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Abstract
The amount of software in embedded systems

has increased significantly over the last years and,
therefore, the verification of embedded software is
of fundamental importance. One of the main prob-
lems in embedded software is to verify variables
and functions based on temporal properties. For-
mal property verification using model checker of-
ten suffers from the state space explosion problem
when a large software design is considered. In this
paper, we propose two new approaches to integrate
assertions in the verification of embedded software
using simulation-based verification. Firstly, we ex-
tended a SystemC hardware temporal checker with
interfaces in order to monitor the embedded soft-
ware variables and functions that are stored in a
microprocessor memory model. Secondly, we de-
rived a SystemC model from the original C pro-
gram in order to integrate directly with the Sys-
temC temporal checker. We performed a case study
on an embedded software from automotive industry
which is responsible for controlling read and write
requests to a non-volatile memory.

1 Introduction

Almost all the classical car functions are being
controlled by microprocessor elements. Embedded
software (ESW) plays a key role in order to over-
come the time-to-market pressure and to provide
new functionalities, like reduction of gas emissions
and improvement of security and comfort. Finite-
state machine errors, timing errors, stack/memory
overflow errors and non-volatile memory errors are
some examples of severe coding errors and, there-
fore, the verification of embedded software is of
fundamental importance.
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Assertion-based verification methodology cap-
tures a design’s intended behavior in temporal
properties and monitors the properties during sys-
tem simulation [9]. However, this methodology
has been successfully used at lower levels of hard-
ware designs, especially at register transfer level
(RTL), which requires a clock mechanism as tim-
ing reference and signals at the Boolean level.
Thus, it is not suitable to apply this hardware ver-
ification technique directly on embedded software,
which has no timing reference and contains more
complex structures (e.g. integers, pointers, etc.).
Therefore, we need a new mechanism in order to
apply assertion-based methodology on embedded
software.

The most commonly used approaches to verify
embedded software are based on both simulation
and formal approaches. Directed test approaches
possibly taking advantage of co-debug and/or co-
simulation solutions. This results in a high effort
to create test vectors and critical corner case sce-
narios might go unnoticed. Furthermore, one of
the main problems in embedded software verifica-
tion is monitoring variables and functions based on
temporal properties.

In order to verify temporal properties in embed-
ded software, formal method techniques are effi-
cient, but only for medium sized software systems,
where they have less state space to explore. For
larger software designs, formal verification using
model checker often suffers from the state space
explosion problem. Therefore, we need to use ab-
straction techniques in order to alleviate the bur-
den for the back-end model checker. For example
BLAST [6] checks the software based on predicate
abstraction. It verifies temporal safety properties
of C programs via a specification language (SpC)
[3]. However, for complex properties it is as labori-
ous task as programming to describe the properties
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using SpC. In addition, we need to introduce new
global variables that debilitate the strength of the
model checker. Therefore, verification of a tempo-
ral properties in the realm of embedded software is
still a concern.

In this paper, we used two new simulation-
based approaches to tackle these problems. At first
we integrated temporal properties into a micropro-
cessor via SystemC Temporal Checker (SCTC)
to perform verification under real-time conditions.
Secondly, we derive the SystemC model from the
original C program and later this model is verified
using SCTC. SystemC [5] is used to support mod-
eling of both hardware and software components.

The remainder of this paper is organized as fol-
lows. Section 2 presents briefly the state-of-the-art
in the embedded software verification field. Sec-
tion 3 covers the combining of temporal properties
and embedded software. Section 4 gives the ex-
perimental results and discussion. Section 5 con-
cludes and describes briefly the future work.

2 Related Work
There are several works in the simulation and

debugging area, which are specific to a given plat-
form or prototyping environment [12] or specific
for a processor family [2]. Some works were
published using emulators to speed up the sim-
ulation of cycle accurate microprocessor models
[10]. Hardware coverage driven verification has
been extended to perform hardware/software co-
verification [17]. The SystemC Verification Li-
brary [7] provides no means of embedded software
verification and does not contain a mechanism for
specifying and checking temporal properties.

However, these verification approaches do not
contain mechanisms to enable the verification of
temporal properties of both functions and variables
in the embedded software side.

2.1 Formal Software Verification

Often used software (i.e. C program) model
checking approaches are: a) Bounded Model
Checking (BMC) [4]; b) Model checking with
predicate abstraction using a theorem prover or a
SAT-solver [6, 16, 14]; c) Convert the C program
to a model and feed into a model checker [8].

The work in [8] focuses on model checking C
programs. They model the semantics of C pro-
grams as finite state systems by using suitable ab-
stractions. Later these abstract models are veri-
fied using both BDD-based and SAT-based model
checkers. CBMC [4] performs the formal ver-
ification of full ANSI-C programs using BMC.
However, the tool has restrictions with upper time
bound. Due to the boundedness CBMC can be

used for finding errors and not for proving cor-
rectness. BLAST [6] checks software based on
an abstract-check-refine paradigm. It constructs an
abstract model based on predicates, then checks
the safety property, and if the check fails, refines
the model and iterates the whole process. There-
fore, each model checker has its own strengths and
weaknesses. A detailed survey on software model
checking approaches is made in [15].

2.2 Contributions

Our main contributions in this paper are two
new approaches to integrate temporal assertions in
the verification of embedded software. Firstly, we
have extended a SystemC temporal checker with
new interfaces in order to monitor the embedded
software variables and functions that are stored in
a SystemC microprocessor memory model. Sec-
ondly, we derive a SystemC model from the orig-
inal C program to integrate directly with the Sys-
temC temporal checker. To the best of our knowl-
edge there is no previous work related to the
temporal property verification of both embedded
software variables and functions in the realm of
simulation-based verification.

3 Temporal Checker Framework
The C language does not support any means

to check temporal properties in software modules.
Therefore, we use the existing SCTC, which is
a hardware oriented temporal checker. SCTC
supports specification of properties either in PSL
(Property Specification Language) [1] or FLTL
(Finite Linear time Temporal Logic) [13], an ex-
tension to LTL with time bounds on the temporal
operators.

Temporal logics are used to describe sequences
of states in reactive systems. A formula is satisfied
if a path in the system corresponds to the sequence
of states the formula represents.

SCTC has a synthesis engine which converts
the plain text property specification into a for-
mat that can be executed during system monitor-
ing. We translate the property to Accept-Reject
automata (AR-automata) [13] in the form of Inter-
mediate Language (IL) and later to a monitor in
SystemC. The AR-automata can detect validation
(i.e., True) or violation (i.e., False) of proper-
ties on finite system traces, or they stay in pending
state if no decision can be made yet.

SCTC can also check properties which in-
clude complex structures using a base class
Proposition. This class allows wrapping arbi-
trary source code entities as named objects. Fig. 1
lists the interface of class Proposition. The
virtual member function is true (line 4) has to



1class Proposition {
2public:
3// A proposition must evaluate to ei-

ther true or false.
4virtual bool is true() = 0;
5bool is false() { return !is true(); }
6// Create clone of the current propo-

sition.
7virtual Proposition∗ clone() = 0;
8// Ensure proper destruction with

virtual destructor.
9virtual ˜Proposition() { }
10};

Figure 1. Proposition class interface
be provided by any subclass of Proposition.
The checker evaluates these functions in order to
get the current system states. The return value of
this function is connected with the Boolean layer of
the temporal property. These atomic entities con-
stitute the predicates in the temporal logic formu-
las. Typically, propositions are stateless. However,
for more advanced predicates, they can carry state.

The existing SCTC does not support a mecha-
nism to monitor the variables and functions of em-
bedded software. Therefore we need to extend the
SCTC.

3.1 1st Approach: Verification us-
ing Microprocessor Model

In embedded software, SCTC needs to com-
municate with the software running on the pro-
cessor. The use of a microprocessor model en-
ables us to verify real operating conditions of the
embedded software. The architecture of this ex-
tension can be seen in Fig. 2. SCTC needs
a SystemC microprocessor model and an inter-
face to the main memory (e.g. sc uint <32>
sctc sc read uint (sc uint <32> addr)). With this
interface we can provide the ESW variable address
and read its content from memory. The verifica-
tion of the temporal properties in ESW should fol-
low some steps: a) Determine the program vari-
ables that should be verified. b) Determine the
addresses of the variables, which are located in
the embedded memory. c) For all functions, add
the assignment fName=FUNCTION NAME. This
allows us to monitor function sequels through
a variable. Thus, the function names can be
also used in the property specification. d) Cre-
ate an ESW monitor module in order to wrap
the SCTC in the SystemC microprocessor design.
This module will handle the handshake protocol
between the ESW and the SCTC. e) Create the
ESW Propositions that should be used for
temporal properties. f) Instantiate temporal prop-
erties in the ESW monitor module.

Memory Microprocessor 
modelSoC Bus

esw_pc_event

SCTC
monitor

ESW_monitor

clock

Translator

Property
PSL/FLTL

AR-Automata
(IL repre.)

/*C embedded software*/
/* Global variables*/
bool flag;
int var1;

void main(void){
/* Initialization*/
flag = true;   /*Protocoll*/
var1 = 0; /*Variable*/

   while(1){
test1(); /*Function*/

      /* Implementation*/
   }
 }

Figure 2. Verification of temporal
properties in C program

1void ESW monitor :: esw monitor(){
2define clock asTrigger();
3while !initialized
4initialized =
5readfromMemory(flag address);
6register ThePropositions();
7instantiate TheTemporalProperties();
8forever
9monitor TheTemporalProperties();
10}

Figure 3. Protocoll between SCTC and
embedded sofware.

We also need a timing reference in order to trig-
ger the temporal properties during the simulation.
Using the microprocessor clock as our timing ref-
erence enables us to verify the temporal properties
in real-time conditions (see line 2, Fig. 3). When
the SCTC needs to make a call to a function in
the embedded software, it first needs to check that
the software is active and has been initialized. This
can be done by reading the status of the flag vari-
able in the software (lines 3-5). When the ESW
is initialized, we register the propositions and in-
stantiate the temporal property monitors (lines 6-
7). This process occurs only in the initial phase
of ESW monitor module. After this initialization
phase, temporal properties (i.e. assertions) will be
monitored during the simulation.

3.2 2nd Approach: SystemC Model
Derivation from Embedded
Software

The microprocessor model in the first approach
allows real-time temporal properties to be veri-
fied. Albeit we perform verification under real-
time conditions, more simulation time is consumed
due to microprocessor model. In order to speed up
the verification process, we propose a second ap-
proach where we derive a SystemC model from the
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Figure 4. Verification without using
microprocessor model

1void C2SystemC Translator() {
2create ESW SC class();
3define esw pc event asTrigger();
4create VirtualMemModel();
5for all directMemAccessVars
6convert DirectMemAccessToVM();
7for all Cvars
8define CvarsToSCmembers();
9for all Cfunctions
10define CfuncsToSCmemberFuncs();
11for all FunctionBody
12add fName=FUNCTION NAME;
13after every statement
14add esw pc event.notify();
15add wait();
16}

Figure 5. Derivation of a SystemC
model from C program.

embedded software and thereafter apply SCTC.
Fig. 4 shows the verification approach without us-
ing a microprocessor model.

The algorithm responsible for deriving the Sys-
temC model is presented in Fig. 5. The derived
model is as precise as original C program. It
consists of one SystemC class (ESW SC) mapped
to a corresponding C program. The main func-
tion in C will be converted into a SystemC pro-
cess (SC THREAD). Since software itself does
not have any clock information, we propose a
new timing reference using a program counter
(esw pc event) event (lines 3 and 13-15). Ad-
ditionally the wait(); statement is necessary
to suspend the SystemC process. The program
counter event will be notified after every statement
and will be responsible to trigger the SCTC. It
is important to point out that the timing reference
is not the same as the absolute time from the mi-
croprocessor model (see Section 3.1). This makes
a huge difference in length of the AR-automaton
if we specify the properties involving fixed time

length. Since the prior approach works with abso-
lute time, it needs larger time bounds to be speci-
fied in the property in order to execute each state-
ment in the C program. This second approach uses
the program counter (esw pc event) as clock
reference, i.e. each statement execution is one
time step. Therefore, it needs relatively lower time
bounds in AR-automaton if we check the same
functionality using both approaches.

The embedded software works close to the
hardware, for instance automotive software where
we need to access memory frequently. We consider
that the verification is performed without having
hardware (original microprocessor memory) and in
such cases the access should be mapped to a virtual
memory model. Thus, all direct memory access
(e.g. *(address)) should be converted into vir-
tual memory requests. Lines 4-6 in the above al-
gorithm implements these functionalities. Fig. 4
shows the use of the virtual memory for the lower
ESW model layer.

Lines 7-10 in the algorithm convert the global
variables and functions in our C program into Sys-
temC conventions (i.e. class members and mem-
ber functions, respectively). As aforementioned
in Section 3.1, we need to create a new vari-
able named fName that helps to inspect func-
tion sequel properties. The variable will be up-
dated in each function context with the assignment
fName=FUNCTION NAME.

In contrast to the first approach, we do not need
to implement any protocol in order to initialize the
verification. The derived SystemC model and the
SCTC are integrated in sc main environment.

4 Automotive Case Study

Our case study is an EEPROM Emulation soft-
ware from NEC Electronics company [11]. It uses
a layered approach towards the EEPROM Emu-
lation. The software is therefore split into two
parts: the Data Flash Access layer (DFALib) and
the EEPROM Emulation layer (EEELib), as shown
in Fig. 6. The Data Flash Access Layer provides
an easy to use interface for the flash hardware. The
EEPROM Emulation layer provides a set of higher
level operations for the application layer. These
operations include: format, prepare, read,
write, refresh, startup1 and startup2.
The EEELib is a highly state driven program. Each
of these operations are defined by a series of ma-
chine states that the emulation flow must follow
in order to complete the process. In most cases,
the states are unique to a procedure. However the
ready, abort, error and finish states are
shared states. In total the whole EEPROM Emula-
tion code comprises approximately 8.500 lines of
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Figure 6. NEC software
C code and 81 functions. The verification goal is to
check the correctness of the software with respect
to all the operations.

4.1 Results and Discussions

We performed 3 sets of experiments. The first
set of experiments presents the results using a
state-of-the-art software verification tools. These
experiments were conducted on an Intel Pentium
machine 2Ghz, 2GB RAM with Linux OS. The
second and third sets of experiments show the ver-
ification results with and without the microproces-
sor model. These experiments were conducted on
an Intel Pentium machine 3.2Ghz, 2GB RAM with
Linux OS.

We extracted our property set (FLTL standard)
from the NEC specification manual. Each property
in this set describes the basic functionality on each
EEELib’s operation, (i.e. read, write, etc). A sam-
ple of our FLTL properties is as follows:

F (Read → X F[b ] (EEE OK || . . . )) (A)

where b > 0 is an explicit time bound. The prop-
erty represents the calling the operations in the
EEELib library (e.g. Read) and the several return
values (e.g. EEE OK) may be received. All the
tested properties were safe.

4.1.1 Experience with BLAST and CBMC
Model Checkers

First, we checked our software with two state-of-
the-art formal software verification tools BLAST
and CBMC. To specify complex temporal prop-
erties, BLAST uses a specification language
(SpC). BLAST faces an integer overflow prob-
lem, i.e. when the value of the variable exceeds
1073741823 (230 − 1) then the tool could result in
either a false positive or false negative. For all the
properties we were not able to finish the verifica-
tion process due to abort exceptions (as shown in
Fig. 7), which we surmise resulted from theorem
prover. CBMC does not support any mechanism
to specify temporal properties. Therefore, we re-
quired the use of the Spec tool [3] in order to de-
scribe the properties and then a newly generated
C file (consisting of the property described in it)
is fed into CBMC. For all the properties, CBMC
spent more than 5 hours in unwinding C loops.
Therefore, we always faced time limit problems.

In our experiments we used the limit of 20 for un-
winding loops. In addition, all the input variables
have to be constrained in order to avoid false rea-
soning.

BLAST CBMC
Property V.T.(s) Result V.T.(s) Result

Read 2001 Exception > 18000 unwind
Write 1115 Exception > 18000 unwind

Startup1 1358 Exception > 18000 unwind
Startup2 1428 Exception > 18000 unwind
Prepare 674 Exception > 18000 unwind
Refresh 489 Exception > 18000 unwind
Format 355 Exception > 18000 unwind

Figure 7. BLAST and CBMC results

4.1.2 Verification with Microprocessor Model
We needed to generate stimuli (constrained ran-
domization) for all the external input variables and
hardware (i.e. Data Flash) elements. We used the
maximum of 10000 test cases in our experiments.
The properties we verified are of the type (A) in the
above equation and the results are shown in the first
column of Fig. 8. The Verification Time in seconds
is shown in the subcolumn V.T.(s). The Test
Cases (T.C.) subcolumn corresponds to the num-
ber of test cases applied during the verification.
The Coverage (C.(%)) subcolumn describes the
percentage of the return values that we received.
100% indicates that we received all the return val-
ues. To trigger on each statement in C program
requires a large number of system clock cycles and
therefore, we did not use any time bound in our
properties.

4.1.3 Verification with SystemC ESW Model
We checked our properties with time bound 1000,
time bound 10000 and no time bound as shown in
the second column of Fig. 8. Properties with no
time bound (TB) are pure LTL properties. We used
the maximum of 100000 test cases in this set of
experiments. For the properties Read, Format
and Prepare the increase in time bound resulted
in better coverage of the returned values. In some
of our experiments, the properties without time
bound outperforms the ones with time bound due
to the higher number of test cases. The verifi-
cation time in all our approaches comprises both
AR-automaton generation and simulation times.
The subcolumn V.T. in column TB-10000 includes
large AR-automaton generation time. For all our
experiments the second approach took less verifi-
cation time compared to the first approach. We
achieved a speedup of up to 900. This is mainly
due to the dropped real-time conditions of the mi-
croprocessor model. All our results show that we
can verify the properties without having any false
positives or false negatives.



With microprocessor model SystemC ESW model
No-TB TB-1000 TB-10000 No-TB

Property V.T.(s) T.C. C.(%) V.T.(s) T.C. C.(%) V.T.(s) T.C. C.(%) V.T.(s) T.C. C.(%)
Read 505 721 100 1.4 47 40 166 467 60 0.57 721 100
Write 3886 10000 33 1.4 45 33 165 437 33 81 100000 33

Startup1 18 10 100 1.4 10 100 165 10 100 0.02 10 100
Startup2 12987 10000 66 1.4 51 66 179 484 66 60 100000 66
Format 3581 10000 66 1.4 43 33 165 417 66 65 100000 66
Prepare 9807 10000 50 1.4 44 25 166 403 50 76 100000 75
Refresh 3604 10000 40 1.4 48 40 166 449 40 74 100000 40

Figure 8. 1st and 2nd approaches results

5 Conclusion and Future Work

Automotive embedded software are often very
large and complex. Formal verification often suf-
fers from the state space explosion problem when
we intend to verify large embedded software. In
this paper, we detailed two new approaches to inte-
grate temporal assertions in the verification of em-
bedded software using simulation based verifica-
tion: Firstly, we integrated the temporal properties
into a SystemC microprocessor model. Secondly,
we derived a SystemC model (without performing
any abstraction) from the original C programs. The
first approach demonstrates the advantage of veri-
fying real-time temporal properties in C program
using the microprocessor clock as a timing refer-
ence. However, we had an overhead of simulating
the microprocessor model. The second approach
uses only a SystemC ESW model. Therefore, we
achieved shorter verification times. However, we
had an overhead of generating a SystemC ESW
model. Both approaches are suitable for verifying
complex temporal properties and are easy to apply
in the industrial design flow. As we can notice in
Section 4, neither of new approaches faced excep-
tion or false reasonings compared to the state-of-
the-art tools. In future, we would like to combine
the simulation-based verification and formal verifi-
cation approach in order to improve the coverage.
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