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Abstract
Atomic force microscopes and optical tweezers are widely used to probe the mechanical properties
of individual molecules and molecular interactions, by exerting mechanical forces that induce
transitions such as unfolding or dissociation. These transitions often occur under nonequilibrium
conditions and are associated with hysteresis effects—features usually taken to preclude the
extraction of equilibrium information from the experimental data. But fluctuation theorems1–5 allow
us to relate the work along nonequilibrium trajectories to thermodynamic free-energy differences.
They have been shown to be applicable to single-molecule force measurements6 and have already
provided information on the folding free energy of a RNA hairpin7,8. Here we show that the Crooks
fluctuation theorem9 can be used to determine folding free energies for folding and unfolding
processes occurring in weak as well as strong nonequilibrium regimes, thereby providing a test of
its validity under such conditions. We use optical tweezers10 to measure repeatedly the mechanical
work associated with the unfolding and refolding of a small RNA hairpin11 and an RNA three-helix
junction12. The resultant work distributions are then analysed according to the theorem and allow
us to determine the difference in folding free energy between an RNA molecule and a mutant differing
only by one base pair, and the thermodynamic stabilizing effect of magnesium ions on the RNA
structure.

The Crooks fluctuation theorem9 (CFT) predicts a symmetry relation in the work fluctuations
associated with the forward and reverse changes a system undergoes as it is driven away from
thermal equilibrium by the action of an external perturbation. This theorem applies to processes
that are microscopically reversible, and its experimental evaluation in small systems is crucial
to understand better the foundations of nonequilibrium physics13. A consequence of the CFT
is Jarzynski’s equality14, which relates the equilibrium free-energy difference ΔG between
two equilibrium states to an exponential average (denoted by angle brackets) of the work done
on the system, W, taken over an infinite number of repeated none-quilibrium experiments, exp

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare
no competing financial interests. Correspondence and requests for materials should be addressed to C.B. (carlos@alice.berkeley.edu) or
F.R. (ritort@ffn.ub.es)..
*These authors contributed equally to this work.
Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2006 December 28.

Published in final edited form as:
Nature. 2005 September 8; 437(7056): 231–234.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(−ΔG/kBT) = 〈exp(−W/kBT)〉. The equality has been developed6 into a formalism that allows
us to use nonequilibrium single-molecule pulling experiments to reconstruct free-energy
profiles or potentials of mean force15 along reaction coordinates. Experimental testing of
Jarzynski’s equality in single-molecule force experiments16 used the P5ab RNA hairpin7,8,
which can be folded and unfolded quasi-reversibly. But for processes that occur far from
equilibrium, the applicability of Jarzynski’s equality is hampered by large statistical
uncertainties that arise from the sensitivity of the exponential average to rare events17,18 (low
values of W). Moreover, although the equality 〈W〉 = ΔG holds for processes occurring near
equilibrium, spatial drift in the experimental system usually makes it difficult in practice to
extract unfolding free energies using small loading rates (below a few pN s−1). Drift effects
decrease noticeably for larger pulling speeds, making it possible to obtain more reliable
experimental data (and also good statistics as a large number of pulls can be executed in a
reasonable time), but at the expense of a more irreversible unfolding process. Here we show
that significant improvements can be obtained by using the CFT, which provides a more robust
and more rapidly converging method to extract equilibrium free energies from non-equilibrium
processes.

The CFTallows us to quantify the amount of hysteresis observed in the values of the irreversible
work done to unfold and refold a macromolecule. Let PU(W) denote the probability distribution
of the values of the work performed on the molecule in an infinite number of pulling
experiments along the unfolding (U) process, and define PR(W) analogously for the reverse
(R) process. For the CFT to be applicable, the unfolding and refolding processes need to be
related by time-reversal symmetry, that is, in our experiments, the optical trap used to
manipulate the molecule must be moved at the same speeds during unfolding and refolding.
Moreover, the molecular transition probed always has to start in an equilibrium state (folded
in the unfolding process, and denatured or unfolded in the refolding process) and reach a well-
defined final state. The CFT9 then predicts that:

PU(W )

PR( − W ) = exp (W − ΔG
kBT

) (1)

where ΔG is the free-energy change between the final and the initial states, and thus equal to
the reversible work associated with this process. Note that the CFT does not require that the
system studied reaches its final equilibrium state immediately after the unfolding and refolding
processes have been completed; it is only the control parameter that needs to attain its final
value, whereas the system may continue to equilibrate to a well-defined state that is consistent
with the final value of the control parameter. The equilibration occurs without change of the
control parameter, and therefore contributes no work. In principle, W is an integral over the
external variation of a control parameter9, for example, the position of the optical trap or the
time6. In our experiments, W is well approximated by the familiar force-versus-extension
integral:

W = ∑
i=1

Ns
FiΔxi (2)

where xi is the distance between the ends of the molecule and Ns is the number of intervals
used in the sum (see ref. 6 for a thorough discussion of this issue). Relation (1) quantifies
hysteretic effects in the pulling experiment: work values larger than ΔG occur most often along
the unfolding path while (absolute) values smaller than ΔG occur more often along the refolding
path. As can be seen from equation (1), the CFT states that although P U(W), P R(−W) depend
on the pulling protocol, their ratio depends only on the value of ΔG. Thus the value of ΔG can
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be determined once the two distributions are known. In particular, the two distributions cross
at W = ΔG:

PU(W ) = PR( − W ) ⇒ W = ΔG (3)

regardless of the pulling speed. Although the simple identity (3) already gives an estimate of
ΔG, it is not necessarily very precise because it uses only the local behaviour of the distribution
around W = ΔG. Using the whole work distribution increases the precision of the free-energy
estimate19. In particular, as we show below, when the overlapping region of work values
between the unfolding and refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as 〈W dis〉 = 〈W〉 − ΔG), the use of Bennett’s
acceptance ratio method20 makes it possible to extract accurate estimates of ΔG using the CFT
(see the Supplementary Information).

We first experimentally test the validity of the CFT for a molecular transition occurring near
equilibrium. For this, we use a short interfering (si)RNA hairpin that targets the messenger
RNA of the CD4 receptor of the human immunodeficiency virus (HIV)11 and that unfolds
irreversibly but not too far from equilibrium at accessible experimental pulling speeds
(dissipated work values less than 6k BT). Under these conditions, the unfolding and refolding
work distributions overlap over a sufficiently large range of work values to justify the use of
the direct method to experimentally test equation (1). The work done on the molecules during
either pulling or relaxation is given by the areas below the corresponding force–extension
curves (Fig. 1).

Unfolding and refolding work distributions at three different pulling speeds are shown in Fig.
2. Irreversibility increases with the pulling speed and unfolding–refolding work distributions
become progressively more separated. Note, however, that the unfolding and the refolding
distributions cross at a value of the work ΔG = 110.3 ±0.5 kBT that does not depend on the
pulling speed, as predicted by equation (3). Moreover, the work distributions also satisfy the
CFT, that is, equation (1) (see the Supplementary Information). We also notice that work
distributions are compatible with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due to the stretching of the
molecular handles attached on both sides of the hairpin (ΔGhandles = 23.8 k BT) and of the
extended single-stranded (ss)RNA (ΔGssRNA = 23.7 ±1kBT) from the total work, ΔGexp = 110.3
±0.5 kBT, we obtain for the free energy of unfolding at zero force ΔG0

exp = 62.8 ±1.5kBT =
37.2 ±1 kcalmol−1 (at 25° C, in 100 mM Tris-HCl, pH 8.1, 1 mM EDTA), in excellent
agreement with the result obtained using the Visual OMP from DNA software21 ΔG0

mfold =
38 kcal mol−1 (at 25° C, in 100 mM NaCl).

To extend the experimental test of the validity of the CFT to the very-far-from-equilibrium
regime where the work distributions are no longer gaussian, we apply the CFT to determine:
(1) the difference in folding free energy between an RNA molecule and a mutant that differs
only by one base-pair, and (2) the thermodynamic stabilizing effect of Mg2+ ions on the RNA
structure. The RNA we consider is a three-helix junction of the 16S ribosomal RNA of
Escherichia coli12 that binds the S15 protein. The secondary structure of this RNA is a common
feature in RNA structures22–24 that plays, in this case, a crucial role in the folding of the
central domain of the 30S ribosomal subunit. For comparison, and to verify the accuracy of
the method, we have pulled the wild type and a C·G to G·C mutant (C754G to G587C) of the
three-helix junction.

Figure 3 depicts the unfolding and refolding work distributions for the wild-type and mutant
molecules (work values were binned into about 10–20 equally spaced intervals). For both
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molecules, the distributions display a very narrow overlapping region. In contrast with the
hairpin distribution, the average dissipated work for the unfolding pathway is now much larger
—in the range 20–40kBT —and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal to test the validity of
equation (1) in the far-from-equilibrium regime. As shown in the inset of Fig. 3, the plot of the
log ratio of the unfolding to the refolding probabilities versus total work done on the molecule
can be fitted to a straight line with a slope of 1.06, thus establishing the validity of the CFT
(see equation (1)) under far-from-equilibrium conditions. Our measurements reveal the
presence of long tails in the work distribution P U(W) along the unfolding path and narrow
work distributions PR(W) along the refolding path. These distributions complement each other,
one being large where the other is small, thereby providing thermodynamically important
information about the free-energy landscape.

Bennett’s acceptance ratio method gives ΔGexp = 154.1 ±0.4kBT and ΔGexp = 157.9 ±0.2
kBT for unfolding the wild-type and mutant types, respectively, giving a difference between
the two forms ΔΔG0

exp = ΔΔGexp = 3.8 ±0.6kBT. After subtracting the (identical for both

molecules) handle and RNA entropy loss contributions (97 ±1 kBT) we get ΔG0
exp = 57

±1.5kBT (wild type) and ΔG0
exp = 60.8 ±1.5 kBT (mutant), the error increasing owing to the

uncertainty in the contributions coming from the stretching of ssRNA. Free-energy prediction
programs such as Mfold25 and Visual OMP21 give a ΔΔG0

mfold = 2 ±2 kBT between the forms
(at 25 °C and 100 mM NaCl). Thus, when combined with acceptance ratio methods, the CFT
furnishes a method precise enough to determine the difference in the folding free energies of
RNA molecules differing only by one base pair in 34 base pairs.

Finally we apply equation (1) to obtain the free energy of stabilization by Mg2+ of the S15
three-helix junction. These values are often difficult to access using bulk methods because
melting temperatures of tertiary folded RNAs are frequently higher than the boiling point of
water, and Mg2+ catalyses the hydrolysis of RNA at increased temperatures26. Figure 4 depicts
the work histograms in the presence and absence of Mg2+ (at constant ionic strength); stretching
contributions differ in the presence and absence of magnesium ions (116.8 kBT and 97 k BT,
respectively). These values have been subtracted from the work data to properly compare the
unfolding free energies of both molecules. The strong increase of irreversibility due to Mg2+

can be seen in the large value of the average dissipated work (about 50 k BT along the unfolding
reaction and 16 k BT along the refolding path). Applying Bennett’s acceptance ratio method
for the molecule in the presence of magnesium yields ΔGexp = 205.5 ± 1.5kBT and (after
subtracting the stretching contributions) gives ΔG0

exp = 88.7 ±2.5 kBT for the unfolding
reaction of the wild-type junction in 4 mM MgCl2. The difference in free energies of unfolding
in the presence and absence of Mg2+, ΔΔG0

exp = −31.7 ±2 kBT, gives the free energy of
stabilization associated with the binding of Mg2+ ions to the S15 three-helix junction through
both specific and non-specific (shielding) interactions.

These results illustrate that when used in conjunction with an appropriate fluctuation theorem,
nonequilibrium single-molecule force measurements can provide equilibrium information such
as folding free energies, even if the process studied occurs under far-from-equilibrium
conditions. The approach works using soft optical traps but is probably limited to processes
that dissipate less than 100 k BT. Whether it can be extended to studies that use much stiffer
atomic-force-microscope cantilevers to pull proteins27 is at present being examined in our
laboratory. Finally, the initial and final states of molecular interactions such as ligand binding
or macromolecular assembly usually do not correspond to measurable molecular extensions;
in such cases, the approach as described cannot at present be applied.
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METHODS
Sample preparation

The RNA molecules were prepared as previously described by ref. 16. Each DNA sequence
corresponding to the three different RNAs was cloned separately into pBR322 vector between
EcoRI and HindIII sites. A polymerase chain reaction (PCR) was used to amplify a DNA
sequence containing an upstream T7 promoter, the RNA sequence of interest and flanking
DNA sequences corresponding to the ‘handles’. The handles correspond to a sequence of
pBR322 (NCBI ID ‘J01749’) from nucleotides 3838 to 1 and from 29 to 629, respectively. The
three RNA sequences were transcribed in vitro using T7 RNA polymerase28. Two DNA
handles were synthesized by PCR. The DNA handle upstream of the RNA was biotinylated at
the 3′-end, whereas a digoxigenin moiety was attached to the 5′-end of the other handle. The
RNA and two DNA handles were annealed by heating samples to 85 °C, followed by a slow
cooling down to room temperature. The RNA hairpin was pulled in 100 mM Tris-HCl, pH 8.1,
1 mM EDTA buffer. The S15 three-helix junction and the mutant have been pulled in 62 mM
KCl, 10 mM HEPES pH 7.8 buffer. In 4 mM MgCl2 the KCl concentration was adjusted to 50
mM to work at the same ionic strength as in the absence of Mg2+.

Work measurements
Work probability distributions were obtained from many force–extension curves for a given
molecule and aligned to a worm-like chain curve that best fitted the force–extension data at
forces below the range of forces where the molecule unfolds. This procedure minimizes the
effect of machine drift on the measured work values. For the worm-like chain fits we used P
≈ 10 nm and P ≈ 1 nm for the persistence lengths of the DNA/RNA hybrid handles and ssRNA
respectively. Work values were integrated along the range of extension: [355 nm, 380 nm] for
the hairpin; [326 nm, 392 nm] for the S15 three-helix junction without magnesium (wild and
mutant); and [337 nm, 398 nm] for the S15 three-helix junction with magnesium. The free-
energy contributions from stretching the handles and the ssRNA were then obtained by
numerical integration of the worm-like chain reference curves using the values for the
persistence and contour lengths of the polymers. To estimate the free energy of unfolding at
zero, ΔG0

exp, we subtract the free-energy contribution of the hybrid handles and ssRNA from

the total reversible work across the transition, ΔGexp, by using the expression7,29: ΔG0
exp =

ΔGexp − ΔGhandles − ΔGssRNA, where ΔGhandles,ΔGssRNA are the entropy loss contributions
due to the stretching of the molecular handles attached on both sides of the hairpin and of the
extended ssRNA, respectively.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Force–extension curves
The stochasticity of the unfolding and refolding process is characterized by a distribution of
unfolding or refolding work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s−1). The blue area
under the curve represents the work returned to the machine as the molecule switches from the
unfolded to the folded state. The RNA sequence is shown as an inset.
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Figure 2. Test of the CFT using an RNA hairpin
Work distributions for RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(−W), for refolding. Statistics: 130 pulls and three molecules (r =
1.5pNs−1), 380 pulls and four molecules (r = 7.5pNs−1), 700 pulls and three molecules (r =
20.0pNs−1), for a total of ten separate experiments. Good reproducibility was obtained among
molecules (see Supplementary Fig. S2). Work values were binned into about ten equally spaced
intervals. Unfolding and refolding distributions at different speeds show a common crossing
around ΔG = 110.3kBT.
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Figure 3. Free-energy recovery and test of the CFT for non-gaussian work distributions
Experiments were carried out on the wild-type and mutant S15 three-helix junction without
Mg2+. Unfolding (continuous lines) and refolding (dashed lines) work distributions. Statistics:
900 pulls and two molecules (wild type, purple); 1,200 pulls and five molecules (mutant type,
orange). Crossings between distributions are indicated by black circles. Work histograms were
found to be reproducible among different molecules (error bars indicating the range of
variability). Inset, test of the CFT for the mutant. Data have been linearly interpolated between
contiguous bins of the unfolding and refolding work distributions.
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Figure 4. Use of CFT to extract the stabilizing contribution of Mg2+ to the free energy of the S15
three-helix junction (wild type)
Unfolding (continuous lines) and refolding (dashed lines) work distributions. Green curves,
450 pulls and two molecules in Mg2+; purple curves, 900 pulls and two molecules without
Mg2+. Crossings between distributions are indicated by black circles. Work histograms are
reproducible between the molecules (error bars indicating the range of variability). Inset, the
same histograms in logarithmic scale (axes labels as for the main panel) showing (vertical black
bars) the regions of work values where unfolding and refolding distributions are expected to
cross each other by Bennett’s acceptance ratio method (Supplementary Information).
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