
Verification of Static and Dynamic Barrier
Synchronization Using Bounded Permissions

Duy-Khanh Le, Wei-Ngan Chin, Yong-Meng Teo

Department of Computer Science, National University of Singapore
{leduykha,chinwn,teoym}@comp.nus.edu.sg

(Technical Report - August 2013)

Abstract. Mainstream languages such as C/C++ (with Pthreads), Java,
and .NET provide programmers with both static and dynamic barriers
for synchronizing concurrent threads in fork/join programs. However,
such barrier synchronization in fork/join programs is hard to verify since
programmers must not only keep track of the dynamic number of partic-
ipating threads, but also ensure that all participants proceed in correctly
synchronized phases. As barriers are commonly used in practice, verifying
correct synchronization of barriers can provide compilers and analysers
with important phasing information for improving the precision of their
analyses and optimizations.
In this paper, we propose an approach for statically verifying correct
synchronization of static and dynamic barriers in fork/join programs.
We introduce the notions of bounded permissions and phase numbers for
keeping track of the number of participating threads and barrier phases
respectively. The approach has been proven sound, and a prototype of
it (named VeriBSync) has been implemented for verifying barrier syn-
chronization of realistic programs in the SPLASH-2 benchmark suite.

1 Introduction

Software barriers are a kind of collective operations available in Pthreads, Java,
.NET, OpenMP, and others. Threads participating in a barrier proceed in phases.
A typical usage of barriers is presented in Fig. 1. When a thread issues a barrier
wait, it waits until a pre-defined number of threads (all threads or just a group of
threads) have also issued a barrier wait; after that,

//b has 2 participants

b = new barrier(2);

//Thread 1 //Thread 2

//Phase 0 //Phase 0

wait(b); wait(b);

//Phase 1 //Phase 1

Fig. 1. Typical Usage of Barriers

all participating threads proceed to the
next phase. SPMD (single program, multi-
ple data) programs, such as those written
in OpenMP, typically have a single barrier
to coordinate all threads in the programs.
On the other hand, fork/join programs writ-
ten in Pthreads, Java, and .NET could use
more than one barrier to coordinate different
(possibly non-disjoint) groups of threads. In
Pthreads [1], barriers are static, i.e. the number of participants is fixed. In .NET
framework [7], barriers are dynamic as the number of participants can vary dur-
ing a program’s execution. The java.util.concurrent library [9] supports both
static and dynamic barriers (i.e. CyclicBarrier and Phaser respectively).

Administrator
Text Box
A version of this technical report has been accepted for publication at 15th International Conference on Formal Engineering Methods (ICFEM 2013).

Barriers are commonly used in practice. For example, all twelve realistic pro-
grams in SPLASH-2 benchmark suite [25] use at least one barrier and four out of
twelve programs use more than one barrier for synchronization, covering numer-
ous application domains such as computer graphics (volrend), water molecule
simulation (water-spatial), and engineering (radix) among others. Therefore,
verifying correct synchronization of barriers is desirable because it can provide
compilers and analysers with important phasing information for improving the
precision of their analyses and optimizations such as reducing false sharing [12],
may-happen-in-parallel analysis [16, 27], and data race detection [14]. For exam-
ple, given the information that a program is verified as correctly synchronized
on a barrier, concurrency analysers [14, 16, 27] could significantly improve their
analyses by exploiting the fact that two statements in different barrier phases
cannot be executed in parallel. However, static verification of barrier synchro-
nization in fork/join programs is hard because programmers must not only keep
track of (possibly dynamic) number of participating threads, but also ensure
that all participants proceed in correctly synchronized phases.

Verification approaches such as those based on separation logic [21] and im-
plicit dynamic frames [24] often use an access permission system, such as frac-
tional permissions [5] or counting permissions [4], as the basis for reasoning
about race-free sharing of resources. There are bounded resources (e.g. barriers)
which are typically shared among a bounded number (or a group) of concurrent
threads. Unfortunately, when using existing permission systems [4, 5], a resource
could be split off an unbounded number of times and hence unintentionally
shared among an unbounded number of concurrent threads. Therefore, existing
permission systems are not suitable for reasoning about bounded resources.

In this paper, we first introduce a new permission system, called bounded
permissions, to enable reasoning for bounded resources (§3). We then present a
logical approach for statically verifying correct synchronization of static and dy-
namic barriers in fork/join programs. For verifying static barriers, the approach
uses bounded permissions and phase numbers to keep track of the number of
participants and barrier phases respectively (§4). For verifying dynamic barri-
ers, the approach introduces dynamic bounded permissions to additionally keep
track of the additions and/or removals of participants (§5). To the best of our
knowledge, our paper is the first effort to verify synchronization of both static
and dynamic barriers in fork/join programs.

2 Background

In this section, we first discuss some basic notations in separation logic [20, 21].
We then present a fork/join programming language with barriers.

2.1 Concurrent Separation Logic and Permissions

Separation logic [21] is a resource logic for reasoning about heap-manipulating
programs. In separation logic, the simplest heaps are the empty heap emp and
the heap node x 7−→ E. The basic heap node x 7−→ E, pronounced x points to E,
asserts that it consists of a single cell with integer address x and integer content
E. We write x 7−→ to describe a heap node with unknown content. Heaps are

connected together to form larger heaps by using the separation connective * .
In order to reason about race-free sharing of resources among concurrent threads,
heaps are enhanced with permissions π [4, 5]. A heap node x

π7−→ E indicates a
permission to access the content E at the address x. A permission can be partial
or full indicating read or write permission respectively. A permission (either full
or partial) can be split into multiple partial permissions which can be shared
among threads. Partial permissions can also be gathered back into a single full
permission for accounting. A memory state consists of * -conjunctions of heaps
and constraints on their addresses, contents, and permissions.

The beauty of separation logic lies under its frame rule:

{Φ1} s {Φ
′

1} modifies(s) ∩ FV (Φ2)=∅
{Φ1 * Φ2} s {Φ

′

1 * Φ2}
(1)

Informally, if a statement s is safe in a state Φ1, then s is also safe in a larger
state Φ1 * Φ2 given the side condition that s does not modify any free variables
in Φ2 [21]. The same principle applies when verifying concurrent threads, as
indicated in the following parallel composition rule:

{Φ1} s1 {Φ
′

1} modifies(s1) ∩ FV (Φ2, Φ
′

2)=∅
{Φ2} s2 {Φ

′

2} modifies(s2) ∩ FV (Φ1, Φ
′

1)=∅
{Φ1 * Φ2} s1||s2 {Φ

′

1 * Φ
′

2}
(2)

Since two concurrent threads s1 and s2 “mind their own business” and do not
modify variables of each other, the combined state Φ

′

1 * Φ
′

2 is safe [20]. This
principle allows local reasoning as concurrent threads are verified independently.
Note that the frame rule can be expressed in terms of the parallel composition
rule as s is equivalent to s||no-op.

2.2 A Fork/Join Programming Language with Barriers

Mainstream languages such as C/C++ (with Pthreads), Java, and .NET pro-
vide barriers for synchronizing a group of threads. As our approach is language-
independent, we develop a core language with fork/join concurrency and barriers
(Fig. 2). The language is straightforward (see Appendix A for details). Note that
in this paper, for brevity of presentation, we often use the parallel composition
(s1||s2); as an abbreviation for creating concurrent threads. The parallel compo-
sition is syntactic sugar and can easily be encoded via fork and join.

P ::= proc∗ Program
proc ::= pn((t v)∗) spec∗ { s } Procedure declaration
spec ::= requires Φpr ensures Φpo; Pre/Post-conditions

t ::= int | bool | void | barrier Type
e ::= v | k | e1=e2 | e1 6=e2 | . . . Expression

s ::=

v = fork(pn,v∗) | join(v)
| barrier b = new barrier(n)
| destroy(b) | wait(b)
| add(b,m) | remove(b,m)
| s1; s2 | pn(v∗) | if e then s1 else s2
| . . .

Statement

Fig. 2. Fork/Join Programming Language with Specifications

3 Bounded Permissions

In this section, we present our bounded permission system for reasoning about
bounded resources. Although we place our bounded permissions in the context
of separation logic, bounded permissions can be generally applied to other logics
such as implicit dynamic frames [24].

A permission system should distinguish full permission for total control (read,
write, and destroy) from partial permission for shared access (read only: no
thread can write or destroy) [5]. Permission accounting (e.g. the ability to split
a permission into multiple partial permissions for shared access and to combine
partial permissions into a full permission for exclusive write) is critical for rea-
soning about fork/join programs [4]. Besides the above properties, our bounded
permission system additionally provides the notion of “boundedness” as the
guarantee for reasoning about bounded resources.

Bounded permission: x
c,t7−−→ E

Permission count: c
Permission total: t
Permission invariant: 0 < c ≤ t

Full permission: c = t
Partial permission: c < t
Unit permission: c = 1

Permission rules:

[SPLIT/COMBINE] x
c,t7−−→ E ∧ c=c1+c2 ⇐⇒ x

c1,t7−−→ E ∗ x c2,t7−−→ E

[SEP] x1
c1,t17−−−→ E * x2

c2,t27−−−→ E ∧ (t1 6=t2 ∨ c1+c2>t1) =⇒ x1 6=x2

Fig. 3. Bounded Permission System

Fig. 3 summarizes our bounded permission system. An assertion x
c,t7−→ E

represents a bounded permission to access the content E at the address x. A
permission quantity is a pair of integers (c, t) where 0<c≤t; c=t indicates a full
permission while c<t indicates a partial permission. Permissions with c=1 are
called unit permissions. A permission can be split into two permissions (reading
from left to right of the rule [SPLIT/COMBINE]). In the other direction, heap
nodes can be combined using * iff their addresses coincide, they agree on their
contents and their permissions can be combined arithmetically. Note that due
to the invariant 0<c≤t, a unit permission cannot be split off. Besides the ability
to split/combine permissions, the notion of separation ([SEP]) is important for
reasoning about separation of resources [4, 21]. Two heaps agreeing on their
contents are separated (x1 6=x2) if their permission totals are different or the
sum of their permission counts is higher than the permission total.

We can create a new bounded-permission resource (with n is assigned to the
permission total) and destroy it only in full permissions:

{ n > 0 } x = new(n); { x n,n7−−→ }
{ x n,n7−−→ } destroy(x); { emp }

(3)

Given a full permission, we are sure that no other thread can access the shared re-
source. Therefore, we can safely destroy it. In languages with automatic garbage
collection, such a destroy operation is not necessary, but the full permission is
still useful in guiding the garbage collector for safe collection.

Similarly, we need a full permission for writing and any permission (full or
partial) for reading:

{ x n,n7−−→ } [x] = E; { x n,n7−−→ E }
{ x c,t7−→ E } y = [x]; { x c,t7−→ E ∧ y = E }

(4)

[x] is an abbreviation for accessing the content located at the address x. In the
last rule, there is a side condition that y is not free in E.

Now, it is straightforward to verify the correctness of the program in Fig. 4,
in which only two threads are intended to concurrently read the content at the
location x. As a brief comparison, when using existing permission systems [4,
5], there is nothing to prevent x from being split off into more than two partial
permissions and hence unintentionally accessed by more than two threads.

{ emp }
x = new(2);

{ x 2,27−−→ }
[x] = 5;

{ x 2,27−−→ 5 }
//[SPLIT] { x

1,27−−→ 5 } { x 1,27−−→ 5 } { emp }
y=[x]+1; z=[x]-1; t=10;

{ x 1,27−−→ 5 ∧ y = 6 } { x 1,27−−→ 5 ∧ z = 4 } { t = 10 }

 ;

//[COMBINE]

{ x 2,27−−→ 5 ∧ y = 6 ∧ z = 4 ∧ t = 10 }
destroy(x);

{ emp ∧ y = 6 ∧ z = 4 ∧ t = 10 }

Fig. 4. Example of Using Bounded Permissions

The following lemma states our guarantee on boundedness property.

Lemma 1 (Boundedness) Given a resource x with a full permission x
n,n7−−→

(n>0), there are at most n concurrent accesses to x, i.e. x is shared among at
most n concurrent threads at a given time.

Proof. A thread needs at least a unit permission x
1,n7−−→ to access x and there

are at most n such unit permissions. ut

4 Verification of Static Barriers

In this section, we present our approach to verifying correct synchronization
of static barriers. We first define what it means for a program to be correctly
synchronized.

Definition 1 (Correct Synchronization) A program is correctly synchro-
nized with respect to a static barrier b iff:

– There is exactly a predefined number of threads participating in the barrier
b’s wait operations.

– Participating threads operate on b in the same numbers of phases.

{ emp }
barrier b = new barrier(2);

{ b 2,27−−→ barrier(0) }

{ b 1,27−−→ barrier(0) } { b 1,27−−→ barrier(0) }
//phase 0; //phase 0;

wait(b); wait(b);

//phase 1; //phase 1;

{ b 1,27−−→ barrier(1) } { b 1,27−−→ barrier(1) }
{ b 2,27−−→ barrier(1) }

destroy(b);

{ emp }
(a) Correctly synchronized

{ emp }
barrier b = new barrier(2);

{ b 2,27−−→ barrier(0) }

{ b 1,27−−→ barrier(0) } { b 1,27−−→ barrier(0) }
//phase 0; //phase 0;

wait(b); //no-op;

//phase 1;

{ b 1,27−−→ barrier(1) } { b 1,27−−→ barrier(0) }

//FAIL
...

(b) Incorrectly synchronized

Fig. 5. Barrier Synchronization

For illustration, the program in Fig. 5a is correctly synchronized while the
program in Fig. 5b is not because the two threads in Fig. 5b operate in different
numbers of phases. As shown in Section 3, bounded permissions can be used to
ensure that at most a predefined number of threads can access a resource at a
given time. However, verification of barrier synchronization requires a stronger
guarantee: exactly a predefined number of threads participates in a barrier wait.
We enforce such a guarantee by requiring that a participating thread must hold
a unit permission to perform a barrier wait. If a participant has more than a
unit permission, it prohibits other participants from participating. An analogy is
a meeting room with n keys distributed among n participants; a meeting takes
place only when all participants have come. If a participant has more than one
key, when he/she enters the room, at least one other participant will not be
able to get in and the meeting cannot take place. We capture barrier phasing by
using phase numbers, which increase by one after each barrier wait, and require
that all participants end up with the same phase numbers. If participants have
different phase numbers when completing their execution, some of them must
have lost phasing and the program is not correctly synchronized.

A summary of our approach is presented in Fig. 6. An assertion b
c,t7−→

barrier(p) indicates a bounded permission (c, t) to access the barrier b which
is at phase p. When creating a new barrier with the number of participants n,
a full permission (i.e. c=t=n) of barrier b is created. We can safely destroy a
barrier in its full permission. Waiting on a barrier b requires a unit permission
(1, n). This is a contributing factor to certify that there is exactly a predefined
number of threads participating in the barrier b. After finishing waiting, the
phase number p is increased by 1 and threads proceed to the next phase. The
permission rules for split/combine ([S−SPLIT] and [S−COMBINE]) and separation
[S−SEP] are similar to those of standard bounded permissions.

Our approach allows for local reasoning where each thread (more precisely
each procedure) is verified separately. Intuitively, if threads participate in a
barrier b, when they join together, their states must agree on the barrier b.
Therefore, we enforce the requirement that concurrent threads must maintain a
program in barrier-consistent (or b-consistent) states:

Bounded permission: b
c,t7−−→ barrier(p)

Permission count: c
Permission total: t
Phase number: p

Permission invariant: 0 < c ≤ t
Full permission: c = t
Partial permission: c < t
Unit permission: c = 1

Verification rules:

{ n>0 } barrier b = new barrier(n); { b n,n7−−→ barrier(0) }
{ b n,n7−−→ barrier() } destroy(b); { emp }
{ b 1,n7−−→ barrier(p) } wait(b); { b 1,n7−−→ barrier(p+ 1) }
Permission rules:

[S−SPLIT]

b
c,t7−−→ barrier(p) ∧ c=c1+c2 =⇒ b

c1,t7−−→ barrier(p) ∗ b c2,t7−−→ barrier(p)

[S−COMBINE]

b
c1,t7−−→ barrier(p) ∗ b c2,t7−−→ barrier(p) =⇒ b

c,t7−−→ barrier(p) ∧ c=c1+c2

[S−SEP]

b1
c1,t17−−−→ barrier(p) * b2

c2,t27−−−→ barrier(p) ∧ (t1 6=t2 ∨ c1+c2>t1) =⇒ b1 6=b2

Fig. 6. Verification of Static Barriers

{Φ1} s1 {Φ
′

1} modifies(s1) ∩ FV (Φ2, Φ
′

2)=∅
{Φ2} s2 {Φ

′

2} modifies(s2) ∩ FV (Φ1, Φ
′

1)=∅
Φ1 * Φ2 is b−consistent Φ

′

1 * Φ
′

2 is b−consistent
{Φ1 * Φ2} s1||s2 {Φ

′

1 * Φ
′

2}

(5)

Compared with the original rule in (2), our parallel composition rule in (5) ad-
ditionally requires that concurrent threads begin and end in b-consistent states.
That is, starting from a consistent state with respect to barriers in the program,
threads concurrently operate on the barriers; if they terminate, they do so in
a consistent state with respect to the barriers. Informally, a memory state is
b-consistent if its barrier nodes agree on the phase numbers. After completing
their execution, if the threads end up in a joined state Φ

′

1 * Φ
′

2 which is not
b-consistent, the program is rejected as it is incorrectly synchronized. A similar
consistency check is also required for the frame rule, which is omitted here since
it can be derived from the parallel composition rule (see Section 2.1).

Definition 2 (Combined State) A combined state Φc of a memory state Φ is
achieved by repeatedly applying the [S−COMBINE] rule until a fixpoint is reached.

Such a fixpoint always exists as the [S−COMBINE] rule can only reduce the
number of heap nodes.

Lemma 2 A memory state Φ and its combined state Φc are equivalent.

Proof. Φc is derived from Φ using [S−COMBINE] rule and Φ can be derived from
Φc using [S−SPLIT] rule. ut

Definition 3 (b-consistency) A combined state Φc is b-consistent iff for ev-

ery pair of barrier nodes b1
c1,t17−−−→ barrier(p1) and b2

c2,t27−−−→ barrier(p2) in Φc,
b1=b2 =⇒ p1=p2 holds.

Corollary 1 A memory state Φ is b-consistent iff its combined state Φc is b-
consistent.

Proof. It directly follows from Lemma 2 as Φ and Φc are equivalent. ut

Example 1. The memory state b1
1,27−−→ barrier(p1) * b2

1,27−−→ barrier(p1) is b-

consistent. However, the memory state b1
1,27−−→ barrier(p1) * b2

1,27−−→ barrier(p1+1)
is not since, intuitively, it is possible for b1 and b2 to be aliased and thus the
two aliased barrier nodes have inconsistent phase numbers on the same barrier.

We apply our approach to verification of the programs presented in Fig. 5.
The program in Fig. 5a can be proven correctly synchronized. When verifying
the program in Fig. 5b, our verification system reports a failure when joining
the two threads because the joined state is not b-consistent.

{ emp }
barrier b = new barrier(2);

{ b 2,27−−→ barrier(0) }

{ b 1,27−−→ barrier(0) } { b 1,27−−→ barrier(0) }
int i=0; int j=0;

{ b 1,27−−→ barrier(0) ∧ i = 0 } { b 1,27−−→ barrier(0) ∧ j = 0 }
while (i<10){ wait(b);i++;} while (j<20){wait(b); j++; }
i=0;

while (i<10){ wait(b);i++;}
{ b 1,27−−→ barrier(20) ∧ i = 10 } { b 1,27−−→ barrier(20) ∧ j = 20 }

;

{ b 2,27−−→ barrier(20)}

Fig. 7. More Complex Example

Fig. 7 shows another example which is rather complex due to intricate phas-
ing. Our bounded permissions ensure that there are exactly two threads partici-
pating in the barrier b while the phase numbers capture exact phasing. Although
the two threads operate in different while loops, our notion of phase numbers
can certify that the two threads participate in the same numbers of phases.
Therefore, the program is correctly synchronized. Our approach is also capa-
ble of verifying programs with more intricate sharing and nested fork/join (see
Appendix B for such an example program).

5 Verification of Dynamic Barriers

This section presents our approach to verifying correct synchronization of dy-
namic barriers. In contrast to static barriers whose number of participants is
fixed, dynamic barriers allow the number of participants to be changed during
a program’s execution. For example, .NET framework allows threads to add
and remove m participants to/from a barrier b dynamically via add(b,m) and
remove(b,m).1 We first present a variant of bounded permissions (called dy-
namic bounded permissions) to keep track of the additions and/or removals of

1 .NET indeed uses AddParticipants() and RemoveParticipants(); we write add() and
remove() for brevity.

barrier participants of each thread. We then introduce a set of verification and
permission rules to reason about dynamic behaviors of dynamic barriers.

A summary of our approach is presented in Fig. 8. Compared to the
bounded permission in Section 3, a dynamic bounded permission of a barrier

b
c,t,a7−−−→ barrier(p) adds an additional component a, called permission addition,

to keep track of the additions and/or removals of barrier participants issued by
each thread. Permission addition a is a rational number since when splitting a
dynamic bounded permission, we require that the split-off permissions have pro-
portional shares of a (details to be presented soon). We also introduce the notion
of zero permission to capture the fact that a thread has dropped its participation
to a barrier (c=0) but still retained its information about the addition and/or
removals of participants. Our approach guarantees that zero permission can only
be achieved by a thread deliberately removing its participation and cannot be
produced by a permission split. A permission quantity (c, t, a) statically captures
the local view of a thread on the barrier. With the presence of permission ad-
dition a, the full permission is achieved when c = t+ a. Intuitively, the current
number of participants is equal to the original number of participants plus the
number of participants added or removed. One could recognize that dynamic
bounded permission and bounded permission coincide when a=0.

The verification rules in Fig. 8 capture dynamic behaviors of dynamic barri-
ers. Creating a new barrier results in a full permission of the barrier with a=0.
Destroying a barrier requires a full permission (c=t+a). Waiting at a barrier
requires a unit permission (c=1). Adding and removing m participants add and
respectively subtract m from the permission count and the permission addition.
The permission total t remains unchanged; it acts as a pivot for combining per-
missions when threads join together. A thread can only remove up to the permis-
sion count it has (c≥m). If c=m, after removing, a thread is considered dropping
its participation to the barrier. Adding participants requires c>0 to ensure that
a drop-out thread could not re-participate in a barrier. This is necessary because
when dropping out, a thread has lost phasing with other participants; therefore,
it is unsafe to allow it to re-participate.

Due to the nature of dynamic barriers, a thread could either fully participate
in a barrier (i.e. it does not drop out) or drop its participation in the middle
of its execution. Permission rules in Fig. 8 capture those dynamic behaviors.
The rule [D−SPLIT] never splits into zero permissions; therefore, it ensures that
a zero permission only appears due to a thread’s drop-out. The rule also en-
sures that a full permission is never created by splitting a partial permission
since it requires that the two split-off permissions have proportional shares of a;
that is a1= c1

c ·a and a2= c2
c ·a. We provide the proof for this claim in Appendix E.

When multiple threads join, some of them have fully participated in the barrier b
while others might drop out midway. Therefore, the combine rules have to take
into consideration several situations. First, combining two fully participating
threads (c1 6=0 and c2 6=0) adds up their permission counts and permission addi-
tions ([D−COMBINE−1]). Because of their full participation, their phase numbers
should be equal (both are p). Second, in order to combine one fully-participating

Dynamic bounded permission: b
c,t,a7−−−→ barrier(p)

Permission count: c
Permission total: t
Permission addition: a
Phase number: p

Permission invariant: 0 ≤ c ≤ t+ a
Full permission: c = t+ a
Partial permission: 0 < c < t+ a
Unit permission: c = 1
Zero permission: c = 0

Verification rules:

{n>0} b = new barrier(n); {b n,n,07−−−→ barrier(0)}
{b c,t,a7−−−→ barrier() ∧ c=t+a} destroy(b); {emp}

{b 1,t,a7−−−→ barrier(p)} wait(b); {b 1,t,a7−−−→ barrier(p+ 1)}
{b c,t,a7−−−→ barrier(p) ∧ c>0 ∧m>0} add(b,m); {b c+m,t,a+m7−−−−−−−→ barrier(p)}
{b c,t,a7−−−→ barrier(p) ∧ c≥m ∧m>0} remove(b,m); {b c−m,t,a−m7−−−−−−−−→ barrier(p)}
Permission rules:

[D−SPLIT]

b
c,t,a7−−−→ barrier(p) ∧ 0<c≤t+a ∧ 0<c1<t+a1 ∧ 0<c2<t+a2 ∧ c=c1+c2 ∧ a=a1+a2

∧ a1= c1
c
·a ∧ a2= c2

c
·a =⇒ b

c1,t,a17−−−−→ barrier(p) ∗ b c2,t,a27−−−−→ barrier(p)

[D−COMBINE−1]

b
c1,t,a17−−−−→ barrier(p) ∗ b c2,t,a27−−−−→ barrier(p) ∧ c1 6=0 ∧ c2 6=0

=⇒ b
c,t,a7−−−→ barrier(p) ∧ c=c1+c2 ∧ a=a1+a2

[D−COMBINE−2]

b
c1,t,a17−−−−→ barrier(p1) ∗ b c2,t,a27−−−−→ barrier(p2) ∧ c1 6=0 ∧ c2=0 ∧ p2≤p1

=⇒ b
c,t,a7−−−→ barrier(p1) ∧ c=c1+c2 ∧ a=a1+a2

[D−COMBINE−3]

b
c1,t,a17−−−−→ barrier(p1) ∗ b c2,t,a27−−−−→ barrier(p2) ∧ c1=0 ∧ c2=0

=⇒ b
0,t,a7−−−→ barrier(p) ∧ a=a1+a2 ∧ p=max(p1, p2)

[D−FULL]

b
c,t,a7−−−→ barrier(p) ∧ c=t+a ∧ a6=0 ∧ c>0 =⇒ b

c,t+a,07−−−−−→ barrier(p)

[D−SEP]

b1
c1,t1,a17−−−−−→ barrier(p1) * b2

c2,t2,a27−−−−−→ barrier(p2) ∧ (t1 6=t2 ∨ c1+c2>t1+a1+a2)
=⇒ b1 6=b2

Fig. 8. Verification of Dynamic Barriers

thread (c1 6=0) and a drop-out (c2=0), the phase number of the latter is at most
that of the former ([D−COMBINE−2]). Intuitively, if a thread has dropped its
participation in the middle of an execution, it did not participate in some later
phases; therefore, its phase number is at most that of a fully-participating thread.
Lastly, combining two drop-outs (c1=0 and c2=0) retains their total number of
additions/removals (a=a1+a2) and picks up the maximum between their phase
numbers ([D−COMBINE−3]). The rule [D−FULL] reshuffles the full permission
into an equivalent form. The rule [D−SEP] introduces the notion of separation in
the context of dynamic bounded permissions.

Similar to static barriers, in order to ensure correct synchronization of dy-
namic barriers and to support local reasoning, our approach requires that concur-

rent threads maintain a program in dynamic-barrier-consistent (db-consistent)
states. Db-consistency is mostly similar to b-consistency ; it additionally consid-
ers the cases where the phase numbers of barrier nodes of the same barrier are
not the same (due to the removal of participants). Due to space limitation, we
refer interested readers to Appendix C for more details.

{ emp }1

barrier b = new barrier(2);2

{ b 2,2,07−−−→ barrier(0) }3

//[D−SPLIT]4

{ b 1,2,07−−−→ barrier(0) }5

wait(b);6

{ b 1,2,07−−−→ barrier(1) }7

8

9

10

11

12

wait(b);13

{ b 1,2,07−−−→ barrier(2) }14

15

16

wait(b);17

18

{ b 1,2,07−−−→ barrier(3) }19

{ b 1,2,07−−−→ barrier(0) }
wait(b);

{ b 1,2,07−−−→ barrier(1) }
add(b,1);

{ b 2,2,17−−−→ barrier(1) }
//[D−SPLIT]

{ b
1,2, 1

27−−−→ barrier(1) } { b
1,2, 1

27−−−→ barrier(1) }
wait(b); remove(b,1);

{ b
1,2, 1

27−−−→ barrier(2) }
remove(b,1);

{ b
0,2,−1

27−−−−→ barrier(2) } { b
0,2,−1

27−−−−→ barrier(1) }

//[D−COMBINE−3]

{ b 0,2,−17−−−−→ barrier(2) }
//[D−COMBINE−2]19

{ b 1,2,−17−−−−→ barrier(3) }20

destroy(b);21

{ emp }22

Fig. 9. An Example of Verifying Synchronization of Dynamic Barriers

Fig. 9 presents the proof outline of a program with dynamic barriers. The
leftmost thread fully participates in b while the right thread participates in one
phase, then adds another participant (line 8), and creates two child threads op-
erating on b. The left child thread drops out after one phase while the right child
thread drops out without participation. At the end of the parallel compositions,
the permissions are combined together into a full permission. In our approach,
for local reasoning, each thread is verified separately and is unaware of opera-
tions (such as add/remove) performed by other threads until they join together.
Although sound (as proven in Section 6), our approach is incomplete since it
could reject programs that are correct at run-time. However, we believe that our
static verification is generally a good practice for programmers to follow in order
to avoid unexpected run-time behaviors (see Appendix D for details).

6 Soundness

We show that our proposed approach guarantees correct synchronization of dy-
namic barriers. As dynamic barriers are more general than static barriers, the

soundness also implies correct synchronization of static barriers. We first present
an encoding of join operations in terms of barrier operations. This encoding
simplifies the proof rules and soundness arguments to only focusing on barrier
operations. We then proceed to the main soundness arguments of our approach.

Lemma 3 (Soundness of Verifying Barrier Synchronization)
Given a program with a barrier b and a set of procedures P i together with their
corresponding pre/post-conditions (Φipr/Φ

i
po), if our verifier derives a proof for

every procedure P i, i.e. {Φipr}P i{Φipo} is valid, then the program is correctly
synchronized with respect to the barrier b.

Proof. Detailed definitions and proofs can be found in Appendix E. ut

7 Implementation and Experimental Results

We implemented our approach into a prototype tool, named VeriBSync2. We
applied VeriBSync to verifying static3 barrier synchronization of all twelve sim-
plified4 programs of SPLASH-2 suite [25]. SPLASH-2 suite is one of the most
widely used benchmarks for evaluating shared-memory systems. The suite con-
sists of twelve realistic programs covering numerous application domains such
as computer graphics (volrend), signal processing (fft), water molecule simu-
lation (water-spatial), and general engineering (radix) among others. Besides
the theoretical contributions, the empirical question we investigate is how well
our approach handles realistic barrier synchronization. The results were promis-
ing as our approach was able to verify all but one program in SPLASH-2 suite
with modest annotation. All experiments were done on a 3.20GHz Intel Core
i7-960 processor with 16GB memory running Ubuntu Linux 10.04. The suite of
benchmark programs and other examples are provided in our project website.

The experimental results are presented in Table 1. The column #Bar shows
the number of barriers used in the corresponding program. The column LOC
shows the total number of non-blank, non-comment, non-annotation lines of
source code, counted by sloccount (v2.26). The column LOAnn shows the total
number lines of annotation. Annotation overhead is computed as LOAnn

LOC (the
lower, the better). Verification times are in seconds. VeriBSync was able to ver-
ify barrier synchronization of all but one program in SPLASH-2 suite with the
verification time in several seconds. We discuss the reason why VeriBSync was

2 The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/veribsync/.

3 As dynamic barriers have just been available recently since .NET 4.0 (April 2010)
and Java 7 (July 2011), we are not aware of existing concurrency benchmarks that
use dynamic barriers. Nonetheless, we applied our prototype on a set of textbook
programs which represent typical usage of dynamic barriers. The programs are avail-
able in our project website.

4 As verifying full functional correctness of these programs is beyond the scope of this
paper, our experiments were conducted on a set of simplified programs where parts
of programs that are not related to barriers were omitted. All related parts such as
branching conditions and loops were retained to ensure that barrier synchronizations
in the simplified programs are similar to those of the original programs.

Table 1. Annotation Overhead and Verification Time of SPLASH-2 Suite

Program Description #Bar LOC LOAnn Overhead Time

ocean large-scale ocean simulation 1 60 5 8% 1.01

radix integer radix sort 2 68 7 10% 3.11

lu blocked LU decomposition 1 79 12 15% 14.33

barnes Barnes-Hut for N-body problem 1 84 12 14% 2.35

raytrace optimized ray tracing 1 94 7 7% 0.44

fft complex 1D FFT 1 101 8 8% 0.69

water-nsquared water simulation w/o spatial data structure 3 113 16 14% 13.23

water-spatial water simulation w/ spatial data structure 3 117 18 15% 13.53

cholesky blocked sparse cholesky factorization 1 131 10 8% 0.50

fmm adaptive fast multipole for N-body problem 1 175 20 11% 0.79

volrend optimized ray casting 2 232 36 16% 7.50

radiosity hierarchical diffuse radiosity method 1 83 - - -

Average - - - - 11% 5.23

not able to verify radiosity program in Section 8.1. The verification time and
annotation overhead depend on characteristics of the programs. Programs that
have complicated non-linear constraints and/or use barriers in many execution
branches (such as lu, barnes, water-*, and volrend) require higher verification
time and annotation overhead. On average, VeriBSync requires annotation
overhead of 11%, which is modest compared with that of 100% reported in the
literature [11].5 Much of the annotation and verification time are dedicated for
functional correctness properties of the programs such as branching conditions
and loops. As annotation efforts for these properties are also necessary for ver-
ifying functional correctness of concurrent programs, we believe that existing
logics for verifying functional correctness can easily integrate our approach into
their logics and benefit from our guarantee of correct barrier synchronization.

8 Discussion

This section discusses limitations and future extensions of our existing approach.

8.1 Functional Correctness vs. Barrier Synchronization

/* ... perform ray-gathering till

the solution converges */

while(init ray tasks(...)) {
wait(barrier);

process tasks(...);

}
Fig. 10. A Fragment of radiosity

In our existing approach, threads
are correctly synchronized if they
end up with the same (determinable)
phase numbers. However, there are
programs (such as radiosity) where
the phase numbers are tightly cou-
pled with functional correctness. A
fragment of radiosity program is
shown in Fig. 10. The barrier barrier is used within the while loop which termi-
nates only when the solution converges (by calling the procedure init ray tasks

to check for convergence). The init ray tasks procedure only allows one thread
(the first thread entering) to check for convergence and to update a global vari-
able while other threads only read that variable. Such barrier phasing, therefore,
is deeply correlated with functional correctness of the program (i.e. the con-
vergence) which could not be captured by our existing approach. However, our
approach could be extended to verify this type of programs by considering re-
source re-distribution that could be used to verify functional correctness, and

5 To be precise, the annotation overhead in [11] also includes the specification for
functional correctness. Although verifying functional correctness is not our main
goal, we also need to specify them for verifying barrier synchronization.

the use of existential phase numbers. Details of such an extension will be more
carefully investigated in the near future.

8.2 Deadlock-free Multiple Barriers

Correct synchronization is a property weaker than deadlock freedom: it ensures
deadlock freedom in case of a single barrier. When using multiple barriers, their
synchronization patterns could potentially lead to deadlocks. We plan to extend
our existing approach with barrier expressions to capture patterns of partici-
pating in multiple barriers. Together with the phase numbers, by proving that
the barrier expressions of different participants are compatible, we could guar-
antee deadlock freedom. Patterns of participating in multiple barriers have been
used in verification of SPMD programs with static barriers [2, 15, 27]. However,
adapting them to verification of fork/join programs with dynamic barriers is
non-trivial. This is not only because we need to address the unstructured nature
of fork/join programs (in SPMD programs, threads execute the same code while
in fork/join programs, they execute different pieces of code), but also because
we need to handle dynamic allocation/deallocation and addition/removals of
participants in a modular way. We leave this topic for future investigation.

9 Related Work

This section discusses related works regarding access permission systems and
static verification of barrier synchronization. We also discuss related works re-
garding other advanced forms of barriers such as X10’s clocks [22] and phasers
[23] which have recently been introduced in the context of async/finish programs.

9.1 Access Permissions

Boyland first introduced fractional permissions for reasoning about non-
interference of concurrent programs [5]. Bornat et. al. added counting permis-
sions [4]. Recently, various permission systems such as binary tree share model
[6], Plaid’s permission system [3], and borrowing permissions [19] have been
proposed. In a nutshell, they are akin to fractional and counting permissions.

Importantly, not every program is suitable for fractional permissions and
counting permissions. Programs that allow sharing resources among only a
bounded number of threads need another alternative treatment. Fractional and
counting permissions could not reason about those programs because, when us-
ing these permission systems, there is nothing to prevent a resource from being
split off an unbounded number of times and shared among an unbounded num-
ber of threads. Given any fractional permission f where 0<f≤1, it is always
possible to split f into two fractions f1 and f2 where f1+f2=f and f1, f2>0.
Similarly, in counting permissions, given a central permission authority holding
a source permission n, it is always possible to split off into a new source permis-
sion n+1 (held by the central authority) and a read permission −1 for sharing.
On the other hand, in our bounded permission system, any non-unit permission
(c, t) where 1<c≤t (either partial or full permissions) can be split off without
the presence of a central authority, and a bounded permission can only be split
off a bounded number of times (up to unit permissions). Therefore, bounded
permissions enable reasoning about bounded resources such as barriers.

9.2 Verification of Barrier Synchronization

Most existing works on verifying barrier synchronization focus on SPMD pro-
grams [2, 12, 14–16, 27, 26]. In SPMD programs, the fact that threads execute
the same code makes verification more tractable. SMPD programs also assume
that barriers are global and all threads need to participate in barrier operations.
Hence, existing techniques for SPMD programs cannot be directly applied to
fork/join programs. This paper fills in the gap and addresses barriers in the con-
text of fork/join concurrency where concurrent threads could execute different
pieces of code while participating in barrier operations. Furthermore, we do not
restrict that all threads should participate, i.e. a group of threads can partici-
pate on a certain barrier. We also support verification of dynamic barriers whose
number of participants can vary during a program’s execution. We are not aware
of any related works capable of verifying dynamic barriers in fork/join programs.

To the best of our knowledge, the most closely related work is by Hobor
and Gherghina [11]: they propose a specification logic for verifying partial cor-
rectness of programs with static barriers. Based on the global phase transition
specification of a barrier, they can also verify that participants proceed in correct
phases. However, there are several critical differences. First, they do not han-
dle dynamic barriers. Second, they require a global specification of each barrier,
whereby programmers have to specify pre-state and post-state for each thread
for every phase transition over the barrier. However, there are programs (such as
that in Fig. 7) where our approach using phase numbers can verify, but it is not
possible to capture a global specification for its barrier [8]. Though the global
specification of each barrier is an extra annotation burden, they can facilitate
resource re-distribution at synchronization points to ensure functional partial
correctness. Our current approach using phase numbers is considerably simpler,
but has not yet been designed to support resource re-distribution. This may be
important for more complex usage of barrier synchronization.

9.3 Advanced Forms of Barriers

There are various implementations of barriers [10], and several implementations
have been verified in [17]. Our specification in Fig. 6 and 8 can serve as a com-
mon interface for verifying different implementations. Beside traditional bar-
riers, other advanced forms of barriers X10’s clocks [22] and phasers [23] are
also used in the context of async/finish programs. Note that Java 7’s Phaser
[9] only includes a subset of capability of the phasers proposed in [23], i.e. Java
7’s Phaser is similar to dynamic barriers used in .NET [7] (which are the main
topic of Section 5). Compared with traditional barriers, clocks and phasers are
more dynamic in nature and are only applied to the more tractable context of
async/finish programs.

Barrier synchronization in async/finish programs is generally more tractable
than that in fork/join programs for two main reasons. First, thread creation
and join in async/finish programs are lexically-scoped while those in fork/join
are non-lexically-scoped, i.e. fork and join operations can be invoked in different
program scopes. Second, there are restrictions on the usage of clocks and phasers
in async/finish programs [22, 23]. For example, in X10 programs, a newly-spawn

thread has to explicitly register and directly operate on a clock, and it can only
register to the clock that its parent has already registered to. These restrictions
reject many useful programs such as the program presented in Figure 11 of
Appendix B. On the other hand, in fork/join programs written in mainstream
languages such as C/C++ (with Pthreads), Java, and .NET, there aren’t such
restrictions. A new thread does not need to register but can still freely own or
pass a barrier to other threads. Because of these reasons, one could not directly
apply analyses and verification techniques of clocks in async/finish programs
(e.g. those in [13, 18]) to traditional barriers in fork/join programs. In contrast,
we conjecture that one could adapt our proposed approach to statically verifying
correct synchronization of clocks and phasers.

10 Conclusion

We described a specification and verification approach for ensuring correct syn-
chronization of software barriers. Barriers, provided by many mainstream lan-
guages such as C/C++ (with Pthreads), Java, and .NET, are hard to handle
in fork/join programs because programmers must not only pay special atten-
tion to the (possibly dynamic) number of participating threads, but also ensure
that threads proceed in correctly synchronized phases. To our knowledge, this is
the first work that statically ensures the correct synchronization of both static
and dynamic barriers in fork/join programs. The keys of our approach are the
bounded permissions and phase numbers to keep track of the number of partic-
ipating threads and barrier phases respectively. Not restricted to only barriers,
bounded permissions can be generally used to reason about any resources that
are shared among a bounded number of concurrent threads. Our approach has
been proven sound, and a prototype of it has been implemented for verifying
barrier synchronization of realistic programs in SPLASH-2 benchmark suite.

Acknowledgement. We are grateful to our colleagues and the anonymous re-
viewers for their comments. Special thanks to C. Gherghina for many insightful
discussions, and to H. D. Nguyen for suggesting the use of rational numbers for
soundness. This work is supported by MOE Project 2009-T2-1-063.

References

1. The Open Group Base Specifications Issue 7 IEEE Std 1003.1-2008.
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html.

2. A. Aiken and D. Gay. Barrier Inference. In POPL, pages 342–354, 1998.
3. K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In

OOPSLA, pages 301–320, 2007.
4. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission Accounting

in Separation Logic. In POPL, pages 259–270, New York, NY, USA, 2005. ACM.
5. J. Boyland. Checking Interference with Fractional Permissions. In SAS, 2003.
6. R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation Algebras

and Share Accounting. In APLAS, pages 161–177, 2009.
7. A. Freeman. Pro .NET 4 Parallel Programming in C#. Apress, 2010.
8. C. Gherghina. Personal communication, April 2013.

9. J. F. González. Java 7 Concurrency Cookbook. Packt Pub Limited, 2012.
10. J. M. D. Hill and D. B. Skillicorn. Practical Barrier Synchronisation. In PDP,

pages 438–444, 1998.
11. A. Hobor and C. Gherghina. Barriers in concurrent separation logic: Now with

tool support! Logical Methods in Computer Science, 8(2), 2012.
12. T. E. Jeremiassen and S. J. Eggers. Static Analysis of Barrier Synchronization in

Explicitly Parallel Programs. In PACT, pages 171–180, 1994.
13. S. Joshi, R. K. Shyamasundar, and S. K. Aggarwal. A New Method of MHP

Analysis for Languages with Dynamic Barriers. In IPDPS Workshops, pages 519–
528, 2012.

14. A. Kamil and K. A. Yelick. Concurrency Analysis for Parallel Programs with
Textually Aligned Barriers. In LCPC, pages 185–199, 2005.

15. A. Kamil and K. A. Yelick. Enforcing Textual Alignment of Collectives Using
Dynamic Checks. In LCPC, pages 368–382, 2009.

16. Y. Lin. Static Nonconcurrency Analysis of OpenMP Programs. In IWOMP, 2005.
17. A. Malkis and A. Banerjee. Verification of software barriers. In PPoPP, 2012.
18. F. Martins, V. T. Vasconcelos, and T. Cogumbreiro. Types for X10 Clocks. In

PLACES, pages 111–129, 2010.
19. K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A Type System for Borrowing

Permissions. In POPL, pages 557–570, 2012.
20. P. W. O’Hearn. Resources, Concurrency and Local Reasoning. In CONCUR, 2004.
21. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

LICS, Copenhagen, Denmark, July 2002.
22. V. A. Saraswat and R. Jagadeesan. Concurrent Clustered Programming. In CON-

CUR, pages 353–367, 2005.
23. J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer III. Phasers: a Unified

Deadlock-free Construct for Collective and Point-to-point Synchronization. In ICS,
pages 277–288, 2008.

24. J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames. TOPLAS, 2012.
25. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

Programs: Characterization and Methodological Considerations. In ICSA, 1995.
26. Y. Zhang and E. Duesterwald. Barrier Matching for Programs with Textually

Unaligned Barriers. In PPoPP, pages 194–204, 2007.
27. Y. Zhang, E. Duesterwald, and G. R. Gao. Concurrency Analysis for Shared

Memory Programs with Textually Unaligned Barriers. In LCPC, 2007.

A Programming Language

In this section, we describe the core fork/join programming language with bar-
riers presented in Section 2.2. A program consists of a list of procedure declara-
tions proc. Each procedure proc is annotated with pairs of pre/post-conditions
(Φpr/Φpo) written in existing specification logics such as separation logic [21] and
implicit dynamic frames [24] enhanced with specification for barriers. The core
programming language supports primitive types (such as int, bool, and void),
and barrier type barrier. Key statements for concurrency consist of fork/join for
thread management and barrier operations. A fork receives a procedure name
pn and a list of parameters v∗, spawns a new thread executing the procedure,
and returns a unique thread identifier as an integer. A join requires a thread
identifier to join the thread back. For brevity of presentation, we write the par-
allel composition (s1||s2); as an abbreviation for creating concurrent threads (we
sometimes omit (); due to space limit). The parallel composition is just syntactic
sugar which can easily be encoded via fork and join. barrier b = new barrier(n)
creates a new barrier b with the number of participants n. destroy(b) destroys
the barrier b. A thread issues an barrier wait by calling wait(b). For dynamic
barriers, add(b,m) and remove(b,m) adds and respectively removes m partic-
ipants from the existing total number of participants. The semantics of other
program statements (such as procedure calls pn(v∗), conditionals, loops, assign-
ments) are standard as can be found in well-known languages such as C/C++,
Java, and .NET.

B Example Program with Intricate Sharing and Nested
Fork/Join

Fig. 11 shows an example of programs with more intricate sharing and nested
fork/join. Inside main, the main thread creates two child threads executing the
procedure group on two different barriers b1 and b2. These two threads do not di-
rectly operate on their respective barrier but they create two grand-child threads
to participate instead. Consequently, permissions of barrier b1 and b2 are trans-
ferred from the main thread to child threads and finally to the grand-child
threads to create two different groups of grand-child threads participating on
two different barriers. Based on the phase numbers, we can verify that threads
participate in the same numbers of phases. Note that after joining back the child
threads, the main thread gets back the full permissions for b1 and b2. Program-
mers need not indicate the fact that b1 and b2 are different barriers. Verifiers
can use our [S−SEP] rule to infer that information automatically.

C Consistency Requirements for Dynamic Barriers

Similar to static barriers, in order to ensure correct synchronization of dynamic
barriers and to support local reasoning, our approach also requires that concur-
rent threads maintain a program in dynamic-barrier-consistent (db-consistent)
states. However, the check for db-consistency is slightly more complex than that

void main()

requires emp
ensures emp;
{
{ emp }
barrier b1= new barrier(2);

barrier b2= new barrier(2);

{ b1 2,27−−→ barrier(0) * b2
2,27−−→ barrier(0) }

int idg1=fork(group,b1);

{ b2 2,27−−→ barrier(0) }
int idg2=fork(group,b2);

{ emp }
join(idg1);

join(idg2);

{ b1 2,27−−→ barrier(1) * b2
2,27−−→ barrier(1) }

destroy(b1);destroy(b2);

{ emp }
}

void participant(barrier b)

requires b
1,n7−−→ barrier(0)

ensures b
1,n7−−→ barrier(1);

{ wait(b); }

void group(barrier b)

requires b
2,27−−→ barrier(0)

ensures b
2,27−−→ barrier(1);

{
{ b 2,27−−→ barrier(0) }
int id1=fork(participate,b);

{ b 1,27−−→ barrier(0) }
int id2=fork(participate,b);

{ emp }
join(id1);join(id2);

{ b 2,27−−→ barrier(1) }
}

Fig. 11. Nested Fork/Join

of b-consistency because in case of dynamic barriers the phase numbers of differ-
ent barrier nodes of the same barrier need not be the same (due to the addition
and removal of participants). Note that since dynamic barriers subsume static
barriers (i.e. when a = 0), the definition of db-consistency also subsumes that of
b-consistency

Definition 4 (Combined State) A combined state Φc of a memory state Φ
is achieved by repeatedly applying the [D−COMBINE−1], [D−COMBINE−2], and
[D−COMBINE−3] rules until a fixpoint is reached.

Lemma 4 A memory state Φ and its combined state Φc are equivalent.

Proof. Φc is derived from Φ using [D−COMBINE−1], [D−COMBINE−2], and
[D−COMBINE−3] rules and Φ can be derived from Φc using a modified [D−SPLIT]

rule which allows splitting off zero permissions. ut

Definition 5 (db-consistency) A combined state Φc is db-consistent iff for
every pair of dynamic barrier nodes

b1
c1,t1,a17−−−−−→ barrier(p1) and b2

c2,t2,a27−−−−−→ barrier(p2) in Φc, the following assertion
holds:

b1=b2 =⇒ ((c1 6=0 ∧ c2 6=0 ∧ p1=p2) ∨ (c1=0 ∧ p1≤p2) ∨ (c2=0 ∧ p2≤p1))

Corollary 2 A memory state Φ is db-consistent iff its combined state Φc is
db-consistent.

Proof. It directly follows from Lemma 4 as Φ and Φc are equivalent. ut

D Static Verification versus Run-time Behaviors

Our approach can statically verify that a program is correctly synchronized in
the presence of static and dynamic barriers. For local reasoning, each thread is
verified separately and has its own view on a barrier b (reflected in the bounded
permission of b that it owns). Thus, a thread is unaware of operations (such
as add/remove) performed by other threads until they join together. Although
sound, our approach is incomplete since it could reject programs that are correct
at run-time. For example, our static verification (with local reasoning) does not
allow the program in Fig. 12a where the left thread is intended to remove the
participation of the right thread. However, we believe that a more desirable
way to implement this program is to let the right thread deliberately drop its
participation (as depicted in Fig. 12b). This more intuitive coding style is readily
captured by our approach.

In many cases, our static verification is helpful for preventing harmful be-
haviors at run-time such as deadlocks due to inter-thread addition/removal of
participants. One example is the program presented in Fig. 13a where the left
thread adds one participant to the barrier b while the right thread adds one more
thread participating in b. The programmers’ intention is that, after adding one
more participant, there will be three threads concurrently operating on the bar-
rier. Unfortunately, the program is potentially deadlocked due to the following
interleaving: 1 7→ 4 7→ 5 7→ 6 7→ 2 7→ 3. In this interleaving, the left thread waits
forever at statement 3 because it has to wait for two other participants to issue
a barrier wait, though they have already completed execution. Another example
is the program in Fig. 13b where the left thread removes one participant while
the right thread concurrently adds one participant. Although the total number
of participants remains unchanged, the program is potentially deadlocked due
to the interleaving 1 7→ 4 7→ 2 7→ 3 7→ 5 7→ 6. Fortunately, such error-prone
programs with inter-thread addition/removal of participants are rejected by our
approach. We believe that our static verification is generally a good practice for
programmers to follow in order to avoid unexpected run-time behaviors.

{emp}
barrier b = new barrier(2);

{b 2,2,07−−−→ barrier(0)}

{b 1,2,07−−−→ barrier(0)} {b 1,2,07−−−→ barrier(0)}
wait(b); wait(b);

{b 1,2,07−−−→ barrier(1)} {b 1,2,07−−−→ barrier(1)}
remove(b,1); //no longer

{b 0,2,−17−−−−→ barrier(1)} //participate

wait(b); //FAIL

...

(a) Rejected

{emp}
barrier b = new barrier(2);

{b 2,2,07−−−→ barrier(0)}

{b 1,2,07−−−→ barrier(0)} {b 1,2,07−−−→ barrier(0)}
wait(b); wait(b);

{b 1,2,07−−−→ barrier(1)} {b 1,2,07−−−→ barrier(1)}
wait(b); remove(b,1);

{b 1,2,07−−−→ barrier(2)} {b 0,2,−17−−−−→ barrier(1)}
{b 1,2,−17−−−−→ barrier(2)}

...

(b) Verified

Fig. 12. Dynamic Behaviors of Dynamic Barriers

barrier b = new barrier(2);1: wait(b); 4: wait(b);

2: add(b,1);

3: wait(b); 5: wait(b); 6: wait(b);

1 7→ 4 7→ 5 7→ 6 7→ 2 7→ 3 (Deadlocked)

(a)

barrier b = new barrier(2);1: wait(b); 4: wait(b);

2: remove(b,1); 5: add(b,1);

3: wait(b); 6: wait(b);

1 7→ 4 7→ 2 7→ 3 7→ 5 7→ 6 (Deadlocked)

(b)

Fig. 13. Potential Deadlocks due to Inter-thread Addition/Removal of Participants

E Soundness

We first present an encoding of join operations in terms of barrier operations.
This encoding simplifies the proof rules and soundness arguments to only fo-
cusing on barrier operations. We then proceed to the soundness arguments of
our verification approach. Note that our approach currently does not consider
non-termination due to infinite loops/recursion or deadlocks.

E.1 Encoding of Join Operations

Join operations can be encoded via barriers. Intuitively, each forked procedure
receives an extra parameter b of type barrier and a unit permission to wait on
that barrier. Before forking a child thread, a new barrier with two participants
is created and passed to the child thread. The child thread will wait on that
barrier before it terminates. A thread can join another thread by waiting on the
corresponding barrier of the latter.

We present details of the encoding. Given a forked procedure pn which is
defined as pn(w1, . . . , wn) requires Φpr ensures Φpo; { s }, we (1) add one more
parameter b of type barrier to its list of its parameters, (2) add a barrier wait
at the end of the procedure, and (3) modify its specification as follows:

pn(w1, . . . , wn, b)

requires Φpr * b
1,27−−→ barrier(0)

ensures Φpo * b
1,27−−→ barrier(1);

{ s; wait(b); }

Then, we encode int id=fork(pn,w1, ..., wn); as barrier b = new barrier(2);

int id=fork(pn,w1, ..., wn); and encode join(id) as wait(b). It is easy to see
that the encoding results in correct synchronization of the newly added barrier
b: two threads (the forker and the forkee) have unit permissions to access b and
they both wait on b just once.

E.2 Soundness of Dynamic Bounded Permissions

We prove that, besides boundedness, our dynamic bounded permission system
exercises properties of a standard access permission system: it allows concurrent
reads and exclusive write. That is, we prove that, when using our verification and
permission rules in Fig. 8, splitting and combining from any partial permissions
never result in a full permission unless all partial permissions of b are combined.

In this section, for brevity, we often refer to a permission b
c,t,a7−−−→ barrier(p) by

its quantity (c, t, a).
Let Sb and tb denote the set of all partial permissions and respectively the

permission total of a barrier b.

Corollary 3 (Full Permission) Combining all partial permissions of a barrier
b results in a full permission of b.

Proof. First, the permission total tb of a barrier b can only be safely changed
by the rule [D−FULL]. Otherwise, tb remains unchanged under the rest of per-
mission rules and verification rules in Fig. 8. Hence, we would like to prove
that

∑
(ci, ,)∈Sb

ci = tb +
∑

(, ,ai)∈Sb
ai holds. We prove it by induction on the

verification and permission rules. The equality trivially holds when the barrier
b is created. Destroy and wait operations does not affect the quantity of per-
missions. Add and remove operations add and respectively subtract the same
amount to/from c and a of a barrier node, hence the equality holds under the
operations. All permission rules also maintain the equality. ut

Corollary 4 (Permission Invariant) ∀(c, tb, a) ∈ Sb , c>a.

Proof. The invariant c>a trivially holds when a barrier b is created. Destroy and
wait operations does not affect the quantity of permissions. Add and remove
operations add and respectively subtract the same amount to/from c and a of a
barrier node, hence the invariant holds under the operations.

We prove that split/combine rules also maintain the invariant.
For the rule [D−SPLIT], we have:

– c>a or a
c<1

– a1= c1
c ·a and a2= c2

c ·a
Hence, we conclude that c1>a1 and c2>a2.

For the combine rules [D−COMBINE−1], [D−COMBINE−2], and
[D−COMBINE−3], we have:

– c1>a1 and c2>a2

– c=c1+c2 and a=a1+a2

Hence, we conclude that c>a. ut

Lemma 5 (Soundness of Dynamic Bounded Permission) Given a bar-
rier b, our approach ensures that splitting and combining from any partial per-
missions of b never result in a full permission unless all partial permissions of b
are combined.

Proof. First, it follows from Corollary 3 that combining all partial permissions
in Sb resulting in a full permission of b. We then show that it is impossible to
combine a strict subset of Sb into a full permission of b.

Assume there exists a strict subset S of all partial permissions of b such
at combining partial permissions in S results in a full permission of b. We have
S ⊂ Sb. We define S̄ the set of partial permissions of b not in S, that is Sb = S∪S̄.

Combining all permissions in Sb results in a full permission:∑
(ci, ,)∈Sb

ci = tb +
∑

(, ,ai)∈S

ai (6)

As Sb = S ∪ S̄ and (6), we have:∑
(ck, ,)∈S

ck +
∑

(cj , ,)∈S̄

cj = tb +
∑

(, ,ak)∈S

ak +
∑

(, ,aj)∈S̄

aj (7)

Combining permissions in S also results in a full permission:∑
(ck, ,)∈S

ck = tb +
∑

(, ,ak)∈S

ak (8)

From (7) and (8), we have the equality:∑
(cj , ,)∈S̄

cj =
∑

(, ,aj)∈S̄

aj (9)

This contradicts with Corollary 4 as c>a forall (c, tb, a); hence∑
(cj , ,)∈S̄ cj >

∑
(, ,aj)∈S̄ aj . ut

E.3 Soundness of Verifying Barrier Synchronization

We first define what it means for a program to be correctly synchronized with
respect to a dynamic barrier.

Definition 6 (Compatible Phasing) Given a dynamic barrier b with the last
phase p (also called final phase), a thread is said to operate on b in a compatible
number of phases p1 iff:

– If it fully participates in b (i.e. it does not drop out), then p1=p.
– If it drops out, then p1≤p.

Definition 7 (Correct Dynamic Synchronization) A program is correctly
synchronized with respect to a dynamic barrier b iff:

– There is exactly a predefined number of threads participating in the barrier
b’s wait operations.

– Participating threads operate on b in compatible numbers of phases.

Note that in case of static barriers, threads are not allowed to drop out.
Therefore, compatible phasing implies that all participants fully participate and
operate in the same numbers of phases.

A thread can be in one of four states: running, waiting, done, and aborted.
Our verification approach ensures that no thread reaches an aborted state. A
program state is non-aborting if neither of threads are in an aborted state. A
program state is final if all threads are in a done state.

Definition 8 (Thread State) A thread state σ is one of the following states:

– run(s, Γ) stating that the thread is running with remaining statement s and
environment Γ . For brevity, Γ is assumed to be a partial function from object
names to object references and from stack variables to values. Environment
Γ resembles stack and heap in programs.

– wait(o, s, Γ) stating that the thread is waiting at barrier object o with re-
maining statement s and environment Γ .

– done stating that a thread has completed its execution.
– aborted stating a thread has performed an illegal operation.

Threads in a program wait at barrier points and proceed in phases. We dis-
tinguish between local phase and global phase of a barrier. When a participant
reaches a barrier point, it increments its local phase. When all participants have
reached that point, the global phase will be incremented. If a thread still par-
ticipates in a barrier, its local phase is at most one ahead of the global phase.
Intuitively, after reaching a barrier point and incrementing its local phase, a
participant can only proceed if its local phase is equal to the global phase. This
semantics has the advantage that a participant only needs to know its local phase
and the global phase without worrying about the phases of other participants.

Definition 9 (Program State) A program state Ψ consists of:

– G representing a partial function from barrier objects to tuples (i, t, p) where i
is the number of participants that have been suspended (i.e. waiting to proceed
to the next phase), t is the total number of participants, and p is the current
global phase of barrier object o. We write Gi(o), Gt(o), and Gp(o) denote i,
t, and p respectively. A barrier object o is already allocated if o ∈ dom(G).

– T representing a set of threads. Each thread is a tuple (ι, σ, L) consisting of
thread identifier ι, thread state σ, and a local barrier map L. L maps barriers
to their corresponding local phases.

Definition 10 (Execution) Execution of a program starts in the initial pro-
gram state: (∅, (, run(s, ∅), ∅)).

Small-step operational semantics is presented in Fig. 14. In the figure,
def(pn) denotes the definition of the procedure pn in the program, eval(e, Γ)
denotes the evaluation of the expression e in the environment Γ . A premise
marked with light gray indicates conditions that need to hold, otherwise the
thread has performed an illegal operation and it transitions to an aborted state.
For example, a thread adds or removes to/from a barrier a negative number of

participants. Our verification rules ensure that the premises in light gray hold,
i.e. threads cannot transition to aborted states.

Most of the rules in Fig. 14 are straightforward. When forking a new child
thread, the main thread passes the global phase to the child thread. The treat-
ment of loops is similar to that of if-then-else and is omitted. When issue a
barrier wait, a thread transitions to a waiting state. The final thread issuing a
barrier wait increments the global phase p by 1 and resets the counter i to 0.
Threads transition back to a running state when all participants have issued a
barrier wait, i.e. the global phase is equal to threads’ local phases.

Lemma 6 (Correct Participation) Given a program with a barrier b and
a set of procedures P i together with their corresponding pre/post-conditions
(Φipr/Φ

i
po), if our verifier derives a proof for every procedure P i, i.e.

{Φipr}P i{Φipo} is valid, then there is exactly a predefined number of threads par-
ticipating in b’s wait operations.

Proof. Our verification rules rely on bounded permissions to handle concurrent
accesses to barrier b. Given n is the predefined number of participants, it fol-
lows from Lemma 1 that there are at most n threads concurrently operating on
barrier b. In order to perform a wait on barrier b, threads must have unit per-
missions of barrier b. Additionally, adding and removing participants correspond
to the addition and subtraction of the total number of participants t in opera-
tional semantics, i.e. tb +

∑
(ci,tb,ai)∈Sb

ai = t where tb is the original number of
participants declared at b’s creation point. Hence, there are exactly n threads
participating in barrier b. ut

Lemma 7 (Correct Phasing) Given a program with a barrier b and a set of
procedures P i together with their corresponding pre/post-conditions (Φipr/Φ

i
po),

if our verifier derives a proof for every procedure P i, i.e. {Φipr}P i{Φipo} is valid,
then threads participating on barrier b operate in compatible numbers of phases.

Proof. The phase number used in our barrier specification corresponds to the
local phase in the operational semantics. The final phase of b corresponds to the
global phase of b after all participants complete their execution. First, if a thread
fully participates on barrier b (it does not drop out), then it ends up in a local
phase which is equal to the global phase. Second, if a participant drops out, it
ends up in a local phase which is at most equal to the global phase. Third, if a
thread does not fully participate on barrier b, does not drop out, and ends up
in a phase which is not the final phase, it will be rejected by the db-consistency
check (See Appendix C). Hence, all participants end up in compatible numbers
of phases. ut

Lemma 8 (Soundness of Verifying Barrier Synchronization)
Given a program with a barrier b and a set of procedures P i together with their
corresponding pre/post-conditions (Φipr/Φ

i
po), if our verifier derives a proof for

every procedure P i, i.e. {Φipr}P i{Φipo} is valid, then the program is correctly
synchronized with respect to the barrier b.

Proof. It directly follows from Lemma 6, Lemma 7, and Definition 7. ut

o /∈ dom(G) typeof(o) = barrier Γ (n) = num num>0
Γ ′ = Γ [b 7→ o] G′ = G[o 7→ (0, num, 0)] L′ = L[o 7→ 0]

(G, {(ι, b = new barrier(n);s, Γ), L)} ∪ T)→
(G′, {(ι, run(s, Γ ′), L′)} ∪ T)

(G, {(ι, run(if true then s1 else s2;s, Γ), L)} ∪ T)→
(G, {(ι, run(s1;s, Γ), L)} ∪ T)

(G, {(ι, run(if false then s1 else s2;s, Γ), L)} ∪ T)→
(G, {(ι, run(s2;s, Γ), L)} ∪ T)

eval(e, Γ) =b

(G, {(ι, run(if e then s1 else s2;s, Γ), L)} ∪ T)→
(G, {(ι, run(if b then s1 else s2;s, Γ), L)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
s′1 = [v1/w1, . . . , vn/wn]s1

(G, {(ι, run(pn(v1, . . . , vn); s, Γ), L)} ∪ T)→
(G, {(ι, run(s′1; s, Γ), L)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
∀i ∈ {1, . . . , n} • Γ (vi) = oi fresh(ι1)

Γ1 = [w1 7→ o1, . . . , wn 7→ on] Γ ′ = Γ [v 7→ ι1]
L1 = [(oi, Gp(oi)) | Γ (vi) = oi ∧ typeof(oi) = barrier]

(G, {(ι, run(v = fork(pn, v1, . . . , vn); s, Γ), L)} ∪ T)→
(G, {(ι, run(s, Γ ′), L)} ∪ {(ι1, run(s1, Γ1), L1)} ∪ T)

Γ (b) = o G(o) = (i, t, p) i<t−1
G′ = G[o 7→ (i+1, t, p)] L′ = L[o 7→ L(o)+1]

(G, {(ι, run(wait(b); s, Γ), L)} ∪ T)→ (G′, {(ι,wait(o, s, Γ), L′)} ∪ T)

Γ (b) = o G(o) = (i, t, p) i=t−1
G′ = G[o 7→ (0, t, p+1)] L′ = L[o 7→ L(o)+1]

(G, {(ι, run(wait(b); s, Γ), L)} ∪ T)→ (G′, {(ι,wait(o, s, Γ), L′)} ∪ T)

L(o) = Gp(o)

(G, {(ι,wait(o, s, Γ), Γ), L)} ∪ T)→ (G, {(ι, run(s, Γ), L)} ∪ T)

Γ (b) = o Γ (m) = a a>0 G(o) = (i, t, p) G′ = G[o 7→ (i, t+ a, p)]

(G, {(ι, run(add(b, m); s, Γ), L)} ∪ T)→ (G′, {(ι, run(s, Γ), L)} ∪ T)

Γ (b) = o Γ (m) = a G(o) = (i, t, p) t≥a>0 t−a>i G′ = G[o 7→ (i, t−a, p)]
(G, {(ι, run(remove(b, m); s, Γ), L)} ∪ T)→ (G′, {(ι, run(s, Γ), L)} ∪ T)

Γ (b) = o Γ (m) = a G(o) = (i, t, p) t≥a>0 t−a≤i G′ = G[o 7→ (0, t−a, p+1)]

(G, {(ι, run(remove(b, m); s, Γ), L)} ∪ T)→ (G′, {(ι, run(s, Γ), L)} ∪ T)

(G, {(ι, run(skip, Γ), L)} ∪ T)→ (G, {(ι,done, L)} ∪ T)

Fig. 14. Small-step Operational Semantics

