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ABSTRACT

We describe a tool that supports verification of workflow
models specified in UML activity graphs. The tool trans-
lates an activity graph into an input format for a model
checker according to a semantics we published earlier. With
the model checker arbitrary propositional requirements can
be checked against the input model. If a requirement fails
to hold an error trace is returned by the model checker. The
tool automatically translates such an error trace into an ac-
tivity graph trace by high-lighting a corresponding path in
the activity graph. One of the problems that is dealt with
is that model checkers require a finite state space whereas
workflow models in general have an infinite state space. An-
other problem is that strong fairness is necessary to obtain
realistic results. Only model checkers that use a special
model checking algorithm for strong fairness are suitable for
verifying workflow models. We analyse the structure of the
state space. We illustrate our approach with some example
verifications.

1. INTRODUCTION

Workflow management is used on a wide scale nowadays,
and is supported by tools for editing workflow models as
well as tools for the verification of performance properties
of workflow models, such as throughput and workload analy-
sis tools {1, 25]. However, the trend is that modern workflow
applications are being integrated with Enterprise Resource
Planning, e-commerce applications, cross-organisational work-
flow and flexible case management (see e.g. {4, 18]). These
new applications create drastically more complex workflows
whose functional properties are not easily checked by visu-
ally inspecting a workflow model. The presence of event-
driven behaviour, real-time, unrestricted loops, parallelism
and distribution make it easy to specify workflow models
that have undesirable properties. Since it is very expensive
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to change a workflow model that has active instances, it is
desirable to have tools available for the verification of func-
tional workflow model properties. We propose an approach
to property verification based on model checking UML ac-
tivity graphs [33]. (See Clarke et al. [7] for an introduction
to model checking.)

To be able to model check functional properties at build-
time, we need a formal semantics of workflow models. This
may make the choice for UML activity graphs less obvi-
ous, because at the present time, there is no generally ac-
cepted formal semantics of UML activity graphs and the
informal OMG semantics is not yet suitable for workflow
modelling [13]. At the same time, Petri nets are widely used
for workflow modelling and they have a formal semantics
for which model checkers exist [17]. However, we think that
UML activity graphs are better suited for specifying data
and event-driven behaviour than Petri nets. Formalisations
of Petri nets have problems with modelling these aspects of
a workflow [12]. As a consequence, formal Petri net models
often do not very well reflect the behaviour of actual work-
flows, whereas on the other hand Petri net models that do
reflect the behaviour of actual workflows, do not have a for-
mal semantics. But for model checking workflow models we
need both a formal semantics and an accurate representation
of workflow behaviour.

In a previous paper [11], we proposed a formal execution
semantics for activity graphs, intended for workflow mod-
elling, that can be used for model checking. The semantics
deals with data, real-time, and event-driven processing. In
Section 2, we briefly summarise this semantics. We have
implemented this semantics in the Toolkit for Conceptual
Modeling (TCM) [9], a set of diagram editing tools, one of
which is a tool for drawing activity graphs. Figure 1 shows
the outline of the verification support we have developed
for workflow modellers. The mapping of the activity graph
into the transition system implements the execution seman-
tics. The implementation is available at http://www.cs.
utwente.nl/"eshuis/tatd.html.

The intended way of working with the verification tool is
as follows. The workflow modeller specifies an activity graph
with TCM. This activity graph is a workflow model. Using a
formal property language, the workflow modeller can define
requirements that the intended workflow model must satisfy.
Both the activity graph and the requirements must be for-
mal, since they are interpreted by a software tool according
to a formal semantics. TCM generates a transition system
from the activity graph and translates the requirement into
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Figure 1: Tool architecture

a temporal logic formula. Currently, the requirements lan-
guage is a syntactic sugarring of the temporal logic language,
but in future work we intend to specify a more abstract re-
quirements language that is closer to the business level. The
most commonly used temporal logics are Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) [7]. Both
the transition system and the temporal logic formula are in-
put for a model checker that checks whether the transition
system satisfies the temporal logic formula. If the temporal
logic formula fails to hold, the model checker generates an
example run (also known as scenario or trace) which shows
the sequence of states that lead to violation of the require-
ment. The corresponding path is then visualised in the ac-
tivity graph. The workflow modeller can then either change
the requirement or the activity graph and do the verification
again.

Initially, we included support for as many model check-
ers as possible and have used for example NUSMV [6] and
Spin [21]. However, not every model checker turned out
to be useful. As we will argue in Section 5, only model
checkers supporting strong fairness constraints are useful
for workflow models. Since strong fairness is an LTL prop-
erty and most model checkers support CTL properties only,
only a few model checkers are useful for our purpose. Even
worse, most LTL model checkers do not use a special model
checking algorithm for strong fairness, i.e., they do not sup-
port verification of strong fairness at the algorithmic level.
Consequently, their performance is so bad that they cannot
be used either. We therefore decided to implement in the
NUSMYV [6] model checker an existing LTL model checking
algorithm of Kesten et al. [26] that is intended for strong
fairness. The results that are obtained with our implemen-
tation are encouraging (see Sections 5 and 6).

The contribution of our work is on three different do-
mains, namely (1) workflow modelling, (2) UML and (3)
model checking. (1) Our tool offers flexible analysis support
of workflow models that have event driven behaviour, data,
loops, and real-time. Previous approaches either focus on
fixed analysis properties for simple workflow models with-
out data or real-time (Woflan), whereas others support only
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flexible analysis for models without loops and data (Testbed
Studio) or do not support strong fairness constraints (Men-
tor) (see Section 8). Besides, the model checker we use is
hidden from the user: TCM generates the model checker’s
input transition system directly from the activity graph and
it translates the model checker’s feedback directly into a
path of the activity graph. TCM also generates the strong
fairness constraints for the input model automatically. The
user merely has to specify the property she wants to verify.
(2) As far as we know, our tool is the first verification tool
for UML activity graphs. Existing verification tools for the
related UML statecharts do not present feedback in terms of
the original statechart and ignore the issue of strong fairness.
(3) Our work shows that only model checkers support-
ing strong fairness constraints are useful for verification of
workflow models. Usually, strong fairness constraints are
used for verifying properties of concurrent processes only
(e.g. to show the absence of starvation). Workflow models
are a new application domain for strong fairness constraints.
Only model checkers supporting strong fairness at the algo-
rithmic level (see Section 5) turned out to be useful.

The structure of this paper is as follows. We start with
an explanation in Section 2 of the syntax and semantics of
UML activity graphs. In Section 3 we explain how we trans-
form an infinite state space to a finite one. In Section 4 we
sketch the structure of our implementation. Section 5 dis-
cusses what strong fairness is and why it is needed. Section 6
gives some example verifications of requirements of workflow
models. In Section 7 we analyse the factors of the activity
graph that impact the size of the state space and we show
how the state space can be reduced while retaining prop-
erties. In Section 8 we discuss related work. We end with
discussion and conclusions.

2. SYNTAXAND SEMANTICS OF UML AC-
TIVITY GRAPHS

Syntax. Figure 2 shows an example activity graph specifi-
cation of a workflow model. Ovals represent activity states
and rounded rectangles represent wait states. The exam-
ple models the workflow of a small production company
(adapted from [36]). First, an order is received. Next, the
departments Production and Finance are put to work. Fi-
nance checks whether the customer’s account limit is not
exceeded by accepting the order. If Finance rejects the or-
der, the whole workflow stops. Otherwise, Finance sends a
bill to the customer and waits until the customer pays. Pro-
duction checks whether the desired product is still in stock.
If not, a production plan must be made to produce the prod-
uct. If according to Finance the order may be accepted, the
product is either produced or taken from stock. If both Pro-
duction and Finance have finished, the product is shipped to
the customer.

We follow the UML terminology [33] and call an activity
state node an action state node. Crucial in our semantics is
that an activity graph represents the behaviour of a workflow
management system (WFMS), not of its environment. The
environment of a WFMS consists of actors (people or soft-
ware) that perform activities. The WFMS monitors these
activities but does not perform them. An action state node
represents a WEMS state in which the WFMS waits for
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Figure 2: Workflow of production company

an actor to complete its work. During an activity, the ac-
tor may change attributes of the workflow. An activity is
atomic. A wait state node represents a WFMS state in
which the WFMS waits for some external events to occur,
e.g. the WFMS waits for a deadline to occur, or for a third
party to send some information. The workflow starts in the
black dot (the initial state) and ends at a bull’s eye (an end
state). A bar represents an AND-node, which is either a fork
or a join but not both. A diamond represents an XOR-node,
which is either a split or a merge but not both. The AND
and XOR-nodes in a UML activity graph are pseudo state
nodes, i.e. they are transient state nodes that are not part
of any legal state of the activity graph. As the UML [33]
does, we regard them as syntactic sugar to denote complex
hyperedges (called compound transitions in UML).

. State nodes (including pseudo state nodes) are linked by
directed edges, expressing sequence. An edge can be la-
belled by e[g] where e is an event expression and g a guard
expression. Each of these two components is optional. An
edge that leaves an action state node cannot have an event
expression in its label, since that would denote an inter-
rupt, whereas an activity cannot be interrupted, since it is
atomic. A guard expression can refer to variables of the ac-
tivity graph. The variables of an activity graph are booleans,
integers and strings. Guard expressions can be combined us-
ing A,V, and -. We do not allow action expressions on the
label since these would express changes of the workflow at-
tributes performed by the WFMS and as we just explained,
a WFMS does not change the workflow attributes.

A special kind of event expressions are the temporal ones.
A when event denotes an absolute time event, for example
when(12:00hs), whereas an after event denotes a relative time
event, for example after(5s), which means that 5 seconds af-
ter the corresponding edge became relevant, a timeout oc-
curs.

In our formal semantics [11}, we have extended the UML
definition of activity graphs by specifying pre and post con-
ditions of activities, that constrain the in- and output of
activities. There, we specify for each activity the variables
it reads and updates. This latter information is needed to
ensure transactional properties of activities.
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As stated above, the pseudo state nodes of an activity graph
do not represent any legal state of the activity graph. In
order to give a semantics to an activity graph, we eliminate
pseudo state nodes, by mapping an activity graph into an
activity hypergraph.

An activity hypergraph consists of a set of labelled state
nodes that are connected by labelled directed hyperedges (a
hyperedge is an edge with one or more source state nodes
and one or more target state nodes). State nodes of an ac-
tivity hypergraph are action state nodes, wait state nodes,
initial state nodes and final state nodes. An activity hy-
pergraph can have variables. A hyperedge can be labelled
with an optional event expression and an optional guard
expression, where the latter can refer to variables of the ac-
tivity hypergraph. Figure 3 shows the activity hypergraph
of Fig. 2.

An activity graph is mapped into an activity hypergraph
as follows. -

e The ordinary, i.e. non-pseudo, state nodes of the ac-
tivity graph become the state nodes of the activity
hypergraph.

e The variables of the activity graph become the vari-
ables of the activity hypergraph.

e Hyperedges are computed using the notion of a com-
pound transition. A compound transition [19, 33] is
an acyclical, maximal chain of edges, linked by pseudo
state nodes. Every compound transition maps into a
hyperedge by eliminating the pseudo state nodes.

Figure 4 shows some of the most common eliminations.
Roughly speaking, for every XOR-node every pair of enter-
ing and exiting edges maps into one compound transition.
And for every AND-node, all its entering and exiting edges
map into the same compound transition. If AND-nodes are
connected to OR-nodes, the mapping becomes slightly more
complicated. Our full report {10] gives all details. The map-
ping is implemented in TCM and is invisible to the user
(except if the mapping fails, e.g. because there is a cycle
between pseudo state nodes; then an error is raised).

Semantics. Our semantics maps an activity hypergraph into
a transition system. The transition system we use is a
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Kripke structure. Let Var be a set of variables. A valuation
o of Var assigns to every variable v € Var a value o(v) in
that variable’s domain. A valuation represents a possible
state of the world. A Kripke structure on Var is a transi-
tion system (Var, —,00). Its states are valuations of Var.
A transition ¢ — ¢’ in the Kripke structure represents that
some variables change value, i.e. the world changes. Model
checking requires that relation — is total. Valuation oy is
the initial valuation. A run of the Kripke structure is an
infinite sequence of states connected by transitions.

Since an activity hypergraph represents the behaviour of a
WFMS, a state of the Kripke structure in this case is a state
of the WFMS. This state is represented by five variables: (1)
the bag of nodes that are currently active in the workflow
model (called configuration), (2) the set of current event
occurrences, (3) the valuation of the local variables, (4) the
bag of terminated action state nodes, and (5) the current
value of the running timers. An action state node terminates
iff the activity it controls terminates. Timers are special
clock variables that measure the progress of time. They are
necessary to generate timeouts.

We view a WFMS as a reactive system [20, 35]. As any re-
active system, the WFMS reacts to events it receives from its
environment (e.g. activity completion events), based upon
its current state, by performing certain desired actions in
its environment (in the case of completion events the en-
abling, but not the execution, of new activities), and updat-
ing its current state. For example, if in Fig. 3 the config-
uration contains node Check stock, so activity Check stock
is active, and the WFMS receives the completion event of
that activity, then the WFMS reacts by enabling activity
Make production plan if insufficient stock is true, and by up-
dating the configuration: node Check stock is removed and
either Make production plan or WAIT is inserted, and the set

- of input events is reset.
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In previous work, we have defined a requirements-level
semantics [11] and an implementation-level semantics [13].
Key property of the requirements-level semantics is that the
perfect synchrony hypothesis [3] is adopted: the system re-
acts immediately and infinitely fast to events it receives.
Since the system is infinitely fast, while a system is reacting
to an event, another event can never occur. Also, taking a
hyperedge does not cost time. In the implementation-level
semantics, we have dropped the perfect-synchrony hypoth-
esis. Hence, in this semantics a queue is needed to store
events that occur while the system is busy reacting to an
event. Also, taking a hyperedge in this semantics does take
time. Advantage of the requirements-level semantics is that
models in this semantics are easy to check and simple to un-
derstand, whereas the main disadvantage is that the perfect
synchrony assumption may make some of the behaviour of
models in this semantics not very realistic {12]. By contrast,
the advantage of the implementation-level semantics is that
models in this semantics are realistic, but the disadvantages
are that models in this semantics are difficult to check and
difficult to understand [12]. In this paper, we focus on the
requirements-level semantics. We postpone model checking
of the implementation-level semantics to future work.

In the requirements-level semantics, during a reaction of
the system, the state of the system changes as follows. The
configuration is updated (i.e., the state of the workflow model
changes and the WFMS enables some new activities to be
executed), the bag of terminated action state nodes is up-
dated, the set of current event occurrences is reset, but the
local variables do not change. Local variables are updated by
actors in activities, not by the WFMS in a reaction. Timers
are not increased, since a reaction is instantaneous. Some
timers are started, however, since they become relevant, and



some are stopped, since they become irrelevant.

In a reaction, one configuration is updated into another

one by taking a bag of hyperedges, called a step. Not every
bag of hyperedges is a step. First, a hyperedge can only
be part of a step if it is enabled. A hyperedge is enabled
if and only if it is relevant, its trigger event occurs and its
guard condition is true. A hyperedge is relevant in a con-
figuration iff all its source state nodes are currently active,
i.e. they are contained in the configuration, and all source
action state nodes have terminated, i.e., they are contained
in the bag of terminated action state nodes. Second, some
enabled hyperedges can be in conflict with each other. A
bag of enabled hyperedges is consistent iff the bag union of
their source state nodes is contained in the current configu-
ration (i.e. they can be taken simultaneously). For example,
in Fig. 3 the two hyperedges leaving Check stock are consis-
tent if and only if the current configuration contains at least
two copies of Check stock. Since at most one copy of Check
stock will be active at the same time, the two hyperedges
will always be inconsistent. Also, a bag of enabled hyper-
edges must satisfy the transactional isolation property that
in the next configuration no two activities update the same
variable. If a bag of hyperedges satisfies this constraint, we
call this bag non-interfering. Now, a step is defined as a
consistent, non-interfering bag of enabled hyperedges that
is mazimal, i.e. adding an enabled hyperedge would make
the step either inconsistent or interfering.
" In the requirements-level semantics, we have adopted the
STATEMATE [19] semantics of a system reaction. Informally,
the semantics is as follows. Initially, the system is in a sta-
ble state, i.e., there are no events and no hyperedges are en-
abled, so no step can be taken. When events occur, the sys-
tem state becomes unstable. To reach a stable state again,
the system reacts by taking a step and entering a new state.
If this new state is unstable as well, again a step is taken,
otherwise the system stops taking steps. This sequence of
taking a step and entering a new state and testing whether
the new state is stable, is repeated until a stable state is
reached, in which no hyperedges are enabled. Thus, the sys-
tem reaction is a sequence of steps, called a superstep [19].
Note that the perfect synchrony hypothesis implies that (1)
while the system is taking a superstep, no other events can
occur in the environment, and (2) time does not elapse in
unstable states.

The environment behaves nondeterministically. It can
generate events to which the system reacts at any time.
Since it can generate events at any time, we use a dense
time model.

3. FROMINFINITE TO FINITE STATE SPACE

The semantics sketched in the previous section is not yet
suitable for model checking, since the transition system of
the activity graph can have an infinite state space whereas
model checking requires that the state space be finite. In
this section we describe how our implementation deals with
infinite state spaces. :

Unbounded State Nodes. Combining fork and merge, we
can specify workflow models and patterns in which multi-
ple instances of the same state node are active at the same
time [2]. Figure 5 shows two example activity graphs in
which a state node can occur more than once in the same
configuration. In the top activity graph, arbitrarily many

170

Figure 5: Examples of multiple state instances.

instances of B can be active at the same time. In the lower
activity graph, C is executed twice; two instances of C can be
active at the same time. These activity graphs might have
an infinite state space, if one of the state nodes in the activ-
ity graph is unbounded. A state node is unbounded if there
is no bound on the maximum number of its active instances.
For example, the top activity graph in Fig. 5 has an infinite
state space since node B is unbounded, but the lower activity
graph has a finite state space. Model checking is decidable
for finite models [7], but for infinite models it can become
easily undecidable [14]. We therefore restrict ourselves to
bounded models, which have a finite state space. In our
implementation, the computation of the transition system
is stopped if one of the state nodes becomes unbounded. A
node n is unbounded iff there is a state s that has n in its
configuration C; and s has a predecessor state s’ such that
its configuration Cy is strictly contained in C; and C,s does
not contain n. For example, in the top activity graph in
Fig. 5, node B is unbounded since a state with configura-
tion [A,B] is reachable from a state with configuration [A].
(This criterion is derived from the Karp-Miller algorithm
that computes the coverability graph of a possibly infinite
Petri net [24]; the notion of unboundedness stems from Petri
net theory.)

Abstracting from Data. Since an activity hypergraph can
have integer and string variables, the state space of the tran-
sition system can be infinite. We reduce this infinite transi-
tion system to a finite one as follows.

The key observation is that the only data that influences
the execution of the activity hypergraph are the event and
guard labels. The only relevant data, therefore, is the boolean
valuation of the event and guard expressions. For example,
suppose a guard tests whether variable z < 10. Then we
only need to know the truth value of the guard, if we want
to know whether the associated hyperedge is enabled.

A naive model checking strategy would therefore be to
drop all data and to introduce for every guard expression a
boolean representative. The guard is true iff its boolean rep-
resentative is true. This strategy is naive in the sense that it
ignores that guard expressions can be dependent upon each
other. For example, if guard expression [pAg] is true then [p]
must also be true. And if [s=“red”] is true then [s#“red”]
must be false, and vice versa. But in the naive model check-
ing strategy, [p A g] and [p] might be assigned conflicting
truth values, for example [p A ¢] = true and [p] = false.
Such valuations are infeasible, and therefore should not oc-
cur in the model.

We therefore consider basic guard expressions: those parts
of the guard expressions not containing A,V and —. This
partly solves the problem sketched above (for example [p A



q] and [g] are dependent now). But not fully, since basic
guard expressions too can be dependent upon each other.
For example, basic guard expressions [z = 10] and [z > 10]
are not independent, since x = 10 = z > 10.

We solve this problem by requiring that a basic guard
expression can at most refer to one variable, and that if two
basic guard expressions refer to the same variable, then they
must be syntactically the same. This may seem a limiting
constraint, but we have not yet seen a workflow model in
practice that did not satisfy this constraint. We postpone
relaxing this constraint to future work.

The approach above is based on existing approaches from
modal logic theory, e.g. filtration [15]. Similar techniques
are also applied in model checking under the name partition
refinement [8]. Partition refinement can only be applied to
a finite state space. Therefore, as far as we know, partition
refinement is never applied to data abstraction, since data
may induce an infinite state space.

Real time. Activity graphs can contain simple real-time
constructs of the form when and after (see Section 2). In
our prototype, we have only implemented after constraints;
when constraints can be dealt with similarly. In computing
a transition system, we need to interpret after constraints
in order to generate timeouts. One obvious solution is to
use discrete timers. But in our semantics we have dense
time rather than discrete time: an event can occur at any
time, not just at clock ticks. A dense time model cannot be
discretised straightforwardly, since the discretisation may
introduce some (undesired) properties that are not present
in the original dense time model. However, in our case,
we can use the result of Gollii et al. [16] that dense time
models with n timers can be discretised using clock ticks of
1/(n 4 1). This discretisation preserves the untimed (reach-
ability) properties of the original dense time model, but it
may introduce some different timing behaviour [16]. So it is
not possible to use a real-time logic as property language.
But since there is no real-time model checker supporting
strong fairness constraints, we are subject to this limitation
anyway.

4. IMPLEMENTATION

We first discuss some simplifying assumptions we made
in our implementation. Next, the implementation itself is
discussed.

Assumptions. First, our semantics [11] requires that for ev-
ery activity A the variables that A reads and updates be
specified. To deal with this, we have adopted the following
assumptions:

1. If an activity reads a variable, we assume that it up-
date that variable too.

2. We assume that a variable is updated by an activity
A iff there exists an hyperedge h such that one of h’'s
sources is labelled A and the variable is tested in h’s
guard expression. So in Fig. 2 we assume that Check
stock updates boolean variable insufficient stock.

These two assumptions make it possible to deduce for ev-
ery activity automatically what variables it updates. So the
user does not have to provide this information.
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Figure 6: Modelling pre and post conditions

Next, in our formal semantics {11] we require that every
activity have a pre and post condition that constrains what
actors can do with the activities. To deal with pre and
post conditions, in our prototype implementation we have
adopted the following assumptions (Fig. 6):

3. For every action state node a that controls an activity
with a pre condition pre, there should be a preceding
wait state node. This wait state node is connected to a
by an edge with a guard label [pre]. Our semantics will
take care that the system stays in the wait state node
as long as the pre condition is false. If the pre condition
becomes true, our semantics will ensure that the wait
state node is left, the action state node is immediately
entered and the activity is started. Our semantics en-
sures that the pre condition can only be evaluated iff
all updated and observed variables it refers too, are not
being updated anymore. If the pre condition is true it
can be omitted. (In Fig. 2 all the activities have pre
conditions true.)

4. Every post condition post of an activity implies the
disjunction of the guards of all the (hyper)edges that
leave the corresponding action state node. For exam-
ple, in Fig. 6 we have that post = [g] V [h]. Also, we
assume that the system cannot get stuck due to a false
post condition, i.e., every activity will satisfy its post
condition when it terminates.

Under these two assumptions we can abstract away from
pre and post conditions, since these are already implicitly
modelled by the guard conditions.

Next, we use the following data abstraction rule:

5. The effect of an activity is the possible change in valu-
ation of the variables that the activity updates. Since
the only relevant changes are changes in truth value of
a guard, the effect of an activity is expressed in terms
of the basic guards that are made true or false by that
activity.

An activity updates those basic guard expressions that
contain a variable that is updated by that activity. As ex-
plained in the previous Section, we do not allow basic guard
expressions that contain more than one variable.

6. The data that is updated in an activity is not updated
by the environment.

Not making this assumption would make some workflow
models counter intuitive. For example, in Fig. 2 the two
choices based upon insufficient stock should have the same
outcome. If above assumption is not made, the two choices
might have different outcomes, which is undesirable. A nice
effect of the assumption is that it reduces the state space
explosion.
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Figure 7: Meta model of implementation

Implementation. Figure 7 shows a meta model in UML
notation of our implementation. The model does not show
‘how an activity graph is translated into an activity hyper-
graph. Although we have implemented this, this is not the
interesting part of the implementation.

. The main part of our implementation consists of an it-
erative algorithm that processes states (valuations) of the
Kripke structure. A state is processed in one of the follow-
‘ing two ways.

e If a processed state is stable, either the timers tick and
a new stable state is reached, or some events occur
and the next state becomes unstable. The algorithm
computes all possible unstable states that can occur
next. In an unstable next state, either the set of input
events is filled, or some basic guards change value, or
some action state nodes terminate, or some timeouts
occur.

If a processed state is unstable, the algorithm com-
putes all possible steps and all the resulting target
states that are reached when those steps are taken. A
resulting target state is stable if there are no enabled
hyperedges in this state; it is unstable otherwise.

The new states that are generated while a state is pro-
cessed, are processed later. The algorithm stops if all states
have been processed. The resulting transition system can
-be straightforwardly encoded as input for a model checker.

In Section 7 we analyse the structure and size of the state
:space and analyse different ways of reducing it.

5. STRONG FAIRNESS

Workflow models can contain loops. Consider for example
.the activity graph in Fig. 2. There is a loop Send bill-WAIT-
Handle payment-Notify Customer-Send Bill-.... Without any
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further hint, every model checker will think the system can
stay forever in such a loop. This is not what is intended. A
workflow will eventually terminate and will not stay forever
in a loop. So in this example, the payment will eventually
be ok.

At first sight, it may seem as if loops are only introduced
directly in the control flow, as in Fig. 2. But even a workflow
model that has no loops in the control flow may have loops
in its Kripke structure. This is due to event occurrences
that can occur in a certain state but that are irrelevant and
therefore ignored. For example, in Fig. 8 event e can occur
while A is active, but then it is simply ignored. Nothing
in our semantics prevents e from happening over and over
again while A is active. The run in Fig. 8 would therefore
be a valid run. But we want to exclude such a run because
in it, A never terminates while e occurs infinitely often.

To exclude these loops, we have to find a way to instruct
the model checker that the loops will be exited eventually.
A useful way to specify this is to use strong fairness (also
known as compassion) constraints. A strong fairness con-
straint (p, g), where p and g are properties, states that if p
is true infinitely often, then ¢ must be true infinitely often
as well. Intuitively, a property p can only be true infinitely
often if there is some kind of loop in the model in which p
is made true. So the strong fairness constraint (p, q) says
that if there is some loop which makes p true infinitely of-
ten, then ¢ must be made true infinitely often by the loop
as well. If this is not the case, the loop is not strongly fair
and the loop must be exited after a finite number of itera-
tions. Using a strong fairness constraint, therefore, we can
specify that some loop must be exited eventually. For ex-
ample, in Fig. 8 the run does not satisfy the strong fairness
constraint ([A] E C,[WAIT] C C), where C is the config-
uration, because node A is infinitely often contained in the
configuration, but node WAIT is not.
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Figure 8: Example of hidden loops

There are several ways to encode strong fairness con-
straints in the workflow models. We have chosen to encode
for every hyperedge h a fairness constraint that states that
if h is relevant infinitely often, it must be taken infinitely
often': (source(h) C C, target(h) C C). An alternative en-
coding is to specify a strong fairness constraint for each cycle
in the generated Kripke structure. But this results in a far
greater number of strong fairness constraints, since a work-
flow model with external events will have cycles in almost
every state (cf. Fig. 8).

Each strong fairness constraint (p, ¢) is equivalent to LTL
constraint G F p = G F ¢, where G ¢ means that ¢ is glob-
ally true in every state of the run and F ¢ means that ¢ is
true in some future state of the run. At first, we tried to en-
code the strong fairness constraints as antecedent of the LTL
property that has to be verified and then use an ordinary
LTL model checker like NUSMYV or Spin. Since we have a lot
of strong fairness constraints, however, verification of these
models was undoable in practice. To illustrate this, our ex-
ample has 19 hyperedges, so 19 strong fairness constraints.
This already is too much for both NUSMV and Spin: we
where not able to verify the simple property fairness = false
(true iff the model has no run), where fairness is the con-
junction of the strong fairness constraints for every hyper-
edge, as explained above.

We therefore decided to take TLV [32], a model checker
that has a special model checking algorithm for strong fair-
ness constraints. The strong fairness constraints are given
separately from the property that has to be verified. The
algorithm restricts the evaluation of a property to strongly
fair runs only. The algorithm that TLV uses, is described in
Kesten et al. [26]. TLV performed significantly better than
NuUSMV and Spin: TLV only took 20 seconds to verify false
under the strong fairness constraints. But unfortunately,
TLV does not support batch processing, so we could not inte-
grate it into TCM. We therefore implemented the mentioned
algorithm of Kesten et al. [26] in the open source model
checker NUSMV, which does support batch processing. The
resulting strong fairness model checker, called NUSMV g7,
can be downloaded from http://www.cs.utwente.nl/
“eshuis/nusmvfair.html.

6. EXAMPLE VERIFICATIONS

We discuss some example verifications of requirements for
the workflow model of Fig. 2. We distinguish general and
ad-hoc requirements. A general requirement must hold for

!Strictly speaking, the formalisation above does not express
this since it does not state that h should be taken. But
for models in which no source and target of a hyperedge
is contained in the sources and target of another one, the
formalisation is correct.
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every possible activity graph, while an ad-hoc requirement
is specified for a specific activity graph.

General requirements. There are several general require-
ments possible. We focus on the following basic requirement:
for each strongly fair run, from the initial state a final state
should be reachable. We formulate this requirement as the
following LTL formula:

(R1): F G final

where final is a predicate that is true iff the current configu-
ration only contains final state nodes. (TCM translates final
into an equivalent predicate on state nodes.) TCM automat-
ically generates the appropriate strong fairness constraints
for the workflow model. NUSMVj,;, reports that the prop-
erty is true.

Other useful general requirements are that there are no
dead nodes, i.e., for every node there is a run in which that
node becomes active; and that there are no dead hyperedges.

Ad-hoc requirements. Since every workflow model might
have its own ad-hoc requirements, we just give an example
for the workflow model shown in Fig. 2.

Ad-hoc requirement R2 states that for each possible strong-
ly fair run, either both Make production plan and Produce
occur sometime in the future or both of them do not occur.
We begin with formalising this property as:

(R2): F in(Make production plan) < F in(Produce)

where in(z) is true in a valuation o iff node z is contained in
the configuration of . (TCM translates in into an equivalent
predicate on state nodes.) This property fails to hold: The
path that TCM highlights is shown in Fig. 9. We see that if
the customer check fails, the workflow stops while activity
Make production plan may already have been executed.

There are two ways to repair this error: either adapt the
requirement or the activity graph. We decide to adapt the
requirement. Apparently, only if the customer check does
not fail, the requirement holds:

(R2'): (F customer ok) =
(F in(Make production plan) < F in(Produce))

NUSMV i, reports that this property is true. This prop-
erty is true, because of our assumption 6 in Section 3 which
implies for this workflow model that only Check stock can
change variable insuffient stock. If we had allowed the en-
vironment to change insufficient stock, the property would
not have been true.

Make produc-
tion plan

finsufficient stock}

Figure 9: Path illustrating counter example for R2



Requi- Result Time No.of BDD Memory al-
rement (sec) nodes located (KB)
R1 True 8.0 61448 4855
R2 False 7.8 45835 4755
R2' True 7.8 49079 4827
R3 True 7.4 48111 4819

Table 1: Resources used by NuSMV ;.

Finally, we verify that in each strongly fair run, a bill is
sent if and only if either something is produced or taken
from stock:

(R3): F (in(Produce) V in(Fill order)) < F in(Send bill)

NUSM Vi reports that this property is true.

The resources used by NUSM V,; during this analysis are
shown in Table 1. The analysis was performed on a PC with
a Pentium IIT 450 MHz processor with 128Mb of RAM un-
der Red Hat Linux 6.0. We verified the same properties by
hand with TLV; the outcomes were the same. NUSMV f4;, is
slightly faster, probably since a more efficient BDD library
is used. Most time during analysis was spent by the execu-
tion algorithm in TCM that computes the input transition
system for the model checker; this time is not shown.

7. ANALYSIS OF THE STATE SPACE

The greatest problem of verification with model checking
is the state explosion. For example, even the small example
in Fig. 2 has already over 250 states (see Table 2 below),
although the number of nodes in the workflow models is
only 19. There are several causes for state explosion.

e Parallel branches. These are introduced by hyperedges
that have more than one target, and stopped by hy-
peredges having more than one source. The product of
two parallel branches that have z and y states respec-
tively, will have z X y states. In the example of Fig. 2,
due to parallelism there are 41 different configurations,
although there are 19 nodes.

e Events. There are external and activity termination
events. External events can occur in any stable state,
whereas activity termination events can only occur if
the corresponding action state node is in the current
configuration. Combining this, if there are k external
events and in a given stable state the current config-
uration contains [ action state nodes, then there are
251 _ 1 (the non-occurrence of events is excluded)
possible combinations of events. This means that from
this stable state, 2°7'—1 unstable state can be reached.
This accounts for the fact that, although the example
in Fig. 2 has only 41 configurations, yet it has over 250
different states (even though there is only 1 named ex-
ternal event!).

Temporal events (timeouts) can only occur if some
timers have reached their limit, see below. Their oc-
currence is therefore limited.

e Data (basic guard conditions). Due to assumption 6,
most data only changes value after their source activ-
ity terminates, not by the environment. So data only
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changes value at some specific time (when some ac-
tivity terminates). Moreover, because every data is
tested in a choice after an activity terminates, there
are specific combinations of data and state nodes. For
example, in Fig. 2 if node Notify customer is active
then payment ok is false. Hence, basic guard condi-
tions that are updated by activities do not blow up
the state space with respect to stable states.

But basic guard conditions do blow up the state space
with respect to unstable states. If after an action state
terminates a choice is made out of n alternatives, then
there are n different terminations. So n different un-
stable states are possible. In Fig. 2, for example, Notify
customer can terminate in 2 possible ways. In com-
bination with named external event occurrences and
activity termination events in parallel branches (see
the previous item), this can result in a blowup in the
number of unstable states that are possible. For ex-
ample, Table 2 shows that including payment ok leads
to around 20 additional states. )

o Real time. Due to clock ticks, a lot of extra states are
introduced. For example, if a timer ticks with 1/n and
the timeout is m, then m X n ticks are needed before
the timeout is generated. This means that m X n extra
states are introduced in this branch. In combination
with parallel branches and events, mentioned above,
this can result in a large state space explosion.

To illustrate the effect of events and data upon the size
of a model, we have computed several variants of the activ-
ity graph in Fig. 2. Table 2 shows the results of removing
event and guard conditions upon the number of states of
the activity graph. A 1 denotes the presence of an item, a
0 denotes its absence.

There are several things worth noticing. First, in this case,
including one event doubles the state space. (As a test, we
included another dummy event in the model of Fig. 2 on a
new edge between WAIT and Handle payment; the resulting
model had 535 states.) Second, abstracting from data that
is used in one choice only, for example payment ok, does not
have a big impact on the state space: the model is reduced
by around 20 states. This effect we already explained above
in the third item.

Third, perhaps a bit surprisingly, the table shows that re-
moving guards may increase the state space, rather than de-
creasing it: if guard customer ok is removed, the state space
becomes larger. The reason for this is that some choices
in parallel branches can be dependent upon each other (in
this case the two choices based upon customer ok). This
dependency is lost if these choices are made nondetermin-
istic (in this case if customer ok is abstracted away from).
Then, some configurations that do not exist when the guard
is included, do exist if the guard is not included (in this
case, when customer ok is not modelled, the branch starting
with node Send bill can be active whereas the other parallel
branch immediately stops and does not do Produce or Fill
order). In the example, removing guard customer ok intro-
duces 8 extra configurations. By the way, removing guard
customer ok does have the effect as described under the pre-
vious point, but this effect apparently does not weigh up
against the extra configurations and states that are intro-
duced.



payment received 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
customer ok 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
insufficient stock 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
payment ok 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
nr of states | 277 255 216 198 311 285 234 214 143 132 109 100 160 147 118 108

Table 2: Effects of presence of events and data upon size of the model.

It may seem, therefore, that abstracting away from such
guard conditions makes the resulting model useless for anal-
ysis. For example, F G final is no longer true if guard cus-
tomer ok is removed from our example. But such abstract
models can still be useful, since the dependency between the
different choices can be stated as an antecedent to the prop-
erty to be verified. For example, the property (F in(Send bill)
< F (in(Produce) V in(Fill order))) = F G final is true if
guard customer ok is removed. The antecedent states that
only those runs should be checked in which a bill is sent
if and only if something is produced or an order is filled.
Of course, verification of such properties only works if the
property does not refer to an item that is abstracted away
from.

8. RELATED WORK

There are several workflow verification tools. Woflan [34]
is a tool for verification of textual workflow models without
data and real-time. It is based on low-level Petri nets. In
Woflan the properties that are verified are fixed and can-
not be changed by the user. The issue of strong fairness is
therefore not relevant. The tool developed in the Mentor
project [31] uses a CTL model checker for statecharts {22].
The tool is not integrated with the model checker. The au-
thors do not address strong fairness. They do not provide
any details on how the feedback is presented to the user.
The Testbed Studio tool [23] supports model checking of
business process models with Spin [21]. Only process mod-
els that have no loops are supported. The process modelling
language neither has external events nor temporal events.
The authors do not address strong fairness.

Our work is also closely related to the work done on model
checking STATEMATE and UML statecharts. Chan et al. [5]
and Mikk [30] have defined model checking for STATEMATE
statecharts or variants thereof, using SMV [29] and Spin [21].
Latella et al. [27] present a translation for a subset of UML
statecharts to Spin [21]. All these authors encode the syn-
tax of the statechart explicitly in the input language and let
the model checking tool derive the step semantics implic-
itly. We, on the other hand, have programmed our execu-
tion algorithm [11] in TCM, so TCM generates the semantic
structure directly. In our view, these syntactic encodings
are error prone (see for example a discussion by Mikk on
errors he found in such translations [30]) and only work for
simple models with a restricted syntax. Amongst others,
every state node must have a bound of one. This is true for
a statechart but not for an activity graph. None of these
implementations provide a graphical representation of the
feedback of the model checker.

Lilius and Paltor [28] present vUML, a tool for model
checking a communicating set of objects whose behaviour
is modelled by UML statecharts. They use Spin [21] as
their underlying model checker. No details are given on
how the statechart is encoded. The feedback of the tool is
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graphically represented by a UML sequence diagram. They
neither address strong fairness, nor real-time.

It is difficult to compare our work with this work on stat-
echarts, since our semantics differs somewhat from the stat-
echart semantics, both UML and STATEMATE, in particular
since we have atomic activity states whose effect is declara-
tively specified (these are not present in statecharts). Next,
we have configurations and steps that are bags rather than
sets, since our models can have a bound of more than one.
None of the references above use strong fairness constraints,
since these are apparently not required in the domain they
model (usually embedded real-time systems). Neither do
they analyse the state space nor discuss possible reductions.

9. CONCLUSION AND FUTURE WORK

We presented a prototype implementation that supports
workflow modellers in verifying workflow models specified
in UML activity graphs. Our tool differs from other work-
flow verification tools because it supports the specification of
events, data, real-time and loops in workflow models. Also,
the properties that are checked can be specified by the user
himself and are not fixed. The appropriate strong fairness
constraints are generated automatically by the tool. The
used model checker is under the hood of our tool; the user
merely has to know an LTL based input language. If the
model checker return a counter example, the tool translates
this counter examples back into the activity diagram.

The most interesting result is that workflow models re-
quire the strong fairness assumption. Although there are
some model checkers that support verification of strong fair-
ness constraints, only model checkers that use a special
model checking algorithm for strong fairness perform well
enough to be useful. Since no existing model checker was
suitable for our purposes, we have extended NUSMV with
an existing strong fairness model checking algorithm.

Future work includes finding a more abstract requirement
specification language, since temporal logic might be diffi-
cult to understand for users. To further improve the scala-
bility of our tool, we intend to slice activity graphs in such
a way that the proposition is true in the model of the sliced
activity graph iff it is true in the original model. Next, we
plan to implement model checking for our implementation-
level semantics as well. We expect that models in this se-
mantics will at least be twice as big than models in the
requirements-level semantics. We therefore plan to study
under what restrictions we can use the requirements-level
semantics and yet obtain results that are also valid in the
implementation-level semantics. In that case, we can avoid
using the implementation-level semantics for model check-
ing, and we are then able to tackle larger workflow models.
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