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Kurzfassung

Der Bytecode Verifier ist ein essentieller Bestandteil der Sicherheitsarchiktektur der Pro-
grammierplattform Java. Die Dissertation präsentiert eine formale, ausführbare Spezi-
fikation des Bytecode Verifiers sowie den Beweis, dass dieser korrekt ist. Die Forma-
lisierung im Theorembeweiser Isabelle besteht aus einem abstrakten Framework für
Bytecode-Verifikation, das mit zunehmend ausdrucksstarken Typsystemen instantiiert
wird. Diese decken sämtliche interessanten Eigenschaften der Java-Plattform ab: Klassen,
Objekte, virtuelle Methoden, Vererbung, Ausnahmebehandlung, Konstruktoren, Objekt-
Initialisierung, Subroutinen und Felder. Die Formalisierung liefert zwei ausführbare veri-
fizierte Bytecode Verifier: den iterativen Standard-Algorithmus sowie einen Lightweight
Bytecode Verifier für Geräte mit eingeschränkten Ressourcen.
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Abstract

The bytecode verifier is an important part of Java’s security architecture. This thesis
presents a fully formal, executable, and machine checked specification of a representative
subset of the Java Virtual Machine and its bytecode verifier together with a proof that
the bytecode verifier is safe.

The specification consists of an abstract framework for bytecode verification which is
instantiated step by step with increasingly expressive type systems covering all of the
interesting and complex properties of Java bytecode verification: classes, objects, inheri-
tance, virtual methods, exception handling, constructors, object initialization, bytecode
subroutines, and arrays.

The instantiation yields two executable verified bytecode verifiers: the iterative data
flow algorithm of the standard Java platform and also a lightweight bytecode verifier for
resource-constrained devices such as smart cards.

All specifications and proofs have been carried out in the interactive theorem prover Isa-
belle/HOL. Large parts of the proofs are written in the human-readable proof language
Isabelle/Isar making it possible to understand and reproduce the reasoning indepen-
dently of the theorem prover. All formal proofs in this thesis are machine checked and
generated directly from Isabelle sources.
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1 Introduction

1.1 Motivation

The bytecode verifier is an important, integral part of Java’s security architecture. It has
become popular to download and execute untrusted web applets and JavaCard applets
often even without the user’s approval or intervention. Contrary to the approach of a
certain widely used operating platform, Java provides a scheme to execute untrusted
code safely: the sandbox . The sandbox is an insulation layer that implements a control
policy preventing unsafe access to hardware and operating system resources. It relies on
three security measures:

• Java is not compiled into machine code, but rather into an intermediate format
for a virtual machine [51].

• Hardware access is mediated by a set of API classes [30] that implement a suitable
access control policy.

• Before execution, the bytecode is statically verified [51] to ensure that it does not
bypass the two security measures above.

The last of the three components is the bytecode verifier (BV). It is a central component
of the architecture: any bug in the BV causing an unsafe applet to be accepted potentially
renders the sandbox useless. McGraw and Felten [52, 53] give a list of examples. On the
other hand, the BV is itself a large and complex program that performs an elaborate
data flow analysis. It is thus mandatory, but highly nontrivial, to ensure its correctness.

This thesis presents a fully formal, executable, and machine checked specification of
a representative subset of the Java Virtual Machine (JVM) and its bytecode verifier
together with a proof that the bytecode verifier is correct.

A large body of literature has evolved around the JVM and its BV. This research has
made clear that the BV is an interesting candidate for a formal development; it has
made apparent that looking at different properties of the bytecode language in isolation

1



Chapter 1 Introduction

is not enough, as it is the interactions between them that may lead to unsafe behaviour;
and it has shown that the BV is inherently complex.

Apart from Freund [26], the literature about the BV either restricts itself to an iso-
lated feature of the BV, or only shows vague proof sketches. This is not the fault of
the respective authors: the sheer size of the formalizations involved makes it almost
impossible to present a fully detailed, comprehensive proof of soundness and to expect
a human reader to be able to understand and reproduce the proof, let alone to assure
its correctness. Unsurprisingly, Freund’s PhD thesis [26], which presents such a proof in
reasonable detail, contains precisely the kind of slight errors (see also Section 4.5.1) that
are to be expected for a complex formal development of this size on paper alone. The
formalization in [26] is an exceptional piece of work, and it is most probably sound, but
an—if only ever so slightly—incorrect proof defeats at least some of the purpose of strict
formality. How many more of the sub proofs are incomplete? Has another small but
important assumption been overlooked? Without redoing and manually checking the
103 pages of formal proof (not including the specification), it is not possible to answer
these questions.

This is where the theorem prover comes in. Formalizing the BV in Isabelle does not
make the complexity of the problem disappear, but it has three important advantages:

Correctness Most obviously, proofs are checked mechanically, and trust in them is im-
proved significantly. If a proof does not happen to trigger a soundness bug in the
theorem prover, it is undeniably correct. Isabelle is an LCF style [31] theorem
prover that isolates the soundness critical part in a small proof kernel. Hence,
soundness bugs are extremely rare.

Validation The specification is executable and can be validated against existing imple-
mentations of the BV. With Isabelle’s document generation capabilities, the second
approach to validation remains available, too: the Isabelle specification can be read
conveniently and can be compared to the official JVM specification.

Readability Ensuring correctness of a statement is not the only purpose of a proof; often,
it is even more important that the proof also leads to a deeper understanding of
the problem. This property of formal proofs is lost in most theorem provers.
The Isabelle/Isar language used in large parts of this formalization retains the
full formality of the theorem prover and at the same time makes the reasoning
accessible for humans.

The next section (1.2) presents the contributions of this thesis. Sections 1.3 and 1.4
give an informal introduction to the JVM and the BV. Section 1.5 surveys the literature

2
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on bytecode verification and gives pointers to related work. Section 1.6 contains an
introduction to Isabelle notation and Section 1.7 provides an overview of the remainder
of this thesis.

1.2 Contributions

The focus of this thesis is the bytecode verifier—the algorithm as well as the proper-
ties of the Java bytecode language it is concerned with. Of these, I present classes,
objects, inheritance, virtual methods, exception handling, constructors, object initial-
ization, bytecode subroutines, and arrays in this thesis. The specification yields two
executable verified bytecode verifiers: the iterative data flow algorithm of the standard
Java platform and also a lightweight bytecode verifier for resource-constrained devices.

The main contributions of this thesis are the following (Chapter 7 contains a more
detailed discussion).

• The formalization of the BV in this thesis is one of the most comprehensive for-
malizations of the BV that have been published, and it is the most comprehensive
one in a theorem prover. It shows that the type system used in the JVM and the
BV is safe and can be proved correct in a theorem prover.

• The abstract typing framework in this thesis makes it possible to cleanly distinguish
between executable algorithm and type system. It enables a uniform treatment of
verification algorithms, which leads to a lightweight bytecode verifier that handles
properties beyond both the original version by Rose [74, 75] and the industrial
version by Sun Microsystems [87, 88]. It is important to note that these verification
algorithms are not only executable in theory, but that ML prototypes have been
generated from the specification.

• This thesis studies multiple type systems. I discuss the merging type system that
is used in current BV implementations, and the more recent set based type system
that is especially useful for bytecode subroutines. For the merging type system
with object initialization I show the first proof of correctness in a theorem prover
that considers a representative subset of the JVM. For the set based type system
I also present the first proof of correctness in a theorem prover, and I show that
the approach scales to a representative, object oriented subset of the JVM. The
original version by Coglio [15, 16] did not even contain classes.

The focus of this thesis is not a complete model of the JVM that conforms precisely to
the JVM specification [51] down to every technical detail. Such a model in a theorem

3
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prover, of course, has its merits, but as in every formal development, a balance between
abstraction and detail has to be found. Since the focus of this thesis is the BV, the
model of the JVM I present here abstracts as far as possible from everything that does
not concern bytecode verification.

The about 200 instructions in the JVM are condensed into 22 instructions in the last
stage of the formalization. For instance, the 41 arithmetic instructions of Java bytecode
all behave the same way in the BV and hence are modeled by one representative instruc-
tion in the formalization. The formalization contains one representative instruction of
each class that is interesting for the BV. The subset of the Java language in this thesis
is called µJava, its virtual machine µJVM.

Unlike Java, the µJava bytecode language does not contain interfaces, access modifiers,
packages, threads, class initializers, static methods, class loading, wide instructions,
or wide data types. Most of these are only important for the JVM, not for the BV.
Section 7.2 discusses those that concern bytecode verification in more detail and gives
pointers on how to include them in the formalization.

1.3 The Java Virtual Machine

As in the Java source language, bytecode programs are organized in classes and methods.
The JVM is a stack based abstract machine for bytecode programs. It comprises a
heap, which stores objects, and a method call stack, which captures information about
currently active methods in the form of frames.

When the JVM invokes a method, it pushes a new frame onto the frame stack to store
the method’s local data and its execution state. As Figure 1.1 illustrates, each frame
contains its own program counter, operand stack, and register set. Bytecode programs
specify the number of stack and register slots they use; this allows an implementation
to allocate an activation record of the correct size for each method invocation.

Bytecode instructions manipulate either the heap, the registers, or the operand stack.
For example, the IAdd instruction removes the topmost two values (integers) from the
operand stack, adds them, and pushes the result back onto the stack. In the example in
Figure 1.1, the JVM would execute the Getfield F A instruction, removing the reference
to the object from the stack, and putting the value (Addr 9 ) of the field F of the
referenced object (at Addr 8 ) on top.

Apart from the operand stack, the JVM uses registers to store the working data and
arguments of the method. The first register (number 0 ) is reserved for the this pointer
of the method. The next p registers are reserved for the p parameters of the method,
and the rest is usually dedicated to local variables declared inside the method.

4
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Class A, Method void m()
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[Addr 8, Addr 9]
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Class ..., Method ...
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 registers
 pc


...
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 pc
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  (objects, fields, arrays)


    ...


    Addr   7:    ...


    Addr   8:  Object of Class B, A.F = Addr 9


    Addr   9:  Object of Class A, A.F = Null


    Addr 10:    ...


    ...


  Program
  (classes, methods, constants)


  Class A extends Object


  Field A F


  Method void m():


        …


  2   Load 0


  3   Store 1


  4   Load 0


  5   Getfield F A


  6   Goto -3


         ...


Frame Stack


Figure 1.1: The JVM.

The heap stores dynamically created objects, while the operand stack and registers only
contain references to objects.

Exception handlers for each method are specified in a table of tuples (s,e,h,C ). If an
exception of class E is raised by an instruction in the asymmetric interval [s,e) and E
is a subclass of C, the table entry is said to match the exception. The JVM looks for
the first table entry that matches E, and transfers control to the instruction at h, the
exception handler.

The instructions in the JVM are typed. This means that, for example, the IAdd in-
struction only works on integers, not addresses. Similarly, a Getfield F A instruction
that accesses the field F of an object on the heap only works on references of the correct
class (any subclass of A). Using the Getfield or Invoke instructions on an integer would
be an attempt to forge an object reference.

1.4 The Bytecode Verifier

The JVM relies on the following assumptions for executing bytecode:

Correct types All bytecode instructions are provided with arguments of the type they
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✲

instruction stack registers

Load 0 Some ( [], [Class B , Integer ] )
Store 1 Some ( [Class A], [Class B , Err ] )
Load 0 Some ( [], [Class B , Class A] )
Getfield F A Some ( [Class B ], [Class B , Class A] )
Goto −3 Some ( [Class A], [Class B , Class A] )

Figure 1.2: Example of a method welltyping.

expect on operand stack, registers, and heap.

No overflow and underflow No instruction tries to retrieve a value from an empty stack,
no instruction tries to put more elements on the stack than statically specified in
the method, and no instruction accesses more registers than statically specified in
the method.

Code containment The program counter never leaves the code array of the method.
Specifically, it must not fall off the end of the method’s code or branch into the
middle of an instruction encoding.

Initialized registers All registers apart from the this pointer and the method parameters
must be written to before they are first read. This corresponds to the definite
assignment requirement for local variables on the source level.

Initialized objects Before fields or methods of an object can be accessed, its constructor
must be called. Each constructor in turn must first call the superclass constructor
before it accesses fields and methods of the object.

It is the purpose of the bytecode verifier to ensure statically that these assumptions are
met at any time.

Bytecode verification is an abstract interpretation of bytecode methods: instead of val-
ues, we only consider their types. The BV can be viewed as a finite state machine
working on state types. A state type characterizes a set of runtime states by giving
type information for the operand stack and registers. For example, the first state type
in Figure 1.2 ([],[Class B , Integer ]) characterizes all states whose stack is empty, whose
register 0 contains a reference to an object of class B (or to a subclass of B), and whose
register 1 contains an integer. A method is called welltyped if we can assign a welltyp-
ing to each instruction. A state type (st ,lt) is a welltyping for an instruction if it can be

6
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executed safely on a state whose stack is typed according to st and whose registers are
typed according to lt. In other words: the arguments of the instruction are provided in
correct number, order and type.

Let’s look at an example. Figure 1.2 shows the instructions on the left and the type of
stack elements and registers on the right. The method type is the full right-hand side
of the table, a state type is one line of it. The type information attached to an instruction
characterizes the state before execution of that instruction. The Some before each of
the entries means that it was possible to predict some type for each of the instructions.
If one of the instructions had been unreachable, the type entry would have been None.
We assume that class B is a subclass of A and that A has a field F of type A.

Execution starts with an empty stack and the two registers holding a reference to an
object of class B and an integer. The first instruction loads register 0, a reference to a
B object, on the stack. The type information associated with the following instruction
may puzzle at first sight: it says that a reference to an A object is on the stack, and
that usage of register 1 may produce an error. This means the type information has
become less precise but is still correct: a B object is also an A object and an integer is
now classified as unusable (Err). The reason for these more general types is that the
predecessor of the Store instruction may have either been Load 0 or Goto −3. Since
there exist different execution paths to reach Store, the type information of the two
paths has to be merged. The type of the second register is either Integer or Class A,
which are incompatible: the only common supertype is Err.

Bytecode verification is the process of inferring the types on the right from the instruction
sequence on the left and some initial condition, and of ensuring that each instruction
receives arguments of the correct type. Type inference is the computation of a method
type from an instruction sequence, type checking means checking that a given method
type fits an instruction sequence.

Figure 1.2 was an example for a welltyped method: we were able to find a welltyping.
If we changed the third instruction from Load 0 to Store 0, the method would not be
welltyped. The Store instruction would try to take an element from the empty stack and
could therefore not be executed. We would also not be able to find any other method
type that is a welltyping.

1.5 Related Work

This section provides an overview of the literature on bytecode verification and gives
pointers to work related to this thesis.

Most closely related are other formalizations of the JVM or the BV in theorem provers:

7



Chapter 1 Introduction

• Barthe et al. [5, 6] employ the Coq system [23] for proofs about the JavaCard [54]
virtual machine and its BV. They formalize the full JavaCard bytecode language,
but have only a simplified treatment of subroutines. In [2, 3, 4], they show how
to increase automation in the process of specifying a defensive machine [22] (with
safety checks), an aggressive machine (without safety checks), and an abstract
machine (on the type level), together with their proofs of correspondence.

• Bertot [10] also uses the Coq system to prove the correctness of a bytecode verifier
based on the type system by Freund and Mitchell [27]. He focuses on object
initialization only.

• Posegga and Vogt [67] look at bytecode verification from a model checking per-
spective. They transform a given bytecode program into a finite state machine and
check type safety, which they phrase in terms of temporal logic, by using an off-
the-shelf model checker. Basin, Friedrich, and Gawkowski [7] use Isabelle/HOL,
µJava, and the abstract BV framework, of which I present an extended version
here, to prove the model checking approach correct.

• The formalizations in this thesis are part of the work on the Java language of the
Isabelle team in Munich, mainly in the projects Bali [1] and VerifiCard [89]. The
specification of the BV is based on groundwork by Nipkow [58] and Pusch [68].
Nipkow, von Oheimb, and Schirmer [60, 62, 64, 65, 66, 76, 90, 91] have formalized
the Java source language in Isabelle. Strecker [40, 85, 86] has proved correct a
compiler for µJava from source to bytecode language in Isabelle, and has also
shown that all welltyped programs of the source language are accepted by the
bytecode verifier. Earlier, restricted forms of my formalization for standard and
lightweight bytecode verification have appeared in [37, 38, 39].

The following projects use tool support to specify or implement bytecode verification:

• Working towards a verified implementation in Specware, Qian, Goldberg and
Coglio have specified and analyzed large portions of the bytecode verifier [18, 19].
Goldberg [29] rephrases and generalizes the overly concrete description of the BV
given in the JVM specification [51] as an instance of a generic data flow framework.
Qian [69] specifies the BV as a set of typing rules, a subset of which was proved
correct formally by Pusch [68]. Qian [70] also proves the correctness of an algorithm
for turning his type checking rules into a data flow analyzer. However, his algorithm
is still quite abstract.

• The Kimera project [80] treats bytecode verification in an empirical manner. Its
aim is to check bytecode verifiers by automated testing.
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• Casset et al. [12, 13, 14, 72] use the B method to specify a bytecode verifier for a
defensive JavaCard VM, which they then refine into an executable program that
provably satisfies the specification. They focus on the scalability of the B method
for such proofs. Due to its commercial environment, the full specification itself
does not seem to be publicly available. Hence, it is difficult to judge what exactly
they have proved, and which parts of the bytecode language and its properties
their formalization contains. The most recent article in the series, by Requet [72],
sheds some light on this. Although they claim to handle a large subset of the
JavaCard VM and over one hundred instructions, he writes [72, p. 288]:

As the aim of this work was to verify the scalability of the approach,
instructions that would drastically increase the complexity of the model
have been left out. Especially, those instructions include the instructions
used for subroutines, for method calls and for objects handling.

• Stärk et al. [81, 82, 83] use Java and the JVM as a case study for abstract state
machines. They formalize the process from compilation of Java programs down to
bytecode verification, and also provide an executable version in ASM Gofer [77].
Their main theorem says that the bytecode verifier accepts all bytecode programs
the compiler generates from valid Java sources. Proofs, however, are by pen and
paper. They argue that this theorem does not hold for the full Java language.
Therefore they introduce a stronger constraint for definite assignment than the
JVM specification. The type system presented in Chapter 5 of this thesis makes
this restriction unnecessary.

The following publications present type systems for the JVM; Hartel and Moreau [34] as
well as Leroy [47, 50] provide a more detailed overview and discussion, Wildmoser [93]
concentrates on articles related to bytecode subroutines.

• Stata and Abadi [84] were the first to specify a type system for a subset of Java
bytecode that supports subroutines. The typing rules they use are clearer and
more precise than the JVM specification, but they accept fewer safe programs.

• Freund and Mitchell [27, 28] develop typing rules for increasingly large subsets
of the JVM, including exception handling, object initialization, and subroutines.
Freund surveys the costs and benefits of subroutines [25], and reaches the con-
clusion that they should have been left out of the bytecode language. The final
formalization [26] considers an instruction set comparable to the one presented
here. The formalization, especially the treatment of subroutines, is more complex
and more restrictive than the one in this thesis. The proof of type safety for object
initialization in Chapter 4 is based on the one in [26].

9
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• Leroy [47, 50] gives a very good overview on bytecode verification, and proposes
a polyvariant data flow analysis in the bytecode verifier to solve the subroutine
problem. He also addresses the problem of on-card bytecode verification for Java
smart cards by program transformation combined with a simplified BV [48, 49].

• Coglio [15, 16] and, independently, Brisset [11] provide a simple solution to the sub-
routine problem in bytecode verification that is akin to model checking. Chapter 5
uses this scheme as basis for the formalization of subroutines in µJava. Together
with Qian and Golberg, Coglio formally specifies dynamic class loading [17, 21, 71].
Coglio also gives an overview of the description of the bytecode verifier in the JVM
specification [51] and suggests several improvements [20].

• Hagiya and Tozawa [33] use indirect types in rules similar to those of Stata and
Abadi [84] to tackle subroutines. These indirect types are of the form last(x ),
denoting the type register x held before the subroutine. This avoids the loss of
precision type merges induce for unused registers.

• O’Callahan [63] uses type variables and continuations to handle subroutines. Al-
though his approach accepts a large portion of type safe programs—even recursive
subroutines could be supported—it remains unclear whether it can be realized
efficiently.

• Rose [73, 74, 75] presents a lightweight bytecode verification scheme that works
similar to Necula’s proof carrying code [56]: the program is annotated with typing
information which is checked by a simplified on-card verifier. In Section 2.5, I
formalize a more general version of this algorithm and prove it correct.

• Laneve and Bigliardi [44, 45, 46] have implemented a bytecode verifier that checks
proper handling of thread monitors.

• Knoblock and Rehof [42, 43] show how to turn the type system into a lattice even
if it contains interfaces.

• Yelland [94] reduces bytecode verification to Haskell type inference.

1.6 Isabelle

This section gives a short and not so gentle introduction to Isabelle. It is by no means
comprehensive, but it introduces the Isabelle/HOL notation that is used in this thesis.
For a gentler, deeper, and eminently readable introduction, I recommend [61].

10
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Isabelle [35] is a generic, interactive theorem prover. It is generic in the sense that it
can be instantiated with different object logics. The most widely used of these object
logics is Isabelle/HOL, simply typed higher order logic. Formalizations are organized
in an acyclic graph of theories, each containing a set of declarations, definitions, and
theorems. For the most part, the notation is the same as in standard mathematics and
functional programming.

Function application is written in curried style as in functional programming, so f a is
the function f applied to the argument a.

The notation for set comprehension deviates from standard mathematics: {x . P x} is the
set of all x for which P x holds. The common {y . ∃ x . f x = y ∧ P x}, in mathematics
written as {f x | P x}, is abbreviated by {f x |x . P x} in Isabelle/HOL. The following,
for instance, defines the image of a set A under a function f :

f ‘ A ≡ {f x |x . x ∈ A}

Function update is written f (x := y). The formal definition uses λ-abstraction and an
if-then-else expression.

f (x := y) ≡ λx ′. if x ′ = x then y else f x ′

The equivalence sign ≡ is used for definitions that are true abbreviations. Recursive
definitions are formulated with simple equality =.

New data types can be introduced with the datatype keyword, simple type abbrevia-
tions use types. Examples are:

types nat-pair = nat × nat

datatype α list = Nil | Cons α (α list)

The first line declares nat-pair to be the Cartesian product of nat and nat (the type
of natural numbers). The second line declares the polymorphic data type of lists. The
type constructor list takes the type variable α as argument (written in prefix as α list).
The declaration says that a list on type α is either Nil, or a Cons with an element of
type α as head and a list on type α as tail. Isabelle provides special syntax for Nil and
Cons: the empty list is [], and x#xs stands for Cons x xs.

Isabelle/HOL has a rich library of list functions: xs!n is the n-th element of the list
xs, the operator @ is append, the notation [1 ..n(] is the list of natural numbers from 1
to n−1, and xs [n:= x ] sets the n-th element of xs to x. Apart from these, I will use
functions known from functional programming:

11
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size :: α list ⇒ nat

rev :: α list ⇒ α list

take :: nat ⇒ α list ⇒ α list

drop :: nat ⇒ α list ⇒ α list

zip :: α list ⇒ β list ⇒ (α × β) list

map :: (α ⇒ β) ⇒ α list ⇒ β list

filter :: (α ⇒ bool) ⇒ α list ⇒ α list

The filter function has special syntax: [x∈xs. P x ] is short for filter (λx . P x ) xs. There
are also functions particular to Isabelle: set transforms a list into a set, list-all2 is an
executable universal quantifier on a pair of lists, satisfying

list-all2 P xs ys = ((∀ (x ,y) ∈ set (zip xs ys). P x y) ∧ size xs = size ys)

HOL is a logic of total functions. For modeling partial functions, the option datatype is
useful:

datatype α option = None | Some α

A function f :: α ⇒ β option then returns Some x for defined results x, and None if
it is undefined for an argument value. A function f :: α ⇒ β option is also called a
map from α to β. Function update for maps has special syntax: f (x 7→ y) is short for
f (x := Some y).

Isabelle/HOL also knows Hilbert’s classical choice operator. The term SOME x . P x
returns some x that satisfies P. As all functions in HOL are total, it also returns a value
if no such x exists. In this case, nothing is known about this value.

The formal proofs in this thesis use the Isabelle/Isar proof language [59, 92]. Isabelle/Isar
proofs are fully formal and machine checked, but contrary to the proof script style usually
found in theorem provers, the resulting proofs are readable for humans.

I will neither introduce nor define Isabelle/Isar formally here, but rather give an example
that should explain how to read the Isabelle proofs in this thesis.

lemma example:

assumes pq : ∃ x . P x ∧ Q x

shows (∃ x . P x ) ∧ (∃ x . Q x )

proof −
from pq obtain y where p: P y and q : Q y by auto

from p have ∃ x . P x ..

moreover

from q have ∃ x . Q x ..
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ultimately

show ?thesis ..

qed

The example above is formulated in an especially verbose way to demonstrate as many
language constructs as possible. The first three lines say that the proposition to be
proved is (∃ x . P x ∧ Q x ) −→ (∃ x . P x ) ∧ (∃ x . Q x ). The resulting lemma is stored
under the name example. Proofs in Isar can either be compound (proof . . . qed), or
simple one-liners (by . . .). Intermediate, named facts in a proof can be established with
the have and obtain commands.

The proof above begins with the technically complex, but conceptually simple obtain

command: from the assumption pq, we can get a witness y such that P y and Q y
holds. The proof uses the auto proof method to show that this is actually true. From
these two facts we can then conclude that both ∃ x . P x and ∃ x . Q x are true. The
abbreviation .. indicates a trivial proof that only needs the application of one single
rule. The moreover command is used to collect facts (here provided by have), while
ultimately makes the collected facts available for another subproof. Below, on the left
hand side is a proof fragment with moreover, and on the right side an equivalent one
without.

have P1 . . . have fact1: P1 . . .

moreover have P2 . . . have fact2: P2 . . .

moreover have P3 . . . have fact3: P3 . . .

ultimately have P4 . . . from fact1 fact2 fact3 have P4 . . .

The last command in the proof body (show ?thesis) solves the pending goal with a trivial
one-rule proof. The term abbreviation ?thesis refers to the stated goal in the current
proof block. In this case, ?thesis is (∃ x . P x ) ∧ (∃ x . Q x ). Term bindings like these
can also be used in a pattern matching style: the fragment f (x+1 ) = y (is f ?z = -)
binds ?z to x+1.

Another concept of Isabelle that I will use extensively in this thesis is that of locales.
A locale in Isabelle is a collection of constants, assumptions, and definitions. It is a
useful tool for structuring theorems in a large development, because it defines a common
context for a group of theorems. An example is:

locale A = locale B = A +

fixes xs :: α list fixes ys :: α list

assumes p: P xs assumes q : Q xs ys

defines g ≡ λf . map f xs
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The locale A above fixes a constant xs (a list of type α) for which P xs holds. It also
defines an abbreviation g for map applied to xs. The locale B extends the context that A
has built up by another constant ys, for which it assumes Q xs ys. The current version
of Isabelle only allows proper abbreviations (using defines) in locales, no recursive
function definitions (using, for instance, multiple equations). With a small trick1, it is
still possible to use recursive functions as if they were defined in the context of a locale.
For the presentation in this thesis, I will therefore pretend that this technical limitation
does not exist.

1.7 Overview

The formalization of bytecode verification for µJava rests on the abstract framework
introduced in Chapter 2. It contains the lattice-theoretic concepts for the framework,
an abstract definition of welltypings that builds on a semilattice and a transfer function,
and two equally abstract definitions of executable algorithms for bytecode verification:
the standard iterative data flow analysis and a lightweight bytecode verifier for resource-
constrained devices. The remaining chapters instantiate this framework step by step
with increasingly expressive type systems.

Chapter 3 contains a first simple type system for classes, objects, inheritance, virtual
methods, and exception handling. As in the following chapters, the instantiation results
in two executable bytecode verifiers for µJava: Kildall’s algorithm and the lightweight
bytecode verifier. Chapter 3 also describes in detail the formalization of the µJVM and
the proof of correctness for both bytecode verifiers.

Chapter 4 extends the type system of Chapter 3 by constructors and object initialization.
This feature of the bytecode verifier ensures that all objects are properly initialized before
they are used.

Chapter 5 in turn extends the formalization of Chapter 4 by bytecode subroutines. This
entails a substantial change in the type system. It is the first formalization in a theorem
prover of a type system for Java that contains bytecode subroutines together with object
initialization and exception handling.

Chapter 6 adds arrays to the language.

Chapter 7 concludes with a summary and pointers to further work.

1First define the recursive function outside the locale context, then define an abbreviation of this
function inside the locale, and finally derive the defining equations in the locale as theorems.
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2 An Abstract Framework

The formalizations of bytecode verification in this thesis are instances of the
abstract typing framework in this chapter. The framework takes a semilattice
and a transfer function as parameters and yields a description of welltypings,
an executable, verified version of Kildall’s algorithm, and an executable, ver-
ified lightweight bytecode verifier for resource-constrained devices.

2.1 Introduction

This chapter presents an abstract framework for bytecode verification. It builds on the
work by Nipkow [58]. Compared to [58] and further work by Nipkow and myself [39], it
is more general and more flexible in that it can be instantiated with more type systems.

Semilat

Err

Listn Product Opt SetSemilat

Typing_Framework

Typing_Framework_err SemilatAlg

Kildall LBVSpec

LBVCorrect LBVComplete

Figure 2.1: Abstract framework overview.
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Chapter 2 An Abstract Framework

Figure 2.1 gives an overview of the Isabelle theories that the abstract framework com-
prises. Section 2.2 describes the lattice-theoretic concepts of the framework, the up-
per three levels of Figure 2.1. Section 2.3 brings the definition of welltypings (theory
Typing-Framework), constraints on the transfer function (theory SemilatAlg), and a re-
finement of the transfer function (theory Typing-Framework-Err). This part is more
general than [39, 58]. The last two sections present two algorithms for bytecode ver-
ification: Section 2.4 shows the formalization of Kildall’s algorithm, Section 2.5 the
lightweight bytecode verifier. Both algorithms can be instantiated with different type
systems, are executable, and verified in Isabelle/HOL.

2.2 Semilattices

This section introduces the formalization of the basic lattice-theoretic concepts required
for data flow analysis and its application to the JVM. Since most of this already appeared
in [39, 58], I here only reproduce the definitions and main properties without proof.

2.2.1 Partial Orders

Partial orders are formalized as binary predicates. Based on the type synonym α ord =
α ⇒ α ⇒ bool and the notations x ≤r y = r x y and x <r y = (x ≤r y ∧ x 6= y),
r :: α ord is by definition a partial order iff the predicate order :: α ord ⇒ bool holds
for r :

order r ≡ (∀ x . x ≤r x ) ∧ (∀ x y . x ≤r y ∧ y ≤r x −→ x = y) ∧
(∀ x y z . x ≤r y ∧ y ≤r z −→ x ≤r z )

A partial order r satisfies the ascending chain condition on A if there is no infinite
ascending chain x 0 <r x 1 <r. . . in A; ⊤ is a top element if x ≤r ⊤ for all x, and ⊥ a
bottom element if ⊥ ≤r x for all x :

acc :: α ord ⇒ bool

acc r ≡ wf {(y ,x ). x∈A ∧ y∈A ∧ x <r y}
top :: α ord ⇒ α ⇒ bool bottom :: α ord ⇒ α ⇒ bool

top r ⊤ ≡ ∀ x . x ≤r ⊤ bottom r ⊥ ≡ ∀ x . ⊥ ≤r x

2.2.2 Semilattices

Based on the supremum notation x ⊔f y = f x y and the two type synonyms α binop
= α ⇒ α ⇒ α and α sl = α set × α ord × α binop, the tuple (A,r ,f ) :: α sl is by
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definition a semilattice iff the predicate semilat :: α sl ⇒ bool holds:

semilat (A,r ,f ) ≡ order r ∧ closed A f ∧
(∀ x y ∈ A. x ≤r x ⊔f y) ∧ (∀ x y ∈ A. y ≤r x ⊔f y) ∧
(∀ x y z ∈ A. x ≤r z ∧ y ≤r z −→ x ⊔f y ≤r z )

where closed A f ≡ ∀ x y ∈ A. x ⊔f y ∈ A.

Data flow analysis is usually phrased in terms of infimum semilattices. Here, a supremum
semilattice fits better with the intended application, where the ordering is the subtype
relation and the join of two types is the least common supertype (if it exists).

The following Isabelle locale is used below.

locale semilat =

fixes A :: α set and r :: α ord and f :: α binop

assumes semilat : semilat(A,r ,f )

The next sections look at a few data types and the corresponding semilattices which
are required for the construction of the µJVM bytecode verifier. The definition of those
semilattices follows a pattern: they lift an existing semilattice to a new semilattice with
more structure. They extend the carrier set and define two functionals le and sup that
lift the ordering and supremum operation to the new semilattice. In order to avoid name
clashes, Isabelle provides separate names spaces for each theory. Qualified names are of
the form Theoryname.localname, and they apply to constant definitions and functions
as well as type constructions. So Err .sup later on refers to the sup functional defined
for the error type in Section 2.2.3.

2.2.3 The Error Type and Err-semilattices

Theory Err introduces an error element to model the situation where the supremum of
two elements does not exist. It introduces both a data type and an equivalent construc-
tion on sets:

datatype α err = Err | OK α err A ≡ {Err} ∪ {OK a |a. a ∈ A}

An ordering r on α can be lifted to α err by making Err the top element:

le r (OK x ) (OK y) = x ≤r y

le r Err = True

le r Err (OK y) = False
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Lemma 2.1 If r is a partial order that satisfies the ascending chain condition, then le r
also is a partial order that satisfies the ascending chain condition.

The following lifting functional is frequently useful:

lift2 :: (α ⇒ β ⇒ γ err) ⇒ α err ⇒ β err ⇒ γ err

lift2 f (OK x ) (OK y) = f x y

lift2 f = Err

This leads to the notion of an err-semilattice. It is a variation of a semilattice with top
element. Because the behaviour of the ordering and the supremum on the top element
is fixed, it suffices to say how they behave on non-top elements. Thus we can represent
a semilattice with top element Err compactly by a triple of type esl :

α ebinop = α ⇒ α ⇒ α err α esl = α set × α ord × α ebinop

Conversion between the types sl and esl is easy:

esl :: α sl ⇒ α esl sl :: α esl ⇒ α err sl

esl(A,r ,f ) = (A, r , λx y . OK (f x y)) sl(A,r ,f ) = (err A, le r , lift2 f )

A tuple L :: α esl is by definition an err-semilattice iff sl L is a semilattice. Conversely,
we get Lemma 2.2.

Lemma 2.2 esl L is an err-semilattice if L is a semilattice.

The supremum operation of sl(esl L) is useful on its own:

sup f = lift2 (λx y . OK (x ⊔f y))

2.2.4 The Option Type

Theory Opt introduces the new type option and the set opt as duals to type err and set
err,

datatype α option = None | Some α opt A ≡ {None} ∪ {Some a |a. a ∈ A}

an ordering that makes None the bottom element, and a corresponding supremum op-
eration:
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le r (Some x ) (Some y) = x ≤r y sup f (Some x ) (Some y) = Some(f x y)

le r None = True sup f None z = z

le r (Some x ) None = False sup f z None = z

Lemma 2.3 sl(A,r ,f ) = (opt A, le r , sup f ) maps semilattices to semilattices.

Lemma 2.4 le preserves the ascending chain condition.

2.2.5 Products

Theory Product provides what is known as the coalesced product, where the top elements
of both components are identified. In terms of err-semilattices, this is:

esl :: α esl ⇒ β esl ⇒ (α × β) esl

esl (A,rA,f A) (B ,rB ,f B) = (A × B , le rA rB , sup f A f B)

le :: α ord ⇒ β ord ⇒ (α × β) ord

le rA rB = λ(a1,b1)(a2,b2). a1 ≤rA
a2 ∧ b1 ≤rB

b2

sup :: α ebinop ⇒ β ebinop ⇒ (α × β) ebinop

sup f g = λ(a1,b1)(a2,b2). Err .sup (λx y .(x ,y)) (a1 ⊔f a2) (b1 ⊔g b2)

Note that × is used both on the type and the set level.

Lemma 2.5 If both L1 and L2 are err-semilattices, so is esl L1 L2,

Lemma 2.6 If both rA and rB satisfy the ascending chain condition, so does le rA rB.

2.2.6 Lists of Fixed Length

Theory Listn provides the concept of lists of a given length over a given set. In HOL,
this is formalized as a set rather than a type:

list n A = {xs. size xs = n ∧ set xs ⊆ A}

This set can be turned into a semilattice in a componentwise manner, essentially viewing
it as an n-fold Cartesian product:

sl :: nat ⇒ α sl ⇒ α list sl le :: α ord ⇒ α list ord

sl n (A,r ,f ) = (list n A, le r , map2 f ) le r = list-all2 (λx y . x ≤r y)
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where map2 :: (α ⇒ β ⇒ γ) ⇒ α list ⇒ β list ⇒ γ list and list-all2 :: (α ⇒ β ⇒
bool) ⇒ α list ⇒ β list ⇒ bool are the obvious functions. Below, I use the notation
xs ≤[r ] ys for xs ≤(le r) ys.

Lemma 2.7 If L is a semilattice, so is sl n L.

Lemma 2.8 If r is a partial order and satisfies the ascending chain condition, then le r
also is a partial order that satisfies the ascending chain condition.

In case we want to combine lists of different lengths, or if the supremum on the elements
of the list may return Err (not to be confused with Err .sup the sup functional defined
in Theory Err, Section 2.2.3), the following function is useful:

sup :: (α ⇒ β ⇒ γ err) ⇒ α list ⇒ β list ⇒ γ list err

sup f xs ys = if size xs = size ys then coalesce (map2 f xs ys) else Err

coalesce [] = OK []

coalesce (e#es) = Err .sup (λx xs. x#xs) e (coalesce es)

This corresponds to the coalesced product. Below, we also need the structure of all lists
up to a specific length:

uptoesl :: nat ⇒ α esl ⇒ α list esl

uptoesl n (A,r ,f ) = (
⋃

i ≤ n listn i A, le r , sup f )

Lemma 2.9 If L is an err-semilattice, so is uptoesl n L.

2.2.7 Sets

Theory SetSemilat shows that finite sets form a semilattice.

The order is the usual subset relation ⊆, and the supremum is union ∪. It is easy to see
that (Pow A, ⊆, ∪) is a semilattice (where Pow A is the power set of A). Unfortunately,
the subset relation allows infinitely ascending chains, and hence violates the ascending
chain condition, which is needed below. Even if we only take the finite subsets in
Pow A, there may be infinitely ascending chains. For example, consider the following
sets of natural numbers:

{} ⊂ {0} ⊂ {0 ,1} ⊂ {0 ,1 ,2} ⊂ . . .
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Each of these is finite, but the chain continues ad infinitum.

If the carrier set A itself is finite, however, ⊆ does satisfy the ascending chain condition
on Pow A:

Lemma 2.10 If A is finite, (Pow A, ⊆, ∪) is a semilattice and ⊆ satisfies the ascending
chain condition on Pow A.

2.3 Stability

This section describes welltypings abstractly. The framework presented here is an ex-
tended, more general version of [39, 58]. I begin with the notion of welltyping in Sec-
tion 2.3.1, continue with restrictions on the transfer function in Section 2.3.2, and con-
clude with a refinement of the transfer function in Section 2.3.3.

2.3.1 Welltypings

In this abstract setting, there is no need yet to talk about the instruction sequences
themselves. They will be hidden inside a function that characterizes their behaviour.
This function and a semilattice form the parameters of the model.

Data flow analysis and type systems are based on an abstract view of the semantics
of a program in terms of types instead of values. At this level, programs are se-
quences of instructions, and the semantics can be characterized by a function step ::
nat ⇒ σ ⇒ (nat × σ) list . It is the abstract execution function: step p s provides the
results of executing the instruction at p, starting in state s, together with the positions
to which these results are propagated. Contrary to the usual concept of transfer function
or flow function in the literature, step p not only provides the result, but also the struc-
ture of the data flow graph at position p. This is best explained by example. Figure 2.2
depicts the information we get when step 3 s3 returns the list [(1 ,t1),(4 ,t4)]: executing
the instruction at position 3 with state type s3 may lead to position 1 in the graph with
result t1, or to position 4 with result t4.

Note that the length of the list and the target instructions do not only depend on the
source position p in the graph, but also on the value of s. It is possible (and for the Ret
instruction necessary) that the structure of the data flow graph dynamically changes in
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Figure 2.2: Data flow graph for step 3 s3 = [(1,t1),(4,t4)].

the iteration process of the analysis. It may not change freely, however. Section 2.3.2
will introduce certain constraints on the step function that the analysis needs in order
to succeed.

The two definitions below are in the following context.

locale stability = semilat +

fixes step :: nat ⇒ σ ⇒ (nat × σ) list

Data flow analysis is concerned with solving data flow equations, which are systems of
equations involving the flow functions over a semilattice. In this case, step is the flow
function and σ the semilattice. Instead of an explicit formalization of the data flow
equation, it suffices to consider certain prefixed points. To that end I define what it
means that a method type ϕ :: σ list is stable at p:

stable ϕ p ≡ ∀ (q ,s ′)∈set(step p (ϕ!p)). s ′ ≤r ϕ!q

Stability induces the notion of a method type ϕ being a welltyping w.r.t. step:

wt-step ϕ ≡ ∀ p<size ϕ. ϕ!p 6= ⊤ ∧ stable ϕ p

⊤ is assumed to be a special element in the state space (the top element of the ordering).
It indicates a type error.

An instruction sequence is welltyped, if there is a welltyping ϕ such that wt-step ϕ.

2.3.2 Constraints on the Transfer Function

This section defines constraints on the transfer functions that the algorithms in Sec-
tion 2.4 and 2.5 need to succeed.

The transfer function step is called monotone up to n iff the following holds:
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2.3 Stability

mono step n r A ≡
∀ p<n. ∀ s ∈ A. ∀ t ∈ A. s ≤r t −→ set (step p s) ≤{r} set (step p t)

where

A ≤{r} B ≡ ∀ (p,s) ∈ A. ∃ s ′. (p,s ′) ∈ B ∧ s ≤r s ′

This means, if we increase the state type s at a position p, the data flow graph may get
more edges (but not less), and the result at each edge may increase (but not decrease).

If for all p < n and all s ∈ A the position elements of step p s are less than n, then step
is bounded by n. This expresses that, from below instruction n, instruction n and
beyond are unreachable: control never leaves the list of instructions below n.

bounded step n A ≡ ∀ p<n. ∀ s∈A. ∀ (q ,t)∈set(step p s). q<n

If for all p < n and s ∈ A the values step p s returns are in A, then step preserves A
up to n:

preserves step n A ≡ ∀ p<n. ∀ s∈A. ∀ (q ,t)∈set (step p s). t ∈ A

Finally, the soundness proofs for the algorithms in Section 2.4 and 2.5 both use the
supremum not only of two, but of a list of elements. Because there is not always a
bottom element available, I circumvent the empty list case by making

⊔
f a binary

operation (similar to foldl f )1 that takes a list and a start element.

⊔
:: α list ⇒ α binop ⇒ α ⇒ α

[]
⊔

f y = y

(x#xs)
⊔

f y = xs
⊔

f (x ⊔f y)

The following lemmas, proved by induction on xs, show that the characteristics of ⊔f

carry over to
⊔

f :

Lemma 2.11 If f is closed, so is
⊔

f . The following holds in the semilattice context:

set xs ⊆ A ∧ y ∈ A −→ xs
⊔

f y ∈ A

Lemma 2.12 In a semilattice, xs
⊔

f y is an upper bound for y :

1Because of associativity and commutativity of f, the definition here is in fact equivalent to foldl f and
foldr f. Lemmas 2.11 to 2.14 follow more directly with this definition, though.
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set xs ⊆ A ∧ y ∈ A −→ y ≤r xs
⊔

f y

Lemma 2.13 In a semilattice, xs
⊔

f y is an upper bound for all elements of xs:

set xs ⊆ A ∧ y ∈ A ∧ x ∈ set xs −→ x ≤r xs
⊔

f y

Lemma 2.14 In a semilattice, any upper bound z of xs and y is greater than or equal
to xs

⊔
f y :

z ∈ A ∧ y ∈ A ∧ set xs ⊆ A ∧ (∀ x ∈ set xs. x ≤r z ) ∧ y ≤r z −→ xs
⊔

f y ≤r z

Lemmas 2.12 to 2.14 together say that xs
⊔

f y is the least upper bound of xs and y.

2.3.3 Refining the Transfer Function

The single transfer function step of Section 2.3.1 is compact and convenient for describing
the abstract typing framework. For a large instantiation, however, it carries too much
information in one place to be modular and intuitive. I will therefore first refine step into
a part for applicability and a part for effect of instructions here, and then instantiate
these parts in Chapters 3 to 6.

We can refine step into two functions: one that checks the applicability of the instruction
in the current state, and one that carries out the instruction assuming it is applicable.
These two functions will be called app and eff. Furthermore, the state space σ will be of
the form τ err for a suitable type τ , in which case the error element ⊤ is Err itself. Given
functions app :: nat ⇒ τ ⇒ bool and eff :: nat ⇒ τ ⇒ (nat × τ) list , step is defined as
follows:

step n p Err = error n

step n p (OK t ′) = if app p t ′ then map-snd OK (eff p t ′) else error

error n ≡ map (λx . (x ,Err)) [0 ..n(]

map-snd f ≡ map (λ(x ,y). (x , f y))

The parameter n is the size of the instruction list. It is used to propagate the error
element Err to every position in the method type.

Given an err-semilattice (A,r ,f ), we can similarly refine the notion of a welltyping w.r.t.
step to a welltyping w.r.t. app and eff :

wt-app-eff ϕ ≡ ∀ p<size ϕ. app p (ϕ!p) ∧ (∀ (q ,t)∈set(eff p (ϕ!p)). t ≤r ϕ!q)
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2.4 Kildall’s Algorithm

This is very natural: every instruction is applicable in its start state, and the effect is
compatible with the state expected by all successor instructions.

If we take n to be size ϕ, we can instantiate the stability context with the partially ap-
plied function step (size ϕ) composed of app and eff as defined above. This step (size ϕ)
is of the type nat ⇒ τ err ⇒ (nat × τ err) list the stability context expects; it works
on the semilattice Err .sl (A,r ,f ) (see also Section 2.2.3).

With the stability context instantiated, we can use wt-step and conclude that the notions
wt-step and wt-app-eff coincide.

Lemma 2.15 If the composed function step (size ϕ) is bounded by size ϕ, and all
elements of ϕ are in err A, then

wt-step ϕ −→ wt-app-eff (map ok-val ϕ) where ok-val (OK x ) = x

In the other direction:

Lemma 2.16 If the composed function step (size ϕ) is bounded by size ϕ, and all
elements of ϕ are in A, then

wt-app-eff ϕ −→ wt-step (map OK ϕ)

In the earlier version by Nipkow and myself [39], there was an asymmetry between
Lemmas 2.15 and 2.16. The more general type of step and the function error make it
unnecessary here.

2.4 Kildall’s Algorithm

A welltyping is a witness of welltypedness in the sense of stability. Now I turn to the
problem of computing such a witness. This is precisely the task of a bytecode verifier:
it computes a method type such that the absence of ⊤ in the result means the method
is welltyped. Formally, a function bcv :: σ list ⇒ σ list is a bytecode verifier w.r.t.
n :: nat and A :: σ set iff

∀ϕ0 ∈ list n A. (∀ p<n. (bcv ϕ0)!p 6= ⊤) = (∃ϕ ∈ list n A. ϕ0 ≤[r ] ϕ ∧ wt-step ϕ)

The notation ≤[r ] lifts ≤r to lists (see Section 2.2.6). The definition is in the stability
context of above, and ⊤ is the top element of the semilattice. In practice, bcv ϕ0 itself
will be the welltyping, and it will also be the least welltyping. However, it is simpler not
to require this.
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This section first defines and then verifies a functional version of Kildall’s algorithm [36,
55], a standard data flow analysis tool. In fact, the description of bytecode verification
in the official JVM specification [51, pages 129–130] is essentially Kildall’s algorithm, an
iterative computation of the solution to the data flow problem. The main loop operates
on a method type ϕ and a worklist w :: nat set. The worklist contains the indices of
those elements of ϕ that have changed and whose changes still need to be propagated to
their successors. Each iteration picks an element p from w, executes instruction number
p, and propagates the new states to the successor instructions of p. Iteration terminates
once w becomes empty: in each iteration, p is removed but new elements can be added
to w. The algorithm is expressed in terms of a predefined while-combinator of type
(α ⇒ bool) ⇒ (α ⇒ α) ⇒ α ⇒ α which satisfies the recursion equation

while b c s = (if b s then while b c (c s) else s)

The term while (λs. b s) (λs. c s) is the functional counterpart of the imperative program
while b(s) do s := c(s). The main loop can now be expressed as

iter ϕ w = while (λ(ϕ,w). w 6= {})
(λ(ϕ,w). let p = SOME p. p ∈ w

in propa (step p (ϕ!p)) ϕ (w−{p}))
(ϕ,w)

Since the choice SOME p. p ∈ w in iter is guarded by w 6= {}, we know that there is a
p ∈ w. An implementation is free to choose whichever element it wants.

Propagating the results qs of executing instruction number p to all successors is expressed
by the primitive recursive function propa:

propa [] ϕ w = (ϕ,w)

propa (q ′#qs) ϕ w = let (q ,t) = q ′;

u = t ⊔f ϕ!q ;

w ′ = (if u = ϕ!q then w else insert q w)

in propa qs (ϕ[q := u]) w ′

In the terminology of the official JVM specification [51, page 130], t is merged with the
state of all successor instructions q, i.e., the supremum is computed. If this results in a
change of ϕ!q, then q is inserted into w.

Kildall’s algorithm is simply a call to iter where the worklist is initialized with the set
of unstable indices; upon termination we project on the first component:
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2.5 Lightweight Bytecode Verification

kildall ϕ0 = fst(iter ϕ0 {p. p < size ϕ0 ∧ ¬stable ϕ0 p})

Essentially the same algorithm was presented in [39, 58], but in this thesis it works
with the more general step function, a less restrictive monotonicity condition (the one
of Section 2.3.2), and a weaker ascending chain condition (restricted to A). The key
theorem—that Kildall’s algorithm is a bytecode verifier as defined above—is therefore
stronger:

Theorem 2.1 If (A, r , f ) is a semilattice, r meets the ascending chain condition on A,
and step is monotone, preserving, and bounded w.r.t. A and n, then kildall is a bytecode
verifier w.r.t. A and n.

The basic structure of the proof is the same as in [39]: the work list either becomes
smaller, or, if new positions are introduced, the elements they point to are larger than
the element at the position that was taken out. Since there are no infinitely ascending
chains in r, the algorithm must terminate. During execution, all positions not in the
worklist are stable, and the computed method type is always smaller than (or equal to)
a true welltyping (which is stable everywhere). Because step is monotone, bounded,
and preserves A, this remains invariant. At termination, the worklist is empty, and ϕ is
stable everywhere. In the error case, where there is no welltyping, ϕ is trivially stable
because it contains ⊤ everywhere.

This specification of Kildall’s algorithm is executable: using [9], I have generated ML
code of it. Instantiated with any of the type systems presented in Chapters 3 to 6, it
can verify µJava programs. The worklist (in the specification a set) is implemented by
a list, the SOME operator by hd.

2.5 Lightweight Bytecode Verification

2.5.1 Introduction

The lightweight bytecode verifier (LBV) is a bytecode verifier for resource-bounded JVM
implementations. The Connected Limited Device Specification [88] proposes an LBV for
embedded devices and smart cards.

Because of the relatively high space and time consumption, many resource-bounded JVM
implementations still do not provide bytecode verification. They either do not allow
dynamic loading of JVM code at all, or they rely on cryptographic methods to ensure
that bytecode verification has taken place off-card. In order to allow on-card verification,
Rose and Rose [74, 75] proposed a sparse annotation of JVM code with types to enable
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a one-pass verification of welltypedness. Roughly speaking, this transforms the iterative
type reconstruction problem of Section 2.4 into a type checking problem, which is easier.
Type checking only needs a single pass to check consistency of the type annotations with
the code.

In contrast to the formalization in [38], the algorithm I present here is abstract in the
same sense Kildall’s algorithm is in Section 2.4. It works on semilattices instead of
concrete Java types and takes the transfer function as a parameter. The algorithm is
general and powerful enough to handle all type systems for the BV of chapters 3 to 6.
This and the level of abstraction sets it apart from the original formalization by Rose.

Type inference is the computation of a method type, while type checking means checking
that a given method type fits an instruction sequence. Lightweight bytecode verification
is in between: only crucial bits of the method type are given, the rest is computed.

Abstractly, lightweight bytecode verification can be seen as a combination of two prin-
ciples:

• Result checking: instead of computing the method type, it is merely checked that
the given method type fits.

• Trading space for time: it is sufficient to store only the state type for the entry
point to each basic block (a code sequence with only one entry and exit point)
because the remaining state types in that block can be computed in linear time.

The same principles can be applied to any data flow analysis problem.

Data flow analysis of bytecode is nontrivial because multiple execution paths may lead
to the same instruction, in which case the state types on these paths have to be merged.
This can only occur at the targets of jumps. If the merge produces a new (more general)
type, the basic block must be analyzed again with the new type.

The basic idea of lightweight bytecode verification is to eliminate iteration by providing
the result of the type reconstruction process at these merge points beforehand. This
additional outside information is called the certificate. It reduces the type reconstruc-
tion to a single linear pass over the instruction sequence: each time we would have to
consider more than one path of execution, the result is already there and only needs
to be checked, not constructed. The second effect is that apart from the certificate we
only need constant memory: the type reconstruction can be reduced to a function that
calculates the state type at pc+1 from the state type at pc. After calculating the type
at pc+1, we can immediately forget about the one at pc.

Figure 2.3 shows the situation at the start of the lightweight bytecode verification process
for the example program in Figure 1.2.
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✲

instruction certificate

Load 0 None
Store 1 Some ( [Class A], [Class B , Err ] )
Load 0 None
Getfield F A None
Goto −3 None

Figure 2.3: Example for lightweight bytecode verification.

At this point, I use the option data type with the following meaning: None indicates
that the certificate contains no entry at this point. Some means that the certificate
stores a state type of a reachable instruction.

From the certificate, the whole method type is reconstructed in a single linear pass:
The state type Some ([], [Class B , Integer ]) from Section 1.4 for the Load instruc-
tion will be filled in as initialization. The state type for Store 1 is in the certifi-
cate, since Store is the target of the Goto −3 jump. The LBV calculates the effect
of Load 0, which is Some ([Class B ], [Class B , Integer ]), and checks if the certificate
Some ([Class A], [Class B , Err ]) correctly approximates this result. The computation
continues with the certificate value. The types before execution of the next instruc-
tions Load, Getfield, and Goto are easily calculated from the current state type and
the effect of the instructions alone. We arrive at Goto with a current state type
Some ([Class A], [Class B , Class A]). The LBV now checks if the calculated state type
is compatible with the jump target. We did not store the state type of the target, but
since it is a jump target, we have an entry in the certificate: we only need to check if
the entry correctly approximates our calculated state type.

Note that all execution paths joining at Store 1 were checked, but no iteration or addi-
tional memory was required.

In the terminology of data flow analysis (see for instance [55]), the certificate records the
type information at the entry points to basic blocks (and potentially additional points).
This is completely standard in (global) data flow analysis where basic blocks are viewed
as atomic and their local structure is immaterial. What is more, this view has significant
advantages not just for lightweight but also for standard bytecode verification: during
the iterative computation of the method type, it is sufficient to store those state types
that correspond to entry points of basic blocks. This is a significant reduction in space
at no additional cost in time.

In the following sections I present an abstract implementation of the LBV in Isabelle

29



Chapter 2 An Abstract Framework

that (as in Section 2.4) can be instantiated with different type systems. Section 2.5.2
defines the algorithm itself, Section 2.5.3 shows safety and soundness, and Section 2.5.4
completeness of lightweight bytecode verification.

2.5.2 The Algorithm

This section describes the Isabelle formalization of the LBV. Like Kildall’s algorithm,
the LBV builds on a semilattice (A,r ,f ). Additionally, I assume that there is a top
element ⊤ and a bottom element ⊥ in the semilattice.

In Isabelle, this context is the following:

locale lbv = semilat +

fixes T :: σ (⊤) and B :: σ (⊥)

fixes step :: nat ⇒ σ ⇒ (nat × σ) list

assumes top: top r ⊤ and T-A: ⊤ ∈ A

assumes bot : bottom r ⊥ and B-A: ⊥ ∈ A

The top layer of the algorithm wtl is a single sweep through the instruction list that
stops if any step returns the error element ⊤.2

wtl :: α list ⇒ σ cert ⇒ nat ⇒ σ ⇒ σ

wtl [] c p s = s

wtl (i#is) c p s = let s ′ = wtc c p s in

if s ′=⊤ ∨ s=⊤ then ⊤ else wtl is c (p+1 ) s ′

The function wtl takes the instruction list, the certificate, a position in the instruction
list, and an element of the semilattice. It yields an element of the semilattice. If this
element is not ⊤, the instructions are welltyped. In fact, as it is formulated here, the
LBV will return exactly ⊥ for success and ⊤ for error. However, it is easier in the proofs
not to require ⊥.

The certificate is just a list of semilattice elements:

types σ cert = σ list

The LBV expects the certificate to contain the result state type at jump targets and
the bottom element otherwise. The normal successor of an instruction at position p is
p+1 ; all other successors are called the jump targets of the instruction.

2The definition of wtl checks if s=⊤. If we assume that step is monotone (as it will be later), this check
is unnecessary. With the check, however, we can prove soundness even without monotonicity.
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Each single step wtc of the LBV first looks at the certificate. If it contains ⊥, we
proceed with the current state type s, if not, the current instruction is a jump target,
which means the correct state type is more general than we expect, and we proceed with
the information in the certificate instead. We also check that the certificate does not
change s arbitrarily: it may only increase s.

wtc :: σ cert ⇒ nat ⇒ σ ⇒ σ

wtc c p s ≡ if c!p = ⊥ then wti c p s else if s ≤r c!p then wti c p (c!p) else ⊤

The check s ≤r c!p is what makes the LBV safe: wtc does not rely completely on the
certificate. The certificate is only allowed to make the computed information less precise,
it must not make s more specific or even change s to something completely unrelated.

The computation step wti for single instructions executes the transfer function step
at position p and state type s and merges the results for the normal successor (the
p+1 edge), while checking that the result is compatible with the certificate at all other
successors (the jump targets). If p+1 is not among the successors, the next instruction
must be a jump target to be reachable at all, so we can take the value in the certificate
as the result.

wti :: σ cert ⇒ nat ⇒ σ ⇒ σ

wti c p s ≡ merge c p (step p s) (c!(p+1 ))

merge :: σ cert ⇒ nat ⇒ (nat × σ) list ⇒ σ ⇒ σ

merge c p [] x = x

merge c p ((q ,t)#ls) x = merge c p ls (if q=p+1 then t ⊔f x else if t ≤r c!q then x else ⊤)

The executable version of merge above is hard to reason about. If x is in A and
snd ‘ set ss ⊆ A, the following equality holds:

merge c p ss x =

if ∀ (q ,t) ∈ set ss. q 6=p+1 −→ t ≤r c!q then (map snd [(q ,t) ∈ ss. q=p+1 ])
⊔

f x else ⊤

The (map . . .)
⊔

f x expression is the start element x (the certificate at p+1 ) plus the
sum over all (normal) successor state types (those (q ,t) where q=p+1 ).

Figure 2.4 demonstrates the merge function in an example. For the parameter values
p=3, ss=[(4 ,t1),(1 ,t2),(4 ,t3)], and x=c!4, merge checks that t2 ≤r c!1 and returns
c!4 ⊔f t1 ⊔f t3 as the result (assuming the check was successful).

If the instruction at position 4 is not a jump target (the regular case), the certificate will
contain bottom, c!4=⊥, and we get the desired t1 ⊔f t3. If the instruction is a jump
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Figure 2.4: The merge function with p=3, ss = [(4, t1), (1, t2), (4, t3)], and x=c!4.

target, however, the certificate should contain a value with t1 ≤r c!4 and t3 ≤r c!4 , so
we get c!4 as result. Note that this does not make the safety check in wtc obsolete; quite
to the contrary: we used the check (t1 ≤r c!4 and t3 ≤r c!4 ) to come to the result c!4.3

To demonstrate all possible cases, the example above is unrealistically complicated. In
practice, step will most often return one element only (with q=p+1 ) and rarely a jump
or a list with more than one successor (in the µJVM, this is only the case for conditional
jumps, exception handlers, and the subroutine return instruction Ret). Although the
algorithm above is directly executable in ML (using Isabelle’s code generator [9]), real
implementations for embedded devices would optimize for the usual case of very short
step lists.

2.5.3 Soundness

Since the LBV relies on outside information—the certificate—the immediate question is
if this is a safe thing to do. The short answer is: yes. If the LBV accepts a piece of code as
welltyped, the traditional bytecode verifier accepts it, too, regardless of what certificate
was used. This specifically includes the case where the certificate or the program was
tampered with. What happens in reality is that in such a case the LBV either rejects
the program as not welltyped, or, if it does accept, the program is indeed welltyped and
the tampering did no harm.

The soundness theorem uses the notion of welltyping from Section 2.3.1.

Theorem 2.2 If step is bounded by size ins and preserves A up to size ins, if the
certificate is wellformed up to size ins, and if s0 ∈ A, then

wtl ins c 0 s0 6= ⊤ −→ (∃ϕ. wt-step ϕ)

3One could change the ≤r in wtc to =, but the correspondence to stability is more visible this way.
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lemma (in lbv-sound) phi-not-top:
assumes wtl : wtl ins c 0 s0 6= ⊤ and p: p < size ins
shows ϕ!p 6= ⊤

proof (cases c!p = ⊥)
case False with p
have ϕ!p = c!p .. also from cert p have . . . 6= ⊤ ..

finally show ?thesis .

next

case True with p
have ϕ!p = wtl (take p ins) c 0 s0 .. also from wtl have . . . 6= ⊤ ..

finally show ?thesis .

qed

Figure 2.5: Proof of Lemma phi-not-top in Isabelle/Isar.

A certificate c is wellformed up to n if c!n=⊥, and if for all positions i below n, c!i
is an element of A other than the top element.

wf-cert c n ≡ (∀ i<n. c!i ∈ A ∧ c!i 6= ⊤) ∧ (c!n = ⊥)

The proof of Theorem 2.2 constructs a witness ϕ for wt-step ϕ. Welltypedness requires
that ϕ is stable and not equal to ⊤ at all positions p < size ϕ. Such a ϕ is easy to
find: the LBV reconstructs ϕ during the sweep through the instructions. If available,
we take the information in the certificate, for the rest we observe what state types the
LBV calculates.

Locale lbv-sound defines the context of the soundness proof, and with it, the witness ϕ.

locale lbv-sound = lbv +

fixes s0 :: σ and c :: σ cert and ins :: α list and phi :: σ list (ϕ)

assumes s0 : s0 ∈ A and bounded : bounded step (size ins)

assumes cert : wf-cert c (size ins) and pres: preserves step (size ins) A

defines phi-def :

ϕ ≡ map (λp. if c!p = ⊥ then wtl (take p ins) c 0 s0 else c!p) [0 ..size ins(]

The first part of wt-step, ϕ!p 6= ⊤, is easy. The proof is by case distinction on the
certificate: if there is an entry in p, then ϕ will have the same entry, and it cannot be ⊤
since the certificate is wellformed. If there is no entry, then ϕ is the intermediate state
type calculated by wtl up to p. This cannot be ⊤ either, because otherwise wtl would
not have succeeded at all. Figure 2.5 shows this proof in Isabelle/Isar.
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lemma (in lbv-sound) wtl-stable:
assumes wtl : wtl ins c 0 s0 6= ⊤ and p: p < size ins
shows stable ϕ p

proof (unfold stable-def , clarify)
fix q s ′ assume step: (q ,s ′) ∈ set (step p (ϕ!p)) (is - ∈ set (?step p))

from bounded p step have q : q < size ins by (rule boundedD)
have tkp: wtl (take p ins) c 0 s0 6= ⊤ (is ?s1 6= -) ..

have s2: wtl (take (p+1 ) ins) c 0 s0 6= ⊤ (is ?s2 6= -)..
from wtl p have wt-s1: wtc c p ?s1 6= ⊤ ..

have c-Some: ∀ p t . p < size ins −→ c!p 6= ⊥ −→ ϕ!p = c!p by (simp add : phi-def )
have c-None: c!p = ⊥ =⇒ ϕ!p = ?s1 ..

from wt-s1 p c-None c-Some
have inst : wtc c p ?s1 = wti c p (ϕ!p) by (simp add : wtc split : split-if-asm)
have ?s1 ∈ A by (rule wtl-pres)
with p c-Some cert c-None have ϕ!p ∈ A by (cases c!p = ⊥) (auto dest : cert-okD1 )
with p pres have step-in-A: snd‘set (?step p) ⊆ A by (auto dest : pres-typeD2 )

show s ′ ≤r ϕ!q
proof (cases q = p+1 )
case True — q is a normal successor
with q cert have cert-in-A: c!(p+1 ) ∈ A by (auto dest : cert-okD1 )
from True q have p1 : p+1 < size ins by simp
with tkp have ?s2 = wtc c p ?s1 by − (rule wtl-Suc)
with inst have merge: ?s2 = merge c p (?step p) (c!(p+1 )) by (simp add : wti)
also from s2 merge have . . . 6= ⊤ (is ?merge 6= -) by simp
with cert-in-A step-in-A
have ?merge = (map snd [(q ,t)∈?step p. q=p+1 ]

⊔
f (c!(p+1 ))) ..

finally have s ′ ≤r ?s2 using step-in-A cert-in-A True step by (auto intro: pp-ub1 ′)
also from wtl p1 have ?s2 ≤r ϕ!(p+1 ) by (rule wtl-suc-pc)
also note True [symmetric]
finally show ?thesis by simp

next

case False — q is a jump target
from wt-s1 inst have merge c p (?step p) (c!(p+1 )) 6= ⊤ by (simp add : wti)
with step-in-A have ∀ (q ,s ′)∈set (?step p). q 6=p+1 −→ s ′ ≤r c!q by − rule
with step False have ok : s ′ ≤r c!q by blast
moreover from ok have c!q = ⊥ =⇒ s ′ = ⊥ by simp
moreover from c-Some q have c!q 6= ⊥ =⇒ ϕ!q = c!q by auto
ultimately show ?thesis by (cases c!q = ⊥) auto

qed

qed

Figure 2.6: Proof of Lemma wtl-stable in Isabelle/Isar.
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The second part of wt-step, stability, is more involved. Let’s take a look at Lemma
wtl-stable in Figure 2.6: we may assume p < size ins and (q ,s ′) ∈ set (step p (ϕ!p)) for
some fixed p, q, and s ′. We have to show that ϕ is stable at p, i.e., that s ′ ≤r ϕ!q .

The proof begins with a series of observations that concern wellformedness conditions
and the nature of ϕ!q : since step is bounded, q is below size ins; wtl executed up to
p and p+1 is not ⊤, which means that all checks in the computation up to p+1 have
been successful; ϕ is either wtl up to p or the same as the certificate c!p; all state types
in the proof are in the carrier set (because step preserves A).

After these observations, the proof proceeds with a case distinction whether q is a normal
successor or a jump target.

If q is a normal successor, q=p+1, we can conclude that the computation step wtc at
position p results in s2 = map snd [(q ,t)∈step p (ϕ!p). q=p+1 ]

⊔
f (c!q). By definition

of ϕ!q, we know s2 ≤r ϕ!q (actually, we know s2 = ϕ!q, since c!q is an element of
the sum, but ≤r is all we need). Since s ′ is also an element of the sum in the merge
expression, it follows that s ′ is smaller than the sum and therefore also smaller than ϕ!q.
This concludes the normal successor case.

If q is a jump target of the instruction at p, i.e., q 6=p+1, then we have on the one
hand that ϕ!q = c!q and on the other hand that the computation step wtc at p must
have checked that s ′ ≤r c!q. The computation step was successful, so we again have
s ′ ≤r ϕ!q .

For the instantiation of the LBV in Chapters 3 to 6, a slightly more precise version of
Theorem 2.2 is more convenient.

Theorem 2.3 In the lbv-sound context, the following holds:

wtl ins c 0 s0 6= ⊤ ∧ ins 6= [] −→ (∃ϕ ∈ list (size ins) A. wt-step ϕ ∧ s0 ≤r ϕ!0 )

The proof just repeats the reasoning of lemma wtl-stable for q=0. The additional premise
ins 6= [] is there because we need q < size ins.

2.5.4 Completeness

The soundness theorem ensures that the LBV is safe. The completeness theorem in this
sections says that the LBV is also useful: if an instruction sequence is welltyped, it is
possible to create a certificate such that the LBV succeeds.

The certificate c is easy to construct: we take a welltyping, computed off-card by a
standard BV or by the compiler as in [40, 86], and remove all entries that are not jump
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targets. For the certificate to be wellformed (in the sense of Section 2.5.3), we append
⊥ as the last element.

The completeness theorem, then, is the following:

Theorem 2.4 If c is constructed as above, step is monotone up to size ϕ, preserves A up
to size ϕ, and is bounded by size ϕ, if set ϕ ⊆ A, s0 ∈ A, ⊥ 6= ⊤ and size ins = size ϕ,
then

wt-step ϕ ∧ s0 ≤r ϕ!0 −→ wtl ins c 0 s0 6= ⊤

In addition to the conditions of the soundness theorem, we now need step to be monotone,
the size of ϕ to coincide with the instruction sequence (otherwise it might cover only
a part of ins), and ⊥ 6= ⊤. The latter is required for the simple reason that we need
to be able to distinguish success ⊥ from error ⊤ in the result of wtl. The premise
s0 ≤r ϕ!0 is reminiscent of the start condition the JVM bytecode verifier places on the
first instruction (see for example Section 3.3.3). It plays a similar role here: it ensures
a correct start state type.

In Isabelle, the proof context for completeness is the following. Note that ϕ!p 6= ⊤ is
part of the wt-step premise in Theorem 2.4, so the phi assumption collapses to set ϕ ⊆ A
there.

locale lbv-complete = lbv +

fixes phi :: σ list (ϕ) and c :: σ cert

assumes mono: mono r step (size ϕ) A and pres: preserves step (size ϕ) A

assumes phi : ∀ p < size ϕ. ϕ!p ∈ A ∧ ϕ!p 6= ⊤ and bounded : bounded step (size ϕ)

assumes B-neq-T : ⊥ 6= ⊤
defines cert-def : c ≡ map (λp. if is-target p then ϕ!p else ⊥) [0 ..length ϕ(] @ [⊥]

The function is-target determines whether an instruction at position q is a jump target.
If q is a jump target, there must be a predecessor p such that q is a successor, but not
a normal successor of p.

is-target :: nat ⇒ bool

is-target q ≡ ∃ p t . q 6= p+1 ∧ p < size ϕ ∧ (q ,t) ∈ set (step p (ϕ!p))

In the following, I will sketch the proof of Theorem 2.4. It builds on three important
lemmas.

Lemma 2.17 (stable-wtc) In the lbv-complete context, if p < size ϕ, then

stable ϕ p −→ wtc c p (ϕ!p) 6= ⊤
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lemma (in lbv-complete) lbv-complete-lemma:
assumes wt-step: wt-step ϕ
shows

∧
p s. p+size ls = size ϕ =⇒ s ≤r ϕ!p =⇒ s ∈ A =⇒ s 6=⊤ =⇒ wtl ls c p s 6= ⊤

proof (induct ls)
fix p s assume s 6=⊤ thus wtl [] c p s 6= ⊤ by simp

next

fix p s i ls
assume

∧
p s. p+size ls=size ϕ =⇒ s ≤r ϕ!p =⇒ s ∈ A =⇒ s 6=⊤ =⇒ wtl ls c p s 6= ⊤

moreover assume p-l : p + size (i#ls) = size ϕ
hence suc-p-l : Suc p + size ls = size ϕ by simp
ultimately

have IH :
∧

s. s ≤r ϕ!Suc p =⇒ s ∈ A =⇒ s 6= ⊤ =⇒ wtl ls c (Suc p) s 6= ⊤ .

from p-l obtain p: p < size ϕ by simp
with wt-step have stable: stable ϕ p by (simp add : wt-step-def )
hence wt-phi : wtc c p (ϕ!p) 6= ⊤ by (rule stable-wtc)
from phi p have phi-p: ϕ!p ∈ A by simp
moreover assume s: s ∈ A and s-phi : s ≤r ϕ!p
ultimately

have wt-s-phi : wtc c p s ≤r wtc c p (ϕ!p) by − (rule wtc-mono)
with wt-phi have wt-s: wtc c p s 6= ⊤ by simp
moreover assume s: s 6= ⊤
ultimately

have ls = [] =⇒ wtl (i#ls) c p s 6= ⊤ by simp
moreover {
assume ls 6= []
with p-l have suc-p: Suc p < size ϕ by (auto simp add : neq-Nil-conv)
with stable have wtc c p (ϕ!p) ≤r ϕ!Suc p by (rule wtc-less)
with wt-s-phi have wtc c p s ≤r ϕ!Suc p by (rule trans-r)
moreover

from cert suc-p have c!p ∈ A and c!(p+1 ) ∈ A
by (auto simp add : cert-ok-def )

with pres have wtc c p s ∈ A by (rule wtc-pres)
ultimately

have wtl ls c (Suc p) (wtc c p s) 6= ⊤ using IH wt-s by blast
with s wt-s have wtl (i#ls) c p s 6= ⊤ by simp

}
ultimately show wtl (i#ls) c p s 6= ⊤ by (cases ls) blast+

qed

Figure 2.7: Proof of wtl-complete-lemma in Isabelle/Isar.
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Lemma 2.18 (wtc-less) In the lbv-complete context, if p+1 < size ϕ, then

stable ϕ p −→ wtc c p (ϕ!p) ≤r ϕ!(p+1 )

Lemma 2.19 (wtc-mono) In the lbv-complete context, if p < size ϕ, s1 ∈ A, and s2 ∈ A,
then

s2 ≤r s1 −→ wtc c p s2 ≤r wtc c p s1

The first two lemmas, 2.17 and 2.18, are based on the observation that stable requires
for all successors (q ,t) in step p (ϕ!p) that t ≤r ϕ!q. The LBV focuses on those where
q=p+1 for the computation, the rest is only checked (with the same condition). If all t
with q=p+1 are smaller than ϕ!q, then also the sum of the t must be smaller than ϕ!q.
The sum also contains the certificate c!q, but c!q is either ⊥ or equal to ϕ!q. In both
cases we get c!q ≤r ϕ!q, and therefore wtc c p (ϕ!p) ≤r ϕ!q with q=p+1. Lemma 2.19
just lifts the monotonicity of step up to wtc.

The proof of the main completeness theorem (Theorem 2.4) is then by induction on the
instruction sequence. For the induction to go through, we have to strengthen the goal.
Under the assumption wt-step ϕ, we show:

∀ p s. p+size ls = size ϕ ∧ s ≤r ϕ!p ∧ s ∈ A ∧ s 6=⊤ −→ wtl ls c p s 6= ⊤

Figure 2.7 contains the Isabelle/Isar proof for this lemma.

The base case of the induction is as easy as it should be: from the assumption s 6=⊤ we
immediately get wtl [] c p s 6= ⊤.

In the step case, there is a first instruction i and a rest list ls for which we have to
show wtl (i#ls) c p s 6= ⊤. The first steps in Figure 2.7 reduce the induction hy-
pothesis to

∧
s. s ≤r ϕ!Suc p =⇒ s ∈ A =⇒ s 6= ⊤ =⇒ wtl ls c (Suc p) s 6= ⊤. If

we instantiate s with wtc c p s and can get our hands on the conclusion of the in-
duction hypothesis wtl ls c (Suc p) (wtc c p s) 6= ⊤, we have proved the goal, because
wtl ls c (Suc p) (wtc c p s) is the same as wtl (i#ls) c p s provided wtc c p s 6= ⊤. We
may assume that s ≤r ϕ!p and (from wt-step ϕ) that stable ϕ p holds.

To use the induction hypothesis, we have to show wtc c p s ≤r ϕ!(p+1 ), wtc c p s ∈ A,
and wtc c p s 6= ⊤. The proof in Figure 2.7 begins with the last of these premises.
Using Lemma 2.17 (stable-wtc), we conclude wtc c p (ϕ!p) 6= ⊤ from stable ϕ p. With
s ≤r ϕ!p we know by monotonicity (Lemma 2.19) of wtc that wtc c p s ≤r wtc c p (ϕ!p)
and thus the desired wtc c p s 6= ⊤. The next lines in Figure 2.7 handle the spe-
cial case where ls = []. Here, we immediately have wtl (i#ls) c p = wtc c p s 6= ⊤.
The interesting case ls 6= [] gives us p+1 < size ϕ and we use Lemma 2.18 to get
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wtc c p (ϕ!p) ≤r ϕ!Suc p. Because we already know wtc c p s ≤r wtc c p (ϕ!p), we
thereby also have the first premise of the induction hypothesis, wtc c p s ≤r ϕ!Suc p,
by transitivity of ≤r. The remaining premise, wtc c p s ∈ A, follows from the fact that
step is type preserving. With this, we can use the induction hypothesis and conclude
the final goal wtl (i#ls) c p s 6= ⊤.

This concludes the proof of the induction lemma. Theorem 2.4 is a corollary of it.

2.5.5 Conclusion

Above, I have presented a framework for lightweight bytecode verification. It contains
the lightweight bytecode verifier as an abstract and executable functional program that
is sound and complete. Both properties are generic in the type system, proved with
respect to the typing framework of Section 2.3.1. In this abstract setting, the main
Isabelle/Isar proofs are small enough to be shown here.

The specification of the lightweight bytecode verifier consists of only 37 lines of Isabelle
definitions. The proofs of soundness and completeness including all related lemmas take
up about 1000 lines of human-readable Isabelle/Isar text. The LBV-specific instantiation
of the framework is about another 300 lines for each type system.

The abstract setting of an arbitrary semilattice and the general step function allows the
LBV to be used for all type systems I present in this thesis. Most notably, the structure
of the data flow graph may again depend on the current state type, which enables the
LBV to be used for the notorious bytecode subroutines [25] which are not supported by
Sun’s KVM (they must be eliminated by expansion before verification).

In comparison to my formalization, the original approach of Rose [74, 75] is less general
and also a bit more complex. It is less general, because she cannot handle bytecode
subroutines and because she formulates it for the JVM only.4 It is more complex because
she does not distinguish type system from algorithm in the formalization, and because
she includes a compression optimization for certificates: she only needs the certificate
when a type merge really produces a different type than expected, which leads to a
smaller type annotation. It does, however, not save space during the verification pass
itself, since the state type at all jump targets has to be saved for later checks anyway.
My completeness result includes the simpler and easier to implement notion that the
certificate should contain all jump targets. This is also used in Sun’s KVM verifier.

The soundness theorem states that the lightweight bytecode verifier accepts only type
correct programs, and that it is safe to rely on outside information. The complete-

4I have instantiated the LBV for the µJVM only, but in principle this algorithm is applicable wherever
standard bytecode verification can be used.
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ness theorem states that the lightweight bytecode verifier will accept the same well-
typed programs as the traditional bytecode verifier. Both theorems combined tell us
that lightweight bytecode verification is functionally completely equivalent to traditional
bytecode verification. The functional implementation shows that the algorithm is linear
in time and constant in space. All these results together enable a secure scheme for
on-card verification with Java smartcards: programs are annotated with a certificate,
produced by a traditional bytecode verifier or directly by the compiler off-card. On-card
verification can then take place with the efficient and compact lightweight bytecode ver-
ifier as part of the card’s JVM. This scheme provides easy, seamless use for developers
while maintaining all security properties from bytecode verification that we have be-
come accustomed to. The major advantage over cryptographic methods is that no trust
is needed at all in the certifying party and authenticity of the certificate.
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In this chapter, I instantiate the abstract typing framework with a first, simple
type system, show that this type system is sound, and derive two verified
executable bytecode verifiers from the specification. I also describe in detail
the JVM formalization and the structure of programs. Both the JVM and
the BV will serve as basis for the extensions in Chapters 4 to 6.

3.1 Introduction

This chapter shows the formalization of the µJVM and its BV. The JVM formalization
begins by defining types, values, programs, declarations, wellformedness conditions, and
lookup functions. It proceeds with the memory and state model of the µJVM and finally
shows the definition of the operational semantics. The semantics is split in two parts:
an aggressive machine that executes programs without type and safety checks, and a
defensive machine that includes those checks. The aggressive machine is closer to a real
implementation, the defensive machine is useful to express type safety. It is shown that
the two are equivalent if no type errors occur.

The formalization of the BV is an instantiation of the framework in Chapter 2. It defines
a suitable semilattice and transfer function and uses the theorems and definitions of the
framework to derive a static description of welltypings together with two executable
bytecode verifiers. With the definition of welltypings, it is then possible to show that all
welltyped programs are type safe.

The type system presented here is an extended, more modular version of [60]. It contains
classes, inheritance, virtual methods, and exception handling. I keep it relatively simple
to introduce the µJVM formalization, which is the basis for the proof of type safety, and
to demonstrate a first instantiation of the abstract typing framework.

The type safety proof uses the defensive machine for stating the theorem, and an in-
variant argument to show that execution remains safe. I describe the definition of the
invariant as well as an exemplary case of the proof in Isabelle/Isar notation.
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Figure 3.1: Instantiating the framework: overview.

Figure 3.1 gives an overview of the Isabelle theories involved.

The theory dependency graph in Figure 3.1 contains four clusters. The upper right
corner shows the framework of Chapter 2 (the three LBV theories are merged into one
to disentangle the picture). Section 3.2.1 will be concerned with the upper left corner, the
machine independent part of µJava: types, declarations, and the structure of programs.
The rest of Section 3.2 is dedicated to the definition of the µJVM and its operational
semantics: the lower left of Figure 3.1. The remaining theories in Figure 3.1 contain the
type system with the executable bytecode verifiers and its proof of soundness. Section 3.3
shows the type system and the bytecode verifiers, Section 3.4 the proof of type safety.
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3.2 The µJava Virtual Machine

This section gives a detailed introduction to the µJava Virtual Machine. It contains the
structure of µJava programs (Section 3.2.1), the state space of the µJVM (Section 3.2.2),
and its operational semantics, first without (Section 3.2.3) and then with (Section 3.2.4)
runtime type checks.

3.2.1 Structure

Declarations

Since µJava formalizes both the source and the bytecode language, it distinguishes code
from declarations in a special way: declarations are shared, code is a type variable that is
instantiated later (with either bytecode language instructions or source language terms).
This thesis will only be concerned with the bytecode level.

The declaration structure of programs is the following in Isabelle:

types fdecl = vname × ty

sig = mname × ty list

γ mdecl = sig × ty × γ

γ class = cname × fdecl list × γ mdecl list

γ cdecl = cname × γ class

γ prog = γ cdecl list

This is best read from bottom to top: a program γ prog with method bodies of type
γ is a list of class declarations. A class declaration γ cdecl consists of the name of the
class and the class itself. A class γ class is again a tuple: it consists of the name of
the superclass, a list of field declarations, and a list of method declarations. A method
declaration γ mdecl has a signature sig (name and parameter types of the method), a
return type ty, and the body γ. A field declaration fdecl is a pair of field name and field
type.

Class names are based on a not further specified set of names cnam:

datatype cname = Object | Xcpt xcpt | Cname cnam

datatype xcpt = NullPointer | ClassCast | OutOfMemory

The names of system exceptions and the name of class Object are predefined, all other
classes have names out of cnam.
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For the bytecode level, the names of methods mname and the names of fields vname can
be left unspecified like cnam.

The HOL data type ty of basic types in µJava is the following:

datatype ty = PrimT prim-ty | RefT ref-ty

datatype prim-ty = Void | Boolean | Integer

datatype ref-ty = NullT | ClassT cname

The above means that a type ty is either a primitive type or a reference type. Primitive
types can be the usual Void, Boolean, or Integer. Reference types are the null type (for
the Null reference), and classes. For readability, µJava uses the following abbreviations,
implemented as syntax translations in Isabelle:

translations NT ⇀↽ RefT NullT

Class C ⇀↽ RefT (ClassT C )

A program Γ :: γ prog gives rise to a lookup function class that takes a program and
a class name and returns the class if it is declared (and None otherwise). The function
map-of :: (α × β) list ⇒ (α ⇒ β option) turns a list of pairs into a map.

class :: γ prog ⇒ cname ⇒ γ class option

class Γ ≡ map-of Γ

With this, we can determine if a class or a type is declared in a program:

is-class :: γ prog ⇒ cname ⇒ bool

is-class Γ C ≡ class Γ C 6= None

is-type :: γ prog ⇒ ty ⇒ bool

is-type Γ (PrimT t) = True

is-type Γ (RefT t) = (case t of NullT ⇒ True | ClassT C ⇒ is-class Γ C )

Subtypes

Each program Γ also induces a subtype ordering �. It builds on the direct subclass
relation subcls Γ and satisfies:

T � T

NT � RefT T

Class C � Class D if (C ,D) ∈ (subcls Γ)∗
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The expression (C ,D) ∈ (subcls Γ)∗ means that C is a subclass of D in Γ. In Isabelle,
subcls Γ is an inductive definition with the following sole introduction rule:

[[class Γ C = Some (D ,decl); C 6= Object ]] =⇒ (C ,D) ∈ subcls Γ

For every class hierarchy, which means for every program, this subtype ordering may
be a different one. In the Isabelle formalization, the ordering � therefore has Γ as an
additional parameter. Here, I treat Γ as a global constant in most definitions.

Wellformedness

Like the Java Language Specification (JLS) [32], µJava imposes certain wellformedness
constraints on programs.

Wellformedness of fields and method headers is easy. A field declaration is wellformed if
the field has a declared type, and a method header is wellformed if the return type and
all parameter types are declared:

wf-fdecl :: γ prog ⇒ fdecl ⇒ bool

wf-fdecl Γ (fn,ft) ≡ is-type Γ ft

wf-mhead :: γ prog ⇒ sig ⇒ ty ⇒ bool

wf-mhead Γ (mn,ps) rt ≡ is-type Γ rt ∧ (∀T∈set ps. is-type Γ T )

Since method bodies γ are not instantiated yet, wellformedness of programs is parameter-
ized with a function wf-mb that checks wellformedness of method bodies. For bytecode,
this will later be the bytecode verifier. The type of wf-mb is

types γ wf-mb = γ prog ⇒ cname ⇒ γ mdecl ⇒ bool

This means the function wf-mb gets the program, the current class, and the current
method declaration as input. With this information, it decides whether the method
body is wellformed.

A full method declaration is then wellformed if its header and its body are wellformed:

wf-mdecl :: γ wf-mb ⇒ γ prog ⇒ cname ⇒ γ mdecl ⇒ bool

wf-mdecl wf-mb Γ C (sig ,rt ,mb) ≡ wf-mhead Γ sig rt ∧ wf-mb Γ C (sig ,rt ,mb)

Wellformedness of class declarations is more involved.
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wf-cdecl :: γ wf-mb ⇒ γ prog ⇒ γ cdecl ⇒ bool

wf-cdecl wf-mb Γ (C ,(D ,fs,ms)) ≡
(∀ f ∈set fs. wf-fdecl Γ f ) ∧ unique fs ∧
(∀m∈set ms. wf-mdecl wf-mb Γ C m) ∧ unique ms ∧
(C 6= Object −→ is-class Γ D ∧ (D ,C ) /∈ (subcls Γ)∗ ∧

(∀ (sig ,rt ,b)∈set ms. ∀D ′ rt ′ b ′. method (Γ,D) sig = Some(D ′,rt ′,b ′) −→ rt � rt ′))

The beginning of wf-cdecl is canonical: all field and method declarations must be well-
formed, and each field and method should only be declared once (unique). The next line
makes sure that all superclasses that are mentioned in declarations are actually declared
in the program and that the subclass relation is acyclic. The last line is a bit less restric-
tive than the JLS: it requires that a method declared in class C has a return type smaller
than the one of methods with the same signature, but defined in a superclass D of C.
The JLS requires overriding methods to have the same return type as the overridden
method. The method lookup function method will be defined formally below. Before
that, I finish wellformedness:

wf-syscls :: γ prog ⇒ bool

wf-syscls Γ ≡ let cs = set Γ in Object ∈ fst‘cs ∧ (∀ x . Xcpt x ∈ fst‘cs)

wf-prog :: γ wf-mb ⇒ γ prog ⇒ bool

wf-prog wf-mb Γ ≡ unique Γ ∧ wf-syscls Γ ∧ (∀ c ∈ set Γ. wf-cdecl wf-mb Γ c)

The above says a program is wellformed (wf-prog) if each class is declared only once, if
it is wellformed w.r.t. system classes, and if all class declarations are wellformed. It is
wellformed w.r.t. system classes (wf-syscls) if it contains a declaration of the class Object
and a declaration for each system exception.

Finally, a program is called well structured (ws-prog Γ), if it wellformed without the
method bodies:

ws-prog Γ ≡ wf-prog (λΓ C mdecl . True) Γ

Lookup functions

The method lookup function method and its analogue fields for fields are large and te-
dious recursive definitions in Isabelle. Slightly more readable are the following equations
that hold if wf ((subcls Γ)−1) and class Γ C = Some (D ,fs,ms):
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method :: γ prog × cname ⇒ (sig ⇒ (cname × ty × γ) option)

method (Γ,C ) = (if C=Object then empty else method (Γ,D)) ++

map-of (map (λ(sig ,rt ,b). (sig ,(C ,rt ,b))) ms)

fields :: γ prog × cname ⇒ ((vname × cname) × ty) list

fields (Γ,C ) = map (λ(fn,ft). ((fn,C ),ft)) fs @ (if C=Object then [] else fields (Γ,D))

The method function looks up whether a method with signature sig exists in class C
and program Γ. If it exists, it yields the name of the class the method is defined in (it
could be a superclass of C ), the return type of the method, and the body of the method.
If it does not exist, it yields None. The equation for method above first recurses into
the superclass D and overwrites (using the ++ operator) the resulting map with the
methods of the current class. Note that class Γ C = Some (D ,fs,ms) ensures that ms
is the list of method declarations in class C and that D is the superclass of C.

The fields function is similar. For a class C in program Γ, it returns the list of all fields
of this class (including those defined in superclasses). For each field, it returns its name,
the name of the class it is defined in, and the field’s type. The equation above collects
the fields of the current class and then recurses into the superclass D.

Both functions walk up the class hierarchy. It is therefore necessary that the converse
of subcls Γ is wellfounded (otherwise they would not terminate), hence the condition
wf ((subcls Γ)−1). Note that whenever wf-prog mb Γ holds for any wellformedness con-
dition mb of method bodies, wf ((subcls Γ)−1) must be true. Both functions are only
specified if the class C in which they are supposed to look up a method or field does
exist in Γ, hence the condition class Γ C = Some (D ,fs,ms). The way both functions
are formulated coincides with Java’s rules for inheritance and overriding.

The fields function has a variant field that takes a program Γ, a class C, and a field
name fn, and that returns Some (D ,ft) if the field exists (where D is the class the field
is defined in and ft the type of the field). If there is no field with name ft accessible in
C, then field (Γ,C ) fn returns None. It is defined by:

field :: γ prog × cname ⇒ (vname ⇒ (cname × ty) option)

field ≡ map-of ◦ (map (λ((fn,C ),ft). (fn,(C ,ft)))) ◦ fields

Values

The type val of values is defined by

datatype val = Unit | Null | Bool bool | Intg int | Addr loc
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Unit is a (dummy) result value of void methods, Null the null reference. Bool and Intg
are injections from the HOL types bool and int into val, similarly Addr from the type
loc of locations.

In the spirit of JavaCard, the type loc reserves space for preallocated system exception
objects:1

datatype loc = XcptRef xcpt | Loc locs

The type locs again remains unspecified.

3.2.2 State Space

The state space of the µJVM is modeled closely after the real JVM. The state consists
of a heap, a stack of call frames, and a flag whether an exception was raised (and, if yes,
a reference to the exception object).

types jvm-state = val option × aheap × frame list

The heap is simple: a partial function from locations to objects.

types aheap = loc ⇒ obj option

An object obj is a pair consisting of a class name (the class the object belongs to) and
a mapping for the fields of the object (taking the name and defining class of a field, and
yielding its value if such a field exists, None otherwise).

types obj = cname × (vname × cname ⇒ val option)

As in the real JVM, each method execution gets its own call frame, containing its own
operand stack (a list of values), its own set of registers (also a list of values), and its own
program counter. We also store the class and signature (name and parameter types) of
the method and arrive at:

types frame = opstack × registers × cname × sig × nat

opstack = val list

registers = val list

1Thus also avoiding the situation where there is no space left for a new OutOfMemory exception object.
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datatype instr =
Load nat load from register

| Store nat store into register
| LitPush val push a literal (constant)
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname
| Invoke cname mname (ty list) invoke instance method
| Return return from method
| Dup duplicate top element
| Dup-x1 duplicate top element and push 2 values down
| IAdd integer addition
| Goto int goto relative address
| Ifcmpeq int branch if equal
| Throw throw exception

Figure 3.2: The µJava bytecode instruction set.

3.2.3 Operational Semantics

This section defines the state transition relation of the µJVM. Figure 3.2 shows the
instruction set. Method bodies are lists of such instructions together with the exception
handler table and two numbers mxs and mxl . These are the maximum operand stack
size and the number of local variables (not counting the this pointer and the parameters
of the method, which are stored in the first 0 to n registers). So the type parameter γ for
method bodies gets instantiated with nat × nat × instr list × ex-table; mdecl becomes
the following:

mdecl = sig × ty × nat × nat × instr list × ex-table

Like in the JVM, the exception table is a list of tuples (start-pc, end-pc, handler-pc, C ):

types ex-table = (nat × nat × nat × cname) list

The asymmetric interval [start-pc, end-pc) denotes those instructions in the method
body that correspond to the try block on the Java source level. The handler-pc points
to the first instruction of the corresponding catch block. The code starting at handler-pc
is the exception handler. An exception handler protects a program position pc iff
pc ∈ [start-pc,end-pc). An exception table entry matches an exception e if the handler
protects the current pc and if the class of e is a subclass of C.

The state transition relation s
jvm−→ t is built on a function exec describing one-step

execution:
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exec :: jvm-state ⇒ jvm-state option

exec (xp, hp, []) = None

exec (Some xp, hp, frs) = None

exec (None, hp, f #frs) = let (stk ,reg ,C ,sig ,pc) = f ;

ins = 5th (the (method (Γ,C ) sig));

i = ins ! pc

in find-handler (exec-instr i hp stk reg C sig pc frs)

It says that execution halts if the call frame stack is empty or an unhandled exception
has occurred. In all other cases, execution is defined: exec decomposes the top call
frame, looks up the current method, retrieves the instruction list (the 5th element) of
that method, delegates actual execution for single instructions to exec-instr, and finally
sets the pc to the appropriate exception handler (with find-handler) if an exception
occurred.

Exception handling in find-handler is the same as in the JVM specification: it looks
up the exception table in the current method, and sets the program counter to the
first handler that protects pc and that matches the exception class. If there is no such
handler, the topmost call frame is popped, and the search continues recursively in the
invoking frame. If this procedure does find an exception handler, it clears the operand
stack and puts a reference to the exception on top. If it does not find an exception
handler, the exception flag remains set and the machine halts.

The state transition relation is the reflexive transitive closure of the defined part of exec:

s
jvm−→ t = (s,t) ∈ {(s,t). exec s = Some t}∗

The definition of exec-instr in Figure 3.3 is large, but straightforward. One of the smaller
definitions in exec-instr is the one for the IAdd instruction:

exec-instr IAdd hp stk regs C ′ sig pc frs =

let i1 = the-Intg (hd stk); i2 = the-Intg (hd (tl stk))

in (None, hp, (Intg (i1+i2)#(tl (tl stk)), regs, C ′, sig , pc+1 )#frs)

It takes the top two values from the stack, converts them to HOL integers (using the
equality the-Intg (Intg i) = i), adds them and puts the result back onto the stack.
The program counter is incremented, the rest remains untouched. Most instructions in
Figure 3.3 are of that simple form. Instructions with exceptions and heap access have
larger definitions (due to case distinctions), but it should become clear that exec-instr
follows the JVM specification closely.
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exec-instr :: instr ⇒ aheap ⇒ opstack ⇒ registers ⇒ cname ⇒ sig ⇒ nat ⇒ frame list ⇒
jvm-state

exec-instr (Load idx ) hp stk regs C ′ sig pc frs =

(None, hp, ((regs ! idx ) # stk , regs, C ′, sig , pc+1 )#frs)

exec-instr (Store idx ) hp stk regs C ′ sig pc frs =

(None, hp, (tl stk , regs[idx :=hd stk ], C ′, sig , pc+1 )#frs)

exec-instr (LitPush v) hp stk regs C ′ sig pc frs =

(None, hp, (v # stk , regs, C ′, sig , pc+1 )#frs)

exec-instr (New C ) hp stk regs C ′ sig pc frs =
let (a,xp ′) = new-Addr hp;

hp ′ = if xp ′=None then hp(a 7→blank Γ C ) else hp;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, ((Addr a) # stk , regs, C ′, sig , pc ′)#frs)

exec-instr (Getfield F C ) hp stk regs C ′ sig pc frs =
let r = hd stk ;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;

(c,fs) = the(hp(the-Addr r));

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, (the(fs(F ,C ))#(tl stk), regs, C ′, sig , pc ′)#frs)

exec-instr (Putfield F C ) hp stk regs C ′ sig pc frs =
let (v ,r)= (hd stk , hd(tl stk));

xp ′ = raise-system-xcpt (r=Null) NullPointer ;

a = the-Addr r ;

(c,fs) = the (hp a);

hp ′ = if xp ′=None then hp(a 7→(c,fs((F ,C )7→v))) else hp;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, (tl (tl stk), regs, C ′, sig , pc ′)#frs)

exec-instr (Checkcast C ) hp stk regs C ′ sig pc frs =
let r = hd stk ;

xp ′ = raise-system-xcpt (¬ cast-ok Γ C hp r) ClassCast ;

stk ′ = if xp ′=None then stk else tl stk ;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, (stk ′, regs, C ′, sig , pc ′)#frs)

Figure 3.3: Single step execution (part 1).

51



Chapter 3 Instantiating the Framework

exec-instr (Invoke C mn ps) hp stk regs C ′ sig pc frs =
let n = size ps;

args = take n stk ;

r = stk !n;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;

dt = fst(the(hp(the-Addr r)));

(dc,-,-,mxl ,-)= the (method (Γ,dt) (mn,ps));

frs ′ = if xp ′=None

then [([],(rev args)@[r ]@replicate mxl arbitrary ,dc,(mn,ps),0 )] else []

in (xp ′, hp, frs ′@(stk , regs, C ′, sig , pc)#frs)

exec-instr Return hp stk0 regs C ′ sig0 pc frs =
if frs=[] then (None, hp, []) else

let v = hd stk0;

(stk ,regs,C ,sig ,pc) = hd frs;

(mn,ps) = sig0;

n = size ps

in (None, hp, (val#(drop (n+1 ) stk),regs,C ,sig ,pc+1 )#tl frs)

exec-instr Pop hp stk regs C ′ sig pc frs =

(None, hp, (tl stk , regs, C ′, sig , pc+1 )#frs)

exec-instr Dup hp stk regs C ′ sig pc frs =

(None, hp, (hd stk # stk , regs, C ′, sig , pc+1 )#frs)

exec-instr Dup-x1 hp stk regs C ′ sig pc frs =

(None, hp, (hd stk # hd (tl stk) # hd stk # (tl (tl stk)), regs, C ′, sig , pc+1 )#frs)

exec-instr IAdd hp stk regs C ′ sig pc frs =

let (i1 ,i2 ) = (the-Intg (hd stk), the-Intg (hd (tl stk)))

in (None, hp, (Intg (i1+i2 )#(tl (tl stk)), regs, C ′, sig , pc+1 )#frs)

exec-instr (Ifcmpeq b) hp stk regs C ′ sig pc frs =
let (v1,v2) = (hd stk , hd (tl stk));

pc ′ = if v1 = v2 then nat(int pc+b) else pc+1

in (None, hp, (tl (tl stk), regs, C ′, sig , pc ′)#frs)

exec-instr (Goto b) hp stk regs C ′ sig pc frs =

(None, hp, (stk , regs, C ′, sig , nat(int pc+b))#frs)

exec-instr Throw hp stk regs C ′ sig pc frs =
let xp = raise-system-xcpt (hd stk = Null) NullPointer ;

xp ′ = if xp = None then Some (hd stk) else xp

in (xp ′, hp, (stk , regs, C ′, sig , pc)#frs)

Figure 3.4: Single step execution (part 2).
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Figure 3.3 uses new functions: the destructor the-Addr is analogous to the-Intg. The
New instruction needs new-Addr , returning either an OutOfMemory exception xp or
an unused heap address a. It leaves memory size and the implementation of memory
management unspecified. A new object of class C with all fields set to default values is
produced by blank Γ C. The Getfield definition generates the exception explicitly with
raise-system-xcpt b xp ≡ if b then Some (Addr (XcptRef xp)) else None. Note that the
field part of objects is a map from defining class and name to value, so fs(F ,C ) is the
value of field F defined in class C. The Checkcast instruction uses cast-ok Γ C hp v to
check if the value v is an address that points to an object of at least class C.

This style of VM is also called aggressive, because it does not perform any runtime type
or sanity checks. It just assumes that everything is as expected, for instance for IAdd
that there are indeed two integers on the stack. If the situation is not as expected, the
operational semantics is unspecified at this point. In Isabelle, this means that there is
a result (because HOL is a logic of total functions), but nothing is known about that
result. It is the task of the bytecode verifier to ensure that this does not occur.

3.2.4 A Defensive VM

Although it is possible to prove type safety by using the aggressive VM alone, it is crisper
to write and a lot more obvious to see just what the bytecode verifier guarantees when
we additionally look at a defensive VM. The defensive VM builds on the aggressive one
by performing extra type and sanity checks. We can then state the type safety theorem
by saying that these checks will never fail if the bytecode is welltyped.

To indicate type errors, we introduce another data type.

datatype α type-error = TypeError | Normal α

Similar to Section 3.2.3, we build on a function check-instr that is lifted over several
steps. At the deepest level, we take apart the state to feed check-instr with parameters
(which are the same as for exec-instr) and check that the pc is valid:

check :: jvm-state ⇒ bool

check (xp, hp, []) = True

check (xp, hp, f #frs) = let (stk ,reg ,C ,sig ,pc) = f ;

ins = 5th (the (method (Γ,C ) sig));

i = ins!pc

in pc < size ins ∧ check-instr i hp stk reg C sig pc frs

The next level is the one-step execution of the defensive VM, which stops in case of a
type error and calls the aggressive VM after a successful check:
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exec-d :: jvm-state type-error ⇒ jvm-state option type-error

exec-d TypeError = TypeError

exec-d (Normal s) = if check s then Normal (exec s) else TypeError

Again, we take the reflexive transitive closure after getting rid of the Some and None
constructors:

s
djvm−→ t ≡ (s,t) ∈ ({(s,t). exec-d s = TypeError ∧ t = TypeError} ∪

{(s,t). ∃ t ′. exec-d s = Normal (Some t ′) ∧ t = Normal t ′})∗

It remains to define check-instr, the heart of the defensive µJVM. Figure 3.5 shows that
this is relatively straightforward. The IAdd case looks like this:

check-instr IAdd hp stk regs Cl sig pc frs =

1 < size stk ∧ is-Intg (hd stk) ∧ is-Intg (hd (tl stk))

IAdd requires that the stack has at least two entries (1 < size stk), and that these
entries are of type Integer (checked with the is-Intg function). For Load and Store there
are no type constraints, because they are polymorphic in µJava. In the real JVM, the
definition would be in the style of IAdd, requiring integer for iload, float for fload,
and so on. The discriminator functions is-Addr and is-Ref in Figure 3.5 do the obvious.
More interesting is the relation ::� between values and arbitrary types:

hp ⊢ v ::� T ≡ ∃T ′. typeof hp v = Some T ′ ∧ T ′ � T

typeof hp Unit = Some (PrimT Void)

typeof hp (Intg i) = Some (PrimT Integer)

typeof hp (Bool b) = Some (PrimT Boolean)

typeof hp Null = Some NT

typeof hp (Addr a) = case hp a of None ⇒ None | Some (C ,fs) ⇒ Some (Class C )

So hp ⊢ v ::� T (v conforms to T in hp) implies that v is either a value of
primitive type T, or that v is Null and T some reference type, or, if it is an ad-
dress a, that there is an object of at least type T at position a on the heap. In
the next section I also use typeof v without the heap parameter. It is equivalent to
typeof (λa. None) v and returns None for all addresses. The predicate is-Intg v is equiv-
alent to typeof v = Some (PrimT Integer) as well as to hp ⊢ v ::� (PrimT Integer).

I have shown that defensive and aggressive VM have the same operational one-step
semantics if there are no type errors.
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check-instr :: instr ⇒ aheap ⇒ opstack ⇒ registers ⇒ cname ⇒ sig ⇒ nat ⇒ frame list ⇒
bool

check-instr (Load idx ) hp stk regs Cl sig pc frs = idx < size regs

check-instr (Store idx ) hp stk regs Cl sig pc frs = 0 < size stk ∧ idx < size regs

check-instr (LitPush v) hp stk regs Cl sig pc frs = ¬is-Addr v

check-instr (New C ) hp stk regs Cl sig pc frs = is-class Γ C

check-instr (Getfield F C ) hp stk regs Cl sig pc frs =
0 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′,T ) = the (field (Γ,C ) F ); ref = hd stk

in C ′ = C ∧ is-Ref ref ∧
(ref 6= Null −→ hp (the-Addr ref ) 6= None ∧ (let (D ,fs) = the (hp (the-Addr ref ))

in (D ,C ) ∈ (subcls Γ)∗ ∧ fs (F ,C ) 6= None ∧ hp ⊢ the (fs (F ,C )) ::� T )))

check-instr (Putfield F C ) hp stk regs Cl sig pc frs =
1 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′, T ) = the (field (Γ,C ) F ); v = hd stk ; ref = hd (tl stk)

in C ′ = C ∧ is-Ref ref ∧
(ref 6= Null −→ hp (the-Addr ref ) 6= None ∧

(let (D ,fs) = the (hp (the-Addr ref )) in (D ,C ) ∈ (subcls Γ)∗ ∧ hp ⊢ v ::� T )))

check-instr (Checkcast C ) hp stk regs Cl sig pc frs =

0 < size stk ∧ is-class Γ C ∧ is-Ref (hd stk)

check-instr (Invoke C mn ps) hp stk regs Cl sig pc frs =
size ps < size stk ∧
(let n = size ps; v = stk !n in

is-Ref v ∧ (v 6= Null −→ hp (the-Addr v) 6= None ∧
method (Γ,cname-of hp v) (mn,ps) 6= None ∧
list-all2 (λv T . hp ⊢ v ::� T ) (rev (take n stk)) ps))

check-instr Return hp stk0 regs Cl sig0 pc frs =
0 < size stk0 ∧
(0 < size frs −→ method (Γ,Cl) sig0 6= None ∧

(let v = hd stk0 ; (C ,rt ,b) = the (method (Γ,Cl) sig0 ) in Cl = C ∧ hp ⊢ v ::� rt))

check-instr Pop hp stk regs Cl sig pc frs = 0 < size stk

check-instr Dup hp stk regs Cl sig pc frs = 0 < size stk

check-instr Dup-x1 hp stk regs Cl sig pc frs = 1 < size stk

check-instr IAdd hp stk regs Cl sig pc frs = 1 < size stk ∧ is-Intg (hd stk) ∧
is-Intg (hd (tl stk))

check-instr (Ifcmpeq b) hp stk regs Cl sig pc frs = 1 < size stk ∧ 0 ≤ int pc+b

check-instr (Goto b) hp stk regs Cl sig pc frs = 0 ≤ int pc+b

check-instr Throw hp stk regs Cl sig pc frs = 0 < size stk ∧ is-Ref (hd stk)

Figure 3.5: Type checks in the defensive µJVM.
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exec

exec−d

s t

Normal s Normal t

Figure 3.6: Aggressive and defensive µJVM commute if there are no type errors.

Theorem 3.1 One-step execution in aggressive and defensive machines commutes if
there are no type errors.

exec-d (Normal s) 6= TypeError −→ exec-d (Normal s) = Normal (exec s)

Figure 3.6 depicts this result as a commuting diagram. The proof is trivial (and fully au-
tomatic in Isabelle), because the defensive VM is constructed directly from the aggressive
one.

For executing programs, we will later also need a canonical start state. In the real JVM,
a program is started by invoking its static main method. In the µJVM this is similar.
I call a method the main method of class C if there is a method body b such that
method (Γ,C ) (main,[]) = Some (C , b) holds. For main methods, we can define the
canonical start state start Γ C as the state with exception flag None, a heap start-hp Γ,
and a frame stack with one element. The heap start-hp Γ contains the preallocated
system exceptions and is otherwise empty. The single frame has an empty operand
stack, the this pointer set to Null, the rest of the register set filled up with a dummy
value arbitrary, the class entry set to C, the signature to (main,[]), and the program
counter 0 .

start :: jvm-prog ⇒ cname ⇒ jvm-state type-error

start Γ C ≡ let (-,-,-,mxl ,-,-) = the (method (Γ,C ) (main,[]));

regs = Null # replicate mxl arbitrary

in Normal (None, start-hp Γ, [([], regs, C , (main,[]), 0 )])

This concludes the formalization of the µJVM. It will serve as the basis for the proof of
type safety below.
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3.3 The Bytecode Verifier

In the following sections, I instantiate the abstract typing framework from Chapter 2 with
a concrete type system for the µJVM. I define the semilattice structure in Section 3.3.1,
the data flow functions app and eff in Section 3.3.2, refine the notion of welltyping
to Java-specifics in Section 3.3.3, and finally derive two verified executable bytecode
verifiers from the specification in Section 3.3.4.

3.3.1 The Semilattice

This section takes the first step to instantiate the framework of Chapter 2. It defines
the semilattice structure on which µJava’s bytecode verifier builds. It begins by turning
the µJava types ty into a semilattice. We can then use the abstract combinators of
Section 2.2 to construct the stack and register structure.

The carrier set types is easy: the set of all types declared in the program.

types = {T . is-type Γ T}

The order is the standard subtype ordering � of µJava.

The supremum operation follows the ordering.

sup :: ty ⇒ ty ⇒ ty err

sup NT (Class C ) = OK (Class C )

sup (Class C ) NT = OK (Class C )

sup (Class C ) (Class D) = OK (Class (lub C D))

sup t1 t2 = if t1 = t2 then OK t1 else Err

The lub function (not shown here) computes the least upper bound of two classes by
walking up the class hierarchy until one is a subclass of the other. Since every class is a
subclass of Object in a well structured program (see also ws-prog in Section 3.2.1), this
least upper bound is guaranteed to exist.

With these three components, I have proved the following theorem.

Theorem 3.2 If Γ is well structured, the triple JType.esl ≡ (types, �, sup) is an err-
semilattice and the subtype ordering � satisfies the ascending chain condition.

The proof is easy: it is obvious that � is transitive and reflexive. If Γ is well structured,
� is also antisymmetric, hence a partial order. It satisfies the ascending chain condition,
because, if Γ is well structured, the class hierarchy is a tree with Object at its top. I
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have already argued above that sup is well defined, and it is easy to see that it is closed
w.r.t. types. Hence esl is an err-semilattice.

We can now construct the stack and register structure. State types in the µJava BV
are the same as in the example in Figure 1.2: values on the operand stack must always
contain a known type ty, values in the local variables may be of an unknown type and
therefore be unusable (encoded by Err). On the HOL-type level, this is the following.

types state-type = ty list × ty err list

To handle unreachable code, the BV will not directly work on state-type, but on state-type
option instead. If None occurs in the welltyping, the corresponding instruction is un-
reachable. The executable BV also needs to indicate type errors during the algorithm
(see also Section 2.3.3), so we arrive at state-type option err.

Turning state-type option err into a semilattice is easy, because all of its constituent types
are (err-)semilattices. The expression stacks form a semilattice because the supremum
of stacks of different size is Err ; the list of registers forms a semilattice because the
number mxr of registers is fixed:

stk-esl :: nat ⇒ ty list esl

stk-esl mxs ≡ upto-esl mxs (JType.esl)

reg-sl :: nat ⇒ ty err list sl

reg-sl mxr ≡ Listn.sl mxr (Err .sl (JType.esl))

The stack and registers are combined in a coalesced product via Prod .esl and then em-
bedded into option and err to create the final semilattice for σ = state-type option err :

sl :: nat ⇒ nat ⇒ state-type option err sl

sl mxs mxr ≡ Err .sl(Opt .esl(Prod .esl (stk-esl mxs) (Err .esl(reg-sl mxr))))

It is useful below to have special notation for the ordering on the state-type option and
state-type level:

≤ ′ :: state-type option ⇒ state-type-option ⇒ bool

≤s :: state-type ⇒ state-type ⇒ bool

Combining the theorems about the various (err-)semilattice constructions involved in
the definition of esl (starting from Theorem 3.2, using Lemmas 2.1 to 2.9), it is easy to
prove

Corollary 3.1 If Γ is well structured, then sl is a semilattice. Its order satisfies the
ascending chain condition.
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3.3.2 Applicability and Effect

In this section, I instantiate app and eff for the instruction set of the µJVM. The
definitions are divided into one part for normal and one part for exceptional execution.

Since the BV verifies one method at a time, we can see the context of a method and a
program as fixed for the definition. The context consists of the following values:

Γ :: program the program,
C ′ :: cname the class the method we are verifying is declared in,
mxs :: nat maximum stack size of the method,
mxr :: nat size of the register set,
mpc :: nat maximum program counter,
rt :: ty return type of the method,
et :: ex-table exception handler table of the method.

The context variables are proper parameters of eff and app in the Isabelle formalization.
I treat them as global here to spare the reader endless parameter lists in each definition.

The definitions of app and eff begin with the exception handling part of app. It builds
on xcpt-names, the purpose of which is to determine the exceptions that are handled
in the same method. The xcpt-names function looks up for instruction i at position pc
which handlers of the exception table et are possible successors. It returns a list of the
exception class names that match. The functions match and match-any (neither shown
here) in Figure 3.7 do the actual lookup: match X pc et returns [Xcpt X ] if there is a
handler for the exception X, and [] otherwise, while match-any returns the exception
class names of all handlers that protect the instruction at pc.

As shown in Figure 3.7, most instructions in xcpt-names are straightforward. Getfield,
for instance, can only generate NullPointer exceptions, Invoke may propagate up any
exception from the invoked method. Throw considers all exception handlers for position
pc, because the runtime type of the exception thrown may be a subclass of the type the
BV infers (and therefore be caught by another exception handler as predicted). One
could be slightly more precise for the Throw instruction, but this would only add clutter
to the specification without new insights to the workings of the BV.

Applicability in the end only requires that these class names are declared in the program:

xcpt-app :: instr ⇒ nat ⇒ bool

xcpt-app i pc ≡ ∀C∈set(xcpt-names (i ,pc,et)). is-class Γ C

The definition of xcpt-eff below, the effect in the exception case, uses the function
match-ex-table C pc et , returning Some handler-pc if there is an exception handler in
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xcpt-names :: instr × nat × ex-table ⇒ cname list
xcpt-names (Getfield F C , pc, et) = match NullPointer pc et
xcpt-names (Putfield F C , pc, et) = match NullPointer pc et
xcpt-names (New C , pc, et) = match OutOfMemory pc et
xcpt-names (Checkcast C , pc, et) = match ClassCast pc et
xcpt-names (Throw , pc, et) = match-any pc et
xcpt-names (Invoke C m p, pc, et) = match-any pc et
xcpt-names (i , pc, et) = []

Figure 3.7: Exception names.

the table et for an exception of class C thrown at position pc, and None otherwise. The
effect is the same for all instructions: the registers lt of the current state type s remain
the same, the stack is cleared, and a reference to the exception object is pushed. I use
option-map :: (α ⇒ β) ⇒ α option ⇒ β option to lift functions to the option type:

option-map f None = None

option-map f (Some x ) = Some (f x )

The successor instruction pc ′ in the data flow graph marks the beginning of the exception
handler returned by match-ex-table. This effect occurs for every exception class C the
instruction may possibly throw (determined by xcpt-names as for xcpt-app above).

xcpt-eff :: instr ⇒ nat ⇒ state-type option ⇒ (nat×state-type option) list

xcpt-eff i pc s ≡ let t = λC . option-map (λ(ST ,LT ). ([Class C ],LT )) s;

pc ′ = λC . the (match-ex-table C pc et)

in map (λC . (pc ′ C , t C )) (xcpt-names (i ,pc,et))

This concludes the exception case and we can proceed to the applicability of instructions
in the normal, non-exception case. The intermediate function app ′, defined in Figure 3.8,
works on state-type, app then lifts it to state-type option. The definition is parallel to
check-instr in Section 3.2.4, it just works on types instead of values. The definition is
smaller than the one of check-instr because some of the conditions cannot be expressed
at the type level alone. These conditions are the ones that access the heap or the frame
stack (most notable in the Getfield, Putfield, and Return instructions). The type safety
proof in Section 3.4 will show why the BV still manages to guarantee that all checks in
the defensive machine are successful.

Let’s take a closer look at the IAdd example:

app ′ (IAdd , pc, (t1#t2#st ,lt)) = (t1 = t2 ∧ t1 = PrimT Integer)
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app ′ :: instr × nat × state-type ⇒ bool

app ′ (Load idx , pc, (st ,lt)) = idx < lt ∧ lt !idx 6= Err ∧
size st < mxs

app ′ (Store idx , pc, (t#st ,lt)) = idx < size lt

app ′ (LitPush v , pc, (st ,lt)) = size st < mxs ∧
typeof v 6= None

app ′ (Getfield F C , pc, (t#st ,lt)) = is-class Γ C ∧ t � Class C ∧
(∃ t ′. field (Γ,C ) F = Some (C , t ′))

app ′ (Putfield F C , pc, (t1#t2#st ,lt)) = is-class Γ C ∧
(∃ t ′. field (Γ,C ) F = Some (C ,t ′) ∧
t2 � Class C ∧ t1 � t ′)

app ′ (New C , pc, (st ,lt)) = is-class Γ C ∧ size st < mxs

app ′ (Checkcast C , pc, (t#st ,lt)) = is-class Γ C ∧ is-RefT t

app ′ (Dup, pc, (t#st ,lt)) = 1+size st < mxs

app ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = 2+size st < mxs

app ′ (IAdd , pc, (t1#t2#st ,lt)) = t1 = t2 ∧ t1 = PrimT Integer

app ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = 0 ≤ int pc + b ∧ ((t1 = t2) ∨
(is-RefT t1 ∧ is-RefT t2))

app ′ (Goto b, pc, s) = 0 ≤ int pc + b

app ′ (Return, pc, (t#st ,lt)) = t � rt

app ′ (Throw , pc, (t#st ,lt)) = is-RefT t

app ′ (Invoke C mn ps, pc, (st ,lt)) = size ps < size st ∧
method (Γ,C ) (mn,ps) 6= None ∧
let as = rev (take (size ps) st);

t = st !size ps

in t � Class C ∧ is-class Γ C ∧
(∀ (a,f )∈set(zip as ps). a�f )

app ′ (i ,pc,s) = False

Figure 3.8: Applicability of instructions.
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succs :: instr ⇒ nat ⇒ nat list

succs (Ifcmpeq b) pc = [pc+1 , nat (int pc + b)]

succs (Goto b) pc = [nat (int pc + b)]

succs Return pc = []

succs Throw pc = []

succs i pc = [pc+1 ]

Figure 3.9: Successor program counters for the non-exception case.

This is completely parallel to the defensive machine. The pattern on the left hand side
ensures that there are at least two elements on the stack, and the right hand side requires
that they both are integers.

With app ′, we can now build the full applicability function app: an instruction is appli-
cable if it is unreachable (then it can do no harm) or if it is applicable in the normal
and in the exceptional case. Additionally, we require that the pc does not leave the
instruction sequence.

app :: instr ⇒ nat ⇒ state-type option ⇒ bool

app i pc s ≡ case s of None ⇒ True

| Some s ⇒ xcpt-app i pc ∧ app ′ (i ,pc,s) ∧
(∀ (pc ′,s ′) ∈ set (eff i s). pc ′ < mpc)

This concludes applicability. We still need to build the normal, non-exception case for
eff, and to combine the two cases into the final effect function. In eff, we must calculate
the successor program counters together with new state types. For the non-exception
case, we can define them separately. Figure 3.9 shows the successors. Again, most
instructions are as expected. The relative jumps in Ifcmpeq and Goto use the nat and
int functions to convert the HOL-types nat to int and vice versa. Return and Throw
have no successors in the same method (for the non-exception case).

As with app we first define the effect eff ′ on state-type (Figure 3.10). The destructor
ok-val is defined by ok-val (OK x ) = x. The method expression for Invoke merely
determines the return type of the method in question.

The IAdd instruction is here:

eff ′ (IAdd , (t1#t2#st ,lt)) = (PrimT Integer#st ,lt)

Again, as befits an abstract interpretation, the definition is completely parallel to the
operational semantics, this time to exec-instr of the aggressive machine.
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eff ′ :: instr × state-type ⇒ state-type

eff ′ (Load idx , (st ,lt)) = (ok-val (lt !idx )#st , lt)

eff ′ (Store idx , (t#st ,lt)) = (st , lt [idx := OK t ])

eff ′ (LitPush v , (st ,lt)) = (the (typeof v)#st , lt)

eff ′ (Getfield F C , (t#st ,lt)) = (snd (the (field (Γ,C ) F ))#st ,lt)

eff ′ (Putfield F C , (t1#t2#st ,lt)) = (st ,lt)

eff ′ (New C , (st ,lt)) = (Class C # st ,lt)

eff ′ (Checkcast C , (t#st ,lt)) = (Class C # st ,lt)

eff ′ (Dup, (t#st ,lt)) = (t#t#st ,lt)

eff ′ (Dup-x1 , (t1#t2#st ,lt)) = (t1#t2#t1#st ,lt)

eff ′ (IAdd , (t1#t2#st ,lt)) = (PrimT Integer#st ,lt)

eff ′ (Ifcmpeq b, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (Invoke C mn ps, (st ,lt)) = let st ′ = drop (1+size ps) st ;

( ,rt , ) = the (method (Γ,C ) (mn,ps))

in (rt#st ′, lt)

Figure 3.10: Effect of instructions on the state type.

Lifting eff ′ to state-type option is canonical.

norm-eff :: instr ⇒ state-type option ⇒ state-type option

norm-eff i s ≡ option-map (λs. eff ′ (i ,s))

This is the effect of instructions in the non-exception case. If we apply it to every
successor instruction pc ′ returned by succs and append the effect for the exception case,
we arrive at the final effect function eff.

eff :: instr ⇒ nat ⇒ state-type option ⇒ (nat × state-type option) list

eff i pc s ≡ (map (λpc ′. (pc ′, norm-eff i s)) (succs i pc)) @ (xcpt-eff i pc s)

3.3.3 Welltypings

Having defined the semilattice and the transfer function in Section 3.3.1 and 3.3.2, I
show in this section how the parts are put together to get a definition of welltypings for
the µJVM.

The framework of Chapter 2 gives us a predicate wt-app-eff describing welltypings
ϕ :: state-type option list as method types that fit an instruction sequence. The JVM
specification [51] requires an additional start condition for instruction 0 (at method
invocation). It also requires that the instruction sequence is not empty.
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The JVM specification tells us what the first state type (at method invocation) looks
like: the stack is empty, the first register contains the this pointer (of type Class C ′),
the next registers contain the parameters of the method, and the rest of the registers are
reserved for local variables (which do not have a value yet). Note that the definitions
are still in the context of a fixed method as defined in Section 3.3.2, so C ′ is the class
to be verified, ps are the parameters, and mxl the number of local variables (which is
related to mxr by mxr = 1+size ps+mxl). The ≤ ′ is the semilattice order on state-type
option of Section 3.3.1.

wt-start ϕ ≡ Some ([],(OK (Class C ′))#(map OK ps)@(replicate mxl Err)) ≤ ′ ϕ!0

The method type ϕ is a welltyping if it satisfies wt-method.

wt-method ϕ ≡ 0 < mpc ∧ map OK ϕ ∈ states ∧ wt-start ϕ ∧ wt-app-eff ϕ

The states are the carrier set of the semilattice. Remember that the method type ϕ
does not contain the Err layer of the semilattice, hence the map OK ϕ. The condition
map OK ϕ ∈ states is only necessary to prove equivalence with the type inference algo-
rithms below. It does not follow from wt-app-eff, because a ≤r b does not necessarily
imply that a ∈ states −→ b ∈ states.

For the type safety proof below, it is useful to have a more fine-grained version of
wt-app-eff for single instructions:

wt-instr p ϕ ≡ app p (ϕ!p) ∧ (∀ (q ,t)∈set(eff p (ϕ!p)). t ≤ ′ ϕ!q)

With this, we get the following equality for wt-method :

wt-method ϕ = 0 < mpc ∧ map OK ϕ∈states ∧ wt-start ϕ ∧ (∀ p<mpc. wt-instr p ϕ)

It remains to lift welltypings from methods to programs. Welltypings of programs are
functions Φ :: prog-type with

types prog-type = cname ⇒ sig ⇒ state-type option list

These functions return a welltyping for each method and each class in the program. A
program is welltyped if there is a welltyping Φ such that wt-jvm-prog Γ Φ holds. This
wt-jvm-prog is nothing else than wf-prog of Section 3.2.1 with wt-method for method
bodies. It fills in the method context of Section 3.3.2 accordingly:

wt-jvm-prog Γ Φ ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).
wt-method Γ C ′ mn ps rt mxs mxl ins et (Φ C ′ (mn,ps))) Γ
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3.3.4 Executable Bytecode Verifiers

Section 3.3.3 defined welltypings for µJava. This section shows how to instantiate the
two type inference algorithms of Section 2.4 and Section 2.5 to get executable bytecode
verifiers for µJava.

With the semilattice as defined in Section 3.3.1 and the transfer function of Section 3.3.2,
and still within the same method context as wt-method, we only need to provide the
correct start value to Kildall’s algorithm to get an executable BV:

wt-kil ≡ 0 < size ins ∧
(let s0 = Some ([],(OK (Class C ′))#(map OK ps)@(replicate mxl Err));

ϕ0 = OK s0 # (replicate (size ins − 1 ) (OK None))

in ∀n < size ins. (kildall ϕ0)!n 6= Err)

Position 0 in ϕ0 is the same as the start value in wt-start. Since we know nothing yet
about the positions greater than 0, we fill in the bottom element OK None for those.

Lifting to full programs and filling in the method context is the same as for wt-method :

wt-jvm-progk Γ ≡
wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)). wt-kil Γ C ′ mn ps rt mxs mxl ins et) Γ

This definition only gives us a working BV if step meets the conditions of Section 2.4.

Lemma 3.1 The transfer function step, built from app and eff as described in Sec-
tion 2.3.3 and Section 3.3.2, is monotone, bounded, and type preserving (w.r.t. states
and size ins).

Albeit large (a case distinction over the instruction set), the proof that step is monotone
and type preserving is easy and mostly automatic. That step is bounded is checked
explicitely by the app component of step.

Using Theorem 2.1, I have then proved the following:

Theorem 3.3 The executable BV is sound and recognizes all welltyped programs:

wt-jvm-progk Γ = (∃Φ. wt-jvm-prog Γ Φ)

To show that this verified BV is indeed executable, I have generated ML code from
wt-jvm-progk that verifies µJava bytecode programs.

The instantiation of the lightweight bytecode verifier is similar. Again we need to provide
it with the correct start value.
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wt-lbv :: state-type option err cert ⇒ bool

wt-lbv c ≡ check-cert (size ins) c ∧ 0 < size ins ∧
(let s0 = OK (Some ([],(OK (Class C ′))#(map OK ps)@(replicate mxl Err)))

in wtl c s0 6= Err)

check-cert :: nat ⇒ state-type option err cert ⇒ bool

check-cert n c ≡ c ∈ states ∧ size c = n+1 ∧ (∀ i<n. c!i 6= Err) ∧ c!n = OK None

The check-cert predicate ensures that the certificate is wellformed.

Certificates prog-cert = cname ⇒ sig ⇒ state-type option err cert are lifted to programs
the same way method types are. Lifting wt-lbv to programs and filling in the method
context is again standard:

wt-jvm-prog l :: jvm-prog ⇒ prog-cert ⇒ bool
wt-jvm-prog l Γ Cert ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).

wt-lbv Γ C ′ mn ps rt mxs mxl ins et (Cert C ′ (mn,ps))) Γ

Theorems 2.3 and 2.4, together with Lemma 3.1 and the semilattice construction in
Section 3.3.1, tell us that the LBV is sound and complete for this type system.

Theorem 3.4 If the LBV accepts a program, it is welltyped:

wt-jvm-prog l Γ Cert −→ (∃Φ. wt-jvm-prog Γ Φ)

Theorem 3.5 The LBV accepts every welltyped program:

wt-jvm-prog Γ Φ −→ wt-jvm-prog l Γ (mk-cert Φ)

The function mk-cert :: prog-type ⇒ prog-cert is the certificate as defined in Section 2.5.4
lifted to programs (for every C and sig, it selects the method type Φ C sig and, as in
Section 2.5.4, sets everything to OK None except jump targets).

As for wt-jvm-progk, I have generated ML code from wt-jvm-prog l, showing that the
LBV is fully executable.

3.4 Type Safety

This section is about the correctness, the type safety, of the welltyping specification
above. It is split into three parts: part one, Section 3.4.1, presents the theorem; part
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two, Section 3.4.2, shows the conformance relation on which the proof of the type safety
theorem builds; part three, Section 3.4.3, sketches the proof that conformance remains
invariant during execution.

3.4.1 The Theorem

This section presents the type safety theorem. It states that the bytecode verifier is
correct, that it guarantees safe execution. If the bytecode verifier succeeds and we start
the program Γ in its canonical start state (see Section 3.2.4), the defensive µJVM will
never return a type error. With Theorem 3.1, this implies that the checks of the defensive
machine are redundant and the aggressive machine can be used safely instead.

Theorem 3.6 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ ∧ (start Γ C )
djvm−→ τ −→ τ 6= TypeError

To prove this theorem, we set out from a program Γ for which the bytecode verifier
returns true, i.e., for which there is a Φ such that wt-jvm-prog Γ Φ holds. The proof
builds on the observation that all runtime states σ that conform to the types in Φ are
type safe. For σ conforms to Φ, I write Φ ⊢ σ

√
. For Φ ⊢ σ

√
to be true, the following

must hold: if in state σ execution is at position pc of method (C ,sig), then the state
type (Φ C sig)!pc must be of the form Some s, and for every value v on the stack or in
the register set the type of v must be a subtype of the corresponding entry in its static
counterpart s. Section 3.4.2 shows the complete formal definition of conformance. I
have proved that conformance is invariant during execution if the program is welltyped.
Section 3.4.3 sketches the proof.

Lemma 3.2 Conformance is invariant during execution in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

Lemma 3.2 is still not sufficient, though: it might be the case that start Γ C does not
conform to Φ. Lemma 3.3 states that this is not so.

Lemma 3.3 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ −→ Φ ⊢ (start Γ C )
√

Lemmas 3.2 and 3.3 together say that all states that occur in any execution of program
Γ conform to Φ if we start Γ in the canonical way.

The last step in the proof of Theorem 3.6 is Lemma 3.4.
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Lemma 3.4 An execution step started in a conformant state cannot produce a type
error in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ −→ exec-d (Normal σ) 6= TypeError

The proof of Lemma 3.4 is by case distinction on the current instruction in σ. Similar
to the proof of Lemma 3.2, the conformance relation together with the app part of
wt-jvm-prog ensures check-instr in exec-d returns true. Because we know that all states
during execution conform, we can conclude Theorem 3.6: there will be no type errors in
welltyped programs.

3.4.2 Conformance

This section shows the formal definition of the conformance relation between dynamic
JVM states and static types in the µJava model. For a simpler type system, it already
appeared in [60] and [68].

For the proof of the invariance lemma (Lemma 3.2) to go through, the intuitive notion
of conformance I have given above is not sufficient, the formal conformance relation
Φ ⊢ σ

√
is stronger. It describes in detail the states that can occur during execution,

the form of the heap, and the form of the method invocation stack.

I begin with the heap: a heap conforms if all objects conform. An object conforms if
all fields conform to their declared type. For the definition of single value conformance
hp ⊢ v ::� T see Section 3.2.4, p. 54.

lconf :: aheap ⇒ (α ⇒ val option) ⇒ (α ⇒ ty option) ⇒ bool

lconf hp vs Ts ≡ ∀n T . Ts n = Some T −→ (∃ v . vs n = Some v ∧ hp ⊢ v ::� T )

oconf :: aheap ⇒ obj ⇒ bool

oconf hp (C ,fs) ≡ lconf hp fs (map-of (fields (Γ,C )))

(-
√

) :: aheap ⇒ bool

hp
√ ≡ ∀ a obj . hp a = Some obj −→ oconf hp obj

This part of the conformance invariant ensures that instructions fetching from the heap
(like Getfield) can only put type conforming values on the stack. Note that I still treat
the program Γ as a global constant. In Isabelle, it is a parameter of the conformance
relation.

Single value conformance is lifted to register set and stack by approx-loc and approx-stk.
Any value conforms to the unusable type Err. This part of the conformance relation is
the most obvious: it directly connects the types in the BV with the values at runtime.
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approx-val :: aheap ⇒ val ⇒ init-ty err ⇒ bool

approx-val hp v any ≡ case any of Err ⇒ True | OK T ⇒ hp ⊢ v ::� T

approx-loc :: aheap ⇒ registers ⇒ ty err list ⇒ bool

approx-loc hp regs lt ≡ list-all2 (approx-val hp) regs lt

approx-stk :: aheap ⇒ opstack ⇒ ty list ⇒ bool

approx-stk hp stk st ≡ approx-loc hp stk (map OK st)

A call frame conforms if its stack and register set conform, if the program counter lies
inside the instruction list, and if the register set has space for the this pointer, the
method parameters, and the local variables:

correct-frame :: aheap ⇒ state-type ⇒ nat ⇒ instr list ⇒ frame ⇒ bool

correct-frame hp (st ,lt) mxl ins (stk ,loc,C ,sig ,pc) ≡
approx-stk hp stk st ∧ approx-loc hp loc lt ∧ pc < size ins ∧ size loc = 1+size (snd sig)+mxl

This is still not enough. For the Return instruction, we also need information about
the structure of the call frame stack. The predicate correct-frames below describes the
structure of the call frame stack beneath the topmost frame. The parameters rt0 and
sig0 are the return type and signature of the topmost frame.

correct-frames :: aheap ⇒ prog-type ⇒ ty ⇒ sig ⇒ frame list ⇒ bool

correct-frames hp Φ rt0 sig0 [] = True

correct-frames hp Φ rt0 sig0 (f #frs) = let (stk ,loc,C ,sig ,pc) = f ; (mn,ps) = sig0 in

∃ st lt rt mxs mxl ins et C ′. Φ C sig ! pc = Some (st ,lt) ∧ is-class Γ C ∧
method (Γ,C ) sig = Some(C ,rt ,(mxs,mxl ,ins,et)) ∧ ins!pc = Invoke C ′ mn ps ∧
(∃D ′ rt ′ b ′. method (Γ,C ′) sig0 = Some(D ′,rt ′,b ′) ∧ rt0 � rt ′) ∧
(∃ as t st ′. st = (rev as)@[t ]@st ′ ∧ size as = size ps) ∧
correct-frame hp (st ,lt) mxl ins f ∧ correct-frames hp Φ rt sig frs

In the definition above, a list of call frames conforms if it is empty. If it is not empty,
the head frame is investigated more closely: the state type Φ C sig ! pc for the current
instruction must denote a reachable instruction (= Some . . .); the call frame must belong
to a defined method; it must be halted at an Invoke instruction which created the call
frame above (this is not easily expressed, but we can demand that mn and ps stem from
sig0, that the return type of a static lookup on C ′ conforms to the one from the frame
above (rt0), and that the current stack is large enough to hold the actual parameters
plus the object on which the method was invoked); finally, the current frame and the rest
of the call frame stack must conform. Remember that in the definition of correct-frames
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above, the only data from the top frame is sig0 and rt0. In the f #frs case, the parameter
f is the frame below the top frame.

The following is the top level conformance relation between a state and a program type.
The first two cases are trivial, the third case requires a conformant heap (hp

√
), contains

special handling for the topmost call frame and delegates the rest to correct-frames. The
topmost frame is special because it does not need to be halted at an Invoke instruction.
The topmost frame must conform and the current state type must denote a reachable
instruction. The method lookup provides correct-frame and correct-frames with the
required parameters.

- ⊢ -
√

:: prog-type ⇒ jvm-state ⇒ bool

Φ ⊢ (Some xp, hp, frs)
√

= (frs = [])

Φ ⊢ (None, hp, [])
√

= True

Φ ⊢ (None, hp, f #fs)
√

= let (stk ,loc,C ,sig ,pc) = f in

∃ rt mxs mxl ins et s. method (Γ,C ) sig = Some(C ,rt ,(mxs,mxl ,ins,et)) ∧
Φ C sig ! pc = Some s ∧
correct-frame hp s mxl ins f ∧ correct-frames hp Φ rt sig fs ∧
hp

√ ∧ is-class Γ C ∧ preallocated hp

With preallocated hp, the invariant ensures that the special heap locations for system
exceptions are allocated with the corresponding system exception objects.

Figure 3.11 is a snapshot of the µJVM state in the middle of a typical program execution.
On the left there is the µJVM with its frame stack and heap, on the right there are the
method types the BV predicted for this program. The program declarations appear on
the lower right side in the static part.

The state on the left in Figure 3.11 conforms to the static type information on the right:
all objects in the heap conform, because the values of the field f (declared in class B)
are all of type Class A (Null is of type Class A, and the address Addr 0 points to an
object of Class B which is a subclass of Class A). All frames but the topmost one are
halted at the Invoke instruction that created the next frame. The dynamic operand
stacks conform to the static ones, because their length is the same and all values have
conforming type. The topmost frame conforms, too, because its pc points to a valid
instruction (Getfield f B), and the value on the dynamic operand stack is an address
that points to an object of class C.

3.4.3 Invariance Proof

This section sketches the proof of the invariance lemma:
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Figure 3.11: µJVM execution snapshot.
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wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

The proof of this central lemma is by induction over the length of the execution, and
by case distinction over the instruction set. For each instruction, we conclude from the
conformance of σ together with the app part of wt-jvm-prog that all assumptions of the
operational semantics are met (like ”the stack is not empty”). Then we execute the
instruction and observe that the new state τ conforms to the corresponding t in eff pc s.

The full Isabelle proof of the invariance lemma is about 1,600 lines (33 pages) long,
including lemmas about the conformance relation. This is too large to show here, but
since the structure of the proof is similar for each instruction, a typical example suffices:
below, I show the Isabelle/Isar proof for the New instruction.

We are in the step case of the induction, we have to show that conformance is invariant
if we make one single execution step, and we have made the case distinction on the
instruction set to get to the New instruction. The global assumption wt-jvm-prog Γ is
already decomposed into wf-prog wt Γ and wt-instr pc (Φ C ′ sig) (see Section 3.3.3). The
method context is determined by method (Γ,C ′) sig = Some (C ′,rt ,(mxs,mxl ,ins,et)),
the current state is (None, hp, (stk ,regs,C ′,sig ,pc)#frs), and assumption conf says that
it conforms to Φ. Assumption no-x says that in this one-step execution no exception
occurs (exceptions are handled in a separate lemma for all instructions at once).

lemma New-correct :

assumes wf : wf-prog wt Γ

assumes meth: method (Γ,C ′) sig = Some (C ′,rt ,(mxs,mxl ,ins,et))

assumes ins: ins!pc = New C

assumes wt : wt-instr pc (Φ C ′ sig)

assumes exec: Some τ = exec (Γ, None, hp, (stk ,regs,C ′,sig ,pc)#frs)

assumes conf : Φ ⊢ (None, hp, (stk ,regs,C ′,sig ,pc)#frs)
√

assumes no-x : fst (exec-instr (ins!pc) Γ hp stk regs C ′ sig pc frs) = None

shows Φ ⊢ τ
√

proof −

We begin the proof by decomposing the conformance relation Φ ⊢ . . .
√

of assumption
conf into its parts. Since we know the method context from meth, the only new variables
we get are st and lt, the static type information at Φ C ′ sig !pc:

from conf meth

obtain st lt where

heap-ok : hp
√

and prealloc: preallocated hp and

phi-pc: Φ C ′ sig !pc = Some (st ,lt) and is-class-C ′: is-class Γ C ′ and

frame: correct-frame hp (st ,lt) mxl ins (stk , regs, C ′, sig , pc) and
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frames: correct-frames hp Φ rt sig frs

by (auto simp add : correct-state-def iff del : not-None-eq)

With wt-instr, the BV gives us information about the effect of the instruction: New
pushes an object of class C onto the stack. The BV also ensures the applicability of
New in the current state: the stack has enough space, the new class C is declared in the
program and the program counter pc+1 is still safely within the method. Keep in mind
that ≤s is the semilattice order on state-type (without the option layer):

from phi-pc ins wt

obtain st ′ lt ′ where

is-class-C : is-class Γ C and mxs: size st < mxs and

suc-pc: pc+1 < size ins and phi-suc: Φ C ′ sig ! (pc+1 ) = Some (st ′, lt ′) and

less: (Class C # st , lt) ≤s (st ′, lt ′)

by (auto simp add : wt-instr-def eff-def norm-eff-def )

The next lines turn to the operational semantics, the dynamic side. They exploit the
fact that the execution step does not throw an exception, hence the new-Addr function
in the New rule of exec-instr must have returned an unused location in the heap.

obtain r xp ′ where new-Addr : new-Addr hp = (r ,xp ′) by (cases new-Addr hp)

with ins no-x obtain hp: hp r = None and xp ′ = None

by (auto dest : new-AddrD simp add : raise-system-xcpt-def )

With this, we can write down the state after execution of New :

with exec ins meth new-Addr

have τ = (None, hp(r 7→blank Γ C ), (Addr r # stk , regs, C ′, sig , pc+1 ) # frs)

(is τ = (None, ?hp ′, ?f # frs)) by simp

Now that we know what τ looks like, we can begin a moreover chain that collects the
parts we need to show Φ ⊢ τ

√
in the end.

moreover

Heap conformance is easy: a blank object only has default values in its fields that by
construction all conform to their declared types. Since the rest of the heap has not
changed, the new heap ?hp ′ conforms.

from wf hp heap-ok is-class-C have hp ′: ?hp ′ √

by (auto intro!: hconf-newref simp add : oconf-def dest : fields-is-type)

moreover

Adding a new object of course also leaves the heap preallocated with system exception
objects, if it was before.
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from hp prealloc have preallocated ?hp ′ by (rule preallocated-newref )

moreover {

The correct-frame predicate is more involved. We mainly need to show approx-stk
and approx-loc for the new state, the other two components we either already have
(pc+1 < size ins) or they follow directly from correct-frame for the current state
(size regs=1+size (snd sig)+mxl). We begin by decomposing correct-frame for the cur-
rent state:

from frame obtain

stk : approx-stk hp stk st and regs: approx-loc hp regs lt and

len: size regs = 1+size (snd sig)+mxl

by (clarsimp simp add : correct-frame-def )

We then note that extending the heap with a new object cannot influence the confor-
mance of objects in the old heap. I write hp ≤| hp ′ if all addresses in hp point to objects
of the same type as in hp ′. Formally:

hp≤|hp ′ ≡ ∀ a C fs. hp a = Some(C ,fs) −→ (∃ fs ′. hp ′ a = Some(C ,fs ′))

Since the registers have not changed, and lt ′ is even more general than lt, we can conclude
that approx-loc still holds:

from hp have sup: hp ≤| ?hp ′ by (rule hext-new)

with regs less wf have approx-loc ?hp ′ regs lt ′ by (auto intro: approx-loc-sup-heap)

moreover

The same line of thought applies to approx-stk. Here we first have to show that the new
value on the stack (the address pointing to the new object) conforms to the value the
BV predicted. Since it is a blank object of class C, this is easy.

have ?hp ′ ⊢ Addr r ::� Class C by (simp add : conf-def )

First lifting approx-stk to the new heap and then pushing the new values on both the
dynamic and static side leaves us with:

with sup stk have approx-stk ?hp ′ (Addr r # stk) (Class C # st)

by (auto intro: approx-stk-sup-heap)

The widening step to st ′ brings us

with less wf have approx-stk ?hp ′ (Addr r # stk) st ′ by auto

and together with approx-loc we can conclude correct-frame:
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ultimately

have correct-frame ?hp ′ (st ′,lt ′) mxl ins ?f using suc-pc len

by (clarsimp simp add : correct-frame-def )

}

Up to this point, we have collected information about τ , about the new heap, and
about correct-frame. We merely have correct-frames left, for which we repeat the rea-
soning from above: adding a new object to the heap does not change conformance of
old values. Lemma correct-frames-newref lifts this by induction on the frame stack to
correct-frames:

moreover

from hp frames wf heap-ok is-class-C

have correct-frames ?hp ′ Φ rt sig frs by (auto intro: correct-frames-newref )

All these taken together show Φ ⊢ τ
√

:

ultimately

show ?thesis using meth is-class-C ′ phi-suc by (simp add : correct-state-def )

qed

This concludes the proof of Lemma New-correct.

The full invariance proof has a lemma like this for each instruction. The most involved
ones are those for the Invoke and Return instructions, because these concern more than
one frame stack. As mentioned above, the exception case is handled in a separate lemma
for all instructions at once. It is subdivided into one case where the exception handler is
in the same method, and into another case where the frame stack is searched recursively.

The uppermost lemma collects the results of all lemmas for single instructions and for
the exception case, and performs the (trivial) induction on the execution sequence to
conclude Lemma 3.2: conformance is invariant during execution.

3.5 Conclusion

In Chapter 3, I have shown how to instantiate the framework of Chapter 2 with a first
simple type system for the µJVM. I have described in detail the formalization of the
µJVM, a small, but representative subset of the JVM with objects, inheritance, virtual
methods, and exception handling.

The type system is comparable to the one of Pusch [60, 68]. In addition, it supports
exception handling, is formulated in a more modular and intuitive way, and, due to the
abstract framework, gives rise not only to a description of welltyped programs, but to
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two different executable and verified bytecode verifiers (an iterative standard BV and a
lightweight BV).

Specifications of operational semantics and algorithms should be executable. For vali-
dating the µJVM specification and its executability, I have generated ML code (using [9])
for the operational semantics of the µJVM, and for both bytecode verifiers.

In comparison to Pusch’s theorem [68], the statement of the type safety theorem is
clearer. The defensive µJVM makes it easier to see what exactly type safety guarantees.
The proof internally still builds on an invariant argument. Because large parts of it
are written in Isabelle/Isar, it is now possible to read, understand, and reproduce the
argumentation in detail.

The complete µJava formalization with the type system for exception handling consists
of about 11,100 lines of Isabelle code (245 pages). This does not include the source
language.

The full specification and proofs are available as part of the Isabelle distribution [35]
and from the VerifiCard project web site [89].
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Constructors, a simple concept in the source language, initialize objects by
side effect. Java’s security architecture relies on constructors following a cer-
tain protocol in that process. In this chapter, I formalize and prove correct
a type system in the BV for object initialization. As the state of the initial-
ization protocol is not directly observable from types and values alone, this
complicates the JVM formalization moderately and the proof of type safety
significantly.

4.1 Introduction

With object initialization I address a particular feature of the Java bytecode verifier:
the test whether each new object is properly initialized before it is used. This not
only includes a guarantee that for each object its constructor is called before its fields or
methods are accessed, but also that each constructor calls the constructor of the object’s
superclass before it returns or begins with the rest of the initialization process.

Why care at all about object initialization? Object initialization is not necessary for
the type safety of the language, the default values of fields do nicely. After all, I have
just proved in Chapter 3 that µJava is type safe and there was no mention of object
initialization anywhere. The feature is interesting because large parts of Java’s security
mechanism depend on constructors being called before objects are used and on superclass
constructors being called before intialization commences in a constructor. In this way,
and together with access modifiers, secure, consistent object states can be guaranteed.

To make object initialization accessible to the type safety proof, I extend the operational
semantics by a safety automaton [79] that stores and checks the initialization status of
objects. If, for instance, a Getfield instruction accesses an uninitialized object, this
safety automaton will raise an alarm. The type safety theorem states that no such
alarms will be raised if the bytecode verifier accepts. The JVM specification is vague
on what exactly object initialization means for each particular instruction at runtime.
The defensive VM in this thesis makes this precise. If in doubt, I have used Sun’s
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pc instruction opstack (at runtime)

. . .
3 New A []
4 Dup [Addr 0 ]
5 New A [Addr 0 , Addr 0 ]
6 Dup [Addr 1 , Addr 0 , Addr 0 ]
7 LitPush Null [Addr 1 , Addr 1 , Addr 0 , Addr 0 ]
8 Invoke-spcl A (init , [Class A]) [Null , Addr 1 , Addr 1 , Addr 0 , Addr 0 ]
9 Invoke-spcl A (init , [Class A]) [Addr 1 , Addr 0 , Addr 0 ]

. . . [Addr 0 ]

Figure 4.1: Object creation and constructor call for new A(new A(null)).

implementation as reference or chosen to be more strict in the safety automaton or more
general in the BV than the JVM specification demands. The resulting BV accepts more
programs than the one in the JVM specification, and it guarantees properties as least
as strong as those required.

The JVM specification [51, pages 131–133] gives a short description of how to check for
proper object initialization in the BV. Figure 4.1 is a typical piece of bytecode for the
object creation/constructor call cycle as produced by common Java compilers for the
source language expression new A(new A(null)).

The instruction sequence first allocates space for the still uninitialized object, and then
duplicates the reference to that object (address 0 ) for the constructor call. This process
is repeated for the inner expression. After the constructors have been called, the result
of the expression—a reference to the newly created and initialized object—is on top of
the stack. In the process, two different uninitialized references to objects of class A have
been on the stack.

To deal with such situations, the JVM specification proposes to introduce two new
artificial types that mark not yet initialized values; I will call them UnInit and PartInit.

As the name suggests, UnInit stands for uninitialized, freshly created objects. The
reference on top of the stack after the first New A instruction would receive the type
UnInit A.

After the constructor has been called on that reference, the object is initialized and we
can replace UnInit A by the usual type Class A. However, as the JVM specification [51,
pages 132–133] points out, this is not sufficient:

The instruction number needs to be stored as part of the special type, as
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pc instruction stack

. . .
3 New A []
4 Dup [UnInit A 3 ]
5 New A [UnInit A 3 ,UnInit A 3 ]
6 Dup [UnInit A 5 ,UnInit A 3 ,UnInit A 3 ]
7 LitPush Null [UnInit A 5 ,UnInit A 5 ,UnInit A 3 ,UnInit A 3 ]
8 Invoke-spcl A (init , [Class A]) [NT ,UnInit A 5 ,UnInit A 5 ,UnInit A 3 ,UnInit A 3 ]
9 Invoke-spcl A (init , [Class A]) [Init A,UnInit A 3 ,UnInit A 3 ]

. . . [Init A]

Figure 4.2: A welltyping with object initialization.

there may be multiple not-yet-initialized instances of a class in existence on
the operand stack at one time. [. . .] When an instance initialization method
is invoked on a class instance, only those occurrences of the special type on
the operand stack or in the local variable array that are the same object as
the class instance are replaced.

By storing the program counter of the instruction that created the reference, we in
fact implement a simple alias analysis (more specifically, a must-alias analysis): the
type entry UnInit C pc keeps track of one specific value (the reference created by the
instruction New C at position pc).

The PartInit type is easier: it marks the type of local variable 0 (the this pointer) in
constructors. It can be replaced by the normal type of the class as soon as the superclass
constructor has been invoked.

Figure 4.2 shows the stack part of a welltyping for the instructions of Figure 4.1 in the
extended type system. Note how the types UnInit A 3 and UnInit A 5 keep track of
the references Addr 0 and Addr 1 created in lines 3 and 5. If there was only a simple
UnInit A type, we would not be able to decide which reference the first Invoke-spcl (at
pc = 8 ) initializes—all of them would have type UnInit A. We would mark all references
as initialized and would thus miss that the reference Addr 0 is not yet initialized at
program counter 9.

In order to include object initialization in the formalization, I extend the model of
Chapter 3 in four steps: Section 4.2 begins by introducing formally the new types
described above. Section 4.3 deals with the changes to the VM and the operational
semantics. Section 4.4 instantiates the BV for object initialization, and Section 4.5
relates VM and type system in the type safety theorem.
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Figure 4.3: Including object initialization: overview.

Figure 4.3 gives an overview of which Isabelle theories are affected by the move to object
initialization. The framework and program structure are unchanged. Although there is
merely one new theory (Init), most modules in the JVM and the BV instantiation have
undergone major changes (indicated by bold border).

4.2 Types

The following data type definition captures the intuition of Section 4.1 formally; the
constructor Init ty stands for the normal, initialized µJava types.
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datatype init-ty = Init ty | UnInit cname nat | PartInit cname

These initialization types are just an additional layer on top of the types ty of Chap-
ter 3. Everything below ty—reference types and primitive types—remains as defined in
Chapter 3.

The type system for initialization in the BV has init-ty entries on the stack and beneath
the OK/Err structure in the register set:

types state-type = init-ty list × init-ty err list

The JVM specification also requires the BV to check that the superclass constructor has
been called on all paths out of the constructor. To this end, we extend the state type
by a component of HOL type bool. It is set to True when the superclass constructor is
called and checked for in the Return instruction rule when we are verifying a constructor.
Since most of the typing rules remain the same as without the additional bool level, I
introduce a new state-bool :

types state-bool = state-type × bool

4.3 Operational Semantics

This section covers the changes to the µJVM that are needed to model constructor calls
and their handling in the BV. The organization of this section is canonical: it starts
out with the structure and state space of the new µJVM in Section 4.3.1; after that, it
extends first the aggressive machine in Section 4.3.2 and then the defensive machine in
Section 4.3.3.

4.3.1 Structure and State Space of the VM

What the µJVM of Chapter 3 lacks for object initialization are constructors. In the
real JVM, constructors are methods with a special name <init> and no return value.
Similarly, in µJava, constructors are ordinary methods with a special name init, but, like
any other method, they may have a return value (which I have ignored in Figure 4.2).

We also need a bytecode instruction to call constructors: Invoke-spcl. Similar to the
Invoke instruction, it has a class and a method signature as parameters. The method
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datatype instr =
Load nat load from register

| Store nat store into register
| LitPush val push a literal (constant)
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname
| Invoke cname mname (ty list) invoke instance method
| Invoke-spcl cname (ty list) invoke constructor
| Return return from method
| Dup duplicate top element
| Dup-x1 duplicate top element and push 2 values down
| IAdd integer addition
| Goto int goto relative address
| Ifcmpeq int branch if equal
| Throw throw exception

Figure 4.4: The bytecode instruction set with constructors.

name is fixed to init.1 In contrast to Invoke, it does not execute a virtual method call,
but a static one. Figure 4.4 shows the new instruction set.

Since we want to prove something about if and how far objects are initialized, we need to
observe the initialization status of individual objects. The current µJVM state does not
allow this: from heap, stack, and registers, we cannot get any information on whether
an object is initialized or not.

The standard solution for this kind of problem is a safety automaton [79]. If we view the
standard operational semantics as an automaton, the safety automaton is an automaton
that runs in parallel to the operational semantics. With each transition, it checks and
carries with it the safety critical information that cannot be observed directly from the
operational semantics alone.

For this safety automaton, I introduce a new, artificial component into the state: a
second heap, which mirrors the real one in structure, that stores the initialization status
using values of HOL type init-ty. Formally, the new component iheap is simply a function
from locations to init-ty :

types iheap = loc ⇒ init-ty

At this point, the class name parameter of PartInit comes into play: if an object gets the

1In the real JVM, Invoke-spcl is also used for calls to private and super methods and therefore has
the method name as an additional parameter.
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tag PartInit C, it means that the object is initialized up to class C in the class hierarchy,
or, more precisely, that the constructor of C ’s superclass must be called before the fields
of the object can be accessed.

As it is a safety automaton only, this new component of the µJVM state merely plays the
role of an auxiliary variable for the type safety proof and does not alter the observable
behaviour of the µJVM other than possibly raising an alarm.

Unfortunately, recording the initialization status of objects induces another problem: in
the type safety proof, we relied on a large invariant which requires that objects, once
allocated, do not change their type on the heap. All changes to the heap from hp to
hp ′ had to satisfy hp ≤| hp ′ for the invariant to be preserved (see also the example
for the New instruction in the type safety proof in Section 3.4.3, p. 74). Values may
change, of course, and new objects may be created, but the type information of existing
objects must not change. This will also apply to the new iheap component. On the other
hand, observing the changes during the lifetime of objects is the very purpose of iheap,
so we need to accommodate it somehow. I use the solution Freund proposes [26]: the
invariant may not allow type changes, but it does allow the creation of new objects. For
each constructor call I therefore create a new blank object that is a copy of the object
before, only the initialization status tag gets updated. When a constructor is finished,
it replaces the uninitialized reference in the calling method by the new, now initialized
object.

This sounds like a significant modification, but on closer inspection there is no obser-
vational difference in executions between creating new objects (and then discarding the
superfluous ones) and the standard semantics: the initialization process is basically a
chain of constructor calls along the class hierarchy. It is finished when the constructor
of class Object has been called. Before that, in between constructor calls, the object
is inaccessible. During the whole process, all fields retain their default value, and no
method other than the constructor can be invoked on it. Once the end of the chain
is reached with the constructor of class Object, the program can only work on the last
allocated object. Because each constructor replaces the object of the calling constructor,
all intermediate objects are discarded.

The solution outlined above does not impress by its beauty, but it seems to be the
only practical one for an invariant proof. Below, I finish the formal definition of the
new µJVM’s state space, give an example of a constructor call chain in Figure 4.5, and
discuss some alternatives to the solution presented here.

In order to replace the correct reference when a constructor is finished, we extend the
definition of frames from Section 3.2.2 by a pair of references. In this pair, we store the
reference the current constructor has been called to initialize and the reference to the
initialized object. Since there will be no initialized object in the beginning, we will store
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Figure 4.5: Constructor call chain, three stages.

Null in that case. To avoid annoying HOL type conversions, we work with values val
instead of references (although we will only be using addresses and Null). So frame is
now:

types frame = opstack × registers × cname × sig × nat × (val × val)

The definition of frame applies to all methods, but only constructors will use the ad-
ditional component, whereas all other methods will simply ignore it. Adding the iheap
extension, we finally get the new state space of the µJVM:

types jvm-state = xcpt option × aheap × iheap × frame list

Figure 4.5 illustrates the constructor call chain in three stages.

In stage one, on the left, method m in class X has created a new object of class A at
address 1 which the iheap tags as uninitialized. The constructors of class A and class
Object have been called, but they have not returned yet. Note that the reference update
pair this/final is not used in method m. For the constructor of class A, a new copy
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of the object has been created at address 2. The iheap tags it as PartInit A, because
we are in the A-constructor. The this component stores Addr 2. Even though this
information is usually also present in register 0, it is necessary to store it separately:
the program might overwrite register 0 and try to return without having called the
superclass constructor. The final component is not known yet and still set to Null. The
chain ends with the constructor of Object : the copy of the object that has been created
for the Object constructor (at address 3 ) is tagged as initialized.

In stage two, in the middle of Figure 4.5, the constructor of class Object has just returned.
The program counter of the A-constructor was incremented, the reference Addr 2 re-
placed by Addr 3, and Addr 3 was stored in the final component to indicate that this
is the initialized object. The A-constructor is now allowed to return normally. There
now exist no more references that point to the object at Addr 2. Note that the object
at Addr 1 cannot be changed either, because Addr 1 does not occur in the top frame.

In stage three, on the right of Figure 4.5, the constructor of class A has returned and the
initialization process is complete. The program counter of the frame for method m has
been increased by one, and the reference Addr 1 has been replaced by Addr 3 (pointing
to the now fully initialized object). Note that the A-constructor might already have
accessed fields and methods of the object between stages two and three. All references
to the objects at Addr 1 and Addr 2 have been deleted.

The new-objects-semantics of [26] which I use here deviates from the standard formula-
tion of the JVM semantics (although it is equivalent in observable behaviour), therefore
I explore some alternatives in the following.

We want the iheap to contain precise information about the initialization status. This
is its purpose in the safety automaton, so there is not much we can hope to change in
this respect.

An alternative would be for the invariant to allow the iheap to change in a controlled
way: a subtyping scheme in the invariant that would allow the same object to slowly
change its type from uninitialized to initialized. That, however, would not be enough. If
we only know that this subtyping invariant holds (and the BV accepted), we could not
conclude that the object has a specific initialization status at a certain position in the
program (which we need in the type safety proof to show that the safety automaton does
not raise an alarm). Depending on how we define this subtyping, the information would
either say the object is at most initialized up to some point, or it is at least initialized
up to some point. Neither is sufficient: for the Invoke-spcl instruction, we need to know
that the object is at most initialized up to some class A (because it is not allowed to call
a constructor on an initialized object), and for the Return instruction, it is necessary
that the object is at least initialized up to some A (because before that, a constructor
must not return normally).
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Since the new-objects-semantics of [26] is equivalent to the normal semantics, there must
exist an invariant that can cope with a changing iheap. And indeed, if the invariant varies
the constraints on the iheap relative to the current position in the frame stack, it might
be possible to succeed with it. For each frame, the invariant would count how many
frames above it initialize the same object (including a distinction if the frame already
has called the superclass constructor, waits for the superclass constructor to return, or
if the superclass constructor already has returned). Call that number of currently active
initializers n. Then the dynamic tag of the objects must be exactly n steps further up in
the initialization hierarchy than the statically predicted type. This would mean that the
conformance of each single frame depends on the state and conformance of a number of
other frames above it in a nontrivial manner. The relatively local statement that each
frame is halted at the Invoke instruction which created the frame directly above (see
also Section 3.4.2, p. 69) already lead to an involved definition. A global dependency
like that would complicate the invariant and the proof of type safety significantly.

The new-objects-semantics shifts some of the complexity of the invariant and the proof
to the operational semantics. The change in the semantics is not negligible, but the
standard semantics can easily be seen as an optimization of the new-objects-semantics.
As the invariant and the type safety proof are already quite involved in this simplified
version, the new-object-semantics seems to be the more practical approach. A formal
proof of equivalence between standard and new semantics would also involve an invariant,
but this invariant should be simpler than the one outlined above, because it does not
need to involve a static type system.

4.3.2 Aggressive Machine

This section describes the operational semantics of the µJVM with object initialization.

The only interesting changes (compared to Chapter 3) occur in the definition of exec-instr
in Figure 4.6, and the only interesting instructions there are New, Invoke-spcl, and
Return.

The definitions of exec and
jvm−→ remain the same, the only change is that exec passes

the new ihp and z parameters on to exec-instr.

The rules for the other instructions (apart from the three mentioned above) get two new
parameters, ihp for initialization status and z for the reference update in constructors,
but they simply pass them on. The rule for Load for instance looks like this:

exec-instr (Load idx ) hp ihp stk regs C ′ sig pc z frs =

(None, hp, ihp, ((regs ! idx ) # stk , regs, C ′, sig , pc+1 , z )#frs)
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exec-instr :: instr ⇒ aheap ⇒ iheap ⇒ opstack ⇒ registers ⇒ cname ⇒ sig ⇒ nat ⇒
val × val ⇒ frame list ⇒ jvm-state

exec-instr (Load idx ) hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, ((regs ! idx ) # stk , regs, C ′, sig , pc+1 , z )#frs)

exec-instr (Store idx ) hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (tl stk , regs[idx :=hd stk ], C ′, sig , pc+1 , z )#frs)

exec-instr (LitPush v) hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (v # stk , regs, C ′, sig , pc+1 , z )#frs)

exec-instr (New C ) hp ihp stk regs C ′ sig pc z frs =
let (ref ,xp ′) = new-Addr hp;

hp ′ = if xp ′=None then hp(ref 7→ blank Γ C ) else hp;
ihp ′ = if xp ′=None then ihp(ref := UnInit C pc) else ihp ′;
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, ihp ′, ((Addr ref ) # stk , regs, C ′, sig , pc ′, z )#frs)

exec-instr (Getfield F C ) hp ihp stk regs C ′ sig pc z frs =
let r = hd stk ;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;
(c,fs) = the(hp(the-Addr r));
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, ihp, (the(fs(F ,C ))#(tl stk), regs, C ′, sig , pc ′, z )#frs)

exec-instr (Putfield F C ) hp ihp stk regs C ′ sig pc z frs =
let (v ,r)= (hd stk , hd(tl stk));

xp ′ = raise-system-xcpt (r=Null) NullPointer ;
a = the-Addr r ;
(c,fs) = the (hp a);
hp ′ = if xp ′=None then hp(a 7→(c,fs((F ,C )7→v))) else hp;
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, (tl (tl stk), regs, C ′, sig , pc ′, z )#frs)

exec-instr (Checkcast C ) hp ihp stk regs C ′ sig pc z frs =
let r = hd stk ;

xp ′ = raise-system-xcpt (¬ cast-ok Γ C hp r) ClassCast ;
stk ′ = if xp ′=None then stk else tl stk ;
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, ihp, (stk ′, regs, C ′, sig , pc ′, z )#frs)

exec-instr (Invoke C mn ps) hp ihp stk regs C ′ sig pc z frs =
let n = size ps; args = take n stk ; r = stk !n;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;
dt = fst(the(hp(the-Addr r)));
(dc,-,-,mxl ,-)= the (method (Γ,dt) (mn,ps));
frs ′ = if xp ′6=None then [] else

[([],(rev args)@[r ]@replicate mxl arbitrary ,dc,(mn,ps),0 ,arbitrary)]
in (xp ′, hp, ihp, frs ′@(stk , regs, C ′, sig , pc, z )#frs)

Figure 4.6: Single step execution (part 1).
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exec-instr (Invoke-spcl C ps) hp ihp stk regs C ′ sig pc z frs =
let n = size ps; args = take n stk ; ref = stk !n;

x 1 = raise-xcpt (ref =Null) NullPointer ;
D = fst(the(hp (the-Addr ref )));
(dc, , , mxl , ) = the (method (Γ,C ) (init ,ps));
(a ′,x 2) = new-Addr hp;
xp ′= if x 1 = None then x 2 else x 1;
hp ′ = hp(a ′ 7→ blank Γ D);
T = if C = Object then Init (Class D) else PartInit C ;
z ′ = if C = Object then (Addr a ′, Addr a ′) else (Addr a ′, Null);
frs ′ = if xp ′6=None then [] else

[([],(Addr a ′)#(rev args)@(replicate mxl arbitrary),dc,(init ,ps),0 ,z ′)]
in (xp ′, hp ′, ihp(a ′:= T ), frs ′@(stk , regs, C ′, sig , pc, z )#frs)

exec-instr Return hp ihp stk0 regs C ′ sig0 pc z 0 frs =
if frs=[] then (None, hp, ihp, []) else
let (stk ,regs,C ,sig ,pc,z ) = hd frs;

v = hd stk0; (mn,ps) = sig0; (a,b) = z 0;
n = size ps; addr = stk !n;
drpstk = drop (n+1 ) stk ;
stk ′ = if mn=init then v#(replace addr b drpstk) else v#drpstk ;
regs ′ = if mn=init then replace addr b regs else regs;
z ′ = if mn=init ∧ z = (addr ,Null) then (addr ,b) else z

in (None, hp, ihp, (stk ′,regs ′,C ,sig ,pc+1 ,z ′)#tl frs)

exec-instr Pop hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (tl stk , regs, C ′, sig , pc+1 , z )#frs)

exec-instr Dup hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (hd stk # stk , regs, C ′, sig , pc+1 , z )#frs)

exec-instr Dup-x1 hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (hd stk#hd (tl stk)#hd stk#(tl (tl stk)), regs, C ′, sig , pc+1 , z )#frs)

exec-instr IAdd hp ihp stk regs C ′ sig pc z frs =
let (i1 ,i2 ) = (the-Intg (hd stk), the-Intg (hd (tl stk)))
in (None, hp, ihp, (Intg (i1+i2 )#(tl (tl stk)), regs, C ′, sig , pc+1 , z )#frs)

exec-instr (Ifcmpeq b) hp ihp stk regs C ′ sig pc z frs =
let (v1,v2) = (hd stk , hd (tl stk));

pc ′ = if v1 = v2 then nat(int pc+b) else pc+1
in (None, hp, ihp, (tl (tl stk), regs, C ′, sig , pc ′, z )#frs)

exec-instr (Goto b) hp ihp stk regs C ′ sig pc z frs =
(None, hp, ihp, (stk , regs, C ′, sig , nat(int pc+b), z )#frs)

exec-instr Throw hp ihp stk regs C ′ sig pc z frs =
let xp = raise-system-xcpt (hd stk = Null) NullPointer ;

xp ′ = if xp = None then Some (hd stk) else xp
in (xp ′, hp, ihp, (stk , regs, C ′, sig , pc, z )#frs)

Figure 4.7: Single step execution (part 2).
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For the New instruction, we have to record that freshly created objects are uninitialized.
Apart from that, everything remains the same (see also Section 3.2.3, p. 51):

exec-instr (New C ) hp ihp stk regs C ′ sig pc z frs =

let (ref ,xp ′) = new-Addr hp;

hp ′ = if xp ′=None then hp(ref 7→ blank Γ C ) else hp;

ihp ′ = if xp ′=None then ihp(ref := UnInit C pc) else ihp ′;

stk ′ = if xp ′=None then (Addr ref )#stk else stk

in (xp ′, hp ′, ihp ′, (stk ′, regs, C ′, sig , pc+1 , z )#frs)

The definition for Invoke-spcl is new:

exec-instr (Invoke-spcl C mn ps) hp ihp stk regs C ′ sig pc z frs =

let n = size ps;

args = take n stk ;

ref = stk !n;

x 1 = raise-xcpt (ref =Null) NullPointer ;

D = fst(the(hp the-Addr ref ));

(dc, , , mxl , ) = the (method (Γ,C ) (mn,ps));

(a ′,x 2) = new-Addr hp;

xp ′ = if x 1 = None then x 2 else x 1;

hp ′ = hp(a ′ 7→ blank Γ D);

T = if C = Object then Init (Class D) else PartInit C ;

z ′ = if C = Object then (Addr a ′, Addr a ′) else (Addr a ′, Null);

frs ′ = if xp ′6=None then [] else

[([],(Addr a ′)#(rev args)@(replicate mxl arbitrary),dc,(mn,ps),0 ,z ′)]

in (xp ′, hp ′, ihp(a ′:= T ), frs ′@(stk , regs, C ′, sig , pc, z )#frs)

The beginning is the same as in the normal Invoke: in args, we store the actual param-
eters of the constructor call. The reference on which to invoke the constructor is the
next element on the stack after the parameters. If it is Null, a NullPointer exception is
thrown. The rest is different: we retrieve the dynamic type D of the object the reference
ref points to and do a static method lookup with the parameters C (the class) and
ps (the list of parameter types) of the Invoke-spcl instruction. We then create a new
object: as in the New instruction, we request a free location, handle the OutOfMemory
exception (should one occur), and assign a blank object to the new address with the
same dynamic type as the one at ref (in effect, we copy the object at ref to the new
address Addr a ′).

Now to the new initialization status ihp(a ′:= T ): the new object gets the tag PartInit C ,
because the constructor for class C has just been invoked. The next constructor must
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be one in the superclass of C. If C has no superclass (if C = Object), we have reached
the end of the constructor chain and can tag the new object as initialized. After this,
its fields and methods are accessible.

The reference update pair z ′ in the constructor frame is new. It stores two components:
the this pointer of the new constructor, and the reference of the initialized object. The
initialized object will replace ref in the current frame when the constructor is finished.
The this pointer is the new Addr a ′. The initialized object we do not know yet, so we
set it to Null. Only if we have reached Object, we know that the newly created object is
also the final one that will replace all intermediate objects in the call chain. With these
values, we construct the call frame of the new constructor the same way the normal
Invoke does.

The Return instruction now also handles the reference update at constructor returns:

exec-instr Return hp ihp stk0 regs C ′ sig0 pc z 0 frs =

if frs=[] then (None, hp, ihp, []) else

let (stk ,loc,C ,sig ,pc,z ) = hd frs;

val = hd stk0;

(mn,ps) = sig0;

(a,b) = z 0;

n = size ps;

addr = stk !n;

drpstk = drop (n+1 ) stk ;

stk ′ = if mn=init then val#(replace addr b drpstk) else val#drpstk ;

loc ′ = if mn=init then replace addr b loc else loc;

z ′ = if mn=init ∧ z = (addr ,Null) then (addr ,b) else z

in (None, hp, ihp, (stk ′,loc ′,C ,sig ,pc+1 ,z ′)#tl frs))

Let’s first take another look at the parameters: stk0, sig0, and z 0 are the stack, the
signature, and the reference update pair of the current call frame. As in Section 3.2.3,
we extract the return value val, the name mn, and the list of formal parameter types ps
of the method we are currently executing. We then drop the actual parameters from the
stack in the caller frame. If the current frame does not belong to a constructor (if mn 6=
init), we simply put the return value on top of the stack in the caller frame and are done.
If we are returning from a constructor, however, we use replace to substitute the now
initialized object b (the second component of the reference update pair) for the address
of the original object addr (see also the example in Figure 4.5, p. 84). This replacement
must occur everywhere on the stack and in the register set of the caller frame to delete
all references to the original object. If the caller frame belongs to a constructor that is
initializing the same object as we are, we also have to modify the second component of
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its reference update pair z to the now initialized object b.

4.3.3 Defensive Machine

As in the aggressive machine, check, exec-d , and
djvm−→ remain the same; they merely pass

on the new components ihp and z that are used in check-instr.

Figure 4.8 shows the new definition of check-instr. It implements the checking part of
the safety automaton: for each object access, apart from constructor calls, it requires
that the object is tagged as initialized. This concerns the Getfield, Putfield, Checkcast,
Invoke, and Throw instructions. For Invoke, it additionally checks if all parameters are
initialized.

As the Invoke-spcl instruction is new, we will take a closer look at it:

check-instr (Invoke-spcl C ps) hp ihp stk regs Cl sig pc z frs =
size ps < size stk ∧
(let n = size ps; v = stk !n in is-Ref v ∧
(v 6= Null −→ hp (the-Addr v) 6= None ∧ method (Γ,C ) (init ,ps) 6= None ∧

fst (the (method (Γ,C ) (init ,ps))) = C ∧
list-all2 (λv T . hp ⊢ v ::� T ∧ is-init hp ihp v) (rev (take n stk)) ps) ∧
(case ihp (the-Addr v) of Init T ⇒ False

| UnInit C ′ pc ′ ⇒ C ′ = C

| PartInit C ′ ⇒ C ′ = Cl ∧ (C ′,C ) ∈ subcls Γ))

Most of it is again the same as Invoke: the stack must contain initialized parameters of
the correct type (the list-all2 line) and it must contain the object reference on which
to invoke the constructor. Contrary to Invoke, the constructor that is called must be
defined exactly in the class the instruction statically assumes, and not in a subclass.
Finally, the object itself must not be tagged as initialized. For uninitialized tags, the
tag must match the constructor to be called: if the tag is UnInit C ′ pc, we must call
the constructor of class C ′; for classes that are tagged as partly initialized up to C ′, we
must call the superclass constructor of C ′.

For the Return instruction, check-instr in Figure 4.9 now requires that the return value
be initialized. The last line in the Return rule is new:

(fst sig0 = init −→ snd z 0 6= Null ∧ is-Ref (snd z 0) ∧ is-init hp ihp (snd z 0))

It means that, if Return is leaving a constructor, the reference that is passed up the
constructor chain (snd z 0) points to an initialized object.
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check-instr :: instr ⇒ aheap ⇒ iheap ⇒ opstack ⇒ registers ⇒ cname ⇒ sig ⇒ nat ⇒
val × val ⇒ frame list ⇒ bool

check-instr (Load idx ) hp ihp stk regs Cl sig pc z frs = idx < size regs

check-instr (Store idx ) hp ihp stk regs Cl sig pc z frs = 0 < size stk ∧ idx < size regs

check-instr (LitPush v) hp ihp stk regs Cl sig pc z frs = ¬is-Addr v

check-instr (New C ) hp ihp stk regs Cl sig pc z frs = is-class Γ C

check-instr (Getfield F C ) hp ihp stk regs Cl sig pc z frs =
0 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′,T ) = the (field (Γ,C ) F ); v = hd stk

in C ′ = C ∧ is-Ref v ∧
(v 6= Null −→ hp (the-Addr v) 6= None ∧ is-init hp ihp v ∧

(let (D ,fs) = the (hp (the-Addr v))

in (D ,C ) ∈ (subcls Γ)∗ ∧ fs (F ,C ) 6= None ∧ hp ⊢ the (fs (F ,C )) ::� T )))

check-instr (Putfield F C ) hp ihp stk regs Cl sig pc z frs =
1 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′, T ) = the (field (Γ,C ) F ); v = hd stk ; v = hd (tl stk) in

C ′ = C ∧ is-init hp ihp v ∧ is-Ref v ∧
(v 6= Null −→ hp (the-Addr v) 6= None ∧ is-init hp ihp v ∧

(let (D ,fs) = the (hp (the-Addr v)) in (D ,C ) ∈ (subcls Γ)∗ ∧ hp ⊢ v ::� T )))

check-instr (Checkcast C ) hp ihp stk regs Cl sig pc z frs =

0 < size stk ∧ is-class Γ C ∧ is-Ref (hd stk) ∧ is-init hp ihp (hd stk)

check-instr (Invoke C mn ps) hp ihp stk regs Cl sig pc z frs =
size ps < size stk ∧ mn 6= init ∧
(let n = size ps; v = stk !n in is-Ref v ∧
(v 6= Null −→ hp (the-Addr v) 6= None ∧ is-init hp ihp v ∧

method (Γ,cname-of hp v) (mn,ps) 6= None ∧
list-all2 (λv T . hp ⊢ v ::� T ∧ is-init hp ihp v) (rev (take n stk)) ps))

check-instr (Invoke-spcl C ps) hp ihp stk regs Cl sig pc z frs =
size ps < size stk ∧
(let n = size ps; v = stk !n in is-Ref v ∧
(v 6= Null −→ hp (the-Addr v) 6= None ∧ method (Γ,C ) (init ,ps) 6= None ∧

fst (the (method (Γ,C ) (init ,ps))) = C ∧
list-all2 (λv T . hp ⊢ v ::� T ∧ is-init hp ihp v) (rev (take n stk)) ps) ∧
(case ihp (the-Addr v) of Init T ⇒ False

| UnInit C ′ pc ′ ⇒ C ′ = C

| PartInit C ′ ⇒ C ′ = Cl ∧ (C ′,C ) ∈ subcls Γ))

Figure 4.8: The defensive µJVM with initialization checks (part 1).
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check-instr Return hp ihp stk0 regs Cl sig0 pc z 0 frs =
0 < size stk0 ∧
(0 < size frs −→ method (Γ,Cl) sig0 6= None ∧

(let v = hd stk0; (C ,rt ,b) = the (method (Γ,Cl) sig0)

in Cl = C ∧ hp ⊢ v ::� rt ∧ is-init hp ihp v) ∧
(fst sig0 = init −→ snd z 0 6= Null ∧ is-Ref (snd z 0) ∧ is-init hp ihp (snd z 0)))

check-instr Pop hp ihp stk regs Cl sig pc z frs = 0 < size stk

check-instr Dup hp ihp stk regs Cl sig pc z frs = 0 < size stk

check-instr Dup-x1 hp ihp stk regs Cl sig pc z frs = 1 < size stk

check-instr IAdd hp ihp stk regs Cl sig pc z frs = 1 < size stk ∧ is-Intg (hd stk) ∧
is-Intg (hd (tl stk))

check-instr (Ifcmpeq b) hp ihp stk regs Cl sig pc z frs = 1 < size stk ∧ 0 ≤ int pc+b

check-instr (Goto b) hp ihp stk regs Cl sig pc z frs = 0 ≤ int pc+b

check-instr Throw hp ihp stk regs Cl sig pc z frs = 0 < size stk ∧ is-Ref (hd stk) ∧
is-init hp ihp (hd stk)

Figure 4.9: The defensive µJVM with initialization checks (part 2).

The canonical start state now includes an otherwise undefined iheap which marks the
preallocated system exception objects as initialized. The information on which addresses
are allocated for objects is already encoded in the normal heap. The reference update
pair in the call frame is only used in constructors. Since the main method is a normal
method, we can use a default value arbitrary :

start :: jvm-prog ⇒ cname ⇒ jvm-state type-error

start Γ C ≡ let (-,-,-,mxl ,-,-) = the (method (Γ,C ) (main,[]));

regs = Null # replicate mxl arbitrary

in Normal (None, start-hp Γ, start-ihp Γ, [([], regs, C , (main,[]), 0 , arbitrary)])

Theorem 3.1, which states that defensive and aggressive VM commute if there are no
type errors, also holds for the new VM:

Theorem 4.1 One-step execution in aggressive and defensive machines commutes if
there are no type errors.

exec-d (Normal s) 6= TypeError −→ exec-d (Normal s) = Normal (exec s)

This concludes the formalization of the µJVM with object initialization.
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4.4 Bytecode Verification

The new types for object initialization are already defined in Section 4.2, so we now only
have to turn them into a semilattice (Section 4.4.1) and change the transfer function
accordingly to instantiate the BV framework (Section 4.4.2). The instantiation again
results in two executable bytecode verifiers in Section 4.4.3.

4.4.1 The Semilattice

The ordering of the semilattice is canonical: PartInit and UnInit are only related to
themselves, for Init t we use the old �. Formally:

Init t1 �i Init t2 = t1 � t2

a �i b = (a = b)

The carrier set is constructed easily and the supremum operation again follows the
ordering canonically:

init-tys ≡ {Init x |x . x ∈ (types Γ)} ∪ {x . ∃C n. x = UnInit C n} ∪
{x . ∃C . x = PartInit C}

sup (Init t1) (Init t2) = case JType.sup t1 t2 of
Err ⇒ Err | OK x ⇒ OK (Init x )

sup a b = if a = b then OK a else Err

With this, we can define Init .esl ≡ (init-tys, �i, sup) to be the err-semilattice for init-ty
and arrive at:

Lemma 4.1 If Γ is well structured, then Init .esl is an err-semilattice and its order
satisfies the ascending chain condition.

The proof builds on Theorem 3.2. The new initialiaztion layer adds case distinctions for
init-ty on top.

If we repeat the construction from Section 3.3, we get:

stk-esl :: nat ⇒ ty list esl reg-sl :: nat ⇒ ty err list sl

stk-esl mxs ≡ upto-esl mxs (Init .esl) reg-sl mxr ≡ Listn.sl mxr (Err .sl (Init .esl))

sl :: nat ⇒ nat ⇒ state-bool option err sl

sl mxs mxr ≡ Err .sl(Opt .esl(Product .esl (Product .esl

(stk-esl mxs) (Err .esl(reg-sl mxr))) (Triv .esl ::bool esl)))
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where Triv .esl ::bool is the trivial err-semilattice with = as ordering applied to type bool.

Lemma 4.2 If Γ is well structured, then sl is a semilattice and its order satisfies the
ascending chain condition.

The proof uses Lemmas 2.1 to 2.9 from the framework as in Section 3.3.1.

With this, the semilattice construction is complete.

4.4.2 Applicability and Effect

The second ingredient to the BV is the transfer function. In Figures 4.10 and 4.12, I
define app ′ and eff ′ for the new type system. As before, they do not involve the bool
and option component yet, and they are defined in the same method context as the one
in Chapter 3:

Γ :: program the program,
C ′ :: cname the class the method we are verifying is declared in,
mxs :: nat maximum stack size of the method,
mxr :: nat size of the register set,
mpc :: nat maximum program counter,
rt :: ty return type of the method,
et :: ex-table exception handler table of the method.

Compared to the original version in Figures 3.8 (p. 61) and 3.10 (p. 63), both definitions
have become a bit larger, but remained the same in structure. Both are again subdivided
into one case for exceptional and one case for normal execution.

I begin with the normal, non-exception case of applicability. The definition of app ′

in Figure 4.10 is large, but compared to Figure 3.8 the changes are few: Load, Store,
LitPush, Dup and Goto are the same. Getfield, Putfield, Checkcast, IAdd, Ifcmpeq,
Throw, and Return restrict their arguments to initialized types.

For the New instruction, app ′ now additionally checks that UnInit C pc is not part of
the stack to make sure that the type UnInit C pc is not assigned to two different objects:

app ′ (New C , pc, (st ,lt)) = is-class Γ C ∧ size st < mxs ∧ UnInit C pc /∈ set st

Note that app ′ does not test the register set for UnInit C pc as Freund’s type system [26,
27] does. If it did, the transfer function would not be monotone: raising the type in a
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app ′ :: instr × nat × state-type ⇒ bool

app ′ (Load idx , pc, (st ,lt)) = idx < lt ∧ lt !idx 6= Err ∧
size st < mxs

app ′ (Store idx , pc, (t#st ,lt)) = idx < size lt

app ′ (LitPush v , pc, (st ,lt)) = size st < mxs ∧ typeof v 6= None

app ′ (Getfield F C , pc, (t#st ,lt)) = is-class Γ C ∧ t �i Init (Class C ) ∧
(∃ t ′. field (Γ,C ) F = Some (C , t ′))

app ′ (Putfield F C , pc, (t1#t2#st ,lt)) = is-class Γ C ∧
(∃ t ′. field (Γ,C ) F = Some (C ,t ′) ∧
t2 �i Init (Class C ) ∧ t1 �i Init t ′)

app ′ (New C , pc, (st ,lt)) = is-class Γ C ∧ size st < mxs ∧
UnInit C pc /∈ set st

app ′ (Checkcast C , pc, (t#st ,lt)) = is-class Γ C ∧ (∃ r . t = Init (RefT r))

app ′ (Dup, pc, (t#st ,lt)) = 1+size st < mxs

app ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = 2+size st < mxs

app ′ (IAdd , pc, (t1#t2#st ,lt)) = t1 = t2 ∧ t1 = Init (PrimT Integer)

app ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = t1 = t2 ∨ (∃ r r ′. t1 = Init (RefT r) ∧
t2 = Init (RefT r ′))

app ′ (Goto b, pc, s) = True

app ′ (Return, pc, (t#st ,lt)) = t �i Init rt

app ′ (Throw , pc, (t#st ,lt)) = ∃ r . t = Init (RefT r)

app ′ (Invoke C mn ps, pc, (st ,lt)) = size ps < size st ∧ mn 6= init ∧
method (Γ,C ) (mn,ps) 6= None ∧
let as = rev (take (size ps) st);

t = st !size ps

in t �i Init (Class C ) ∧ is-class Γ C ∧
(∀ (a,f )∈set(zip as ps). a �i Init f )

app ′ (Invoke-spcl C ps, pc, (st ,lt)) = size ps < size st ∧
(∃ r . method (Γ,C ) (init ,ps) = Some (C ,r)) ∧
let as = rev (take (size ps) st);

t = st !size ps

in is-class Γ C ∧
((∃ pc. t = UnInit C pc) ∨
t = PartInit C ′ ∧ (C ′,C ) ∈ subcls Γ) ∧
(∀ (a,f )∈set(zip as ps). a �i (Init f ))

app ′ (i , pc, s) = False

Figure 4.10: Applicability of instructions with object initialization.
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register from UnInit C pc to Err might make the instruction applicable and would lower
the type of the result of step from Err to something different. Here, the eff ′ function
below will take care of the register set. Sun’s JVM specification solves the problem
by disallowing all backwards jumps as long as there is any UnInit type anywhere on
the stack or in the register set. This is correct, but somewhat drastic: although the
restriction is not severe for programming in Java, it rejects an unnecessarily large number
of type safe programs. At the same time it is hard to reason about, because it makes
assumptions about the data flow analysis itself, and not only about properties of the
resulting welltyping.

Normal method invocation in app ′ is restricted to initialized objects (for the parameters
as well as for the object on which to invoke the method). Additionally, the method must
not be a constructor.

Finally, there is the new rule for Invoke-spcl :

app ′ (Invoke-spcl C ps, pc, (st ,lt)) = size ps < size st ∧
(∃ r . method (Γ,C ) (init ,ps) = Some (C ,r)) ∧
let as = rev (take (size ps) st);

t = st !size ps

in is-class Γ C ∧
((∃ pc. t = UnInit C pc) ∨
t = PartInit C ′ ∧ (C ′,C ) ∈ subcls Γ) ∧
(∀ (a,f )∈set(zip as ps). a �i (Init f ))

It is similar to Invoke. Since it is supposed to be a static method invocation, the method
dictionary method must yield an entry telling us that the method is defined in class C
(and not in a superclass of C ). The rule ensures that the type t of the object on which
to invoke the constructor is either completely uninitialized, or partly initialized. If it is
uninitialized, it must be of type UnInit C pc (for some pc)—only then are we allowed to
invoke the C constructor. If it is partly initialized, it must be of type PartInit C ′ (C ′

is the class we are currently verifying). This is because, if it is partly initialized, we are
verifying a constructor (only there may partly initialized objects occur), and it must be
initialized up to exactly C ′, because for any class D the type PartInit D may only occur
in D constructors. The only thing a constructor may do with partly initialized objects
is invoke the superclass constructor on them—so C must be the direct superclass of C ′.
The JVM specification also allows to call another constructor of the same class, not only
one of the superclass. In practice, this is convenient, in the formalization it would just
add one more uninteresting case (where C=C ′) to all proofs about Invoke-spcl.

This concludes the normal, non-exception case of app. The exception case is canonical,
in xcpt-names (Figure 4.11) Invoke-spcl is treated like Invoke:
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xcpt-names :: instr × nat × ex-table ⇒ cname list

xcpt-names (Getfield F C , pc, et) = match NullPointer pc et

xcpt-names (Putfield F C , pc, et) = match NullPointer pc et

xcpt-names (New C , pc, et) = match OutOfMemory pc et

xcpt-names (Checkcast C , pc, et) = match ClassCast pc et

xcpt-names (Throw , pc, et) = match-any pc et

xcpt-names (Invoke C m p, pc, et) = match-any pc et

xcpt-names (Invoke-spcl C p, pc, et) = match-any pc et

xcpt-names (i , pc, et) = []

Figure 4.11: Exception names with Invoke-spcl.

xcpt-app :: instr ⇒ nat ⇒ bool

xcpt-app i pc ≡ ∀C∈set(xcpt-names (i ,pc,et)). is-class Γ C

In order to build the final applicability function app, we have to lift app ′ to the bool
component and to the option type: for None, we again get True, for Some first app ′,
xcpt-app, and the code boundary check must be satisfied, then we have two additional
conditions on the superclass-constructor-has-been-called marker z :

app :: instr ⇒ nat ⇒ state-bool option ⇒ bool

app i pc s ≡ case s of None ⇒ True | Some t ⇒
let ((st ,lt),z ) = t in

app ′ (i ,pc,(st ,lt)) ∧ xcpt-app i pc ∧ (∀ (pc ′,s ′)∈set (eff i pc s). pc ′<mpc) ∧
(mn = init −→

(i = Return −→ z ) ∧ (∀C p. i = Invoke-spcl C p ∧ st !size p = PartInit C ′ −→ ¬z ))

If we are verifying a constructor (mn = init), then at each Return instruction the marker
must be True, and at each Invoke-spcl for partly initialized objects the marker must be
False (because we must call the superclass constructor only once).

In eff ′ (Figure 4.12), the instructions Load, Store, Putfield, Ifcmpeq, Goto, Return, and
Dup remain unchanged; the instructions LitPush, Getfield, Checkcast, IAdd, and Invoke
now explicitly yield initialized values. The instructions Invoke-spcl and New are more
interesting.

Invoke-spcl is similar to Invoke, but it can only be used on uninitialized references (which
is checked in app). After the constructor returns normally, the reference will be fully
initialized, so the Invoke-spcl rule replaces the uninitialized type t with an initialized one
of the same class (theClass :: ini-ty ⇒ ty satisfies theClass (PartInit C ) = Class C and

98



4.4 Bytecode Verification

eff ′ :: instr × nat × state-type ⇒ state-type

eff ′ (Load idx , pc, (st , lt)) = (ok-val (lt !idx )#st , lt)

eff ′ (Store idx , pc, (t#st , lt)) = (st , lt [idx := OK t ])

eff ′ (LitPush v , pc, (st , lt)) = (Init (the (typeof v))#st , lt)

eff ′ (Getfield F C , pc, (t#st , lt)) = (Init (snd (the (field (Γ,C ) F )))#st ,lt)

eff ′ (Putfield F C , pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (New C , pc, (st ,lt)) = (UnInit C pc#st , replace (OK (UnInit C pc)) Err lt)

eff ′ (Checkcast C , pc, (t#st ,lt)) = (Init (Class C ) # st ,lt)

eff ′ (Dup, pc, (t#st ,lt)) = (t#t#st ,lt)

eff ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = (t1#t2#t1#st ,lt)

eff ′ (IAdd , pc, (t1#t2#st ,lt)) = (Init (PrimT Integer)#st ,lt)

eff ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (Goto b, pc, s) = s

eff ′ (Invoke C mn ps, pc, (st ,lt)) = let st ′ = drop (1+size ps) st ;

( ,rt , , , ) = the (method (Γ,C ) (mn,ps))

in (Init rt#st ′, lt)

eff ′ (Invoke-spcl C ps, pc, (st ,lt)) = let t = st !size ps; i = Init (theClass t);

st ′′ = drop (1+size ps) st ;

st ′ = replace t i st ′′;

lt ′ = replace (OK t) (OK i) lt ;

( ,rt , , , ) = the (method (Γ,C ) (init ,ps))

in (Init rt#st ′, lt ′)

Figure 4.12: Effect of instructions on the state type with object initialization.

theClass (UnInit C pc) = Class C ). As in the operational semantics, the replacement
happens everywhere in the stack and registers.

The New instruction seems easy at first: if a New C is at position pc, it produces the
type UnInit C pc.

The rule in Figure 4.12 does more: for the alias analysis to be correct, there must not
be any former instances of the type UnInit C pc with the same pc on the stack or in the
registers. The replace in eff ′ takes care of the register set while the check for UnInit C pc
in app ′ takes care of the stack.

This is also the solution used by Stärk et al. [83]; it yields a monotone transfer function,
admits more programs than Freund’s rule, and is still safe. In fact, here replace is the
identity function, because the first path to New in the data flow analysis cannot contain
UnInit C pc (because only the instruction at pc creates the type UnInit C pc). A merge
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with subsequent paths that might contain UnInit C pc would already yield Err without
replace. This fact is difficult to prove formally, because it again involves reasoning about
the data flow analysis (paths); just looking at the welltyping is not enough.

It remains to lift eff ′ to state-bool and then further to state-bool option. The purpose of
the bool part in the state type is to mark whether a constructor has already called its
superclass constructor. We set it to True when we call Invoke-spcl for a partly initialized
type (app checks that it is the superclass constructor), otherwise we leave it untouched:

eff-bool :: instr ⇒ nat ⇒ state-bool ⇒ state-bool

eff-bool i pc ((st ,lt),z ) ≡
(eff ′ (i ,pc,(st ,lt)), if ∃C p D . i = Invoke-spcl C p ∧ st !size p = PartInit D then True else z )

norm-eff :: instr ⇒ nat ⇒ state-bool option ⇒ state-bool option

norm-eff i pc ≡ option-map (eff-bool i pc)

This concludes the case for normal execution. Exceptional execution may assume that
the exception object is initialized; the superclass-marker z is merely passed through.
Other than that, it remains the same:

xcpt-eff :: instr ⇒ nat ⇒ state-type option ⇒ (nat×state-type option) list

xcpt-eff i (s,z ) ≡ let t = λC . option-map (λ(st ,lt). (([Init (Class C )],lt),z )) s;

pc ′ = λC . the (match-ex-table C pc et)

in map (λC . (pc ′ C , t C )) (xcpt-names (i ,pc,et))

Note that constructors that do not return normally (but by an exception) are accounted
for: the (due to the exception) not fully initialized object will not be used, because the
stack is cleared and the registers remain unchanged. They still contain the uninitialized
type, because there is no replacement with Init.

The definition of succs is the same as in Section 3.3.2; Invoke-spcl is caught by the fall
back clause pc+1. If we apply norm-eff to every successor instruction pc ′ and append
the effect for the exception case, we arrive at the final effect function eff :

eff :: instr ⇒ nat ⇒ state-bool option ⇒ (nat × state-bool option) list

eff i pc s ≡ (map (λpc ′. (pc ′, norm-eff i pc s)) (succs i pc)) @ (xcpt-eff i pc s)

4.4.3 Executable Bytecode Verifiers

The definition of welltypings wt-method, which serves as the basis for the type safety
proof and the executable bytecode verifiers, remains unchanged, only wt-start has to
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be adjusted. The changes to wt-method take place in the underlying semilattice and
transfer function.

wt-start ϕ ≡ let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = Some (([],t#(map (OK ◦ Init) ps)@(replicate mxl Err)),C ′=Object);

in s0 ≤ ′ ϕ!0

wt-method ϕ ≡ 0 < mpc ∧ map OK ϕ ∈ states ∧ wt-start ϕ ∧ wt-app-eff ϕ

In the definition of wt-start, the this pointer t (register 0 ) is more complicated than
before: if we verify a constructor (and if it is not the constructor of class Object), then
the this pointer is only partly initialized yet—the superclass constructor has to be called
before it can be used. Otherwise, if it is a normal method or if it is class Object, we
may assume that this points to an initialized object. There is only one new thing in the
rest of the start value: we may also assume that the parameters only contain initialized
values. As in Chapter 3, the ≤ ′ :: state-bool option ord is the semilattice order on the
option level, and states is the carrier set of the semilattice.

Lifting to programs and filling in the method context is unchanged:

wt-jvm-prog Γ Φ ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).
wt-method Γ C ′ mn ps rt mxs mxl ins et (Φ C ′ (mn,ps))) Γ

The instantiation of Kildall’s algorithm is standard; we just use the new start value
instead of the old one:

wt-kil ≡ 0 < size ins ∧
let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = Some (([],t#(map (OK ◦ Init) ps)@(replicate mxl Err)),C ′=Object);

ϕ0 = (OK S 0)#(replicate (size ins−1 ) (OK None))

in ∀n < size ins. (kiljvm ϕ0)!n 6= Err

wt-jvm-progk Γ ≡
wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)). wt-kil Γ C ′ mn ps rt mxs mxl ins et) Γ

By case distinction over the instruction set we get:

Lemma 4.3 The transfer function step, built from app and eff as described in Sec-
tion 2.3.3 and Section 4.4.2, is monotone, bounded, and type preserving (w.r.t. states
and size ins).
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With Theorem 2.1 follows soundness and completeness.

Theorem 4.2 The executable BV is sound and recognizes all welltyped programs:

wt-jvm-progk Γ = (∃Φ. wt-jvm-prog Γ Φ)

The lightweight bytecode verifier is straightforward, too:

wt-lbv :: state-type option err cert ⇒ bool

wt-lbv c ≡ check-cert (size ins) c ∧ 0 < size ins ∧
let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = OK (Some (([],t#(map (OK◦Init) ps)@(replicate mxl Err)),C ′=Object));

in wtl c s0 6= Err)

wt-jvm-prog l :: jvm-prog ⇒ prog-cert ⇒ bool

wt-jvm-prog l Γ Cert ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).

wt-lbv Γ C ′ mn ps rt mxs mxl ins et (Cert C ′ (mn,ps))) Γ

As before, the check-cert predicate ensures that the certificate is wellformed.

Theorems 2.3 and 2.4, together with Lemma 4.3 and the semilattice construction in
Section 4.4.1, give us that the LBV is sound and complete for this type system.

Theorem 4.3 If the LBV accepts a program, it is welltyped:

wt-jvm-prog l Γ Cert −→ (∃Φ. wt-jvm-prog Γ Φ)

Theorem 4.4 The LBV accepts every welltyped program:

wt-jvm-prog Γ Φ −→ wt-jvm-prog l Γ (mk-cert Φ)

The function mk-cert :: prog-type ⇒ prog-cert is the certificate as defined in Section 2.5.4
lifted to programs.

For both wt-jvm-progk and wt-jvm-prog l, I have generated ML code, showing that they
are fully executable.

4.5 Type Safety

This section relates the type system discussed above with the operational semantics and
its safety automaton for object initialization: Section 4.5.1 states the correctness theorem
for the type system with object initialization. Section 4.5.2 shows the conformance
relation on which the proof builds.
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4.5.1 The Theorem

This section presents the type safety theorem. Because the defensive machine now in-
cludes the safety automaton for object initialization, it not only implies that the bytecode
verifier guarantees type safe execution, but also that all objects are properly initialized.
If the bytecode verifier succeeds and we start the program Γ in its canonical start state
(see Section 4.3.3), the defensive µJVM will never return a type error. With Theo-
rem 4.1, this again implies that the checks of the defensive machine are redundant and
the aggressive machine can be used safely instead.

The theorem itself is the same as before:

Theorem 4.5 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ ∧ (start Γ C )
djvm−→ τ −→ τ 6= TypeError

The proof remains the same in structure; it again uses an invariant argument with a
new conformance relation Φ ⊢ σ

√
(to be defined in Section 4.5.2):

Lemma 4.4 Conformance is invariant during execution in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

Together with conformance of the start state

Lemma 4.5 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ −→ Φ ⊢ (start Γ C )
√

and the absence of type errors in conformant states

Lemma 4.6 An execution step started in a conformant state cannot produce a type
error in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ −→ exec-d (Normal σ) 6= TypeError

we can conclude Theorem 4.5: there will be no type errors in welltyped programs and
all objects are initialized before they are used.

The Isabelle proof of this theorem is about 4,400 lines2 long (not counting lemmas about
the type system) and consists mainly of a large case distinction over the instruction set

2The numbers differ from [39] because the type system here additionally includes exceptions and a
defensive machine.
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together with a wealth of lemmas about the invariant. The same proof without object
initialization only took about 2,000 lines. Of these 2,000 lines about 1,500 could be
replayed after slight adjustments. The reusable part consisted of lemmas about the
invariant (more specifically about its individual parts) and of the general structure of
the type safety proof. The detailed reasoning for individual instructions had to be
changed due to the stronger properties to be proved. The additional work is mostly
due to the new parts of the invariant, adding not only to size but also to complexity.
Especially the alias analysis predicate consistent-init (see below) causes an increase in
proof size: since it is designed to keep track of single values, each kind of instruction
required its own set of lemmas (which was not necessary for the rest of the invariant).

Freund presents a similar proof of type safety in his PhD thesis [26]. While Freund’s
model as a whole is sound and at least the theorems I have looked at more closely all
hold, it still contains some subtle problems (like the non-monotonicity of the typing rule
for New) as well as small errors in the proofs (for instance, an incomplete case distinction
in Lemma D.16.16). These are precisely the human errors that are to be expected in a
large and complex formal development and that are addressed by theorem provers like
Isabelle.

4.5.2 Conformance

This section shows the full definition of the conformance relation Φ ⊢ σ
√

used above in
Lemma 4.4:

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

To conclude Lemma 4.6 (that there will be no type error in conformant states), the
invariant should ensure that runtime types are approximated correctly by the static
welltyping. With object initialization, we also want the new iheap component of the
µJVM state to agree with the initialization status the BV predicts.

As in Section 3.4, we need to strengthen these goals for the proof to succeed. In the
previous sections, we extended the µJVM model by three things: the new types UnInit
and PartInit, the iheap, and the reference updates at constructor returns (because we
create a new object at each constructor call). The conformance relation describes the
purpose of these extensions formally. Apart from the relation of the iheap to the statically
predicted initialization status, this is captured by the following two properties:

• The alias analysis that the BV does on uninitialized values must be correct. We
created the type UnInit C pc to keep track of a single value: the reference to the
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object that was freshly created by the instruction New C at address pc. The type
PartInit C, too, is intended to keep track of a single value, namely the this pointer
in constructors. The predicate consistent-init stk regs s ihp (see below) states that
each type UnInit C pc and PartInit C in a state type s refers to at most one value
in stack and registers.

• The BV and the operational semantics must agree on the new objects that are
created for constructor calls and on the reference update that we perform at con-
structor returns. The former is part of correct-frame, the latter is described by
constructor-ok below.

The formal definitions of these additional properties are hard to read and understand,
but it is not necessary to understand them in detail in order to trust the proof. The
conformance relation is an intermediate proof device, the correctness theorem itself only
states the absence of type errors, which is easy to grasp. Since the proof is mechanically
checked in Isabelle (and also human readable for later inspection), it is immaterial how
large and complex the proof and its intermediate constructions are, as long as the final
result is clear.

Even though the conformance relation is not important for the final result, it is of course
essential to carry out the proof. The challenge lies in finding a conformance relation that
is invariant during execution, that is strong enough to imply the absence of type errors,
and that holds in the start state. Below, I show its formal definition.

The basic building block is still the single value conformance hp ⊢ v ::� T of Section 3.2.4
(p. 54). We extend it to take the new iheap and init-ty into account by declaring single
value conformance with initialization hp,ih ⊢ v ::�i T :

hp,ih ⊢ v ::�i T ≡
case T of Init t ⇒ hp ⊢ v ::� t ∧ is-init hp ih v

| UnInit C pc ⇒ hp ⊢ v ::� Class C ∧
typeof hp v = Some C ∧ tag ih v = Some T

| PartInit C ⇒ hp ⊢ v ::� Class C ∧ tag ih v = Some T

For initialized types, we just use the existing ::�, and require with is-init that the value
is initialized. For UnInit C pc and PartInit C, we require that v approximates the type
Class C, and that the iheap agrees with the predicted type (tag ih v returns Some T
if the value v is an address tagged with type T in ih). In the UnInit case, we can be
more precise: since UnInit C pc is only used for freshly created objects, we know that
the static type is exact. The definition of is-init hp ih v is a case distinction: either the
value is an address, or it is not an address. If it is not an address, it is initialized. If it is
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an address that does not point to an object, we also treat it as initialized. Note that the
definition of ::� ensures that this case does not occur. Finally, if the value is an address
that points to an object, the iheap ih must contain a tag Init t for it.

tag :: iheap ⇒ val ⇒ init-ty option

tag ih v ≡ if ∃ l . v = Addr l then Some (ih (the-Addr v)) else None

is-init :: aheap ⇒ iheap ⇒ val ⇒ bool

is-init hp ih v ≡ ∀ loc. v = Addr loc −→ hp loc 6= None −→ (∃ t . ih loc = Init t)

Using ::�i we can now define what it means for a welltyping of stack and registers to
approximate a concrete stack and concrete registers:

approx-val :: aheap ⇒ iheap ⇒ val ⇒ init-ty err ⇒ bool

approx-val hp ih v any ≡ case any of Err ⇒ True | OK T ⇒ hp,ih ⊢ v ::�i T

approx-loc :: aheap ⇒ iheap ⇒ registers ⇒ ty err list ⇒ bool

approx-loc hp ih regs lt ≡ list-all2 (approx-val hp ih) regs lt

approx-stk :: aheap ⇒ iheap ⇒ opstack ⇒ ty list ⇒ bool

approx-stk hp ih stk st ≡ approx-loc hp ih stk (map OK st)

In Section 3.4.2, the invariant correct-state implied that the heap is consistent, that all
objects on the heap only have fields according to their declared type. Now we also need
h-init hp ihp to say that the fields of all objects contain fully initialized values. It has
the same structure as hp

√
in Section 3.4.2: in h-init, we say that for each object that

is defined in the heap hp and each field f of these objects, is-init hp ihp f must hold:

l-init :: aheap ⇒ iheap ⇒ (α ⇒ val option) ⇒ (α ⇒ ty option) ⇒ bool

l-init hp ih vs Ts ≡ ∀n T . Ts n = Some T −→ (∃ v . vs n = Some v ∧ is-init hp ih v)

o-init :: aheap ⇒ iheap ⇒ obj ⇒ bool

o-init hp ih (C ,fs) ≡ l-init hp ih fs (map-of (fields (Γ,C )))

h-init :: aheap ⇒ iheap ⇒ bool

h-init hp ih ≡ ∀ a obj . hp a = Some obj −→ o-init hp ih obj

The next component of the conformance relation concerns the alias analysis on unini-
tialized objects. This part closely follows the description in [26].

The basic idea of consistent-init is: if the static registers or the stack (on the type
level) contain two equal type entries UnInit C pc, then the corresponding entries in the
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dynamic registers and stack (on the value level) must contain the same value. Otherwise
the BV might mistakenly mark uninitialized values as initialized at Invoke-spcl. The
other direction does not need to hold: if two values are equal, they do not need to
have the same type (one could be UnInit C pc the other Err). We also require that all
uninitialized values are tagged correctly in the ihp.

corr-regs :: registers ⇒ ty err list ⇒ iheap ⇒ val ⇒ init-ty ⇒ bool

corr-regs regs lt ihp v T ≡
list-all2 (λl t . t = OK T −→ l = v ∧ tag ihp v = Some T ) regs lt

corr-stk :: opstack ⇒ ty list ⇒ iheap ⇒ val ⇒ init-ty ⇒ bool

corr-stk stk st ihp v T ≡ corr-regs stk (map OK st) ihp v T

corresponds :: opstack ⇒ registers ⇒ state-type ⇒ iheap ⇒ val ⇒ init-ty ⇒ bool

corresponds stk regs s ihp v T ≡
corr-stk stk (fst s) ihp v T ∧ corr-regs regs (snd s) ihp v T

consistent-init :: opstack ⇒ registers ⇒ state-type ⇒ iheap ⇒ bool

consistent-init stk regs s ihp ≡
(∀C pc. ∃ v . corresponds stk regs s ihp v (UnInit C pc) ) ∧
(∀C . ∃ v . corresponds stk regs s ihp v (PartInit C ) )

With these definitions, we can define conformance of call frames as follows: stack and
registers conform, the alias analysis is correct, the type PartInit is only used for the
this pointer in constructors, the this pointer in constructors is tagged correctly, the pc
is inside the method, and the size of the register set is correct:

correct-frame :: aheap ⇒ iheap ⇒ state-type ⇒ nat ⇒ instr list ⇒ frame ⇒ bool

correct-frame hp ihp (st ,lt) mxl ins (stk ,regs,C ,sig ,pc,(this,c)) ≡
approx-stk hp ihp stk st ∧ approx-loc hp ihp regs lt ∧
consistent-init stk regs (st ,lt) ihp ∧
(fst sig = init −→ corresponds stk regs (st ,lt) ihp this (PartInit C ) ∧

(∃C ′. typeof hp this = Some C ′ ∧
tag ihp this ∈ {Some (PartInit C ), Some (Init (Class C ′))})) ∧

pc < size ins ∧ size regs = 1+size(snd sig)+mxl

The predicate constructor-ok describes the stored references in constructor call chains.
However, it does not describe the situation completely. Only if we take into account
that the program is welltyped, that app holds for every instruction, do we get the whole
picture. To achieve this, constructor-ok relates the following three references:
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• The this pointer a of the calling constructor (of frame n). This is the reference
originally to be initialized. Since at that point the initialization process cannot be
complete, it must have the iheap tag UnInit or PartInit.

• The this pointer b of the current constructor (of frame n+1). This is the reference
to the object that was artificially created for the constructor call. It is one step
further in the initialization chain and must therefore be tagged with PartInit or
Init (Init only if we have reached the end of the chain and arrived at Object).
We require that if the tag is PartInit then it must be PartInit C (where C is the
current class), and if it is some Init (Class D), then D from the iheap must be
equal to the dynamic type C ′ from the heap.

The fact that b is exactly one step further in the initialization chain and that it
is only fully initialized if the current class is Object can be inferred from app and
the start value of the BV.

• The reference c to the fully initialized object. It will be passed up along the ini-
tialization chain by the Return instructions in constructors (see also the semantics
of the Return instruction in Section 4.3). The reference can be Null when the
superclass constructor has not been called yet. More specifically, it will be Null
precisely as long as the superclass-constructor-has-been-called marker z of the BV
is false. If it is not Null then it must point to an initialized object of type C ′.

All three references have to agree on the dynamic type C ′ of the object (since it is the
same object copied around). Formally, this lengthy text reads as:

constructor-ok :: aheap ⇒ iheap ⇒ val ⇒ cname ⇒ bool ⇒ val × val ⇒ bool

constructor-ok hp ih a C z (b, c) ≡
∃C ′ D pc. z = (c 6=Null) ∧

typeof hp a = Some C ′ ∧ typeof hp b = Some C ′ ∧
(c 6=Null −→ typeof hp c = Some C ′) ∧
tag ih a ∈ {Some (UnInit C ′ pc), Some (PartInit D)} ∧
tag ih b ∈ {Some (PartInit C ), Some (Init (Class C ′))} ∧
(c 6=Null −→ tag ih c = Some (Init (Class C ′)))

The rest of the invariant proceeds as in Section 3.4.2, we merely have to insert the
predicate constructor-ok and to adjust for Invoke-spcl. The parameters rt0, sig0, z 0,
and r0 stem from the call frame above the current f :
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correct-frames :: aheap ⇒ iheap ⇒ prog-type ⇒ ty ⇒ sig ⇒ bool ⇒ val × val

⇒ frame list ⇒ bool

correct-frames hp ihp Φ rt0 sig0 z 0 r0 [] = True

correct-frames hp ihp Φ rt0 sig0 z 0 r0 (f #frs) = let (stk ,regs,C ,sig ,pc,r) = f ; (mn,ps) = sig0

in ∃ st lt z rt mxs mxl ins et C ′.

Φ C sig ! pc = Some ((st ,lt),z ) ∧ is-class Γ C ∧
method (Γ,C ) sig = Some(C ,rt ,mxs,mxl ,ins,et) ∧
ins!pc ∈ {Invoke C ′ mn ps, Invoke-spcl C ′ mn ps} ∧
(∃D ′ rt ′ b ′. method (Γ,C ′) sig0 = Some(D ′,rt ′,b ′) ∧ rt0 � rt ′) ∧
(∃ as t st ′. st = (rev as)@[t ]@st ′ ∧ size as = size ps) ∧
(mn = init −→ constructor-ok hp ihp (stk !size ps) C ′ z 0 r0) ∧
correct-frame hp ihp (st ,lt) mxl ins f ∧ correct-frames hp ihp Φ rt sig z r frs

To the toplevel conformance predicate we add the new h-init and change preallocated
to additionally check that the system exception objects are initialized; the rest of the
definition is the same as in Section 3.4.2:

- ⊢ -
√

:: prog-type ⇒ jvm-state ⇒ bool

Φ ⊢ (Some xp, hp, ihp, frs)
√

= (frs=[])

Φ ⊢ (None, hp, ihp, [])
√

= True

Φ ⊢ (None, hp, ihp, f #fs)
√

= let (stk ,regs,C ,sig ,pc,r) = f in

∃ rt mxs mxl ins et s z . method (Γ,C ) sig = Some(C ,rt ,mxs,mxl ,ins,et) ∧
Φ C sig ! pc = Some (s,z ) ∧
correct-frame hp ihp s mxl ins f ∧
correct-frames hp ihp Φ rt sig z r fs ∧
Γ ⊢h hp

√ ∧ h-init hp ihp ∧ is-class Γ C ∧ preallocated hp ihp

4.6 Conclusion

I have presented and proved correct a type system for object initialization in the µJVM.
It is important to note that the the type system here also includes safe exception han-
dling. Other formalizations [24, 27] suggest that this is not a trivial matter, as there
might be unintended interactions between exception handling and object initialization.
In this type system, there was no such problem. Chapter 5 will show that this re-
mains the case even if we include bytecode subroutines which are used to implement the
finally clause of exception handlers in the source language.

A simpler version of a type system for object initialization in µJava, without exception
handling, has appeared in [39].
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Although the structure of the formalization and the instantiation process remain the
same (compared to Chapter 3), the type safety proof is considerably larger and more
complex. Due to the modularity and consequently high reusability of the framework
approach, the amount of work to define the type system and derive both executable
bytecode verifiers from it was small. The proof of type safety constituted the main
workload.

The complete µJava formalization with the type system for object initialization and
exception handling consists of about 14,300 lines of Isabelle code (303 pages). Again, as
in Chapter 3, this does not include the source language.

The full specification and Isabelle proofs for this type system are available from the
VerifiCard project web site [89].
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Bytecode subroutines are a major complication for Java bytecode verification:
they are difficult to fit into the data flow analysis that the JVM specification
suggests. Hence, subroutines are left out or are restricted in most formal-
izations of the bytecode verifier. In this chapter, I extend the JVM by sub-
routines and formalize an expressive, set based type system for the BV that
supports subroutines in a simple and elegant way.

5.1 Introduction

The relatively simple concept of procedures in the bytecode language does not seem to fit
nicely into the standard data flow analysis approach to bytecode verification. Bytecode
subroutines are the center of numerous publications, the cause of bugs in the bytecode
verifier, and they even have been banished completely from the bytecode language by
Sun in the KVM [88], a JVM for embedded devices.

Publications about subroutines range from describing them as a pain that is best gotten
rid of [25] to proposing complex solutions of the problem [26]. Many formalizations of
the JVM ignore the Jsr/Ret instructions altogether [10, 27, 68], offer only restricted
versions of it [6, 26, 47, 83], or do not take exception handling and object initialization
into account [16, 84].

Subroutines can be seen as procedures on the bytecode level. If the same sequence of
instructions occurs more than once in a bytecode program, the compiler can put this
common code into a subroutine and call it at the desired positions. This is mainly used
for the finally construct of Java: the finally code must be executed on every possible
way out of the block protected by try (see Figure 5.1 for an example). In contrast to
method calls, subroutines share the frame with their caller and hence manipulate the
same register set and operand stack.

Two bytecode instructions, namely Jsr b and Ret x , handle subroutine calls and re-
turns. The Jsr b instruction pushes the return address (the current program counter
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✲

instruction stack registers source

0 LitPush 5 ( [], [Err , Err , Err ] )

int m() {

int i=5;

try {

if (i!=0) {

return i;

}

int j=7;

return j;

}

finally {

if (i!=1) i=3;

}

}

1 Store 0 ( [Int ], [Err , Err , Err ] )

2 Load 0 ( [], [Int , Err , Err ] )

3 LitPush 0 ( [Int ], [Int , Err , Err ] )

4 Ifcmpeq +4 ( [Int , Int ], [Int , Err , Err ] )

5 Jsr +8 ( [], [Int , Err , Err ] )

6 Load 0 ( [], [Int , Err , Err ] )

7 Return ( [Int ], [Int , Err , Err ] )

8 LitPush 7 ( [], [Int , Err , Err ] )

9 Store 1 ( [Int ], [Int , Err , Err ] )

10 Jsr +3 ( [], [Int , Int , Err ] )

11 Load 1 ( [], [Int , Err , Err ] )

12 Return ( [Err ], [Int , Err , Err ] )

13 Store 2 ( [RA], [Int , Int⊔Err , Err ] )

14 Load 0 ( [], [Int , Err , RA] )

15 LitPush 1 ( [Int ], [Int , Err , RA] )

16 Ifcmpeq +3 ( [Int , Int ], [Int , Err , RA] )

17 LitPush 3 ( [], [Int , Err , RA] )

18 Store 0 ( [Int ], [Int , Err , RA] )

19 Ret 2 ( [], [Int , Err , RA] )

Figure 5.1: Bytecode with subroutine.

incremented by 1 ) onto the stack and branches control to address pc+b. For example,
the program in Figure 5.1 contains a subroutine which starts at address 13 and is called
from addresses 5 and 10. Address 13 is called the entry point, addresses 5 and 10 the
call points, and 6 and 11 the return points of the subroutine. The Ret x instruction
returns from a subroutine: it jumps to the return address stored in the register with
index x (x is a number). This means the return address pushed onto the stack by Jsr
needs to be transferred to a register first. Therefore, the instruction at the subroutine
entry point usually is a Store x.

A bytecode verifier checking code with subroutines faces the following problems.

Successors of Ret After the BV has analyzed an instruction, it has to compute its suc-
cessors in order to propagate the resulting state type and to continue analysis. The
successors of Ret x instructions are hard to determine, because return addresses
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are values and not accessible on the type level. For example, in Figure 5.1 at
address 19, the BV must find out that the return address RA stored in register 2
refers to the return points 6 and 11.

Polymorphism on registers Subroutines usually have multiple call points, whose regis-
ters may each carry values of different types. One should expect that registers not
used inside the subroutine have the same type before and after the subroutine’s
execution. Figure 5.1 shows that at the entry point, address 13, the BV merges
the types Int and Err to their least common supertype (Err). However, if we do
that we lose information about the register’s original types. If the BV propagates
the merged type back to each return point, some programs will not be accepted,
because they expect the original, more specific type. For example, bytecode verifi-
cation would fail at address 11 in Figure 5.1, because the instruction there expects
the original Int from address 10 in register 1. These subroutines are called poly-
morphic over unused registers. Although rare in practice, subroutines could also
be polymorphic over used registers. For example, consider a subroutine that copies
an array of references irrespective of its element types.

Subroutine boundaries In Java, bytecode subroutines are not syntactically delimited
from their surrounding code. The compilation of the Java source language con-
struct break, for instance, is an ordinary jump instruction that can also be used
to terminate a subroutine. Hence it is difficult to determine which instructions
belong to a subroutine and which do not.

Subroutine nesting Subroutines may be nested: a subroutine may call a further sub-
routine, and so on. This nesting contributes to the difficulty of determining return
points statically. When the BV encounters a Ret x instruction, it must find out
which of the currently active subroutines is returning. Furthermore, it may be a
multilevel return: a return not to the subroutine’s caller, but to its caller’s caller or
even further up in the subroutine call stack. The restrictions on nested subroutines
differ widely in the literature. The JVM specification [51] only forbids recursive
subroutines. Other publications [84] demand a strict LIFO order for nested subrou-
tines. Yet other publications [26] are less restrictive and allow multilevel returns,
or they do not constrain the call order at all [16].

Of the approaches in the literature, Freund’s [26] seems to be the closest approximation
of the JVM specification [51]. Type checking and type inference, however, are rather
complicated in this three-step approach that determines the subroutine structure ex-
plicitly, searches for unused registers, and finally performs the data flow analysis. The
type checking rules in the polyvariant approach of Leroy [47] are simpler and accept
more type safe programs, but they, too, require the data flow analysis to be modified.
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The polyvariant analysis in [47] is equivalent to first expanding (and thus eliminating)
subroutines and then performing standard bytecode verification. Wildmoser’s survey of
the literature on bytecode subroutines [93] concludes that the type system of Coglio [16]
is the most general one (it accepts the largest possible number of programs). It also
fits nicely into the data flow framework: Coglio’s idea is to use type sets and set union
instead of single types and type merges. As Leroy points out in a later article [50], the
data flow analysis in this approach in fact implements a model checker on state types.
This is not surprising: data flow analysis in general can be seen as model checking of ab-
stract interpretations [78]. The difference between this and using an off-the-shelf model
checker, as in [8, 67], is that the explicit data flow analysis is much more lightweight
(because there is no translation of the typing rules into temporal logic involved), and it is
easier to optimize, as Leroy [50] shows. Whereas the polyvariant approach [47] analyzes
each subroutine call history separately, the set approach [16] analyzes all subroutine call
histories at the same time.

In this set approach [16], state types are not single types, but rather whole sets of
what in the other approaches is the state type. If a program address i is reachable
under two different type configurations (st ,lt) and (st ′,lt ′), the BV assigns the state type
{(st ,lt),(st ′,lt ′)}, a set, to i rather than the single, merged (st ⊔ st ′, lt ⊔ lt ′).

Joining type sets instead of merging types is more precise. Since the original type
information is not lost, polymorphism on registers is not a problem anymore. Due to
the absence of type merges, we can lift return addresses into the type system: RA r
denotes the return address r. This makes it possible to compute the successors of Ret x
instructions and to propagate only the relevant types to these successors.

Figure 5.2 shows a welltyping for the program of Figure 5.1. For instance, the Ret 2 in-
struction at address 19 with state type {([], [Int , Int , RA 11 ]), ([], [Int , Err , RA 6 ])}
propagates {([], [Int , Int , RA 11 ])} to address 11 and {([], [Int , Err , RA 6 ])} to ad-
dress 6. This models the machine behaviour precisely.

The bytecode language on which Coglio defines the set approach [15, 16] is tailored
to subroutines alone, and therefore extremely simple. It does not even contain classes
and objects, and types are restricted to integers, floats, and return addresses. In the
following, I will show that this approach scales to the representative subset of Java
bytecode that I have built up in Chapters 3 and 4.

Section 5.2 introduces the values and type of return addresses into µJava. Section 5.3
shows the operational semantics of the new instructions Jsr and Ret. Section 5.4 defines
a new semilattice and transfer function for the new type system, and instantiates the BV
framework once more. Section 5.5 proves that the type system with exception handling,
object initialization, and subroutines is sound.
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✲

instruction state type

0 LitPush 5 {( [], [Err , Err , Err ] )}
1 Store 0 {( [Int ], [Err , Err , Err ] )}
2 Load 0 {( [], [Int , Err , Err ] )}
3 LitPush 0 {( [Int ], [Int , Err , Err ] )}
4 Ifcmpeq +4 {( [Int , Int ], [Int , Err , Err ] )}
5 Jsr +8 {( [], [Int , Err , Err ] )}
6 Load 0 {( [], [Int , Err , RA 6 ] )}
7 Return {( [Int ], [Int , Err , RA 6 ] )}
8 LitPush 7 {( [], [Int , Err , Err ] )}
9 Store 1 {( [Int ], [Int , Err , Err ] )}

10 Jsr +3 {( [], [Int , Int , Err ] )}
11 Load 1 {( [], [Int , Int , RA 11 ] )}
12 Return {( [Int ], [Int , Int , RA 11 ] )}
13 Store 2 {( [RA 11 ], [Int , Int , Err ] ), ( [RA 6 ], [Err , Int , Err ] )}
14 Load 0 {( [], [Int , Int , RA 11 ] ), ( [], [Int , Err , RA 6 ] )}
15 LitPush 1 {( [Int ], [Int , Int , RA 11 ] ), ( [Int ], [Int , Err , RA 6 ] )}
16 Ifcmpeq +3 {( [Int , Int ], [Int , Int , RA 11 ] ), ( [Int , Int ], [Int , Err , RA 6 ] )}
17 LitPush 3 {( [], [Int , Int , RA 11 ] ), ( [], [Int , Err , RA 6 ] )}
18 Store 0 {( [Int ], [Int , Int , RA 11 ] ), ( [Int ], [Int , Err , RA 6 ] )}
19 Ret 2 {( [], [Int , Int , RA 11 ] ), ( [], [Int , Err , RA 6 ] )}

Figure 5.2: Welltyping for a subroutine.

Figure 5.3 gives an overview of which theories changed. Contrary to object initialization
in Chapter 4, most of these changes make the formalization simpler.

5.2 Types and Values

The following data type definition replaces ty of Chapters 3 and 4. It introduces the
return address RetA nat as a primitive type into the µJava type system.

datatype prim-ty = Void | Boolean | Integer | RetA nat

datatype ref-ty = NullT | ClassT cname

datatype ty = PrimT prim-ty | RefT ref-ty
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Figure 5.3: Including subroutines: overview.

In addition to the abbreviations NT and Class C, I introduce RA pc to denote the return
address pc:

translations NT ⇀↽ RefT NullT

Class C ⇀↽ RefT (ClassT C )

RA pc ⇀↽ PrimT (RetA pc)

The function is-RA T used below is true iff T is a return address.

The types for object initialization on top remain the same:

datatype init-ty = Init ty | UnInit cname nat | PartInit cname
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Return addresses are only to be used inside methods, not across method boundaries, so
we also modify the definition of wellformed programs of Section 3.2.1: field and method
declarations should not mention return addresses:

wf-fdecl :: γ prog ⇒ fdecl ⇒ bool

wf-fdecl Γ (fn,ft) ≡ is-type Γ ft ∧ ¬is-RA ft

wf-mhead :: γ prog ⇒ sig ⇒ ty ⇒ bool

wf-mhead Γ (mn,ps) rt ≡ is-type Γ rt ∧ ¬is-RA ft ∧ (∀T∈set ps. is-type Γ T ∧ ¬is-RA T )

The rest of wellformedness remains the same as in Section 3.2.1, pp. 45–46.

Return addresses also have to be handled as values at runtime. The type val of values
is now defined as:

datatype val = Unit | Null | Bool bool | Intg int | Addr loc | RetAddr nat

The destructor the-RetAddr, defined by the-RetAddr (RetAddr r) = r , is useful below.

5.3 Operational Semantics

This section presents the operational semantics of the Jsr and Ret instructions. Contrary
to the static level in bytecode verification, subroutines constitute a clear and easy concept
on the dynamic side.

Introducing the new instructions Jsr b and Ret, Figure 5.4 shows the new complete
instruction set of the µJVM.

The operational semantics of bytecode subroutines is very simple. The definition is the
same as the one for object initialization in Section 4.3.2, Figure 4.6. We just have to
add two new rules, one for Jsr and one for Ret :

exec-instr (Jsr b) hp ihp stk regs Cl sig pc z frs =

(None, hp, ihp, (RetAddr (pc+1 )#stk , regs, Cl , sig , nat ((int pc)+b), z )#frs)

exec-instr (Ret x ) hp ihp stk regs Cl sig pc z frs =

(None, hp, ihp, (stk , regs, Cl , sig , the-RetAddr (regs ! x ), z ) # frs)

The Jsr instruction puts the return address pc+1 on the operand stack and performs a
relative jump to the subroutine (remember that nat and int are Isabelle type conversion
functions that convert the HOL type int to nat and vice versa).
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datatype instr =
Load nat load from register

| Store nat store into register
| LitPush val push a literal (constant)
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname
| Invoke cname mname (ty list) invoke instance method
| Invoke-spcl cname (ty list) invoke constructor
| Return return from method
| Dup duplicate top element
| Dup-x1 duplicate top element and push 2 values down
| IAdd integer addition
| Goto int go to relative address
| Ifcmpeq int branch if equal
| Throw throw exception
| Ret nat return from subroutine
| Jsr int jump to subroutine (relative jump)

Figure 5.4: The µJava instruction set with Jsr and Ret.

The Ret x instruction affects only the program counter. It fetches the return address
from register x and, with the-RetAddr, converts it to nat.

The defensive machine does not contain any surprises either. The definition is the same
as in Section 4.3.3, Figure 4.8, and the additional rules for Jsr and Ret are equally short.

In fact, for Jsr we only check that the branch did not try to jump outside the method.1

Note that pc < mpc is handled for all instructions at once in the definition of check (see
also Section 3.2.4, p. 53).

check-instr (Jsr b) hp ihp stk regs Cl sig pc z frs = 0 ≤ int pc+b

The Ret x instruction requires that the index x is inside the register set, and that the
value of the register is indeed a return address

check-instr (Ret x ) ihp hp stk regs Cl sig pc z frs =

x < length regs ∧ is-RetAddr (regs!x )

where is-RetAddr v is true iff the value v is a return address.
1Not even this check is necessary for type safety, because the aggressive machine converts the result to
nat anyway. It is useful for the compiler [40, 85, 86], though.
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The defensive and aggressive VMs still have the same operational one-step semantics if
there are no type errors:

Theorem 5.1 One-step execution in aggressive and defensive machines commutes if
there are no type errors.

exec-d (Normal s) 6= TypeError −→ exec-d (Normal s) = Normal (exec s)

The proof is the same as for Theorem 3.1 in Section 3.2.4, because the definition of
exec-d is unchanged and because there is no need to unfold the definition of exec-instr
or check-instr.

The canonical start state remains the same. This concludes the operational semantics
of bytecode subroutines.

5.4 The Bytecode Verifier

5.4.1 The Semilattice

The abstract framework of Chapter 2 requires state types to form a semilattice that
satisfies the ascending chain condition. In this section, I will build up a semilattice
suitable for the treatment of the Jsr and Ret instructions.

Following Coglio [15, 16], state types are sets. Section 2.2.7 already showed that finite
sets give rise to a semilattice. The first goal in this section must therefore be to make
the set of possible basic types finite, and then to build up a structure which preserves
this finiteness and which can describe the µJVM’s operand stack and register set.

The basic types ty are those defined in Section 5.2 above. Although there is ample
opportunity for infinity in these data type definitions, the set of basic types can easily
be restricted to a finite subset without excluding any type safe programs: the set of
class names can be restricted to the classes declared in the program, and the program
counters occurring in return addresses and UnInit types can be restricted to the program
counters that occur in the method. Formally, in the context of a fixed program Γ and a
method with mpc instructions, the carrier set init-tys is defined as follows:

init-tys ≡ {Init T |T . is-type Γ T ∧ boundedRA (mpc,T )} ∪
{UnInit C pc |C pc. is-class Γ C ∧ pc < mpc} ∪
{PartInit C |C . is-class Γ C}
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With boundedRA (mpc,T ), we check that the program counter is not greater than mpc
if T is a return address.

We now only need to lift this set to the stack and register structure of the bytecode
verifier. As before, the register set is just a list of a fixed length mxr. Apart from basic
types, it may contain unusable values that we denote by Err, introduced by the err
function of Section 2.2. The operand stack is a list of maximum length mxs. Apart from
operand stack and registers, we also need the boolean flag for verifying constructors.
Using list n A as in Section 2.2.6 for the set of lists over A with length n, we arrive at:

state-types ≡ ((
⋃ {list n init-tys |n. n ≤ mxs}) ×

list mxr (err init-tys)) ×
{True,False}

The carrier set states of the semilattice in the BV is the power set of state-types extended
by an artificial error element:

states ≡ err (Pow state-types)

Because state-types is finite, it is easy to show the following lemma:

Lemma 5.1 (states, ⊆, ∪) is a semilattice and ⊆ satisfies the ascending chain condition
on states.

Strictly speaking, the artificial error element is not necessary: the power set semilattice
already has a top element (the full set state-types). It is, however, impractical to use
this full set as an error indicator in the algorithm, and it is also convenient to use the
distinction into applicability and effect from Section 2.3.3 which requires Err on the
top level. Note that there is no option layer anymore in the type system. The bottom
element of the semilattice, which the BV uses for unreachable code, is OK {}.
Because the state types are finite sets, we can replace them by a list implementation in
a real BV. In the ML code generated from the Isabelle specification, I have done so; in
the formalization itself, it is more convenient to continue with sets.

5.4.2 Applicability and Effect

In this section, I will instantiate app and eff for the instruction set of the µJVM with
subroutines. Both definitions are again subdivided into a part for normal and a part for
exceptional execution.
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In order to reuse the transfer function of Chapter 4, I put up with a slight inaccuracy
in terminology: I leave the definition of the type state-type intact, even though strictly
speaking it does not model a proper state type any more. The state types here are
sets, the type state-type still models one single type configuration for stack and register
sets. With the state-bool definition of Chapter 4, a proper state type in the sense of the
framework is a set of state-bool entries. A welltyping is a list of such sets:

types state-type = init-ty list × init-ty err list

state-bool = state-type × bool

method-type = state-bool set list

With these type definitions, we can leave app ′ and eff ′ almost unchanged; only the lifting
step to app and eff will take the new set level into account.

The method context for the definitions below is still the same as in Chapters 3 and 4:

Γ :: program the program,
C ′ :: cname the class the method we are verifying is declared in,
mn :: mname the name of the method,
mxs :: nat maximum stack size of the method,
mxr :: nat size of the register set,
mpc :: nat maximum program counter,
rt :: ty return type of the method,
et :: ex-table exception handler table of the method.

The exception handling part xcpt-app is unaffected by the new instructions Jsr and
Ret. They cannot cause an exception. The definition is the same as in Section 4.4.2 on
page 98.

The applicability of instructions in the normal, non-exception case still builds on the
old app ′ :: instr × nat × state-type ⇒ bool . The two new instructions are easily added
(see below). Figure 5.5 shows the full definition.

The Jsr b instruction puts the return address on the stack, so we have to make sure that
there is enough space for it. The test whether pc ′ is within the code boundaries is again
done once for all instructions in app below.

app ′ (Jsr b, pc, (st ,lt)) = length st < mxs

The Ret x instruction is equally simple: the index x must be inside the register set, and
the value in register x must be a return address:

app ′ (Ret x , pc, (st ,lt)) = x < length lt ∧ (∃ r . lt !x=OK (Init (RA r)))
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app ′ :: instr × nat × state-type ⇒ bool

app ′ (Load idx , pc, (st ,lt)) = idx < lt ∧ lt !idx 6= Err ∧ size st < mxs
app ′ (Store idx , pc, (t#st ,lt)) = idx < size lt
app ′ (LitPush v , pc, (st ,lt)) = size st < mxs ∧

(typeof v = Some NT ∨
typeof v = Some (PrimT Boolean) ∨
typeof v = Some (PrimT Integer))

app ′ (Getfield F C , pc, (t#st ,lt)) = is-class Γ C ∧ t �i Init (Class C ) ∧
(∃ t ′. field (Γ,C ) F = Some (C , t ′))

app ′ (Putfield F C , pc, (t1#t2#st ,lt)) = is-class Γ C ∧
(∃ t ′. field (Γ,C ) F = Some (C ,t ′) ∧
t2 �i Init (Class C ) ∧ t1 �i Init t ′)

app ′ (New C , pc, (st ,lt)) = is-class Γ C ∧ size st < mxs ∧
UnInit C pc /∈ set st

app ′ (Checkcast C , pc, (t#st ,lt)) = is-class Γ C ∧ (∃ r . t = Init (RefT r))
app ′ (Dup, pc, (t#st ,lt)) = 1+size st < mxs
app ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = 2+size st < mxs
app ′ (IAdd , pc, (t1#t2#st ,lt)) = t1 = t2 ∧ t1 = Init (PrimT Integer)
app ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = (t1 = t2 ∨ (∃ r r ′. t1 = Init (RefT r) ∧

t2 = Init (RefT r ′)))
app ′ (Goto b, pc, s) = True
app ′ (Return, pc, (t#st ,lt)) = t �i Init rt
app ′ (Throw , pc, (Init t#st ,lt)) = is-RefT t
app ′ (Jsr b, pc, (st ,lt)) = length st < mxs
app ′ (Ret x , pc, (st ,lt)) = x < length lt ∧ (∃ r . lt !x=OK (Init (RA r)))
app ′ (Invoke C mn ps, pc, (st ,lt)) = size ps < size st ∧ mn 6= init ∧

method (Γ,C ) (mn,ps) 6= None ∧
let as = rev (take (size ps) st);

t = st !size ps
in t �i Init (Class C ) ∧ is-class Γ C ∧

(∀ (a,f )∈set(zip as ps). a �i Init f )
app ′ (Invoke-spcl C ps, pc, (st ,lt)) = size ps < size st ∧

(∃ r . method (Γ,C ) (init ,ps) = Some (C ,r)) ∧
let as = rev (take (size ps) st);

t = st !size ps
in is-class Γ C ∧

((∃ pc. t = UnInit C pc) ∨
t = PartInit C ′ ∧ (C ′,C )∈subcls Γ) ∧
(∀ (a,f )∈set(zip as ps). a �i (Init f ))

app ′ (i , pc, s) = False

Figure 5.5: Applicability of instructions.
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The only change in the rest of app ′ is LitPush: we specifically exclude return addresses
to be pushed as literals onto the stack.

With app ′, we can now build the full applicability function app: an instruction is appli-
cable when it is applicable in every type configuration in the state type set; the object
initialization flag z (that app ′ has not handled yet) must be true for Return instructions
in constructors, and it must be false when we invoke a superclass constructor; finally, to
ensure that step in the end is bounded, we require that all successor program counters
are within the method:

app :: instr ⇒ nat ⇒ state-bool set ⇒ bool
app i pc s ≡ (∀ ((st ,lt),z ) ∈ s. xcpt-app i pc ∧ app ′ (i ,pc,(st ,lt)) ∧

(mn = init ∧ i = Return −→ z ) ∧
(∀C p. i = Invoke-spcl C p ∧ st !size p = PartInit C ′ −→ ¬z )) ∧

(∀ (pc ′,s ′) ∈ set (eff i pc s). pc ′ < mpc)

This concludes applicability.

The exception case xcpt-eff of the effect of instructions produces one edge in the flow
graph for each exception. The resulting state type of each edge is the input set s where
the stack is replaced by a stack that only contains the exception:

xcpt-eff :: instr ⇒ nat ⇒ state-bool set ⇒ (nat × state-bool set) list

xcpt-eff i pc s ≡ let t = λC . (λ((st ,lt),z ). (([Init (Class C )], lt),z )) ‘ s;

pc ′ = λC . the (match-ex-table C pc et)

in map (λC . (pc ′ C , t C )) (xcpt-names (i ,pc,et))

It remains to build the normal, non-exception case for eff and to combine the two cases
into the final effect function. In eff, we must calculate the successor program counters
together with new state types. For the non-exception case, we can again define them
separately. Figure 5.6 shows the successors.

The old instructions in Figure 5.6 are unchanged, and Jsr is a simple, relative jump,
the same as Goto. Ret x is more interesting. It is the only instruction whose successors
depend on the current state type s. The function theRA x is defined by:

theRA x ((st ,lt),z ) = the-RA (lt !x )

the-RA (OK (Init (RA pc))) = pc

It works on elements ((st ,lt),z ) of state types and extracts the return address that is
stored in register x. The image of s under theRA x is the set of all different return
addresses that occur in register x in s. In app, we made sure that each element of s
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succs :: instr ⇒ nat ⇒ state-type ⇒ nat list

succs (Ifcmpeq b) pc s = [pc+1 , nat (int pc + b)]

succs (Goto b) pc s = [nat (int pc + b)]

succs Return pc s = []

succs Throw pc s = []

succs (Jsr b) pc s = [nat (int pc + b)]

succs (Ret x ) pc s = (SOME l . set l = theRA x ‘ s)

succs i pc s = [pc+1 ]

Figure 5.6: Successor program counters for the non-exception case.

does have a return address at position x in the register set, so theRA is defined for all
elements of s. Since succs returns lists and not sets, we use Hilbert’s epsilon operator
SOME to pick some list that converts to this set.

Remember that in the implementation we will use lists for state types instead of sets,
so this SOME construction is just the identity function applied to (theRA x ) ‘ s. In
the proofs, SOME is not a problem, because we know that s is finite and therefore a
suitable list l always exists.

Because of this behaviour of the Ret instruction in succs, the data flow analysis must
be flexible enough to let the shape of the data flow graph depend on the current state
of the calculation.

As with app, we first define the effect eff ′ on single stack and register sets (Figure 5.7).
While eff ′ postpones the treatment of the Ret instruction (by just returning s), the
effect of Jsr b is defined there: we put pc+1 as the return address on top of the stack.

Before we turn our attention to Ret, we note that the object initialization layer eff-bool
that concerns the initialization flag z remains unchanged:

eff-bool :: instr ⇒ nat ⇒ state-bool ⇒ state-bool

eff-bool i pc ((st ,lt),z ) ≡
(eff ′ (i ,pc,(st ,lt)), if ∃C p D . i = Invoke-spcl C p ∧ st !size p = PartInit D then True else z )

If it were not for Ret, we could apply this eff-bool to every element of the state type.
For all other instructions we do just that, but for Ret x there is special treatment: if we
return from a subroutine to a return position pc ′, only those elements of the state type
may be propagated that can return to this position pc ′—the rest originate from different
calls to the subroutine (see also the example in Section 5.1, Figure 5.2). The elements of
the state type that can return to pc ′ are those elements that contain the return address
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eff ′ :: instr × nat × state-type ⇒ state-type

eff ′ (Load idx , pc, (st , lt)) = (ok-val (lt !idx )#st , lt)

eff ′ (Store idx , pc, (t#st , lt)) = (st , lt [idx := OK t ])

eff ′ (LitPush v , pc, (st , lt)) = (Init (the (typeof v))#st , lt)

eff ′ (Getfield F C , pc, (t#st , lt)) = (Init (snd (the (field (Γ,C ) F )))#st ,lt)

eff ′ (Putfield F C , pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (New C , pc, (st ,lt)) = (UnInit C pc#st , replace (OK (UnInit C pc)) Err lt)

eff ′ (Checkcast C , pc, (t#st ,lt)) = (Init (Class C ) # st ,lt)

eff ′ (Dup, pc, (t#st ,lt)) = (t#t#st ,lt)

eff ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = (t1#t2#t1#st ,lt)

eff ′ (IAdd , pc, (t1#t2#st ,lt)) = (Init (PrimT Integer)#st ,lt)

eff ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (Goto b, pc, s) = s

eff ′ (Jsr t , pc, (st ,lt)) = ((Init (RA (pc+1 )))#st ,lt)

eff ′ (Ret x , pc, s) = s

eff ′ (Invoke C mn ps, pc, (st ,lt)) = let st ′ = drop (1+size ps) st ;

( ,rt , , , ) = the (method (Γ,C ) (mn,ps))

in (Init rt#st ′, lt)

eff ′ (Invoke-spcl C ps, pc, (st ,lt)) = let t = st !size ps; i = Init (theClass t);

st ′′ = drop (1+size ps) st ;

st ′ = replace t i st ′′;

lt ′ = replace (OK t) (OK i) lt ;

( ,rt , , , ) = the (method (Γ,C ) (init ,ps))

in (Init rt#st ′, lt ′)

Figure 5.7: Effect of instructions on the state type.

pc ′ in register x. We use theIdx, satisfying theIdx (Ret x ) = x , to extract the register
index from the instruction and isRet i to test if i is a Ret instruction.

norm-eff :: instr ⇒ nat ⇒ nat ⇒ state-bool set ⇒ state-bool set

norm-eff i pc pc ′ s ≡
(eff-bool i pc) ‘ (if isRet i then {s ′. s ′∈s ∧ theRA (theIdx i) s ′ = pc ′} else s)

This is the effect of instructions in the non-exception case. The final effect function is
canonical:

eff :: instr ⇒ nat ⇒ state-bool set ⇒ (nat × state-bool set) list

eff i pc s ≡ (map (λpc ′. (pc ′, norm-eff i pc pc ′ s)) (succs i pc s)) @ (xcpt-eff i pc s)
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This concludes the definition of the transfer function. Note that the monotonicity prob-
lem of New (see also Section 4.4.2) disappears in this type system, because the ordering
(⊆) is now different from the type ordering. On the other hand, the replace in the New
rule is not the identity anymore because there is no merging.

5.4.3 Executable Bytecode Verifiers

Having defined the semilattice and the transfer function in Section 5.4.1 and Sec-
tion 5.4.2, I show in this section how the parts are put together to form the two ex-
ecutable bytecode verifiers the framework provides.

As in Chapter 4, the definition of welltypings in wt-method, which serves as the basis
for the type safety proof and the executable bytecode verifiers, remains unchanged—
only wt-start has to be adjusted. The changes to wt-method occur in the underlying
semilattice and transfer function.

wt-start ϕ ≡ let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = (([],t#(map (OK ◦ Init) ps)@(replicate mxl Err)),C ′=Object);

in {s0} ⊆ ϕ!0

wt-method ϕ ≡ 0 < mpc ∧ map OK ϕ ∈ states ∧ wt-start ϕ ∧ wt-app-eff ϕ

The start value is almost the same as in Section 4.4.3; we merely leave out the Some of
the option layer, and write {s0} ⊆ ϕ!0 instead of s0 ≤ ′ ϕ!0. The expression {s0} ⊆ ϕ!0
is, of course, equivalent to s0 ∈ ϕ!0, but this way the semilattice order is more visible.

Lifting to programs and filling in the method context remains unchanged:

wt-jvm-prog Γ Φ ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).
wt-method Γ C ′ mn ps rt mxs mxl ins et (Φ C ′ (mn,ps))) Γ

The instantiation of Kildall’s algorithm is again standard, we just use the new start
value and bottom element:

wt-kil ≡ 0 < size ins ∧
let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = (([],t#(map (OK ◦ Init) ps)@(replicate mxl Err)),C ′=Object);

ϕ0 = (OK {S 0})#(replicate (size ins−1 ) (OK {}))
in ∀n < size ins. (kiljvm ϕ0)!n 6= Err

wt-jvm-progk Γ ≡
wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)). wt-kil Γ C ′ mn ps rt mxs mxl ins et) Γ

126



5.4 The Bytecode Verifier

The following lemma even becomes easier to prove:

Lemma 5.2 The transfer function step, built from app and eff as described in Sec-
tion 2.3.3 and Section 5.4.2, is monotone, bounded, and type preserving (w.r.t. states
and size ins).

The proof that step is bounded remains the same. Monotonicity becomes easier: we do
not even need to look at single instructions to see that the state type set returned by eff
cannot decrease when we increase eff ’s argument, and the number of successors, too, can
only increase for larger state types. Preservation of the carrier set remains a large case
distinction over the instruction set, but again Isabelle handles most cases automatically.

With Theorem 2.1 follows soundness and completeness.

Theorem 5.2 The executable BV is sound and recognizes all welltyped programs:

wt-jvm-progk Γ = (∃Φ. wt-jvm-prog Γ Φ)

The lightweight bytecode verifier is straightforward, too:

wt-lbv :: state-type option err cert ⇒ bool

wt-lbv c ≡ check-cert (size ins) c ∧ 0 < size ins ∧
let t = OK (if mn = init ∧ C ′ 6= Object then PartInit C ′ else Init (Class C ′));

s0 = OK {(([],t#(map (OK ◦ Init) ps)@(replicate mxl Err)),C ′=Object)};
in wtl c s0 6= Err)

wt-jvm-prog l :: jvm-prog ⇒ prog-cert ⇒ bool

wt-jvm-prog l Γ Cert ≡ wf-prog (λΓ C ′ ((mn,ps),rt ,(mxs,mxl ,ins,et)).

wt-lbv Γ C ′ mn ps rt mxs mxl ins et (Cert C ′ (mn,ps))) Γ

As before, the check-cert predicate ensures that the certificate is wellformed.

Theorems 2.3 and 2.4, together with Lemma 5.2 and the semilattice construction in
Section 5.4.1, give us that the LBV is sound and complete for this type system.

Theorem 5.3 If the LBV accepts a program, it is welltyped:

wt-jvm-prog l Γ Cert −→ (∃Φ. wt-jvm-prog Γ Φ)

Theorem 5.4 The LBV accepts every welltyped program:

wt-jvm-prog Γ Φ −→ wt-jvm-prog l Γ (mk-cert Φ)
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The function mk-cert :: prog-type ⇒ prog-cert is the certificate as defined in Section 2.5.4
lifted to programs.

For both wt-jvm-progk and wt-jvm-prog l, I have generated ML code, showing that they
are fully executable. The type sets are implemented by lists.

5.5 Type Safety

This section presents the type safety theorem. It implies that the bytecode verifier
guarantees type safe execution, and that all objects are properly initialized, both in the
presence of bytecode subroutines and exceptions. With Theorem 5.1, this again implies
that the checks of the defensive machine are redundant and the aggressive machine can
be used safely instead.

The theorem itself is the same as before:

Theorem 5.5 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ ∧ (start Γ C )
djvm−→ τ −→ τ 6= TypeError

The proof structure with the main lemmas and the invariant argument also remains the
same:

Lemma 5.3 Conformance is invariant during execution in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

Lemma 5.4 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ −→ Φ ⊢ (start Γ C )
√

Lemma 5.5 An execution step started in a conformant state cannot produce a type
error in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ −→ exec-d (Normal σ) 6= TypeError

The trick is again to find the right invariant Φ⊢ σ
√

. Contrary to Chapter 4, this is
refreshingly easy and elegant for the set based type system.

For Φ ⊢ σ
√

to be true, the following must hold: if, in state σ, execution is at position
pc of method (C ,sig), then there must be an element s of the state type (Φ C sig)!pc
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such that σ conforms to s in the sense of the old invariant of Chapter 4 (see below for
the formal definition).

The proof of invariance, Lemma 5.3, then works as follows: for each instruction, we pick
an element s of (Φ C sig)!pc, and we conclude from the conformance of σ together with
the app part of wt-jvm-prog that all assumptions of the aggressive machine are met. We
then execute the instruction and observe that the new state τ conforms to t = eff pc s.
This t is the element of (Φ C sig)!pc ′ that shows Φ ⊢ τ

√
. The reasoning at that level

is the same as for the proof of type safety for the type system in Chapter 4. It even
becomes a bit simpler, because before it involved a widening step on t which disappears
here (earlier, the BV provided t ≤ ′ (Φ C sig)!pc, whereas now we directly know t ∈ (Φ
C sig)!pc).

The formal definition of conformance is the same as in Section 4.5.2. We merely have to
replace every Φ C sig !pc = Some x by x ∈ Φ C sig !pc. This affects line 6 of correct-frames
and line 5 of - ⊢ -

√
only. The new definitions of correct-frames and conformance read:

correct-frames :: aheap ⇒ iheap ⇒ prog-type ⇒ ty ⇒ sig ⇒ bool ⇒ val × val

⇒ frame list ⇒ bool

correct-frames hp ihp Φ rt0 sig0 z 0 r0 [] = True

correct-frames hp ihp Φ rt0 sig0 z 0 r0 (f #frs) = let (stk ,regs,C ,sig ,pc,r) = f ; (mn,ps) = sig0

in ∃ st lt z rt mxs mxl ins et C ′.

((st ,lt),z ) ∈ Φ C sig ! pc ∧ is-class Γ C ∧
method (Γ,C ) sig = Some(C ,rt ,mxs,mxl ,ins,et) ∧
ins!pc ∈ {Invoke C ′ mn ps, Invoke-spcl C ′ mn ps} ∧
(∃D ′ rt ′ b ′. method (Γ,C ′) sig0 = Some(D ′,rt ′,b ′) ∧ rt0 � rt ′) ∧
(∃ as t st ′. st = (rev as)@[t ]@st ′ ∧ size as = size ps) ∧
(mn = init −→ constructor-ok hp ihp (stk !size ps) C ′ z 0 r0) ∧
correct-frame hp ihp (st ,lt) mxl ins f ∧ correct-frames hp ihp Φ rt sig z r frs

- ⊢ -
√

:: prog-type ⇒ jvm-state ⇒ bool

Φ ⊢ (Some xp, hp, ihp, frs)
√

= (frs=[])

Φ ⊢ (None, hp, ihp, [])
√

= True

Φ ⊢ (None, hp, ihp, f #fs)
√

= let (stk ,regs,C ,sig ,pc,r) = f in

∃ rt mxs mxl ins et s z . method (Γ,C ) sig = Some(C ,rt ,mxs,mxl ,ins,et) ∧
(s,z ) ∈ Φ C sig ! pc ∧
correct-frame hp ihp s mxl ins f ∧
correct-frames hp ihp Φ rt sig z r fs ∧
Γ ⊢h hp

√ ∧ h-init hp ihp ∧ is-class Γ C ∧ preallocated hp ihp

Everything else remains as in Section 4.5.2.
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5.6 Conclusion

I have presented a formalization of the µJVM with bytecode subroutines. In this type
system, subroutines are not artificially restricted for the sake of bytecode verification as
they are in other approaches in the literature.

The instantiation of the abstract framework of Chapter 2 resulted in two verified byte-
code verifiers for a type system that supports classes, subroutines, object initialization,
and exception handling. The bytecode verifier is fully executable and proved correct.

The treatment of subroutines caused the formalization to be reduced from 14,300 lines
for the type system for object initialization to 13,600 lines (293 pages) for the type
system with subroutines (but still containing object initialization). The reduction is
mainly due to the simpler proofs of monotonicity and type safety. The full formalization
is available on the web [89].

The type system I use is based on Coglio’s idea [16] of using sets to avoid type merges
altogether. The formalization presented here is more than a version of [16] in Isa-
belle/HOL, though: I have shown that the idea scales up to a realistic model of the
JVM ([16] did not even have classes), and that subroutines do not necessarily interfere
with exception handling or object initialization as it is the case for the type systems by
Freund [27] and Stärk et al. [81]. Both propose to restrict subroutines in the BV to work
around that.2

In theory, the sets that are used as state types in the data flow analysis might become
very large (up to the full set of all possible types). The sets could grow at every join
operation, that is, at every join point of the data flow graph, or every time a usual
bytecode verifier would perform a type merge. In practice, type merges occur rarely,
because at join points the types on all paths are often already equal. Leroy finds in
[49] that each instruction is analyzed 1.6 times on average before the fixpoint is reached
(in a test case of 7077 JCVM instructions). Usually instructions are analyzed once,
rarely twice. My own experience is the same: even for contrived examples (taken from
[81]), most sets were singletons; the maximum size of the sets was 4. Given an efficient
implementation for sets of that size, there is no reason for a bytecode verifier with this
type system to be slow in practice.

Section 5.4.3 presented the first formalization and the first proof of soundness of light-
weight bytecode verification that supports subroutines, thus eliminating the need to
expand subroutines prior to verification on embedded devices.

2The fix that Freund proposes in [27] for the subroutine-related bug in the BV of JDK 1.1.4 (to disallow
the type UnInit C pc in subroutines), is not monotone, though. It is therefore not usable for the data
flow analysis. The fixed rule that Sun actually used is monotone.
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6 Arrays

Arrays make the definition of types recursive and complicate the subtype re-
lation. In this chapter, I show how arrays can be integrated cleanly into the
JVM and the set based type system of the BV. Although array support re-
quires four new bytecode instructions and a new heap model, the changes in
the bytecode verifier are small and isolated.

6.1 Introduction

This chapter introduces the concept of arrays into the µJava language.

Arrays are potentially problematic for the bytecode verifier, because the definition of
types becomes recursive: arrays can have any type as element type, and specifically also
another array. This in turn makes the subtyping relation more complex: following the
JVM specification, each array is a subtype of Object, and if T is a subtype of T ′, then
an array of T is a subtype of an array of T ′.

At runtime, arrays are treated like objects: their content is stored in the heap, while the
operand stack and registers only contain references. Arrays are created dynamically, and
the JVM stores their length along with the content to make bounds checking possible.
Note that this complicates the heap model: apart from objects, the heap can now also
hold arrays.

In the bytecode language, there are separate instructions for storing and retrieving array
elements, for creating new arrays, and for retrieving the length of an array. A number of
system exceptions handle array-specific error situations: while ArrayIndexOutOfBounds
and NegativeArraySize speak for themselves, the ArrayStore exception demands expla-
nation. Due to the subtyping rules for arrays, the following piece of Java source language
code cannot be statically type checked:

void m(T[] a, T b) { a[0] = b; }

Consider two different, unrelated subtypes A and B of T : since an A-array is assignment
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compatible to a T -array, the value of the a parameter could be of runtime type A[] while
the value of b could be of runtime type B. With these types, the assignment a[0] = b

is not type safe: an A-array can only have values which are of a subtype of A. A and B
may have a common supertype T, but B is not necessarily a subtype of A. Hence, array
store operations have to be checked at runtime.

Arrays are orthogonal to the other features of the BV. They could be added to a merging
type system like the one in Chapter 4 as well as to the set based type system of Chapter 5.

For the merging type systems, the situation is easy: the new subtyping relation still is a
partial order, and the new µJava types still form a semilattice. The subtyping order also
still satisfies the ascending chain condition, even for unbounded array dimensions. As
Knoblock and Rehof [42, 43] point out, the order gives rise to an infinitely descending
chain:

Object � Object [] � Object [] [] � Object [] [] [] � . . .

In the other direction, however, every chain must be finite: for every n-dimensional
array, the end of the chain (Object) is reached after n steps.

Since there are no problems to be expected with a merging type system, and since the
set based type system is more expressive and the resulting language with arrays more
comprehensive, the choice is obvious: in this chapter I will extend the set based type
system of Chapter 5 with arrays.

The set based type system requires that the set of basic types is finite. As indicated
above, this is problematic for arrays. There are at least two possible solutions:

• For each program, there must be a maximum dimension of the arrays that are
used in the program. In the definition of the set of types, we can take this number
as bound for the array dimension and thus are left with a finite set.

• The JVM specification restricts the dimension of arrays to 255 for technical reasons
(the JVM uses one byte to express the dimension). This automatically makes the
set of all basic types finite.

As it is easier to read and more succinct in the formalization, I will use the second
solution in the following.

Section 6.2 introduces array types formally. Section 6.3 shows the operational semantics
of the new instructions. Section 6.4 defines semilattice and transfer function for the
extended type system, and instantiates the BV framework once more. Section 6.5 shows
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Figure 6.1: Including arrays: overview.

that the type system with exception handling, object initialization, subroutines, and
arrays is sound.

Figure 6.1 gives an overview of which theories have changed. While there are significant
changes in the virtual machine, the changes in the bytecode verifier are mainly simple
additions for the new instructions: they take place in the definition of the semilattice
and transfer function, and in the type safety proof.
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6.2 Types and Wellformed Programs

This section defines the type of arrays formally and shows how the wellformedness con-
ditions for programs are adjusted accordingly.

Introducing arrays makes the definition of µJava types ty mutually recursive with ref-ty,
because the new reference type ArrayT can take any type ty as parameter:

datatype prim-ty = Void | Boolean | Integer | RetA nat

datatype ref-ty = NullT | ClassT cname | ArrayT ty

and ty = PrimT prim-ty | RefT ref-ty

The types for object initialization on top remain the same:

datatype init-ty = Init ty | UnInit cname nat | PartInit cname

To make the notation more reminiscent of Java, I introduce the following abbreviation:

translations T .[] ⇀↽ RefT (ArrayT T )

The subtyping relation is extended by the two rules mentioned in Section 6.1: each array
is a subtype of Object, and two arrays are in the subtype relation if their component
types are.

T � T

NT � RefT T

Class C � Class D if (C ,D) ∈ (subcls Γ)∗

T .[] � Class Object

S .[] � T .[] if S � T

With arrays, we also need three more of Java’s system exceptions; one for index errors,
one for negative sizes in array creation, and one for the subtyping problem outlined in
Section 6.1:

datatype xcpt = NullPointer | ClassCast | OutOfMemory

| ArrayIndexOutOfBounds | NegativeArraySize | ArrayStore

For wellformedness of programs below, we will need the dimension dim :: ty ⇒ nat of a
type. Since the data type definition is mutually recursive, this is defined using a helper
function dim-r :: ref-ty ⇒ nat :
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dim (PrimT T ) = 0 dim-r NullT = 0

dim (RefT T ) = dim-r T dim-r (ClassT C ) = 0

dim-r (ArrayT T ) = 1 + dim T

In accordance with the JVM specification [51, §4.8.1], there is a maximum dimension of
arrays max-dim. The actual value of max-dim is irrelevant for the formalization. For
example programs, I have used 255 as the JVM specification requires.

In wellformed programs, no object field or method parameter can hold a return address.
Now we have to make sure that they also do not hold an array of return addresses.
To that end, I define noRA :: ty ⇒ bool and the helper noRA-r :: ref-ty ⇒ bool as an
extension of the condition ¬is-RA T of Section 5.2.

noRA (PrimT T ) = ¬is-RA (PrimT T ) noRA-r NullT = True

noRA (RefT T ) = noRA-r T noRA-r (ClassT C ) = True

noRA-r (ArrayT T ) = noRA T

With this, we can express that in declarations of wellformed programs no return ad-
dresses and only arrays with a dimension up to max-dim occur. As in Section 5.2, only
the definitions for wellformed fields and method headers need to be adjusted:

wf-fdecl Γ (fn,ft) ≡ is-type Γ ft ∧ noRA ft ∧ dim ft ≤ max-dim

wf-mhead Γ (mn,ps) rt ≡ is-type Γ rt ∧ noRA rt ∧ dim rt ≤ max-dim ∧
(∀T∈set ps. is-type Γ T ∧ noRA T ∧ dim T ≤ max-dim)

Array references are assignment compatible to references of class Object, so the set of
fields of class Object must be a subset of the set of fields of arrays (which is empty). The
Java Language Specification only mentions implicitly that class Object cannot contain
fields: in the declaration of Object in [32, §4.3.2] there do not occur any. The methods of
class Object are not a problem: since they cannot manipulate fields, they can be invoked
on arrays without harm. Note that the length component of arrays is neither a field nor
a method. It can be viewed as a special purpose, read only field, but it is not a declared
object field in the sense of Section 3.2.1.

If we add the condition fields Γ Object = [] to wf-syscls, the new wellformedness definition
of programs is complete. The rest stays as shown in Chapter 3.

wf-syscls :: γ prog ⇒ bool

wf-syscls Γ ≡ let cs = set Γ in Object ∈ fst‘cs ∧ (∀ x . Xcpt x ∈ fst‘cs) ∧ fields Γ Object = []
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6.3 Operational Semantics

This section introduces arrays to the µJVM. Section 6.3.1 shows the heap model, Sec-
tion 6.3.2 the aggressive machine, and Section 6.3.3 the defensive machine with the new
array instructions.

6.3.1 State Space

With arrays, entries in the µJVM heap are more complex than before. An entry can be
either an object with class name and fields, or an array with component type, length,
and entries. Analogously to fields, the array entries are modeled as a partial function
from index to values val.

datatype heap-entry = Obj cname (vname × cname ⇒ val option)

| Arr ty int (int ⇒ val option)

Heap access in the µJVM is now more than a simple the for the option type. For
convenience, I introduce the following two destructor functions:

the-obj :: heap-entry option ⇒ (cname, vname × cname ⇒ val option)

the-obj (Some (Obj C fs)) = (C ,fs)

the-arr :: heap-entry option ⇒ (ty × int × int ⇒ val option)

the-arr (Some (Arr T l en)) = (T ,l ,en)

The conformance relation ::� between values and types also has to take the new heap
structure into account. The definition of ::� is still the same, but typeof, on which it
builds, distinguishes between objects and arrays on the heap:

- ⊢ - ::� - :: aheap ⇒ val ⇒ ty ⇒ bool

hp ⊢ v ::� T ≡ ∃T ′. typeof hp v = Some T ′ ∧ T ′ � T

typeof :: aheap ⇒ val ⇒ ty option

typeof hp Unit = Some (PrimT Void)

typeof hp (Intg i) = Some (PrimT Integer)

typeof hp (Bool b) = Some (PrimT Boolean)

typeof hp Null = Some NT

typeof hp (Addr a) = case hp a of None ⇒ None | Some entry ⇒ Some (type-of entry)

type-of :: heap-entry ⇒ ty

type-of (Obj C fs) = Class C

type-of (Arr T l en) = T .[]
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datatype instr =

Load nat load from register
| Store nat store into register
| LitPush val push a literal (constant)
| New cname create object on heap
| Getfield vname cname fetch field from object
| Putfield vname cname set field in object
| Checkcast cname check if object is of class cname

| Invoke cname mname (ty list) invoke instance method
| Invoke-spcl cname (ty list) invoke constructor
| Return return from method
| Dup duplicate top element
| Dup-x1 duplicate top element and push 2 values down
| IAdd integer addition
| Goto int go to relative address
| Ifcmpeq int branch if equal
| Throw throw exception
| Ret nat return from subroutine
| Jsr int jump to subroutine (relative jump)
| ArrLoad load indexed entry from array
| ArrStore write value to indexed array entry
| ArrLength retrieve length of array
| ArrNew ty create new 1-dimensional array

Figure 6.2: The µJava instruction set with arrays.

6.3.2 Aggressive Machine

The µJVM contains four instructions for array handling: ArrLoad, ArrStore, ArrLength,
and ArrNew T. Figure 6.2 shows the complete instruction set.

The ArrLoad and ArrStore instructions are polymorphic like Load and Store: they work
on arrays of arbitrary type. As for the register operations, the real JVM contains typed
instructions for each primitive type and one for addresses. The ArrLength and ArrNew
instructions behave as described in the JVM specification. The real JVM also contains
an instruction for creating multidimensional arrays in one step. This is important for
efficiency, but as it can be simulated by a loop, I have left this instruction out of the
formalization. For the BV, the instruction is analogous to ArrNew : it just puts an array
like A.[].[] with more than one dimension on the stack.

The definitions of exec and
jvm−→ are still the same as in Section 4.3.2. The operational se-
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mantics of the non-array instructions is unchanged, only the object handling instructions
now use the-obj instead of the to access the heap. Those are Getfield, Putfield, Invoke,
and Invoke-spcl ; the New instruction is not affected. Note that in the new definitions
below, merely line 4 for Getfield and line 5 for Putfield changed w.r.t. Section 4.3.2.

exec-instr (Getfield F C ) hp ihp stk regs C ′ sig pc z frs =
let r = hd stk ;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;
(D ,fs) = the-obj (hp(the-Addr r));
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, ihp, (the(fs(F ,C ))#(tl stk), regs, C ′, sig , pc ′, z )#frs)

exec-instr (Putfield F C ) hp ihp stk regs C ′ sig pc z frs =
let (v ,r)= (hd stk , hd(tl stk));

xp ′ = raise-system-xcpt (r=Null) NullPointer ;
a = the-Addr r ;
(D ,fs) = the-obj (hp a);
hp ′ = if xp ′=None then hp(a 7→(D ,fs((F ,C )7→v))) else hp;
pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, (tl (tl stk), regs, C ′, sig , pc ′, z )#frs)

The Invoke and Invoke-spcl instructions also access the heap, and therefore need to be
adjusted. Contrary to Getfield and Putfield, the method invocation instructions do not
care whether the entry is an object or an array. Using

the-obj-ty :: heap-entry option ⇒ cname

the-obj-ty (Some (Obj C fs)) = C

the-obj-ty (Some (Arr T l en)) = Object

they view arrays as objects. This coincides with the fact that arrays provide exactly the
methods of class Object. The actual change is again small: only line 4 in the definition
of Invoke is different from the one in Section 4.3.2:

exec-instr (Invoke C mn ps) hp ihp stk regs C ′ sig pc z frs =
let n = size ps; args = take n stk ; r = stk !n;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;

dt = the-obj-ty (hp(the-Addr r));

(dc,-,-,mxl ,-)= the (method (Γ,dt) (mn,ps));

frs ′ = if xp ′6=None then [] else

[([],(rev args)@[r ]@replicate mxl arbitrary ,dc,(mn,ps),0 ,arbitrary)]

in (xp ′, hp, ihp, frs ′@(stk , regs, C ′, sig , pc, z )#frs)
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The definition for Invoke-spcl is transformed analogously to the one for Invoke: we just
have to write the-obj-ty (hp -) instead of fst (the (hp -)).

Now we are set to define one-step execution of the new array instructions. ArrLoad is
straightforward:

exec-instr (ArrLoad) hp ihp stk regs C ′ sig pc z frs =

let (i ,r) = (the-Intg (stk !0 ), stk !1 );

xp ′′ = raise-system-xcpt (r=Null) NullPointer ;

(T ,l ,en) = the-arr (hp(the-Addr r));

xp ′ = if xp ′′=None

then raise-system-xcpt (i < 0 ∨ l ≤ i) ArrayIndexOutOfBounds else xp ′′;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, ihp, (the (en i) # (tl (tl stk)), regs, C ′, sig , pc ′, z )#frs)

The definition above fetches the index i and the array reference r from the operand
stack, and retrieves the array entry (T ,l ,en) from the heap. If r is Null, it throws a
NullPointer exception, and if the index is not within the arrays bounds, it throws an
ArrayIndexOutOfBounds exception. Finally, it increments the program counter and puts
the array entry at index i on top of the stack.

The definition for ArrStore is larger:

exec-instr (ArrStore) hp ihp stk regs C ′ sig pc z frs =

let (v ,i ,r) = (stk !0 , the-Intg (stk !1 ), stk !2 );

xp0 = raise-system-xcpt (r=Null) NullPointer ;

a = the-Addr r ;

(T ,l ,en) = the-arr (hp a);

xp1 = if xp0=None

then raise-system-xcpt (i < 0 ∨ l ≤ i) ArrayIndexOutOfBounds else xp0;

xp ′ = if xp1=None then raise-system-xcpt (¬hp ⊢ v ::� T ) ArrayStore else xp1;

hp ′ = if xp ′=None then hp(a 7→ Arr T l (en(i 7→ v))) else hp;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, ihp, (tl (tl (tl stk)), regs, C ′, sig , pc ′, z )#frs)

The ArrStore instruction expects three values on the operand stack: the value v to be
stored, the array index i, and the array reference r. After checking for Null pointer
and array bounds, ArrStore also tests if the value v is compatible with the dynamic
component type T of the array (remember the example from Section 6.1 in which it was
not possible to guarantee this statically). If all checks are successful, the array entry at

139



Chapter 6 Arrays

position i can be overwritten with the new value, and the resulting array can be stored
in the heap.

Fetching the length of an array is easy:

exec-instr (ArrLength) hp ihp stk regs C ′ sig pc z frs =

let r = hd stk ;

xp ′ = raise-system-xcpt (r=Null) NullPointer ;

(T ,l ,en) = the-arr (hp (the-Addr r));

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp, ihp, (Intg l#(tl stk), regs, C ′, sig , pc ′, z )#frs)

ArrLength expects an array reference on the operand stack, tests for Null, and puts the
length l of the array back on top of the stack.

The last of the new instructions is ArrNew :

exec-instr (ArrNew T ) hp ihp stk regs C ′ sig pc z frs =

let l = the-Intg (hd stk);

xp0 = raise-system-xcpt (l < 0 ) NegativeArraySize;

(a,xp1) = new-Addr hp;

xp ′ = if xp0=None then xp1 else xp0;

hp ′ = if xp ′=None then hp(a 7→ blank-arr T l) else hp;

ihp ′ = if xp ′=None then ihp(a := Init (T .[])) else ihp;

pc ′ = if xp ′=None then pc+1 else pc

in (xp ′, hp ′, ihp ′, ((Addr a)#tl stk , regs, C ′, sig , pc ′, z )#frs)

The ArrNew T instruction creates a new array with component type T on the heap.
The length of the new array is the top value on the operand stack. If it is negative,
the corresponding exception is thrown; otherwise, we request an unused heap entry
(as for the New instruction, see for example Section 3.2.3). If this did not lead to an
OutOfMemory exception, we use blank-arr T l to create a blank array of length l and
component type T . The blank array has the default value for type T (0 or Null) in
every entry. Arrays do not have constructors and do not need to be initialized, so we
can set the corresponding iheap entry to Init T .[]. If there were no exceptions, ArrNew
leaves the reference to the new array on the stack.

6.3.3 Defensive Machine

This section describes the defensive machine with arrays. Again, the outer levels stay
the same: check, exec-d, and

djvm−→ are unchanged.
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As for the aggressive VM, the definitions of Getfield and Putfield have to be slightly
adjusted for the new heap structure. They now use the-obj to retrieve the object’s
contents and is-obj to test if the heap entry is indeed an object:

check-instr (Getfield F C ) hp ihp stk regs Cl sig pc z frs =
0 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′,T ) = the (field (Γ,C ) F ); v = hd stk
in C ′ = C ∧ is-Ref v ∧

(v 6= Null −→ is-obj (hp (the-Addr v)) ∧ is-init hp ihp v ∧
(let (D ,fs) = the-obj (hp (the-Addr v))

in (D ,C ) ∈ (subcls Γ)∗ ∧ fs (F ,C ) 6= None ∧ hp ⊢ the (fs (F ,C )) ::� T )))

check-instr (Putfield F C ) hp ihp stk regs Cl sig pc z frs =
1 < size stk ∧ is-class Γ C ∧ field (Γ,C ) F 6= None ∧
(let (C ′, T ) = the (field (Γ,C ) F ); v = hd stk ; v = hd (tl stk) in
C ′ = C ∧ is-init hp ihp v ∧ is-Ref v ∧
(v 6= Null −→ is-obj (hp (the-Addr v)) ∧ is-init hp ihp v ∧

(let (D ,fs) = the-obj (hp (the-Addr v)) in (D ,C ) ∈ (subcls Γ)∗ ∧ hp ⊢ v ::� T )))

The safety checks in the defensive machine for Invoke and Invoke-spcl remain the same,
because Invoke works on both objects and arrays, and Invoke-spcl rejects initialized
references like arrays in any case.

Below, I show the definition of check-instr for the array instructions. They use the
function is-arr :: heap-entry option ⇒ bool to test whether a position in the heap is
defined and whether the entry is an array.

check-instr (ArrLoad) hp ihp stk regs Cl sig pc z frs =

1 < length stk ∧
(let (i ,r) = (stk !0 , stk !1 ) in is-Intg i ∧ is-Ref r ∧ r 6= Null −→ is-arr (hp (the-Addr r)))

For ArrLoad to be safe, there must be at least two entries on the stack: the first an
integer, the second a reference. If the reference is not Null, the heap should contain an
array at this position.

The ArrStore instruction is similar:

check-instr (ArrStore) hp ihp stk regs Cl sig pc z frs =

2 < length stk ∧
(let (i ,r) = (stk !1 , stk !2 ) in is-Intg i ∧ is-Ref r ∧ r 6= Null −→ is-arr (hp (the-Addr r)))
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Here we need three values on the stack. The first is the value to be stored. There are
no requirements for this value other than that it exists, because the subtyping problem
is handled via exceptions. The second and third stack entry must be an integer and an
array reference, respectively.

ArrLength only needs an array reference on the stack:

check-instr (ArrLength) hp ihp stk regs Cl sig pc z frs =

0 < length stk ∧ (let r = hd stk in is-Ref r ∧ r 6= Null −→ is-arr (hp (the-Addr r)))

For ArrNew T, T should be a declared type, and the instruction needs an integer (the
length) on the operand stack:

check-instr (ArrNew T ) hp ihp stk regs Cl sig pc z frs =

0 < length stk ∧ is-Intg (hd stk) ∧ is-type Γ T

This concludes one-step execution in the defensive VM.

The defensive and aggressive VMs still have the same operational one-step semantics if
there are no type errors:

Theorem 6.1 One-step execution in aggressive and defensive machines commutes if
there are no type errors.

exec-d (Normal s) 6= TypeError −→ exec-d (Normal s) = Normal (exec s)

As the upper levels of the defensive machine are unchanged, the proof is the same as the
one for Theorem 3.1 in Section 3.2.4.

The canonical start state remains as it is in Section 4.3.3.

6.4 Bytecode Verification

6.4.1 The Semilattice

The first step in the framework instantiation is the semilattice. The base type system
is the same as for subroutines in Section 5.4.1. The task of this section is to make the
set of basic types finite. The rest of the semilattice definition will then be canonical.

Section 6.2 already defined a maximum dimension for arrays. The definition below, for a
fixed program Γ and maximum program counter mpc, additionally expresses that arrays
never contain return addresses:
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init-tys ≡ {Init T |T . is-type Γ T ∧ boundedRA (mpc,T ) ∧
dim T ≤ max-dim ∧ (dim T 6= 0 −→ noRA T )} ∪

{UnInit C pc |C pc. is-class Γ C ∧ pc < mpc} ∪
{PartInit C |C . is-class Γ C}

Keep in mind that boundedRA (mpc,T ) restricts return addresses to those smaller than
mpc, and that noRA T is true iff the type T does not contain a return address. The
precondition dim T 6= 0 restricts this check to arrays.

It remains to lift init-tys to the stack and register structure of the bytecode verifier. We
can repeat the construction of Section 5.4.1:

state-types ≡ ((
⋃ {list n init-tys |n. n ≤ mxs}) ×

list mxr (err init-tys)) ×
{True,False}

The carrier set states of the semilattice in the BV is again the power set of state-types
extended by an artificial error element:

states ≡ err (Pow state-types)

By induction on the maximum array dimension, I have shown that ini-tys remains finite,
even though it now contains recursive types. Hence, we can use Lemma 2.10 and get:

Lemma 6.1 (states, ⊆, ∪) is a semilattice and ⊆ satisfies the ascending chain condition
on states.

6.4.2 Applicability and Effect

This section will instantiate app and eff for the full instruction set of the µJVM with
object initialization, exceptions, subroutines, and arrays. Both definitions are again
subdivided into a part for normal and a part for exceptional execution.

The definitions of the types state-type, state-bool, and method-type are the same as in
Section 5.4.2:

types state-type = init-ty list × init-ty err list

state-bool = state-type × bool

method-type = state-bool set list

The method context, too, is still the same as in the chapters before:
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Γ :: program the program,
C ′ :: cname the class the method we are verifying is declared in,
mn :: mname the name of the method,
mxs :: nat maximum stack size of the method,
mxr :: nat size of the register set,
mpc :: nat maximum program counter,
rt :: ty return type of the method,
et :: ex-table exception handler table of the method.

The definition of applicability in the exception case xcpt-app still only requires all excep-
tions to be declared in the program, but the definition of xcpt-names, on which xcpt-app
builds, now lists the new instructions in Figure 6.3.

Figure 6.3 indicates by the number of exceptions that arrays require a high amount
of runtime checking compared to the rest of the instruction set. The most common of
these checks are ArrayIndexOutOfBounds and ArrayStore. The former could be partially
eliminated by an extended static analysis that for simple cases asserts that the index
never leaves a certain interval (see for instance [57]). As outlined in Section 6.1, the
latter is difficult to treat statically without changing the subtyping rules for arrays.

Applicability in the normal case still builds on app ′ :: instr × nat × state-type ⇒ bool .
The new array instructions are discussed below; Figure 6.4 shows the full definition.

The ArrLoad instruction expects an integer and an array on the stack:

app ′ (ArrLoad , pc, (Init (PrimT Integer)#Init (t .[])#st ,lt)) = True

The ArrStore instruction expects an initialized value, an integer, and an array on the
stack:

app ′ (ArrStore, pc, (Init t#Init (PrimT Integer)#Init (t ′.[])#st ,lt)) = True

A test t � t ′ is not necessary for ArrStore since this is checked at runtime. One might
argue that programs failing this test statically should be rejected by the BV. On the
other hand, a program might rely on an exception being thrown—however dubious such a
programming style might be. Since bytecode verification is necessarily incomplete, t � t ′

could also be false at verification time, but true at runtime. The JVM specification is
not clear on this issue, but the standard BV implementation does not seem to perform
the test. In any case, it is of no consequence for type safety.

The ArrLength instruction only needs an array on top of the stack:

app ′ (ArrLength, pc, (Init (t .[])#st , lt)) = True
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xcpt-names :: instr × nat × ex-table ⇒ cname list

xcpt-names (Getfield F C , pc, et) = match NullPointer pc et

xcpt-names (Putfield F C , pc, et) = match NullPointer pc et

xcpt-names (New C , pc, et) = match OutOfMemory pc et

xcpt-names (Checkcast C , pc, et) = match ClassCast pc et

xcpt-names (Throw , pc, et) = match-any pc et

xcpt-names (Invoke C m p, pc, et) = match-any pc et

xcpt-names (Invoke-spcl C p, pc, et) = match-any pc et

xcpt-names (ArrLoad , pc, et) = (match G ArrayIndexOutOfBounds pc et) @

(match G NullPointer pc et)

xcpt-names (ArrStore, pc, et) = (match G ArrayIndexOutOfBounds pc et) @

(match G NullPointer pc et) @

(match G ArrayStore pc et)

xcpt-names (ArrLength, pc, et) = match G NullPointer pc et

xcpt-names (ArrNew C , pc, et) = (match G OutOfMemory pc et) @

(match G NegativeArraySize pc et)

xcpt-names (i , pc, et) = []

xcpt-app :: instr ⇒ bool

xcpt-app i ≡ ∀C∈set(xcpt-names (i ,pc,et)). is-class Γ C

Figure 6.3: Applicability in the exception case.

The ArrNew T instruction expects an integer on the stack. The type T must be declared
in the program and must not contain return addresses. The dimension of the resulting
array must not exceed the maximum dimension:

app ′ (ArrNew T , pc, (Init (PrimT Integer)#st ,lt)) = is-type Γ T ∧ noRA T ∧
dim T+1 ≤ max-dim

The final app function that lifts app ′ to state-bool set and combines it with xcpt-app
remains unchanged. The definition is the same as in Section 5.4.2, p. 123.

This concludes applicability.

The exception case of the effect function xcpt-eff is also still the same as in Section 5.4.2.
It just builds on the new xcpt-names:
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app ′ :: instr × nat × state-type ⇒ bool

app ′ (Load idx , pc, (st ,lt)) = idx < lt ∧ lt !idx 6= Err ∧ size st < mxs
app ′ (Store idx , pc, (t#st ,lt)) = idx < size lt
app ′ (LitPush v , pc, (st ,lt)) = size st < mxs ∧ typeof v ∈

Some ‘ {NT , PrimT Boolean, PrimT Integer}
app ′ (Getfield F C , pc, (t#st ,lt)) = is-class Γ C ∧ t �i Init (Class C ) ∧

(∃ t ′. field (Γ,C ) F = Some (C , t ′))
app ′ (Putfield F C , pc, (t1#t2#st ,lt)) = is-class Γ C ∧

(∃ t ′. field (Γ,C ) F = Some (C ,t ′) ∧
t2 �i Init (Class C ) ∧ t1 �i Init t ′)

app ′ (New C , pc, (st ,lt)) = is-class Γ C ∧ size st < mxs ∧
UnInit C pc /∈ set st

app ′ (Checkcast C , pc, (t#st ,lt)) = is-class Γ C ∧ (∃ r . t = Init (RefT r))
app ′ (Dup, pc, (t#st ,lt)) = 1+size st < mxs
app ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = 2+size st < mxs
app ′ (IAdd , pc, (t1#t2#st ,lt)) = t1 = t2 ∧ t1 = Init (PrimT Integer)
app ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = (t1 = t2 ∨ (∃ r r ′. t1 = Init (RefT r) ∧

t2 = Init (RefT r ′)))
app ′ (Goto b, pc, s) = True
app ′ (Return, pc, (t#st ,lt)) = t �i Init rt
app ′ (Throw , pc, (Init t#st ,lt)) = is-RefT t
app ′ (Jsr b, pc, (st ,lt)) = length st < mxs
app ′ (Ret x , pc, (st ,lt)) = x < length lt ∧ (∃ r . lt !x=OK (Init (RA r)))
app ′ (Invoke C mn ps, pc, (st ,lt)) = size ps < size st ∧ mn 6= init ∧

method (Γ,C ) (mn,ps) 6= None ∧
let as = rev (take (size ps) st); t = st !size ps
in t �i Init (Class C ) ∧ is-class Γ C ∧

(∀ (a,f )∈set(zip as ps). a �i Init f )
app ′ (Invoke-spcl C ps, pc, (st ,lt)) = size ps < size st ∧

(∃ r . method (Γ,C ) (init ,ps) = Some (C ,r)) ∧
let as = rev (take (size ps) st); t = st !size ps
in is-class Γ C ∧

((∃ pc. t = UnInit C pc) ∨
t = PartInit C ′ ∧ (C ′,C )∈subcls Γ) ∧
(∀ (a,f )∈set(zip as ps). a �i (Init f ))

app ′ (ArrLoad ,pc,(i#Init (t .[])#st ,lt)) = (i = Init (PrimT Integer))
app ′ (ArrStore, pc, (Init t#i#Init (t ′.[])#st ,lt)) = (i = Init (PrimT Integer))
app ′ (ArrLength, pc, (Init (t .[])#st , lt)) = True
app ′ (ArrNew T , pc, (l#st ,lt)) = is-type Γ T ∧ l = Init (PrimT Integer) ∧

noRA T ∧ dim T+1 ≤ max-dim
app ′ (i , pc, s) = False

Figure 6.4: Applicability of instructions with arrays.
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xcpt-eff :: instr ⇒ nat ⇒ state-bool set ⇒ (nat × state-bool set) list

xcpt-eff i pc s ≡ let t = λC . (λ((st ,lt),z ). (([Init (Class C )], lt),z )) ‘ s;

pc ′ = λC . the (match-ex-table C pc et)

in map (λC . (pc ′ C , t C )) (xcpt-names (i ,pc,et))

It remains to define the normal, non-exception case for eff and to combine the two
cases into the final effect function. The successors definition succs is the same as in
Section 5.4.2, Figure 5.6. The new instructions are caught by the default case [pc+1 ].
Figure 6.5 shows the full definition of the effect eff ′ on single type configurations.

The old instructions are unchanged, for the array instructions, eff ′ is defined as follows:

eff ′ (ArrLoad , pc, (i#Init (t .[])#st ,lt)) = (Init t#st ,lt)

eff ′ (ArrStore, pc, (v#i#a#st ,lt)) = (st ,lt)

eff ′ (ArrLength, pc, (a#st ,lt)) = (Init (PrimT Integer)#st ,lt)

eff ′ (ArrNew T , pc, (l#st ,lt)) = (Init (T .[])#st ,lt)

ArrLoad removes index and array reference, and puts a value of the component type t
on the stack. ArrStore only pops the value, the index, and the array reference from the
stack; the heap access is statically not visible. ArrLength replaces the array reference
by an integer, and ArrNew T pushes an array with component type T onto the stack.

The function norm-eff that lifts eff ′ to state-bool set is the same as in Section 5.4.2, and
the final effect function is canonical:

eff :: instr ⇒ nat ⇒ state-bool set ⇒ (nat × state-bool set) list

eff i pc s ≡ (map (λpc ′. (pc ′, norm-eff i pc pc ′ s)) (succs i pc s)) @ (xcpt-eff i pc s)

This concludes the definition of the transfer function.

6.4.3 Executable Bytecode Verifiers

With the semilattice and the transfer function of Section 6.4.1 and Section 6.4.2, this
section again instantiates the framework and yields two executable bytecode verifiers.

Contrary to the chapters before, all the definitions of wt-start, wt-method, wt-jvm-prog,
wt-kil, wt-jvm-progk, wt-lbv, and wt-jvm-prog l remain as defined in Section 5.4.3. The
changes only take place in the underlying semilattice and transfer function.

The following main lemma still holds:
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eff ′ :: instr × nat × state-type ⇒ state-type

eff ′ (Load idx , pc, (st , lt)) = (ok-val (lt !idx )#st , lt)

eff ′ (Store idx , pc, (t#st , lt)) = (st , lt [idx := OK t ])

eff ′ (LitPush v , pc, (st , lt)) = (Init (the (typeof v))#st , lt)

eff ′ (Getfield F C , pc, (t#st , lt)) = (Init (snd (the (field (Γ,C ) F )))#st ,lt)

eff ′ (Putfield F C , pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (New C , pc, (st ,lt)) = (UnInit C pc#st , replace (OK (UnInit C pc)) Err lt)

eff ′ (Checkcast C , pc, (t#st ,lt)) = (Init (Class C ) # st ,lt)

eff ′ (Dup, pc, (t#st ,lt)) = (t#t#st ,lt)

eff ′ (Dup-x1 , pc, (t1#t2#st ,lt)) = (t1#t2#t1#st ,lt)

eff ′ (IAdd , pc, (t1#t2#st ,lt)) = (Init (PrimT Integer)#st ,lt)

eff ′ (Ifcmpeq b, pc, (t1#t2#st ,lt)) = (st ,lt)

eff ′ (Goto b, pc, s) = s

eff ′ (Jsr t , pc, (st ,lt)) = ((Init (RA (pc+1 )))#st ,lt)

eff ′ (Ret x , pc, s) = s

eff ′ (Invoke C mn ps, pc, (st ,lt)) = let st ′ = drop (1+size ps) st ;

( ,rt , , , ) = the (method (Γ,C ) (mn,ps))

in (Init rt#st ′, lt)

eff ′ (Invoke-spcl C ps, pc, (st ,lt)) = let t = st !size ps; i = Init (theClass t);

st ′′ = drop (1+size ps) st ;

st ′ = replace t i st ′′;

lt ′ = replace (OK t) (OK i) lt ;

( ,rt , , , ) = the (method (Γ,C ) (init ,ps))

in (Init rt#st ′, lt ′)

eff ′ (ArrLoad ,pc,(i#Init (t .[])#st ,lt)) = (Init t#st ,lt)

eff ′ (ArrStore, pc, (v#i#a#st ,lt)) = (st ,lt)

eff ′ (ArrLength, pc, (a#st ,lt)) = (Init (PrimT Integer)#st ,lt)

eff ′ (ArrNew T , pc, (l#st ,lt)) = (Init (t .[])#st ,lt)

Figure 6.5: Effect of instructions on the state type.

148



6.5 Type Safety

Lemma 6.2 The transfer function step, built from app and eff as described in Sec-
tion 2.3.3 and Section 6.4.2, is monotone, bounded, and type preserving (w.r.t. states
and size ins).

The proof that step is bounded and monotone remains unaltered, because we do not need
to look at single instructions for these properties. The proof that step is type preserving
contains four new cases, and the old cases additionally have to assert that they do not
introduce return addresses into arrays and that they do not cause array dimensions to
grow larger that the maximum size. With a few basic lemmas about array dimensions,
Isabelle handles this change in the old cases automatically.

The soundness and completeness results of wt-jvm-progk and wt-jvm-prog l only build on
the framework, on Lemma 6.2, and on the start values defined in the instantiation. Since
all these remain unchanged, the soundness and completeness proofs can stay unchanged
as well. For reference, I repeat the results below:

Theorem 6.2 The executable BV is sound and recognizes all welltyped programs:

wt-jvm-progk Γ = (∃Φ. wt-jvm-prog Γ Φ)

Theorem 6.3 If the LBV accepts a program, it is welltyped:

wt-jvm-prog l Γ Cert −→ (∃Φ. wt-jvm-prog Γ Φ)

Theorem 6.4 The LBV accepts every welltyped program:

wt-jvm-prog Γ Φ −→ wt-jvm-prog l Γ (mk-cert Φ)

As before, I have generated ML code for both wt-jvm-progk and wt-jvm-prog l, showing
that they are fully executable.

6.5 Type Safety

This section presents the type safety theorem. It implies that the bytecode verifier
guarantees type safe execution, now with object initialization, bytecode subroutines,
exceptions, and arrays. With Theorem 6.1, this again implies that the checks of the
defensive machine are redundant and the aggressive machine can be used safely instead.

The theorem is still:
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Theorem 6.5 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ ∧ (start Γ C )
djvm−→ τ −→ τ 6= TypeError

The proof structure with the main lemmas and the invariant argument also remains the
same:

Lemma 6.3 Conformance is invariant during execution in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ ∧ σ

jvm−→ τ −→ Φ ⊢ τ
√

Lemma 6.4 If C is a class in Γ with a main method, then

wt-jvm-prog Γ Φ −→ Φ ⊢ (start Γ C )
√

Lemma 6.5 An execution step started in a conformant state cannot produce a type
error in welltyped programs.

wt-jvm-prog Γ Φ ∧ Φ ⊢ σ
√ −→ exec-d (Normal σ) 6= TypeError

This time it is not hard to adjust the invariant. The most important building block, single
value conformance hp ⊢ v ::� T, already takes arrays into account (see Section 6.2). For
the rest of the conformance relation, we merely have to look for occurrences of a direct
heap access in the predicates.

The first of these occurrences is heap conformance:

lconf :: aheap ⇒ (α ⇒ val option) ⇒ (α ⇒ ty option) ⇒ bool

lconf hp vs Ts ≡ ∀n T . Ts n = Some T −→ (∃ v . vs n = Some v ∧ hp ⊢ v ::� T )

econf :: aheap ⇒ heap-entry ⇒ bool

econf hp entry ≡ case entry of

Obj C fs ⇒ lconf hp fs (map-of (fields (Γ,C )))

| Arr T l en ⇒ lconf hp en (λx . if 0 ≤ x ∧ x < l then Some T else None)

(-
√

) :: aheap ⇒ bool

hp
√ ≡ ∀ a entry . hp a = Some entry −→ econf hp entry

In the definition above, there is now a predicate econf for heap entries instead of oconf
for objects. The object branch is the same as the old oconf, and the array branch says
that for an array of length l and component type T at least the array indices from 0 to
l must be defined, and that the value at these positions must conform to T.

Unsurprisingly, iheap conformance undergoes the same structural change:
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l-init :: aheap ⇒ iheap ⇒ (α ⇒ val option) ⇒ (α ⇒ ty option) ⇒ bool

l-init hp ih vs Ts ≡ ∀n T . Ts n = Some T −→ (∃ v . vs n = Some v ∧ is-init hp ih v)

e-init :: aheap ⇒ iheap ⇒ heap-entry ⇒ bool

e-init hp ih entry ≡ case entry of

Obj C fs ⇒ l-init G hp ih fs (map-of (fields (Γ,C )))

| Arr T l en ⇒ l-init hp ih en (λx . if 0≤x ∧ x<l then Some T else None)

h-init :: aheap ⇒ iheap ⇒ bool

h-init hp ih ≡ ∀ a entry . hp a = Some entry −→ e-init hp ih entry

This is all that needs to be done for arrays. The rest remains as in Section 5.5.

The type safety proof itself is still by case distinction over the instruction set, now with
four new cases for the four new instructions. With some basic lemmas about single
value conformance and arrays, the change in heap structure is handled gracefully by
Isabelle’s automatic tactics: manual adjustments for the old instructions are few and
simple. They mostly consist of replacing explicit statements of the form hp x = (C ,fs)
by hp x = Obj C fs.

6.6 Conclusion

In this chapter, I have presented the last and largest stage of the framework instantiations
for the µJava language. The two executable verified bytecode verifiers now support
classes, objects, inheritance, virtual methods, exception handling, constructors, object
initialization, bytecode subroutines, and arrays.

The formalization grew by 1,600 lines from 13,600 to 15,200 lines of Isabelle code (333
pages in the resulting proof document). The main workload this time was for the new
heap model, the definition of the operational semantics of the new instructions (aggres-
sive and defensive), and the four new cases in the type safety proof.

The additional proof burden for the four new instructions was small (compared to,
say, Invoke-spcl), and the changes to the formalization were restricted mainly to the
virtual machine and the abstract transfer function. Contrary to object initialization
or subroutines, the additional complexity in the type system only played a minor role,
namely in establishing that the set of basic types is still finite.

This suggests that the framework presented in this thesis does not only scale well for
additional features of the BV, but also that adding new instructions is a painless pro-
cedure: extend the definitions of virtual machine and transfer function, and prove the
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additional type safety cases. The rest of the formalization is not affected as long as the
execution model and the type system do not change drastically.

As for the other type systems, the full specification and Isabelle proofs are available from
the VerifiCard project web site [89].
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7 Conclusion

7.1 Summary

In this thesis, I have presented a fully formal, executable, and machine checked specifi-
cation of a representative subset of the Java Virtual Machine and its bytecode verifier,
together with a proof that this bytecode verifier is correct.

The abstract framework for bytecode verification in Chapter 2 proved powerful and flex-
ible enough to handle four different type systems, the most expressive of which covers all
important properties of Java bytecode verification: classes, objects, inheritance, virtual
methods, exception handling, constructors, object initialization, bytecode subroutines,
and arrays.

The instantiations each yielded two executable verified bytecode verifiers: an iterative
data flow algorithm and a lightweight bytecode verifier.

All specifications and proofs have been carried out in the interactive theorem prover
Isabelle/HOL. They are available on the web [89] as proof documents in PDF format
and also as Isabelle sources. All formal proofs in this thesis are machine checked and
generated directly from Isabelle sources.

The following table gives an overview of the size of the framework and the four JVM
formalizations. Each formalization is an extension of the one above it, and contains all
BV features of the formalization before.

Formalization Lines of Isabelle code Pages of proof document

Framework 3,500 87
Exceptions 11,100 245
Object Initialization 14,300 303
Subroutines 13,600 293
Arrays 15,200 333

This thesis mainly contributes to the following areas:
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Java Platform The Java programming platform and execution environment has been
the target of large, international research efforts and is now well understood. This
thesis has shown that the type system used in the JVM and the BV is safe and can
be proved correct in a theorem prover. I have formalized and verified all important
features of the BV, including properties like object initialization that go beyond
type safety. The formalization in this thesis is one of the most comprehensive for-
malizations of the BV that have been published, and it is the most comprehensive
one in a theorem prover. The paper formalization of Freund [26] is comparable in
the set of properties of the BV, but the type system he presents is very complex
and contains subtle problems (see also Chapter 4 and 5). The formalization of
Stärk et al. [81, 82, 83] also includes a comparable BV, but proofs are short and
sketchy. Their treatment of subroutines requires a stronger definite assignment
condition than the Java Language Specification, whereas mine accepts more safe
programs than the specification requires. The formalization of Barthe et al. [5, 6]
contains more instructions, but their main focus is the JVM, so they only have a
simplified treatment of subroutines in the BV.

Methodology The abstract typing framework in this thesis has made it possible to
cleanly distinguish between executable algorithm and type system. It enabled
a uniform treatment of Kildall’s algorithm and lightweight bytecode verification
leading to a lightweight bytecode verifier that handles properties beyond both
the original version by Rose [74, 75] and the industrial version by Sun Microsys-
tems [87, 88]: object initialization is not treated by Rose and subroutines are
treated neither by Rose nor by Sun. Each new type system that meets the condi-
tions of the framework (a semilattice with an order satisfying the ascending chain
condition and a monotone, type preserving transfer function) automatically gives
rise to two executable, correct algorithms. It is important to note that these al-
gorithms are not only executable in theory, but that ML prototypes have been
generated from the specification. The formal distinction between applicability and
effect makes the BV specification modular and clear. The readable Isabelle/Isar
proofs allow a deeper insight into interesting lemmas in the type safety argument.
An earlier version of the µJVM formalization has served Basin et al. [7] as a basis
for their correctness proof of the model checking approach to bytecode verification.
This suggests that not only the framework but also the instantiation is an excel-
lent starting point for further work in the area of bytecode verification and static
analysis of machine code. The abstract and modular structure of the framework
makes it possible to integrate new algorithms as well as new type systems into the
existing formalization.

Type Systems This thesis provides a study of multiple type systems for the BV. I have
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discussed the merging type systems (for exceptions and object initialization) that
are used in current BV implementations, and the more recent set based type system
that is especially useful for bytecode subroutines (and in this thesis also used for
arrays). For the merging type system with object initialization I have shown the
first proof of correctness in a theorem prover that considers a representative subset
of the JVM. For the set based type system I have also presented the first proof of
correctness in a theorem prover, and I have shown that the approach scales to a
representative, object oriented subset of the JVM. The original version in [15, 16]
did not even contain classes. The set based type system is very expressive in the
sense that it accepts a large set of type safe programs. Leroy’s work [50] suggests
that the formalization presented here is an excellent basis for optimizations of
the type system combining the expressiveness of the set based approach with the
efficiency of the merging type systems.

7.2 Further Work

The formalization in this thesis can serve as a basis for further work in several dimensions:

Breadth An obvious direction is extending the instruction set in the formalization to
the full set of instructions supported by Java. As the experience in Chapter 6
suggests, the modular style of the framework should make this relatively easy.
The difficult type system related problems have been solved in this thesis, the
remaining problem is the sheer number of instructions. The work of Casset et
al. [12, 13, 14, 72] suggests that with a smart grouping of instructions factoring
out common properties is possible and will reduce the work load significantly.
Judging from their description in [72], the automation capabilities of Isabelle as a
general purpose theorem prover for higher order logic are significantly better than
those of the B-method tool Casset et al. used, so the task seems entirely possible.

Features There are some features of the BV this thesis has not treated. The most
notable of these is interfaces. They pose a problem to bytecode verification, because
with interfaces, a type system that uses Java’s subtyping relation as ordering is
not a semilattice anymore: the least common supertype is not unique, because a
class or interface may have multiple superinterfaces. For the set based approach
this does not matter, because the order is the subset relation and interfaces can
be introduced without harm. For merging type systems there exist two solutions
in the literature, one by Qian [69] and one by Knoblock and Rehof [42, 43]. The
one by Qian has been formalized and proved correct in Isabelle by Pusch [68]. It
should not be difficult to integrate her formalization into the one presented here.
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The approach in the Sun verifier is not documented in the JVM specification, but
experiments show that it is very simple: the Sun verifier treats all interfaces as
class Object and the invokeinterface instruction checks dynamically whether the
reference implements the specified interface.

Wide data types are handled in the BV by introducing types like double low and
double high. Only the corresponding instructions can access values of these types,
and they can only use them together. Wide instructions are merely a decoding
issue. Preventing jumps into the middle of an instruction encoding can for instance
be achieved by marking program counters in the middle of instruction encodings
as invalid and by testing for this mark in the applicability part of the transfer
function.

As they are checked at runtime in the JVM instead of statically, packages and
access modifiers are more of an issue for the operational semantics and for the
method and field lookup functions than for the BV. Schirmer [76] has shown how to
integrate packages and access modifiers into the existing Bali formalization which
is similar to µJava but considers the source level only. The part for declarations
and lookup functions can directly be transferred to µJava, the part for runtime
checks in the µJVM should be analogous to the checking rules Schirmer formalized
for the source language.

Class loading Class loading is a feature of the JVM that is interesting for bytecode
verification because the class loader is part of the name space for class resolving
(together with the package and class name). Java makes it possible to define and
use one’s own class loaders. By tricking the BV into believing that two classes
loaded by different class loaders are equal, type safety could be broken. The BV in
this thesis takes the approach used on the JavaCard platform and assumes that all
classes of the program have been preloaded and that no dynamic class loading at
runtime is possible. This assumption is expressed by the wellformedness predicate
for programs: the class hierarchy must be acyclic for the algorithm to be correct.
To test this, all classes of the program must be known. Since this condition is only
necessary for termination, it might be possible to lift the restriction to something
weaker. Qian, Goldberg, and Coglio [29, 71] have formalized Java class loading.
One line of further work might investigate how to integrate the solution they
propose with the formalization presented here.

Threads Threads again mostly concern the JVM; the monitor enter and exit instruc-
tions that programs use for synchronization are checked at runtime. Laneve and
Bigliardi [44, 45, 46] have implemented a bytecode verifier that checks structured
handling of thread monitors statically. Structured handling means that each lock
acquired for an object is released, regardless of whether the method returns nor-
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mally or exceptionally. This is complicated by the fact that there may be locks on
different objects acquired and released in arbitrary order and that references to ob-
jects may be aliased. The effort for extending the present formalization by checks
for structured monitor handling should be moderate. The alias analysis that is
required is comparable in complexity to the one for object initialization in Chap-
ter 4; the type safety proof should be easier than the one for object initialization
because the condition for structured monitor handling is local to each method and
does not require reasoning over something like constructor chains. A larger part
of the effort will probably be not the BV but extending the JVM formalization by
monitors and concurrency.

Beyond type safety The typing framework and the JVM formalization presented here
can be used for more than pure type safety. The framework is extensible in two
dimensions: new algorithms that can be proved correct w.r.t. the framework, and
new instantiations of the existing algorithms. An interesting candidate for a new
algorithm is Leroy’s on-card verifier for Java smart cards [48]. It relies on a previous
transformation of the bytecode program, but after this transformation, verification
can be performed with very low memory requirements. It should be possible to
integrate this algorithm into the framework and prove it safe. On the instantiation
side, the possibilities for further research are numerous: everything that can be
expressed by a semilattice type system is suitable, including many standard static
analysis problems. Simple examples are interval analysis for eliminating array
bounds checks in the JVM, or a null pointer analysis that can be used both to
eliminate null pointer checks in the JVM and to alert the programmer to potential
problems in the program. More difficult and interesting properties that could
be expressed by type systems include information flow, time constraints, simple
termination properties, and resource usage. The framework would provide both
the standard data flow analysis and also the lightweight verification algorithm.
The latter turns checking these properties into something that is very similar to a
framework for proof carrying code.
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