisplatin

Fig. 8: Surveillance

SCLC

non-SCLC

limited stage

extensive stage

further workup

start
treatment

b

b

b

b

b

b

lt

ltv

positive(ltv) operable(ftv) non-operable(ftv)

ltv

final(ltv)
ftv ftv

ft

t1
t2

t3

tvt1

sp

sp spv
final(spv)

tv

final(tv)

progression(tv)

sv svv final(svv)

g = final(esv)

es esv
g

es = init(MandT〈positive〉e)

lt = init(MandT〈positive〉e) ‖ FacT〈positive〉e)
ft = init(FTests〈operable, non-operable〉e)

t2 = init(Resection〈final〉f〈∅〉e. (CI. ET. Tests〈progression〉e)
4)

t1 = init((Cisplatin. Etoposide. Tests〈progression〉e)
6)

t3 = init(((Radiotherapy ‖ (CI. ET)). Tests〈progression〉e)
4)

sv = init(Surveillance)
sp = init(SalvagePalliation)

Var ltv, ftv, tv, spv, svv, esv

last stage

CI = Cisplatin
ET = Etoposide

Fig. 9: Main SCLC protocol

protocol MandT`positiveee has terminated (tests are negative) or a transition
with exception label positive (indicating that one of the tests is positive) has
fired (the guard ext � positive�esv� is true), a specific treatment protocol can
be started.

In case the preliminary diagnosis shows signs of the limited stage (limited
stage transition) more tests are needed than in the extensive case. The pro-
tocol executing these tests combines two existing test protocols taken from
the library, i.e. MandT`positiveee and FacT`positiveee, by performing them in
parallel. Once one of the tests has a positive outcome, the transition labeled

4.3 Adaptive Workflow Nets 47

positive fires, synchronized with the respective transition in the main protocol
since this is a symptom for the extensive stage cancer. If none of the results
turns out positive, the test protocol terminates properly.

The patient with limited-stage SCLC is further tested to determine whether
or not she/he can be operated. For this purpose, the protocol FTests`operable,
non-operableee is instantiated, and one of the exceptional outcomes of this test
procedure (the patient is non-operable or operable) is synchronized with the
respective transition in the SCLC protocol.

For each of the three diagnosis (extensive stage, limited stage operable, and
limited stage non-operable), a special treatment scheme is created, which is
actually an iteration of chemotherapy, radiotherapy and tests. For example,
for the limited stage operable diagnosis, a treatment scheme considering the
resection (Resection), followed by four iterations of chemotherapy (Cisplatin
treatment followed by Etoposide treatment) and tests (Tests`progressionee) is
created. Once there is a sign of progression of the cancer after performing the
tests at each of the cycles signaled by the occurrence of an exception handled
by the transition labeled by progression), the treatment is interrupted and the
patient goes to the final stage, where only the Palliative/Salvage treatment
can be applied. In case the initial treatment has been successfully completed
(the transition labeled by last stage is fired) a surveillance protocol (Surveil-
lance) is created and its completion determines the patient to enter the pallia-
tion/salvage stage.

4.3 Adaptive Workflow Nets

In this section, we introduce workflow nets extended with exceptions and then
adaptive workflow nets, which are a special type of nested nets based on ex-
ception workflow nets.

4.3.1 Exception Workflow Nets

We extend the notion of a WF net to model exceptions. Exceptional situations
occurring in the workflow often lead to the termination of the normal course
of activities and reporting the exception. We model the reporting of exceptions
by transitions labeled with exception labels whose execution terminates the
execution of the WF net.

We consider a partition of the set of transitions T � Te 8Tn, where Te is the
set of exception transitions, Tn is the set of normal transitions. The set Σ of
labels is partitioned into Σe 8Σn accordingly.

Definition 4.1. [Projection]
Let N � `P,T,A, le be a Petri net and T � b T . The projection NST � of N w.r.t.
T � is a net `P,T �,A�, lST �e, where A� � ��P � T �� 8 �T � � P �� 9A.

48 Adaptive Workflow Nets

Definition 4.2. [Exception workflow net]
A Petri net N � `P,Te 8 Tn,A, le is an exception workflow net (EWF net) iff

the following conditions hold:

1. The net NSTn
is a workflow net.

2. For all t > Te, tY � g, Yt x g and l�t� > Σe.
3. For all t > Tn and l�t� > Σn.

Note that WF nets are EWF nets with the empty set of exception transi-
tions. The protocols MandT`positiveee (Figure 6) and STests`partial response,
relapseee(Figure 7) are EWF nets.

Like for classical WF nets [9], an important correctness property for EWF
nets is soundness, which requires that the process is always able to terminate
properly by reaching the final marking and that all transitions can eventually
fire, i.e. the net does not contain redundant transitions. We adapt this defini-
tion by requiring the possibility to properly terminate without using exception
transitions for all markings reached without the use of exception transitions
and by emphasizing the firing of a final transition.

Definition 4.3. [Soundness of EWF nets]
An EWF net N is sound iff

1. (proper termination) for all M such that �i� σÐ� M for some σ > T �
n ,

M
σ�
Ð� �f� for some σ� > T �

n , and
2. �N, �i�� is quasi-live.

Definition 4.3 does not impose the condition stating that whenever the final
state is reached, the execution has been completed. This condition of soundness
is redundant both for the classical WF nets (cf. [60]) and for the EWF nets
defined here:

Lemma 4.1. Let N be a sound EWF net and �i� σÐ�M ��f� for some σ > T �
n .

Then M � g.

Proof. Let �i� σÐ�M��f� where σ > T �
n . Since N is sound, there exists a σ� > T �

n

such that M � �f� σ�
Ð� �f�. Since fY � g, M

σ�
Ð� g. For every transition t from

σ�, tY ~� g. Hence, σ� � ε and thus M � g. A@

Proposition 4.1. An EWF net �N, �i�� is quasi-live iff for every t > Te 8 Tn,
there is a marking M >R�NSTn

, �i�� such that Yt B M .

Proof. (�) Let tq > Tn 8 Te. Since tq is quasi-live in �N, �i��, �i� σÐ�M
tqÐ� for

some M in �N, �i��.
First we prove that �i� σSTnÐ�M � in N and M B M � by induction on the length

of σ. If σ � ε, then �i� � M � M �. Suppose that the statement holds for all

σ > �Te8Tn�k, for some k > N. Let �i� σÐ�M1

tÐ�M for some σt > �Tn8Te�k�1.

4.3 Adaptive Workflow Nets 49

By the induction hypothesis, we have �i� σSTnÐ� M �
1 and M1 B M �

1. If t > Tn,

M1

tÐ� M and M1 B M �
1 imply M �

1

tÐ� M � in NSTn
and M B M �. If t > Te,

Yt ~� g and tY � g. Hence M1 A M . Since �σt�STn
� σSTn

, �i� �σt�STnÐ� M � and
M @ M �.

Hence Ytq B M B M �, thus tq is quasi-live in �NSTn
, �i��.

(
) Trivially follows from the definition of the firing relation. A@

Proposition 4.2. Let N be an EWF net N � `P,Te8Tn, F, le. Then condition�2� of soundness holds for N iff it holds for NSTn
.

Proof. (�) Let M > R�NSTn
, �i��, i.e. �i� σÐ� M in NSTn

for σ > T �
n . Hence�i� σÐ�M in N . Since N is sound, M

σ�
Ð� �f� for some σ� > T �

n , which implies

M
σ�
Ð� �f� in NSTn

.

(
) Let �i� σÐ�M in N for σ > T �
n . Then M > R�NSTn

, �i�� and M
σ�
Ð� �f� in

NSTn
for some σ� > T �

n . Then M
σ�
Ð� �f� in N . A@

Note that soundness of an EWF net N implies that its projection NSTn
is

sound but not the other way around (because of the quasi-liveness requirement
that also implies the requirement of quasi-liveness on exception transitions).
Since every sound WF net is bounded [9], sound EWF nets are bounded.
Furthermore, quasi-liveness of the exception transitions of an EWF net can
be checked on the reachability graph of the workflow net (Proposition 4.1).
Hence, checking soundness for EWF nets can be done using standard reach-
ability algorithms, which are already implemented in tools like Woflan [138].
In the remainder of the chapter we assume that a soundness check has been
successful and consider only sound EWF nets.

Weak soundness

Weak soundness [98] is a weaker version of soundness, by which an EWF net
has the option to complete and all transitions are quasi-live.

Definition 4.4. [Weak Soundness of Exception Workflow Nets]
An exception workflow net N is weakly sound iff there exists σ > T �

n so that�i� σÔ� ��f,b�� and N is quasi-live.

Relaxed soundness

Relaxed soundness [43] is a weaker version of soundness, by which all transitions
are included in some proper terminating run. For WF nets it is possible to
transform a relaxed sound net into a sound net [43]. Relaxed soundness is
an important concept since it is composable. In the context of adaptive nets
relaxed soundness can be used for compositional verification of soundness.

50 Adaptive Workflow Nets

i1

i

N1

f1

i2 f2

i1

f1(= i2)

f2

N2

N1

N1

N2

N2

(c) Parallel composition N1||N2

(b) Alternative composition N1 + N2

(a) Sequential composition N1.N2

f

f(= f1 = f2)

fi

ti tf

i(= i1 = i2)

Fig. 10: Operations on exception workflow nets

Definition 4.5. [Relaxed Soundness of Exception Workflow Nets]
An exception workflow net N is relaxed sound iff for all t > Tn, there exist

M,M � >R�N , �i��, σ > T �
n , σ� > T �

n so that �i� σÔ�M
tÔ�M � σ�

Ô� �f�, and N
is t-quasi-live for all t > Te.

Operations on exception workflow nets

Let N1 and N2 be two exception workflow nets nets. We use the following oper-
ations on exception workflow nets nets: parallel compositionN1SSN2, alternative
composition N1 �N2 and sequential composition N1.N2.

Definition 4.6. [sequential/parallel/alternative composition]
Let N1 � `P 1, T 1

n8T 1
e ,A1, l

1e, N2 � `P 2, T 2
n8T 2

e ,A2, l
2e be two EWF nets. Then

N1.N2, N1 �N2 and N1SSN2 are EWF nets defined as follows:

sequential composition

N1.N2

def� `P 1 8 P 2 8 �i, f� � �i1, i2, f2�, �T 1
n 8 T 2

n� 8 �T 1
e 8 T 2

e �,A, le, where

1. A � A�
1 8A�

2 8A�� with
– A�

1 � A1 � ��i1, t�St > �iY1�N1
�,

– A�
2 � A2 � ��i2, t�St > �iY2�N2

� � ��t, f2�St > �Yf2�N2
�,

4.3 Adaptive Workflow Nets 51

– A�� � ��i, t�St > �iY1�N1
�8��t, f�St > �Yf2�N2

�8��f1, t�St > �iY2�N2
� and

2. l � l1 8 l2.

alternative composition

N1 �N2

def� `P, �T 1
n 8 T 2

n� 8 �T 1
e 8 T 2

e �,A, le, where

1. P � P 1 8 P 2 8 �i, f� � �i1, f1, i2, f2�;
2. A � A�

1 8A�
2 8A�� with

– A�
1 � A1 � ���i1, t�St > �iY1�N1

�� 8 ��t, f1�St > �Yf1�N1
��,

– A�
2 � A2 � ���i2, t�St > �iY2�N2

� 8 ��t, f2�St > Yf2�N2
��,

– A�� � ��i, t�St > �iY1�N1
8 �iY2�N2

� 8 ��t, f�St > �Yf1�N1
8 �Yf2�N2

� and

3. l � l1 8 l2.

parallel composition

N1SSN2

def� `P 1 8 P 2 8 �i, f�, �T 1
n 8 T 2

n 8 �ti, tf�� 8 �T 1
e 8 T 2

e �,A, le, where

1. A � A1 8A2 8A�, A� � ��i, ti�, �ti, i1�, �ti, i2�, �f1, tf�, �f2, tf�, �tf , f��,
2. l � l1 8 l2 8 ��ti�� �τ�� 8 ��tf�� �τ��.

These operations are depicted in Figure 10 and resemble standard opera-
tions from process algebra [23]3.

Lemma 4.2. Let N1 and N2 be two sound EWF nets and φ > �., SS,��. Then
N1φN2 is (weakly/relaxed) sound as well.

Proof. Let M � M1 �M2 be a marking of N1φN2 such that �i� σÔ� M , with
σ > �T 1

n 8 T 2
n��, M1 � Pp>P1

M�p� and M2 � Pp>P2
M�p�.

N1.N2 Since having M1 x g and M2 x g would imply unsoundness of N1, we
have two cases 1� M1 x g and M0 � g; 2� M1 � g and M2 x g. In the first

case, by soundness of N1, we obtain M1

σ�
Ô� �f1� � �i2� σ��

Ô� �f�, where σ�

and σ�� > �T 2
n��. The second case is analogous. Quasi-liveness of �N1, �i1��

implies that for all t > T 1
n 8 T 1

e , i
�Ô� M

tÐ�, hence they are quasi-live
in �N1.N2, �i��. Similarly, by quasi-liveness of �N2, �i2��, we have that for

all t > T 2
n 8 T 2

e , �i2� �Ô� M
tÐ� in N2, hence �i1� �Ô� �i2� �Ô� M

tÐ� in�N1.N2, �i��. Thus �N1.N2, �i�� is quasi-live.

N1 �N2 We have two cases: either M � M1 or M � M2. For the first case, since

N1 is sound M
�Ô� �f1� � �f� in N1, for σ� > �T 1

n��, hence M
�Ô� �f1� ��f� in N1 �N2. The second case can be treated analogously. Since for all

t > T 1
n 8T 1

e , there exists an M such that �i� �Ô�M
tÔ� in N1, we have that�i� �Ô� M

tÔ� in N1 �N2. Quasi-liveness of t > T 2
n 8 T 2

e in �N1 �N2, �i��
can be proven analogously.

3 Parallel composition differs from the corresponding process algebraic operator as
its execution starts with an extra transition firing.

52 Adaptive Workflow Nets

N1SSN2 In this case M1 x g and M2 x g, and we can write �i� tiÔ� �i1���i2� σÔ�
M1 � �i2� σ�

Ô�M1 �M2, where σ > �T 1
n�� and σ� > �T 2

n��. By soundness of

N1 and N2, M1

σ1Ô� �f1� (σ1 > �T 1
n��) and M2

σ2Ô� �f2� (σ2 > �T 2
n��), hence

M1 � M2

σ1σ2Ô� �f1� � �f2� in N1SSN2. Therefore, M
σ1σ2tfÔ� �f� in N1SSN2.

Quasi-liveness of t > �ti� 8 T 1
n 8 T 1

e 8 T 1
n 8 T 1

e in �N1SSN2, �i�� follows from�i� tiÔ� �i1� � �i2� and the quasi-liveness of t > T 1
n 8 T 1

e in �N1, �i1�� and
t� > T 2

n 8 T 2
e in �N2, �i2��, respectively.

Relaxed/Weak soundness of N1φN2 can be proven in the same way.

Operations on marked EWF nets

Definition 4.7. [initialization]
The initialization of an exception workflow net N � `P,Tn 8 Te,A, le, denoted
by init�N �, is the marked exception workflow net �N , �i��.

We extend two operations for the case of marked exception workflow nets:
the sequential composition of a marked EWF �N1,M� with an EWF N2, i.e.
the running process �N1,M� is extended with the functionality of N2 and
the parallel composition of two marked exception workflow nets �N1,M1� and�N2,M2�, i.e. two running processes are set to synchronize upon termination.

Definition 4.8. [operations on marked EWFs]
Let N1 � `P 1, T 1

n 8 T 1
e ,A1, l

1e, N2 � `P 2, T 2
n 8 T 2

e ,A2, l
2e be two EWF nets.

1. The sequential composition of a marked EWF net �N1,M� with an EWF

net N2 is a marked EWF net �N1,M�.N2

def� �N1.N2,M�.
2. The parallel composition of two marked EWF nets �N1,M1� and �N2,M2�

is a marked EWF net �N1,M1�SS�N2,M2� def� �N1SSN2,M1 �M2�.
We also say in this case that the exception workflow net �N ,M0� has the

initial marking if M0 � �i�, where i is the initial place ofN . In case �N ,M� is the
parallel composition of two exception workflow nets �N1,M1� and �N2,M2�,
we consider M0 � �i1� � �i2� as initial marking, where i1 and i2 are the initial
places for N1 and N2, respectively.

Lemma 4.3. Let �N1,M
1
0 � and �N2,M

2
0 � be two EWF nets with their initial

marking, let M0 be the initial marking of the marked EWF net obtained by
parallel composition �N1,M

1
0 �SS�N1,M

2
0 �, T � Tn 8 Te its set of transitions and

iY � �ti� in N1SSN2.

1. If N1 and N2 are sound, then �N1SSN1,M
1
0 � M2

0 � satisfies the following
properties:

(a) For all M such that M0

σÔ� M , for some transition sequence σ that
does not contain any exception transition, i.e. σ > Tn��ti��, there exists

σ� > T �
n such that M

σ�
Ô� �f�.

4.3 Adaptive Workflow Nets 53

(b) �N1,M
1
0 �SS�N2,M

2
0 � is T � �ti�-quasi-live.

2. If N1 and N2 are relaxed sound, then there exists σ > T �
n such that M0

σÔ��f� and �N1,M
1
0 �SS�N2,M

2
0 � is T � �ti�-quasi-live.

3. If N1 and N2 are weakly sound, then there exists σ > T �
n such that M0

σÔ��f� and �N1,M
1
0 �SS�N2,M

2
0 � is T � �ti�-quasi-live.

Proof. Follows from Lemma 4.2. A@

Lemma 4.3 can be extended for the parallel composition of marked sound
nets to guarantee proper termination of markings reachable by non-exceptional
transitions from the sum of initial markings when no exception transitions are
fired. Similarly, the sequential composition of a marked sound EWF net with
a sound EWF net always guarantees proper termination (by non-exceptional
transition sequences) of markings reachable from the initial marking of the
result net by non-exceptional transitions. Other possible operations either do
not guarantee this property (e.g. alternative composition of marked EWF nets)
or are not feasable (e.g. an EWF net which is composed sequentially with a
marked EWF net does not add to the behavior), therefore we exclude them
out of consideration.

4.3.2 Adaptive Workflow Nets

Intuitively, an adaptive workflow net is an exception workflow net where to-
kens can be exception workflow nets themselves and firings of a higher-level
net can depend on firings in the token nets. To introduce adaptive workflow
nets, we extend first the notion of exception workflow nets to incorporate net
expressions. We call this type of nets extended workflow nets.

Let Var � �v, . . .� be a finite set of variable names, Con a finite set of
constant names, b ¶ Con is a constant denoting the black token and Σe a finite
set of exception labels. We introduce the following language of expressions:

Definition 4.9. [Expression]
A net expression e and a token expression te are inductively defined as: e ��
c S e � e S eSSe S e.e, ce �� v S ceSSce S ce.e S init�e�, and te �� bSce, where v > Var,
c > Con.

The sets of all net expressions and token expressions are denoted by Expr
and TExpr, respectively. The expressions in Expr will be interpreted as nested
workflow nets while the expressions in TExpr denote either black tokens (b) or
marked nested workflow nets.

Firings of adaptive nets can be synchronized with the firings in net tokens,
which is modeled by guards of transitions that are expressed in the guard
language GL.

Definition 4.10. [Guard]
A guard g is defined as g �� �Se�v�, where v > Var, and labels e > Σe. A guard
e�v� is called an exception guard. The set of all guards is denoted by GL.

54 Adaptive Workflow Nets

Intuitively, the guard � of a transition t means that the firing of t does not
depend on the internal states of the net tokens, e�v� means that the firing of t

is conditioned by the firing of an exception transition with label e in the token
net v.

We overload the notation for the set of variables (Var) and constants (Con)
and denote the set of variables and constants appearing in an expression e >
TExpr 8 GL by Var�e� and Con�e�, respectively.

We now define extended workflow nets as EWF nets.

Definition 4.11. [Extended workflow net]
An extended workflow net N is a tuple `P,T,A,E , g, le, where `P,T,A, le is an
EWF net called system net and the extensions E , g are defined as follows:

– E �A� TExpr are arc expressions such that
1. All input arcs of transitions are mapped either to the black token or to

variables, i.e. for every �p, t� > A 9 �P � T �, E�p, t� > Var 8 �b�;
2. Every two variables on two different input arcs of a transition are dis-

tinct, i.e. Var�E�p, t��9Var�E�p�, t�� � g for all �p, t�, �p�, t� > A9�P�T �
with p ~� p�;

3. Every variable on the outgoing arc of a transition occurs also in the
expression of some incoming arc of this transition, i.e. for all �t, p� >
A9 �T �P �, v > Var�E�t, p�� implies v > Var�E�p�, t�� for some �p�, t� >
A 9 �P � T �;

4. All outgoing arcs of the initial place and incoming arcs of the final place
are mapped to the black token, i.e. for all t > iY, E�i, t� � b and for all
t > Yf , E�t, f� � b.

– g is a function that maps transitions from T to expressions from GL such
that the variable of a guard g�t� (t > T) appears in the expression of
some incoming arc of t and does not appear in any outgoing arc of t, i.e.
Var�g�t�� b �p>Yt Var�E�p, t�� and Var�g�t�� 9�p>tY Var�E�t, p�� � g.

Let W be the set of all extended workflow nets. We presuppose the existence
of a library L which maps constants to extended workflow nets. Since in our
application domain there is no need for recursive calls, e.g. a net has a constant
in one of its arc expression mapped to itself, we define inductively the family
of sets of extended workflow nets �Nj�jC0, and marked extended workflow nets�Mj�jC0, respectively:

1. We define N0

def� g and N1

def� �`P,T,A,E , g, le > W S E �A � �b� , g�T �����, which is in fact the set of all exception workflow nets trivially ex-
tended with the black-colored tokens and � transition guards.`P,T,A,E , g, le > Nk�1, for k C 1, iff for all a > A and c > Con�E�a��,
L�c� > Nk.

2. We define M0

def� g. A marking M of N � `P,T,A,E , g, le > Nk, k C 1 is a
bag over P � �Mk�1 8 �b��.
Mk�1

def� ��N,M�SN � `P,T,A,E , g, le > Nk�1,M > NP��Mk8�b��� is the set
of marked extended workflow nets with tokens from Mk 8 �b�, for k C 0.

4.3 Adaptive Workflow Nets 55

Note that Nj b Nj�1 and Mj b Mj�1, for all j C 0. Let j C 0. The sets Nj�1 and
Mj�1 represent the set of extended workflow net and marked extended workflow
nets of level up to j � 1, i.e. which have constants in arc expressions mapped
to extended workflow nets of level up to j and black tokens, respectively.

We overload the notation and write M�p� for P�p,ν�>M M�p, ν��ν�, i.e. the
bag of black/net tokens present in place p at the marking M .

Definition 4.12. [Adaptive workflow nets]
An extended workflow net N > Nk�Nk�1 (k C 1) is called an adaptive workflow
net of level k. A marked adaptive workflow net of level k, for some k C 1, is a
couple �N ,MN �, where N is an adaptive workflow net of level k and MN is a
marking of N .

In the remainder, we will also call adaptive workflow nets shortly adaptive
nets.

Note that this class is a subclass of the class of adaptive nets defined in [62]
which allow for other tokens than black tokens and net tokens and have guards
are not parametrized by data values. The class of nested nets of Lomazova [94]
allow recursiveness, i.e. a nested net can call an instance of itself, which is
not a feature of adaptive nets in [62] and a more complicated synchronization
mechanism but no operations on nets for nested nets are less expressive with
respect to operations on colored tokens (which make the class in [62] Turing
complete).

We extend the operations on EWF nets from Definitions 4.6, 4.7, 4.8 to
operations on adaptive nets in a natural way.

Firings of an adaptive net take into account the current marking and an
assignment of net tokens to the variables in net expression on arcs w.r.t. the
current marking, called binding. Let N � `P,T,A,E , g, le > Nk, for k C 1. A
binding is a mapping b�Var�Mk�1. We denote the set of all bindings by B. Let
e > Expr8TExpr. We lift bindings b > B to expressions from �b�8Expr8TExpr
as follows:

b�e� �
¢̈̈̈̈̈̈̈̈̈
¨̈̈̈̈¦̈̈̈̈̈̈̈̈
¨̈̈̈̈̈¤

L�e� if e � c > Con,

b if e � b,

init�b�e��� if e � init�e��, where e� > Expr,

b�e1�ρ b�e2� if e � e1 ρ e2, where e1, e2 > Expr 8TExpr, ρ > �., SS,��.
For any binding b > B we have b�e� > Nk�1 if e > Expr and b�e� > Mk�1 if

e > TExpr.
Next we inductively define the firing relationÐ�b NP��Mk�18�b�����τ�8�T�

B���NP��Mk�18�b��, where τ ¶ �t>T l�t�. We write M
�t,b�Ð�M � iff �M, �t, b�,M �� >

Ð� and M
τÐ�M � iff �M,τ,M �� >Ð�.

56 Adaptive Workflow Nets

1. For �N ,M� > M1,
�t,b�Ð� coincides with the PN firing relation

tÐ� for any
b > B.

2. Let Ð� be defined for all marked adaptive nets of level j � 1, where j C 2.
Then for a marked adaptive net �N ,M� of level j, the firing is either (a) a
net firing or (b) a net token transformation:
(a) Let t > T , b > B, b�E�p, t�� > M�p� for all p > Yt and one of the following

conditions holds:
– g�t� � �;
– g�t� � final�v�, E�p�, t� � v for some p� > Yt and b�v� � �N �, ��f,b���

for some N � > Nj�1;
– g�t� � e�v�, E�p�, t� � v for some p� > Yt, b�v� � �N �,MN ��, for some�N �,MN �� > Mj�1, and M � �t�,b�Ð� for some exception transition t�

with l�t�� � e and binding b�.

Then M
�t,b�Ð�M �, where

M � � M � Q
p>Yt

��p, b�E�p, t���� � Q
p>tY

��p, b�E�t, p����.
(b) Let M � M � � ��p, �N �,MN ���� for some place p in N , and MN �

xÐ�
M �
N � in N �, where x is either τ or some �t�, b��. Then M

τÐ� M � ���p, �N �,M �
N ����.

We will use the following shorthand notation: We write M
�Ð� M � iff M � is

reachable from M by a (possibly empty) sequence of firings, M
tÐ� if there

exists a marking M � such that M
tÐ� M �, M

τ�
Ð� M � when M

τn

Ð� for some

n > N, and M
tÔ�M � if there exists a binding b > B such that M

τ�
Ð�M1

�t,b�Ð�
M2

τ�
Ð� M �. If σ � t1 . . . tk > T �, for k C 1, we write M

σÔ� M � iff M
t1Ô�

M1

t2Ô� . . .
tkÔ�M �, M

σÔ� if there exists M � so that M
σÔ�M �.

The notions of quasi-liveness, set of reachable markings of a marked adap-
tive net �N , ��i,b��� and the set of markings of N that can reach ��f,b��,
denoted by R�N , ��i,b��� and S�N , ��f,b���, resemble Definitions 2.23 and
2.25, respectively.

Figure 8 shows an adaptive workflow net of level 2, where the constants refer
to the following EWF nets modeling different test and treatment procedures:
STests`partial response, relapseee with exception labels partial response and
relapse; Cisplatin; Etoposide; RadControl`radiation scarringee with exception
label radiation scarring; Radiotherapy and Prophylactic. Transition t4 with
guard g3 can fire only when the exception transition labeled by radiation scar-
ring is enabled in the net token on place q and there is a net token in place p,
and this firing results in two new net tokens: s3SSinit�Prophylactic�, i.e., actual
treatment being executed in parallel with a prophylactic treatment, and a new
RadControl`radiation scarringee net token.

The main protocol (Figure 9) is an adaptive net of level 3.

4.3 Adaptive Workflow Nets 57

b x

e(x)

final(x)

x

b
init(c)

init(c)

c = N〈e〉e
e

final

i f⊤⊤

⊤

b

b

b bb

N〈e〉e

⊤

Fig. 11: Unsound adaptive net

4.3.3 Correctness Properties of Adaptive Workflow Nets

Soundness

Soundness is an important property of adaptive workflow nets stating that
at any moment of system run there is a chance to terminate properly. With
proper termination we mean the possibility to reach the final marking without
encountering any exceptions or synchronizing on exceptions. This is a desir-
able property in real systems since there should be a possibility to terminate
properly also when no exception occurs.

Definition 4.13. [Soundness of adaptive nets]
An adaptive net N is called sound iff

1. For all M such that ��i,b�� σÔ� M , for some transition sequence σ that
does not contain any exception transition, i.e. σ > T �

n , there exists σ� > T �
n

such that M
σ�
Ô� ��f,b��, and for all t from σ�, g�t� > �final�v�,��.

2. N is quasi-live.

Note that we require σ to be a sequence from T �
n since any firing of a tran-

sition from Te terminates the execution. The requirement g�t� > �final�v�,��
expresses the absence of transitions synchronizing o exceptions in σ�.

Our notion of soundness requires that the process is able to terminate prop-
erly also when the current state is reached after synchronizing on exceptions
that happen at a lower level (in some net token). The adaptive net in Figure 11
creates a new net token — a protocol N`eee that can trigger the exception
labeled by e. However, the adaptive net can only terminate properly when this
exception is triggered (the transition with the guard e�x� is fired), which vio-
lates soundness. This does not capture the notion of soundness which means
proper termination of non-exceptional behavior.

We define weak soundness and relaxed soundness of adaptive nets.

Definition 4.14. [Weak Soundness of Adaptive Workflow Nets]
An adaptive workflow net N is weakly sound iff there exists σ > T �

n so that for

all t from σ�, g�t� > �final�v�,��, ��i,b�� σÔ� ��f,b�� and N is quasi-live.

Definition 4.15. [Relaxed Soundness of Adaptive Workflow Nets]
An adaptive workflow net N is relaxed sound iff for all t > Tn, there exist
M,M � > R�N , ��i,b���, σ > T �

n , σ� > T �
n so that for all t from σ�, g�t� >

58 Adaptive Workflow Nets

b x

x

binit(c)

x.c

N〈e〉e

i f⊤

e(x)

x

⊤

p

e

i f

l

⊤⊤

⊤

b

b

b bb

c = N〈e〉e

N〈l〉e

t

final(x)

Fig. 12: Sound adaptive net, with infinite set of reachable markings

�final�v�,��, with ��i,b�� σÔ� M
tÔ� M � σ�

Ô� ��f,b��, and N is t-quasi-live
for all t > Te.

Note that we work with a library L of sound adaptive nets, and the net
tokens remain sound also when we construct new nets from net tokens. More-
over relaxed and weak soundness is preserved by the compositions that we have
described.

Lemma 4.4. Let L be a library of (weakly/relaxed) sound adaptive workflow
nets. Any net expression e > Expr evaluated over nets from L results in a
(relaxed, weakly) sound adaptive workflow net.

Proof. We prove the statement by structural induction on the expression e.
We focus on the case where e � e1φe2, for some b such that b�e1� � N1 and
b�e2� � N2 are two sound adaptive nets and φ > �., SS,��. For each case the proof
is analogous to Lemma 4.2. A@

Lemma 4.5. Let �N1,M
1
0 � and �N2,M

2
0 � be two adaptive nets with their ini-

tial marking, let M0 be the initial marking of the marked adaptive net obtained
by parallel composition �N1,M

1
0 �SS�N1,M

2
0 �, T � Tn 8 Te its set of transitions

and iY � �ti� in N1SSN2.

1. If N1 and N2 are sound, then �N1SSN1,M
1
0 � M2

0 � satisfies the following
properties:

(a) For all M such that M0

σÔ� M , for some transition sequence σ that
does not contain any exception transition, i.e. σ > Tn � �ti��, there

exists σ� > T �
n such that M

σ�
Ô� ��f,b��, and for all t from σ�, g�t� >�final�v�,��.

(b) �N1,M
1
0 �SS�N2,M

2
0 � is T � �ti�-quasi-live.

2. If N1 and N2 are relaxed sound, then there exists σ > T �
n such that for all

t from σ�, g�t� > �final�v�,��, M0

σÔ� ��f,b�� and �N1,M
1
0 �SS�N2,M

2
0 � is

T � �ti�-quasi-live.
3. If N1 and N2 are weakly sound, then there exists σ > T �

n such that for all

t from σ�, g�t� > �final�v�,��, M0

σÔ� ��f,b�� and �N1,M
1
0 �SS�N2,M

2
0 � is

T � �ti�-quasi-live.

Proof. Follows from Lemma 4.4. A@

4.3 Adaptive Workflow Nets 59

Boundedness

Figure 12 shows an adaptive net (N `lee) for which R�N `lee, ��i,b��� is infinite,
since ���p, �N`ee�n�e , ��i,b�����Sn C 1� bR�N `lee, ��i,b���,
where N`ee�1�e � N`eee and N`ee�j�1�

e � N`ee�j�e .N`eee. However, the net is

sound since from each M > R�N `lee, ��i,b���, M
�Ô� ��f,b��. Hence, unlike

for exception workflow nets, the reachability set of a sound adaptive net can
be infinite.

Note that the net in Figure 12 can reach the final marking from an infinite

set of markings, i.e. ��p, �N`ee�n�e , ��f,b����� tÔ� ��f,b��, for all n > N� (since

each N`ee�n�e is sound, for all n > N�). Hence our class of adaptive nets is more
expressive than classical Petri nets.

Definition 4.16 (Boundedness of adaptive nets).
An adaptive net N is called bounded iff R�N , ��i,b��� is finite, and unbounded
otherwise.

To capture the variety of tokens that can be present on a place, we introduce
the notion of place support.

Definition 4.17 (Support of a place).
Let N be an adaptive net of level k C 1. Then the place support is the function
Supp�P � 2Mk�18�b� defined as

Supp�p� def� �νS§M >R�N , ��i,b��� , �p, ν� > M�.
To characterize the size of adaptive nets we introduce a mapping for nets

to natural numbers, i.e. size�N��N � N given by size�N� � SP S � ST S for N �`P,T,A,E , g, le > N.

Lemma 4.6. Let N � `P,T,A,E , g, le be an adaptive net. Then N is un-
bounded iff at least one of the conditions hold:

1. There exist two markings M,M � >R�N , ��i,b��� of N and σ > T � such that

M
σÔ�M � and M @ M �.

2. The support Supp�p� of some place p > P of N is an infinite set.

Proof. ��� We proceed by induction on the level of the adaptive net.

k=1 If N is unbounded then there are two markings M,M � reachable from

the initial marking with M
σÔ�M � and M @ M � [118].

kA1 Suppose that N is unbounded and Supp�p� is finite for all p > P . Since N
is unbounded, R�N , ��i,b��� is infinite. Due to the finiteness of the number
of places and the variety of tokens on them, we can apply Dickson’s Lemma
(Lemma 2.1). Therefore there exists an infinite sequence of markings M1 @
M2 @ � such that ��i,b�� �Ô� M1

�Ô� M2

�Ô� � and the first condition
holds.

60 Adaptive Workflow Nets

�
� We have two cases:

1. Since M @ M �, there is a ∆ > Mk, ∆ ~� g, such that M � � M �∆. Then we

can fire σ infinitely many times, i.e. M
σÔ� M � �∆

σÔ� M � � 2∆
σÔ� �,

hence R�N ,M� is infinite.
2. By the definition of Supp�p�, for all ν > Supp�p�, there exists a mark-

ing such that ��i,b�� �Ô� M with �p, ν� > M . Since Supp�p� is infinite,
R�N , ��i,b��� is infinite as well. A@

Lemma 4.7. Let N � `P,T,A,E , g, le be an adaptive net and p > P . Then
Supp�p� is an infinite set iff at least one of the following conditions holds:

1. There exists a marking M >R�N , ��i,b��� and a net token �p, �N,MN�� >
M such that �N,MN� is unbounded.

2. There is no max�N,M�>Supp�p� size�N�.
Proof. ��� We will prove that if both conditions do not hold then the net is
unbounded. The facts that there exists no marking M >R�N , ��i,b��� contain-
ing a net token �p, �N,MN�� > M such that �N,MN� is unbounded, and that
for all p > P , max�N,M�>Supp�p� size�N� B n for some n > N, implies that there
is a finite number of token nets present in reachable markings. Therefore the
set Supp�p� is finite.�
� We have two cases:

1. Let M > R�N , ��i,b��� and �p, �N,MN�� > M such that �N,MN� is un-

bounded. Then R�N,MN� is infinite and for all M �
N >R�N,MN�, M

τ�Ô�
M � such that �p, �N,M �

N�� > M �. Hence Supp�p� is infinite.
2. Since there is no max�N,M�>Supp�p� size�N�, there exists an infinite sequence

of token nets �N1,M1�, �N2,M2� . . . > Supp�p� so that size�N1� @ size�N2�@ �. Hence Supp�p� is infinite. A@

Figure 13 summarizes the sources of unboundedness of an adaptive net:

– Figure 13�a� shows an unbounded adaptive workflow net where the marking
can grow infinitely (Lemma 4.6.1) since��p, �N, ��i,b����� @ ��p, �N, ��i,b����� � ��p�, �N, ��i,b�����.

– Figure 13�b� shows an unbounded adaptive workflow net where the token
net N is unbounded which corresponds to Lemma 4.7.1.

– Place p of net N in Figure 13 �c� and �d� has the support Supp�p� �
�n>N��Nn,Mn�, where Nn is

N SS�SSN´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

and Mn is a marking of Nn. Hence there is no max�N,M�>Supp�p� size�N�
(Lemma 4.7.2).

4.3 Adaptive Workflow Nets 61

b
init(N)

N

i ⊤ i f⊤⊤
b bb

N
t′

x

x
⊤p

t

x x b
fbp′ ⊤

(a) ��p, �N, ��i,b����� tÔ� ��p, �N, ��i,b����� � ��p�, �N, ��i,b�����
N

i f⊤⊤
b

b
bb

b
b

init(N)
i ⊤

N

x
⊤p x x fbp′
t

⊤

t′

(b) �N, ��i,b��� is unbounded

x||x
b

init(N)
i ⊤

N

x
⊤p

t

x.N x fbp′

N

i f⊤⊤
b bb b

⊤
t′

(c) ��p, �N, ��i1,b����� tÔ� ��p, �N SSN, ��i1,b�����i2,b��������p�, �N.N, ��i1,b�����
b x binit(N)

i f⊤ ⊤p

N

t′xx||x N

i f⊤⊤
b bb b

t

(d) ��p, �N, ��i1,b����� tÔ� ��p, �N SSN, ��i1,b�� � ��i2,b�����
Fig. 13: Sources of unboundedness for adaptive workflow nets

Y In Figure 13�c�, by firing t, the number of tokens strictly grows, i.e.
the markings M � ��p, �N, ��i1,b����� and M � � ��p, �N SSN, ��i1,b�� ���i2,b����� � ��p�, �N.N, ��i,b����� satisfy
* for all p > P , P�p,ν�>M M�p, ν� B P�p,ν�>M � M ��p, ν�
* P�p�,ν�>M M�p�, ν� @ P�p�,ν�>M � M ��p�, ν�.

Y In Figure 13�d�, by firing t, the number of tokens remains the same,
i.e. P�p,ν�>M M�p, ν� � P�p,ν�>M � M ��p, ν� for all p > P , where M ���p, �N, ��i1,b���� and M � � ��p, �N SSN, ��i1,b�� � ��i2,b�����.

Note that the marking of the growing token net in p also is strictly bigger
in both cases (�c� and �d�): ��i1,b�� @ ��i1,b�� � ��i2,b��, where i1 is the
initial place of N and i2 is the initial place of the second copy of N in the
net expression N SSN .

Circumspectness

Untimely handling of exceptions can cause problems in real systems. We de-
fine a property called circumspectness that concerns prompt synchronization
of final and exception transitions. Circumspectness means proper handling of
exceptions: every exception transition enabled in lower level net can be readily
synchronized with the corresponding transition in the upper level net.

Definition 4.18. [Circumspectness]
All nets from N1 are defined to be circumspect. An adaptive workflow net N �

62 Adaptive Workflow Nets

`P,T,A,E , g, le of level k C 2 is called circumspect if for any marking M of

N such that ��i,b�� σÔ� M , for some transition sequence σ > T �
n , any place

p and any marked token net �N,MN� > M�p� on place p, N is circumspect

and MN
t�
Ð� for some exception transition t� in N with l�t�� � e implies that

there exist t > T and b > B such that M
�t,b�Ð� in N , b�E�p, t�� � �N,MN� and

g�t� � e�E�p, t��.
Observe that if the circumspectness condition is violated, the system net

will ignore some exceptions of the token net.

4.4 Checking Properties of Adaptive Nets

In contrast to classical WF nets, boundedness is not a necessary condition
of soundness for adaptive workflow nets. Since the net tokens of an adaptive
workflow nets can become infinite, the set of reachable markings can have an
unbounded size. To reduce the verification of soundness and circumspectness
to a finite problem, we introduce an abstraction that replaces every net token
in the adaptive workflow net by a colored token with the set of exceptions of
the net token as a color. An adaptive workflow net is thus abstracted into a
colored exception workflow net.

We start this section by presenting colored EWF nets and we then discuss
our abstraction function.

4.4.1 Abstraction

Colored EWF nets We define colored EWF nets with a simple color set C �
2Σe 8 �b�, namely finite subsets of some set Σe of labels and a black token.
We define a set ColVar of variables, set of constants ColCon > 2Σe

and a set of
color expressions ColExp such that for η > ColExp, v > ColVar and ColCon:

η � c S v S η 8 η.

We define expressions γ of our guard language GL by

γ � � S r > v,

where r > Σe and v > Var. We now define our colored EWF nets as a simplified
version of Definition 2.33.

Definition 4.19. [Colored EWF net]
A colored EWF net is a tuple N � `P,T,A,E , g, le, where `P,T,A, le is an
EWF net, E �A � ColExp 8 �b� is an arc expressions function and g�T � GL
is a guard function, both satisfying the same restrictions as in Definition 4.11.

4.4 Checking Properties of Adaptive Nets 63

A binding is a mapping b � Var � C. We apply b to expressions and guards as
follows:

b�e� �
¢̈̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈
¦̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈̈
¤

c if e � c > ColCon;

b if e � b;

b�e1� 8 b�e2� if e � e1 8 e2, e1, e2 > ColExp;

� if e � �;
r > b�v� if e � r > v, v > ColVar, r > Σe.

A colored EWF net N � `P,T,A,E , g, le has markings that are multisets
over NP�C . Like for adaptive nets, we denote the bag of tokens in place p > P in

a marking M by M�p�, i.e. M�p� def� P�p,ν�>M �ν�. Let M be a marking, t > T

and b > B such that b�E�p, t�� > M�p� for all p > Yt and b�g�t�� holds. Then t

can fire in M with binding b:

M
�t,b�Ð�M � Q

p>Yt
��p, b�E�p, t���� � Q

p>tY
��p, b�E�t, p����.

We write M
tÐ�M � iff there exists a binding b such that M

�t,b�Ð�M � and M
tÐ�

if there exists M such that M
�t,b�Ð� M � and M

σÐ� M � if M � M1

t1Ð� M2

t2Ð�
� tn�1Ð�Mn � M � and σ � t1�tn�1, for n C 1.

Abstraction function Here we present a mapping that relates adaptive workflow
nets and colored EWF nets.

First we define the abstraction functions for arc expressions αe that maps
net (token) expressions to sets of exception labels from and for guards αg

respectively:

αe�e� �
¢̈̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈
¦̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈̈
¤

b if e � b;

v if e � v > Var;�l�t�St > Te� if e � c > Con,L�c� � `P,Tn 8 Te,A,E , g, le;
αe�e1� 8 αe�e2� if e � e1 ρ e2, e1, e2 > CExpr, ρ > �SS, .,��;
αe�e�� if e � init�e��, e� > Expr;

64 Adaptive Workflow Nets

start surveillance

c1

s2

s4

s3

c2

s3

c2

r

r

Var r, s2, s3, s4

g2 = partial response ∈ s2

g3 = radiation scarring ∈ r

g2

g3

i f
b

c1 = {partial response, relapse}
c2 = {radiation scarring}

⊤

b

c1

⊤

t4pt1

q t3

Fig. 14: Abstraction of the adaptive net in Figure 8

αg�g� �
¢̈̈̈̈̈̈̈̈̈
¦̈̈̈̈̈̈̈̈
¤̈
r > v if g � r�v�, v > Var, r > �l��t�St > T �

e,

,`P �, T �
e 8 T �

n,A�,E �, g�, l�e > ��t,p�>A�c>Con�E�t,p��L�c��;
� if g � �.

Definition 4.20. [Abstraction]

The abstraction of an EWF net N > N1 is αN�N� def� N . The abstraction
of an adaptive workflow net N � `P,T,A,E , g, le of level k C 2 is αN�N � �`P,T,A,Eα, gα, le, Eα�a� � αe�E�a�� for all a > A and gα�t� � αg�g�t�� for all
t > T .

Proposition 4.3. Let N � `P,T,A,E , g, le be an adaptive workflow net. Then
αN�N � is a colored EWF net.

Proof. We can apply Definition 4.19 for TExpr ` ColExp, and C � �b� 8 2Σe

,
where Σe � �l��t�St > T �

e , `P �, T �
e 8 T �

n,A�,E �, g�, l�e > �a>A�c>Con�E�a��L�c��.
From Definitions 4.11, 4.20 and 4.19, it follows that αN�N � is a colored EWF
net. A@

The nets in Figures 14 and Figure 15 are abstractions of the adaptive work-
flow nets from Figures 8 and Figure 9, respectively. Note that the expressions
on the input arcs of transitions contain either variables or the black token, so
they coincide with the expressions on the arcs of the original net. The expres-
sions on the output arcs of transition t1 contain expressions on library nets and
therefore they are mapped to the unions of the exception sets of these nets. For
instance, the expression init�Radiotherapy.STests`partial response, relapseee�
on the arc from t1 to p is abstracted to the union of the exception set of
STests`partial response, relapseee, which is �partial response, relapse�, and the
exception set of STests`partial response, relapseee, which is the empty set. The
expression s3SSinit�Prophylactic� on the arc from t3 to p is abstracted to the

4.4 Checking Properties of Adaptive Nets 65

SCLC

non-SCLC

limited stage

extensive stage

further workup

start

treatment

ltv

positive ∈ ltv

operable ∈ ftv non-operable ∈ ftv

ltv

ftv ftv
ft

tv
∅ spv

tv
progression ∈ tv

svv

esv

{positive}

c = {progression}
Var ltv, ftv, tv, spv, svv, esv last stage

b

b b

b

b

b

⊤

⊤

⊤

∅
∅

{positive}

c
c

c
c

⊤⊤

⊤

⊤

⊤

⊤

ft = {operable, non-operable}

Fig. 15: Abstraction of the main SCLC protocol (Figure 9)

union of s3 (since s3 is a variable) and the exception set of Prophylactic,
which is the empty set. The guard g2 �radiation scarring�r� of transition t3
is abstracted to radiation scarring > r, following the definition of the guard
abstraction. The guard final�s4� of transition t4 is abstracted to �.

Now we define the abstraction of a marking of an adaptive workflow net.
Since our goal is checking soundness and circumspectness, we are particularly
interested in the sets of exceptions of net tokens. Therefore, the abstraction of

tokens is a function αν � M 8 �b� � C defined as αν�b� def� b and αν�`P,Tn 8
Te, F,E , g, le,M� def� �l�t�St > Te� for marked nets from M. The abstraction of
a marking M of a marked net �N ,M� > Mk, k C 1 is defined as follows: for all

p > P, c > C, αM�M��p, c� def� Pν>Mk�1,αν�ν��c M�p, ν�.
Similarly, for a binding b > B, its abstraction αb�b� is defined as follows:

αb�b��e� �
¢̈̈̈̈̈̈̈̈̈
¨̈̈̈̈¦̈̈̈̈̈̈̈̈
¨̈̈̈̈̈¤

c e � c > Con;

b if e � b;

αν�b�v�� if e � v;

αb�b��η1� 8 αb�b��η2� if e � η1 8 η2, η1, η2 > ColExp.

Bα is the set of all abstract bindings.

Proposition 4.4. Let e > Expr 8 TExpr, g > G and b > B. Then, αν�b�e�� �
αb�b��αe�e�� and if b�g� holds then αb�b��αg�g�� holds.

Proof. We proceed by structural induction on e and g, respectively. Let e1, e2 >
Expr, te1, te2 > TExpr, v > Var and r > Σe.

e � b αν�b�b�� � αν�b� � b � αb�b��b�.

66 Adaptive Workflow Nets

e � v αν�b�v�� � αb�b��v� follows from the definition.

e � init�e1� Since e1 > Expr, we have αb�b��αe�init�e1��� � αb�b��αe�e1�� �
αe�e1� � αe�init�e1�� � αν�init�e1�� � αν�b�init�e1���.

e � te1 . e2 We have αν�b�te1.e2�� � �l�t�St > T 1
e 8 T 2

e , b�te1� �� �`P1, T
1
e 8 T 1

n ,A1,E1, g1, l1e,M� , b�e2� � `P2, T
2
e 8 T 2

n ,A2,E2, g2, l2e� ��l�t�St > T 1
e ,b�te1� � �`P1, T

1
e 8T 1

n ,A1,E1, g1, l1e,M��8�l�t�St > T 2
e ,b�e2� �`P2, T

2
e 8 T 2

n ,A2,E2, g2, l2e� � αν�b�te1�� 8αe�e2�. From the hypothesis, we
have that αν�b�e1�� � αb�b��αe�e1�� and αe�e2� � αb�b��αe�e2��. Hence,
we have αν�b�te1.e2�� � αb�b��αe�te1�� 8 αb�b��αe�e2��� αb�b��αe�te1� 8 αe�e2�� � αb�b��αe�te1 . e2��.

e � te1 SS te2 We have αν�b�te1SSte2�� � �l�t�St > T 1
e 8 T 2

e , b�te1� ��`P1, T
1
e 8T 1

n ,A1,E1, g1, l1e,M1�, b�e2� � �`P2, T
2
e 8T 2

n ,A2,E2, g2, l2e,M2��� �l�t�St > T 1
e , b�te1� � �`P1, T

1
e 8 T 1

n ,A1,E1, g1, l1e,M1�� 8 �l�t�St > T 2
e ,

b�te2� � �l�t�St > T 2
e 8b�te2� � �`P2, T

2
e 8T 2

n ,A2,E2, g2, l2e,M2�� � αν�b�te1��
8 αe�b�te2��.
Since αν�b�te1�� � αb�b��αe�te1�� and αν�b�te2�� � αb�b��αe�te2��, we
have that αν�b�te1SSte2�� � αb�b��αe�te1��8αb�b��αe�te2�� � αb�b��αe�te1�
8 αe�te2�� � αb�b��αe�te1 SS te2��.

g � � Since αb�b��αg�g�� � αb�b���� � �, αb�b��αg�g�� holds.

g � r�v� We have αb�b��αg�r�v��� � αb�b��r > v� � r > αb�b��v�. Moreover
r > αb�b��v� � r > αν�b�v�� � αg�r�b�v��� � αg�b�r�v���. Since b�r�v��
holds, αg�b�r�v��� holds as well, hence αb�b��αg�g�� holds.

A@

In the rest of the subsection we consider adaptive nets of level k C 2.

Firings of the abstraction of an adaptive net enjoy a close correspondence
with firings of the adaptive net. First of all, every firing in the adaptive net can
be weakly simulated in the abstraction.

Lemma 4.8. Let M
σÔ� M � be a firing in an adaptive net N . Then, in

αN�N �, we have αM�M� σÐ� αM�M ��.
Proof. Let M

tÔ�M �. Then there is a binding b > B such that M
�t,b�
Ô�M �, i.e.

b�E�p, t�� > M�p� for all p > Yt, b�g�t�� holds and

M � � M � Q
p>Yt

��p, b�E�p, t���� � Q
p>tY

��p, b�E�t, p����.
By applying the abstraction function (Definition 4.20), we have that for

each p > Yt, αν�b�E�p, t��� > αM�M��p�. By Proposition 4.4, we have

αb�b��Eα�p, t�� > αM�M��p�

4.4 Checking Properties of Adaptive Nets 67

for all p > Yt. Since b�g�t�� holds, by Proposition 4.4, we have that αb�b��gα�t��
holds as well. Hence, there exists Mα so that αM�M� �t,b�Ð�Mα and

Mα � αM�M� � Q
p>Yt

��p,αb�b��Eα�p, t���� � Q
p>tY

��p,αb�b��Eα�t, p����.
By Proposition 4.4,

Mα � αM�M� � Q
p>Yt

��p,αν�b�E�p, t����� � Q
p>tY

��p,αν�b�E�t, p����� � αM�M ��.
Thus αM�M� �t,αb�b��Ð� αM�M ��, i.e. αM�M� tÐ� αM�M ��. By applying induc-

tion on the length of σ, we conclude that M
σÔ� M � implies αM�M� σÐ�

αM�M ��. A@

Second, every two markings connected by a firing sequence in the abstract
net are abstractions of some markings of the adaptive net connected by a firing
sequence.

Lemma 4.9. Let N � `P,T,A,E , g, le be an adaptive net, such that for all c >
��t,p�>A Con�E�t, p��, c is (relaxed/weakly) sound, and αN�N � its abstraction.

(1) Given a marking M of N , with all its net tokens being in the initial marking,

and Mα � αM�M� of αN�N �, any firing sequence Mα
σÐ� M �

α can be

simulated by M
σÔ� M � so that αM�M �� � M �

α and all net tokens in M �

are in the initial marking.
(2) Given a marking M of N , with all net tokens being in the final marking,

and Mα � αM�M� of αN�N �, any firing sequence Mα
σÐ�M �

α with g�t� � �
for all t > σ can be simulated by M

σÔ�M � so that αM�M �� � M �
α and all

net tokens in M � are in the final marking.

Proof. (1) We use induction on the length of the transition sequence σ. For
σ � ε, the statement trivially holds with M � � M . Suppose that the statement

holds for every firing sequence Mα
σÐ�M �

α with σ > T k
n , for some k C 0.

Consider M �
α such that Mα

σtÐ� M �
α for some σt > T k�1

n , then Mα
σÐ�

M ��
α

tÐ�M �
α, for some M ��

α . By the induction hypothesis, M
σÔ�M ��, for some

M �� such that all its net tokens have the initial marking and αM�M ��� � M ��
α .

Since M ��
α

tÐ� M �
α, there exists a binding bα > Bα such that M ��

α

�t,b�Ð� M �
α,

i.e. bα�Eα�p, t�� > M ��
α�p�, for all p > Yt, bα�gα�t�� holds and

M �
α � M ��

α � Q
p>Yt

��p, bα�Eα�p, t���� � Q
p>tY

��p, bα�Eα�t, p����.
By the definition of abstraction, there is a binding b > B such that bα � αb�b�,
for all v > ��p,t�>F Var�E�p, t��, b�v� � �N, ��i,b���, for some N , and b�E�p, t�� >
M ���p�, for all p > Yt. We have the following cases of guards in N :

68 Adaptive Workflow Nets

�a� g�t� � final�v�. Let M �� τ�
Ð� M ��� be the firing by which b�v� � �N,M0�

reaches the final marking (by Lemma 4.4, by Lemma 4.5 and the fact that
all the constants in the net expressions are (relaxed/weak) sound). Let b�

be the binding which coincides with b, except for b��v� � �N, ��f,b���.�b� g�t� � e�v�. Let M �� τ�
Ð� M ��� be the firing so that in b�v� � �N, ��i,b���

reaches MN
t�Ð� and l�t�� � e (all net tokens are (relaxed/weak) sound,

hence t� is quasi-live in b�v�). Let b� be the binding which coincides with b,
except for b��v� � �N,MN�.�c� g�t� � �. Let b� � b and M ��� � M ��.

Then b��g�t�� holds and M ��� �t,b��
Ô�M �, where M � � M ����Pp>Yt��p, b��E�p, t�����

Pp>tY��p, b��E�t, p���� and αM�M ���� � αM�M ���.
By Proposition 4.4, we have

αM�M �� � αM�M ���� � Q
p>Yt

��p,αν�b��E�p, t����� � Q
p>tY

��p,αν�b��E�t, p�����
� M ��

α � Q
p>Yt

��p, bα�Eα�p, t���� � Q
p>tY

��p, bα�Eα�t, p���� � M �
α

and all net tokens in M � except the ones have the initial marking.

(2) We use induction on the length of the transition sequence σ. For σ � ε,
the statement trivially holds with M � � M . Suppose that the statement holds

for every firing sequence Mα
σÐ�M �

α with σ > T k
n , for some k C 0.

Consider M �
α such that Mα

σtÐ� M �
α for some σt > T k�1

n , then Mα
σÐ�

M ��
α

tÐ�M �
α, for some M ��

α . By the induction hypothesis, M
σÔ�M ��, for some

M �� such that all its net tokens have the final marking and αM�M ��� � M ��
α .

Since M ��
α

tÐ� M �
α, there exists a binding bα > Bα such that M ��

α

�t,b�Ð� M �
α,

i.e. bα�Eα�p, t�� > M ��
α�p�, for all p > Yt, bα�gα�t�� holds and

M �
α � M ��

α � Q
p>Yt

��p, bα�Eα�p, t���� � Q
p>tY

��p, bα�Eα�t, p����.
By the definition of abstraction, there is a binding b > B such that bα � αb�b�,
for all v > ��p,t�>A Var�E�p, t��, b�v� � �N, ��f,b���, for some N , and b�E�p, t�� >
M ���p�, for all p > Yt.

Since the all net tokens have the final marking, in either cases g�t� � final�v�
or g�t� � �, b�g�t�� holds. Hence M �� �t,b�

Ô�M ���, where

M ��� � M �� � Q
p>Yt

��p, b�E�p, t���� � Q
p>tY

��p, b�E�t, p����.
Let M ��� τ�

Ð� M � be the firing by which all �N,MN� > ��t,p�>A b�E�t, p��
reach the final marking. Let b� be the binding such that b��v� � b�v� if b�v� �

4.4 Checking Properties of Adaptive Nets 69

�N, ��f,b��� and b��v� � �N, ��f,b��� if b�v� � �N,MN� with MN ~� ��f,b��.
Hence αM�M ���� � αM�M �� and by Proposition 4.4, we have

αM�M �� � αM�M ��� � Q
p>Yt

��p,αν�b�E�p, t����� � Q
p>tY

��p,αν�b�E�t, p�����
� M ��

α � Q
p>Yt

��p, bα�Eα�p, t���� � Q
p>tY

��p, bα�Eα�t, p���� � M �
α

and all net tokens in M � have the final marking. A@

4.4.2 Checking Soundness and Circumspectness

Soundness Now we can reduce the check of soundness of an adaptive workflow
net to the check of a behavioral property on its abstraction:

Theorem 4.1 (soundness). Let N be an adaptive net and αN�N � its ab-
straction, such that for all c > ��t,p�>A Con�E�t, p��, c is sound. Then N is
sound iff for all abstract markings Mα reachable by firing of non-exception tran-

sitions, i.e. ��i,b�� σÐ�Mα with σ > �Tn��, Mα
σ�
Ð� ��f,b�� for some σ� > �Tn��

such that gα�t� � � for all t > σ� and α�N � is quasi-live.

Proof. (�) Let ��i,b�� σÐ� Mα in αN�N �, with σ > T �
n . By Lemma 4.9.(1),

there exists a marking M so that ��i,b�� σÔ�M in N , with αM�M� � Mα and

all net tokens in M have the initial marking. Since N is sound, M � γÔ� ��f,b��,
γ > T �

n and g�t� > ��,final�v��, for all t > γ. By Lemma 4.8, αM�M �� γÐ� ��f,b��
in αN�N �, γ > T �

n and gα�t� � � for all t > γ.
Since N is sound, every transition t of N is quasi-live. Thus there is a reach-

able marking M of N such that M
tÐ�. By Lemma 4.8, αM�M� is reachable

in αN�N � and αM�M� tÔ�, hence t is quasi-live in αN�N �.
(
) Let ��i,b�� σÔ�M in N , where σ > T �

n . Since all net tokens are sound

M
τ�
Ð� M � such that all net tokens of M � have the final marking. By Lemma

4.8, ��i,b�� σÐ� αM�M� � αM�M �� in αN�N � and by hypothesis, αM�M� σ�
Ð���f,b�� in αN�N �, where σ,σ� > T �

n so that g�t� � �, for all t > σ�. By Lemma

4.9.�2�, we have that M � σ��
Ô� ��f,b�� in N and all t > γ are in Tn and g�t� >��,final�v��.

Since αN�N � is sound, every transition t is quasi-live. Hence, there exists

Mα such that ��i,b�� σÐ�Mα
tÐ�, for some σ. By Lemma 4.9.�1�, there exists a

marking M of N reachable by non-exception transition such that all net tokens

have the initial marking and αM�M� � Mα. If g�t� � e�v�, then M
�t,b�
Ô�, where

b�v� � �N,MN�, l�t� � e and MN
tÐ�; if g�t� � final�v�, since all net tokens are

sound, M
�t,b�
Ô� and b�v� � �N, ��f,b���; if g�t� � �, M

tÐ�, so M
tÔ�. Hence, t

is quasi-live in N . A@

70 Adaptive Workflow Nets

b x

x

binit(c)

x.c

N〈e〉e

i f⊤

e(x)

x

⊤

p

e

i f

l

⊤⊤

⊤

b

b

b bb

c = N〈e〉e

N〈l〉e

l′
b

Fig. 16: Sound and circumspect adaptive net

Note that there exist sound adaptive nets for which the theorem cannot
be applied. For instance, N `lee in Figure 16 is sound even though the net
N`eee is unsound and αN�N `lee� satisfies the property that for all Mα with��i,b�� σÐ�Mα, Mα

σ�
Ð� ��f,b��, for some σ,σ� > T �

n .

Figure 17 shows the abstractions of the unbounded adaptive nets in Fig-
ure 13. Note that when the number of tokens grows in some places (cases �a�
and �c�), the abstraction is unbounded as well. However the boundednness of
the abstraction does not imply the boundedness of the adaptive net (see cases�b� and �d� as counterexamples), since the abstraction ignores the net tokens
and their sizes.

We now prove that the abstraction of a sound adaptive workflow net is
bounded.

Lemma 4.10. Let N be a sound adaptive net. Then, R�αN�N �, ��i,b��� is
finite.

Proof. Suppose R�αN�N �, ��i,b��� is infinite. Hence there exists an infinite se-
quence of pairwise distinct markings M1

α,M2
α, . . . reachable by non-exceptional

transitions, i.e. ��i,b�� �Ð� M1
α

�Ð� M2
α

�Ð� �. Since the set of colors C of
αN�N � is finite (Proposition 4.3), we can apply Dickson’s Lemma (Lemma 2.1)
w.r.t. the set of markings NP�C . Hence there exist an infinite subsequence Mk1

α ,
Mk2

α , . . . of M1
α,M2

α, . . . , where k1 @ k2 @ �, such that Mki
α � Mki�1

α �∆i where

∆i A g for all i C 1. By Theorem 4.1, Mk1

α

σÐ� ��f,b�� for some σ > T �
n . Then

Mk2

α

σÐ� ��f,b���∆1. Since f is a sink place, ��f,b���∆1 cannot reach ��f,b��,
which contradicts Theorem 4.1. So R�αN�N �, ��i,b��� is finite. A@

This lemma emphases the fact that the only source of unboundedness for
sound adaptive nets is actually the growing size of the net tokens as pictured
in Figure17.�d�.
Theorem 4.2 (weak soundness). Let N be an adaptive net and αN�N �
its abstraction, such that for all c > ��t,p�>A Con�E�t, p��, c is weakly sound.
Then N is weakly sound iff its abstraction is quasi-live and there exists a firing

sequence ��i,b�� σÔ� ��f,b�� for some σ� > T �
n such that gα�t� � � for all t > σ�.

Proof. The proof follows from Lemma 4.8 and Lemma 4.9. A@

4.4 Checking Properties of Adaptive Nets 71

b
init(N)

i ⊤N

l′

x

x
⊤p

t

x x fbp′ ⊤

αN(N) b ∅
i ⊤

l′

x

x
⊤p

t

x x fbp′ ⊤

(a) αN�N � is unbounded: ��p,g�� tÔ� ��p,g�����p�,g��
b init(N)

i ⊤N
x

⊤p x x fbp′
t

⊤

t′

b ∅i ⊤αN(N)
x

⊤p x x fbp′
t

⊤

t′

(b) αN�N � is bounded

x||x
b

init(N)
i ⊤N

x
⊤p

t

x.N x fb
p′ ⊤

t′

αN(N)
b ∅

i ⊤

t′

x

x ∪ x

⊤p

t

x ∪ x
x fb

p′ ⊤

(c) αN�N � is unbounded: ��p,g�� tÔ� ��p,g�����p�,g��
b x binit(N)

i f⊤ ⊤p

N

t′xx||x

t

b x b∅
i f⊤ ⊤p

αN(N)

t′xx ∪ x

t

(d) αN�N � is bounded

Fig. 17: Abstractions of unbounded adaptive nets

Theorem 4.3 (relaxed soundness). Let N be an adaptive net and αN�N �
its abstraction, such that for all c > ��t,p�>A Con�E�t, p��, c is relaxed sound.
Then N is relaxed sound iff its abstraction is relaxed sound, i.e αN�N � is
t-quasi-live for all t > Te and for all transitions t > Tn, there exist Mα,M �

α,

σ > T �
n , σ� > T �

n such that gα�t� � � for all t > σ� and ��i,b�� σÔ� Mα

tÔ�
M �

α

σ�
Ô� ��f,b��.

Proof. The proof follows from Lemma 4.8 and Lemma 4.9. A@

Circumspectness As explained above, we would like to check circumspectness of
an adaptive workflow net by checking the corresponding property of a colored
EWF. The following theorem establishes the link between circumspectness of
an adaptive net and a similar property of its abstraction.

Theorem 4.4 (circumspectness). Let N be an adaptive workflow net of
level k C 2 and αN�N � its abstraction, such that for all c > ��t,p�>A Con�E�t, p��,

72 Adaptive Workflow Nets

c is circumspect and sound. N is circumspect iff for any marking Mα of αN�N �
such that ��i,b�� σÐ� Mα where σ > T �

n , for all tokens �p, cα� > Mα and all
exceptions r > cα, there exist t > T , b > Bα, v > V ar so that Eα�p, t� � v,

b�v� � cα, gα�t� � r > v and Mα

�t,b�Ð�.

Proof. ��� Let Mα be a marking reachable by the firings of non-exception
transitions in αN�N �, �p, cα� > Mα and r > cα. By Lemma 4.9.(1), there exists
a marking M inN reachable by firings of non-exception transitions such that all
tokens nets have the initial marking and αM�M� � Mα. Hence, there is a token
net �N, ��i,b��� > M�p� with the set of exception labels cα and a transition

t� of N such that l�t�� > cα. Since t� is quasi-live in N , ��i,b�� �Ð� MN
t�Ð�.

Hence M
τ�
Ð� M �, so that �N,MN� > M ��p� and Mα � αM�M ��. Since N is

circumspect there exists a t of N such that M � tÐ� and g�t� � r�v�, where

v > Var. By Lemma 4.8, αM�M �� � Mα
tÐ� and moreover gα�t� � r > v.�
� Let M be a marking reachable by the firing of non-exception transitions

in N such that there is a marked token net �p, �N,MN�� > M and MN
t�Ð�

for some exception transition t� in N and l�t�� � r. By Lemma 4.8, there exists
a marking Mα reachable by non-exception transitions in αN�N � such that
αM�M� � Mα and r > ��p,cα�>Mα

cα. Hence there exists a t in N such that

gα�t� � r > v and Mα
tÐ�, i.e there exists a binding bα, with bα�Eα�p, t�� >

Mα�p�, for all p > Yt and bα�gα�t�� holds. By the definition of abstraction
there is a binding b with αb�b� � bα, b�E�p, t�� > M�p�, for all p > Yt, and

b�g�t�� � b�r�v�� holds. Hence, M
tÐ� in N . A@

Figure 16 shows a circumspect net, where the net token is not sound, how-
ever the net satisfies the condition in the above theorem on its abstraction.

Verification on abstraction We are interested in nets which are sound at all
levels, including their net tokens. Therefore we introduce the notion of strong
soundness and strong circumspectness.

Definition 4.21 (strong soundness).
All sound nets from N1 are defined to be strongly sound. An adaptive net N �`P,T,A,E , g, le is strongly sound iff N is sound and all c > ��t,p�>A Con�E�t, p��
are strongly sound.

Definition 4.22 (strong circumspectness).
All nets from N1 are defined to be strongly circumspect. An adaptive net
N � `P,T,A,E , g, le is strongly circumspect iff N is circumspect and all c >
��t,p�>A Con�E�t, p�� are strongly sound and strongly circumspect.

The check of strong soundness and strong circumspectness for an adaptive
net N of level k C 1 can be performed either top-down or bottom-up. In the

4.4 Checking Properties of Adaptive Nets 73

Algorithm 4: CheckStrongSound�N �
Input: N � `P,Tn 8 Te,A,E , g, le
Output: true if N is strongly sound; false if N is not strongly sound;

(a) if αN�N � is unbounded then

return false

else

if ��R��αN�N ��STn
, ��i,b��� b S��αN�N ��STn

, ��f,b���� ,
, �¦t > Tn 8 Te§M >RSTn

�αN�N �, ��i,b����M tÐ��� then
return false;

(b) if ¦N > ��t,p�>A Con�E�t, p���CheckStrongSound�N� �� true then

return true

else

return false;

Algorithm 5: CheckStrongCirc�N �
Input: N � `P,Tn 8 Te,A,E , g, le
Output: true if N is strongly circumspect ; false if N is not strongly

circumspect ;

(a) forall Mα >R��αN�N ��STn
, ��i,b���, p > P do

if §�p, cα� > Mα, r > cα� �¦t� > pY� �g�t� �� �l > E�p, t����� then
return false;

(b) if ¦N > ��t,p�>A Con�E�t, p���CheckStrongCirc�N� ,CheckStrongSound�N�
then

return true
return false;

top-down approach, depicted in Algorithms 4 and 5, we check the sufficient
conditions on the abstraction of N assuming the corresponding properties of
the constants (line (a)). Next we proceed and consider strong soundness and
strong circumspectness of the nets to which constants in the system net are
mapped, assuming the corresponding properties of the constants appearing in
these nets (line (b)). In the bottom-up case one first has to find all constants
of level 1 appearing in the nets, analyze these nets and then proceed to the
following level (lines (a) and (b) are reversed).

To analyze strong soundness and strong circumspectness of the adaptive net
in Figure 8 we consider its abstraction in Figure 14. Clearly, for any markings
reachable in Figure 14 there exists a sequence of non-exceptional guarded firings
reaching ��f,b��. Therefore, the adaptive net in Figure 8 is strongly sound. The

74 Adaptive Workflow Nets

net is not strongly circumspect, since in the abstract net there is no transition
having the guard relapse > v while the exception label relapse is mentioned in��p, c1�� � ��q, c2��.
4.5 Related Work

Net in nets are extensively studied in the Petri net literature (see e.g [24,
81, 85, 94, 95, 101, 136]). The goal is to extend the expressive power and the
modeling comfort of Petri nets. The idea of combining workflow and “nets in
nets” is going back to [12], where the authors consider object Petri nets with
workflow nets as token nets.

In [24], the authors consider an object-oriented approach in defining syn-
chronization between objects of different classes. For instance, an object might
call methods of other objects using the operators: parallel composition, sequen-
tial composition and alternative composition. This corresponds to our approach
of creating a new net token using these operators.

The idea of controlled modification of token nets is also considered for high-
level net and rule (HLNR) systems in [72]. Unlike our approach that easily
supports arbitrary (but fixed) nesting level and synchronization between dif-
ferent levels of a nested net, the previous results considered nesting of depth
one only. Moreover, [72] carries structural modification of P/T token nets by
means of rule tokens, whereas our approach uses predefined and well-known
operations, such as sequential and parallel composition.

Our approach is also close to the work of [82] describing dynamic refine-
ment of transitions for super-dual nets which are based on reference nets. As
opposed to statical refinement from [64], we have shown that dynamic refine-
ment can make compositional verification more efficient and less expensive.
While in Chapter 3, generalized soundness was necessary to prove soundness
in a compositional way in a static setting, we have given here a new formal-
ism which allows “dynamic compositional” verification of soundness requiring
1-soundness of net tokens. The practical application in the medical domain of
our approach has been reported in [65].

4.6 Conclusion

In this chapter we considered two correctness properties for adaptive nets:
soundness and circumspectness. Soundness is in principle a modification of the
definition for classical workflow nets. Circumspectness is a new notion induced
by the need to verify the enabledness of exception handling and proper decision
making. We show how to verify soundness and circumspectness in a composi-
tional manner by reducing it to the verification of corresponding properties of
a finite abstraction of adaptive workflow nets.

Using Algorithms 4 and 5 would allow building correct and robust by con-
struction adaptive workflow. Like in declarative workflow languages [10], at

4.6 Conclusion 75

certain points in the execution, it is allowed to specify adaptations of the be-
havior according to new protocols that can in principle be provided at runtime.
The advantage of adaptive nets is that one is able to reason about the changed
behavior as a whole and the complexity is lower since every protocol is verified
separately.

76 Adaptive Workflow Nets

5

Verifying Extended Event-driven Process

Chains

Business processes are becoming more and more complex and at
the same time their correctness is becoming a critical issue: The
costs of errors in business information systems are growing due
to the growing scale of their application and the growing degree
of automation. In this chapter we consider extended Event-driven
Process Chains (eEPCs), a language which is widely used for mod-
eling business processes, documenting industrial reference models
and designing workflows. We describe how to translate eEPCs
into timed colored Petri nets in order to verify processes given
by eEPCs using CPN Tools.

The chapter is based on [61].

78 Verifying Extended Event-driven Process Chains

5.1 Introduction

Event-driven Process Chains (EPC) [77, 123] is a popular language for model-
ing business processes, documenting industrial reference models and designing
workflows. EPCs describe the flow of control of business processes as a chain
of functions, events, and logical connectors. Functions represent activities in a
business process. An event expresses a precondition (trigger) for a function or
a postcondition that signals the termination of a function. Logical connectors
and, or, and xor are used according to their names to build the control flow
of a process in a natural way.

EPCs extended with data, resources, time and probabilities, called extended
EPCs (eEPCs) [123], are intensively used in commercial tools like A

¯
r
¯
chitecture

of Integrated I
¯
nformation S

¯
ystems (ARIS) [77] and SAP R/3 [76]. These tools

support modeling and simulation of organizational processes with eEPCs, and
they are widely used in such branches of industry and consultancy as banks,
insurance companies, transportation. The complexity of business processes in
these branches is growing throughout the years. Due to informatisation, which
concerns all aspects of organizational activities, less and less manual work is
involved into the supervision and execution of business processes. This acceler-
ates processes significantly, but also puts higher requirements to the correctness
of process specifications, since an error in a process design could demonstrate
itself in an automated system too late, when it might already cause a snowball
effect.

EEPCs are intensively used in practice although there is no formal definition
and semantics provided by ARIS ToolSet. The tool only provides an operational
semantics in terms of their simulator. We choose to use an available tool for
modeling, simulation and analysis of the constructed model, e.g. model check-
ing which covers the whole system behavior, and we provide a translation from
eEPCs to the input language of this tool. Petri nets are appropriate for mod-
eling EPCs since all EPC elements can be translated to places and transitions
of Petri nets in a natural way (see e.g. [2, 43, 86]). Extended EPCs have such
additional features as data, time and probabilities. Therefore timed colored
Petri nets (TCPNs) [74] are a natural choice for modeling eEPCs. CPN Tools
[75, 37] provides modeling, simulation, and model checking options for TCPNs
and thus satisfies our requirements.

In this chapter, we provide a formal definition of eEPCs and present their
semantics in terms of a transition system. We provide a translation from eEPCs
to TCPNs and describe how we can analyze the behavior of an eEPC with CPN
Tools. Furthermore, we show that the translation preserves the eEPC behavior
up to branching bisimulation. We conclude by comparing our method to other
approaches for formalizing the syntax and the semantics of EPCs.

The rest of the chapter is organized as follows. In Section 5.2 we describe
the syntax of eEPCs. In Section 5.3 we provide the semantics of eEPCs as used
in practice. Section 5.4 gives a translation from eEPCs to timed colored Petri

5.2 Syntax of Extended Event-driven Process Chains 79

eEPC

-br

TCPN
translation
−−−−−−→

transition system of the eEPC transition system of the TCPN

Fig. 18: Overview of this chapter

nets and discusses some verification issues. In Section 5.5 we give an account
of related work and discuss some direction for future work.

5.2 Syntax of Extended Event-driven Process

Chains

In this section, we give a brief description of the syntax of eEPCs taking into
account requirements given in [77] as well as the ones imposed by practice. We
use ARIS [41, 73, 77, 123] as a reference point of our study. Our approach can
be applied to other tools supporting eEPCs as well, since they are based on
the same concepts.

ARIS offers a conceptual framework for describing companies, their orga-
nizational structure, processes and resources (material as well as human). In
addition to process modeling, ARIS offers the possibility to analyze process
performance based on simulation. In order to structure process modeling and
to show different angles of an organization, ARIS distinguishes five main views:

Data view uses the entity-relationship models (ERM) to design data models:
entities (e.g. data objects of the environment that are processed by the
system), their attributes and relationships between entities;

Function view describes functions as tasks performed on objects to support
different company goals; it includes descriptions of procedures, processes,
subfunctions and elementary functions;

Organization view models the relations between company units and the clas-
sification of these units in the organizational hierarchy;

Product/service view describes the products and services produced by the
company as a result of human act or technical procedures;

Control view integrates the previously mentioned views and defines the dy-
namic, behavioral aspects. The control flow of a process is described with
an EPC extended with the description of the resources and data involved
in the process, and timed and probabilistic aspects of the behavior.

The control view is essential for process verification, so we concentrate our
study on this view. In the sequel, we define generic EPCs and extend them to
eEPCs as they are presented in the control view of ARIS.

80 Verifying Extended Event-driven Process Chains

5.2.1 Syntax of EPCs

First, we give a definition of a generic EPC.

Definition 5.1. [EPCs]
An event-driven process chain (EPC) is a weakly connected directed graph G ��V,A� that satisfies the following properties:

1. The set V is the union of three pairwise disjoint sets E, F and C, where

– E is the set of events. E � Es 8 Ef 8 Ei, where Es, Ef and Ei are
pairwise disjoint sets of start events, final events, and internal events
respectively, with SEsS C 1 and SEf S C 1;

– F ~� g is a set of functions;
– C is a set of connectors of types xor, or, and, i.e. C � Cxor 8 Cor 8

Cand, where Cxor, Cor and Cand are pairwise disjoint sets. Further-
more, each of these sets is partitioned into two pairwise disjoint sets
representing split and join connectors: Cxor � Cxs8Cxj, Cor � Cos8Coj

and Cand � Cas 8Caj, and Cs stands for set of split connectors, and Cj

stands for the set of join connectors;

2. Every element from the set A of arcs connects two different vertices. More-
over,

– Yes � g and eYf � g, for each es > Es and ef > Ef ;
– SnYS � 1 for each n > F 8Ei 8Es, and SYnS � 1 for each n > F 8Ei 8Ef ;
– each split connector c > Cs satisfies SYcS � 1 and ScYS A 1; similarly each

join connector c > Cj satisfies SYcS A 1 and ScYS � 1;

3. Each vertex is on a path from a start event to a final event, i.e. for any
n > V , there is a path σ from some es > Es to some ef > Ef , such that n > σ;

4. Functions and events alternate along the control flow, i.e. each path starting
in an event e > E �Ef and ending in an event ef > Ef has a prefix of the
form eσcf , where σc > C� and f > F . Similarly, for each path σ starting
in a function f > F and ending in an event ef > Ef there is a prefix fσce,
where σc > C� and e > E �Es;

5. Events do not precede the xor and the or split, i.e. ¦c > Cxs8Cos:
Yc9E � g;

6. There is no cycle that consists of connectors only, i.e. for any path σ �
v0v1 . . . vn > C��n C 2� v0 ~� vn.

5.2.2 Syntax of Extended EPCs

The control view of an eEPC has an EPC as a skeleton. Data attributes, re-
sources, time and probabilities are linked to different EPC elements to form an
extended EPC.

Functions represent activities that may take time, may require access to
diverse resources and may perform operations on some data or resources.

Functions that perform operations on data attributes are annotated with
expressions denoting the operation performed (see for example Figure 19(a)).
Personnel, material or information resources can be used to execute functions.

5.2 Syntax of Extended Event-driven Process Chains 81

We call these objects capacity resources, since they are characterized by min-
imum and maximum capacities to run the process which are delimiting the
capacity resource domain. Functions are annotated with a nonnegative inte-
ger or real constant denoting the number of resources required, produced or
consumed. In Figure 19(b), function finish products produces 1000 items of
resource r1 with startup capacity 1000 and capacity domain �r1min, r1max�,
where r1min � 100 is the lower capacity bound and r1max � 5000 is the upper
capacity bound. Moreover, the function consumes 500 items of resource r2 with
the same capacity domain and sturtup capacity.

Furthermore, functions can be either timed, i.e. they may have a duration,
or immediate, i.e they take zero time. The duration of each timed function is
described by a probability distribution.

Events define either conditions on data attributes or resource capacities,
or triggers from elements outside the process.

Processes are instantiated at start event sets. Each such start event set4

contains start events which are synchronized, i.e. a process is started at the
same time at all the events of the respective set. A probability distribution is
assigned to each start event set, denoting the frequency with which process
instances are created for the events in the respective set.

End events are events with no outgoing arc, at which process instances
are stopped.

Conditions (boolean expressions) on data attributes or on resources deter-
mine the terms of the respective event. An event that follows an or split or
an xor split connector and is determined by a condition is called a condi-
tion event. Condition events may have attributes or capacity resources
connected to them and conditions are specified as:

– conditions on one operand that have a constant value of the same type as
the attribute or the capacity value of a resource as comparison criterion.
Figure 19(a) shows two condition events annotated with boolean expres-
sions on a data attribute;

– conditions on two operands that compare two attribute values or the capac-
ity values of two resources. In Figure 19(b), the condition events products
are sent to warehouse and products are sent for sale are annotated with the
boolean expressions r1 @ r2 and r1 C r2, where r1 and r2 are the variables
corresponding to resources Item 1 and Item 2, respectively.

The rest of events are used to model triggers from outside the process and
they have a probability value assigned. This value is used during the simula-
tion to determine whether the execution stops or continues at the respective
event. Probability values for events following and split connectors are 1 since
the execution cannot stop at events following such a connector. The sum of
probability values for events following xor split connectors is exactly 1 as the
execution can continue only on one outgoing branch. Furthermore, the sum of

4 In ARIS, event diagrams are used to represent start event sets.

82 Verifying Extended Event-driven Process Chains

event

function

condition event

a<7500

condition event

a>=7500

data attribute a

data attribute a

a+450

(a) Condition events on a data at-
tribute

order received

finish products

products are

sent to
warehouse

r1<r2

products are

sent for sale

r1>=r2

Resource r1

Resource r2

Maximum capacity: 5,000

Minimum capacity: 100

Resource r1

Startup capacity: 1,000

Maximum capacity: 5,000

Minimum capacity: 100

Resource r2

Startup capacity: 1,000

produces

1000

consumes

500

(b) Condition events on resources

Fig. 19: Condition events on data attributes and resources

probability values for events following or split connectors is greater than 1 as
the execution can continue on one or more outgoing branches.

Or join connectors may also contain some timeout information, called syn-
chronization timeout. The synchronization timeout represents the amount of
time with which the firing of the or join connector for one process instance is
delayed after a first representative of the process instance arrives at the con-
nector while waiting for other representatives of the process instance to arrive
at the or join connector.

We give a formal definition of eEPCs as they are used in ARIS Toolset.

Definition 5.2. [eEPC]
An extended event-driven process chain (eEPC) is defined by the tuple Ge �`G,A,R,Type,Expr, PDF,Pre, where

– G is an underlying EPC.
– A is a set of data attributes. We decompose A into a family �f>F Af of sets

of data attributes indexed by the function performing operations on them.
– R is a set of capacity resources. We decompose R into a family �f>F Rf

of sets of resources indexed by the function performing operations on them.
Note that these sets are not disjoint as several functions can perform oper-
ations on the same resource. Moreover, we consider a partition of the set of
resources used by a function f into used, produced and consumed resources,
i.e. Rf �Ru

f 8R
p
f 8Rc

f . Note that a function can perform just one type of
operation on a resource.

– Type maps each attribute to one of the types Text, Enum, B, Z, or R and
each capacity resource r >R to a real or integer subtype �rmin, rmax�, where
rmin and rmax are the minimum and maximum capacities of resource r.

– Expr � Exprb 8�x>R8AExprx maps condition events and functions to ex-
pressions on the attributes or capacity resources linked to them as follows:

5.2 Syntax of Extended Event-driven Process Chains 83

Y Ec b E 9 �Cxs 8Cos�Y denotes the set of condition events, i.e. events
following or split and xor split connectors that have conditions on
data attributes or resources. Every condition event e > Ec is mapped
to a boolean expression Exprb�e� of the form v1 x v2 or v1 x c, where
v1, v2 are either attributes or resource capacities, c is a constant so
that Type�v1� � Type�v2� � Type�c� and x is the comparison operator
compatible with the types used.

Y every function f performing an operation on an attribute a is mapped to
an expression Expra�f�, having the form a �� c, where c is a constant
value with Type�a� � Type�c�, or a �� a x c, with Type�a� � Z or
Type�a� � R, constant c with Type�a� � Type�c� and x> ��,�,��.

Y Exprr�f� maps function f using, producing or consuming a resource
r > Rf to constant cf

r > Type�r�, denoting the quantity of resources
used, consumed or produced.

– Ft b F denotes the timed functions, and Ct b Coj denotes the set of or
join connectors with synchronization timeout. We consider the set of start
events Es partitioned into start event sets, i.e. Es � �d>Is

Ed
s , for some

index set Is.
PDF � �k>�Ft8Ct8Is� pdfk denotes a family of continuous or discrete prob-
ability distributions5 for the duration of timed functions, for the synchro-
nization timeouts of timed or join connectors, and for the delays of start
event sets.

– Pr�E �Es �Ec � �0,1� which maps events to their probability values such
that:
Y Pe>E9cY Pr�e� � 1, for each xor split connector c > Cxs with E9cY ~� g;
Y Pe>E9cY Pr�e� C 1, for each xor split connector c > Cos with E9cY ~� g;
Y Pr�e� � 1 for each e > Cas

Y 9E.

Figure 20 shows an eEPC modeling a part of a trade matching process taking
place in a company. The process checks the timely receipt of a confirmation,
administrates the trade internally and matches the confirmation against the
internal data before the release process can be started.

The process starts with the event trade executed (deal made) that triggers
the function monitor receipt of trade confirmation and administration. This re-
sults in a change of the data attribute trade use. The execution is then split into
two parallel threads, which is modeled by an and split . The left thread models
the check whether the confirmation of the trade has been received electroni-
cally or manually by means of an xor split and two condition events: Received
trade confirmation (manual) and Received trade confirmation (electronic) that
are linked to a data attribute Trade use. The second thread models the check
whether the trade is administered for manual or electronic use by means of
conditions on the attribute trade use.

5 A probability distribution pdf > PDF refers here to a probability distribution
function (we do not mention the word function in order to avoid confusion with
functions as nodes of eEPCs).

84 Verifying Extended Event-driven Process Chains

The two and join connectors make sure that the matching process continues
either manually or electronically. The visual (manual) check is performed by the
function visual trade check and results in the event trade checked. The result
of the electronic matching of the internal information with BLIM messages
has 40% probability to succeed. In case the trade has been matched either
manually or electronically, which is modeled by an xor join , the process is
released by start release process. If the data registered internally does not match
the information contained in the BLIM message, the message is rejected.

5.3 Semantics of eEPCs

We introduce first the notions of a process folder and a state of an eEPC
necessary to define the semantics of eEPCs.

A process folder is an object that resides at a node (function or start
event) or at an arc. Furthermore, it carries a folder number and a time stamp
denoting the value of the timer associated to the folder. Time stamps are either
nonnegative numbers indicating the delay after which the folder may be used,
or Ù, denoting that the timer of the process folder is off and the folder can be
used directly. A state of an eEPC is defined by a multiset of process folders
together with a valuation of data attributes and capacity resources.

For the rest of the chapter, we assume the time domain NÙ � N 8 �Ù� and
probability distributions for durations to be discrete. We denote the domain
of a discrete probability distribution pdf > PDF by Dom�pdf� b N. The same
approach can be applied for continuous time and continuous probability distri-
butions. We consider process folder numbers to take values from N. Formally:

Definition 5.3. [process folder, state]
Let Ge � `G,A,R,Type,Expr, PDF,Pre be an eEPC. A process folder is a
tuple f � �n, �i, ι�� where n > Es 8 F 8 A is a start event, a function or an
arc, i > N is a process folder number and ι > NÙ is a time stamp. A state
of Ge is a tuple s � �m,Val�, where m is a multiset of process folders, i.e.
m� ��F 8 A 8 Es� � �N � NÙ�� � N, and Val is a valuation function that maps
every resource r >R into some value Val�r� > Type�r� and every data attribute
a > A to some value Val�a� > Type�a�.

We denote the time stamp of a process folder f by ft. We will say that a
process folder has its timer off when ft �Ù and its timer on when ft C 0. We call
a process folder with the timer on active if it has the time stamp 0. If ft A 0,
the process folder is waiting to become active.

Every start event of a start event set has initially an active process folder
with the index of the start event set as its folder number. The initial state
is thus s0 � �m0,Val0� and contains one active process folder on every start
event, i.e m0 � Pd>Is

Pes>Ed
s
��es, �i,0��� and Val0 is the initial valuation of

resources and data attributes, i.e. Val0�R 8A � �x>R8AType�x� so that for

5.3 Semantics of eEPCs 85

trade executed

monitor receipt
of trade

confirmation and

administration

tu=manual

received trade

condirmation

(manual)

tu=manual

trade

administratred

(manual)

tu=electronic

trade

administrated

(electronic)

tu=electronic

received trade

confirmation

(electronic)

trade use

visual trade

check

match BLIM

trade checked

0.40

BLIM match

0.60

no BLIM match

start release

process
reject BLIM

release process
started

BLIM rejected

trade use
tu:=manual

Type(tu)={manual, electronic}

Fig. 20: Trade matching eEPC

86 Verifying Extended Event-driven Process Chains

each r > R, Val0�r� is the startup capacity of r and for each attribute a > A,
Val0�a� > Type�a� is the initial value of a.

Probability distributions are used in eEPCs to model the behavior of the en-
vironment or to describe nondeterminism in the system (when decisions need
to be made), and for performance analysis. Since all events e > E that have
Pr�e� A 0 can occur and the errors in a model (eEPC) having probabilistic
events can thus be detected on the model without probabilities, we do not take
probabilities further into consideration, as they are irrelevant to our verifica-
tion purposes. In order to express nondeterminism without probabilities, we
extend the mapping Exprb to non-condition events and set Exprb�e� � true,
for every event e > �E � Ec� 9 �Cos 8 Cxs�Y, and subsequently extend the set
of condition events to all events following an or split and xor split connec-
tor, i.e. Ec � �Cos 8Cxs�Y 9E. We denote the set of variables of an expression
exp > �e>Ec

Exprb�e� by Var�exp�.
Let eval be the evaluation function for expressions, such that:

– eval�Exprb�e�,Val� > B is the evaluation function of the boolean expression
of condition events e > Ec in the valuation Val.

– eval�Expra�f�,Val� > Type�a� is the evaluation function of Expra�f� on
some data attribute a > Af in the valuation Val that computes a new value
for a from the right hand side expression of Expra�f�.
A resource can be used, produced or consumed by several functions at the

same time. Each such operation (function use, produce, consume) has two sep-
arate steps:

1. acquirement of the resource: at this stage the resource capacity is checked
for availability (for consumption, use or production) and the consumption
and acquirement part of the use operations are executed;

2. release of the resource: at this stage the production and the release part of
the use operations are executed.

The availability check for a resource that is going to be used is limited to
verifying whether a certain amount of resource items can be claimed; however, it
is still possible for the resource to reach its upper bound capacity by production
done by some other function(s), which can makes the release of the used items
increase the value of the respective resource over its upper bound. For any
r > R, we introduce a variable r̄ such that Val0�r� � Val0�r̄� in order keep
track of values of the resources that are going to be changed before the change
actually happens. We denote the set of variables newly introduced by R̄.

Let Σ � Is8�E��Es8Ec8Ef��8�fa, fr Sf > F�8Cxor8�Cor�Ct�8�cw, cf Sc >
Ct�8Cand8N�. We describe the semantics of an eEPC by means of a transition
relation between states as follows:

Definition 5.4. [Semantics of eEPCs]
Let Ge � `G,A,R,Type,Expr, PDF,Pre be an eEPC. The semantics of an
eEPC are given by a labeled transition system U � `S,Σ,�, s0e, where S is the

5.3 Semantics of eEPCs 87

set of states of Ge, Σ is the set of elements involved in the application of the
rules, s0 is the initial state, �b S �Σ � S is a transition relation described by
the rules �a� � �k� below. Let s � �m,Val� and s� � �m�,Val�� be two states in
S.

(a) start event set rule Let Ed
s be a start event set such that there is a pro-

cess folder on each of its start events and all the folders have the same
folder number and are active. Then a step can be taken that results in re-
moving all the folders on the events of Ed

s and producing a process folder
on each of the outgoing arcs of Ed

s which have the same folder number as
the original process folders and their timers are set to off. Furthermore, a
new process folder is generated on each event of Ed

s ; all these new process
folders have the same newly generated folder number and the same time
stamp which is drawn from the probability distribution of the start event
set.

Formally, if �e, �i,0�� > m for all e > Ed
s , d > Is and i > N, then �m,Val� d��m�,Val�, with

m� � m � Q
e>Ed

s

��e, �i,0��� � Q
e>Ed

s

��aout
e , �i,Ù��� � Q

e>Ed
s

��e, �i � SIsS, ι��,
for some ι > Dom�pdfd�.

(b) event rule Let ain
e be the incoming arc for an event e such that there is a

process folder on ain
e . Then, the process folder can be removed from ain

e and
placed on the outgoing arc of the event aout

e . Formally, if �ain
e , �i,Ù�� > m

for some i > N and e > E � �Es 8Ec 8Ef�, then �m,Val� e� �m�,Val� with
m� � m � ��aout

e , �i,Ù��� � ��ain
e , �i,Ù���.

(c) function rule Let ain
f be the incoming arc of a function f such that there

is a process folder on ain
f . The function rule consists of two steps:

function acquiring if the resources may be used, consumed or produced,
the process folder is removed from the incoming arc of the function,
and a new process folder having the same folder number as the original
folder and a time stamp from the time distribution interval of the func-
tion is placed on the function, and resources are consumed. Formally,
if
– �ain

f , �i,Ù�� > m, for some f > F and i > N,
– Val�r� �Exprr�f� C rmin for all r >Ru

f 8Rc
f ,

– Val�r̄� �Exprr�f� B rmax for all r̄ > R̄p
f ,

then �m,Val� fa� �m�,Val��, where m� � m � ��ain
f , �i,Ù��� � ��f, �i, ι���

and
– ι � 0 if f > F � Ft and ι > Dom�pdff� if f > Ft,
– Val��r� � Val�r� �Exprr�f� for all r >Rc

f 8Ru
f ,

– Val��r̄� � Val�r̄� �Exprr�f� for all r̄ > R̄c
f ,

– Val��r̄� � Val�r̄� �Exprr�f� for all r̄ > R̄p
f and

88 Verifying Extended Event-driven Process Chains

– Val��x� � Val�x� for all x > �R 8 R̄ 8A� � �Rc
f 8Ru

f 8 R̄c
f 8 R̄p

f�.
function release Let f be a function such that there is an active process

folder on it. Then, the active process folder is removed from the func-
tion, and a new process folder is produced on the outgoing arc of the
function; this new folder has the same folder number as the removed one
and the timer off; attributes are evaluated and resources are produced
or released.

Formally, if �f, �i,0�� > m, for some f > F and i > N, then �m,Val� fr��m�,Val��, with m� � m � ��f, �i,0��� � ��aout
f , �i,Ù���, where Val��a� �

eval�Expra�f�,Val� for all a > Af , Val��r� � Val�r� � Exprr�f� for all
resources r > Rp

f 8Ru
f produced or used, and Val��x� � Val�x� for all

x > �R 8 R̄ 8A� � �Af 8Rp
f 8Ru

f �.
(d) and split rule Let ain

c be the incoming arc of an and split connector c

such that there is a process folder on ain
c . The rule results in removing the

process folder from ain
c and placing a process folder on each outgoing arc

of the and split connector such that all new process folders have the same
folder number as the removed folder. Formally, if �ain

c , �i,Ù�� > m, for some

i > N and c > Cas, then �m,Val� c� �m�,Val� and

m� � m � Q
a�>Aout

c

��a�, �i,Ù��� � ��ain
c , �i,Ù���.

(e) xor split rule Let ain
c be the incoming arc of an xor split connector c

such that there is a process folder on ain
c . Then the process folder is removed

from the arc ain
c and

– if the xor split leads to a non-final condition event whose boolean
expression is evaluated to true, a process folder with the same number
as the removed one is placed on the outgoing arc of the event;

– if there is an outgoing arc of the xor split leading to a final condition
event whose boolean expression is evaluated to true or to another con-
nector, then a process folder with the same number as the removed one
is placed on the respective arc.

Formally, if �ain
c , �i,Ù�� > m, for some i > N and c > Cxs, then �m,Val� c��m�,Val� and m� � m � ��a�, �i,Ù��� � ��ain

c , �i,Ù���, where

– a� � aout
e if eval�Exprb�e�,Val� � true for some event e > �E �Ef�9 cY,

or
– a� � �c, e�, if eval�Exprb�e�,Val� � true for some final event e > cY9Ef ,

or
– a� � �c, c��, for some c� > C 9 cY.

(f) or split rule Let ain
c be the incoming arc of an or split connector c such

that there is a process folder on ain
c . The rule results in removing this folder

from ain
c and placing a process folder with the same folder number on at

least one of the outgoing arcs of the non-final condition events that have
a true boolean expression or the outgoing arcs of the or split connector

5.3 Semantics of eEPCs 89

leading to final condition events with boolean expression evaluated to true

or to connectors.
Formally, if �ain

c , �i,Ù�� > m, for some i > N and c > Cos, then �m,Val� c��m�,Val� and m� � m � ��ain
c , �i,Ù��� � Pa>A�8A����a, �i,Ù���, where A� b�aout

e Se > cY 9 �Ec � Ef� , eval�Exprb�e�,Val� � true� and A�� b ��c, e� >
Aout

c Se > cY 9 �Ec 9Ef�, eval�Exprb�e�,Val� � true�8 ��c, c�� > Aout
c Sc� > C�

and A 9A�� ~� g.
(g) and join rule Let Ain

c be the set of all incoming arcs of an and join
connector c. If all arcs of Ain

c have process folders with the same folder
number, the rule can be applied resulting in the removal of these process
folders from Ain

c , and the production of a process folder with the same
process folder number as the original folders on the outgoing arc of the
connector.
Formally, if there is a c > Caj such that �a, �i,Ù�� > m, for all arcs a > Ain

c

and some i > N, then �m,Val� c� �m�,Val� and m� � m � ��aout
c , �i,Ù��� �

Pa>Ain
c
��a, �i,Ù���.

(h) xor join rule Let a be an incoming arc of an xor join connector such
that there is a process folder on a. Then, the folder is removed from a and
placed on the outgoing arc of the connector.
Formally, if �a, �i,Ù�� > m for some i > N, c > Cxj and a > Ain

c , then�m,Val� a� �m�,Val� and m� � m � ��aout
c , �i,Ù��� � ��ain

c , �i,Ù���.
(i) or join waiting rule Let Fc,i ~� g be the bag of process folders on the

incoming arcs of an or join connector that have process folders with timers
off and the same folder number i > N. Let F�

c,i the bag of waiting process
folders present on the incoming arcs of some or join connector c having the
same process number i with time stamp ι A 0. The rule results in modifying
the time stamp of the process folders from Fc,i such that they have as a
time stamp the synchronization timeout in case there are no waiting process
folders (F�

c,i � g) or the time stamp of the waiting process folders otherwise
(F�

c,i ~� g).
Let Fc,i � Pf��a,�i,Ù��>m,a>Ain

c
m�f��f� and F�

c,i � Pf��a,�i,ι��>m,a>Ain
c

m�f��f�,
for some c > Ct, ι A 0 and i > N so that Fc,i ~� g. If F�

c,i � g then let ι� � ι be
the time stamp of the process folders in F�

c,i, otherwise let ι� > Dom�pdfc�.
Then, �m�,Val�� cw� �m�,Val� and

m� � m � Fc,i � Q
f��a,�i,Ù��>Fc,i

m�f���a, �i, ι����.
(j) or join firing rule Let Fc,i be the non-empty bag of process folders that

have non-waiting process folders with the same folder number i > N. Then,
the process folders in Fc,i are removed and a new process folder is produced
on the outgoing arc of the connector, so that it has the same folder number
as the original folders and the timer off.
Formally, let Fc,i � Pf��a,�i,ι��>m,a>Ain

c
m�f��f�, where c > Coj, i > N , ι � 0

if c > Ct and ι �Ù if c > Coj �Ct. If Fc,i ~� g, then �m,Val� cf� �m�,Val� and
m� � m � ��aout

c , �i,Ù��� � Fc,i.

90 Verifying Extended Event-driven Process Chains

(k) time step rule This rule has the lowest priority, i.e. the rule is applied
if no other rule can be applied. Time passage is applied when all process
folders with timers on in a state are waiting (have a strictly positive time
stamp) and results in decreasing the time stamp of all process folders of the
state by the minimal time stamp of the folders with timers on.
Formally, if F� � �f > mSft A 0� ~� g and t � min�ftSf > F�� A 0 and there is

no other state s�� ~� s� such that s
x� s��, where x > Σ �N�, then s

t� s�, with
s� � �m�,Val�, where m� � m �P�x,�i,ι��>F���x, �i, ι � t��� � F�.

Example 1. Figure 21 shows an example of a timed or join firing when two
process folders come at an interval of 2 time units and the timeout for the or
join connector is 5.

c
pdf

c
= 5

a

(a, (i,⊥))

a′

a′′

(a) or join waiting

cw�
c
pdf

c
= 5

a

(a, (i, 5))

a′

a′′

(b) time step

2�
c
pdf

c
= 5

a

(a, (i, 3))

a′

a′′

(c) other steps

��

c
pdf

c
= 5

a

(a, (i, 3))

a′

a′′

(a′, (i,⊥))

(d) or join waiting

cw�
c

pdf
c
= 5

a

(a, (i, 3))

a′

a′′

(a′, (i, 3))

(e) time step

3�

c

pdf
c
= 5

a

(a, (i, 0))

a′

a′′

(a′, (i, 0))

(f) or join firing

cf�
c
pdf

c
= 5

a a′

a′′

(a′′, (i,⊥))

(g) result

Fig. 21: Firing sequence

Based on Definition 5.4 we make some remarks.

Remark 1 (Uniqueness of newly generated folder numbers). Folder numbers
generated at some start event set Ed

s (d > Is) have the form d � k � n, where
n � SIsS and k > N. Therefore, all folder numbers produced at Ed

s are equal

5.3 Semantics of eEPCs 91

modulo the index number of the start event set, i.e. d. As a result, all process
folder numbers that are generated are unique.

Remark 2 (Time progress). The time step rule decreases the time stamp of a
waiting process folder until it becomes active (its timer expires). Note that
all other steps have the same higher priority than the time progress and their
semantics is interleaving. The time progress problem reduces to the situation
where no other rule can be applied or to the situation where there is an infinite
sequence of (timeless) rules that can be applied. We therefore assume that there
is a finite number of process folder numbers such that the states contain a finite
number of process folders with the same folder number.

Remark 3 (Resource use, consumption and production). The guards introduced
for functions which use, consume and produce resources make the following
invariant hold: in every reachable state, the values of both variables for any re-
sources stay within the lower and upper capacity bounds. Before any consump-
tion and production, the possibility of performing such an action is checked on
variables from R, and the consumption is performed on both variables from
R and R̄. Before any use of resources, the possibility to acquire the resources
is checked, and the respective quantity is consumed. Before any production of
resources, the possibility of production of the resource is checked on the vari-
ables from R̄, which contains the values of the resources that are processed
by functions that are producing resources of that type. The actual values of
the resources (given by variables from R) are changed before the resources are
released by the functions and thereafter these values is not greater than the
upper bound since these condition has been checked previously on the variables
from R̄.

Moreover, the value of the variable r and r̄ coincide after all the functions
which have acquired the resource for use, have released it. This invariant can be
easily checked by induction on the number of functions in use of the resource.
Hence, after all execution sequences throughout which all the resources that
were acquired have been released, the value of the variable r and r̄ coincide.

We extend the order relations B and � to deal with Ù. We define ÙB ι for
all ι > N. We now state a property related to the time stamps of the process
folders on the incoming arcs of an or join connector.

Lemma 5.1. Let s � �m,Val� be a state of an eEPC Ge, let

Fc,i
def� Q��ain

c ,i�,ι�>m���ain
c , i�, ι��

be the multiset of process folders with identifier i > N on the incoming arcs of
a timed or join connector c > Ct and ��c, i�, ι1�, ��c, i�, ι2� > Fc,i be two process
folders. Then ι1 > N and ι2 > N implies that ι1 � ι2.

92 Verifying Extended Event-driven Process Chains

5.4 Verification of eEPCs Using CPN Tools

To verify the correctness of eEPCs, we translate them to a different formal-
ism — (Timed) Colored Petri nets (TCPNs), for which verification tools are
available. We use CPN Tools [37] which are based on colored Petri nets [74]
as modeling and analysis language. TCPNs combine the expressive power of
classical PNs, which are suitable for modeling the logical behavior of a control
flow, with the modeling of data and time by means of timed color sets and a
global clock. A state of a TCPN is called a marking and represents the distri-
bution of (timed) colored tokens on places. Tokens belonging to a timed color
set have a time stamp and they can only be used if the value of the time stamp
is less than the value of the global clock.

A step that can be taken in the eEPC corresponds to a transition firing,
given preconditions and postconditions expressed as expressions on arcs or
guards (boolean expressions) on transitions. The global clock (model time)
advances the time stamps of all timed tokens with the smallest amount of time
needed to make at least one token active, which corresponds to the time step
rule in eEPCs in which timers decrease their values. Token delays are positioned
on transitions or on outgoing arcs of transitions.

5.4.1 Transformation of eEPCs into TCPNs

To map eEPCs into TCPNs, we first identify generic eEPC patterns and provide
their translation into TCPN patterns, and then we show how the obtained
TCPN patterns can be fused together to form a TCPN.

We define eEPC patterns taking into account the semantic rules given in
Section 5.3, covering all patterns that would allow us to build an arbitrary
eEPC. An eEPC pattern consists of incoming and outgoing arc(s) and other
elements necessary for the corresponding rule.

First we give some notations and notions necessary for the mappings of the
elements of an eEPC to elements of timed colored Petri nets. Specific elements
will be defined within the patterns.

We denote the non-timed integer color corresponding to the set of process
folders numbers with time stamp Ù by PF, the timed integer color corresponding
to the set of process folders numbers with time stamp values in N by PFT,
and for each capacity resource and data attribute, we define a place having the
corresponding non-timed color type. The locations at which process folders can
reside correspond to TCPN places having type PF and local steps in TCPNs
are depicted by transitions.

In what follows we describe the TCPN patterns obtained from eEPC pat-
terns in more detail and define a mapping h from eEPC elements to TCPN
elements. The left hand sides of Figures 22, 23 and 24 show instances of these
patterns having the incoming (outgoing) arcs dotted and their corresponding
instantiation of the TCPN pattern. For each TCPN pattern, we distinguish

5.4 Verification of eEPCs Using CPN Tools 93

input and output places corresponding to the incoming and outgoing arcs of
the eEPC pattern.

Definition 5.5. [translation of eEPC patterns to TCPN patterns]
Let Ge be an arbitrary eEPC and U � `S,Σ,�, s0e the transition system de-
scribing the semantics of Ge. Let r > R, r̄ > R̄ and a > A. We define h�r� as
pr, cd�pr� � Type�r�, h�r̄� as pr̄, cd�pr̄� � Type�r̄�, h�a� as pa and cd�pa� �
Type�a� and call the places pr, pr̄ and pa global places.

start event set Let Ed
s be a start event set for some d > Is. The corresponding

TCPN pattern is a TCPN represented by an input place pd with cd�pd� �
PFT which is initially marked with a token d@0; a transition td with l�td� �
Ed

s and a set P out
d � �pout

e Se > Ed
s� of output places corresponding to the

outgoing arcs of the start events of the start event set so that cd�pout
e � � PF.

We define
– h�Ed

s � as pd, h�aout
e � as pout

e , for all pout
e > P out

d ;
– Ytd � �pd�, tYd � �pd� �Pe>Ed

s
�pout

e �;
– E�pd, td� � i, E�td, pout

e � � i, for all pout
e > P out

d and E�td, pd� � �i �SIsS�@�ιd, where ιd > Dom�pdfd� and i is a variable of type PF.
Figure 22(a) shows an instantiation of the eEPC pattern for a start event
set with two start events and the corresponding instantiation of the TCPN
pattern.

event Let e > E��Es8Ef 8Ec� be an event. The corresponding TCPN pattern
consists of an input place pin

e with cd�pin
e � � PF, a transition te with l�td� � e

and an output place pout
e with cd�pout

e � � PF. An instantiation of it is shown
in Figure 22(b). We define
– h�e� as te, h�ain

e � as pin
e , h�aout

e � as pout
e ;

– Yte � �pin
e � and tYe � �pin

e �;
– E�pin

e , te� � E�te, pout
e � � i, where i is a variable of type PF.

Note that final events are not represented in the translation.
function Let f be a (timed) function connected to the set of resources Rf and

to the set of data attributes Af . The corresponding TCPN pattern has an
input place (pin

f), two transitions — taf with l�taf� � fa and trf with l�trf� � fr

— corresponding to the two steps of the rule, an intermediate place (pint
f)

and one output place (pout
f). The operations and conditions on the resources

and attributes are described on the arc inscriptions and transition guards,
respectively. We define h�ain

f � as pin
f , h�aout

f � as pout
f and h�f� as pint

f .
We set
– cd�pin

f � � pout
f � PF;

– cd�pint
f � � PF �Πx>Rf8Af

Type�x� timed;
– Gd�taf� � �r>Ru

f
8Rc

f
�r�Exprr�f� C rmin�,�r̄>R̄p

f

�r̄�Exprr�f� B rmax�;
– Ytaf � �pin

f � �Px>Af8Ru
f
8Rc

f
8R̄c

f
8R̄p

f

�h�x��;
– Ytaf � �pint

f � �Px>Af8Ru
f
8Rc

f
8R̄c

f
8R̄p

f

�h�x��;
– Y�trf� � �pint

f � �Px>Af8Rp

f
8Ru

f
�h�x��;

94 Verifying Extended Event-driven Process Chains

Ed
s

pdfd

(i + n) @ + p d f _ di ii s t a r t o u t g o i n g a r ce v e n t 2 P Fo u t g o i n g a r ce v e n t 1 P F
E v e n ts e t d P F T 1 1 ` 1 @ 0

(a) Start event set

event

incoming

PF

outgoing

PF

event
i i

(b) Event

Expr
rc

(f)

Expr
ru

(f)

Expr
rp

(f)

Expr
a
(f)

Type(ru)=[rumin,rumax]

Type(rp)=[rcmin,rcmax]

Type(rp)=[rpmin,rpmax]

e x p r (x) = E x p r _ x (f) w h e r e x i s i n { r u , r c , r p }e x p r a (a) = E x p r _ a (f)c o l s e t T y p e R P = i n t w i t h r p m i n . . r p m a x ;c o l s e t T y p e R C = i n t w i t h r c m i n . . r c m a x ;c o l s e t T y p e R U = i n t w i t h r u m i n . . r u m a x ;a a
n
n b r c ✧ e x p r (r c)b r c

r p + e x p r (r p)r p
b r p + e x p r (r p) b r p r c ✧ e x p r (r c)r c

r u r u ✧ e x p r (r u)e x p r a (a) r u + e x p r (r p)(n , a) r ua
f u n c t i o n fr e l e a s e
f u n c t i o n fa c q u i r er u ✧ e x p r (r u) > = r u m i n a n d a l s ob r c ✧ e x p r (r c) > = r c m i n a n d a l s ob r p + e x p r (r p) < = r p m a x

o u t p u t P F

i n p u t P F
r e s o u r c e t op r o d u c e r vT y p e R P

r e s o u r c e t oc o n s u m e c u m r vT y p e R Cr e s o u r c ef o r u s e c u m r vT y p e R U
r e s o u r c e t op r o d u c e c u m r v T y p e R P r e s o u r c e t oc o n s u m e r vT y p e R C

i n t e r m e d i a t eP F P r e s o u r c ef o r u s e r vT y p e R UA t t r i b u t ec aT y p e A (n , a) @ + p d f _ f
1 1 ` 61 1 ` 61 1 ` 6

1 1 ` 6 1 1 ` 61 1 ` 611 ` t r u e
(c) Function

Fig. 22: Translation of the eEPC patterns into TCPN patterns (a-c)

5.4 Verification of eEPCs Using CPN Tools 95

outgoing1

PF

outgoing 2

PF

incoming

PF

and
split

i

i

i

(d) and split

incoming 1 PF incoming 2

PF

outgoing PF

and
join

i

i

i

(e) and join

xor
join PF

incoming 1

PF

incoming 2

PF

t1 t2

i i

i i

(f) xor join

Exprb(e)

c

iii ixx ii c o n d i t i o ne v e n t 2c o n d i t i o ne v e n t 1e x p r b (x) o u t g o i n g3 P Fo u t g o i n g2 P Fo u t g o i n g1 P FA t t r i b u t e /R e s o u r c eX x o rs p l i t P F1 te x p r b (x) = E x p r ^ b (e)v a r b 1 , b 2 : B O O L ;X = T y p e (x)1 1 ` 1
(g) xor split

Exprb(e)

cixx i f b 2 t h e n 1 ` i e l s e e m p t yi f b 1 t h e n 1 ` i e l s e e m p t yi f e x p r b (x) t h e n 1 ` i e l s e e m p t y o r s p l i t [e x p r b (x) o r e l s e b 1 o r e l s e b 2]i n c o m i n ga r c P FA t t r i b u t e /R e s o u r c e cX o u t g o i n ga r c 3 P Fo u t g o i n ga r c 2 P Fo u t g o i n ga r c 1 P F
e x p r b (x) = E x p r ^ b (e)v a r b 1 , b 2 : B O O L ;X = T y p e (x)1

(h) or split

Fig. 23: Translation of the eEPC patterns into TCPN patterns (d-h)

96 Verifying Extended Event-driven Process Chains

c

pdf
c

l l 2i f i s i n (i , l 2) t h e n l 2 e l s e i : : l 2 (i f i s i n (i , l 2) t h e n e m p t ye l s e 1 ` i) @ + p d f _ ci
ii

il 1 r m a l l i li f i s i n (i , l 1) t h e n l 1e l s e i : : l 1 i n c o m i n gp a t t e r n 2i n c o m i n gp a t t e r n 1
o r j o i nf i r i n g

i n p 2 P Fi n p 1 P F
t i m e di n c o m i n g P F To u t g o i n g P Fi n c o m i n g1 ` [] P F L

i f i s i n (i , l 1) t h e n e m p t y e l s e 1 ` i @ + p d f _ c1 1 ` []
l 2i f i s i n (i , l 2) t h e n l 2 e l s e i : : l 2ii

i
l 1 r m a l l i li f i s i n (i , l 1) t h e n l 1 e l s e i : : l 1 l i n c p a t t 2i n c p a t t 1 o rj o i n [S O M E (i , l l) = p i c k l]

i n 2 P Fi n 1 P F
o u t g o i n g P F

i n c o m i n g 1 ` []P F L
f u n p i c k (p : : p s) =l e tv a l i = d i s c r e t e (0 , (L i s t . l e n g t h (p : : p s)) ✬ 1)i nS O M E (L i s t . n t h ((p : : p s) , i) , L i s t . t a k e ((p : : p s) , i) ^ ^ L i s t . d r o p ((p : : p s) , i + 1))e n d| p i c k [] = N O N E ;f u n i s i n (m , []) = f a l s e | i s i n (m , n : : l) = i f m = nt h e n t r u e e l s e i s i n (m , l) ;

11 ` []

Fig. 24: or join (timed and non-timed)

5.4 Verification of eEPCs Using CPN Tools 97

– �trf�Y � �pout
f � �Px>Af8Rp

f
8Ru

f
�h�x��;

– E�taf , h�r�� � r �Exprr�f� and E�h�r�, taf� � r for all r >Rc
f 8Ru

f ;

– E�taf , h�r̄�� � r̄ �Exprr�f� and E�h�r̄�, taf� � r̄ for all r̄ > R̄c
f ;

– E�taf , h�r�� � r̄ �Exprr�f� and E�h�r̄�, taf� � r̄ for all r̄ > R̄p
f ;

– E�trf , h�a�� � Expra�f�, for all a > Af ;
– E�trf , h�r�� � r �Exprr�f� for all resources r >Rp

f 8Ru
f ;

– E�h�x�, trf� � x for all x >Rp
f 8Ru

f 8Af ;

– E�pin
f , taf� � E�trf , pout

f � � i, where i is a variable of type PF;

– E�taf , pint
f � � x@ � ιf and E�taf , pint

f � � x, where ιf > Dom�pdff� and
Type�x� � PF �Πa>Af

Type�a� timed.
Figure 22(c) shows an instantiation of the pattern operating on an attribute,
a resource that is used, a resource that is produced and a resource that is
consumed and its translation. Each resource is translated as two places (e.g.
resource used, resource used com correspond to the the resource used by the
function, each keeping the values of the resource variables)

and split, and join, xor join These eEPC patterns are parametrized by the
number of the outgoing and incoming arcs, respectively. Their counter-
part TCPN patterns are parametrized by the number of input and output
places/transitions, respectively.

c > Caj The TCPN pattern consists of a set of input places set P in
c � �pin

a Sa >
Ain

c �, a transition tc and an output place pout
c . We define h�aout

c � as
pout

c , h�c� as tc, l�tc� � c, h�a� as pin
a for all a > Ain

c . We set
– cd�pin

a � � PF, �pin
a �Y � �tc�, E�pin

a , tc� � i, for all a > Ain
c ,

– cd�pout
a � � PF, tYc � �pout

c � and E�tc, pout
c � � i, where i is a variable

of type PF.
c > Cas The TCPN pattern consists of a set of output places set P out

c ��pout
a Sa > Aout

c �, a transition tc and an input place pin
c . We define

h�aout
c � as pout

c , h�c� as tc, h�a� as pout
a , for all a > Aout

c . We set
– l�tc� � c;
– cd�pout

a � � PF, Y�pout
a � � �tc� and E�tc, pout

a � � i, for all a > Aout
c ;

– cd�pin
c � � PF, Ytc � �pin

c � and E�pin
c , tc� � i, where i is a variable of

type PF.
c > Cxj The TCPN pattern consists of a set of input places P in

c � �pin
a Sa >

Ain
c �, a set of transitions Tc � �tina Sa > Ain

c � and an output place pout
c .

We define
– h�a� � pin

a for all a > Ain
c , h�aout

c � � pout
c , h�c� as Tc;

– l�tina � � c;
– cd�pin

a � � PF, Y�tina � � �pin
a �, E�pin

a , tina � � i, where i is a variable of
type PF;

– cd�pout
c � � PF, �tina �Y � �pout

c � and E�tina , pout
c � � i for all a > Ain

c ,
where i is a variable of type PF.

Figure 23(d-f) shows the respective instantiations of the patterns with two
incoming, respectively outgoing arcs and their corresponding instantiations
of the TCPN patterns;

98 Verifying Extended Event-driven Process Chains

xor split Let c be an xor split connector and let Ac � ��c, x�Sx > �Ef 9Ec� 8
F 8 C� 8 ��e, x�Se > cY 9 �Ec � Ef�� and A� � �a�S�a� � �c, e� > Ac - a� ��e, x� > Ac� , e > E , Var�Exprb�e�� ~� g�. The TCPN pattern consists of
an input place pin

c , a set of output places P out
c � �pout

a Sa > Ac�, and a set of
transitions T out

c � �tout
a Sa > Ac� so that l�tout

a � � c, for all tout
a > T out

c . The
boolean expressions on the condition events of c (on resources or attributes)
become guards for the outgoing transitions. We define for any xor split
connector c:
– h�ain

c � def� pin
c ;

– h�a� as pout
a , for all a > Ac;

– h�c� as T out
c ;

– cd�pin
a � � PF, �pin

a �Y � Ptout
a >T out

c
�tout

a �, E�pin
a , tout

a � � i for all tout
a >

T out
c ;

– cd�pout
a � � PF, Y�pout

a � � �tout
a �, E�tout

a , pout
a � � i, for all pout

a > P out
c ;

Y For all a > A�, we set
* Gd�tout

a � � Exprb�e�;
* �tout

a �Y � �pout
a � �Px>Var�Exprb�e���h�x��;

* Y�tout
a � � �pin

c � �Px>Var�Exprb�e���h�x��;
* E�h�x�, tout

a � � E�tout
a , h�x�� � x for all x > Var�Exprb�e�.

Y For all a > Ac �A�, we set �tout
a �Y � �pout

a � and Y�tout
a � � �pin

c �.
Figure 23(g) shows an xor split connector having a condition event linked
to an attribute or resource, a condition event with condition true and a
connector on the outgoing arcs and the corresponding TCPN translation.

or split Let c be an or split connector and let Ac � ��c, x�Sx > �Ef 9 Ec� 8
F 8 C� 8 ��e, x�Se > cY 9 �Ec � Ef�� and A� � �a�S�a� � �c, e� > Ac - a� ��e, x� > Ac� , e > E , Var�Exprb�e�� ~� g�. The TCPN pattern contains
an in place pin

c , a transition tc, l�tc� � c and a set of outgoing places
P out

c � �pout
a Sa > Ac�.

We define h�c� as tc, h�ain
c � � pin

c and h�a� as pout
a , for all a > Ac for any

or split connector c.
– We set cd�pin

c � � PF, cd�pout
c � � PF for all pout

a > P out
c .

– For all a > A�, we set E�tc, h�a�� � if Exprb�e� then 1‘i else empty.
– For all a > Ac �A�, we set E�tc, h�a�� � if ba then 1‘i else empty, where

ba is a boolean variable.
– Let X � �x >R 8AS§e > Ec 9 cY , x > Var�Exprb�e��.

Y For each x > X, we set E�h�x�, tc� � E�tc, h�x�� � x.
Y We set �tc�Y � Pp>P out

c
�p� �Px>X�h�x��.

Y We set Y�tc� � �pin
c � �Px>X�h�x��.

– We set E�pin
c , tc� � i and E�tc, pout

a � � i for all pout
a > P out

c , where i is a
variable of type PF.

Figure 23(h) shows an instance of the pattern and its translation. In case
at least one of the boolean expressions corresponding to conditions on at-
tributes or resources is true, a boolean variable generated for each arc that
does not lead to a condition event with conditions on attributes or resources.

5.4 Verification of eEPCs Using CPN Tools 99

In case all the boolean expressions on attributes or resources are false or
there are no condition events on data attributes or resources, the boolean
variables generated for the rest of the arcs must have at least one true value.
The boolean expressions on the condition events and the boolean values gen-
erated become conditions in the arc inscriptions.

or join The TCPN pattern for an or join connector c contains a transition tc
so that l�tc� � c, an output place pout

c , an input place pu
c which collects in a

list one identifier for each token arriving by firing the output transitions of
the adjacent pattern and an additional input place pt

c which collects timed
tokens for the case the or join connector is non-timed.

– We define h�c� as tc and h�aout
c � as pout

c , and

Y if c > Ct, we set

* h�Ain
c � def� �pu

c , pt
c�, Type�pu

c � � PFL6 and Type�pt
c� � PFT;

* Ytc � �pu
c � � �pt

c� and tYc � �pu
c � � �pout

c �, E�pu
c , tc� � l, E�tc, pu

c � �
rmall i l and E�pt

c, tc� � i, where i is a variable of type PFT and
l is a variable of type PFL;

* Gd�tc� � SOME�i, ll� � pick l, for some variable ll of type PFL.
Y if c > Coj �Ct, we set

* h�Ain
c � def� pu

c and Type�pu
c � � PFL;

* Ytc � �pu
c �, E�pu

c , tc� � l, E�tc, pu
c � � rmall i l and tYc � �pu

c � ��pout
c �, where i is a variable of type PFT and l is a variable of

type PFL.

– We set E�tc, pout
c � � i.

Figure 24 shows an instantiation of the eEPC pattern with two incoming
arcs and its translation.

Two instantiations of eEPC patterns are called adjacent if an outgoing arc
of a pattern coincides with an incoming arc of the other pattern. Given an
eEPC Ge, we can decompose it into instantiations of eEPC patterns such that
every instantiation used in the decomposition is adjacent to at least one other
instantiation of an eEPC pattern. Two instantiations of the TCPN patterns
are called adjacent if they are the translations of two adjacent instantiations of
eEPC patterns. An instantiation of a eEPC pattern is an input of an instanti-
ation of the or join pattern if there exists an outgoing arc of the former which
is an incoming arc for the instantiation of an or join pattern.

Building a TCPN translation out of the instantiations of the TCPN pat-
terns consists of two steps. First, adjacent instantiations of non-or join TCPN
patterns are connected, i.e. for each common arc of the corresponding instan-
tiations of the eEPC patterns, if the input place and the output place corre-
sponding to the arc are the same, then the two places are fused. Subsequently,
ingoing instantiations of an instantiation of every or join pattern are modified
accordingly. For each such an ingoing instantiation, the place corresponding to

6
PFL � list PF is a process folder list type, �� is the empty list and i �� l denotes the
concatenation of the element i to the list l

100 Verifying Extended Event-driven Process Chains

the outgoing arc of the ingoing instantiation adjacent to the instantiation of
the or join pattern is deleted and arc(s) with corresponding arc expression are
added between the input transition of that places and the incoming place(s) of
the instantiation of the or join pattern.

The translation of Ge is a TCPN Ne � `P,T,F,E ,Gd,C, cd,V, le, where
C � �Type�x�Sx >R8A�8PF8PFT8PFL8PFP is the set of colors (types) that
includes the resource types and data attribute types, untimed process folder
color (PF), timed process folder color (PFT), process folder list color (PFL),
PFP � �f>F �Rf8Af ~�g PF � Πx>Rf8Af

Type�x� and V denotes the finite set of
variables.

Let x > PFP. We denote the projection on the process folder value by π1�x� >
N and the projection on the value of an attribute a > A by πa�x� > Type�a�.

Let Ge be an eEPC and Ne its TCPN translation. Let U � `S,Σ,�, s0e
be the transition system of the eEPC Ge and U � � `S�Ne, s0�,Σ � �cw Sc >
Ct�,Ð�, s0e the transition system of the TCPN Ne. The initial state of Ne is
s0 � �M0,0�, where M0 is

Q
d>Is

���h�Ed
s �, d�,0�� � Q

x>R8R̄8A
��px,Val0�x��� � Q

c>Coj,pu
c >h�Ain

c ���pu
c , ����.

We define a transition relation�b S�S considering or join waiting steps in
the eEPC transition relation from Definition 5.4 as invisible actions (τ steps).

We write s
x� s� iff s

τ�� s�1
x� s�2

τ�� s� for x > Σ � �cw Sc > Ct�.
We consider no τ steps in the TCPN, i.e. Ô��Ð�.
Let U � `S,Σ�,�, s0e be the transition system of the eEPC Ge and U � �`S�Ne, s0�,Σ�,Ô�, s0e the transition system of the TCPN Ne, where Σ� �

Σ � �cw Sc > Ct�.
We call a process folder f � �v, �i, d�� non-waiting iff v > �ain

v Sv > F 8 Cs 8�Ef 8 �Ei �Ec��� 8 �a > Ain
v Sv > Cxj 8Caj� 8 F .

Similarly, we define non-waiting case tokens as tokens ν � ��p, x�, ι�, where
i > N, ι > N�, p � h�v� and either

– v > �ain
v Sv > F 8Cs 8�Ef 8�Ei �Ec���8�a > Ain

v Sv > Cxj 8Caj� and x > N, or
– v > F , π1�x� > N and πa�x� > Type�a� for all a > Af .

Now we shall show that the transformation defined preserves the behavior
up to weak bisimulation. We define a relation S between a state of the eEPC
and a state of the TCPN.

Let s � �m,Val� be an eEPC state and s � �M, ι� a TCPN state. We first
define the relation S between non-waiting process folders �x, �i, n�� > m and
non-waiting case tokens ��p, i�, ι� > M , for some i > N, n > NÙ, global time ι� > N

and time stamp ι > N. We write �x, �i, n�� S ��p, i�, ι� if

– the location of the process folder corresponds to the location of the token,
i.e. h�x� � p;

– the time stamp of the token and the timer of the process folder agree:

5.4 Verification of eEPCs Using CPN Tools 101

Y x > �ain
v Sv > F 8Cs 8 �Ef 8 �Ei �Ec��� 8 �a > Ain

v Sv > Cxj 8Caj�, n � �
and ι� � ι or

Y x � f for some f > F , n � 0 and ι� � ι, or
Y x � f for some f > F , n A 0 and n � ι� � ι.

Lemma 5.2. Let Ge be an eEPC, F the set of all non-waiting process folders
of Ge, Ne its TCPN translation and T the set of all non-waiting case tokens of
Ge. The relation S between non-waiting process folders of Ge and non-waiting
case tokens Ne is a one-to-one relation, i.e. for all f > F there exists exactly one
ν > T such that f S ν and for all ν > T there exists exactly one f > F such that
f S ν.

Lemma 5.3. Let Ge be an eEPC and Ne its TCPN translation and U � �`S�Ne, s0�,Σ�,Ô�, s0e the transition system of Ne. Then for all reachable
states �M, ι� > S�Ne, s0�, for all non-timed or join connectors c > Coj � Ct,
M�h�Ain

c �, l� � 1 and for all timed or join connectors c > Ct, M�pu
c , l� � 1,�iSi > l� � �iS��pt

c, i�, ι�� > M�, where h�Ain
c � � �pu

c , pt
c�.

Lemma 5.4. Let Ge be an eEPC and Ne its TCPN translation and U � �`S�Ne, s0�,Σ�,Ô�, s0e the transition system of Ne. Then, at every reach-
able marking, there is exactly one token on each place corresponding to a
start event set, i.e. for all reachable states �M, ι� > S�Ne, s0�, we have that

P��h�Ed
s �,x�,ι��>M M��h�Ed

s �, x�, ι�� � 1, for all d > Is.

Lemma 5.5. Let Ge be an eEPC and Ne its TCPN translation and U � �`S�Ne, s0�,Σ�,Ô�, s0e the transition system of Ne. Then all global places con-
tain exactly one token at every reachable marking, i.e. for all reachable states�M, ι� > S�Ne, s0� and for all x >R 8 R̄ 8A, P�h�x�,x�>M M�h�x�, x� � 1.

To handle or join connectors, we define a family of functions �c>Ct
gc that

maps a multiset of time stamps to a time stamp, i.e. gc� �NN8�Ù� � g� � N,
where:

gc�x� def�
¢̈̈̈̈̈¦̈̈̈̈̈¤
ιc > Dom�pdfc� Ù> x and ¦d > N�x�d� � 0;

n if n > x and ¦m > x�m B n.

Now we lift S to the states of eEPCs and TCPNs accordingly. Let s ��m,Val� be an eEPC state and s � �M, ι� a TCPN state. We write s S s iff the
following conditions are satisfied:

– for all non-waiting case tokens ν > M there exists a non-waiting process
folder f > m so that ν S f and M�ν� � m�f�, and for all non-waiting process
folders f > m there exists a non-waiting case token ν > M so that ν S f;

– for all x >R 8 R̄ 8A, M�h�x�,Val�x�� � 1;
– for all d > Is, Pe>Ed

S
m�e, �i, ιd�� � 1, M��h�Ed

s �, i�, ι�� � 1 and ι� � ι� ιd, for

some ιd > Dom�pdfd� and i > N;

102 Verifying Extended Event-driven Process Chains

– for all timed or join connectors c > Ct, and i > N such that �pu
c , l� > M and��pt

c, i�, ι�� > M , where pu
c , pt

c > h�Ain
c � and i > l, we have that

Fc,i
def� Q�a,�i,d��>m,a>Ain

c

��a, �i, d��� ~� g,

and gc�Tc,i� � ι� � ι, where Tc,i � P��a,i�,d�>Fc,i,a>Ain
c

�d� and for all timed
or join connectors c > Ct, and i > N such that

Fc,i
def� Q�a,�i,d��>m,a>Ain

c

��a, �i, d��� ~� g,

we have that �pu
c , l� > M and ��pt

c, i�, ι�� > M , pu
c , pt

c > h�Ain
c �, i > l and

gc�Tc,i� � ι� � ι, where Tc,i � P��a,i�,d�>Fc,i,a>Ain
c

�d�.
– for all non-timed or join connectors c > Coj � Ct, and i > N such that�h�Ain

c �, l� > M and i > l, we have that

Fc,i
def� Q�a,�i,Ù��>m,a>Ain

c

��a, �i,Ù��� ~� g
and for all non-timed or join connectors c > Coj �Ct, and i > N such that

Fc,i
def� Q�a,�i,Ù��>m,a>Ain

c

��a, �i,Ù��� ~� g,

we have �pu
c , l� > M , where pu

c � h�Ain
c � and i > l.

Note that s0 S s0.

Theorem 5.1.
Let Ge be an eEPC, U � `S,Σ�,�, s0e the transition system of Ge, Ne its
TCPN translation and U � � `S�Ne, s0�,Σ�,Ô�, s0e the transition system of
Ne. The relation S is a weak bisimulation.

Proof. ��� Let s � �m,Val�, s� � �m�,Val�� > S so that s
x� s�, for some x > Σ

and s � �M, ι� > S�Ne, s0� so that s S s. Depending on the rule applied, we
have the following cases:

event set Since s
d� s�, there exists a start event set Ed

s and an i > N such
that Ped>Ed

s
��ed, �i,0��� > m and m� � m�Pe>Ed

s
��e, �i,0����Pe>Ed

s
��e, �i�SIsS, ιd����Pe>Ed

s
��aout

e , �i,Ù���, for ιd > Dom�pdfd�. Since s S s, there exists��h�Ed
s �, i�, ι� > M and �ed, �i,0�� S ��h�Ed

s �, i�, ι�.
Then s

dÔ� s� and

M � � M � ���h�Ed
S�, i�, ι�� � Q

e>Eout
d

Me � ���h�Ed
S�, i � SIsS�, ι � ιd��,

where for all e > Eout
d , one of the following cases occur:

5.4 Verification of eEPCs Using CPN Tools 103

– Me � ���h�ain
x �, i�, ι�� if eY � x ~> Coj. Since s S s, we have that�m � Q

e>Ed
s

��e, �i,0��� � Q
e>Ed

s

��e, �i � SIsS, ιd���,Val� S
�M � ���h�Ed

S�, i�, ι�� � ���h�Ed
S�, i � SIsS�, ι � ιd��, ι�.

Hence m��aout
e , �i,��� � M ���h�aout

e �, i�, ι� � 1 and �aout
e , �i,��� S��h�aout

e �, i�, ι�.
– If eY � c > Coj and i > l, where �pu

c , l�ι > M and pu
c > h�Ain

c �, Me � g.
– If eY � c > Coj and i ¶ l, where �pu

c , l�ι > M and pu
c > h�Ain

c �,
Y If c > Coj �Ct, Me � ���h�Ain

c �, i �� l�, ι�� � ���h�Ain
c �, l�, ι��.

Y If c > Ct, Me � ���pu
c , i �� l�, ι������pu

c , l�, ι������pt
c, i�, ι�ιc��, where

ιc > Dom�pdfc� and �aout
e , �i,��� � �ain

c , �i,��� > m�.
Since Val��x� � Val�x� � M�h�x�� � M ��h�x�� for all x > A 8R 8 R̄ and�m � Q

e>Ed
s

��e, �i,0��� � Q
e>Ed

s

��e, �i � SIsS, ιd���,Val� S
�M � ���h�Ed

S�, i�, ι�� � ���h�Ed
S�, i � SIsS�, ι � ιd��, ι�.

we have that s� S s�.
event Let e be the event such that the event rule s

e� s� is applicable. Since

s
e� s�, there exists a process folder �ain

e , �i,��� > m for some i > N and m� �
m � ��ain

e , �i,���� � ��aout
e , �i,����. Since s S s, there exists ��p, i�, ι� > M

and �ain
e , �i,Ù�� S ��h�ain

e �, i�, ι�.
Then s

eÔ� s�, where
– if eY ¶ Coj, M � � M � ��h�ain

e �, i�, ι�� � ���h�aout
e �, i�, ι��. Since s S s

and m�aout
e , �i,��� � M��h�aout

e �, i�, ι�, we have that m��aout
e , �i,��� �

M ���h�aout
e �, i�, ι� and �aout

e , �i,��� S ��h�aout
e �, i�, ι�.

– If eY > Coj and i > l, where �pu
c , l�ι > M and pu

c > h�Ain
c �, Me � g.

– If eY > Coj and i ¶ l, where �pu
c , l�ι > M and pu

c > h�Ain
c �,

Y If c > Coj �Ct, Me � ���h�Ain
c �, i �� l�, ι�� � ���h�Ain

c �, l�, ι��.
Y If c > Ct, Me � ���pu

c , i �� l�, ι������pu
c , l�, ι������pt

c, i�, ι�ιc��, where
ιc > Dom�pdfc� and �ain

c , �i,��� � �aout
e , �i,��� > m�.

Hence s� S s�.
function acquiring Let f be the function such that the a consuming func-

tion rule s
fa� s� is applicable. Since s

fa� s�, there exists a process folder�ain
f , �i,Ù�� > m for some i > N, m� � m� ��ain

f , �i,����� ��f, �i, ιf���, where
ιf > Dom�pdff� and
– Val��r� � Val�r� �Exprr�f� for all r >Rc

f 8Ru
f ,

– Val��r̄� � Val�r̄� �Exprr�f� for all r̄ > R̄c
f ,

– Val��r̄� � Val�r̄� � Exprr�f� for all r̄ > R̄p
f and Val��x� � Val�x� for all

x > �R 8 R̄ 8A� � �Rc
f 8Ru

f 8 R̄c
f 8 R̄

p
f�.

Since s S s, there exists ��h�ain
f �, i�, ι� > M , a binding b and

– for all r >Ru
f 8 R̄c

f , �h�r�, b�E�h�r�, taf��� > M and b�E�h�r�, taf�� cf
r � C

rmin;

104 Verifying Extended Event-driven Process Chains

– for all r > R̄p
f , �h�r�, b�E�h�r�, taf�� > M and E�h�r�, taf� � cf

r C rmax;

– �h�f�, ia� > M and π1�b�ia�� � i and Val�a� � πa�b�ia�� for all a > Af .

Then, s
�fa,b�Ð� s�, i.e. s

faÔ� s�, where

M � � M � ���h�ain
f �, i�, ι�� � ���h�f�, b�ia��, ι � ιf���

Q
r>Rc

f
8Ru

f
8R̄p

f

���h�r�, b�E�h�r�, taf�� � cf
r �� � ��h�r�, b�E�h�r�, taf������

Q
r>Rc

f
8R̄p

f

���h�r�, b�E�h�r�, taf�� � cf
r �� � ��h�r�, b�E�h�r�, taf�����,

where π1�b�ia�� � i and πa�b�ia�� � Val�a�, for all a > Af .
Since Val�r� � b�E�h�r�, taf�� for all r > R and Val�r̄� � b�E�h�r̄�, taf�� for

all r̄ > R̄, we have

M � �M � ���h�ain
f �, i�, ι�� � ���h�f�, b�ia��, ι � ιf���

Q
r>Rc

f
8Ru

f
8R̄p

f

���h�r�,Val��r��� � ��h�r�,Val�r�����
Q

r>Rc
f
8R̄p

f

���h�r�,Val��r��� � ��h�r�,Val�r����.
Hence Val��x� � M ��h�x��, for all x >R 8 R̄ 8A. Since�m � ��ain

f , �i,����,Val� S �M � ���h�ain
f �, i�, ι��, ι�

and �f, �i, ιf�� S ��h�f�, b�ia��, ι � ιf�, we have that s� S s�.
function release Let f be the function such that the a producing function

rule s
fr� s�. Since s

fr� s�, �f, �i,0�� > m, for some i > N, and m� � m ���f, �i,0��� � ��aout
f , �i,Ù���, where Val��a� � eval�Expra�f�,Val� for all

a > Af , Val��r� � Val�r� �Exprr�f� for all resources r >Rp
f 8Ru

f produced

or used, and Val��x� � Val�x� for all x > �R 8 R̄ 8A� � �Af 8Rp
f 8Ru

f �.
Since s S s, there exists a binding b so that ��h�f�, b�ia��, ι� > M and since�f, �i,0�� S ��h�f�, b�ia��, ι�, π1�b�ia�� � i and πa�b�ia�� � Val�a�, for all
a > Af .

Then, s
�fr,b�Ð� s�, i.e. s

frÔ� s�, where

M � �M � ���h�f�, b�ia��, ι�� � Q
a>Af

��h�f�, b�E�trf , h�a����� �Mf�

� Q
r>Ru

f
8Rp

f

���h�r�, b�E�trf , h�r��� � cf
r �� � ��h�r�, b�E�trf , h�r�������,

and
– if fY ¶ Coj, Mf � ���h�aout

f �, i�, ι��. Since �aout
f , �i,��� S ��h�aout

f �, i�, ι�
and m��aout

f , �i,��� � M ���h�aout
f �, i�, ι�.

5.4 Verification of eEPCs Using CPN Tools 105

– If fY > Coj and i > l, where �pu
c , l�ι > M and pu

c > h�Ain
c �, Mf � g.

– If fY > Coj and i ¶ l, where �pu
c , l�ι > M and pu

c > h�Ain
c �,

Y If c > Coj �Ct, Mf � ���h�Ain
c �, i �� l�, ι�� � ���h�Ain

c �, l�, ι��.
Y If c > Ct, Mf � ���pu

c , i �� l�, ι������pu
c , l�, ι������pt

c, i�, ι�ιc��, where
ιc > Dom�pdfc�.

Since Val�r� � b�E�h�r�, taf�� for all r > R and Val�r̄� � b�E�h�r̄�, taf�� for

all r̄ > R̄, we have

M � �M � ���h�f�, b�ia��, ι�� � Q
a>Af

��h�f�,Val��a����
�Mf � Q

r>Ru
f
8Rp

f

���h�r�,Val��r��� � ��h�r�,Val�r����,
Hence Val��x� � M ��h�x��, for all x >R 8 R̄ 8A. Since�m � ��f, �i,0���,Val� S �M � ���h�f�, b�ia��, ι��, ι�
and �aout

f , �i,Ù�� S ��h�aout
f �, i�, ι�, we have that s� S s�.

and split Let c be an and split connector such that the event rule s
c� s�

is applicable. Since s
c� s�, there exists a process folder �ain

c , �i,��� > m for
some i > N and m� � m � ��ain

c , �i,���� �Pa>Aout
c

��a, �i,����. Since s S s,

there exists a token ��h�ain
c �, i�, ι� > M and �ain

e , �i,��� S ��ain
c , i�, ι�.

Then s
cÔ� s� and M � � M � ���h�ain

c �, i�, ι�� �Pa>Aout
c

Ma, ι� � ι, where

for all a > Aout
c , one of the following cases occur:

– Ma � ���h�a�, i�, ι�� if a � �c, x� and x ~> Coj. Hence, we have that�a, �i,Ù�� S ��h�a�, i�, ι� and m��a, �i,��� � M ���h�a�, i�, ι�.
– If a � �c, x� and x > Coj and i > l, where �pu

x, l� > M and pu
x > h�Ain

x �,
Ma � g.

– If a � �c, x� and x > Coj and i ¶ l, where �pu
x, l� > M and pu

x > h�Ain
x �,

Y If x > Coj �Ct, Ma � ��h�Ain
x �, i �� l�� � ��h�Ain

x �, l��.
Y If x > Ct, Ma � ��pu

x, i �� l�� � ��pu
x, l�� � ���pt

x, i�, ι � ιx��, where
ιx > Dom�pdfx�.

Hence, s� S s�.
xor split Let c be the xor split connector for which the xor split rule s

c� s�

is applicable. Since s
c� s�, there exists a process folder �ain

c , �i,��� > m for
some i > N and m� � m � ��ain

c , �i,���� � ��a�, �i,����, where
– a� � aout

e if eval�Exprb�e�,Val� � true for some event e > cY �Ef , or

– a� � �c, e�, if eval�Exprb�e�,Val� � true for some final event e > cY 9Ef ,
or

– a� � �c, c�� for some c� > C.
Since and s S s, there exists ��h�ain

c �, i�, ι� > M and for all resources and at-
tributes x >R8A, �h�x�,Val�x�� > M . Hence b�Exprb�e�� � eval�Exprb�e�,
Val�, for all condition events e > cY for which Exprb�e� is defined.

Then s
cÔ� s�, where M � � M � ���h�ain

c �, i�, ι�� �Mc, ι� � ι, and

106 Verifying Extended Event-driven Process Chains

– If a� � �x, y� and y ¶ Coj, Mc � ���h�a��, i�, ι��. Hence m���a�, �i,���� �
M ���h�a��, i�, ι� and �a�, �i,��� S ��h�a��, i�, ι�.

– If a� � �x, y� and y > Coj and i > l, where �pu
y , l� > M and pu

y > h�Ain
y �,

Mc � g.
– If a� � �x, y� and y > Coj and i ¶ l, where �pu

y , l� > M and pu
y > h�Ain

y �,
Y If y > Coj �Ct, Mc � ���h�Ain

y �, i �� l�, ι�� � ���h�Ain
y �, l�, ι��.

Y If y > Ct, Mc � ���pu
y , i �� l�, ι������pu

y , l�, ι������pt
y, i�, ι�ιy��, where

ιy > Dom�pdfy�.
Hence in all cases, we have s� S s�.

or split Let c be the or split connector for which the or split rule s
c� s�

is applicable. Since s
c� s�, there exists a process folder �ain

c , �i,��� > m

for some i > N and m� � m � ��ain
c , �i,Ù��� � Pa>A�8A����a, �i,Ù���, where

A� b �aout
e Se > cY9�Ec�Ef�,eval�Exprb�e�,Val� � true� and A�� b ��c, e� >

Aout
c Se > cY 9 �Ec 9Ef�, eval�Exprb�e�,Val� � true�8 ��c, c�� > Aout

c Sc� > C�
and A 9A�� ~� g.
Since and s S s, there exists ��h�ain

c �, i�, ι� > M . Hence b�Exprb�e�� �
eval�Exprb�e�,Val�, for all condition events e > cY for which Exprb�e� is

defined. Then, s
cÔ� s�, where M � � M � ���h�ain

c �, i�, ι�� �Pa�>A�8A�� Ma� ,
and ι� � ι, where for all a� > A� 8A��, one of the following cases occur:
– If a� � �x, y� and y ¶ Coj, Ma� � ���h�a��, i�, ι��. Hence m��a�, �i,��� �

M ���h�a��, i�, ι� and �a�, �i,��� S ��h�a��, i�, ι�.
– If a� � �x, y� and y > Coj and i > l, where �pu

y , l� > M and pu
y > h�Ain

y �,
Ma� � g.

– If a� � �x, y� and y > Coj and i ¶ l, where �pu
y , l� > M and pu

y > h�Ain
y �,

Y If y > Coj �Ct, Ma� � ���h�Ain
y �, i �� l�, ι�� � ���h�Ain

y �, l�, ι��.
Y If y > Ct, Ma� � ���pu

y , i �� l�, ι�� � ���pu
y , l�, ι�� � ���pt

y, i�, ι � ιy��,
where ιy > Dom�pdfy�.

Hence, s� S s�.
and join Let c be an and join connector such that the and join rule s

c� s�

is applicable for c. Since s
c� s�, Pa>Ain

c
��a, �i,���� > m for some i > N and

m� � m �Pa>Ain
c
��a, �i,���� � ��aout

c , �i,����.
Since s S s, for all a > Ain

c , �a, �i,��� > m, there exists ��h�a�, i�, ι� > M .

Then s
cÔ� s�, where M � � M �Pa>Ain

c
���h�a�, i�, ι�� �Mc, ι� � ι and

– If cY � c� ¶ Coj, then Mc � ���h�aout
c �, i�, ι��. Hence m��aout

c , �i,��� �
M ���h�aout

c �, i�, ι� and �aout
c , �i,��� S ��h�aout

c �, i�, ι�.
– If cY � y > Coj and i > l, where �pu

y , l� > M and pu
y > h�Ain

y �, Mc � g.

– If a� � �x, y� and y > Coj and i ¶ l, where �pu
y , l� > M and pu

y > h�Ain
y �,

Y If y > Coj �Ct, Mc � ���h�Ain
y �, i �� l�, ι�� � ���h�Ain

y �, l�, ι��.
Y If y > Ct, Mc � ���pu

y , i �� l�, ι������pu
y , l�, ι������pt

y, i�, ι�ιy��, where
ιy > Dom�pdfy�.

In all cases, s� S s�.
xor join Let c be an xor join connector, such that the xor join rule s

c� s�

is applicable for c. Since s
c� s�, there exists an incoming arc a > Ain

c so

5.4 Verification of eEPCs Using CPN Tools 107

that �a, �i,��� > m for some i > N and m� � m� ��a, �i,����� ��aout
c , �i,����.

Since s S s, there exists ��h�a�, i�, ι� > M .

Then s
cÔ� s�, where M � � M � ���h�a�, i�, ι�� �Mc, ι� � ι and

– if cY ¶ Coj, Mc � ���h�aout
c �, i�, ι��. Hence m��aout

c , �i,��� �
M ���h�aout

c �, i�, ι� and �aout
c , �i,��� S ��h�aout

c �, i�, ι�.
– If cY � y > Coj and i > l, where �pu

y , l� > M and pu
y > h�Ain

y �, Mc � g.

– If a� � �x, y� and y > Coj and i ¶ l, where �pu
y , l� > M and pu

y > h�Ain
y �,

Y If y > Coj �Ct, Mc � ���h�Ain
y �, i �� l�, ι�� � ���h�Ain

y �, l�, ι��.
Y If y > Ct, Mc � ���pu

y , i �� l�, ι������pu
y , l�, ι������pt

y, i�, ι�ιy��, where
ιy > Dom�pdfy�.

Hence s� S s�.
or join Let c be the or join connector such that the or join rule s

c� s� is
applicable for c.

Since s
cf� s�, F � P�a,�i,d��>m,a>Ain

c
��a, �i, d��� ~� g for some i > N and

d > �Ù,0�, and m� � m � ��aout
c , �i,Ù��� � F. Since s S s and Fc,i

def�
P�a,�i,d��>m,a>Ain

c
��a, �i, d��� ~� g, we have that ��pt

c, l�, ι� > M so that i > l

and
– either c > Ct (has a synchronization timeout), d � 0 and ��pt

c, i�, ι� > M ,
where pt

c > Yh�Ain
c �, or

– c > Coj �Ct and d �Ù.
Hence s

cfÔ� s�, where s� � �M �, ι� and
– if c > Ct, then M � � M � ���pu

c , l�, ι�� � ���pt
c, i�, ι�� � ���pu

c , l��, ι�� �Mc,
where l� � l � �i�.

– M � � M � ���pu
c , l�, ι�� � ���pu

c , l��, ι�� �Mc, where l� � l � �i�.
Y If cY ¶ Coj, Mc � ���h�aout

c �, i�, ι��. Hence m��aout
c , �i,��� �

M ���h�aout
c �, i�, ι� and �aout

c , �i,��� S ��h�aout
c �, i�, ι�.

Y If cY � y > Coj and i > l, where �pu
y , l� > M and pu

y > h�Ain
y �, Mc � g.

Y If a� � �x, y� and y > Coj and i ¶ l, where �pu
y , l� > M and pu

y >
h�Ain

y �,
* If y > Coj �Ct, Mc � ���h�Ain

y �, l�, ι�� � ���h�Ain
y �, l � i�, ι��.

* If y > Ct, Mc � ���pu
y , i �� l�, ι�� � ���pu

y , l�, ι�� � ���pt
y, i�, ι � ιy��,

where ιy > Dom�pdfy�.
In all cases, s� S s�.

time step Let t > N� so that s
t� s� and let F� � �f > mSft A 0� ~� g. Then t �

min�ftSf > F�� A 0 and there is no other state s�� ~� s� such that s
x� s��, where

x > Σ�N� and s� � �m�,Val�, where m� � m�P�x,�y,ι����>F���x, �y, ι���t����F�.

Since s S s, there is no other state s�� ~� s� such that s
x� s��, where x > Σ��N�

and ι� � ι � t is the smallest time at which a binding element �t, b� can

become enabled in �M, ι�. Then, �M, ι� tÔ� �M, ι � t�. By s S s, all the
conditions for s� S s� � �M, ι � t� to hold are satisfied apart from the
condition on the timestamps of the tokens and process folders. For all non-
waiting process folders �x, �y, ι���� > F�, there exists ��p, z�, ι�� � ι� > M so
that �x, �y, ι���� S ��p, z�, ι�� � ι� and vice versa. Hence, for all non-waiting

108 Verifying Extended Event-driven Process Chains

process folders �x, �y, ι�� � t�� > m�, there exists ��p, z�, ι�� � t � ι � t� > M

so that �x, �y, ι���� S ��p, z�, ι�� � ι�, since the global time is ι � t and vice
versa. The other conditions can be verified similarly.�
� The proof can be done in a similar way. A@

Corollary 1.
Let Ge be an eEPC, U � `S,Σ�,�, s0e the transition system of Ge, Ne its
TCPN translation and U � � `S�Ne, s0�,Σ�,Ô�, s0e the transition system of
Ne. The relation S is a branching bisimulation.

Proof. By Theorem 5.1, U -w U � and S is a weak bisimulation. Since a weak
bisimulation where one of the related systems is τ -free is a branching bisimu-
lation [137], it follows that S is a branching bisimulation. A@

Figure 25 shows the translation of the eEPC in Figure 20. Note that as
in [47], we can use standard Petri net reduction techniques while preserving
properties of the TCPN. Figure 26 shows the translation where instantiations
of the function patterns have been reduced to one transition and even merged
with an and join connector. In general, for functions without any duration
which do not operate on data/resources or only perform some operation on
attributes, the two steps of pattern can be safely reduced to one.

5.4.2 Verification

A TCPN obtained using the translation procedure described in the previous
section can be simulated and analyzed with CPN Tools [75, 37] using state-
space analysis (which is basically an exhaustive search through all possible
states of the model). We have considered timers that decrease the timeouts
and duration, whereas Timed Colored Petri nets consider global time that
can increase indefinitely. To deal with the state space explosion caused by the
increasing global time, CPN Tools has efficient algorithms that can deal with
this source of infinity for bounded nets (e.g. building partial state spaces, the
time sweep-line method [31]), which is not always possible in regular model
checkers.

The first type of check on eEPCs to be performed is whether the semantics
of various types of connectors is respected w.r.t. the ARIS simulation.

If an or split has condition events on all its outgoing arcs, at least one of
the conditions should be evaluated to true at every reachable state which has a
process folder on the incoming arc of this connector. Similarly, if an xor split
has condition events on its outgoing arcs, at most one of the conditions should
be evaluated to true at every reachable state which has a process folder on
the incoming arc of this connector. The violation of such requirements can be
easily checked by specifying a marking with at least one token on the place cor-
responding to the incoming arc of the or split such that all boolean expressions
on resources or data attributes are false as a stop criterion when computing the

5.4 Verification of eEPCs Using CPN Tools 109

i i (i , b) (i , b)

i i i
i i ii i

i
i

i
i

i + n

ii ii
i i

i
ii i

b
i

a n d j o i nr i g h t N o B L I Mm a t c hB L I Mm a t c h e d

t r a d e a d m i n i s t r a t e de l e c t r o n i c u s eb = m a n u a lb = e l e c t r o n i cr e c e i v e d t r a d e(m a n u a l)
P F P F U

P F
P F

P F
P F

P F
P F

1 ` 1P F

P F B L I Mr e j e c t e d P F
x o rj o i n P F x o r s p l i tm a t c h P F

x o rr i g h tx o rl e f t P F

R e j e c tB L I M r
a n d j o i nl e f t i

bb
iii p 1 i

P F
bP F i

p 2
b = e l e c t r o n i ciP F ba n d s p l i t

t r a d ee x e c u t e d

p 3P F P F
b = m a n u a l

s t a r t i m o n i t o r r m o n i t o r aiii
b b T r a d e U s e bbe l e c t r o n i c

r e c e i v e d t r a d ee l e c t r o n i c a l l y t r a d e a d m i n i s t r a t e dm a n u a l u s eT U
e l e c t r o n i c

ii r e l e a s ep r o c e s ss t a r t e ds t a r t r e l e a s ep r o c e s s r

i

R e j e c tB L I M ai

p 4i

s t a r t r e l e a s ep r o c e s s aP F

m a t c hB L I M aP F
P Fm a t c hB L I M rv i s u a lc h e c k r

v i s u a lc h e c k ai i

Fig. 25: Translation of the eEPC in Figure 20

110 Verifying Extended Event-driven Process Chainsi i
b b

iii ii i ii
ii iii i

ii bb be l e c t r o n i cb iiii ii is t a r te v e n t

a n d j o i nm a t c h B L I Ma n d j o i nv i s u a l c h e c ks t a r tr e l e a s ep r o c e s s N o B L I Mm a t c hB L I Mm a t c h e d
t r a d e a d m i n i s t r a t e de l e c t r o n i c u s eb = e l e c t r o n i ct r a d e a d m i n i s t r a t e dm a n u a l u s eb = m a n u a lr e c e i v e d t r a d ee l e c t r o n i c a l l yb = e l e c t r o n i cr e c e i v e d t r a d e(m a n u a l)b = m a n u a l m o n i t o r /a n d

i n i t1 ` 1 P F

p 2 P F p 3 P F
r e l e a s ep r o c e s ss t a r t e d P F B L I Mr e j e c t e d P F

x o rj o i n P F x o r s p l i tm a t c h P F
p 4 P Fp 1 P F

T r a d e U s ee l e c t r o n i cT U x o rr i g h t P Fx o rl e f t P F t r a d ee x e c u t e d P F
i + n

bb b

Fig. 26: Reduced TCPN translation of the eEPC in Figure 20

state space. In such case, we can conclude that the eEPC model is not correct
and we can provide a simulation of the TCPN that leads to this error.

In case the eEPC does not have timeouts for or join connectors and du-
rations for functions, we can analyze the eEPC in which the instantiations of
start event set patterns are reduced to places corresponding to the start events
in the start event sets. Note that properties that do not hold on the colored net
without creation of multiple instances by a same start place corresponding to a
start event set, do not hold on the net with creation of multiple instances in the
initial places. Hence we can verify the properties directly on the nets without a
start event pattern. We may therefore consider as initial markings the marking
having a same token on the initial places corresponding to some start event
set. In CPN Tools, we can detect whether the eEPC terminates properly, i.e.
with all case tokens on places corresponding to outgoing arcs of eEPC nodes
adjacent to end events and empty lists on place h�Ain

c � for each non-timed

5.4 Verification of eEPCs Using CPN Tools 111

or join connector c. This can be done by investigating the state space and
detecting whether the translation has dead markings containing only tokens on
places corresponding to ingoing arcs of final events, on attribute and resource
places and an empty list in place h�Ain

c � for each non-timed or join connector
c. For instance, proper termination of the net in Figure 26 (even without mul-
tiple instances creation) means that the only dead markings are the ones with
exactly one token on exactly one of the final places (release process started or
BLIM rejected).

Below, we give an excerpt of the state space report for Figure 26 without
multiple instances creation showing the two dead markings.

Boundedness Properties

Best Integer Bounds

Upper Lower

t’BLIM_rejected 1 1 0

t’Trade_Use 1 1 1

t’init 1 1 0

t’p1 1 0 0

t’p2 1 1 0

t’p3 1 0 0

t’p4 1 1 0

t’release_pr_started 1 1 0

trans’trade_executed 1 1 0

trans’xor_join 1 1 0

trans’xor_left 1 1 0

trans’xor_right 1 1 0

trans’xor_split_match 1 1 0

Home Properties

Home Markings

Initial Marking is not a

home marking

Liveness Properties

Dead Markings

[8,10]

Dead Transition Instances

t’and_join_visual_check 1

t’received_trade 1

t’trade_admin_manual_use 1

Live Transition Instances

None

Dead markings given by the state space report also provide information
about deadlocks in the eEPC, e.g. functions that cannot execute due to non-
availability of resources (Figure 28) or non-synchronization, e.g. Figure 27.

Boundedness Properties

Best Integer Bounds

Upper Lower

dead’p1 1 1 0

dead’p2 1 1 0

dead’p3 1 1 0

dead’p4 1 1 0

dead’trade_executed 1 1 0

dead’xor_join 1 1 0

dead’xor_left 1 1 0

dead’xor_right 1 1 0

Best Upper Multi-set Bounds

dead’p1 1 1‘1

dead’p2 1 1‘1

dead’p3 1 1‘1

dead’p4 1 1‘1

dead’trade_executed 1 1‘1

dead’xor_join 1 1‘1

dead’xor_left 1 1‘1

112 Verifying Extended Event-driven Process Chains

(a) eEPC

i ii iii ii ii iiii ii i
a n d j o i nm a t c h B L I Ma n d j o i nv i s u a l c h e c k

t r a d e a d m i n i s t r a t e de l e c t r o n i c u s et r a d e a d m i n i s t r a t e dm a n u a l u s er e c e i v e d t r a d ee l e c t r o n i c a l l yr e c e i v e d t r a d e(m a n u a l) m o n i t o r /a n d
p 2 P F p 3 P Fx o rj o i n / r e l e a s ep r o c e s ss t a r t e d P F

p 4 P Fp 1 P F
x o rr i g h t P Fx o rl e f t P F t r a d ee x e c u t e d 1 ` 1P F

(b) Reduced translation with no generation of new
case tokens identifiers

Fig. 27: Deadlock due to non-synchronization of choices

5.4 Verification of eEPCs Using CPN Tools 113

dead’xor_right 1 1‘1

Best Lower Multi-set Bounds

dead’p1 1 empty

dead’p2 1 empty

dead’p3 1 empty

dead’p4 1 empty

dead’trade_executed 1 empty

dead’xor_join 1 empty

dead’xor_left 1 empty

dead’xor_right 1 empty

Home Properties

Home Markings

Initial Marking is not a

home marking

Liveness Properties

Dead Markings

[8,9,11]

Dead Transition Instances

None

Live Transition Instances

None

Figure 28 is a typical example of resource starvation, i.e. livelock situations
when a function cannot execute since it cannot have access to the required
resource. The eEPC shows two function f1 and f2 which are competing for
consuming the same resource (with startup capacity 10 and capacity domain�1..15�).

The state space report shows six dead markings. One dead marking repre-
senting resource starvation is shown in Figure 28�b� while the corresponding
dead state in the eEPC is shown in Figure 28�a�.
Boundedness Properties

Best Integer Bounds

Upper Lower

resex’resource_brc 1 1 1

resex’resource_rc 1 1 1

resex’f1int 1 1 0

resex’f2int 1 1 0

resex’final_event 1 1 0

resex’inf 1 1 0

resex’out 1 1 0

resex’start_event 1 1 0

resex’xor_join 1 1 0

resex’xor_split 1 1 0

Best Upper Multi-set Bounds

resex’resource_rc 1 1‘1++1‘2++1‘3

++1‘4++1‘5++1‘6

resex’resource_brc 1 1‘1++1‘2++1‘3

++1‘4++1‘5++1‘6

resex’f1int 1 1‘1

resex’f2int 1 1‘1

resex’final_event 1 1‘1

resex’inf 1 1‘1

resex’out 1 1‘1

resex’start_event 1 1‘1

resex’xor_join 1 1‘1

resex’xor_split 1 1‘1

Best Lower Multi-set Bounds

resex’resource_rc 1 empty

resex’resource_brc 1 empty

resex’f1int 1 empty

resex’f2int 1 empty

resex’final_event 1 empty

resex’inf 1 empty

resex’out 1 empty

resex’start_event 1 empty

resex’xor_join 1 empty

resex’xor_split 1 empty

Home Properties

114 Verifying Extended Event-driven Process Chains

(a) eEPC

i ii
i

i
i ii ii

ii
i

i
i i

a n ds p l i t
o u t

a n d j o i n
f 2 i n r c ✎ 1 > = 1

f 1 o u t
f 1 i nr c ✎ 1 > = 1

s t a r te v e n t P F

f i n a le v e n t P F
o u t P F

f 2 i n t P F
i n f P F

x o r s p l i t P F
x o r j o i n P F

T y p e R CT y p e R Cf 1 i n t P F

1 ` 1

f 2 o u t
1 ` 6 r cb r c b r c ✎ 1b r c ✎ 1b r c

c o l s e t T y p e R C = i n t w i t h 1 . . 1 0 ;
r e s o u r c e r cr e s o u r c e b r c1 ` 6 r c ✎ 1r c ✎ 1r c 1 1 ` 11 1 ` 1 1 1 ` 111 ` 1i = 1

(b) Reduced translation with no generation of
new case tokens identifiers

Fig. 28: Deadlock due to non-availability of resources

5.5 Related Work and Conclusions 115

Home Markings

Initial Marking is not

a home marking

Liveness Properties

Dead Markings

6 [47,45,44,34,24,...]

Dead Transition Instances

None

Live Transition Instances

None

Furthermore, the CPN Tools can verify behavioral properties such as of the
model which are defined as temporal logic formulas in ASK-CTL [29].

5.5 Related Work and Conclusions

Related Work There are different approaches to the formalization of the syntax
and semantics of EPCs.

One approach is to use Petri nets to specify their semantics. An EPC is
translated into a PN using a set of transformation rules. The semantics of
EPCs is defined as the semantics of resulting Petri nets. Dehnert [43] and
van der Aalst [2] use workflow nets that is suitable to describe EPCs and use
specific verification methods developed for PNs in order to verify EPCs. In [2],
an EPC is considered to be correct if and only if the workflow obtained as
the translation of an EPC is sound. Langner, Schneider and Wehler [86] use
a transformation into boolean nets which are colored Petri nets with a single
color of type boolean and formulas from the propositional logic as guards. The
correctness criterion is the well-formedness of the corresponding boolean net,
which is too strict for some practical applications.

Another approach is to consider the transition systems-based semantics.
In [107], [7] and [79], the dynamic behavior of an EPC is defined in terms of
transition systems. In [7] and [79], the state of an EPC is defined as a mapping of
the set of arcs to �0,1� and is represented by the presence or absence of process
folders on the arcs of the EPC. Moreover, [7] proposes a non-local semantics of
the xor and or join connector that refers to checking certain conditions that
depend on the overall behavior of the EPC. An xor join has to wait for a folder
on one of its input arcs in order to propagate it to its output arc. However, if a
process folder is present or could arrive at some other input arc, the xor join
should not propagate the folder. For an or join, the propagation of a process
folder from its input arcs is delayed as long as a process folder could possibly
arrive at one of the other input arcs. Computing the transition relation of an
EPC has been implemented and tested in [38] using symbolic model checking.

[100] considers also non-local semantics for or joins which is given as a
transition system. However in [100] the assumption is that the EPCs are safe,
i.e. the state space is finite and there is no contact situation. In [47], an EPC is
transformed into a workflow net which is checked against soundness and relaxed

116 Verifying Extended Event-driven Process Chains

soundness. Both approaches consider multiple start/end events and safe EPCs
and the users must provide the initial and final states.

In this chapter we considered the semantics of extended event-driven process
chains, i.e. EPCs extended with data, resources, and time as it is specified in
the ARIS Toolset [73]. We provide a formal definition of these semantics in
terms of a transition system. Our semantics is instance based which allows us
to distinguish specific correctness properties. This can be further used as a base
for behavioral (functional) verification of eEPCs using different model checkers.

Furthermore, we provide a translation to timed colored Petri nets and for-
mulate some correctness criteria for eEPCs that can be checked on the trans-
lated eEPCs using CPN Tools.

6

Modeling History-dependent Business Processes

Choices in business processes are often based on the process his-
tory saved as a log-file listing events and their time stamps. In
this chapter we introduce LogLogics, a finite-path variant of the
Timed Propositional Temporal Logic with Past, which is partic-
ularly suitable for specifying guards in business process models.
The novelty is due to the presence of boundary points correspond-
ing to the starting and current observation points, which gives
rise to a three-valued logic allowing to distinguish between tem-
poral formulas that hold for any log extended with some possible
past and future (true), those that do not hold for any extended
log (false) and those that hold for some but not all extended
logs (unknown). We reduce the check of the truth value of a
LogLogics formula to a check on a finite abstraction and present
an evaluation algorithm. We also define LogLogics patterns for
commonly occurring properties.

This chapter is based on [69].

118 Modeling History-dependent Business Processes

6.1 Introduction

An essential feature of workflow management systems (WFMSs) [11] is the dis-
tribution of work to agents, which can be either human beings or application
software. Decisions taken by a WFMS can depend on previous observations.
For instance, a bank can propose more interesting loan conditions to those cus-
tomers who paid off the previous loans on time. We call processes executed by
such a WFMS history-dependent processes. Importance of history-based deci-
sions in workflow management has been recognized in the past [120, 122]. In
history-dependent processes, actions can be guarded by conditions on the pro-
cess history. For instance, the or join rule with synchronization timeout for
eEPCs can be formulated as a timed constraint, allowing the rule to be fired
only when certain time has passed from a first enabling of the rule. Adaptive
nets support vertical synchronization which can be formulated as constraints
on net tokens history, i.e. a transition with an exception guards can fire only if
the exception transition is enabled.

Although history-dependent processes are omnipresent in WFMSs, only few
models (partially) support them [1, 40]. Since a temporal logic is a natural way
to express dependencies between the events observed in the history, those works
are based on temporal logics. However, finiteness of the history at any given
moment of time and, hence, the inherent incompleteness of observations, should
be taken into account, which is not quite adequately done with the classical
temporal logics, as their formulas can be evaluated to true or false only.

To illustrate the resulting limitations consider a guard stating that every
bill was paid within four weeks and a log documenting an unpaid bill issued
two weeks ago. Following [1, 40] this guard is evaluated to false, since there is
a bill which is not paid yet. However, the payment term has not expired yet
and we do not intend to blacklist the client whom the bill was sent to. Instead
we would like to obtain unknown in this case, true in case every bill was paid
and it happened within four weeks, and false if there is a bill issued more than
four weeks ago that was not paid on time. In some cases the WFMS takes a
decision on the continuation of the process giving the benefit of the doubt, i.e.
unknown leads to the same choice as true; in other cases unknown leads to the
same choice as false, and in a number of cases evaluating a guard to unknown
leads to enabling a special procedure to handle the case.

In this chapter, we propose a new temporal logic, called LogLogics, that
overcomes the above limitation by reasoning with three truth values. A number
of three-valued (untimed) temporal logics, including L-TL, have been proposed
by Nakamura [106] and investigated in [102]. Similarly to L-TL, if a LogLogics-
formula is evaluated to true or false at a given time point, this value cannot be
changed in the future, while unknown can become true or false. Unlike L-TL,
not every LogLogics-formula has to be eventually evaluated to true or false.

Since history is a finite linear sequence of timed events, we base LogLogics on
linear timed temporal logics (defined on infinite sequences) that have been the
subject of intensive research in the past, starting with [15, 16, 84]. More recent

6.2 LogLogics 119

works on the subject include [25, 131]. Due to the nature of history, we need to
consider not only future but also past temporal operators. Therefore, we have
chosen to adapt the Timed Propositional Logic with Past (TPTL+Past) [15,
16].

An alternative to TPTL+Past might have been the metric timed logic
(MTL) [84, 131]. The reasons for opting for TPTL+Past rather than for MTL
are twofold. First of all, TPTL is “more temporal”: it uses real clocks to ex-
press timed constraints. This allows to express common WFMS constraints
such as “event p occurred between January 1, 2005 and January 1, 2006”. Un-
like TPTL, MTL reasons in terms of distances between events. Hence, in order
to express the same constraint we need to introduce a special event q that
occurred on January 1, 2005 and require that p followed q within one year.
Second, as recently shown in [25], TPTL+Past is strictly more expressive than
MTL+Past.

Two different semantics for timed temporal logics can be considered: point-
wise semantics, where formulas are evaluated over discrete sequences of timed
events, and interval-based semantics, where formulas are evaluated over the
continuous time line [116]. We believe that discrete sequences of timed events,
which are actually contained in logs, are better suited for specifying history-
based guards in business processes and we choose the point-wise semantics.

We define a LogLogics-formula to be true for some finite word (log) ρ if it
holds for all words containing ρ as a subword, i.e. for the log with all possible
pasts and futures. A formula is evaluated to false if it does not hold for the log
with any of the possible pasts and futures and unknown if it holds for the log
with some but not all possible pasts and futures. Although defined in terms
of infinitely many possible pasts and futures, checking the truth values of a
LogLogics-formula can be reduced to checking the truth value of the formula
on a finite abstraction. We list a number of patterns of commonly occurring
guards in business processes and show how these patterns can be expressed in
LogLogics.

The remainder of the chapter is organized as follows. In Section 6.2 we
present LogLogics. In Section 6.3 we introduce a finite abstraction that leads
us to an evaluation algorithm presented in Section 6.4. In Section 6.5 we show
some patterns expressed in our logics. In Section 6.6 we present directions for
future research.

6.2 LogLogics

In this section we present LogLogics, which aims at the modeling of history-
dependent processes based on log-files. Log-files record series of events such as
“100 euro has been withdrawn from account X”, “a transaction has failed”,
“loan Y has been determined to be uncollectible”. The set of all events possible
in the system is denoted by Σ.

120 Modeling History-dependent Business Processes

LogLogics is an adaptation of the Next-Free Timed Propositional Temporal
Logic with Past [16, 25] to finite sequences of events limited by two special
points that refer to the beginning and the end of observations. While the ab-
solute begin is well-suited for modeling the behavior of software systems that
have been invoked at some moment of time, it is less appropriate for business
processes, where the observations could be available for a recent period of time
only. Similarly, there is the last time point where observations are available.

Due to the finiteness of observations, the values of traditional temporal
operators can become unknown. Consider, for instance, a predicate p that is
true if a client is reliable. However, the fact that during the entire period
of observations the client was reliable does not necessary imply that “always
reliable” is true. Nor, in fact does it imply that “always reliable” is false. Indeed,
there are two distinct possible futures: one where “always reliable” is true, and
another one where “always reliable” is false. In such a situation we would
like to say that the value of “always reliable” is unknown. To formalize this
intuition we start by recapitulating definitions of the well-known Next-Free
Timed Propositional Temporal Logics with Past (TPTL+Past) and then define
a semantics for finite traces.

We assume that a countable set P of atomic propositions and a countable
set V of clock variables are given which are used to assert timed formulas. Then,
formulas φ are built from atomic propositions, timed formulas, e.g. clock reset
x.φ, also known as “freeze”, which sets the value of clock x to the current time
before evaluating φ, comparison of clock values to some nonnegative integer
(x � c) or other clock variable (e.g. x B y � c), boolean connectives, “until” U
and “since” S operators, clock constraints and clock resets. Intuitively, φ1Uφ2

means that at some time point in the future an event happens for which φ2

holds and for all events happened before that event, φ1 holds. Similarly, φ1Sφ2

means that at some point of time in the past an event happens for which φ2

holds and from that point onwards φ1 holds. Formally:

Definition 6.1. [LogLogics]
Formulas φ of LogLogics are inductively defined as:

φ �� p S x � y � c S x � c S x.φ S false S φ S φ1 , φ2 S φ1Uφ2 S φ1Sφ2,

where x, y > V , p > P , � is one of @,A,B,C,�,x and c > N.

We also assume that the abbreviations -,�,�, true are defined as usual.
In order to define the formal semantics of LogLogics we introduce time

sequences and timed words.

Definition 6.2. [Finite/Infinite Timed Words]
A finite time sequence τ � τkτk�1 . . . τn with k,n > Z is a finite sequence of time
values τi > Z, for all i > �k, . . . , n� such that τi B τi�1 for all i > �k,�, n � 1�.

An infinite time sequence τ � τkτk�1 . . . with k > Z, is an infinite sequence
of times τi > Z such that τi B τi�1 for all i C k.

6.2 LogLogics 121

A finite event sequence σ � σkσk�1 . . . σn with k,n > Z is a finite sequence
of events σi > Σ, i > �k, . . . , n�. For any atomic proposition p > P and any
i > �k, . . . , n�, σi Ø p is either true or false.

An infinite event sequence σ � σkσk�1 . . . with k > Z is an infinite sequence
of events σi > Σ, i C k. For any atomic proposition p > P , σi Ø p, for i C k can
be evaluated to true or false.

A finite timed word ρ � �σ, τ� is a pair consisting of an event sequence σ

and a time sequence τ of the same length. We also write a timed word as a
sequence of pairs �σk, τk� . . . �σn, τn�.

An infinite timed word ρ � �σ, τ� is a pair consisting of an infinite event
sequence σ and an infinite time sequence τ .

Note that dates are usual time stamps for business processes (i.e. the ex-
act time is not necessarily indicated in the log), which naturally implies that
multiple events can have the same time stamp. Still, also the events with equal
time stamps remain ordered and can be in fact causally dependent.

We use the standard semantics of TPTL+Past for infinite traces.

Definition 6.3. [LogLogics semantics on infinite traces]
Let ρ be an infinite timed word. Let i > Z and ν � V 9 Z be a partial valuation
for the clock variables. Then

– `ρ, i, νe à p is equal to σi Ø p;
– `ρ, i, νe à false is false;
– `ρ, i, νe à x � c iff ν�x� � c, where �> �@,A,B,C,�,x� on Z, x > V and c > N;
– `ρ, i, νe à x � y � c iff ν�x� � ν�y� � c, where � is as above and � is the

addition on Z;
– `ρ, i, νe à x.φ iff `ρ, i, ν�x(τi�e à φ;
– `ρ, i, νe à φ iff `ρ, i, νe à φ is false;
– `ρ, i, νe à φ1 , φ2 iff `ρ, i, νe à φ1 and `ρ, i, νe à φ2;
– `ρ, i, νe à φ1Uφ2 iff `ρ, j, νe à φ2 for some j C i and `ρ, k, νe à φ1 for all

i B k @ j;
– `ρ, i, νe à φ1Sφ2 iff `ρ, j, νe à φ2 for some j B i and `ρ, k, νe à φ1 for all

j @ k B i.

We say that a formula is closed if any occurrence of a clock variable x is in
the scope of the freeze operator “x.”. For instance, x.��x A y � 1� , p� is not
a closed formula since y does not appear in the scope of “y.”. One can show
in the standard fashion that the truth value of a closed formula is completely
defined by the timed word and the time point, i.e., if φ is a closed formula,
then `ρ, i, νe à φ is equivalent to `ρ, i, βe à φ for any timed word ρ, time point i

and clock valuations ν and β. From here on we restrict our attention to closed
formulas.

Based on the temporal operators S and U we introduce additional temporal
operators “eventually” (✸φ �� trueUφ), “always in the future” (✷φ �� �✸ φ�),
“once in the past” (xφ �� trueSφ) and “always in the past” (⊟ �� �x φ�) in

122 Modeling History-dependent Business Processes

the standard fashion. Observe that `ρ, i, νe à φ implies both `ρ, i, νe à ✸φ and`ρ, i, νe àxφ. The following proposition provides a more direct way to evaluate
formulas using the four additional temporal operators.

Proposition 6.1. The following statements hold:

– `ρ, i, νe à ✸φ iff `ρ, j, νe à φ for some j C i;
– `ρ, i, νe à ✷φ iff `ρ, j, νe à φ for all j C i;
– `ρ, i, νe àxφ iff `ρ, j, νe à φ for some j B i;
– `ρ, i, νe à ⊟φ iff `ρ, j, νe à φ for all j B i.

Proof. The proof is straightforward from Definition 6.3.

Now we can introduce the semantics of LogLogics for finite timed words.
A log (which is a finite timed word) gives us only partial information about
the trace executed by a system (the information about the history before the
beginning of the observation can be missing and the information about the
future is often not available). Therefore, we will say that a LogLogics formula
is true for a finite timed word ρ̄ iff it is true for any infinite timed word obtained
by adding to ρ̄ a finite prefix and an infinite suffix (i.e. any pre-history prior
to τk and any future after τn). Analogously, a LogLogics formula is false on a
finite timed word if it is false with any pre-history and any future. Finally, we
evaluate it to unknown if it is neither true nor false (there is a pre-history and
a future that gives us true and there is a pre-history and a future that gives us
false).

Definition 6.4. [Timed Word Extension]
Let ρ̄ � �σ̄k, τ̄k� . . . �σ̄n, τ̄n� be a finite timed word. We define an extension of ρ̄

as an infinite timed word ρ � �σℓ, τℓ��σℓ�1, τℓ�1� . . . satisfying:

– ℓ B k;
– σ̄i � σi and τ̄i � τi for all i > �k, . . . , n�;
– if ℓ @ k then τk�1 @ τk;
– τn @ τn�1.

Definition 6.5. [LogLogics semantics on finite traces]
Let ρ̄ � �σ̄k, τ̄k� . . . �σ̄n, τ̄n� be a finite timed word and φ a LogLogics-formula.
Then

– `ρ̄, i, νe à φ is true, if for any extension ρ of ρ̄, �`ρ, i, νe à φ� is true.
– `ρ̄, i, νe à φ is false, if for any extension ρ of ρ̄, �`ρ, i, νe à φ� is false.
– `ρ̄, i, νe à φ is unknown, if there exist extensions ρ�, ρ�� of ρ̄ such that�`ρ�, i, νe à φ� is true and �`ρ��, i, νe à φ� is false.

We abbreviate `ρ̄, n, εe à φ to ρ̄ à φ, where ε is the empty valuation function
and n is such that ρ̄ � �σ̄k, τ̄k� . . . �σ̄n, τ̄n�.

6.3 Abstract Timed Words 123

 ̊

false true

unknown unknown

true false

�x,̊y� def�min�x, y��̊§x � x > S � π�x�� def�max�π�x� S x > S��¦̊x � x > S � π�x�� def�min�π�x� S x > S�
Fig. 29: Logical connectors and quantifiers in the three-valued logic

6.3 Abstract Timed Words

The difficulty that arises with computing the truth values of a LogLogics for-
mula φ on a finite timed word ρ̄ is that the straightforward application of
Definition 6.5 requires in general a check of φ on an infinite number of infinite
timed words (having ρ̄ as a subword). A well-studied approach allowing to re-
duce the check of a property of an infinite object to a check of a property on a
finite approximation of the object is known as abstraction [36, 39, 92]. In this
section we introduce a notion of an abstract timed word, define a LogLogics
semantics on abstract timed words and show that the required check can be
reduced to a check on the corresponding abstract timed word.

For the sake of brevity, given a set S and a predicate π, we write §x � x > S �
π�x� and ¦x � x > S � π�x� to denote §x�x > S , π�x�� and ¦x�x > S � π�x��,
respectively.

Since by Definition 6.5 the truth value w.r.t. ρ̄ can be true, false or unknown,
the semantics of a LogLogics-formula w.r.t. an abstract timed word should
be three-valued as well. Recall that in the traditional three-valued logics (see
e.g. [80]) the truth values are ordered as false h unknown h true and logical
connectors and quantifiers are defined in Fig. 29. Note that minS and maxS

are defined for the set S w.r.t. h. Note that the definitions of ̊, §̊ and ¦̊ properly
extend the corresponding definitions for the two-valued case. In other words,
if π�x� takes only values true or false for all x > S then the truth value of
§̊x � x > S � π�x� in the three-valued logic coincides with its truth value in the
two-valued logic, and the same holds for ¦̊x � x > S � π�x�.

We start with introducing some basic notions we need here.

Abstract time domain

First we extend our time domain to Z� � Z 8 Z� 8 Z�, Z� � �. . . ,�1�,0�,1�, . . .�
and Z� � �. . . ,�1�,0�,1�, . . .�. Now we pick some arbitrary a, b, y > Z, a B b,
and define an abstraction function αb

a � Z � Z� and a concretization function

124 Modeling History-dependent Business Processes

γ � Z� � 2Z in the following way:

αb
a�x� �

¢̈̈̈̈̈̈̈¦̈̈̈̈̈̈̈¤
x if a B x B b

b� if x A b

a� if x @ a

γ�z� � ¢̈̈̈̈̈̈̈¦̈̈̈̈̈̈̈¤
�z� if z > Z�x S x A y� if z � y��x S x @ y� if z � y�

Following the definition of α and γ, we introduce addition �α on Z��Z� Z�

and functions Bα and �α on Z� �Z� � �false,unknown, true�:
z �α y �

¢̈̈̈̈̈̈̈¦̈̈̈̈̈̈̈¤
�x � y�� if z � x�;

z � y if z > Z;�x � y�� if z � x�;

�z1 Bα z2� �
¢̈̈̈̈̈̈̈¦̈̈̈̈̈̈̈¤

true if x1 B x2 for all x1 > γ�z1�, x2 > γ�z2�;
false if x2 @ x1 for all x1 > γ�z1�, x2 > γ�z2�;
unknown otherwise;

�z1 �α z2� �
¢̈̈̈̈̈̈̈̈̈
¨̈¦̈̈̈̈̈̈̈̈
¨̈̈¤

true if z1, z2 > Z and z1 � z2;

false if for all xi > γ�zi�, xj > γ�zj�, x1 x x2,

for i, j � 1,2, i x j;

unknown otherwise.

Example 1. Consider the expression 7� �α 2 Bα 10�.
By the definition of γ, γ�7�� � �8,9,10, . . .�, i.e. 7� is an abstraction of a

whole number which is greater than 7. By the definition of �α, we have that
7� �α 2 � �7 � 2�� � 9�, which coincides with the intuition that tells that by
adding 2 to a number greater than 7, we obtain a number greater than 9.

Next we need to compare 9� and 10�. By the definition of γ, γ�9�� ��10,11,12, . . .� and γ�10�� � �. . . ,7,8,9�. Clearly, x B y does not holds for
any concretization of 9� and 10�. Hence, 7� �α 2 Bα 10� is false.

Note that the definitions of �α and Bα can be rewritten by case enumeration.
So, for the case x� B y� we obtain unknown for any x and y since we can always
find both concretizations xc, yc of x� and y� for which the inequality holds, and
the ones for which it does not. For the case x� B y (y > Z) we obtain false if
x�1 A y and unknown otherwise. For x� B y� we obtain false if x�1 A y�1 and
unknown otherwise; etc.

6.3 Abstract Timed Words 125

Example 2. Reconsider 9� Bα 10� from Example 1. Since 9�1 A 10�1, we obtain
false.

One can introduce Cα,Aα,@α,xα in the standard way by using Bα and �α .
We also use �α to refer to an arbitrary abstract comparison.

Abstract timed words

An abstract timed word is a finite word with the special first and last pairs. The
first pair is an abstract representation of the period prior to the beginning of
the observations while the last pair is an abstract representation of the period
after the current moment. These two pairs contain a special event σ� that does
not belong to Σ and denotes an unknown event. For any atomic proposition p

we define σ� Ø p to be unknown.

Definition 6.6. [Abstract Timed Words]
An abstract time sequence τα � τkτk�1 . . . τn is a finite sequence of times such
that τk > Z�, τn > Z�, and for all i, k @ i @ n, τi > Z; moreover, τi Bα τi�1 for all
i > �k, . . . , n � 1�.

An abstract event sequence σα � σkσk�1 . . . σn is a finite sequence of events
such that σk � σ�, σn � σ�, and for all i, k @ i @ n, σi > Σ. For any atomic
proposition p > P , σk Ø p is unknown, σn Ø p is unknown, and for any k @ i @ n,
σi Ø p is true or false.

An abstract timed word ρα � �σα, τα� is a pair consisting of an abstract
event sequence σα and an abstract time sequence τα of the same length. We
also write a timed word as a sequence of pairs �σk, τk� . . . �σn, τn�.

Let ρ � �σ, τ� be an infinite timed word with τ � τkτk�1 . . . and σ �
σkσk�1 To relate ρ with an abstract timed word, we extend the abstrac-
tion and concretization functions. Let a C k. Then, the abstraction of ρ w.r.t.
a and b is

αb
a�ρ� � �σ�, �τa����σa, τa� . . . �σb, τb��σ�, �τb���.

The concretization function γ maps the abstract timed word �σ�, �τa����σa, τa� . . . �σb, τb� �σ�, �τb��� to the set of all extensions of �σa, τa� . . . �σb, τb�.
Lemma 6.1. Let ρ̄ � �σ̄a, τ̄a� . . . �σ̄b, τ̄b� be a finite timed word. Then for any
extension ρ1, ρ2 of ρ̄, we have αb

a�ρ1� � αb
a�ρ2�.

Proof. Let ρ1 be �σ1

ℓ , τ1

ℓ ��σ1

ℓ�1
, τ1

ℓ�1
� . . . and ρ2 be �σ2

m, τ2
m��σ2

m�1, τ
2
m�1� . . . so

that

– l B a, m B a,
– τ̄i � τ1

i � τ2

i for all i > �a, . . . , b�;
– if l @ a then τ1

a�1 @ τ1
a , if m @ a then τ2

a�1 @ τ2
a ;

– τ1

b @ τ1

b�1
and τ2

b @ τ2

b�1
.

Then, αb
a�ρ1� � �σ�, �τ1

a����σ1
a, τ1

a� . . . �σ1

b , τ1

b ��σ�, �τ1

b ��� � αb
a�ρ2�. A@

126 Modeling History-dependent Business Processes

Next we define the semantics of a LogLogics-formula w.r.t. an abstract timed
word and an abstract clock valuation.

Definition 6.7. [LogLogics Semantics on Abstract Traces]
Let ρα � �σa�1, �τa����σa, τa� . . . �σb, τb��σb�1, �τb��� be an abstract timed word,
where σa�1 � σb�1 � σ�, i > Z, a � 1 B i B b � 1, and να � V 9 Z� be a partial
valuation for the clock variables. Then

– `ρα, i, ναe à p is equal to σi Ø p;
– `ρα, i, ναe à false equals false;
– `ρα, i, ναe à x � c is equal to the value of να�x� �α c, where �α is the

relation on Z� corresponding to � and c > N;
– `ρα, i, ναe à x � y � c is equal to the value of να�x� �α να�y��α c, where �α

is as above and c > N;
– `ρα, i, ναe à x.φ is equivalent to `ρα, i, να�x(τi�e à φ;
– `ρα, i, ναe à φ is equivalent to ̊�`ρα, i, ναe à φ�;
– `ρα, i, ναe à φ1 , φ2 is equivalent to �`ρα, i, ναe à φ1�̊,�`ρα, i, ναe à φ2�
– `ρα, i, ναe à φ1Uφ2 is equivalent to §̊j � i B j � �`ρα, j, ναe à φ2,̊¦̊k � i B k @

j � `ρα, k, ναe à φ1�;
– `ρα, i, ναe à φ1Sφ2 is equivalent to §̊j � j B i � �`ρα, j, ναe à φ2,̊¦̊k � j @ k B

i � `ρα, k, ναe à φ1�.
We also abbreviate `ρα, b, εe à φ to ρα à φ.
The set of subformulae Sub�φ� of a LogLogics formula φ is defined induc-

tively as follows:

Sub�p� ���p�;
Sub�x � y � c� ���x � y � c�;

Sub�x � c� ���x � c�;
Sub�x.φ� ��Sub�φ� 8 �x.φ�;

Sub�false� ���false�;
Sub� φ� ��Sub�φ� 8 � φ�;

Sub�φ� , φ��� ��Sub�φ�� 8 Sub�φ��� 8 �φ� , φ���;
Sub�φ�Uφ��� ��Sub�φ�� 8 Sub�φ��� 8 �φ�Uφ���;
Sub�φ�Sφ��� ��Sub�φ�� 8 Sub�φ��� 8 �φ�Sφ���,

where x, y > V , p > P , �> �@,A,B,C,�,x�, c > N and φ�, φ�� are LogLogics-
formulae.

A proper subformula of a LogLogics formula φ is a formula from Sub�φ���φ�.
Theorem 6.1. Let ρ̄ � �σ̄k, τ̄k� . . . �σ̄n, τ̄n� be a finite timed word, P the set of
all extensions of ρ̄, ρα � �σ�, τ̄k

��ρ̄�σ�, τ̄n
�� an abstract word, φ a LogLogics-

formula, i > Z such that k � 1 B i B n � 1, να�V 9 Z� a partial abstract clock
valuation and V � �ν�V 9 ZS¦x�x > V �ν�x� > γ�να�x�� , ατ̄n

τ̄k
�ν�x�� � να�x��

the set of concrete clock valuations corresponding to the abstract clock valuation
να. Then the truth value of �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ� equals the truth
value of `αn

k�ρ�, i, ναe à φ.

6.3 Abstract Timed Words 127

Proof. We proceed by induction on the structure of φ assuming that the theo-
rem holds for all proper subformulae of φ.

We only prove that `αn
k�ρ�, i, ναe à φ is true iff �¦ρ, ν�ρ > P,ν > V� `ρ, i, νe à

ρ� is true. The proofs for false and unknown are similar.��� Let �¦ρ, ν�ρ > P,ν > V� `ρ, i, νe à φ� be true. We show that `αn
k�ρ�, i, ναe à

φ is true.

Let x, y > V , p > P , �> �B,�� (the rest of the cases can be derived), c > N

and φ1, φ2 be LogLogics-formulae.

φ �� p Since �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à p� is true, then σi Ø p, hence`αn
k�ρ�, i, ναeà p is true.

φ �� false Since �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à false� is false for all ρ > P and
ν > V, this case is not applicable.

φ �� x � c Since �¦ρ, ν�ρ > P ,ν > V� `ρ, i, νe à x � c� is true, ν�x� � c holds, for
all ρ > P and ν > V. We show that `ρα, i, ναe à x � c is true, i.e. να�x� �α c

holds for �> �B,��.
If φ �� ν�x� � c, we have the following cases:

– να�x� � τ̄n
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true, however, we can take a ν > V

with τ̄n @ ν�x� ~� c, which forms a contradiction.

– να�x� � τ̄k
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄k @ ν�x� ~� c, which forms a contradiction.

– τ̄k B να�x� B τ̄n Then να�x� � ν�x� and since ν�x� � c is true for all
ν > V, we have that να�x� �α c is true, hence `αn

k�ρ�, i, ναe à φ is true.

If φ �� ν�x� B c, we have the following cases:

– να�x� � τ̄n
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄n @ ν�x� and ν�x� A c, which forms a contradiction.

– να�x� � τ̄k
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄k @ ν�x� and ν�x� A c, which forms a contradiction.

– τ̄k B να�x� B τ̄n Then να�x� � ν�x� and since ν�x� B c, we have
να�x� Bα c.

φ �� x � y � c Then �¦ρ, ν�ρ > P,ν > V� `ρ, i, νe à x � y�c� is true and we shall
show that να�x� �α να�y� �α c holds, i.e. `αn

k�ρ�, i, νe à x � y � c is true.

If φ �� x � y � c, we have the following cases:

– να�x� � τ̄n
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� is true, however, we can take a ν > V with
τ̄n @ ν�x� ~� ν�y� � c, which forms a contradiction.

– να�x� � τ̄k
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄k A ν�x� ~� ν�y� � c, which forms a contradiction.

– τ̄k B να�x� B τ̄n

128 Modeling History-dependent Business Processes

Y τ̄k B να�y� B τ̄n Then for all ρ > P and ν > V, `ρ, i, νe à ν�x� �
ν�y�� c is true. Since να�x� � ν�x� and να�y� � ν�y�, we have that
να �α να�y� �α c. Hence `αn

k�ρ�, i, ναe à φ is true.
Y να�y� � τ̄k

� is not applicable. If it were applicable, then �¦ρ, ν�ρ >
P ,ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄k A ν�y� � c ~� ν�x�, which forms a contradiction.
Y να�y� � τ̄n

� is not applicable. If it were applicable, then �¦ρ, ν�ρ >
P , ν > V� `ρ, i, νe à φ� is true; however, we can take a ν > V with
ν�x� ~� ν�y� � c A τ̄n, which forms a contradiction.

If φ �� x B y � c, we have the following cases:

– να�x� � τ̄n
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P , ν > V� `ρ, i, νe à φ� would be true, however, we can take a ν > V

with τ̄n @ ν�x� and ν�x� A ν�y� � c, which forms a contradiction.

– να�x� � τ̄k
�

Y να�y� � τ̄n
� Then να�y��α c � �τ̄n � c��, and since ν�x� B ν�y�� c,

we have that να�x� � τ̄k
� Bα να�y� �α c.

Y να�y� � τ̄k
� is not applicable. If it were applicable, then �¦ρ, ν�ρ >

P ,ν > V� `ρ, i, νe à φ� would be true; however, we can take a ν > V

with τ̄k A ν�x� A ν�y� � c, which forms a contradiction.
Y τ̄k B να�y� B τ̄n Then να�y� �α c � ν�y� � c, and since ν�x� B

ν�y� � c, we have that να�x� � τ̄k
� Bα να�y� �α c.

– τ̄k B να�x� B τ̄n

Y να�y� � τ̄n
� Then να�x� � ν�x� B ν�y�� c and να�y��α c � τ̄n � c�,

therefore να�x� Bα να�y� �α c.
Y να�y� � τ̄k

� is not applicable since we know that �¦ρ, ν�ρ > P ,
ν > V� `ρ, i, νe à φ� is true, however, we can take a ν > V with
τ̄k A ν�x� A ν�y� � c, which forms a contradiction.

Y τ̄k B να�y� B τ̄n Since ν�x� B ν�y� � c, να�y� � ν�y� and να�x� �
ν�x�, therefore να�x� Bα να�y� �α c.

φ �� x.φ1 Since �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x.φ1� is true, then ¦ρ, ν�ρ >
P,ν > V� `ρ, i, ν�x(τi�e à φ1 is true. Let V� � �ν��V 9 ZS¦x�x > V �ν��x� >
γ�να�x(ατ̄n

τ̄k
�τi��� ,ατ̄n

τ̄k
�ν��x�� � να�x(ατ̄n

τ̄k
�τi��� be the set of concrete

clock valuations corresponding to the abstract clock valuation �να�x (
ατ̄n

τ̄k
�τi��. Then ¦ρ, ν�ρ > P , ν > V�� `ρ, i, ν�x(τi�e à φ1 is true.

By the induction hypothesis, we have that `αn
k�ρ�, i, να�x(ατ̄n

τ̄k
�τi��e à φ1

is true, hence `αn
k�ρ�, i, ναe à x.φ1 is true.

φ �� φ1 �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1� is true iff �¦ρ, ν�ρ > P , ν >
V� `ρ, i, νe à φ1� is false. By the induction hypothesis `αn

k�ρ�, i, ναe à φ1 is
false. Hence `αn

k�ρ�, i, ναe à φ1 is true.

φ �� φ1 ,φ2 �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1 , φ2� holds iff �¦ρ, ν�ρ > P ,
ν > V� `ρ, i, νe à φ1� and �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ2� hold. By the
induction hypothesis `αn

k�ρ�, i, ναe à φ1 and `αn
k�ρ�, i, ναe à φ2 hold. Hence

min�`αn
k�ρ�, i, ναe à φ1, `αn

k�ρ�, i, ναe à φ2� � true, thus `αn
k�ρ�, i, ναe à

φ1 , φ2.

6.3 Abstract Timed Words 129

φ �� φ1Uφ2 Since �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1Uφ2� holds, we have that�¦ρ, ν�ρ > P , ν > V� `ρ, j, νe à φ2� is true for some j C i and �¦ρ, ν�ρ >
P , ν > V� `ρ, k�, νe à φ1� is true for all k� satisfying i B k� @ j.
We only look at the case when j B n, since for j A n, the only case when�¦ρ, ν�ρ > P ,ν > V� `ρ, j, νe à φ2� is true is when φ1 � true, and in this case`αn

k�ρ�, i, ναe à φ1Uφ2 is trivially true.
By the induction hypothesis, we have that `αk

n�ρ�, j, ναe à φ2 is true for
some n C j C i and `αk

n�ρ�, k�, ναe à φ1 is true for all k� satisfying i B
k� @ j. Hence max�`αn

k�ρ�, j, ναe à φ2Sj C i� is true, therefore §̊j � j B i �`αn
k�ρ�, j, ναe à φ2 is true. Similarly, min�`αn

k�ρ�, k�, ναe à φ1Si B k� @ j� is

true, hence ¦̊k� � i @ k� B j � `αn
k�ρ�, k, ναe à φ1 is true. Hence, min�̊§j � j B

i � `αn
k�ρ�, j, ναe à φ2, ¦̊k� � n B k� @ j � `αn

k�ρ�, k�, ναe à φ1� is true thus`αn
k�ρ�, i, ναe à φ1Uφ2.

φ �� φ1Sφ2 �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1Sφ2� is true iff �¦ρ, ν�ρ > P , ν >
V� `ρ, j, νe à φ2� is true for some j B i and �¦ρ, ν�ρ > P,ν > V� `ρ, k�, νe à φ1�
is true for all j @ k� B i.
We only look at the case when k B j, since for k A j, the only case when�¦ρ, ν�ρ > P ,ν > V� `ρ, j, νe à φ2� is true is when φ2 � true, and in this case`αn

k�ρ�, i, ναe à φ1Sφ2 is trivially true.
By the induction hypothesis `αn

k�ρ�, j, ναe à φ1 is true for some j B i and`αn
k�ρ�, k�, ναe à φ2 holds for all k� satisfying j @ k� B i.

Hence max�`αn
k�ρ�, j, ναe à φ2Sk B j B i� is true and min�`αn

k�ρ�, k�, ναe à
φ1Sj @ k� B i� is true. Thus min�̊§j � j B n � `αn

k�ρ�, j, ναe à φ2, ¦̊k � j @ k B
i � `αn

k�ρ�, k�, ναe à φ1� is true, thus `αn
k�ρ�, i, ναe à φ1Sφ2.�
� Let `αn

k�ρ�, i, ναe à φ be true. We show that �¦ρ, ν�ρ > P ,ν > V� `ρ, i, νe à
φ� is true.

Let x, y > V , p > P , �> �B,�� (the rest of the cases can be derived), c > N

and φ1, φ2 be LogLogics-formulae.

φ �� p Since `αn
k�ρ�, i, ναe à p is true, then σi Ø p, hence �¦ρ, ν�ρ > P , ν >

V� `ρ, i, νe à p� is true.
φ �� false `αn

k�ρ�, i, ναe à false is false, which is not applicable in this case.
φ �� x � c Since `αn

k�ρ�, i, ναe à x � c is true, να�x� �α c holds. We show that�¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x � c� is true for �> �B,��. Let ρ > P be an
arbitrary extension of ρ̄ and ν > V an arbitrary clock valuation.
If φ �� x � c we have the following cases:
– τ̄k B ν�x� B τ̄n Since να�x� � ν�x� and να�x� �α c, we have that

ν�x� � c. Then �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x � c� is true.
– τ̄n @ ν�x� is not applicable, since ατ̄n

τ̄n
�ν�x�� � τ̄n

� and the truth value
of τ̄n

� �α c is unknown, while `αn
k�ρ�, i, ναe à φ is true.

– τ̄k A ν�x� is not applicable, since ατ̄n

τ̄k
�ν�x�� � τ̄k

� and the truth value
of τ̄k

� �α c is unknown, while `αn
k�ρ�, i, ναe à φ is true.

If φ �� x B c we have the following cases:
– τ̄k B ν�x� B τ̄n Since να�x� � ν�x� and να�x� Bα c, we have that

ν�x� B c. Then �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x B c� is true.

130 Modeling History-dependent Business Processes

– τ̄n @ ν�x� is not applicable, since ατ̄n

τ̄n
�ν�x�� � τ̄n

� and the truth value
of τ̄n

� Bα c is unknown, while `αn
k�ρ�, i, ναe à φ is true.

– τ̄k A ν�x� is not applicable, since ατ̄n

τ̄k
�ν�x�� � τ̄k

� and the truth value
of τ̄k

� Bα c is unknown, while `αn
k�ρ�, i, ναe à φ is true.

φ �� x � y � c Then `αn
k�ρ�, i, ναe à x � y � c is true and we shall show that�¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x � y � c� is true. Let ρ > P be an arbitrary

extension of ρ̄ and ν > V an arbitrary clock valuation.
If φ �� x � y � c, we have the following cases:
– τ̄k B ν�x� B τ̄n Then να�x� � ν�x�.

Y τ̄k B ν�y� B τ̄n Then να�y� �α c � ν�y� � c and since να�x� �α

να�y� �α c and να�x� � ν�x�, we have ν�x� � ν�y� � c for all ν > V.
Hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ� is true.

Y τ̄k @ ν�y� is not applicable, since ατ̄n

τ̄k
�ν�y���α c � �τ̄k �c�� and the

truth value of ν�x� �α �τ̄k �c�� is unknown, while `αn
k�ρ�, i, ναe à φ

is true.
Y τ̄n A ν�y� is not applicable, since ατ̄n

τ̄k
�ν�y���α c � �τ̄n�c�� and the

truth value of ν�x� �α �τ̄n � c�� is false, while `αn
k�ρ�, i, ναe à φ is

true.
– τ̄k A ν�x� is not applicable, since ατ̄n

τ̄k
�ν�x�� � τ̄k

� and the truth value
of τ̄k

� �α ατ̄n

τ̄k
�ν�y�� �α c is unknown, while `αn

k�ρ�, i, ναe à φ is true.
– τ̄n @ ν�x� is not applicable, since ατ̄n

τ̄k
�ν�x�� � τ̄n

� and the truth value of
τ̄k

� �α ατ̄n

τ̄k
�ν�y���αc is either false or unknown, while `αn

k�ρ�, i, ναe à φ

is true.
If φ �� x B y � c we have the following cases:
– τ̄k B ν�x� B τ̄n Then να�x� � ν�x�.

Y τ̄k B ν�y� B τ̄n Then να�y� �α c � ν�y� � c and since να�x� Bα

να�y� �α c, we have that for all ν > V, ν�x� B ν�y� � c. Hence�¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x B y � c� is true.
Y ν�y� A τ̄n Then να�y��α c � τ̄n

� � c, and since να�x� Bα να�y��α c

is true, we have that for all ν > V, ν�x� B ν�y�� c. Hence �¦ρ, ν�ρ >
P , ν > V� `ρ, i, νe à x B y � c� is true.

Y τ̄k A ν�y� is not applicable since ν�x� Bα ατ̄n

τ̄k
�ν�y���αc � �τ̄k�c�� is

unknown, while the induction hypothesis is that `αn
k�ρ�, i, ναe à φ

is true.
– τ̄k A ν�x� Then να�x� � τ̄k

�.
Y τ̄k B ν�y� B τ̄n We have that να�x� � τ̄k

� Bα να�y��α c � ν�y��c is
true. Clearly for all ν > V satisfying the above properties, we have
ν�x� B ν�y� � c, hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x B y � c� is
true.

Y τ̄k A ν�y� is not applicable since τ̄k
� Bα ατ̄n

τ̄k
�ν�y�� �α c � �τ̄k � c��

is unknown, while our hypothesis is that `αn
k�ρ�, i, ναe à φ is true.

Y τ̄n @ ν�y� Then να�x� � τ̄k
� Bα να�y� �α c � �τ̄n � c�� is true.

Clearly, for all ν > V, ρ > P satisfying the above properties, we have
ν�x� B ν�y� � c, hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x B y � c� is
true.

6.3 Abstract Timed Words 131

– τ̄n @ ν�x� Then ατ̄n

τ̄k
�ν�x�� � τ̄n

�.
Y ν�y� A τ̄n is not applicable since τ̄n

� Bα ατ̄n

τ̄k
�ν�y�� �α c � �τ̄n � c��

is unknown while our hypothesis is that `αn
k�ρ�, i, ναe à φ is true.

Y τ̄k A ν�y� is not applicable since τ̄n
� Bα ατ̄k

τ̄k
�ν�y�� �α c � �τ̄k � c��

is false when τ̄n � 1 B τ̄k � c � 1 and unknown otherwise, while our
hypothesis is that `αn

k�ρ�, i, ναe à φ is true.
Y τ̄k B ν�y� B τ̄n is not applicable since τ̄n

� Bα ατ̄n

τ̄k
�ν�y�� �α c �

ν�y� � c is false when τ̄n � 1 A ν�y� � c and unknown otherwise,
while our hypothesis is that `αn

k�ρ�, i, ναe à φ is true.

φ �� x.φ1 Since `αn
k�ρ�, i, ναe à x.φ1 is true, `αn

k�ρ�, i, να�x(ατ̄n

τ̄k
�τi��e à φ1 is

true. By the induction hypothesis, ¦ρ, ν��ρ > P,ν� > V�� `ρ, i, ν�e à φ1 is true,
where V� � �ν��V 9 ZS¦x�x > V �ν��x� > γ�να�x(ατ̄n

τ̄k
�τi��� , ατ̄n

τ̄k
�ν��x�� �

να�x (ατ̄n

τ̄k
�τi���. Moreover, for all ν� > V�, there exists ν > V so that

ν� � ν�x (τi� and vice versa. Hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à x.φ1� is
true.

φ �� φ1 Since `αn
k�ρ�, i, ναe à φ1 is true, we have that `αn

k�ρ�, i, ναe à φ1

is false. By the induction hypothesis �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1� is
false. Hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1� is true.

φ �� φ1 ,φ2 Since `αn
k�ρ�, i, ναe à φ1 , φ2 holds, min�`αn

k�ρ�, i, ναe
à φ1, `αn

k�ρ�, i, ναe à φ2� is true. Hence `αn
k�ρ�, i, ναe à φ1 is true and`αn

k�ρ�, i, ναe à φ2 is true. By the induction hypothesis �¦ρ, ν�ρ > P , ν >
V� `ρ, i, νe à φ1� is true and �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ2� is true, thus�¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1 , φ2�.

φ �� φ1Uφ2 `αn
k�ρ�, i, ναe à φ1Uφ2 holds if min�̊§j � j B i � `αn

k�ρ�, j, ναe à
φ2, ¦̊k� � n B k� @ j � `αn

k�ρ�, k�, ναe à φ1� is true.
Let �σj , τj� � �σ�, τ̄n

��. Since `αk
n�ρ�, j, ναe à φ2 is true then for all ρ > P

and all ν > V, `ρ, j, νe à φ2 is true. This happens only when φ2 � true
otherwise `αn

k�ρ�, i, ναe à φ1Uφ2 is not true. Therefore we only look at
j B n.
Hence, `αk

n�ρ�, j, ναe à φ2 is true for some n C j C i and `αk
n�ρ�, k�, ναe à φ1

is true for all k� satisfying i B k� @ j.
By the induction hypothesis, we have that �¦ρ, ν�ρ > P,ν > V� `ρ, j, νe à φ2�
is true for some n C j C i and for all i B k� @ j, �¦ρ, ν�ρ > P,ν > V� `ρ, k�, νe à
φ1� holds. Hence, �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1Uφ2� is true.

φ �� φ1Sφ2 Since `αn
k�ρ�, i, ναe à φ1Sφ2, §̊j � j B n � `αn

k�ρ�, j, ναe à φ2 , ¦̊k �
j @ k B i � `αn

k�ρ�, k�, ναe à φ1.
We only look at the case when k B j, since for k A j and �σj , τj� � �σ�, τ̄k

��,``αk
n�ρ�, j, ναee à φ2 is true iff φ2 � true.

Hence, max�`αn
k�ρ�, j, ναe à φ2Sk B j B i� is true and min�`αn

k�ρ�, k�, ναe à
φ1Sj @ k� B i� is true. By the induction hypothesis, �¦ρ, ν�ρ > P , ν >
V� `ρ, j, νe à φ2� is true for some j B i and �¦ρ, ν�ρ > P,ν > V� `ρ, k�, νe à φ1�
is true for all j @ k� B i. Hence �¦ρ, ν�ρ > P , ν > V� `ρ, i, νe à φ1Sφ2� is
true. A@

For formulas empty valuations of clock variables, the following result follows:

132 Modeling History-dependent Business Processes

Corollary 1. Let ρ̄ � �σ̄k, τ̄k� . . . �σ̄n, τ̄n� be a finite timed word, and ρ an
extension of ρ̄. Then, for any LogLogics-formula φ, the truth value of ρ̄ à φ

is equal to the truth value of αn
k�ρ� à φ.

Proof. By Theorem 6.1 the truth value of ρ à φ, i.e. `ρ,n, εe à φ is the same as
the truth value of `αn

k�ρ�, n, εe à φ, thus of αn
k�ρ� à φ. A@

Recall that Definition 6.5 determines the truth value of a LogLogics-formula
w.r.t. a finite timed word depending on its truth values w.r.t. all possible ex-
tensions. Hence, it cannot be used to compute the truth value directly as it
would involve an infinite computation. The theorem above resolves this prob-
lem by reducing the check of truth values on infinitely many extensions of the
given timed word to checking the truth value on a finite object, namely the
corresponding abstract timed word.

Example 3. Let us evaluate the formula ⊟x.�x C 0� �p� ✸y.�q , y B x� 4���
on the finite timed word ρ̄ � ��σ0,0��σ1,1��σ2,1��σ3,2��σ4,5��σ5,8�� such that
σi Ø p is true for i � 1 and i � 4, and false for i > �0,2,3,5�; σi Ø q is true
for i � 3 and false for i > �0,1,2,4,5� (see Fig. 30). Intuitively, this formula
says that whenever p was encountered during the observation period, q was
encountered not later than four time units after that.

By Corollary 1 we reduce our problem to evaluation of the formula w.r.t.
the abstract timed word

ρα � ��σ�,0���σ0,0��σ1,1��σ2,1��σ3,2��σ4,5��σ5,8��σ�,8���,
which is the abstraction of any extension of ρ̄.

First, we observe that we need to minimize `ρα, i, εe à x.�x C 0 � �p �
✸y.�q , y B x � 4��� for all i B 5. This is equivalent to minimizing the value of`ρα, i, ε�x(τi�e à x C 0� �p� ✸y.�q,y B x�4�� for i B 5. For i � �1, τ�1 C 0 is
false and hence the implication is true. For i > �0,2,3,5�, `ρα, i, ε�x (τi�e à p

is false and therefore the inner implication is true, and so is the outer one. The
cases left are:

– i � 4. Since σ4 Ø p is true, the truth value of the implication coincides with
the truth value of `ρα,4, ε�x (5�e à ✸y.�q , y B x � 4�. To determine the
latter value we need to maximize the value of `ρα, j, ε�x (5�e à y.�q , y B
x � 4� for j C 4, i.e., the value of `ρα, j, ε�x (5, y (τj�e à �q , y B x � 4�.
For each j C 4 the value of the conjunction is the least value of `ρα, j, ε�x(
5, y (τj�e à q and `ρα, j, ε�x(5, y (τj�e à y B x � 4.
If j � 4 or j � 5, σj Ø q is false and, hence, the value of the conjunction is
false as well. If j � 6, σj Ø q is unknown, τ6 � 8� and `ρα, j, ε�x (5, y (
8��e à y B x � 4 reduces to 8� Bα 9 that evaluates to unknown. Hence, the
value of the conjunction in this case is unknown. To determine the value
of the implication for i � 4 we should take the maximal value, which is
unknown, obtained for j � 6.

6.3 Abstract Timed Words 133

p

q

i 0

ti

1 2 3 4 5

0 1 1 2 5 8

f t f f t f

f f f t f f

u u

u u

-1

0
â

6

8
á

Fig. 30: A finite timed word evaluating ⊟x.�x C 0� �p� ✸y.�q , y B x � 4���
to unknown.

p

q

i 0

ti

1 2 3 4 5

0 1 1 2 5 8

f t f f f f

f f f t f f

u u

u u

-1

0
â

6

8
á

Fig. 31: A finite timed word evaluating ⊟x.�x C 0� �p� ✸y.�q , y B x � 4���
to true.

– i � 1. As above, since σ1 Ø p is true, the truth value of the implication
coincides with the truth value of the maximum (on j C 1) of the least of
the two following values: `ρα, j, ε�x(1, y (τj�e à q and `ρα, j, ε�x(1, y (
τj�e à y B x � 4.

If j > �1,2,4,5�, then σj Ø q is false, and so is the value of the conjunction.
Since τ6 � 8�, `ρα, j, ε�x (1, y (8��e à y B x � 4 reduces to 8� Bα 5 that
evaluates to false and the same is true for the conjunction. Finally, for
j � 3, σj Ø q is true and τj � 2 Bα 1 � 4. Hence, both conjuncts evaluate
to true and the conjunction as well. Hence, the maximal value is true,`ρα,1, ε�x (1�e à ✸y.�q , y B x � 4� evaluates to true and the truth value
of the implication is true.

To find the truth value of the original formula, we need to take the least value
obtained. This value is ‘unknown’.

Example 3 also explains the true meaning of unknown. The formula is eval-
uated to unknown due to the behavior on the boundaries of the observation
sequence. Consider the finite timed word in Fig. 31 which differs from the
one in Fig. 30 for i � 4 only. With respect to this finite timed word the re-
sponse property from Example 3 is evaluated to true. However, if one considered
⊟x.�p� ✸y.�q , y B x � 4�� the truth value still would have been unknown. In
such a case one might like to exclude the unknown prehistory and/or unknown
future from the consideration. In fact, our formula in Example 3 excluded the
prehistory. Since similar restrictions turn out to be useful for expressing inter-

134 Modeling History-dependent Business Processes

esting business properties, we introduce the following short-hand notation:

✷
b
ax.φ�x� def� ✷x.�x @ a - x A b - φ�x��

✸
b
ax.φ�x� def� ✸x.�x C a , x B b , φ�x��

⊟
b
ax.φ�x� def� ⊟x.�x @ a - x A b - φ�x��

xb
ax.φ�x� def� xx.�x C a , x B b , φ�x��

Subscripts and superscripts of boxes and diamonds can be omitted when only
one of boundaries is of interest. Using the short-hand notation formula in Ex-
ample 3 can be written as ⊟0x.�p � ✸y.�q , y B x � 4��. Note that the limit
values a and b in the short-hand notation can depend on the values of the clock
variables in whose scope the corresponding temporal operator appears. This
means that the formula above can be further rewritten as ⊟0x.�p� ✸

x�4
x y.q�,

which some users experience as more intuitive. We give more examples for the
use of the abbreviations in Section 6.5.

Lemma 6.2. Let ρ̄ � �σk, τk� . . . �σn, τn� be a finite timed word. Let a restricted
LogLogics-formula ψ be inductively defined as:

ψ �� p S x � y � c S x � c S x.ψ S false S ψ S ψ1 , ψ2 S ✷b
aψ S ⊟b

aψ S ✸b
aψ S xb

aψ

where x, y > V , p > P , � is one of @,A,B,C,�,x, c > N and τk B a B b B τn. Then
ρ̄ à ψ is evaluated to true or false.

Note that by using restricted LogLogics-formulas only we obtain the logic
that coincides with the logics from [1, 40].

6.4 Algorithm

In this section we present an algorithm that evaluates a given LogLogics-formula
φ w.r.t. a given abstract timed word and context `ρα, i, ναe.

We assume the existence of two auxiliary procedures EvalClock�cvc, να�
and EvalAtomic�p, a, b, ρα, i�, where p is an atomic proposition, cvc a clock
variable comparison (x � c or x � y � c) and a and b correspond to pre-history
and future indexes. In Algorithm 6 we define the procedure Eval with the
following parameters: a LogLogics formula φ, an abstract timed word ρα, a pre-
history event index a, a future event index b, a current event index i, a clock
valuation να, a current minimum truth value min and a current maximum
truth value max. The evaluation of a closed formula φ w.r.t. an abstract timed
word ρα � �σ�, �τa�1����σa�1, τa�1� . . . �σb�1, τb�1��σ�, �τb�1��� is performed by
calling Eval�φ, ρα, a, b, last,g, false, true�, where last gives the index of the last
‘non-abstract’ entry in ρα, i.e., last � b � 1. In the remainder, we assume that
all the additional operators such as - or ⊟ in the formula φ have been replaced
by their definitions.

6.4 Algorithm 135

Algorithm 6: Procedure Eval�φ, ρα, a, b, i, να,min,max�
Input: φ, ρα, a, b, i, να,min,max

Output: x > �true, false,unknown�
if min � max then return min;
else if φ � p then m �� EvalAtomic�p, ρα, a, b, i�;
else if φ � false then m �� false;
else if φ � unknown then m �� unknown;
else if φ � cvc then m �� EvalClock�cvc, να�;
else if φ � x.ψ then m �� Eval�ψ, ρα, a, b, i, να�x(τi�,min,max�;
else if φ � ψ then m �� Eval�ψ, ρα, a, b, i, να, max, min�;
else if φ � φ1 , φ2 then

m �� Eval�φ1, ρ
α, a, b, i, να,min,max�;

if m B min then m �� min else m �� Eval�φ2, ρ
α, a, b, i, να,min,m�

end

else if φ � φ1Uφ2 then
m �� Eval�φ2, ρ

α, a, b, i, να,min,max�;
if m C max then m �� max ;
else

n �� Eval�φ1, ρ
α, a, b, i, να,m,max�;

if n A m and i @ b then m �� Eval�φ, ρα, a, b, i � 1, να,m,n�;
end

end

else if φ � φ1Sφ2 then
m �� Eval�φ2, ρ

α, a, b, i, να,min,max�;
if m C max then m �� max ;
else

n �� Eval�φ1, ρ
α, a, b, i, να,m,max�;

if n A m and i A a then m �� Eval�φ, ρα, a, b, i � 1, να,m,n�
end

end

if m B min then return min;
else if m C max then return max;
else return m

Depending on the form of φ, the procedure Eval recursively calls itself
until the subnodes have been exhausted or max � min. The formula is thus
evaluated as a tree with atomic propositions p and clock variable comparisons
x � c, x � y � c as leaves and operator symbols as other nodes. The algorithm
makes a nondeterministic choice when evaluating conjunctions. A speedup may
be possible by making better choices, choosing subnodes that can be evaluated
fast and are likely to become false.

Recall that φ1Uφ2 is true w.r.t. `ρα, i, ναe if either φ2 is true w.r.t. `ρα, i, ναe
or both φ1 is true w.r.t. `ρα, i, ναe and φ1Uφ2 is true w.r.t. `ρα, i � 1, ναe. In
our three-valued case, `ρα, i, ναe à φ1Uφ2 is (`ρα, i, ναe à φ2 - �`ρα, i, ναe à
φ1 , `ρα, i � 1, ναe à φ1Uφ2)). The value of i is limited by the length of the

136 Modeling History-dependent Business Processes

word. This observation is used in the algorithm to evaluate LogLogics-formulas
of the form φ1Uφ2. The case of S is analogous.

Termination of the algorithm stems from the following fact: at each step
of the computation, evaluating `ρα, i, ναe à φ is reduced to evaluating a finite
number of `ρα, i1, ν1e à φ1, . . . , `ρα, in, νne à φn. The parameter n is bounded
by maximum of b � a � 1 (cases of U and S) and 2 (conjunction). Each one of
the `ρα, ij , νje à φj is strictly smaller than `ρα, i, ναe à φ w.r.t. the following
order relation:

�`ρα, i1, ν1e à φ1� i �`ρα, i2, ν2e à φ2� if

¢̈̈̈̈̈̈̈̈̈
¨̈¦̈̈̈̈̈̈̈̈
¨̈̈¤

φ2 is a subterm of φ1,

or φ2 coincides with φ1 and

φ2 � ψ1Uψ2 and i1 @ i2

or φ2 � ψ1Sψ2 and i1 A i2.

Finally, observe that the parameters min and max express the information
gained so far on the range of relevant values of the subformula. By relevant
values we understand those values that can influence the truth value of the su-
pervalue. Moreover, one can show that min B Eval�φ, ρα, a, b, i, να,min,max� B
max for any values of the parameters.

6.5 Typical Guards of Interest

Dwyer et al. [49] have identified a number of property specification patterns for
software verification and formalized them in LTL and CTL. Similar patterns
were given in [10] for modeling processes using constraints templates which are
LTL formulas and a graphical language is provided for them called DecSerFlow.
In this section we analogously consider LogLogics guard specification patterns
for business processes.

Occurrence patterns

The first group of patterns concerns the occurrence of a certain desired event,
or dually, the absence of a certain undesirable event. In the most general form
it requires that in a given scope a given event occurs at least a and at most b

times. In particular, if b � 0, the event does not occur at all, and if a equals
the number of time points in a scope, the event occurs throughout the entire
scope. Patterns belonging to this group are occurrence, bounded occurrence,
absence and universality.

Occurrence patterns allow us to check whether some event happened in a
certain time interval, e.g. whether there was a transaction for a sum exceeding
5.000.000 in 2005, which we can encode as xx.�p , x C ‘Jan. 1, 2005’ , x B
‘Dec. 31, 2005’�, where p stands for a transaction exceeding 5.000.000. Using

the notation of Section 6.3, it can be also written as x‘Dec. 31, 2005’

‘Jan. 1, 2005’
x.p. In

6.5 Typical Guards of Interest 137

general, the occurrence pattern has the following form: xb
ax.φ, where a and/or

b can be omitted.
Bounded occurrence is similar to the occurrence pattern but requires a

certain event to occur at least k times within a scope:

xx1.�φ�x1� , x1 C a , x1 B b ,
xx2.�φ�x2� , x2 C a , x2 B b , x2 x x1 , . . .

xxk.�φ�xk� , xk C a , xk B b , xk x x1 , . . . , xk x xk�1���,
or alternatively,

xb
ax1.�φ�x1� ,xb

ax2.�φ�x2� , x2 x x1 , . . .

xb
axk.�φ�xk� , xk x x1 , . . . , xk x xk�1���.

Variants of this pattern require the event to occur exactly k or at most k times.
Using this pattern we can e.g. express the guard checking whether there were
at least three transactions for a sum exceeding 5.000.000 between January 1,
2005 and December 31, 2005.

Absence pattern is dual to the occurrence pattern and can be written as
⊟x.� φ�x� - x @ a - x A b� or alternatively as ⊟

b
ax. φ�x�, where φ denotes an

event undesired between time points a and b. In this way we can check that
between a and b no transaction was rejected.

Universality pattern allows to express properties that should hold through-
out the period from a to b: ⊟x.�φ�x�-x @ a-x A b�, i.e., ⊟

b
ax.φ�x�. A property

we could express with this pattern is “between a and b all transactions were
executed successfully”.

Ordering patterns

The next group of patterns, called ordering patterns, expresses an ordering re-
lationship between two (or more) events. Ordering patterns can be constructed
from the occurrence patterns by demanding that one of them occurs in a scope
within a time slot of another one.

Bounded response is an extremely common pattern, an instance of which
we considered in Example 3. It allows us to express such guards as “every bill
is paid within 30 days”. In general, the pattern has the form ⊟

b
ax.�φ1�x� �

✸
d�x�
c�x�y.φ2�y��, where c�x� and d�x� are timed constraints, i.e., propositional

formulas over clock variable comparisons x � c and x � y � c.
Precedence pattern requires that any occurrence of p is preceded by an

occurrence of q within a scope: ⊟
b
ax.�φ1�x� � xd�x�

c�x�y.φ2�y��. An instance of

this pattern allows us to express the guard that a loan was preceded by a
credibility check with an outcome above a certain threshold.

Absence between pattern requires that between time points a and b, no
r-event happens between p-event and q-event, expressed as ⊟

b
ax.��p, q,✸q��� rUq��. An example of a guard would be “no credit card transactions took

138 Modeling History-dependent Business Processes

place between the card issue and the report that the card was not received by
the legal owner”.

Compound patterns, forming the last group of patterns, can be constructed
from the patterns above by means of conjunction and disjunction.

The advantage of using LogLogics is that it can express past and time
properties. For instance the precedence pattern is more succinct than its coun-
terpart having future temporal logic operators [10]. Time constraints can be
analogously integrated in the DecSerFlow patterns.

6.6 Conclusion

In this chapter we have proposed a logic that works on finite traces and is
appropriate for specifying guards in models of history-dependent processes.
Since at any given moment in time information is finite and inherently in-
complete, we had to adapt existing timed temporal logics, which resulted in
a three-valued logic, LogLogics, presented above. Although the straightforward
application of the definition of the LogLogics semantics gives rise to a procedure
with an infinite number of checks, we have shown that a check of the truth of
an LogLogics-formula can be reduced to a check of its truth value on a finite
abstraction. Moreover, we have also shown how guard patterns common for
business processes can be expressed in LogLogics.

7

Conclusion and Future Work

In this chapter, we summarize the main contributions to this thesis and pose
some questions for future work.

This work was carried out within the project Modeling and Verification
of Business Processes7 (MoVeBP), which focused on extending the expressive
power of the Petri net modeling framework for business processes in such a
way that formal verification of properties with standard techniques like model
checking would still be possible. For classical Petri nets, with indistinguishable
(“black”) tokens, there are several good verification techniques available, but
the expressive power, and more importantly, the modeling convenience of this
class of nets is low compared to the other end of the spectrum: colored Petri
nets. Colored Petri nets offer a comfortable modeling power at the expense of
limited verification possibilities: by simulation, searching a finite part of the
state space and a limited number of verification of behavioral properties when
the state space is infinite (abstractions and structural techniques, for instance).

In this thesis we addressed specific features of business process languages
like batch processing of workflow cases, data and timing, and different flexibility
aspects for underspecified processes, where parts of some process are not given
at design time but provided later during runtime or corrections of (un)desired
or (un)anticipated behavior at certain decision points in the running process
are required.

Soundness is the central correctness property of workflows considered here,
which means that all runs of the workflow can always terminate, i.e. reach
a final state and the all its actions (transitions) can eventually be executed.
For workflow with specific features, we have considered several versions of this
correctness criterion and described means of verifying such properties.

Generalized soundness

We considered the parametrized notion of soundness called generalized sound-
ness which corresponds to the processing of batches of cases by a workflow and
proper termination of all started cases. A workflow net with an arbitrary initial
marking can be considered as an abstraction of the same workflow net having
multiple case identifiers for the initial marking.

We described an improved procedure for deciding generalized soundness
property for workflow nets based on abstraction. We show how this procedure
can be used to prove soundness by reduction of generalized sound subworkflow

7 financially supported by NWO Open competition, project number 621.000.315.

140 Conclusion and Future Work

nets. Since the generalized soundness check is expensive, we show how we can
use transformation techniques which preserve liveness and boundedness of the
workflow and incorporate these transformation in the soundness check for large
workflows.

Our approach has some limitations. One such limitation refers to the fact
that the algorithm for finding the set of minimal markings does not rely on
finding the solutions to the set of integer linear equations, but simply incre-
mentally searches these solutions through the integer points of some polytope,
and therefore is not optimal. An option to alleviate this disadvantage would
be to find solutions to the set of constraints given above in an incremental
way until we compute all minimal markings using integer linear programming
techniques. Another limitation is still the state space explosion caused by the
backward reachability checks, which can be very expensive. An option would be
to incorporate some symbolic methods of storing the backward set of reachable
markings.

For future work, we are interested in the verification of temporal logic prop-
erties of Petri nets (not necessarily WF-nets) with using such a reduction tech-
nique. The idea can also be applied to build sound by construction nets in a
hierarchical way similarly to Vogler’s refinement by modules [139, 140]. Another
direction for future work is finding subclasses of nets for which counterexamples
can be directly derived, similarly to the way reachable markings are derived
from solving equations as in [130].

As other directions for future work, we can mention possible extensions
of the algorithm for finding minimal markings with capabilities for finding
counterexamples. These results can be further used to find similar properties
of extensions of workflow nets, for instance if nets have multiple initial and
final places and the initial and final markings satisfy certain parametrized con-
straints.

Modeling and verification of adaptive workflow

To model adaptive workflows, we considered Adaptive Workflow Nets, a sub-
class of nested nets that allows more comfort and expressive power for modeling
adaptation and exception handling in workflow nets. Flexibility was achieved
by allowing transitions that create new nets out of the existing ones. Therefore,
nets with completely new structure could be created at run time.

We defined two properties for adaptive nets: soundness which refers to their
correctness, and circumspectness, referring to their robustness (exception han-
dling). Soundness is defined as the property by which a proper final marking
(state) can be reached from any marking which is reachable by firing non-
exceptional transitions from the initial marking. Circumspectness is defined as
the property by which the upper layer is always ready to handle any exception
that is triggered in a lower layer.

Using abstraction, we reduced the problem of verifying these properties
from a verification problem for a net with an infinite state space to a check

141

of properties of a net with finite state space. In particular, we extracted the
essential information from adaptive nets, which is captured by the transitions
used to model the exceptions. We described several compositional procedures
for the verification of adaptive workflow nets.

Our formalism is limited by the hierarchical “separation of concerns” mech-
nism. We only give necessary and sufficient conditions for the verification of
soundness and properties related to proper exception handling such as circum-
spectness for some subclasses of adaptive nets. It would be interesting to find
similar characterizations for extensions of this formalism taking into account re-
sources and timing constraints. A step towards such characterizations was done
in [113], where resource nets are net tokens that are synchronized horizontally
with the main workflow. It would be interesting to map resource patterns [122]
to resource token nets and study the correctness of the resulting nets.

Tools for modeling and simulation of the “nets in nets” formalism are RE-
NEW [82] and MAUDE [70]. Renew offers no verification capabilities while
MAUDE only allows for verification in case the process has a finite state space.
However, as we have shown sound models can still have infinite state space.
For future work, it would be interesting to consider building a prototype for
editing, simulating and verification adaptive nets as a plug-in of Yasper [63].
Furthermore, the exception handling technique presented here can be used as a
formal alternative to nested interruptible regions in UML activity diagrams [54]
and the BPEL exception handling mechanism [71].

Modeling and verification of time and data-dependent business pro-
cesses

In Chapter 5, we considered ARIS Toolset [73]. Aris is used for modeling and
analyzing business processes and is frequently used in industry. The modeling
language of this framework is extended Event-driven Process Chains (eEPC).
eEPCs are intensively used in practice, although their semantics is not fully un-
derstood by designers. eEPCs do not only describe the control flow of processes
by means of partial description of states (events), activities (functions) and log-
ical connector which coordinate the control flow, but also the data, material
resources, personnel resources and timing information needed for achieving the
business goal. Time is an important construct in eEPCs appearing as timeouts
and function durations, which are particularly important in resource manage-
ment.

We provided a formal definition of the eEPC semantics in terms of a tran-
sition system. Since eEPCs and colored Petri nets have a similar structure and
graphical layout and resources and data in eEPCs have limited domains a natu-
ral choice for the verification of eEPCs is their translation is colored Petri nets.
Timed Colored Petri Nets (TCPNs) are supported by a dedicated simulation
and verification environment (CPN Tools) and the errors in the eEPC can be
easily identified in the TCPN translation.

142 Conclusion and Future Work

In order to verify eEPCs, we have defined a translation of this formalism to
TCPNs by means of patterns that correspond to the possible rules occurring
in an eEPC. The semantics can be further used as a basis for behavioral (func-
tional) verification of eEPCs using different (more efficient) model checkers
which have more extensive verification features, e.g. MARIA [97], SPIN.

Modeling history-dependent business processes

History dependent processes have emerged as an important feature of case-
handling systems in enterprise information systems, which have the recording
of logs as a common feature. Event traces are archived not only for analyzing
performance of executed processes, but also for decision making during the ex-
ecution of processes and for creation of new processes based on the information
from the logs.

We proposed a logic that works on finite traces (logs) and is appropriate for
specifying guards in models of history-dependent processes and for analyzing
logs. Since at any given moment in time the log is finite and the process is
normally still running, we had to adapt existing timed temporal logics, which
resulted in a three-valued logics: LogLogics. Although the straightforward ap-
plication of the definition of the LogLogics semantics to the check of the truth
value of formulas involved an infinite number of checks, we showed that the sat-
isfiability of a LogLogics-formula can be reduced to the satisfiability on a finite
abstraction. We showed how to express guard patterns for business processes
in LogLogics.

For future work, it would be interesting to create a simple textual language
for working with patterns targeted at non-specialists and to build a tool for
checking LogLogics-formulas on history logs. The ultimate goal is to integrate
the logic into existing workflow modeling frameworks, in particular in adaptive
workflows [62].

Another line of research can be the investigation of different behavioral
properties of Petri nets having LogLogics-formulas as guards. Our logic can
be particularly useful for processes specified in a compositional manner, where
the behavior of the environment components is partially known and where
corrections of the behavior of such components is needed to ensure nets are
functioning in a reliable manner as a whole.

Bibliography

[1] W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process
mining and verification of properties: An approach based on temporal
logic. In OTM Conferences (1), volume 3760 of LNCS, pages 130–147.
Springer, 2005. (Cited on pages 118 and 134.)

[2] W. M. P. van der Aalst. Formalization and verification of event-driven
process chains. Information and Software Technology, 41(10):639–650,
1999. (Cited on pages 6, 8, 78 and 115.)

[3] W. M. P. van der Aalst. A class of Petri nets for modeling and ana-
lyzing business processes. Technical Report 26, Eindhoven University of
Technolog, 1995. (Cited on pages 4 and 28.)

[4] W. M. P. van der Aalst. Exterminating the Dynamic Change Bug: A
Concrete Approach to Support Workflow Change. Information Systems
Frontiers, 3(3):297–317, 2001. (Cited on page 7.)

[5] W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an
approach to tackling problems related to change. Theor. Comput. Sci.,
270(1-2):125–203, 2002. (Cited on pages 8 and 42.)

[6] W. M. P. van der Aalst, T. Basten, H. M. W. Verbeek, P. A. C. Verkoulen,
and M. Voorhoeve. Adaptive workflow-on the interplay between flexibility
and support. In ICEIS, pages 353–360, 1999. (Cited on page 42.)

[7] W. M. P. van der Aalst, J. Desel, and E. Kindler. On the semantics
of EPCs: A vicious circle. In EPK’02, pages 71–79, 2002. (Cited on
page 115.)

[8] W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, R. S. Mans,
A. K. A. de Medeiros, A. Rozinat, V. Rubin, M. Song, H. M. W. Verbeek,
and A. J. M. M. Weijters. ProM 4.0: Comprehensive Support for real
Process Analysis. In ICATPN, volume 4546 of LNCS, pages 484–494.
Springer, 2007. (Cited on page 6.)

[9] W. M. P. van der Aalst. Verification of workflow nets. In Proc. of
ICATPN’97, volume 1248 of LNCS, pages 407–426. Springer, 1997. (Cited
on pages 4, 21, 48 and 49.)

[10] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a truly
declarative service flow language. In The Role of Business Processes
in Service Oriented Architectures, number 06291 in Dagstuhl Seminar
Proceedings. IBFI, 2006. (Cited on pages 74, 136 and 138.)

[11] W. M. P. van der Aalst and K. M. van Hee. Workflow Management:
Models, Methods, and Systems. MIT Press, 2002. (Cited on pages 3, 21
and 118.)

[12] W. M. P. van der Aalst, D. Moldt, R. Valk, and F. Wienberg. Enacting
Interorganizational Workflows Using Nets in Nets. In Proc. of Workflow
Management’99, pages 117–136, 1999. (Cited on page 74.)

144 Bibliography

[13] W. M. P. van der Aalst, P. J. N. de Crom, R. H. M. J. Goverde, K. M.
van Hee, W. J. Hofman, H. A. Reijers, and R. A. van der Toorn. ExSpect
6.4: An executable specification tool for hierarchical colored Petri nets.
In ICATPN’00, volume 1825 of LNCS, pages 455–464. Springer, 2000.
(Cited on page 8.)

[14] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst. Facilitating flexibility and dynamic exception handling in work-
flows through worklets. In CAiSE’05, CAiSE Short Paper Proceedings,
volume 161, pages 45–50, 2005. (Cited on page 42.)

[15] R. Alur and T. A. Henzinger. Logics and models of real time: A survey.
In REX Workshop, volume 600 of LNCS, pages 74–106. Springer, 1991.
(Cited on pages 118 and 119.)

[16] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41(1):
181–204, 1994. (Cited on pages 118, 119 and 120.)

[17] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, M. Ford, Y. Goland,
A. Guzar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
services business process execution language version 2.0, 2006. (Cited on
page 2.)

[18] R. Bagnara, P. Hill, and E. Zaffanela. The Parma Polyhedra Library users
manual. www.cs.unipr.it/ppl/Documentation. (Cited on page 38.)

[19] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and ver-
ification of hardware and software systems. Quaderno 457, Dipartimento
di Matematica, Università di Parma, Italy, 2006. (Cited on page 144.)

[20] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and ver-
ification of hardware and software systems. Science of Computer Pro-
gramming, 2008. To appear. Journal version of [19]. (Cited on page 38.)

[21] G. Berthelot. Checking properties of nets using transformation. In
ATPN’85, volume 222 of LNCS, pages 19–40. Springer, 1986. (Cited
on page 4.)

[22] G. Berthelot. Verification de Reseaux de Petri. PhD thesis, Universite
Pierre et Marie Curie (Paris), 1978. (Cited on pages 4 and 37.)

[23] E. Best and M. Koutny. Process algebra: A Petri-net-oriented tutorial.
In LNCS, volume 3098, pages 180–209, 2003. (Cited on page 51.)

[24] O. Biberstein, D. Buchs, and N. Guelfi. Object-oriented nets with alge-
braic specifications: The CO-OPN/2 formalism. In Concurrent Object-
Oriented Programming and Petri Nets, volume 2001 of LNCS, pages 73–
130. Springer, 2001. (Cited on pages 3 and 74.)

[25] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL
and MTL. In FSTTCS’05, volume 3821 of LNCS. Springer, 2005. (Cited
on pages 119 and 120.)

[26] W. Brauer, R. Gold, and W. Vogler. A survey of behaviour and equiv-
alence preserving refinements of Petri nets. In APN’90, pages 1–46.
Springer-Verlag New York, Inc., 1991. (Cited on page 7.)

http://www.cs.unipr.it/ppl/Documentation�

Bibliography 145

[27] G. Chehaibar. Replacement of open interface subnets and stable state
transformation equivalence. In ICATPN’93, pages 1–25. Springer-Verlag,
1993. (Cited on page 7.)

[28] G. Chehaibar. Use of reentrant nets in modular analysis of colored nets.
LNCS; Advances in Petri Nets, 524:58–77, 1991. (Cited on page 7.)

[29] A. Cheng, S. Christensen, and K.H. Mortensen. Model Checking
Coloured Petri Nets Exploiting Strongly Connected Components. In
WODES’96, pages 169–177, 1996. (Cited on page 115.)

[30] S. Christensen and L. Petrucci. Modular analysis of Petri nets. Computer
Journal, 43(3):224–242, 2000. (Cited on page 3.)

[31] S. Christensen, L.M. Kristensen, and T. Mailund. Condensed state spaces
for timed Petri nets. In ICATPN’01, volume 2075 of LNCS, pages 101–
120. Springer, 2001. (Cited on page 108.)

[32] R. Clarisó, E. Rodriguez-Carbonell, and J. Cortadella. Derivation of
non-structural invariants of Petri nets using abstract interpretation. In
ICATPN’05, volume 3536 of LNCS, pages 188–207. Springer-Verlag,
2005. (Cited on page 5.)

[33] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs,
volume 131 of LNCS, pages 52–71. Springer, 1982. (Cited on page 4.)

[34] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 2000. (Cited on page 4.)

[35] F. Commoner. Deadlocks in Petri Nets. Applied Data Research,
Inc., Wakefield, Massachusetts, Report CA-7206-2311, 1972. (Cited on
page 19.)

[36] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In POPL’77, pages 238–252. ACM Press, 1977. (Cited on pages 4
and 123.)

[37] CPN Tools. http://www.daimi.au.dk/CPNtools. (Cited on pages 8,
78, 92 and 108.)

[38] N. Cuntz and E. Kindler. On the semantics of EPCs: Efficient calculation
and simulation. In EPK’04, GI, pages 7–26, Bonn, 2004. (Cited on
page 115.)

[39] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(2):253–291, 1997. (Cited on pages 4 and 123.)

[40] Z. Dang, T. Bultan, O. H. Ibarra, and R. A. Kemmerer. Past pushdown
timed automata and safety verification. Theor. Comput. Sci., 313(1):
57–71, 2004. (Cited on pages 118 and 134.)

[41] R. Davis. Business Process Modeling with ARIS: A Practical Guide.
Springer-Verlag, 2001. (Cited on pages 2, 8 and 79.)

[42] D. de Frutos Escrig and C. Johnen. Decidability of home space prop-
erty. Technical report, Univ. de Paris-Sud, Centre d’Orsay, Laboratoire
de Recherche en Informatique Report LRI–503, July 1989. (Cited on
page 29.)

http://www.daimi.au.dk/CPNtools�

146 Bibliography

[43] J. Dehnert. A Methodology for Workflow Modeling - From business pro-
cess modeling towards sound workflow specification. PhD thesis, TU
Berlin, 2003. (Cited on pages 8, 49, 78 and 115.)

[44] J. Desel and J. Esparza. Free Choice Petri nets., volume 40 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1995. (Cited on pages 4, 19 and 20.)

[45] J. Desel, W. Reisig, and G. Rozenberg, editors. Advances in Petri Nets,
volume 3098 of LNCS, 2004. Springer. (Cited on page 17.)

[46] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distict prime factors. American Journal of Mathematics,
35(4):413–422, 1913. (Cited on page 14.)

[47] B. van Dongen. Process mining and verification. Dissertation, Technical
University Eindhoven, 2007. (Cited on pages 108 and 115.)

[48] M. Dumas and A. H. M. ter Hofstede. UML activity diagrams as a
workflow specification language. In UML, volume 2185 of LNCS, pages
76–90. Springer, 2001. (Cited on pages 2 and 8.)

[49] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE’99, pages 411–420.
IEEE Computer Society Press, 1999. (Cited on page 136.)

[50] C. A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within
workflow systems. In COOCS’95, pages 10–21. ACM, 1995. (Cited on
page 7.)

[51] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey.
Journal of Informatik Processing and Cybernetics, 30(3):143–160, 1994.
(Cited on page 4.)

[52] A. Fent, H. Reiter, and B. Freitag. Design for change: Evolving workflow
specifications in ULTRAflow. In Advanced Information Systems Engineer-
ing, CAiSE’02, volume 2348 of LNCS, pages 516–534. Springer, 2002.
(Cited on page 42.)

[53] F. V. Fossela, R. Komaki, and G. L. Walsh. Small-Cell Lung Can-
cer. http://utm-ext01a.mdacc.tmc.edu/mda/cm/CWTGuide.nsf/LuHTML/,
2000. (Cited on page 44.)

[54] B. Gallina, N. Guelfi, and A. Mammar. Structuring business nested pro-
cesses using UML 2.0 activity diagrams and translating into XPDL. In
XML4BPN XML Integration and Transformation for Business Process
Management, pages 281–296. GITO-Verlag, 2006. (Cited on page 141.)

[55] P. Ganty, J.-F. Raskin, and L. Van Begin. A complete abstract inter-
pretation framework for coverability properties of WSTS. In VMCAI’06,
volume 3855 of LNCS, pages 49–64. Springer, 2006. (Cited on page 5.)

[56] R. J. van Glabbeek. The linear time - branching time spectrum ii. In
CONCUR’93, volume 715 of LNCS, pages 66–81. Springer, 1993. (Cited
on page 15.)

[57] S. Haddad and J.-F. Pradat-Peyre. New efficient Petri nets reductions for
parallel programs verification. Parallel Processing Letters, 16(1):101–116,
2006. (Cited on page 4.)

http://utm-ext01a.mdacc.tmc.edu/mda/cm/CWTGuide.nsf/09ab7c4a1b0e085d86256826006ed1c5/2be201cf0c8c1df3862563d300072dad/$FILE/NSCLC Group V6 04_28_2006.pdf/�

Bibliography 147

[58] M. Han, T. Thiery, and X. Song. Managing exceptions in the medical
workflow systems. In ICSE’06, pages 741–750. ACM Press, 2006. (Cited
on pages 6 and 8.)

[59] K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separa-
bility of workflow nets in the stepwise refinement approach. In Proc.
of ICATPN’03, volume 2679 of LNCS, pages 337–356, 2003. (Cited on
pages 4, 5, 7, 28, 38 and 39.)

[60] K. van Hee, N. Sidorova, and M. Voorhoeve. Generalized soundness of
workflow nets is decidable. In Proc. of ICATPN’04, volume 3099 of LNCS,
pages 197–216, 2004. (Cited on pages 4, 5, 6, 7, 9, 27, 28, 29, 30, 31, 32,
39 and 48.)

[61] K. van Hee, O. Oanea, and N. Sidorova. Colored Petri nets to verify
extended event-driven process chains. In OTM Conferences (1), volume
3760 of LNCS, pages 183–201. Springer, 2005. (Cited on page 77.)

[62] K. van Hee, I. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova, and
M. Voorhoeve. Nested Nets for Adaptive Systems. In ICATPN’06, vol-
ume 4024 of LNCS, pages 241–260, 2006. (Cited on pages 41, 42, 43, 55
and 142.)

[63] K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf.
Yasper: a tool for workflow modeling and analysis. In ACSD’06, pages
279–282. IEEE, 2006. (Cited on pages 8, 38 and 141.)

[64] K. van Hee, O. Oanea, N. Sidorova, and M. Voorhoeve. Verifying gen-
eralized soundness for workflow nets. In PSI’06, volume 4378 of LNCS,
pages 235–247. Springer, 2007. (Cited on pages 27 and 74.)

[65] K. van Hee, H. Schonenberg, A. Serebrenik, N. Sidorova, and J. M.
van der Werf. Adaptive Workflows for Healthcare Information Systems.
In Proc. of ProHealth’07, pages 41–52, 2007. (Cited on page 74.)

[66] K. van Hee, A. Serebrenik, N. Sidorova, and W. M. P. van der Aalst.
History-dependent Petri nets. In ICATPN’07, volume 4546 of LNCS,
pages 164–183. Springer, 2007. (Cited on page 8.)

[67] K. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova,
and M. Voorhoeve. Checking properties of adaptive workflow nets. In
CS&P’06, pages 92–103, 2006. (Cited on page 41.)

[68] K. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova, and
M. Voorhoeve. Checking properties of adaptive workflow nets. Fund.
Inform., 79(3-4):347–362, 2007. (Cited on pages 41 and 43.)

[69] K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve.
Loglogics: A logic for history-dependent business processes. Sci. Comput.
Program., 65(1):30–40, 2007. (Cited on page 117.)

[70] A. Hicheur, K. Barkaoui, and N. Boudiaf. Modeling workflows with recur-
sive ECATNets. In SYNASC’06, pages 389–398. IEEE Computer Society,
2006. (Cited on page 141.)

[71] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In
BPM’05, volume 3649 of LNCS, pages 220–235. Springer, 2005. (Cited
on pages 8 and 141.)

148 Bibliography

[72] K. Hoffmann, H. Ehrig, and T. Mossakowski. High-level nets with nets
and rules as tokens. In ICATPN’05, volume 3536 of LNCS, pages 268–
288. Springer, 2005. (Cited on page 74.)

[73] ARIS Methods Manual. IDS Scheer AG, 2003. (Cited on pages 79, 116
and 141.)

[74] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical. Springer-Verlag, 1992. (Cited on pages 3, 22, 23, 78 and 92.)

[75] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri nets and CPN
Tools for modelling and validation of concurrent systems. STTT, 9(3-4):
213–254, 2007. (Cited on pages 78 and 108.)

[76] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation:
Iterative Process Prototyping. Addison-Wesley, 1998. (Cited on page 78.)

[77] G. Keller, K. G. Nüttgens, and A.-W Scheer. Semantische Prozeßmodel-
lierung auf der Grundlage Ereignisgesteuerter Prozeßketten (EPK). Tech-
nical report, Scheer, A.-W. (Hrsg.): Veröffentlichungen des Instituts für
Wirtschaftsinformatik, Heft 89, Saarbrücken, 1992. (Cited on pages 78
and 79.)

[78] E. Kindler. On the semantics of EPCs: Resolving the vicious circle. Data
Knowl. Eng., 56(1):23–40, 2006. (Cited on page 6.)

[79] E. Kindler. On the semantics of EPCs: A framework for resolving a
vicious circle. In BMP’04, volume 3080 of LNCS, pages 82–97. Springer,
2004. (Cited on page 115.)

[80] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, Prince-
ton, 1952. (Cited on page 123.)

[81] M. Köhler and H. Rölke. Reference and value semantics are equivalent
for ordinary object Petri nets. In ICATPN’05, volume 3536 of LNCS,
pages 309–328. Springer, 2005. (Cited on page 74.)

[82] M. Köhler and H. Rölke. Dynamic transition refinement. In FO-
CLASA’06, 2006. to appear in ENCTS. (Cited on pages 74 and 141.)

[83] P. Koksal, S. N. Arpinar, and A. Dogac. Workflow history management.
SIGMOD Record, 27(1):67–75, 1998. (Cited on page 8.)

[84] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990. (Cited on pages 118 and 119.)

[85] C. A. Lakos. From coloured Petri nets to object Petri nets. In ICATPN,
volume 935 of LNCS, pages 278–297, 1995. (Cited on pages 3 and 74.)

[86] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification
of Event-Driven Process Chains. In ICATPN’98, volume 1420 of LNCS,
pages 286–305. Springer, 1998. (Cited on pages 6, 78 and 115.)

[87] T. Latvala. Model checking LTL properties of high-level Petri nets with
fairness constraints. In ICATPN’01, volume 2075 of LNCS, pages 242–
262. Springer, 2001. (Cited on page 4.)

[88] T. Latvala and M. Mäkelä. LTL model checking for modular Petri nets.
In ICATPN’04, volume 3099 of LNCS, pages 298–311. Springer, 2004.
(Cited on page 7.)

Bibliography 149

[89] K. Lautenbach. Liveness in Petri Nets. St. Augustin: Gesellschaft fr
Mathematik und Datenverarbeitung Bonn, Interner Bericht ISF-75-02.1,
1975. (Cited on page 20.)

[90] G. Lewis and C. Lakos. Incremental state space construction for coloured
Petri nets. In ICATPN’01, volume 2075 of LNCS, pages 263–282.
Springer, 2001. (Cited on page 7.)

[91] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Com-
putation. Prentice-Hall, 1997. (Cited on page 12.)

[92] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6(1):11–44, 1995. (Cited on page 123.)

[93] I. A. Lomazova. Nested Petri nets - a formalism for specification and
verification of multi-agent distributed systems. Fundam. Inform., 43(1-
4):195–214, 2000. (Cited on pages 3 and 42.)

[94] I. A. Lomazova. Nested Petri nets: Multi-level and recursive systems.
Fundam. Inform., 47(3-4):283–293, 2001. (Cited on pages 42, 43, 55
and 74.)

[95] I. A. Lomazova and Ph. Schnoebelen. Some decidability results for nested
Petri nets. In Ershov Memorial Conference, volume 1755 of LNCS, pages
208–220. Springer, 1999. (Cited on pages 42 and 74.)

[96] Z. Luo, A. P. Sheth, K. Kochut, and J. A. Miller. Exception handling in
workflow systems. Applied Intelligence, 13(2):125–147, 2000. (Cited on
pages 6 and 8.)

[97] M. Mäkelä. Maria: Modular reachability analyser for algebraic system
nets. In ICATPN’02, number 2360 in LNCS, pages 434–444, 2002. (Cited
on page 142.)

[98] A. Martens. Verteilte Geschätsprozesse - Modellierung und Verifika-
tion mit Hilfe von Web Services. Dissertation, Humboldt-Universität zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. (Cited
on page 49.)

[99] E. W. Mayr. An algorithm for the general Petri net reachability problem.
In STOC’81, pages 238–246. ACM, 1981. (Cited on page 29.)

[100] J. Mendling. Detection and Prediction of Errors in EPC Business Pro-
cess Models. Dissertation, Vienna University of Economics and Business
Administration, 2007. (Cited on page 115.)

[101] D. Moldt and F. Wienberg. Multi-agent-systems based on coloured Petri
nets. In ICATPN’97, volume 1248 of LNCS, pages 82–101, Berlin, Ger-
many, 1997. Springer-Verlag. (Cited on page 74.)

[102] O. Morikawa. Extended Gentzen-type formulations of two temporal logics
based on incomplete knowledge systems. Notre Dame Journal of Formal
Logic, 42(1):55–64, 2001. (Cited on page 118.)

[103] T. Murata. State equatation, controllability, and maximal matchings of
Petri nets. IEEE Trans. Autom. Contr., 22(3):412–416, June 1977. (Cited
on page 19.)

150 Bibliography

[104] T. Murata. Petri nets: Properties, analysis and applications. In Proceed-
ings of the IEEE, volume 77(4), pages 541–580, April 1989. (Cited on
pages 17, 37 and 38.)

[105] P. Muth, J. Weisenfels, M. Gillmann, and G. Weikum. Workflow history
management in virtual enterprises using a light-weight workflow manage-
ment system. In RIDE, pages 148–155, 1999. (Cited on page 8.)

[106] A. Nakamura. On a three-valued logic based on incomplete knowledge
systems. Technical Report 1, Japan Research Group of Multiple-valued
Logic, The Institute of Electronics, Information and Communication En-
gineers, 1995. (Cited on page 118.)

[107] M. Nüttgens and F. J. Rump. Syntax und Semantik Ereignisgesteuerter
Processketten (EPK). In J. Desel and M. Weske, editors, Promise’02,
volume LNI P-21, pages 64–77, 2002. (Cited on page 115.)

[108] M. Peleg, A. Boxwala, S. Tu, D. Wang, O. Ogunyemi, and Q. Zengh.
Guideline interchange format 3.5 technical specification. InterMed
Project, 2004. (Cited on pages 2 and 43.)

[109] M. Pesic and W. M. P. van der Aalst. A declarative approach for flex-
ible business processes management. In Business Process Management
Workshops, volume 4103 of LNCS, pages 169–180. Springer, 2006. (Cited
on page 8.)

[110] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, 1981. (Cited on pages 3 and 17.)

[111] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fur
Instrumentelle Mathematik, Bonn, 1962. (Cited on page 17.)

[112] L. Ping, H. Hao, and L. Jian. On 1-soundness and soundness of workflow
nets. In MOCA’04, pages 21–36, 2004. (Cited on page 29.)

[113] O. Prisecaru. Resource workflow nets: a Petri net formalism for workflow
modeling. In MSVVEIS’07, pages 11–20, 2007. (Cited on page 141.)

[114] S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli, C. Fassino, and
C. Mossa. Guideline-based careflow systems. Artificial Intelligence in
Medicine, 20(1):5–22, 2000. (Cited on page 43.)

[115] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Symposium on Programming, volume 137 of LNCS,
pages 337–351. Springer, 1982. (Cited on page 4.)

[116] J.-F. Raskin. Logics, Automata and Classical Theories for Deciding Real-
Time. PhD thesis, Facultés Universitaires Notre-Dame de la Paix, Namur,
Belgium, 1999. (Cited on page 119.)

[117] H. A. Reijers and W. M. P. van der Aalst. Short-term simulation: Bridg-
ing the gap between operational control and strategic decision making. In
IASTED International Conference on Modelling and Simulation, pages
417–421, 1999. (Cited on page 6.)

[118] W. Reisig. Petri Nets., volume 4. Springer-Verlag EATCS Monographs
on Theoretical Computer Science, 1985. (Cited on pages 3, 17 and 59.)

[119] C. Reutenauer. The mathematics of Petri nets. Prentice-Hall, Inc., 1990.
(Cited on page 29.)

Bibliography 151

[120] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic
changes in workflow systems - a survey. Data Knowl. Eng., 50(1):9–34,
2004. (Cited on pages 42 and 118.)

[121] S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team pro-
cesses by adaptive workflow systems. Distributed and Parallel Databases,
16(1):91–116, 2004. (Cited on pages 7 and 8.)

[122] N. Russell, W.M.P. van der Aalst, A. H. M. ter Hofstede, and D. Edmond.
Workflow resource patterns: Identification, representation and tool sup-
port. In CAiSE’05, volume 3520 of LNCS, pages 216–232. Springer, 2005.
(Cited on pages 118 and 141.)

[123] A.-W. Scheer. ARIS : business process modeling. Springer-Verlag, Berlin,
2nd edition, 1998. (Cited on pages 78 and 79.)

[124] K. Schmidt. LoLA: A low level analyser. In Nielsen, M. and Simpson,
D., editors, ICATPN’00, volume 1825, pages 465–474. Springer-Verlag,
2000. (Cited on page 8.)

[125] K. Schmidt. Explicit State Space Verification. Habilitationsschrift,
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II, December 2002. (Cited on page 4.)

[126] Ph. Schnoebelen and N. Sidorova. Bisimulation and the reduction of Petri
nets. In ICATPN’00, volume 1825 of LNCS, pages 409–423. Springer,
2000. (Cited on page 4.)

[127] A. Schrijver. Theory of Linear and Integer Programming. Wiley-
Interscience series in discrete mathematics. John Wiley & Sons, 1986.
(Cited on pages 24, 25 and 32.)

[128] P. Starke. Analyse von Petri-Netz-Modellen. Teubner, 1990. (Cited on
page 20.)

[129] I. Suzuki and T. Murata. A method for stepwise refinement and abstrac-
tion of Petri nets. J. Comput. Syst. Sci., 27(1):51–76, 1983. (Cited on
page 7.)

[130] E. Teruel and M. Silva. Liveness and home states in equal conflict sys-
tems. In ATPN’93, volume 691 of LNCS, pages 415–432. Springer, 1993.
(Cited on pages 35 and 140.)

[131] P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic
specifications. Electr. Notes Theor. Comput. Sci., 113:145–162, 2005.
(Cited on page 119.)

[132] F. L. Tiplea and D. C. Marinescu. Structural soundness for workflow nets
is decidable. Information Processing Letters, 96(2):54–58, 2005. (Cited
on page 29.)

[133] F. L. Tiplea and D.C. Marinescu. Structural soundness for workflow nets
is decidable. Information Processing Letters, 96(2):41–80, 2005. (Cited
on page 4.)

[134] F. L. Tiplea and A. Tiplea. Instantiating nets and their applications
to workflow nets. In SYNASC’05, pages 25–29. IEEE, 2005. (Cited on
pages 4 and 29.)

[135] R. Valette. Analysis of Petri nets by stepwise refinements. J. Comput.
Syst. Sci., 18(1):35–46, 1979. (Cited on page 7.)

152 Bibliography

[136] R. Valk. Object Petri Nets: Using the nets-within-nets paradigm. Lectures
on Concurrency and Petri Nets: Advances in Petri Nets, volume 3098 of
LNCS, pages 819–848, 2004. (Cited on pages 3, 42 and 74.)

[137] Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction
in bisimulation semantics (extended abstract). In IFIP Congress, pages
613–618, 1989. (Cited on page 108.)

[138] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing
workflow processes using Woflan. The Computer Journal, 44(4):246–279,
2001. (Cited on pages 7, 8 and 49.)

[139] W. Vogler. Behaviour preserving refinement of Petri nets. In WG, volume
246 of LNCS, pages 82–93. Springer, 1986. (Cited on page 140.)

[140] W. Vogler. Modular Construction and Partial Order Semantics of Petri
Nets, volume 625 of LNCS. Springer-Verlag, 1992. (Cited on page 140.)

[141] J. M. van der Werf. Analysis of well-formedness and soundness by re-
duction techniques and their implementation. Master’s thesis, Technical
University Eindhoven, 2006. (Cited on page 38.)

[142] M. Weske. Formal foundation and conceptual design of dynamic adapta-
tions in a workflow management system. In HICSS’01, 2001. (Cited on
page 7.)

[143] S. A. White. Workflow patterns with BPMN and UML. Technical report,
IBM, 2004. (Cited on page 2.)

[144] YASPER. Petri net editor. www.yasper.org. (Cited on page 38.)

http://www.yasper.org�

Index

�Mj�jC0, 54�Nj�jC0, 54
EG , 32
Γ , 32
Ô�
– adaptive nets, 56
– TCPN, 100
Υ , 33
Z

�,Z�,Z�, 123
A, 82
G, 31
H, 32
I, 20
R
– resources eEPC, 82
– set of reachable markings, 31
R�N,m�, 18
S�N,m�, 18
-br, 16
-s, 16
-w, 16
GL, 53
R, 37
S�N �, 23
EvalAtomic�p, a, b, ρα, i�, 134
EvalClock�cvc, να�, 134
Eval�φ, ρα, a, b, i, να,min,max�, 135
à
– abstract traces, 126
– finite traces, 122
– infinite traces, 121
h, 123
Ð�
– adaptive nets, 55
– PN, 18
– TCPN, 23
CheckStrongCirc�N �, 72
Supp�p�, 59
�, 15
Ø
– 2-valued logics, 120
– 3-valued logics, 125
�, 15
– eEPC, 100

GL, 62
CheckStrongSound�N �, 72
MaxSiphon(N,P �), 20
MaxTrap(N,P �), 20
eEPC, see extended event-driven process
chain
EPC, see event-driven process chain
EWF, see exception workflow net
TCPN, see timed colored Petri net
TPTL+Past, 120

abstract timed word, 125
abstraction function, 123
adaptive workflow net, 55
– abstraction, 64
– boundedness, 59
– circumspectness, 61
– relaxed soundness, 57
– soundness, 57
– strong circumspectness, 72
– strong soundness, 72
– weak soundness, 57
and join , 81
– eEPC rule, 89
– TCPN pattern, 97
and split , 81
– eEPC rule, 88
– TCPN pattern, 97

bag, 13
– timed, 22
batch workflow net, 30
binary relation, 12
bisimulation, 16
boundedness, 19
branching bisimulation, 16
branching simulation, 16

colored EWF net, 62
concatenation, 13
concretization function, 123
condition event, 81
convex polyhedral cone, 24

enabling condition, 18

154 Index

end event, 81
event, 81
– eEPC rule, 87
– TCPN pattern, 93
event-driven process chain, 80
exception workflow net, 47
– initialization, 52
– operations on EWFs, 50
– operations on marked EWFs, 52
– relaxed soundness, 49
– soundness, 48
– weak soundness, 49
extended event-driven process chain
– semantics, 86
– state, 84
– syntax, 82
extended workflow net, 54

firing, 18
function, 80
– eEPC rule, 87
– TCPN pattern, 93

generator, 24
graph, 14
– strongly connected, 14
– weakly connected, 14

home marking, 19

incidence matrix, 17

labeled transition system, 15
liveness, 19
LogLogics

– patterns, 136
– semantics on abstract traces, 126
– semantics on finite traces, 122
– semantics on infinite traces, 121
– syntax, 120

marking, 18
marking equation, 19
multigraph, 14

non-persistency, 29
non-redundancy, 29

or join , 81
– TCPN pattern, 99
or join firing

– eEPC rule, 89
or join waiting
– eEPC rule, 89
or split , 81
– eEPC rule, 88
– TCPN pattern, 98

Parikh vector, 17
path, 14
Petri net, 17
– projection, 47
place invariant, 20
process folder, 84

quasi-liveness, 19

reachability, 18

sequence, 13
simulation, 15
siphon, 19
soundness, 21
– k-soundness, 30
– generalized soundness, 30
start event, 81
start event set, 81
– eEPC rule, 87
– TCPN pattern, 93
strong trace equivalence, 15
synchronization timeout, 82

time rule, 90
timed colored Petri net, 22
timed word, 120
– extension, 122
trap, 19

weak bisimulation, 16
weak simulation, 16
weak trace equivalence, 15
workflow net, 21
– k-closure, 36
– closure, 21

xor join , 81
– eEPC rule, 89
– TCPN pattern, 97
xor split , 81
– eEPC rule, 88
– TCPN pattern, 98

Summary

In this thesis we focus on improving current modeling and verification tech-
niques for complex business processes. The objective of the thesis is to consider
several aspects of real-life business processes and give specific solutions to cope
with their complexity.

In particular, we address verification of a proper termination property for
workflows, called generalized soundness. We give a new decision procedure for
generalized soundness that improves the original decision procedure. The new
decision procedure reports on the decidability status of generalized soundness
and returns a counterexample in case the workflow net is not generalized sound.
We report on experimental results obtained with the prototype implementation
we made and describe how to verify large workflows compositionally, using
reduction rules.

Next, we concentrate on modeling and verification of adaptive workflows
— workflows that are able to change their structure at runtime, for instance
when some exceptional events occur. In order to model the exception handling
properly and allow structural changes of the system in a modular way, we in-
troduce a new class of nets, called adaptive workflow nets. Adaptive workflow
nets are a special type of Nets in Nets and they allow for creation, deletion and
transformation of net tokens at runtime and for two types of synchronizations:
synchronization on proper termination and synchronization on exception. We
define some behavioral properties of adaptive workflow nets: soundness and
circumspectness and employ an abstraction to reduce the verification of these
properties to the verification of behavioral properties of a finite state abstrac-
tion.

Further, we study how formal methods can help in understanding and de-
signing business processes. We investigate this for the extended event-driven
process chains (eEPCs), a popular industrial business process language used in
the ARIS Toolset. Several semantics have been proposed for EPCs. However,
most of them concentrated solely on the control flow. We argue that other as-
pects of business processes must also be taken into account in order to analyze
eEPCs and propose a semantics that takes data and time information from
eEPCs into account. Moreover, we provide a translation of eEPCs to Timed
Colored Petri nets in order to facilitate verification of eEPCs.

Finally, we discuss modeling issues for business processes whose behavior
may depend on the previous behavior of the process, history which is recorded
by workflow management systems as a log. To increase the precision of models
with respect to modeling choices depending on the process history, we introduce
history-dependent guards. The obtained business processes are called history-
dependent processes. We introduce a logic, called LogLogics for the specification
of guards based on a log of a current running process and give an evaluation

156 Summary

algorithm for such guards. Moreover, we show how these guards can be used in
practice and define LogLogics patterns for properties that occur most commonly
in practice.

Samenvatting

Dit proefschrift behandelt de verbetering van de huidige modeleer- en verifica-
tie technieken voor complexe bedrijfsprocessen. Het doel van dit proefschrift is
om verschillende aspecten van bedrijfsprocessen te bepalen en specifieke oplos-
singen te geven om de complexiteit van de processen te kunnen hanteren.

Voornamelijk behandelen we de verificatie van een beëindigingseigenschap
voor workflow-netten, namelijk generalized soundness, die op een compositi-
onele manier geverifiëerd kan worden. We beschrijven een procedure voor de
beslisbaarheid van generalized soundness. De nieuwe beslissingsprocedure kan
vaststellen of een workflow-net generalized sound is en geeft een tegenvoorbeeld
als dit niet het geval is. Wij geven experimentele resultaten verkregen met een
implementatie en een procedure voor de compositionele verificatie van grote
workflows gebruik makend van reductieregels.

Daarnaast richten we ons op het modelleren en de verificatie van adaptieve
workflow, een soort workflow die zijn eigen structuur tijdens de uitvoering kan
veranderen, bijvoorbeeld wanneer uitzonderingen optreden. Om exceptieafhan-
deling te modelleren en om structurele veranderingen van het systeem mogelijk
te maken op een modulaire manier, introduceren we een bijzonder soort net-
ten, namelijk adaptieve netten. Adaptieve netten ondersteunen de aanmaak,
verwijdering en transformatie van netten binnen netten tijdens de uitvoering
en bovendien twee soorten synchronisaties: correcte beëindiging en exceptieaf-
handeling. We definiëren twee gedragseigenschappen van adaptieve workflow:
soundness en circumspectness en we geven procedures voor de verificatie van
deze twee eigenschappen, gebruik makend van abstractie.

Verder concentreren we ons op de toepassing van formele verificatiemetho-
den om informele bedrijfsprocessen te begrijpen en te ontwerpen. We onder-
zoeken extended event-driven process chains (eEPCs), een bedrijfsproces-taal
gebruikt in de ARIS Toolset die veelvuldig in de industrie gebruikt wordt. Er
zijn veel verschillende semantieken voor EPCs voorgesteld, maar de meeste
daarvan beperken zich tot de volgordelijkheid en tot manieren om de seman-
tiek daarvan te versterken om correcte processen te modelleren. We bepleiten
dat bij de verificatie van eEPCs voor een correcte analyse met alle aspecten
van het bedrijfsproces rekening gehouden moet worden en presenteren een se-
mantiek die niet alleen volgorde maar ook data (resources) en tijd ondersteunt.
Ook geven we een vertaling van eEPCs naar gekleurde (d.w.z. hoog-niveau)
Petri-netten om de verificatie van eigenschappen met bestaande tools mogelijk
te maken.

Uiteindelijk bespreken we het modelleren van bedrijfsprocessen waarvan het
gedrag afhangt van eerder vertoond gedrag. De procesgeschiedenis wordt vaak
al vastgelegd in een logbestand als een reeks gebeurtenissen met tijdsstempels.
Het idee is nu om keuzes afhankelijk te maken van eigenschappen van de proces-

158 Samenvatting

geschiedenis. We introduceren een logica, genaamd LogLogics, om zulke eigen-
schappen te formuleren voor onvolledige logs, dat wil zeggen, logs die alleen de
procesgeschiedenis weergeven vanaf een bepaald tijdstip en we geven een algo-
ritme voor hun waarheidsbepaling. Ook beschouwen we hoe zulke voorwaarden
in de praktijk gebruikt kunnen worden en definiëren LogLogics-patronen voor
eigenschappen die in de praktijk veel voor zullen komen.

Acknowledgments

All the work presented in this thesis was done under the thorough guidance of
my supervisor Natalia Sidorova. She always gives sharp and practical advice
regarding research. I would like to acknowledge Kees van Hee, my promotor,
for his eagerness to get new results and for always sharing his practical insights
on various topics of research. This has led to the variety of topics tackled in this
thesis. I would like to thank both my supervisors for their support, especially
in the last few months, which led to big improvements in the quality of the
thesis.

I want to express my gratitude to the members of the reading committee:
Wil van der Aalst, Irina Lomazova and Wolfgang Reisig. In particular, I thank
Wil for his constructive comments which led to many corrections and presen-
tation improvements, Wolfgang for helpful suggestions and Irina for fruitful
discussions which led to our paper on adaptive nets. I am grateful to Wan
Fokkink and Jos Baeten for accepting to act as opponents.

The work presented in this thesis was done in collaboration with the small
Petri net group in the Architecture of Information System group. I would like
to thank Alexander Serebrenik and Marc Voorhoeve for their enthusiasm, sharp
criticism and sense of humor, which made working with them an exciting ex-
perience.

Many people helped in improving my work, of which some deserve a special
mention. I want to thank Reinier Post for all his help throughout these years,
especially in the tooling department, Jan Martijn van der Werf, for the nice
collaboration during his master studies and for his patience during the last year
as my office mate, Eric Verbeek for giving me the opportunity to work with
ARIS Toolset and Natalia Ioustinova for her support in the initial stages of my
PhD.

As a Beta PhD Student I was in frequent contact with the Information
system group of Technology Management Department. This proved to be a
valuable experience for me while trying to dig into the BPM research topics.
Many thanks to the present and former members of the Information System
department at the Department of Mathematics and Computer Science for cre-
ating a nice working atmosphere. I was always happy to have BEST discussions
with my BEST colleagues from Berlin and Rostock and take part at inspiring
LaQuSo lunches. Many thanks to Riet van Buul for her support throughout
the PhD process.

Lots of thanks to Roxana Dietze for lots of useful discussions we have had
along these years, in particular on our common “nets in nets” topic. Roxana
was always able to cheer me up and bring me back on track, especially during
the periods when Natalia was not available. Many thanks go to Simona Orzan
for the discussions we had on the eEPC chapter and for all the support given

160 Acknowledgments

in the months leading to the completion of my thesis. I am grateful to Ferucio
Laurentiu Tiplea, Ioana Leahu and to former colleagues in Iaşi, for their en-
couragements and help throughout these years. Last but not least, I would like
to thank my parents for their constant belief in me.

October 2007, Eindhoven Olivia Oanea

Curriculum Vitae

Olivia Oanea was born on March 3, 1980 in Iaşi, Romania. In 1998 she gradu-
ated from the National College in Iaşi and started her studies at the Faculty of
Computer Science (FII) of the “Al. I. Cuza” University of Iaşi. In 2001 she had
a 5 months internship at the University of Konstanz, Germany as an Erasmus
exchange student. In 2002 she received her BSc degree from FII with a thesis
on decidability and complexity of Petri nets problems under the supervision of
Prof. Dr. F. L. Tiplea. In October 2002 she started her Master studies on dis-
tributed systems at FII which she completed with a thesis on model checking
extensions of Petri nets under the supervision of Prof. Dr. F. L. Tiplea. During
her master studies, she also worked as a part time teaching assistant.

In July 2004 she started her PhD study at the Architecture of Information
Systems Group, at the Department of Mathematics and Computer Science,
Eindhoven University of Technology. Under the supervision of Dr. N. Sidorova
and Prof. Dr. K.M. van Hee, she worked on various topics related to modeling
and verification of business processes within the NWO project MoVeBP. Her
research was focused on improving verification techniques for business processes
modeled by (extensions of) Petri nets. This thesis contains the most important
results of this work.

	Table of contents
	1. Introduction
	2. Preliminaries
	3. Generalized soundness
	4. Adaptive workflow nets
	5. Verifying extended event-driven process chains
	6. Modeling history-dependent business processes
	7. Conclusion and future work
	Bibliography
	Index
	Summary
	Samenvatting
	Acknowledgments
	Curriculum Vitae

