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Abstract. Typically, a combination of manual and automated trans-
formations is applied when algorithms for digital signal processing are
adapted for energy and performance-efficient embedded systems. This
poses severe verification problems. Verification becomes easier after con-
verting the code into dynamic single-assignment form (DSA). This paper
describes a method to prove equivalence between two programs in DSA
where subscripts to array variables and loop bounds are (piecewise) affine
expressions. For such programs, geometric modeling can be used and it
can be shown, for groups of elements at once, that the outputs in both
programs are the same function of the inputs.

1 Introduction

In the recent years, embedded processor systems have emerged as pervasive plat-
forms for multimedia and telecom systems. They are highly resource-constrained
and there is an increasing stress on rigorous optimization of the software that
runs on them. Current compiler optimizations, though powerful, are insufficient
to meet the resource constraints. Designers apply domain specific optimizations
to obtain programs with a better performance/energy consumption trade-off.

Accesses to the data memory hierarchy are the most time and energy con-
suming operations in data-intensive applications. Globally applied loop trans-
formations, expression propagations and algebraic transformations can reduce
their cost. Guided by elaborate cost models, experienced designers apply them
manually or use ad-hoc tools in a transformation phase prior to compilation.
The process is error prone and testing hampers designer’s productivity. We
present a formal and automated method for the verification of such transfor-
mations.

Fig. 1 shows an artificial example where program (b) has been derived from
(a) through expression propagations, loop and algebraic transformations. The
functions, when executed, take inputs A[] and B[], and assign the computed
values to the elements of the output array C[]. Ignoring possible overflow, integer
addition is both associative and commutative. Hence, both programs compute
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void foo(int A[], int B[], int C[])
{ 
  int k, tmp1[256], tmp2[266], tmp3[256];

    for(k=0; k<256; k++)
s1:    tmp1[k] = A[2*k] + f(B[k+1]);
    for(k=10; k<138; k++)
s2:    tmp2[k] = B[k-8]; 
    for(k=10; k<266; k++){
       if(k >= 138)
s3:       tmp2[k] = B[k-8]; 
s4:    tmp3[k-10] = f(A[2*k-19]) + tmp2[k];
    }     
    for(k=255; k>=0; k--)
s5:    C[3*k] = tmp1[k] + tmp3[k];
}

void foo(int A[], int B[], int C[])
{
 int k, tmp4[256], tmp5[256];

    for(k=0; k<256; k++){
t1:    tmp4[k] = f(A[2*k+1]) + A[2*k];
t2:    tmp5[k] = B[k+2] + tmp4[k];
t3:    C[3*k] = f(B[k+1]) + tmp5[k];
    }
 
}

a b

Fig. 1. Example of an original (a) and transformed (b) program function pair

the same outputs for the same inputs, i.e., they are input-output equivalent. Our
method automates the checking of their input-output equivalence.

The method handles a decidable subset of structured, imperative programs
that are in dynamic single-assignment form, have only piecewise-affine expres-
sions as subscripts to array variables and bounds of for-loops, and have static
control-flow free from side-effects. It relies on code pre-processing methods to
convert programs commonly seen in practice into the subset. For programs
in this subset, we introduce a representation that captures both computation
and the true data dependencies (Sec. 2). This representation exposes the invari-
ant properties for the transformations and can deal with algebraic transforma-
tions (Sec. 3). Equivalence is shown by checking that a one-to-one correspondence
exists between the two programs in their computation and in the data dependen-
cies between the individual elements of their observable array variables (Sec. 4).
It neither relies on any information about the particular instances of the trans-
formations that were applied nor on the order of their application. It scales well
for larger problem sizes (Sec. 5). Prior work outlines our method and discusses
its application in embedded systems design [13]. This paper formally presents
the method and explains how recurrences in data dependencies are handled. In
Sec. 6, we situate our work with respect to other approaches.

2 Program Representation

We assume an imperative programming language that has array data struc-
tures and has a form of for-loops to control iteration. Our current tools are
focused on C. The analysis is intra-procedural and the equivalence is checked
between two procedures (functions). They can call other functions (common to
both) to the extent that those functions can be considered as side effect free
operators.
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2.1 Class of Allowed Programs

Programs we can handle have the following properties:

1. Dynamic single-assignment: Every memory location is written only once.
Optimizing compilers use the static single-assignment (SSA) form [6] to fa-
cilitate optimizations which still can write the same array element several
times. This is not the case with dynamic single-assignment (DSA) form; it
eliminates all false dependencies. Methods for conversion to DSA are de-
scribed in [7, 16]. We also require that functions are free from side-effects.

2. Piecewise-affine expressions: Subscripts in the arrays and expressions in the
bounds of the for-loops are all piece-wise affine in the iterator variables
of the enclosing for-loops. Additionally, the expressions can also include
operators like mod, div, max, min, floor and ceil. This allows representing
the addressing relationships between elements of arrays as affine inequalities
in integers and makes it possible to use well-understood dependence tests
(for example, the Omega test [12]) to solve those systems.

3. Static control-flow: There are no data-dependent while-loops in the pro-
grams. We assume that data-dependent while-loops have been converted to
for-loops with worst-case bounds and a global if-condition on its body; and
the data-dependent if-conditions in the program have been converted into
data dependencies by using if-conversion [1].

4. No pointer references: Programs are free from pointer references. Pointer-to-
array conversion methods (for example, [15]) can be used here.

The class is not unduly restrictive for the application domain. In fact, it is
advantageous to bring programs into such a form before applying global trans-
formations as this form creates more freedom for the transformations and the
tools used for guiding the transformations can do a better job [5].

2.2 Array Data Dependence Graphs

Scalars can be considered as one element arrays. Hence, which element is assigned
by a (assignment) statement depends on the instantiation of the subscripts of the
assigned array. The subscripts can depend on the values of the surrounding iter-
ators when the statement appears inside a nest of for-loops. Which values the
subscripts take during execution can be described in closed form as an integer do-
main in a multi-dimensional geometrical space. Such descriptions which record a
variety of information related to the statements and dependencies among them
are together referred to as the geometrical or polyhedral representation. This
representation is commonly used for dependence analysis by optimizing compil-
ers [2, 3, 17]. Here we briefly review the main elements.

Let us consider a statement s of the form

s: v[fi1(�kd)]. . .[fin(�kd)] = exp(· · · , u[fj1(�kd)]. . .[fjm(�kd)], · · ·);
where �kd = (k1, . . . , kr, . . . , kd) is the vector of iterator variables of the surround-
ing for-loops. Let lr(�kr−1), ur(�kr−1) and sr(�kr−1) be affine functions defining
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respectively the lower and upper bounds, and the stride of iterator kr. Finally,
assume execution of the for-loops is controlled by affine expressions cr(�kr−1)
and execution of the statement s by cd+1(�kd). Then we can define the following:

Definition 1 (Iteration Domain, D). Integer domain in which each point
[k1, . . . , kd] represents exactly one execution of the statement s:

D := {[k1, . . . , kd] | (
d∧

r=1

kr ∈ Z ∧ (lr(�kr−1) ≤ kr ≤ ur(�kr−1)) ∧ cr(�kr−1) ∧

(∃αr ∈ Z | kr = αrsr(�kr−1) + lr(�kr−1))) ∧ cd+1( �kd)}.

Definition 2 (Definition Domain, Wv). Integer domain in which each point
[i1, . . . , in] represents exactly one write to v[i1]. . .[in], an element of the array
v defined by the statement s with iteration domain D:

Wv := {[i1, . . . , in] | (
n∧

r=1

ir = fir (�k)) ∧ �k ∈ D}.

Definition 3 (Operand Domain, Ru). Integer domain in which each point
[j1, . . . , jm] represents exactly one read from an element u[j1]. . .[jm], of an
operand array u in statement s with iteration domain D:

Ru := {[j1, . . . , jm] | (
m∧

r=1

jr = fjr
(�k)) ∧ �k ∈ D}.

Definition 4 (Dependency Mapping, Mv,u). A mapping associated with a
statement, between a defined array v and an operand array u. Each instance
[i1, . . . , in] → [j1, . . . , jm] in the mapping indicates that element u[j1]. . .[jm] is
read when the element v[i1]. . .[in] is written by the statement s with iteration
domain D:

Mv,u := {[i1, . . . , in] → [j1, . . . , jm] | (
n∧

r=1

ir = fir (�k))∧(
m∧

r=1

jr = fjr (�k))∧�k ∈ D}.

For example, the definitions given above for statement s4 in the original
function in Fig. 1 are:

D := {[k] | 10 ≤ k < 266 ∧ k ∈ Z}
Wtmp3 := {[d] | d = k − 10 ∧ k ∈ D} RA := {[d] | d = 2 ∗ k − 19 ∧ k ∈ D}

Rtmp2 := {[d] | d = k ∧ k ∈ D}
Mtmp3,A := {[d1] → [d2] | d1 = k − 10 ∧ d2 = 2 ∗ k − 19 ∧ k ∈ D}
Mtmp3,tmp2 := {[d1] → [d2] | d1 = k − 10 ∧ d2 = k ∧ k ∈ D}
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Fig. 2. The ADDGs of program functions in Fig. 1. Array A1 and A2 in the dependency
mapping of tmp4 in (b) refer to different occurrences of A in statement t1

A data dependence exists between two statements s and t when s produces
values and t consumes them, i.e., s has definition domain Wv, t has operand
domain Rv and Wv ∩ Rv �= ∅. Dependencies are represented at a fine grained
level. The assigned array depends either on the consumed array or on the main
operator of the rhs. In the latter case, the operator in turn depends on its
arguments which are either other operators or arrays. The set of all dependencies
can be represented as an array data dependence graph (ADDG).

Definition 5 (Array Data Dependence Graph, ADDG). The ADDG of a pro-
gram is a directed graph G = (V, E), where the node set V is the union of arrays
used in the program (array nodes) and the operator occurrences (operator nodes)
of the statements and the edge set E represents the dependencies. An edge with
operator node as source is labeled by the operand position of its destination; an
edge with an array as source is labeled with the statement identifier of the assign-
ment. Array nodes of defined arrays are annotated with the dependency mappings
of the statement.

Whereas standard data dependence graphs used in high-performance com-
pilers represent dependencies at the statement level, we use more detailed de-
pendencies. Also, a data dependence (reverse flow), denoted by a directed edge,
refers not just to a single value, but to a set of values. A dependency mapping
(Def. 4) corresponds to a path with the defined array as source and the operand
array as destination (paths that pass through zero or more operators). Fig. 2
shows the ADDG representations of the programs of Fig. 1.

An array v is an internal array if
⋃

Wv =
⋃

Rv, i.e. each produced element
is consumed; it is an input array if

⋃
Wv = ∅, i.e., no element is produced; and

an output array if
⋃

Rv ⊂ ⋃
Wv, i.e. some of its elements are not consumed.
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In the example, the original function has {A, B} as input, {tmp1, tmp2, tmp3} as
internal and {C} as output arrays. A path u, o1, . . . , on, v with u and v array
nodes and o1, . . . , on operator nodes represents a data-flow between v and u
which is described by the dependency mapping Mu,v. We can also associate a
dependency mapping with a path across several array nodes.

Definition 6 (Transitive Dependency Mapping, M∗
v0,vn). Let p be a path in

an ADDG starting in array node vo, ending in array node vn and passing through
array nodes v1, . . . , vn−1 (n ≥ 0). Using �� for the natural join4 of two relations:

M∗
v0,vn :=

⎧⎨
⎩

I (the identity) n = 0
Mv0,v1 n = 1
Mv0,v1 �� Mv1,v2 �� . . . �� Mvn−1,vn otherwise

Definition 7 (Data Dependence Path). A path between two array nodes is
a data dependence path iff its transitive dependency mapping is non-empty.

The transitive dependency mapping from an output to an input node is called
the output-to-input mapping. The set of output-to-input mappings characterizes
the data-flow of the computation.

For example, in the ADDG of the original function in Fig. 2 the output-to-input
mapping from C to B on the rightmost path is given by

M∗
C,B := MC,tmp3 �� Mtmp3,tmp2 �� Mtmp2,B

:= {[d1] → [d2] | d1 = 3 ∗ k ∧ d2 = k + 2 ∧ 128 ≤ k < 256 ∧ k ∈ Z}.

The data dependence paths from a node v can be used to identify the program
slices contributing to the computation of the elements of v. The outgoing edges of
v partition the elements of the array and different paths correspond to different
slices of the computation. Also an operator node has different outgoing edges.
They correspond to different operands of the operator; they all contribute to the
computation by the operator and hence belong to the same slice.

An ADDG can have cycles, in which case it has cyclic paths. A cyclic data de-
pendence path indicates the presence of a recurrence in the computation: arrays
in a cyclic path have elements whose value depend on other elements of the same
array. While an ADDG with a cycle has infinite paths, all data dependence paths
are finite as the program is composed of terminating for-loops. We return to
recurrences in Sec. 4.2.

An internal array node acts as a buffer and can be eliminated from a given
path (because the program is in DSA).

Operation 1 (Internal Array Node Elimination). Let the outgoing edges
of an internal array node w be (w, x1), . . . , (w, xk) with labels s1, . . . , sk and
let Mw,t1 , . . . ,Mw,tk be the corresponding dependency mappings. Let p be a path

4 x→ z ∈ F �� G⇔ ∃y s.t. x→ y ∈ F ∧ y → z ∈ G.
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(possibly including operators) from an array node u to w and s be the label of
the outgoing edge of u on p and Mu,w the associated dependency mapping. Let
the incoming edge on w on p be (v, w) with the label l. The node w is eliminated
on the path p from u as follows:

- ∀i, 1 ≤ i ≤ k: add the edge (v, xi) and if u = v, label it as s.si, else label it as l
- Replace Mu,w by the transitive dependency mappings M∗

u,t1 ,. . . ,M
∗
u,tk

- Remove the edge (v, w).

In the above operation, when v is an operator node and k > 1, v has multiple
operands with the same position label. Such operands correspond to disjunct
slices of the computation.

3 Transformations and Their Effect

In this section, we discuss three categories of transformations that we allow and
their effect on the ADDG representation of the program function.

Global Loop Transformations. Loop transformations are usually classified
into structure preserving and structure modifying categories. The former cate-
gory includes such transformations as loop permutation, interchange, skewing,
reversal and bumping, and those that can be derived from combining them.
The latter includes loop distribution, fission, splitting, merging, folding, fusion,
strip-mining, tiling and unrolling. Structure preserving transformations only af-
fect the iteration domains of statements. While the graph structure of the ADDG
remains, the associated dependency mappings are affected. A transformation
preserves correctness when the output-to-input mappings for the paths of the
same computation on the transformed ADDG is identical to the output-to-input
mappings in the original ADDG. Structure modifying transformations can result
in a re-distribution of definition domains of the involved arrays. For example,
in the original function, the rightmost path splits at array node tmp2 and par-
titions the output-to-input mappings from the output array C to input array B
for the same computation. Therefore, the invariant for the correctness of these
transformations is that, the union of output-to-input mappings for the paths of
the same computation on the transformed ADDG must be identical to a similar
union of mappings in the original ADDG.

Expression Propagations. Expression propagation involves both introduc-
tion and elimination of intermediate arrays for partial computations in the pro-
gram function. For example, a statement with a summation of three terms on
the right-hand side can be converted into two statements with summation of two
terms each, by the introduction of an intermediate array. Another possibility is
that a set of values are recomputed, instead of reused. The effect of expres-
sion propagation on the ADDG of the program function is insertion/elimination of
array nodes on the paths of the ADDG and/or duplication of sub-ADDGs. The in-
variant for the correctness of the propagation transformations is the same as for
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loop transformations. That is, the output-to-input mappings for the paths of the
same computation on the transformed ADDG is identical to the output-to-input
mappings in the original ADDG.

Global Algebraic Transformations. Algebraic transformations exploit prop-
erties of operators and user-defined functions and modify the data-flow in order
to improve efficiency or to enable the other transformations. Several statements
can be involved as can be seen in Fig. 1, where these transformations have been
applied across expressions of multiple statements. The ADDGs of the two func-
tions, as shown in Fig. 2, also reflect this. Most of these transformations just
rely on the associativity and/or commutativity properties of the operators like
addition and multiplication on a data-type such as integer. We distinguish:

Associativity. Let ⊕ be an associative operator. Fig. 3(a) shows two computa-
tions that are equivalent due to associativity. To integrate associativity in our
method, we replace the graph fragment by its normal form: A single ⊕ operator
with a variable number of arguments as shown on the right of Fig. 3(a). This
does not affect the output-to-input mappings of the ADDG. In addition, internal
array nodes receiving input from another ⊕ operator can be eliminated. This
results in the following operator:

Operation 2 (Flattening). Process all successor nodes of an associative ⊕-
node p as follows: if it is an internal array node, apply internal array node
elimination. If it is another ⊕-node o, eliminate it: let l be the label of the edge
(p, o) and let (o, s0), . . . , (o, sn) be the outgoing edges. For all the outgoing edges
of p with label (k > l), replace the label k by k + n and add edges (p, si) with
labels l + i. Remove the edge (p, o). Repeat flattening on p until all its successor
nodes are either input nodes or operator nodes other than ⊕.

Note that elimination of a node adds new children to the root node, which
are in turn processed and that the order of the nodes is preserved. Fig. 4 shows
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the effect on the ADDGs of Fig. 2. On the left, note the two outgoing edges with
the same label, they correspond to disjunct slices of the computation.

Commutativity. A commutative operator allows to permute the arguments as
shown in Fig. 3(b). As a consequence, one cannot use the labels on the edges to
find corresponding arguments for operators that should perform the same com-
putation. E.g., the +-nodes of Fig. 4 are commutative. To find the correspondence
between their arguments, a matching operation is needed.

Operation 3 (Matching). Given a pair of commutative operators in two dif-
ferent ADDGs matching selects pairs of corresponding edges. To do so, it has to
look-ahead in the subtrees of the edges, using information about operator labels
and transitive dependency mappings to eliminate candidates. This boils down to
a recursive application of the method described in Sec. 4.

Consider the two addition operators in the two ADDGs of Fig. 4. Edge 1 in the
left ADDG pairs with edge 4 in the right ADDG, as they are the only ones leading to
the input array A. Both +-nodes haves two edges leading to an operator labeled
f , so further look-ahead is needed. In both cases, one of the operator nodes leads
to input array A and the other to B, hence the correct pairing is (2, 1) and (3, 3).
Finally, the left ADDG has two edges labeled 4, leading to input array B, also edge
2 of the right ADDG leads to B, resulting in two pairs (4, 2).

Combination of associativity and commutativity. Operators can be both associa-
tive and commutative, increasing the number of equivalent forms, as illustrated
in Fig. 3(c) for the �-operator. As already explained on our example, the flat-
tening operation has to be followed by a matching operation.

Other Properties. Operations for handling other properties (distributivity, in-
verse of an operator, identity element of an operator, evaluation of constant
values) can be developed in a similar way by a combination of reduction to a
suitable normal form and matching.

4 Equivalence Checking Method

We start by introducing a sufficient condition for equivalence between programs.
Next, in Sec. 4.1, we explain a traversal based method to check the condition.
Finally, in Sec. 4.2 we discuss how recurrences are tackled.

Two programs are equivalent when they have identical outputs for identical
inputs. Assuming they have the same input and output arrays, we distinguish
the following two conditions. For each output element in both programs:

Cond-A: The set of output-to-input mappings is the same; and
Cond-B: The computation is the same.

Together, they ensure that each output element is obtained by applying
the same function on the same input elements, i.e., that both programs are
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equivalent. The ADDG is an abstraction of the computation that allows one to
do the verification for groups of elements at once. The verification is based on
a synchronous traversal of the ADDGs from output to input. Using the structure
of the ADDGs, the dependency mappings and the operators, it is verified whether
both programs perform the same computation.

4.1 Synchronized Traversal of Two ADDGs

Starting with a proof obligation about the equality of the outputs we try to
reduce it to proof obligations about equality of inputs that are trivially satisfied.

Definition 8 (Proof Obligation). Given two ADDGs, G1 and G2. A primi-
tive proof obligation is of the form (v1, v2, M∗

O,v1 , M
∗
O,v2), where v1 and v2 are

arrays from G1 and G2, respectively, and M∗
O,v1 and M∗

O,v2 are transitive depen-
dency mappings with identical domains, i.e., dom(M∗

O,v1) = dom(M∗
O,v2). A proof

obligation is a conjunction of primitive proof obligations.

Definition 9 (Truth of Proof Obligation). A proof obligation is true if each
of its primitive proof obligations is true. A primitive proof obligation (v1, v2, M∗

O,v1 ,
M∗

O,v2) is true if v1[M∗
O,v1(i)]= v2[M∗

O,v2(i)] for all i in dom(M∗
O,v1) for any exe-

cution of the program.

Operation 4 (Proof Initialization). A first requirement is that the data-flow
is correct, i.e., each read element is either input or has been written before.
A second requirement is that both programs output the same set of elements.
These requirements need to be checked before the actual verification by inspecting
definition and operand domains of statements.

For each output array Oi in both G1 and G2, let Wi be the total definition
domain of Oi (the union of the definition domains of the defining statements).
Let pi be the primitive proof obligation (Oi, Oi, M∗

Oi,Oi , M
∗
Oi,Oi) with dom(M∗

Oi,Oi) =
Wi. The initial proof obligation is the conjunction of all pi.

Obviously, the initial proof obligation implies equivalence of both programs.

Definition 10 (Terminal Proof Obligation). A primitive proof obligation
p = (v1, v2, M∗

O,v1 , M
∗
O,v2) is terminal iff v1 and v2 are input arrays.

A terminal proof obligation is true according to Def. 9 iff v1 = v2 and M∗
O,v1 =

M∗
O,v2 , i.e., the output-to-input mappings select the same elements in the same

input arrays.
The following reduction introduces primitive proof obligations where the

nodes are not arrays; such obligations are auxiliary obligations, which have not
been given a formal meaning. They are further reduced in subsequent reductions.

Operation 5 (Reduction of Primitive Proof Obligation). Let the primi-
tive proof obligation to be reduced be p = (v1, v2, M∗

O,v1 , M
∗
O,v2). The reduction gen-

erates a set (conjunction) of new primitive proof obligations that
replaces p.
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Case 1. v1 is an array node. For each successor node of v1 that is an array
node an array-array reduction is applied and for each successor node of v1
that is an operator node an array-operator reduction is applied.

- Array–array reduction. Suppose that the successor node is the array node
a. For every dependency mapping Mv1,a, M∗

O,a := M∗
O,v1 �� Mv1,a is com-

puted, and the proof obligation (a, v2, M∗
O,a, restrict(M

∗
O,v2)) is added, where

restrict(M∗
O,v2) is the projection of M∗

O,v2 on dom(M∗
O,a).

- Array–operator reduction. Suppose that the successor node is the operator
node f. The proof obligation (f, v2, M∗

O,v1 , M
∗
O,v2) is added.

Case 2. v2 is an array node: this case is similar to Case 1.
Case 3. v1 and v2 are both operator nodes v1 = v2 = �. If � is associative,

apply flattening on �-node on both sides. Let x1, . . . , xk′ and y1, . . . , yl′ be the
successor nodes of v1 and v2, with labels {1, . . . , k} and {1, . . . , l} respectively,
for edges between them (where k ≤ k′ and l ≤ l′). If � is commutative,
apply matching. Let xi be matched with ym(wi), where wi = label(v, xi). If
� is neither associative nor commutative, then m(wi) = wi. For each pair
(xi, ym(wi)), ∀i, 1 ≤ i ≤ k′, (xi, ym(wi), M1, M2) is added, such that, if xi

(resp. ym(wi)) is an operator node, then M1 = M∗
O,v1 (resp. M2 = M∗

O,v2),
else M1 := M∗

O,v1 �� Mv1,xi (resp. M2 := M∗
O,v2 �� Mv2,ym(wi)

).

The method is summarized in Algorithm 1. The actual implementation uses
the proof obligations and reasons over the program representation without ma-
nipulating its initial structure.

Algorithm 1: Outline of the equivalence checker.
Input: ADDGs G1 and G2 of the two functions.
Output: If they are equivalent, return True, else return False, with diagnostics.
P ←− ProofInitialization()
while P �= ∅ do

p←− SelectObligation()
if TerminalObligation(p) then

if not TrueObligation(p) then
return (False, errorDiagnostics)

else
newObligations ←− ReduceObligation(p)
if newObligations = ∅ then

return (False, errorDiagnostics)
else

P ←− (P \ {p}) ∪ newObligations

return True

4.2 Handling Recurrences in the ADDG

Recurrences are detected when reduction leads to an array node that has already
been visited. Clearly, it is inefficient to step through each instance of a recurrence.
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foo(int A[], int B[]){ 
 int k, c[256];
 c[0] = f2(A[0]);
 for(k=1; k<256; k++)
  c[k] = f2(f1(c[k-1]));
 B[0] = f1(c[255]);  
}a

foo(int A[], int B[]){ 
 int k, r[256];
 r[0] = f1(f2(A[0]));
 for(k=1; k<256; k++)
  r[k] = f1(f2(r[k-1]));
 B[0] = r[255];  
}

foo(int A[], int B[]){ 
 int k, tmp[256];
 tmp[0] = f2(A[0]);
 for(k=1; k<256; k++)
  tmp[k] = tmp[k-1];
 B[0] = f1(tmp[255]);  
} b c

Fig. 5. Example program functions with recurrences

In most practical cases it can be avoided by computing the relation with the set of
values at the end of the coil of recurrence, called the across-recurrence mapping.
The key operation that enables such a computation is the positive transitive
closure of an integer tuple relation.

Definition 11 (Across-recurrence Mapping). Suppose we have a recur-
rence with v, w1, . . . , wk, v as the internal array nodes in the cycle that is en-
tered on a path from array u. Then the transitive dependency mapping for the
cycle from v back to v is given by, M∗

v,v := Mv,w1 �� Mw1,w2 �� · · · �� Mwk,v. The
across-recurrence mapping between u and v is the transitive dependency mapping
between u and v that is across the recurrence on v and it relates the elements of
u to the elements of v that are assigned outside the cycle on the same path. It is
defined as, MR

u,v = Mu,v �� M′
v,v, where M′

v,v is calculated as follows:
- Compute positive transitive closure of the recurrent mapping: m := (M∗

v,v)
+

- Get domain and range of the computed closure: d := domain(m); r := range(m)
- Get domain and range of the end-to-end mapping: d′ := (d − r); r′ := (r − d)
- Restrict the closure to the tuples in the end-to-end mapping:

M′
v,v := {x → y | x → y ∈ m ∧ x ∈ d′ ∧ y ∈ r′}.
For a tuple relation F , its positive transitive closure F+, is a tuple rela-

tion defined as x → z ∈ F+ ⇔ x → z ∈ F ∨ ∃y s.t. x → y ∈ F ∧ y → z ∈ F+. A
remark here is that exact transitive closure of a relation in closed form is not
computable in the general case. A sufficient condition [9] for its computation is
that, if the tuple of the relation is [ �k1] → [ �k2], then �k2 = �k1 + �c, where �c is a
vector of integer constants.

Depending on the nodes that appear in the cycle of recurrence, we distinguish
two possible cases of recurrences in an ADDG.

Recurrence without computation. In this case, no operator nodes are present in
the recurrence cycle. Fig. 5(a) shows an example program having such a recur-
rence without computation. During traversal (or during array node elimination),
if such a recurrence is encountered on a given path, the across-recurrence map-
ping is computed and this essentially eliminates the cycle on the path. This is
illustrated in the Fig. 6(a), where v is the array at the entry to the cycle and no
operator nodes exist on the path p.

Recurrence with computation. In this case, operator nodes are present in the
recurrence cycle. Fig. 5(b) and (c) show an example of equivalent program pair
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Fig. 6. Two cases of recurrence

that have such a recurrence with computation. When confronted with this re-
currence, it is required that the across-recurrence mapping be computed on the
two corresponding ADDGs in a synchronized way. That is, we need to ensure that
the new dependency mappings computed account for the same computation. In
order to be able to do that we first have to get identical sequence of operators
on the recurrence cycles on both the ADDGs. This is achieved by unfolding.

Operation 6 (Unfolding). Suppose G1 and G2 are the ADDGs being traversed
in synchronization and we detect a recurrence on one of them, say, G1, with
(f1, . . . , fk, f1) as operator nodes on the cycle. The traversal ensures that the
corresponding nodes traversed on G2 are also (f1, . . . , fk, f1). If a recurrence
is also detected at this point on G2, we are done. Otherwise, we unfold G1, by
stepping through the recurrence along with G2 as many times as it takes to reveal
a cycle with identical sequence of operators on G2.

Fig. 6(b) shows G1 with cycle p and G2 with the basic possibilities for a
cycle, viz,, operators shifted by one (q), unfolded once completely (r) and both
unfolded once and shifted by one (t). In the example pair in Fig. 5(b) and (c),
the operator is shifted by one in the transformed program.

Once we have established matching cycles on the two sides by unfolding, we
have transitive dependency mappings for the two corresponding cycles, M1 :=
{[ �a1] → [ �a2] | C1} and M2 := {[�c1] → [�c2] | C2}, where C1 and C2 are affine
constraint expressions. Now, in order to compute the across-recurrence mapping
that ensures same computation on both sides we combine the two transitive
dependency mappings and use the combined mapping M as the dependency
mapping for the cycle, given by, M := {[ �a1, �c1] → [ �a2, �c2] | C1 ∧ C2}, where
the vector variables in the formulae describing M1 and M2 are made distinct
by renaming. This mapping is used for the computation of the mapping M ′

as described in the Def. 11. M ′ is then split into M ′
1 and M ′

2 along the same
dimensions that were combined earlier. These mappings are used in calculating
the across-recurrence mappings on the respective ADDGs.
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5 Discussion

As we described, the method is a synchronized traversal on the two ADDGs.
Our method traverses corresponding paths only once and tables all established
equivalences. Therefore, if we assume that the number of maximal slices of
computation in the ADDGs is very small compared to their sizes, the complex-
ity of the traversal is linear in the size of the larger of the two ADDGs, i.e.,
O(max(|V1| + |E1|, |V2| + |E2|)). The operations on the integer domains and re-
lations, that our method calls, are based on checking the validity of Presburger
formulae, whose best known upper bound has triple-exponential complexity in
the length of the constraint expressions. However, the expressions are usually
small enough in practice and the operations are feasibly computed with a de-
pendence test like Omega Test [12]. Therefore, we can assume the time for these
operations to be bounded by a constant. Hence, the overall complexity is still in
the order of the traversal.

With a prototype implementation of the method, we have been able to check
equivalences of real-life program pairs efficiently. For programs with 1000 lines
of uncommented C code, with control and data-flow complexity comparable to
real-life signal processing algorithm kernels, the tool took less than 100 seconds
on a standard desktop [14].

Typically, as can be expected, the original and the transformed program pairs
seen in practice do not fall in the class that we have assumed for our method,
at least not in all respects. But as discussed in Sec. 2.1, some restrictions can
be relaxed by using code-preprocessing tools. They are used to pre-process the
initial and the transformed programs separately, before passing them to our
equivalence checker. For instance, using tools that are available to us in-house,
we are able to handle programs that are not in DSA and also not having static
control-flow (because of data-dependent if-conditions). Additionally, since ours
is an intra-procedural method, by inlining functions in both programs using a
function-inlining tool, we are able to verify correctness of inter-procedural code
transformations from the categories that we handle.

6 Related Work

Undecidability of the program equivalence problem implies that any effort start
with the definition of a decidable class of programs that is of interest. Hence, the
problem has been addressed by various researchers for different program classes
with different applications in mind. The problem we address is distinct by its
central requirement to represent and maintain the relationships among elements
of the arrays in the programs in closed form. Unrolling deeply nested loops
with large bounds is clearly infeasible for real-life signal processing programs.
To add to this, algebraic transformations will require an infeasible search for
normalization on a combination of the unrolled statements. Hence, we restrict
our discussion of related work to methods that do not propose loop unrolling.
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Translation validation [8, 11] and fractal symbolic analysis [10], both present
methods which show semantic equivalence of two versions of programs. In the
case of the former, the comparison is between the source and the target code.
These methods are distinct from ours in that they essentially try to heuristi-
cally infer a sequence of legal transformations that can relate the two programs.
Instead, we are able to directly check for equivalence of programs that are in
a suitable language class. Also, their methods do not handle algebraic transfor-
mations. The work most related to ours, because we address the same class of
programs, is the algorithm recognition method presented in [4]. Again, algebraic
transformations are not handled by them. Another distinction is that, all these
methods do not pay attention to debugging support which is very important in
the context of source code transformations.

7 Conclusions

We have presented a program equivalence checking method that enables verifica-
tion of global source code transformations. The transformations considered are
the ones that are widely reported in current practice relating to development of
data-intensive software for high-performance and low-power systems. The pro-
gram class handled is also the one that is often referred to in the literature
relevant to the application domain of the transformations. The method is fully
automatic and efficient. Hence, we believe that it provides a practical addition
to the toolbox used by programmers applying source code transformations.
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