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Theoretical understanding of the scaling of entropies and the mutual information has led to signif-
icant advances in the research of correlated states of matter, quantum field theory, and gravity. Mea-
suring von Neumann entropy in quantum many-body systems is challenging as it requires complete
knowledge of the density matrix. In this work, we measure the von Neumann entropy of spatially
extended subsystems in an ultra-cold atom simulator of one-dimensional quantum field theories. We
experimentally verify one of the fundamental properties of equilibrium states of gapped quantum
many-body systems, the area law of quantum mutual information. We also study the dependence
of mutual information on temperature and the separation between the subsystems. Our work is a
crucial step toward employing ultra-cold atom simulators to probe entanglement in quantum field
theories.

The study of quantum information measures is central
to a wide range of areas in physics, from condensed mat-
ter and atomic physics to high energy physics and grav-
ity [1–12]. Some of the most commonly studied quantities
in quantum information are the (entanglement) entropy
and the quantum mutual information. If a system de-
scribed by the density matrix % is composed of subsys-
tems A and B, then the von Neumann (vN) entropy of
subsystem A is defined as

SA = −Tr (%A ln (%A)) , (1)

where %A = TrB (%) is the reduced density matrix of sub-
system A. If the state % is pure (Tr

(
%2
)

= 1), then the vN
entropy is a measure of entanglement between A and B,
thus called entanglement entropy, where SA = SB . For
mixed states (Tr

(
%2
)
< 1), the vN entropy captures both

classical and quantum correlations, and it is no longer a
good measure of entanglement. For mixed states, several
other measures and witnesses of entanglement have been
studied, with the positivity of partial transpose criterion
and quantum discord being prominent examples [1, 13].

∗ amintajik.physics@gmail.com
† schmiedmayer@atomchip.org

In cases where, rather than entanglement, the shared
amount of information between two subsystems A and
B is of interest, the quantum mutual information (MI),

I(A : B) = SA + SB − SA∪B , (2)

is a central object of study. It measures the total amount
of correlation between the two subsystems, including all
higher-order correlations for both pure and mixed states.
For pure states, the value of the MI is equal to twice the
entanglement entropy of one of the subsystems.

Information theory measures reveal one of the funda-
mental properties of quantum many-body systems, the
area laws [3, 14]. It was first noticed in gravitational
physics, that surprisingly, the entropy of a black hole is
proportional to the surface area of its event horizon and
not its volume [11]. Interestingly, a similar property was
found in quantum many-body systems: The vN entropy
of ground states of systems with a gapped Hamiltonian
scales with the surface area of the subsystem and not
its volume [14]. Even more general, thermal states of
systems with a gapped Hamiltonian exhibit an area law
of mutual information [15]. This means that the infor-
mation shared between parts of a quantum many-body
system is only considerable over a short distance, set by
the correlation length. In particular, such a bound on
the required information to model a many-body system
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FIG. 1. Schematic of the experimental protocol. a, The experimental protocol starts by cooling down a pair of tunnelling
coupled superfluids in a double-well potential with a finite single particle tunnelling rate J , typically ≈ 2π × 1 Hz. The radial
trapping frequency is ω⊥ = 2π × 1.4 kHz and typical linear densities are n1D ≈ 70 µm−1. b, Right after the cooling process,
the tunnelling rate is changed to zero in 2 ms. At t = 0, the two condensates are already uncoupled and their independent
evolution following the Tomonaga-Luttinger liquid Hamiltonian starts. The measured phase correlations at different times are
used to fit the full covariance matrix Γ. c, To calculate the vN Entropy for a subsystem, S(ΓA), we use the correlations in that
specific region (yellow shaded area). Note that Q, R, and P have different units and the range of the color axis are different.
All tomography results are presented and discussed in SM.

provides the foundations for the overwhelming success
of tensor network-based methods [2]. In contrast, it is
known that critical systems described by conformal field
theory exhibit a logarithmic scaling instead of the area
law [9]. In thermal states, while the mutual information
has an area or a log law, the vN entropy will exhibit a
volume law where it is proportional to the volume of the
subsystem.

Extracting quantum information measures in quantum
many-body systems has been the aim of several experi-
ments [16–20]. Calculating the vN entropy requires ac-
cess to the density matrix of the full system, %, which
usually requires a full state tomography in different ex-
perimental platforms. Instead of %, several techniques
are developed to measure the purity, Tr

(
%2
)
, which en-

ables the calculation of second-order Rényi entropy, S2 =
− ln

(
Tr
(
%2
))

. These methods can be based on the inter-
ference of two identical copies of a quantum system [17]
or randomised measurements on a single copy [20]. Note
that, in these examples, the purity is directly measured
but the full state is not reconstructed, hence the calcula-
tion of vN entropy is not feasible.

Nevertheless, several optical lattice setups are able to
measure the vN entropy, which is obtained either from a
single site reduced density matrix or as a classical ther-
modynamic entropy of the whole system [16, 19]. In
special cases, when the system is diagonal enough, even
many-body vN entropy can be accessed [22]. However,
the measurement of vN entropy between extended spa-
tial subsystems has so far remained elusive, as well as the
verification of the predicted area law scaling of the MI.

In this work, we address these challenges and study
the scaling of the vN entropy and the MI with sub-
system size in a continuous quantum many-body sys-
tem. Our setup is a pair of tunnelling-coupled quasi-

one-dimensional (1D) ultracold Bose gases (see Fig. 1a),
cooled down and trapped below an atom chip [23]. Along
the longitudinal axis, z, the clouds are confined in box-
like potentials with hard walls, created by superposing
magnetic and optical dipole potentials [24]. In one of the
transverse directions, the atoms are trapped in a double-
well potential, created by dressing with radiofrequency
fields. The single-particle tunnelling rate J between the
two condensates is adjusted by changing the amplitude
of the radiofrequency fields [25].

To prepare a state in thermal equilibrium, we directly
cool down an atomic cloud of 87Rb in a strongly coupled
double-well, using standard techniques of laser cooling
and evaporative cooling [26]. The quantum fields de-
scribing each condensate can be written in phase-density
representation as ψn(z) = exp(iθn)

√
ρn, with n = 1, 2.

The spatially resolved relative phase between the two
condensates, ϕ(z) = θ1(z) − θ2(z), is extracted from in-
terference images, taken 15.6 ms after releasing the atoms
from the trap and letting them fall freely. In the limit
of low energy excitations, the correlations of the relative
phase are well described by the sine-Gordon Hamilto-
nian [27]. Expanding the interaction term in the case of
high tunnelling rates leads to the massive Klein-Gordon
Hamiltonian,

HKG =

∫ L

0

dz

[
g1Dδρ

2(z) +
~2n1D

4m
(∂zϕ(z))

2

+ ~Jn1Dϕ
2(z)

]
, (3)

where L is the length of a system with uniform aver-
aged 1D density n1D, g1D is the 1D interaction strength,
m is the mass of an atom, and the relative density,
δρ(z) = [ρ1(z)− ρ2(z)] /2, is the conjugate field of the
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FIG. 2. Area law of MI and volume law of vN entropy.
a, A system of size L = 49 µm is divided into a subsystem A
of length l and its complement subsystem of length (L − l).
b, The experimental results for I(A : AC), SA, and SAC , cal-
culated based on N = 7 modes, are plotted as bullets with
error bars representing the 95% confidence intervals obtained
via bootstrapping [21]. The shaded areas show the 95% confi-
dence interval for the theory predictions, considering the un-
certainty in the estimated temperature and tunnelling rate J .
c, Close up of the measured MI.

relative phase, fulfilling [ϕ(z), δρ(z′)] = iδ(z − z′) . A
direct measurement of δρ(z) is unfeasible in our current
experimental setup. Hence, to reconstruct the full co-
variance matrix of the initial state,

Γ =

[
Q R
RT P

]
, (4)

we use a tomography procedure [28]. Here,
Qij = 〈ϕ(zi)ϕ(zj)〉, Pij = 〈δρ(zi)δρ(zj)〉, Rij =〈

1
2 {ϕ(zi), δρ(zj)}

〉
with i, j ∈ {1, . . . , N}, where zi de-

notes different points on a discrete grid with N points.
The upper limit for N is given by the resolution of the
imaging system, which limits our access to higher mo-
mentum modes (larger than N) and enforces an ultra-
violet (UV) cut-off.

To apply this tomographic method, we ramp up the
barrier between the two strongly coupled condensates
in 2 ms, and let them evolve independently in the un-
coupled double-well (J = 0). We then directly mea-
sure the phase-phase correlations for different evolution
times after the quench. The post-quench dynamics fol-
low the Tomonaga-Luttinger liquid Hamiltonian. Over
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FIG. 3. Shared information content between two spa-
tially separated subsystems. Here, we calculate the MI of
two disjoint subsystems with the same length, l/L = 0.15, as
a function of the distance between them, d. As demonstrated
in the inset, while the subsystem A is kept fixed on the left
edge of the system, B is shifted away to the other edge. Bul-
lets and shadings represent experimental and theoretical data
for I(A : B) respectively (see Fig. 2 for more details on the
error bars and shaded area). The solid black line is an expo-
nential fit with lfit = 5.1 µm. The finite bias b results from
estimating a positive quantity, MI, using finite statistics.

time, the initial eigenmodes of the relative density rotate
into the phase quadrature and vice versa, enabling us to
access the information about these eigenmodes by fitting
the initial second-order correlation functions of phase-
density and density-density to the measured evolution of
the phase-phase correlations in the momentum space. A
thorough explanation of the reconstruction process and
its results is given in SM.

In the experiment, we prepare initial states that are
thermal equilibrium states of Klein-Gordon Hamiltonian.
The quadratic form of this Hamiltonian, as shown in (3),
implies that the prepared initial states are Gaussian. Af-
ter a fast quench of J to zero, the initial state evolves
under another quadratic Hamiltonian, ensuring that the
state remains Gaussian under evolution [29]. To confirm
Gaussianity, we measure the normalized averaged con-
nected fourth-order correlation function, M (4), and show
that the higher order correlations are negligible. Note
that the tomography process does not include any re-
strictions regarding the Gaussianity of the reconstructed
state.

Having Gaussian states significantly simplifies the cal-
culation of the quantum information measures - an oth-
erwise highly non-trivial task in quantum field theory
[30]. Gaussian states are fully described by their covari-
ance matrix Γ. Its symplectic spectrum is obtained by

diagonalizing iJΓ where J =

[
0 I
−I 0

]
is the symplec-

tic unit. The symplectic spectrum consists of pairs ±γn,
n ∈ {1, . . . , N}. It encodes the complete information that
is contained in the covariance matrix [14]. Consequently,
it can be used to reconstruct the full density matrix of
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FIG. 4. Temperature dependence of MI and vN en-
tropy. The bullets represent experimental data for SA (left
axis) and I(A : AC) (right axis) with N = 7 for measurements
with three different temperatures, but otherwise similar pa-
rameters. The size of the subsystem A is l/L = 0.4 (see
Fig. 2a). The error bars show the 95% confidence intervals
achieved via bootstrapping. The shaded areas represent the
calculations based on the theoretical model for different tun-
nelling rates, between J = 2π × 0.1 Hz (dashed lines) and
2π × 1 Hz (solid lines). The inset shows the theoretical pre-
dictions for SA (left axis) and I(A : AC) (right axis) for three
different values of N , for J = 2π×0.4 Hz without considering
the effect of finite optical resolution (see SM).

the state and the measures of quantum information. In
particular, the vN entropy is given by

S(Γ) =

N∑
n=1

[(
γn + 1

2

)
ln
(
γn + 1

2

)
−
(
γn − 1

2

)
ln
(
γn − 1

2

)]
(5)

For non-Gaussian states, neglecting higher-order corre-
lations and estimating the vN entropy based on the co-
variance matrix gives a lower bound to the actual en-
tropy [31].

Having the reconstructed initial covariance matrix at
hand, we use expression (5) to calculate the vN entropy of
any subsystem A, SA(ΓA) (see Fig. 1c). Using equation
(2), the MI between two subsystems A and B is calcu-
lated. To observe the scaling of the vN entropy and the
MI, we calculate the vN entropy of subsystems with dif-
ferent lengths and consecutively the MI with their com-
plement subsystems as illustrated in Fig. 2a. As expected
for thermal states, the vN entropy is in the volume law
regime, depending linearly on the size of the subsystem
(Fig. 2b). Measuring the vN entropy allows us to study

the scaling of the mutual information. We find an area
law for MI, with a plateau forming in the bulk of the
system (Fig. 2c). Our results represent an experimental
verification of one of the elementary features of quantum
many-body systems [15].

We continue by studying the dependence of MI on the
distance between two subsystems. In this case, we cal-
culate the MI of two subsystems A and B, separated by
a gap of length d. The results are presented in Fig. 3.
As expected, the MI decreases as the two subsystems get
further apart. We can extract a decay length by fitting
an exponential function to the experimental data. The
fitted decay length, lfit = 5.1 (3.7, 8) µm agrees with the
correlation length lC = 6.8 (6, 7.7) µm calculated based
on the experimental parameters (see SM). The intervals
represent the 95% confidence intervals obtained via boot-
strapping.

For typical temperatures of our experiment, the vN
entropy depends linearly on the temperature. The linear
dependence changes to a logarithmic dependence by in-
troducing a finite UV cut-off, as shown in the inset of Fig.
4 (dashed lines). As temperature increases, the symplec-
tic eigenvalues grow, and the calculated entropy using
a finite number of modes saturates. The MI, however,
regardless of the UV cut-off, reaches a finite asymptotic
value, given by the classical correlations [32]. Reducing
the number of modes reduces the asymptotic value due to
the limited available information in the modes taken into
account, as presented in the inset of Fig. 4 (solid lines).
In Fig. 4, measured vN entropy and MI for three differ-
ent temperatures are illustrated along with the theoreti-
cal predictions. The measurements agree with the theory
calculated for the extracted parameters and N = 7 lowest
modes.

It is important to stress that the only assumption we
make to calculate the vN entropy and the MI is that
the post-quench dynamics follow a Tomonaga-Luttinger
liquid Hamiltonian, which has been confirmed in the
previous work [29]. Our measurements do not rely on
any assumption related to the Gaussianity of the initial
state. We rather confirm that the initial state is Gaus-
sian by measuring the higher-order correlations. Even for
non-Gaussian initial states, our results would represent a
lower bound to the entropy of the full state.

The results presented here are a step towards the more
ambitious goal of measuring many-body entanglement in
a continuous 1D quantum system. Reconstruction of the
full covariance matrix enables us to calculate any en-
tanglement measure applicable to both pure and mixed
states, such as logarithmic negativity. However, there
are two main limiting factors preventing us from de-
tecting the entanglement. The entanglement can only
be detected if a sufficient number of momentum modes
are measured whose mode occupation numbers are close
to the ground state. In our current experiments, the
nonzero temperature (10 - 100 nK) of the Bose gas keeps
the occupation numbers of the lower momentum modes
too high above the value of the ground state. At the same
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time, the finite optical resolution introduces a soft cut-off
which not only prevents us from measuring higher mo-
mentum modes but also modifies the lower modes that
can be measured. Improving any of these two aspects
would make the measurement of the entanglement possi-
ble.

Another promising direction for future work is to go
beyond quadratic models and detect entanglement in an
interacting model. It has already been demonstrated that
the atom chip experiments can successfully simulate the
sine-Gordon model, and higher-order correlation func-
tions can be measured [27]. Developing a tomography
procedure for this setting would give us access to entan-
glement properties in interacting many-body quantum
systems [33, 34].
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SUPPLEMENTAL MATERIAL

Experimental realization and measurements

We realise a pair of strongly tunnelling coupled 1D su-
perfluids by cooling down 87Rb atoms in a double-well
potential in an atom chip setup. The initial state is pre-
pared by cooling the atoms directly into a double-well
potential. The initial state in this case is a thermal equi-
librium state with typical temperatures of 30-120 nK and
linear atomic densities of ≈ 70 µm−1 in a box-like poten-
tial with length ≈ 50 µm.

To achieve lower effective temperatures, we first cool
down the atoms in a dressed single-well potential, where
the first excited state is in the vacuum state. Slowly split-
ting the cloud into two parts, maps the ground state and
the first excited state to two states with a smaller energy
gap and symmetric and anti-symmetric wave functions.
The resulting prethermalized state has a lower effective
temperature in the anti-symmetric modes (relative de-
grees of freedom) [35]. This method has been deployed in
the measurement with effective temperature Teff = 14 nK
presented in Fig. 4 and 5.

To probe the system, we turn off all the traps, and
we let the atoms fall freely for 15.6 ms. We measure the
projected 2D atomic density distributions via absorption
imaging, from which we extract the relative phase be-
tween the two condensates for different points along the
1D direction z. Due to the destructive nature of the
imaging process, we repeat the measurement hundreds
of times to accumulate statistics. Thus, all the expec-
tation values calculated are obtained through ensemble
averaging.

Quantum field simulation using coupled
quasi-one-dimensional superfluids

As it has been discussed in several earlier works (see,
e.g., Refs. [27, 29, 36]), low energy excitations of cou-
pled parallel one-dimensional gases of weakly interacting
atoms can be utilised as quantum field simulator of the
sine-Gordon Hamiltonian,

HsG =

∫ L

0

dz

[
g1Dδρ

2 +
~2n1D

4m
(∂zϕ)

2

− 2~Jn1D cos(ϕ)

]
. (6)

This model describes the relative phase, ϕ, and the rela-
tive density fluctuations of two superfluids (see Fig. 1a).
These two fields are canonical conjugate of each other, i.e.
[ϕ(z), δρ(z′)] = −iδ(z−z′). In (6), m is the atomic mass,
n1D the uniform atomic density of the condensates, g1D

the inter-atomic interaction, J the single-particle tun-
nelling rate.
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FIG. 5. Additional results for area law of MI and volume law of vN entropy. a, Experimental results for I(A : AC),
SA, and SAC , calculated based on N = 7 modes (left) and N = 8 modes (right) (see Fig. 2 for detailed explanation). The
extracted parameters including their 95% confidence intervals in parenthesis are given above. b, Close up of the measured MI.

For sufficiently cold gases in the strong coupling
regime, i.e., when the phase coherence length

λT =
2~2n1D

mkBT
(7)

is larger than the healing length of the relative phase
(correlation length)

lC =

√
~

4mJ
, (8)

the cosine term in (6) can be expanded to second or-
der and be approximated by the quadratic Klein-Gordon
model. Introducing the sound velocity c, Luttinger pa-
rameter K and the Klein-Gordon quasi-particle mass, M ,
given in terms of the microscopic parameters by

c =

√
g1Dn1D

m
, (9)

K =
~π
2

√
n1D

mg1D
, (10)

M = 2m

√
~J

g1Dn1D
, (11)

the Klein-Gordon (KG) Hamiltonian can be written as

HKG =
~c
2

∫ L

0

dz

[
π

K
δρ2(z) +

K

π
(∂zϕ(z))

2

]
+
M2c4

2~c

∫ L

0

dz
K

π
ϕ2(z) . (12)

Note that the first two terms in (12) are the Tomonaga-
Luttinger liquid (TLL) Hamiltonian. In table 1, the rel-
evant parameters for each measurement are listed, where
ωM = Mc2/~ is the KG mass in units of angular fre-
quency.

Reconstruction of the initial full covariance matrix

To extract the full covariance matrix that characterises
the state of the system, we use the quantum tomog-
raphy method developed in [28]. Given that only one
of the two canonical variables (the phase) is accessible
through experimental measurements, its canonically con-
jugate variable (the density fluctuations) can be accessed
indirectly by letting the system evolve under a harmonic
Hamiltonian with known mode frequencies and measur-
ing the phase at different times. For each of the har-
monic modes, the dynamics correspond to a rotation in
phase space, so that over time, the initial density vari-
ance turns into phase variance and vice versa. Thus, we
can fully reconstruct the initial covariance matrix from
phase measurements at a sufficiently large number of dif-
ferent times. This reconstruction is done by first going
to Fourier space, where the modes evolve independently,
and then fitting the data for the time evolution of the
phase covariance of each mode to the known functions
expressing this data in terms of the initial phase and
density correlations.

However, one mode needs special treatment: The zero
mode, i.e. the mode corresponding to zero momentum,
therefore zero energy. This mode does not rotate in phase
space; instead, it moves at a constant velocity. This
means that the zero mode phase variance does not os-
cillate in time but grows as a quadratic function of time
instead, an effect known as phase diffusion [37]. More-
over, because of the compactified nature of the phase-
field, which means that phases differing by 2π should
be considered identical, even though the phase grows in
time with no bound, measurements can only observe its
growth within the interval [−π,+π]. Therefore, the esti-
mation of the initial phase and density correlations of the
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zero mode is different from that of the others. For the
zero mode, we fit a quadratic function instead of an os-
cillatory function of time, and we restrict the fit to times
before reaching the upper bound due to compactification.

More specifically, the dynamics are chosen to follow
the Tomonaga-Luttinger liquid model with Hamiltonian

HTLL =

∫ L

0

dz

[
g1D(δρ(z))2 +

~2n1D

4m
(∂zϕ(z))

2

]
(13)

For a hard-wall box trap, the vanishing of the par-
ticle current at the edges of the system means that
the effective boundary conditions are of Neumann type
∂zϕ(x = 0) = ∂zϕ(x = L) = 0. In this case, using cosine
eigenfunctions

fϕn (z) =

2
(
n~π

√
n1D

g1Dm

)−1/2

cos
(
n πLz

)
, n > 0

1 , n = 0

fδρn (z) =

− 1
L

(
n~π

√
n1D

g1Dm

)1/2

cos
(
n πLz

)
, n > 0

− 1
L , n = 0

,

(14)

the Hamiltonian can be diagonalised in terms of cosine
Fourier modes:

H =
~u
2
δρ2

0 +

∞∑
n=1

~ωn
2

[
δρ2
n + ϕ2

n

]
, (15)

with

u = 2g1D/~L (16)

ωn = ckn . (17)

Furthermore:

kn = nπ/L (18)

c =
√
g1Dn1D/m (19)

g1D = ~ω⊥as
2 + 3asn1D

(1 + 2asn1D)
. (20)

Here, c is the speed of sound and g1D the density-
broadened 1D interaction strength [38], as = 5.2 nm is
the three-dimensional scattering length [39] and m =
1.44× 10−25 kg the mass of a 87Rb atom.

As mentioned before and reflected in the TLL Hamil-
tonian in Fourier space (Eq. 15), we have to treat the
zero mode separately. We begin with the harmonic part
of the Hamiltonian (n > 0) where the time evolution of
the modes is given by

δρn(t) = δρn(0) cos(ωnt) + ϕ0(0) sin(ωnt) (21)

ϕn(t) = ϕ0(0) cos(ωnt)− δρn(0) sin(ωnt) , (22)

In the experiment, we use matter interferometry to mea-
sure spatially resolved relative phase between two super-
fluids, from which, a referenced second-order correlation
is calculated for each time step:

Φ2
ab(t) =

〈(
ϕ(za, t)− ϕ(z0, t)

)(
ϕ(zb, t)− ϕ(z0, t)

)〉
.

(23)

Note that subtracting the phase of an arbitrary reference
position z0 will only remove the zero mode and does not
affect any of the higher modes.

Expanding Φ2 with eigenfunctions (14), gives

Φ2
ab(t) =

N∑
j,k=1

fa,bj,k 〈ϕj(t)ϕk(t)〉 (24)

where

fa,bj,k =
(
fφj (za)− fφj (z0)

)(
fφk (zb)− fφk (z0)

)
. (25)

Using the equation of motion (22), and defining Q̃jk =

〈ϕj(0)ϕk(0)〉, R̃jk =
〈

1
2 {ϕj(0), δρk(0)}

〉
, and P̃jk =

〈δρj(0)δρk(0)〉, we obtain

Φ2
ab(t) =

N∑
j,k=1

fa,bj,k cos(ωjt) cos(ωkt)Q̃jk

+

N∑
j,k=1

(−fa,bj,k − f
a,b
j,k ) cos(ωjt) sin(ωkt)R̃jk

+

N∑
j,k=1

fa,bj,k sin(ωjt) sin(ωkt)P̃jk .

(26)

Equation (26) stands in the heart of the tomography

process: The goal is to find the elements of Q̃, R̃, and P̃
using an optimization process. Note that the left hand
side is calculated using measured phase profiles in the

experiment and in the right hand side, fa,bj,k and ωj can be
calculated from the experimental parameters, as shown
in (14) and (17) respectively. Results are presented in
SM. For a more detailed explanation of the tomography
process, please refer to [28].

Unlike all higher modes, the zero mode, which corre-
sponds to the constant in space eigenfunction, is not a
harmonic oscillator mode of the Tomonaga-Luttinger liq-
uid Hamiltonian (equation (13)). This is because only
one of the canonical variables, δρ0, is present in the
Hamiltonian for the zero mode. As a result, the time
evolution of the zero mode is given by

δρ0(t) = δρ0(0) = const, (27)

ϕ0(t) = −uδρ0(0)t+ ϕ0(0) , (28)

which means that the phase variance grows with time as〈
ϕ0(t)2

〉
=
〈
ϕ2

0

〉
t=0
− 〈{ϕ0, δρ0}〉t=0 ut+

〈
δρ2

0

〉
t=0

u2t2

(29)
However, because of the compactified nature of the

phase-field, its zero mode component ϕ0 is not a well-
defined, measurable operator. Only imaginary exponen-
tials of the form einϕ0 for integer n are well-defined. Nev-
ertheless, under the assumption the initial state is Gaus-
sian in terms of the zero mode (as also for all other modes
too) and given that it remains Gaussian under the dy-
namics following from HTLL, we can derive the zero mode
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variance from the mean value of einϕ0 using the cumu-
lant expansion formula for the special case of Gaussian
random variables

〈exp (iϕ0)〉 = exp
(
i 〈ϕ0〉 −

〈
ϕ2

0

〉
/2
)

(30)

From the above, we find〈
ϕ2

0

〉
= −2 log|〈exp (iϕ0)〉| (31)

Therefore, in order to extract the zero mode part of the
covariance matrix

〈
ϕ2

0

〉
t=0

,
〈
δρ2

0

〉
t=0

and 〈{ϕ0, δρ0}〉t=0
in the initial state we calculate the zero mode variance
of the phase at each time from (30) and fit this with the
theoretical formula (31).

Having the covariance matrix in the Fourier space for
the first N modes, we use a discrete Fourier transfor-
mation based on the eigenfunctions (equation (14)) to
calculate the covariance matrix Γ in the real space. We
chose the cut-off based on the reconstructed occupation
numbers. We only take into account modes with physical
(positive) occupation numbers. This covariance matrix
is used to calculate vN entropy and MI, as discussed in
the main text and Fig. 1C.

Covariance matrix of Klein-Gordon model in
thermal equilibrium

The theory predictions in our work are calculated
based on the covariance matrix of the thermal equilib-
rium states of Klein-Gordon (KG) model (equation 3),
which is given by [40]:

Qij =
π

2KL

~c
Mc2

coth

(
Mc2

2kBT

)
+

π

KL

N∑
n=1

~c
εn

coth

(
εn

2kBT

)
cos(knzi) cos(knzj)

(32)

Rij = 0 (33)

Pij =
K

2πL

Mc2

~c
coth

(
Mc2

2kBT

)
+
K

πL

N∑
n=1

εn
~c

coth

(
εn

2kBT

)
cos(knzi) cos(knzj) , (34)

with the dispersion relation εn =
√
~2k2

nc
2 +M2c4.

Here, M is the KG mass, L the system size, K the Lut-
tinger parameter, T the temperature, N the UV cut-off
and the rest of the parameters are defined before. The
next section will explain how M and T are estimated
based on the measured data. To include the effect of the
finite imaging resolution, we convolve the theoretical cal-
culations with a Gaussian point-spread function with a
standard deviation σPSF ≈ 3 µm [38] (see next section).

Estimation of the temperature and Klein-Gordon
mass

In order to compute theoretical predictions for the mu-
tual information in the initial state based on the assump-
tion that these are the thermal states of the KG model,
we need to estimate two effective parameters, the mass
and the temperature. We do this by fitting the results
of the tomographic reconstruction for the mode variances
to those corresponding to KG thermal states. Given that
the modes are decoupled from each other both initially
and throughout the tomography dynamics, the estima-
tion of the KG mode frequency can be done indepen-
dently for each mode. Having estimated the mode fre-
quencies, we can then verify if they follow the theoretical
dispersion relation of the KG model and extract the cor-
responding mass parameter by a fit.

The relation between the post-quench quadratures and
the initial (pre-quench) KG state with mode occupation
number N0n is given by〈

ϕ2
n

〉
=

ωn
ω0n

(
N0n +

1

2

)
(35)

〈
δρ2
n

〉
=
ω0n

ωn

(
N0n +

1

2

)
(36)

where ω0n and ωn are the pre- and post-quench mode fre-
quencies respectively. Both

〈
ϕ2
n

〉
and

〈
δρ2
n

〉
are achieved

via tomography and ωn is given by the equation (17).
From the equations (35) and (36) we can calculate both
ω0n and N0n:

N0n =
√
〈ϕ2
n〉 〈δρ2

n〉 −
1

2
(37)

ω0n = ωn

√
〈δρ2

n〉
〈ϕ2
n〉

. (38)

Assuming the initial state is thermal, we use the following
fit function to extract the temperature, T = (βkB)−1:

Nfit
0n = exp

(
−k2

nσ
2
PSF/2

)
(

1

exp(~ω0nβ)− 1
+

1

2
)− 1

2
.

(39)

Note that we also introduce the effect of the imaging
system by multiplying the modes with a Gaussian point
spread function with width σPSF which corresponds to a
convolution with a Gaussian point-spread function in the
real space [38]. To extract the KG mass, we fit the KG
dispersion relation,

ωfit
0n =

√
c2k2

n +M2c4/~2 , (40)

to the calculated ω0n.

Tomography results

The results of the reconstruction process for the three
measurements are presented in Fig. 6 and 7 and the cor-
responding parameters are written in Table I. We show
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FIG. 6. Tomography results for three measurements from lowest to highest temperature (M1 to M3). For each
measurement, the elements of the covariance matrix in Fourier and position space are presented. On the right, the diagonal
elements of the covariance matrix in the Fourier space are plotted. The error bars represent 95% confidence intervals obtained
via bootstrapping. Solid lines are the theory calculations corresponding to the extracted temperature and KG mass for each
measurement.

Measurement T (nK) λT (µm) ωM/2π (Hz) lC (µm) q = λT /`J r = ~ωM/kBT
M1 14 37 34 7.3 5 0.11
M2 48 18 43 6.8 2.6 0.043
M3 94 9.5 40 7.4 1.3 0.021

TABLE I. List of relevant parameters for the three measurements. T is the temperature, λT the thermal coherence
length, ωM = Mc2/~ the KG mass in angular frequency units, and lC the healing length of the phase.
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FIG. 7. Extraction of temperature and KG mass from the mode occupation number and dispersion relation
a, For each measurement N0n is plotted along with a fit curve (solid line), Nfit

0n. b, Dispersion relation for three different
measurements are plotted. For every quantity, the error bars represent 95% confidence intervals obtained via bootstrapping.

the covariance matrix elements obtained after the tomog-
raphy in the Fourier space, as well as the elements in
the position space after a discrete inverse Fourier trans-
form. Note that the only constraint on the elements of
Γ̃ is that the resulting state is physical i.e. the Heisen-
berg uncertainty relation holds [28]. We do not restrict
the state by any further assumption. For example, we
do not assume that the state is Gaussian (see next sec-

tion) or R̃ is small. The only assumption in the tomogra-
phy process is that the post-quench dynamics follow the
Tomonaga-Luttinger liquid Hamiltonian for short times
as mentioned before.

Fourth order correlation

In order to show that the reconstructed state is Gaus-
sian, we measure the normalised averaged connected
fourth-order correlation function, M (4). Please refer to
previous extensive works by our group [29, 38, 41]. The
results for the four measurements are shown in Fig. 8.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t (ms)

M
(4

)

M1

M2

M3

FIG. 8. Fourth order correlations The error bars represent
95% confidence intervals obtained via bootstrapping. The
shaded area is the typically calculated bias [41].

Effect of finite imaging resolution

We investigate the effect of the finite imaging reso-
lution and the ultra-violet cut-off on the measurement
of mutual information (MI). The Gaussian point-spread
function of the imaging system acts as a soft cut-off.
This cut-off not only limits the number of observable
modes but also affects the lower modes that can be mea-
sured [38]. In length scales close to and smaller than
the imaging resolution, the blurring effect creates corre-
lations, producing unphysical MI. We theoretically quan-
tify this ”fake” MI by considering a state with high tem-
perature, and short correlation length (much shorter than
the imaging resolution), whose MI is practically zero
(∼ 10−6). For this state, we calculate the MI of the
half-system, l = L/2, for different numbers of modes, N .
The result is presented in Fig. 9 with solid black lines
along with the experimental data. The error bars are
95% confidence intervals obtained via bootstrapping and
the shaded area is the 95% confidence interval for the
theoretical calculation. Note that the calculated residual
MI only depends on the imaging resolution. The fig-
ure suggests that our measured MI is significantly higher

3 4 5 6 7

0.2

0.4

0.6

0.8

N

I
(l

=
L
/
2
)

FIG. 9. Imaging effect on mutual information. Mutual
information for l = L/2 for different cut-off, N . The error
bars represent 95% confidence interval. The shaded area is the
theoretical calculation and the solid black line is the residual
MI due to the effect of finite imaging resolution.
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FIG. 10. Dependence of lfit on the total number of modes, N . a, For different N , the same quantities are plotted as
in Fig. 3 in the main text but here, we shifted the theory calculation by b, to represent better the agreement between theory,
experimental data and the fit. Note that changing the total number of modes consequently changes the size of the sub-region.
b, The resulting decay length, lfit is plotted for different N . the solid part of the error bars represents 68% confidence interval
(standard error) and the extended transparent part 95% confidence interval. The solid orange line and the shaded area show
the lC = 6.8(6.0, 7.7) and its 95% confidence interval.

than what is calculated to be the residual MI due to the
imaging effect.

We further investigate the effect of the hard cut-off
on the decay of MI as discussed in the main text (Fig.
3). In Fig. 10a, for each N , the information similar to
Fig. 2 in the main text is shown. In Fig. 10b, the depen-
dence of lfit on the total number of modes, N , is plotted.

We observe that for all values of N , experimental data
and the theoretical calculations are in good agreement.
As the number of modes decreases, sub-region size and
spacing increase, which lowers the quality of fit, resulting
in large error bars. Nevertheless, the decay length stays
consistent for different cut-offs. Note that for N < 5 the
sub-regions become too large and reliable fitting is no
longer possible.
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