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We present Low
∗
, a language for low-level programming and verification, and its application to high-assurance

optimized cryptographic libraries. Low
∗
is a shallow embedding of a small, sequential, well-behaved subset of

C in F
∗
, a dependently-typed variant of ML aimed at program verification. Departing from ML, Low

∗
does

not involve any garbage collection or implicit heap allocation; instead, it has a structured memory model à la

CompCert, and it provides the control required for writing efficient low-level security-critical code.

By virtue of typing, any Low
∗
program is memory safe. In addition, the programmer can make full use

of the verification power of F
∗
to write high-level specifications and verify the functional correctness of

Low
∗
code using a combination of SMT automation and sophisticated manual proofs. At extraction time,

specifications and proofs are erased, and the remaining code enjoys a predictable translation to C. We prove

that this translation preserves semantics and side-channel resistance.

We provide a new compiler back-end from Low
∗
to C and, to evaluate our approach, we implement

and verify various cryptographic algorithms, constructions, and tools for a total of about 28,000 lines of

code, specification and proof. We show that our Low
∗
code delivers performance competitive with existing

(unverified) C cryptographic libraries, suggesting our approach may be applicable to larger-scale low-level

software.
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1 INTRODUCTION
In the pursuit of high performance, cryptographic software widely deployed throughout the internet

is still often subject to dangerous attacks [Int 2017; Dou 2017; Use 2017; Afek and Sharabani 2007;

AlFardan and Paterson 2013; Bhargavan et al. 2014; Bhargavan and Leurent 2016; Böck 2016; Böck

et al. 2016; Dobrovitski 2003; Duong and Rizzo 2011; Heartbleed 2014; Möller et al. 2014; Pincus

and Baker 2004; Rizzo and Duong 2012; Smyth and Pironti 2014; Somorovsky 2016; Stevens et al.

2016; Święcki 2016; Szekeres et al. 2013; Wagner and Schneier 1996]. Recognizing a clear need,

the programming language, verification, and applied cryptography communities are devoting

significant efforts to develop implementations proven secure by construction against broad classes

of these attacks.

Focusing on low-level attacks caused by violations of memory safety, several researchers have

used high-level, type-safe programming languages to implement standard protocols such as Trans-

port Layer Security (TLS). For example, Kaloper-Meršinjak et al. [2015] provide nqsbTLS, an

implementation of TLS in OCaml, which by virtue of its type and memory safety is impervious

to attacks (like Heartbleed [2014]) that exploit buffer overflows. Bhargavan et al. [2014] program

miTLS in F#, also enjoying type and memory safety, but go further using a refinement type system

to prove various higher-level security properties of the protocol. While this approach is attractive

for its simplicity, to get acceptable performance, both nqsbTLS and miTLS link with fast, unsafe im-

plementations of complex cryptographic algorithms, such as those provided by nocrypto [2017], an

implementation that mixes C and OCaml, and libcrypto, a component of the widely used OpenSSL

library [2017]. In the worst case, linking with vulnerable C code can void all the guarantees of the

high-level code.

In this paper, we aim to bridge the gap between high-level, safe-by-construction code, optimized

for clarity and ease of verification, and low-level code exerting fine control over data representations

andmemory layout in order to achieve better performance. To this end, we introduce Low
∗
, a domain-

specific language for verified, efficient, low-level programming embedded within F
∗
[Swamy et al.

2016], an ML-like language with dependent types designed for program verification. We use F
∗

to prove functional correctness and security properties of high-level code. Where efficiency is

paramount, we drop into its C-like Low
∗
subset while still relying on the verification capabilities

of F
∗
to prove our code is memory safe, functionally correct, and secure.

We have applied Low
∗
to program and verify a range of sequential low-level programs, including

libraries for multi-precision arithmetic and buffers, and various cryptographic algorithms, construc-

tions, and protocols built on top of them. Our experiments indicate that compiled Low
∗
code yields

performance on par with existing C code. This code can be used on its own, or used within existing

software through the C ABI. In particular, our C code may be linked to F
∗
programs compiled to

OCaml, providing large speed-ups via its foreign-function interface (FFI) without compromising

safety or security.

An Embedded DSL, Compiled Natively
Low

∗
programs are a subset of F

∗
programs: the programmer writes Low

∗
code using regular F

∗
syntax, against a library we provide that models a lower-level view of memory, akin to the structured

memory layout of a well-defined C program (this is similar to the structured memory model of

CompCert [Leroy 2009; Leroy et al. 2012], rather than the “big array of bytes” model systems

programmers sometimes use). Low
∗
programs interoperate naturally with other F

∗
programs, and

precise specifications of Low
∗
and F

∗
code are intermingled when proving properties of their

combination. As usual in F
∗
, programs are type-checked and compiled to OCaml for execution,

after erasing their computationally irrelevant parts, such as proofs and specifications, using a
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Fig. 1. Low∗ embedded in F∗, compiled to C, with soundness and security guarantees (details in §3)

process similar to Coq’s extraction mechanism [Letouzey 2002]. In particular, our memory-model

library compiles to a simple, heap-based OCaml implementation.

Importantly, Low
∗
programs have a second, equivalent but more efficient semantics via compi-

lation to C, with the predictable performance that comes with a native implementation of their

lower-level memory model. This compilation is implemented by KreMLin, a new compiler from

the Low
∗
subset of F

∗
to C. Figure 1 illustrates the high-level design of Low

∗
and its compilation to

native code. Our main contributions are as follows:

Libraries for low-level programming within F∗ (§2). At its core, F∗ is a purely functional language

to which effects like state are added programmatically using monads. In this work, we instantiate

the state monad of F
∗
to use a CompCert-like structured memory model that separates the stack

and the heap, supporting bulk allocation and deallocation on the stack, and allocating and freeing

individual blocks on the heap. Both the heap and the stack are further divided into disjoint logical

regions, which enables us to manage the separation properties necessary for modular, stateful

verification. On top of this, we program a library of C-style arrays and structs passed by reference,

with support for pointer arithmetic and pointers to the interior of an array or a struct. By virtue of

F
∗
typing, our libraries and all their well-typed clients are guaranteed to be memory safe, e.g., they

never access out-of-bounds or deallocated memory.

Designing Low∗, a subset of F∗ easily compiled to C. We intend to give Low
∗
programmers precise

control over the performance profile of the generated C code. As much as possible, we aim for the

programmer to control even the syntactic structure of the C code, to facilitate its review by security

experts unfamiliar with F
∗
. As such, to a first approximation, Low

∗
programs are F

∗
programs

well-typed in the state monad described above, which, after all their computationally irrelevant

(ghost) parts have been erased, must meet several restrictions, as follows: the code (1) must be first

order, to prevent the need to allocate closures in C; (2) must make any heap allocation explicit;

(3) must not use any recursive datatype, since these would have to be compiled using additional

indirections to C structs; and (4) must be monomorphic, since C does not support polymorphism

directly. Importantly, Low
∗
heavily leverages F

∗
’s capabilities for partial evaluation, hence allowing

the programmer to write high-level, reusable code that is normalized via meta-programming into

the Low
∗
subset before the restrictions are enforced. We emphasize that these restrictions apply only

to computationally relevant code—proofs and specifications are free to use arbitrary higher-order,

dependently typed F
∗
, and very often they do.

A formal translation from Low∗ to CompCert Clight (§3). Justifying its dual interpretation as a

subset of F
∗
and a subset of C, we provide a formal model of Low

∗
, called λow∗, give a translation

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.



17:4 Protzenko et.al.

from λow∗ to Clight [Blazy and Leroy 2009] and show that it preserves trace equivalence with

respect to the original F
∗
semantics. In addition to ensuring that the functional behavior of a

program is preserved, our trace equivalence also guarantees that the compiler does not accidentally

introduce side-channels due tomemory access patterns (as would be the case without the restrictions

above) at least until it reaches Clight, a useful sanity check for cryptographic code. Our theorems

cover the translation of standalone λow∗ programs to C, proving that execution in C preserves the

original F
∗
semantics of the λow∗ program.

KreMLin, a compiler from Low∗ to C (§4). Our formal development guides the implementation of

KreMLin, a new tool that emits C code from Low
∗
. KreMLin is designed to emit well-formatted,

idiomatic C code suitable for manual review. The resulting C programs can be compiled with

CompCert for greatest assurance, and with mainstream C compilers, including GCC and Clang, for

greatest performance. We have used KreMLin to extract to C the 20,000+ lines of Low
∗
code we

have written so far. After compilation, our verified standalone C libraries can be integrated within

larger programs using standard means.

An empirical evaluation (§5). We present a few developments of efficient, verified, interoperable

cryptographic libraries programmed in Low
∗
.

(1) We provide HACL
∗
, a “high-assurance crypto library” implementing and proving (in ∼6,000

lines of Low
∗
) several cryptographic algorithms, including the Poly1305 MAC [Bernstein 2005], the

ChaCha20 cipher [Nir and Langley 2015], and multiplication on the Curve25519 elliptic curve [Bern-

stein 2006]. We package these algorithms to provide the popular NaCl API [Bernstein et al. 2012],

yielding the first performant implementation of NaCl verified for memory safety and side-channel

resistance, along with functional correctness proofs for its core components, including a verified

bignum library customized for safe, fast cryptographic use (§5.1). Using this API, we build new

standalone applications such as PneuTube, a new secure, asynchronous, file transfer application

whose performance compares favorably with widely used, existing utilities like scp.

(2) Emphasizing the applicability of Low
∗
for high-level, cryptographic security proofs on low-

level code, we briefly describe its use in programming and proving (in ∼14,000 lines of Low∗) the
Authenticated Encryption with Associated Data (AEAD) construction at the heart of the record layer

of the new TLS 1.3 Internet Standard. We prove memory safety, functional correctness, and crypto-

graphic security for its main ciphersuites, relying, where available, on verified implementations of

these ciphersuites provided by HACL
∗
. The C code extracted from our verified implementation is

easily integrated within other applications, including, for example, an implementation in F
∗
of TLS

separately verified and compiled to OCaml (through OCaml’s FFI).

Trusted computing base. To date, we have focused on designing and evaluating our methodology

of programming and verifying low-level code shallowly embedded within a high-level programming

language and proof assistant. We have yet to invest effort in minimizing the trusted computing

base of our work, an effort we plan to expend now that we have evidence that our methodology is

worthwhile. Currently, the trusted computing base of our verified libraries includes the implemen-

tation of the F
∗
typechecker and the Z3 SMT solver [de Moura and Bjørner 2008]. Additionally, we

trust the manual proofs of the metatheory relating the semantics of λow∗ to CompCert Clight. The

KreMLin tool is informed by this metatheory, but is currently implemented in unverified OCaml,

and is also trusted. Finally, we inherit the trust assumptions of the C compiler used to compile the

code extracted from Low
∗
.

Supplementary materials. First, we provide, in the appendix, the hand proofs of the theorems

described in §3. The present paper is focused on the metatheory and tools; we also authored a

companion paper [Bhargavan et al. 2017] that describes the cryptographic model we used for the
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1 let chacha20
2 (len: uint32{len ≤ blocklen})
3 (output: bytes{len = output.length})
4 (key: keyBytes)
5 (nonce: nonceBytes{disjoint [output; key; nonce]})
6 (counter: uint32) : Stack unit
7 (requires (λ m0→ output ∈ m0 ∧ key ∈ m0 ∧ nonce ∈ m0))
8 (ensures (λ m0 _m1→modifies1 output m0 m1 ∧
9 m1.[output] ==
10 Seq.prefix len (Spec.chacha20 m0.[key] m0.[nonce]) counter))) =
11 push_frame ();
12 let state = Buffer.create 0ul 32ul in
13 let block = Buffer.sub state 16ul 16ul in
14 chacha20_init block key nonce counter;
15 chacha20_update output state len;
16 pop_frame ()

1 void chacha20 (
2 uint32_t len,
3 uint8_t ∗output,
4 uint8_t ∗key,
5 uint8_t ∗nonce,
6 uint32_t counter)
7

8

9

10

11 {

12 uint32_t state[32] = { 0 };

13 uint32_t ∗block = state + 16;

14 chacha20_init(block, key, nonce, counter);
15 chacha20_update(output, state, len);
16 }

Fig. 2. A snippet from ChaCha20 in Low∗ (left) and its C compilation (right)

record layer of TLS 1.3. Finally, we have an ongoing submission of a paper focused on our HACL
∗

library [Zinzindohoué et al. 2017], where we describe in greater detail our proof techniques for

reusing the bignum formalization across different algorithms and implementations, and provide a

substantial performance evaluation.

We also offer numerous software artifacts. Our tool KreMLin [Protzenko 2017] is actively devel-

oped on GitHub, and so is HACL
∗
[Zinzindohoué et al. 2017]. Most of the Low

∗
libraries live in

the F
∗
repository, also on GitHub. The integration of HACL

∗
within miTLS is also available on

GitHub. For convenience, we offer a regularly-updated Docker image of Project Everest [Microsoft

Research and INRIA 2016], which bundles together F
∗
, miTLS, HACL

∗
, KreMLin. One may fetch

it via docker pull projecteverest/everest. The Docker image contains a README.md with an

overview of the proofs and the code.

2 A LOW∗TUTORIAL
At the core of Low

∗
is a library for programming with structures and arrays manually allocated on

the stack or the heap (§2.2). Memory safety demands reasoning about the extents and liveness of

these objects, while functional correctness and security may require reasoning about their contents.

Our library provides specifications to allow client code to be proven safe, correct and secure, while

KreMLin compiles such verified client code to C.

We illustrate the design of Low
∗
using several examples from our codebase. We show the

ChaCha20 stream cipher [Nir and Langley 2015], focusing on memory safety (§2.1), and the

Poly1305 MAC [Bernstein 2005], focusing on functional correctness. (§2.3). Going beyond functional

correctness, we explain how we prove a combination of ChaCha20 and Poly1305 cryptographically

secure (§2.4). Throughout, we point out key benefits of our approach, notably our use of dependently

typed metaprogramming to work at a relatively high-level of abstraction at little performance cost.

2.1 A First Example: the ChaCha20 Stream Cipher
Figure 2 shows code snippets for the core function of ChaCha20 [Nir and Langley 2015], a modern

stream cipher widely used for fast symmetric encryption. This function computes a block of pseudo-

random bytes, usable for encryption, for example, by XORing them with a plaintext message. On

the left is our Low
∗
code; on the right its compilation to C. The function takes as arguments an
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output length and buffer, and some input key, nonce, and counter. It allocates 32 words of auxiliary,

contiguous state on the stack; then it calls a function to initialize the cipher block from the inputs

(passing an interior pointer to the state); and finally it calls another function that computes a cipher

block and copies its first len bytes to the output buffer.

Aside from the erased specifications at lines 7–10, the C code is in one-to-one correspondence

with its Low
∗
counterpart. These specifications capture the safe memory usage of chacha20. (Their

syntax is explained next, in §2.2.) For each argument passed by reference, and for the auxiliary

state, they keep track of their liveness and size. They also capture its correctness, by describing the

final state of the output buffer using a pure function.

Lines 2–3 use type refinements to require that the len argument equals the length of the output

buffer and it does not exceed the block size. (Violation of these conditions would lead to a buffer

overrun in the call to chacha20_update.) Similarly, types keyBytes and nonceBytes specify pointers to

fixed-sized buffers of bytes. The return type Stack unit on line 6 says that chacha20 returns nothing

and may allocate on the stack, but not on the heap (in particular, it has no memory leak). On the

next line, the pre-condition requires that all arguments passed by reference be live. On lines 8–10, the

post-condition first ensures that the function modifies at most the contents of output (and, implicitly,

that all buffers remain live). We further explain this specification in the next subsection. The rest of

the post-condition specifies functional correctness: the output buffer must contain a sequence of

bytes equal to the first len bytes of the cipher specified by function Spec.chacha20 for the input values

of key, nonce, and counter.

As usual for symmetric ciphers, RFC 7539 specifies chacha20 as imperative pseudocode, and does

not further discuss its mathematical properties. We implement this pseudocode as a series of pure

functions in F
∗
, which can be extracted to OCaml and tested for conformance with the RFC test

vectors. Functions such as Spec.chacha20 then serve as logical specifications for verifying our stateful

implementation. In particular, the last postcondition of chacha20 ensures that its result is determined

by its inputs. We describe more sophisticated functional correctness proofs for Poly1305 in §2.3.

2.2 Low∗: An Embedded DSL for Low-Level Code
As in ML, by default F

∗
does not provide an explicit means to reclaimmemory or to allocate memory

on the stack, nor does it provide support for pointing to the interior of arrays. Next, we sketch

the design of a new F
∗
library that provides a structured memory model suitable for program

verification, while supporting low-level features like explicit freeing, stack allocation, and interior

pointers. In subsequent sections, we describe how programs type-checked against this library can

be compiled safely to C. First, however, we begin with some background on F
∗
.

Background: F∗ is a dependently typed language with support for user-defined monadic effects.

Its types separate computations from values, giving the former computation types of the form

M t1 . . . tn where M is an effect label and t1 . . . tn are value types. For example, Stack unit (...) (...) on

lines 7–8 of Figure 2 is an instance of a computation type, while types like unit are value types.

There are two distinguished computation types: Tot t is the type of a total computation returning a

t-typed value; Ghost t, a computationally irrelevant computation returning a t-typed value. Ghost

computations are useful for specifications and proofs but are erased when extracting to OCaml or

C.

To add state to F
∗
, one defines a state monad represented (as usual) as a function from some

initial memory m0:s to a pair of a result r:a and a final memory m1:s, for some type of memory s.

Stateful computations are specified using the computation type:

ST (a:Type) (pre: s→Type) (post: s→ a→ s→Type)
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Here, ST is a computation type constructor applied to three arguments: a result type a; a pre-condition

predicate on the initial memory, pre; and a post-condition predicate relating the initial memory, result

and final memory. We generally annotate the pre-condition with the keyword requires and the post-

condition with ensures for better readability. A computation e of type ST a (requires pre) (ensures post),

when run in an initial memory m0:s satisfying pre m, produces a result r:a and final memory m1:s

satisfying post m0 r m1, unless it diverges.
1
F
∗
uses an SMT solver to discharge the verification

conditions it computes when type-checking a program.

Hyper-stacks: A region-based memory model for Low∗. For Low∗, we instantiate the type s in the

state monad to HyperStack.mem (which we refer to as just “hyper-stack”), a new region-based memory

model [Tofte and Talpin 1997] covering both stack and heap. Hyper-stacks are a generalization of

hyper-heaps, a memory model proposed previously for F
∗
[Swamy et al. 2016], designed to provide

lightweight support for separation and framing for stateful verification. Hyper-stacks augment

hyper-heaps with a shape invariant to indicate that the lifetime of a certain set of regions follow a

specific stack-like discipline. We sketch the F
∗
signature of hyper-stacks next.

A logical specification of memory. Hyper-stacks partition memory into a set of regions. Each

region is identified by an rid and regions are classified as either stack or heap regions, according

to the predicate is_stack_region—we use the type abbreviation sid for stack regions and hid for heap

regions. A distinguished stack region, root, outlives all other stack regions. The snippet below is the

corresponding F
∗
code.

type rid
val is_stack_region: rid→Tot bool
type sid = r:rid{is_stack_region r}
type hid = r:rid{¬ (is_stack_region r)}
val root: sid

Next, we show the (partial) signature of mem, our model of the entire memory, which is equipped

with a select/update theory [McCarthy 1962] for typed references ref a. Additionally, we have a

function to refer to the region_of a reference, and a relation r ∈m to indicate that a reference is live in

a given memory.

type mem
type ref : Type→Type
val region_of: ref a→Ghost rid
val _ ∈ _ : ref a→mem→Tot Type (∗ a ref is contained in a mem ∗)
val _ [_] : mem→ ref a→Ghost a (∗ selecting a ref ∗)
val _ [_]← _ : mem→ ref a→ a→Ghost mem (∗ updating a ref ∗)
val rref r a = x:ref a {region_of x = r} (∗ abbrev. for a ref in region r ∗)

Heap regions. By defining the ST monad over the mem type, we can program stateful primitives

for creating new heap regions, and allocating, reading, writing and freeing references in those

regions—we show some of their signatures below. Assuming an infinite amount of memory, alloc’s

pre-condition is trivial while its post-condition indicates that it returns a fresh reference in region r

initialized appropriately. Freeing and dereferencing (!) require their argument to be present in the

current memory, eliminating double-free and use-after-free bugs.

val alloc: r:hid→ init:a→ ST (rref r a) (ensures (λ m0 x m1→ x ⇑∈ m0 ∧ x ∈m1 ∧ m1 = (m0[x]← init)))
val free: r:hid→ x:rref r a→ ST unit (requires (λ m→ x ∈m)) (ensures (λ m0 _ m1 → x ⇑∈ m1 ∧ ∀y≠ x. m0[y] = m1[y]))
val (!): x:ref a→ ST a (requires (λ m→ x ∈m)) (ensures (λ m0 y m1→m0 = m1 ∧ y = m1[x]))

1
F
∗
recently gained support for proving stateful computations terminating. We have begun making use of this feature to

prove our code terminating, wherever appropriate, but make no further mention of this.
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Since we support freeing individual references within a region, our model of regions could seem

similar to Berger et al. [2002]’s reaps. However, at present, we do not support freeing heap objects

en masse by deleting heap regions; indeed, this would require using a special memory allocator.

Instead, for us heap regions serve only to logically partition the heap in support of separation and

modular verification, as is already the case for hyper-heaps [Swamy et al. 2016], and heap region

creation is currently compiled to a no-op by KreMLin.

Stack regions, which we will henceforth call stack frames, serve not just as a reasoning device,
but provide the efficient C stack-based memory management mechanism. KreMLin maps stack

frame creation and destruction directly to the C calling convention and lexical scope. To model

this, we extend the signature of mem to include a tip region representing the currently active stack

frame, ghost operations to push and pop frames on the stack of an explicitly threaded memory,

and their effectful analogs, push_frame and pop_frame that modify the current memory. In chacha20

in Fig. 2, the push_frame and pop_frame correspond precisely to the braces in the C program that

enclose a function body’s scope. We also provide a derived combinator, with_frame, which combines

push_frame and pop_frame into a single, well-scoped operation. Programmers are encouraged to use

the with_frame combinator, but, when more convenient for verification, may also use push_frame and

pop_frame directly. KreMLin ensures that all uses of push_frame and pop_frame are well-scoped. Finally,

we show the signature of salloc which allocates a reference in the current tip stack frame.

val tip: mem→Ghost sid
val push: mem→Ghost mem
val pop: m:mem{tip m ≠ root}→Ghost mem
val push_frame: unit→ ST unit (ensures (λ m0 () m1→m1 = push m0))
val pop_frame: unit→ ST unit (requires (λ m→ tip m ≠ root)) (ensures (λ m0 () m1→m1 = pop m0))
val salloc: init:a→ ST (ref a) (ensures (λ m0 x m1→ x ⇑∈ m0 ∧ x ∈m1 ∧ region_of x = tip m1 ∧

tip m0 = tip m1 ∧ m1 = (m0[x]← init)))

The Stack effect. The specification of chacha20 claims that it uses only stack allocation and has no

memory leaks, using the Stack computation type. This is straightforward to define in terms of ST, as

shown below.

effect Stack a pre post = ST a (requires pre)
(ensures (λ m0 x m1→ post m0 x m1 ∧ tip m0 = tip m1 ∧ (∀ r. r ∈m1⇐⇒ r ∈m0)))

Stack computations are ST computations that leave the stack tip unchanged (i.e., they pop all frames

they may have pushed) and yield a final memory with the same domain as the initial memory. This

ensures that Low
∗
code with Stack effect has explicitly deallocated all heap allocated references

before returning, ruling out memory leaks. As such, we expect all externally callable Low
∗
functions

to have Stack effect. Other code can safely pass pointers to objects allocated in their heaps into Low
∗

functions with Stack effect since the definition of Stack forbids the Low∗ code from freeing these

references.

Modeling arrays. Hyper-stacks separate heap and stack memory, but each region of memory still

only supports abstract, ML-style references. A crucial element of low-level programming is control

over the specific layout of objects, especially for arrays and structs. We describe first our modeling

of arrays by implementing an abstract type for buffers in Low
∗
, using just the references provided

by hyper-stacks. Relying on its abstraction, KreMLin compiles our buffers to native C arrays.

The type ‘buffer a’ below is a single-constructor inductive type with 4 arguments. Its main content

argument holds a reference to a seq a, a purely functional sequence of a’s whose length is determined

by the first argument max_length. The refinement type b:buffer uint32{length b = n} is translated to a C

declaration uint32_t b[n] by KreMLin and, relying on C pointer decay, further referred to via uint32_t ∗.
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abstract type buffer a =
| MkBuffer: max_length:uint32
→ content:ref (s:seq a{Seq.length s = max_length})
→ idx:uint32
→ length:uint32 {idx + length ≤ max_length}→ buffer a

The last two arguments of a buffer are there to support creating smaller sub-buffers from a larger

buffer, via the Buffer.sub operation below. A call to ‘Buffer.sub b i l’ returning b′ is compiled to C pointer

arithmetic b + i (as seen in Figure 2 line 13 in chacha20). To accurately model this, the content field

is shared between b and b′, but idx and length differ, to indicate that the sub-buffer b′ covers only

a sub-range of the original buffer b. The sub operation has computation type Tot, meaning that it

does not read or modify the state. The refinement on the result b′ indicates its length and, using

the includes relation, records that b and b′ are aliased.

val sub: b:buffer a→ i:uint32→ len:uint32{i + len ≤ b.length}→Tot (b':buffer a{b'.length = len ∧ b includes b'})

We also provide statically bounds-checked operations for indexing and updating buffers. The

signature of the index function below requires the buffer to be live and the index location to be

within bounds. Its postcondition ensures that the memory is unchanged and describes what is

returned in terms of the logical model of a buffer as a sequence.

let get (m:mem) (b:buffer a) (i:uint32{i < b.length}) : Ghost a = Seq.index (m[b.content]) (b.idx + i)
val index: b:buffer a→ i:uint32{i < b.length}→ Stack a
(requires (λ m→ b.content ∈m))

(ensures (λ m0 z m1→m1 = m0 ∧ z = get m1 b i))

All lengths and indices are 32-bit machine integers, and refer to the number of elements in the

buffer, not the number of bytes the buffer occupies. This currently prevents addressing very large

buffers on 64-bit platforms. (To this end, we may parameterize our development over a C data

model, wherein indices for buffers would reflect the underlying (proper) ptrdiff_t type.)

Similarly, memory allocation remains platform-specific. It may cause a (fatal) error as it runs

out of memory. More technically, the type of create may not suffice to prevent pointer-arithmetic

overflow; if the element size is greater than a byte, and if the number of elements is 2
32
, then the

argument passed to malloc will overflow on a platform where sizeof size_t == 4. To prevent such cases,

KreMLin inserts defensive dynamic checks (which typically end up eliminated by the C compiler

since our stack-allocated buffer lengths are compile-time constants). In the future, we may statically

prevent it by mirroring the C sizeof operator at the F∗ level, and requiring that for each Buffer.create

operation, the resulting allocation size, in bytes, is no greater than what size_t can hold.

Modeling structs. Generalizing ‘buffer t’ (abstractly, a reference to a finite map from natural num-

bers to t), we model C-style structs as an abstract reference to a ‘struct key value’, that is, a map from

keys k:key to values whose type ‘value k’ depends on the key. For example, we represent the type of

a colored point as follows, using a struct with two fields X and Y for coordinates and one field Color,

itself a nested struct of RGB values.

type color_fields = R | G | B
type color = struct color_fields (λ R | G | B→uint32)
type colored_point_fields = X | Y | Color
type colored_point = struct colored_point_fields (λ X | Y→ int32 | Color→ color)

C structs are flatly allocated; the declaration above models a contiguous memory block that holds

20 bytes or more, depending on alignment constraints. As such, we cannot directly perform pointer

arithmetic within that block; rather, we navigate it by referring to fields. To this end, our library

of structs provides an interface to manipulate pointers to these C-like structs, including pointers
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that follow a path of fields throughout nested structs. The main type provided by our library is the

indexed type ptr shown below, encapsulating a base reference content: ref from and a path p of fields

leading to a value of type to.

abstract type ptr: Type→Type = Ptr: #from:Type→ content: ref from→ #to: Type→ p: path from to→ ptr to

When allocating a struct on the stack, the caller provides a ‘struct k v’ literal and obtains a

‘ptr (struct k v)’, a pointer to a struct literal in the current stack frame (a Ptr with an empty path).

The extend operator below supports extending the access path associated with a ‘ptr (struct k v)’ to

obtain a pointer to one of its fields.

val extend: #key: eqtype→ #value: (key→Tot Type)→ p: ptr (struct key value)→ fd: key→ ST (ptr (value fd))
(requires (λ h→ live h p))
(ensures (λ h0 p′ h1→h0 == h1 ∧ p′ == field p fd))

Finally, the read and write operations allows accessing and mutating the field referred to by a ptr.

val read: #a:Type→ p: ptr a→ ST value
(requires (λ h→ live h p))
(ensures (λ h0 v h1→ live h0 p ∧ h0 == h1 ∧ v == as_value h0 p))

val write: #a:Type→ b:ptr a→ z:a→ ST unit
(requires (λ h→ live h b))
(ensures (λ h0 _h1→ live h0 b ∧ live h1 b ∧ modifies_1 b h0 h1 ∧ as_value h1 b == z))

2.3 Using Low∗ for Proofs of Functional Correctness and Side-Channel Resistance
This section and the next illustrate our “high-level verification for low-level code” methodology.

Although programming at a low-level, we rely on features like type abstraction and dependently

typed meta-programming, to prove our code functionally correct, cryptographically secure, and

free of a class of side-channels.

We start with Poly1305 [Bernstein 2005], a Message Authentication Code (MAC) algorithm.
2

Unlike chacha20, for which the main property of interest is implementation safety, Poly1305 has a

mathematical definition in terms of a polynomial in the prime field GF(2130 − 5), against which
we prove our code functionally correct. Relying on correctness, we then prove injectivity lemmas

on encodings of messages into field polynomials, and we finally prove cryptographic security of

a one-time MAC construction for Poly1305, specifically showing unforgeability against chosen

message attacks (UF1CMA). This game-based proof involves an idealization step, justified by a

probabilistic proof on paper, following the methodology we explain in §2.4.

For side-channel resistance, we use type abstraction to ensure that our code’s branching and

memory access patterns are secret independent. This style of F
∗
coding is advocated by Zinzindo-

houé et al. [Zinzindohoué et al. 2016]; we place it on formal ground by showing that it is a sound

way of enforcing secret independence at the source level (§3.1) and that our compilation carries

such properties to the level of Clight (§3.3). To carry our results further down, one may validate the

output of the C compiler by relying on recent tools proving side-channel resistance at the assembly

level [Almeida et al. 2016a,b]. We sketch our methodology on a small snippet from our specialized

arithmetic (bigint) library upon which we built Poly1305.

2
Implementation bugs in Poly1305 are still a practical concern: in 2016 alone, the Poly1305 OpenSSL implementation

experienced two correctness bugs [Benjamin 2016; Böck 2016] and a buffer overflow [CVE 2016].
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1 let normalize (b:bigint) : Stack unit
2 (requires (λ m0 → compact m0 b))
3 (ensures (λ m0 () m1 → compact m1 b ∧ modifies1 b m0 m1 ∧
4 eval m1 b = eval m0 b % (pow2 130 − 5)))

5 = let h0 = ST.get() in (∗ a logical snapshot of the initial state ∗)
6 let ones = 67108863ul in (∗ 2^26 − 1 ∗)
7 let m5 = 67108859ul in (∗ 2^26 − 5 ∗)
8 let m = (eq_mask b.(4ul) ones) & (eq_mask b.(3ul) ones)
9 & (eq_mask b.(2ul) ones) & (eq_mask b.(1ul) ones)
10 & (gte_mask b.(0ul) m5) in
11 b.(0ul)← b.(0ul) − m5 & m;

12 b.(1ul)← b.(1ul) − b.(1ul) & m; b.(2ul)← b.(2ul) − b.(2ul) & m;

13 b.(3ul)← b.(3ul) − b.(3ul) & m; b.(4ul)← b.(4ul) − b.(4ul) & m;

14 lemma_norm h0 (ST.get()) b m (∗ relates mask to eval modulo ∗)

1 val poly1305_mac:
2 tag:nbytes 16ul→
3 len:u32→
4 msg:nbytes len{disjoint tag msg}→
5 key:nbytes 32ul{disjoint msg key ∧
6 disjoint tag key}→
7 Stack unit
8 (requires (λ m→msg ∈ m ∧ key ∈ m ∧ tag ∈ m))

9 (ensures (λ m0 _m1 →
10 let r = Spec.clamp m0[sub key 0ul 16ul] in
11 let s = m0[sub key 16ul 16ul] in
12 modifies {tag} m0 m1 ∧
13 m1[tag] ==
14 Spec.mac_1305 (encode_bytes m0[msg]) r s))

Fig. 3. Unique representation of a Poly1305 bigint (left) and the top-level spec of Poly1305 (right)

Representing field elements using bigints. We represent elements of the field underlying Poly1305

as 130-bit integers stored in Low
∗
buffers of machine integers called limbs. Spreading out bits evenly

across 32-bit words yields five limbs ℓi , each holding 26 bits of significant data. A ghost function

eval = ∑4

i=0 ℓi × 226×i maps each buffer to the mathematical integer it represents. Efficient bigint

arithmetic departs significantly from elementary school algorithms. Additions, for instance, can be

made more efficient by leveraging the extra 6 bits of data in each limb to delay carry propagation.

For Poly1305, a bigint b is in compact form in state m (i.e., compact m b) when all its limbs fit in

26 bits. Compactness does not guarantee uniqueness of representation as 2
130 − 5 and 0 are the

same number in the field but they have two different compact representations that both fit in 130

bits—this is true for similar reasons for the range (︀0, 5).

Abstracting integers as a side-channel mitigation. Modern cryptographic implementations are

expected to be protected against side-channel attacks [Kocher 1996]. As such, we aim to show

that the branching behavior and memory accesses of our crypto code are independent of secrets.

To enforce this, we use an abstract type limb to represent limbs, all of whose operations reveal

no information about the contents of the limb, either through its result or through its branch-

ing behavior and memory accesses. For example, rather than providing a comparison operator,

eq_leak: limb→ limb→Tot bool, whose boolean result reveals information about the input limbs, we use

a masking operation (eq_mask) to compute equality securely. Unlike OCaml, F
∗
’s equality is not

fully polymorphic, being restricted to only those types that support decidable equality, limb not

being among them.

val v : limb→Ghost nat (∗ limbs only ghostly revealed as numbers ∗)
val eq_mask: x:limb→ y:limb→Tot (z:limb{if v x ≠ v y then v z = 0 else v z = pow2 26 − 1})

In the signature above, v is a function that reveals an abstract limb as a natural number, but only

in ghost code—a style referred to as translucent abstraction [Swamy et al. 2016]. The signature of

eq_mask claims that it returns a zero limb if the two arguments differ, although computationally

relevant code cannot observe this fact. Note, the number of limbs in a Poly1305 bigint is a public

constant, i.e., bigint = b:(buffer limb){b.length = 5}.

Proving normalize correct and side-channel resistant. The normalize function of Figure 3 modifies

a compact bigint in-place to reduce it to its canonical representation. The code is rather opaque,

since it operates by strategically masking each limb in a secret independent manner. However,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.



17:12 Protzenko et.al.

its specification clearly shows its intent: the new contents of the input bigint is the same as the

original one, modulo 2130 − 5. At line 14, we see a call to a F
∗
lemma, which relates the masking

operations to the modular arithmetic in the specification—the lemma is erased during extraction.

A top-level functional correctness spec. Using our bigint library, we implement poly1305_mac and

prove it functionally correct. Its specification (Figure 3, right) states that the final value of the 16

byte tag (m1[tag]) is the value of Spec.mac_1305, a polynomial of the message and the key encoded as

field elements. We use this mathematical specification as a basis for the game-based cryptographic

proofs of constructions built on top of Poly1305, such as the AEAD construction, described next.

2.4 Cryptographic Provable-Security Example: AEAD
Going beyond functional correctness, we sketch how we use Low

∗
to do security proofs in the

standard model of cryptography, using “authenticated encryption with associated data” (AEAD) as

a sample construction. AEAD is the main protection mechanism for the TLS record layer; it secures

most Internet traffic.

AEAD has a generic security proof by reduction to two core functionalities: a stream cipher (such

as ChaCha20) and a one-time-MAC (such as Poly1305). The cryptographic, game-based argument

supposes that these two algorithms meet their intended ideal functionalities, e.g., that the cipher is
indistinguishable from a random function. Idealization is not perfect, but is supposed to hold against

computationally limited adversaries, except with small probabilities, say, ε
ChaCha20

and ε
Poly1305

. The

argument then shows that the AEAD construction also meets its own ideal functionality, except

with probability, say, ε
Chacha20

+ ε
Poly1305

.

To apply this security argument to our implementation of AEAD, we need to encode such

assumptions. To this end, we supplement our real Low
∗
code with ideal F

∗
code. For example, ideal

AEAD is programmed as follows:

● encryption generates a fresh random ciphertext, and it records it together with the encryption

arguments in a log.

● decryption simply looks up an entry in the log that matches its arguments and returns the

corresponding plaintext, or reports an error.

These functions capture both confidentiality (ciphertexts do not depend on plaintexts) and integrity

(decryption only succeeds on ciphertexts output by encryption). Their behaviors are precisely

captured by typing, using pre- and post-conditions about the ghost log shared between them, and

abstract types to protect plaintexts and keys. We show below the abstract type of keys and the

encryption function for idealizing AEAD.

type entry = cipher ∗ data ∗ nonce ∗ plain
abstract type key = { key: keyBytes; log: if Flag.aead then ref (seq entry) else unit }
let encrypt (k:key) (n:nonce) (p:plain) (a:data) =
if Flag.aead then let c = random_bytes ℓc in k.log := (c, a, n, p) :: k.log; c
else encrypt k.key n p a

A module Flag declares a set of abstract booleans (idealization flags) that precisely capture each

cryptographic assumption. For every real functionality that we wish to idealize, we branch on the

corresponding flag. In the code above, for instance we idealize encryption when Flag.prf is set.

This style of programming heavily relies on the normalization capabilities of F
∗
. At verification

time, flags are kept abstract, so that we verify both the real and ideal versions of the code. At

extraction time, we reveal these booleans to be false, allowing the F
∗
normalizer to drop the then

branch, and replace the log field with unit, meaning that both the high-level, list-manipulating code

and corresponding type definitions are erased, leaving only low-level code from the else branch to

be extracted.
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Using this technique, we verify by typing that our AEAD code, when using any ideal cipher and

one-time MAC, perfectly implements ideal AEAD. We also rely on typing to verify that our code

complies with the pre-conditions of the intermediate proof steps. Finally, we also prove that our

code does not reuse nonces, a common cryptographic pitfall.

Inlining and Type Abstraction. In cryptographic constructions, we often rely on type abstraction

to protect private state that depends on keys and other secrets.

A typical C application, such as OpenSSL, achieves limited type abstraction as follows. The

library exposes a public C header file for its clients, relying on void ∗ and opaque heap allocation

functions for type abstraction.

typedef void ∗KEY_HANDLE;
void KEY_init(KEY_HANDLE ∗key);
void KEY_release(KEY_HANDLE key);

Opportunities for mistakes abound, since the void ∗ casts are unchecked. Furthermore, abstraction

only occurs at the public header boundary, not between internal translation units. Finally, this

pattern does not allow the caller to efficiently allocate the actual key on the stack.

The Low
∗
discipline allows the programmer to achieve type abstraction andmodularity, while still

supporting efficient stack allocation. As an example, for computing one-time MACs incrementally,

we use an accumulator that holds the current value of a polynomial computation, which depends

on a secret key. For cryptographic soundness, we must ensure that no information about such

intermediate values leak to the rest of the code.

To this end, all operations on accumulators are defined in a single module of the form below—our

code is similar but more complex, as it supports MAC algorithms with different field representations

and key formats, and also keeps track of the functional correctness of the polynomial computation.

module OneTimeMAC
type elem = lbytes (v accLen) (∗ intermediate value (representing a a field element) ∗)
abstract type key (i:macID) = elem
abstract type accum (i:macID) = elem
(∗ newAcc allocates on the caller's frame ∗)
let newAcc (i:macID) : StackInline (accum i) (...) = Buffer.create 0ul accLen
let extend (i:macID) (key: macKey i) (acc:accum i) (word:elem) : Stack unit (...) = add acc word; mul acc key

The index i is used to separate multiple instances of MACs; for instance, it prevents calls to

extend an accumulator with the wrong key. Our type-based separation between different kinds of

elements is purely static. At runtime, the accumulator, and probably the key, are just bytes on the

stack (or in registers), whereas the calls to add and mul are also likely to be have been inlined in the

code that uses MACs.

The newAcc function creates a new buffer for a given index, initialized to 0. The function returns a

pointer to the buffer it allocates. The StackInline effect indicates that the function does need to push

a frame before allocation, but instead allocates in its caller’s stack frame. KreMLin textually inlines

the function in its caller’s body at every call-site, ensuring that the allocation performed by newAcc

indeed happens in the caller’s stack frame. From the perspective of Low
∗
, newAcc is a function in a

separate module, and type abstraction is preserved.

3 A FORMAL TRANSLATION FROM LOW∗TO CLIGHT
Figure 1 on page 3 provides an overview of our translation from Low

∗
to CompCert Clight, starting

with emf
⋆
, a recently proposed model of F

∗
[Ahman et al. 2017]; then λow∗, a formal core of Low

∗
after all erasure of ghost code and specifications; then C

∗
, an intermediate language that switches

the calling convention closer to C; and finally to Clight. In the end, our theorems establish that: (a)
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τ ∶∶= int ⋃︀ unit ⋃︀ {
ÐÐ⇀
f = τ} ⋃︀ buf τ ⋃︀ α

v ∶∶= x ⋃︀ n ⋃︀ () ⋃︀ {
ÐÐ⇀
f = v} ⋃︀ (b,n,

Ð⇀
f )

e ∶∶= let x ∶ τ = readbuf e1 e2 in e ⋃︀ let _ = writebuf e1 e2 e3 in e
⋃︀ let x = newbuf n (e1 ∶ τ) in e2 ⋃︀ subbuf e1 e2
⋃︀ let x ∶ τ = readstruct e1 in e ⋃︀ let _ = writestruct e1 e2 in e
⋃︀ let x = newstruct (e1 ∶ τ) in e2 ⋃︀ e1 ▷ f
⋃︀ withframe e ⋃︀ pop e ⋃︀ if e1 then e2 else e3
⋃︀ let x ∶ τ = d e1 in e2 ⋃︀ let x ∶ τ = e1 in e2 ⋃︀ {

ÐÐ⇀
f = e} ⋃︀ e . f ⋃︀ v

P ∶∶= ⋅ ⋃︀ let d = λy ∶ τ1. e ∶ τ2,P

Fig. 4. λow∗ syntax

the safety and functional correctness properties verified at the F
∗
level carry on to the generated

Clight code (via semantics preservation), and (b) Low
∗
programs that use the secrets parametrically

enjoy the trace equivalence property, at least until the Clight level, thereby providing protection

against side-channels.

Prelude: Internal transformations in emf
⋆. We begin by briefly describing a few internal trans-

formations on emf
⋆
, focusing in the rest of this section on the pipeline from λow∗ to Clight—the

formal details are in the appendix. To express computational irrelevance, we extend emf
⋆
with a

primitive Ghost effect. An erasure transformation removes ghost subterms, and we prove that this

pass preserves semantics, via a logical relations argument. Next, we rely on a prior result [Ahman

et al. 2017] showing that emf
⋆
programs in the ST monad can be safely reinterpreted in emf

⋆
st
, a

calculus with primitive state. We obtain an instance of emf
⋆
st
suitable for Low

∗
by instantiating its

state type with HyperStack.mem. To facilitate the remainder of the development, we transcribe emf
⋆
st

to λow∗, which is a restriction of emf
⋆
st
to first-order terms that only use stack memory, leaving the

heap out of λow∗, since it is not a particularly interesting aspect of the proof. This transcription

step is essentially straightforward, but is not backed by a specific proof. We plan to fill this gap as

we aim to mechanize our entire proof in the future.

3.1 λow∗: A Formal Core of Low∗Post-Erasure
Themeat of our formalization of Low

∗
begins with λow∗, a first-order, stateful language, whose state

is structured as a stack of memory regions. It has a simple calling convention using a traditional,

substitutive β-reduction rule. Its small-step operational semantics is instrumented to produce

traces that record branching and the accessed memory addresses. As such, our traces account

for side-channel vulnerabilities in programs based on the program counter model [Molnar et al.

2006] augmented to track potential leaks through cache behavior [Barthe et al. 2014]. We define a

simple type system for λow∗ and prove that programs well-typed with respect to some values at an

abstract type produce traces independent of those values, e.g., our bigint library when translated to

λow∗ is well-typed with respect to an abstract type of limbs and leaks no information about them

via their traces.

Syntax. Figure 4 shows the syntax of λow∗. A program P is a sequence of top-level function

definitions, d . We omit loops but allow recursive function definitions. Values v include constants,

immutable records, and buffers (b,n, (︀⌋︀) and mutable structures (b,n,
Ð⇀
f ) passed by reference,

where b is the address of the buffer or structure, n is the offset in the buffer, and

Ð⇀
f designates the

path to the structure field to take a reference of (this path, as a list, can be longer than 1 in the case

of nested mutable structures.) Stack allocated buffers (readbuf, writebuf, newbuf, and subbuf), and
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P ⊢ (H ,withframe e) →⋅ (H ;{},pop e)
WF

P ⊢ (H ; _,pop v) →⋅ (H ,v)
Pop

P ⊢ (H , if 0 then e1 else e2) →brF (H ,e2)
LIfF

P(f ) = λy ∶ τ1. e1 ∶ τ2

P ⊢ (H , let x ∶ τ = f v in e) → (H , let x ∶ τ = e1(︀v⇑y⌋︀ in e)
App

H(b,n + n1, (︀⌋︀) = v ℓ = read(b,n + n1, (︀⌋︀)

P ⊢ (H , let x = readbuf (b,n, (︀⌋︀) n1 in e) →ℓ (H ,e(︀v⇑x⌋︀)
LRd

b ∉ dom(H ;h) h1 = h(︀b ↦ vn⌋︀ e1 = e(︀(b, 0)⇑x⌋︀ ℓ = write(b, 0), . . . ,write(b,n − 1)

P ⊢ (H ;h, let x = newbuf n (v ∶ τ) in e) →ℓ (H ;h1,e1)
New

Fig. 5. Selected semantic rules from λow∗

their mutable structure counterparts (readstruct, writestruct, newstruct, ▷), are the main feature

of the expression language, along with withframe e , which pushes a new frame on the stack for

the evaluation of e , after which it is popped (using pop e , an administrative form internal to the

calculus). Once a frame is popped, all its local buffers and mutable structures become inaccessible.

Mutable structures can be nested, and stored into buffers, in both cases without extra indirection.

However, the converse is not true, as λow∗ currently does not allow arbitrary nesting of arrays

within mutable structures without explicit indirection via separately allocated buffers. We leave

such generalization as future work.

Type system. λow∗ types include the base types int and unit, record types {
ÐÐ⇀
f = τ}, buffer types

buf τ , mutable structure types struct τ , and abstract types α . The typing judgment has the form,

ΓP ;Σ; Γ ⊢ e ∶ τ , where ΓP includes the function signatures; Σ is the store typing; and Γ is the

usual context of variables. We elide the rules, as it is a standard, simply-typed type system. The

type system guarantees preservation, but not progress, since it does not attempt to account for

bounds checks or buffer/mutable structure lifetime. However, memory safety (and progress) is a

consequence of Low
∗
typing and its semantics-preserving erasure to λow∗.

Semantics. We define evaluation contexts E for standard call-by-value, left-to-right evaluation

order. The memory H is a stack of frames, where each frame maps addresses b to a sequence of

values
Ð⇀v . The λow∗ small-step semantics judgment has the form P ⊢ (H ,e) →ℓ (H

′,e′), meaning

that under the program P , configuration (H ,e) steps to (H ′,e′) emitting a trace ℓ, including reads

and writes to buffer references or mutable structure references, and branching behavior, as shown

below.

ℓ ∶∶= ⋅ ⋃︀ read(b,n,
Ð⇀
f ) ⋃︀ write(b,n,

Ð⇀
f ) ⋃︀ brT ⋃︀ brF ⋃︀ ℓ1, ℓ2

Figure 5 shows selected reduction rules from λow∗. Rule WF pushes an empty frame on the

stack, and rule Pop pops the topmost frame once the expression has been evaluated. Rule LIfF is

standard, except for the trace brF recorded on the transition. Rule App is a standard, substitutive

β-reduction. Rule LRd returns the value at the (n +n1) offset in the buffer at address b, and emits a

read(b,n +n1, (︀⌋︀) event. Rule New initializes the new buffer, and emits write events corresponding

to each offset in the buffer.

Secret independence. A λow∗ program can be written against an interface providing secrets at an

abstract type. For example, for the abstract type limb, one might augment the function signatures

ΓP of a program with an interface for the abstract type Γlimb = eq_mask : limb2 → limb, and typecheck a

source program with free limb variables (Γ = secret:limb), and empty store typing, using the judgment
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Γlimb, Γp ; ⋅; Γ ⊢ e ∶ τ . Given any representation τ for limb, an implementation for eq_mask whose trace

is input independent, and any pair of values v0 ∶ τ ,v1 ∶ τ , we prove that running e(︀v0⇑secret⌋︀ and
e(︀v1⇑secret⌋︀ produces identical traces, i.e., the traces reveal no information about the secret vi . We

sketch the formal development next, leaving details to the appendix.

Given a derivation Γs , ΓP ;Σ; Γ ⊢ e ∶ τ , let ∆ map type variables in the interface Γs to concrete

types and let Ps contain the implementations of the functions (from Γs ) that operate on secrets.

To capture the secret independence of Ps , we define a notion of an equivalence modulo secrets, a
type-indexed relation for values (v1 ≡τ v2) and memories (Σ ⊢ H1 ≡ H2). Intuitively two values

(resp. memories) are equivalent modulo secrets if they only differ in subterms that have abstract

types in the domain of the ∆ map—we abbreviate “equivalent modulo secrets” as “related” below.

We then require that each function f ∈ Ps , when applied in related stores to related values, always

returns related results, while producing identical traces. Practically, Ps is a (small) library written

carefully to ensure secret independence.

Our secret-independence theorem is then as follows:

Theorem 3.1 (Secret independence). Given
(1) a program well-typed against a secret interface, Γs , i.e, Γs , ΓP ;Σ; Γ ⊢ (H ,e) ∶ τ ,
(2) a well-typed implementation of the Γs interface, Γs ;Σ; ⋅ ⊢∆ Ps , such that Ps is equivalent modulo

secrets,
(3) a pair (ρ1, ρ2) of well-typed substitutions for Γ,
then either:
(1) both programs cannot reduce further, i.e. Ps ,P ⊢ (H ,e)(︀ρ1⌋︀ ↛ and Ps ,P ⊢ (H ,e)(︀ρ2⌋︀ ↛, or
(2) both programs make progress with the same trace, i.e. there exists Σ′ ⊇ Σ, Γ′ ⊇ Γ,H ′,e′, a pair
(ρ′

1
, ρ′

2
) of well-typed substitutions for Γ′, and a trace ℓ such that

i) Ps ,P ⊢ (H ,e)(︀ρ1⌋︀ →+ℓ (H
′,e′)(︀ρ′

1
⌋︀ and Ps ,P ⊢ (H ,e)(︀ρ2⌋︀ →+ℓ (H

′,e′)(︀ρ′
2
⌋︀, and

ii) Γs , ΓP ;Σ′; Γ′ ⊢ (H ′,e′) ∶ τ

3.2 C∗: An Intermediate Language
We move from λow∗ to Clight in two steps. The C

∗
intermediate language retains λow∗’s explicit

scoping structure, but switches the calling convention to maintain an explicit call-stack of con-

tinuations (separate from the stack memory regions). C
∗
also switches to a more C-like syntax,

separates side effect-free expressions from effectful statements.

P̂ ∶∶=
ÐÐÐÐÐÐÐÐÐÐÐÐÐ⇀
fun f (x ∶ τ) ∶ τ { Ð⇀s }

ê ∶∶= n ⋃︀ () ⋃︀ x ⋃︀ ê + ê ⋃︀ {
ÐÐ⇀
f = ê} ⋃︀ ê . f ⋃︀ &ê → f

s ∶∶= τ x = ê ⋃︀ τ x = f (ê) ⋃︀ if ê thenÐ⇀s elseÐ⇀s ⋃︀ return ê
⋃︀ {Ð⇀s } ⋃︀ τ x(︀n⌋︀ ⋃︀ τ x = ∗(︀ê⌋︀ ⋃︀ ∗(︀ê⌋︀ = ê ⋃︀ memset ê n ê

The syntax is unsurprising, with two notable exceptions. First, despite the closeness to C syntax,

contrary to C and similarly to λow∗, block scopes are not required for branches of a conditional

statement, so that any local variable or local array declared in a conditional branch, if not enclosed

by a further block, is still live after the conditional statement. Second, non-array local variables are

immutable after initialization.

Operational semantics, in contrast to λow∗. A C
∗
evaluation configuration C consists of a stack S ,

a variable assignment V and a statement list
Ð⇀s to be reduced. A stack is a list of frames. A frame

F includes frame memoryM , local variable assignment V to be restored upon function exit, and

continuation E to be restored upon function exit. Frame memoryM is optional: when it is �, the
frame is called a “call frame”; otherwise a “block frame”, allocated whenever entering a statement
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P̂ ⊢ (S,V ,{Ð⇀s1 };
Ð⇀s2 ) ↝ (S ; ({},V ,◻;

Ð⇀s2 ),V ,
Ð⇀s1 )

Block

P̂ ⊢ (S ; (M,V ′,E),V , (︀⌋︀) ↝ (S,V ′,E (︀()⌋︀)
Empty

⎜ê⨆︁(V ) = 0
P̂ ⊢ (S,V , if ê thenÐ⇀s1 elseÐ⇀s2 ;

Ð⇀s ) ↝brF (S,V ,
Ð⇀s2 ;
Ð⇀s )

CIfF

P̂(f ) = fun (y ∶ τ1) ∶ τ2 {
Ð⇀s1 } ⎜ê⨆︁(V ) = v

P̂ ⊢ (S,V ,τ x = f ê;Ð⇀s ) ↝ (S ; (�,V ,τ x = ◻;Ð⇀s ),{}(︀y ↦ v⌋︀,Ð⇀s1 )
Call

⎜ê⨆︁(V ) = (b,n,
Ð⇀
f ) Get(S, (b,n,

Ð⇀
f )) = v ℓ = read (b,n,

Ð⇀
f )

P̂ ⊢ (S,V ,τ x = ∗(︀ê⌋︀;Ð⇀s ) ↝ℓ (S,V (︀x ↦ v⌋︀,Ð⇀s )
CRead

S = S′; (M,V ,E) b ⇑∈ S V ′ = V (︀x ↦ (b, 0, (︀⌋︀)⌋︀
P̂ ⊢ (S,V ,τ x(︀n⌋︀;Ð⇀s ) ↝ (S′; (M(︀b ↦ �n⌋︀,V ,E),V ′,Ð⇀s )

ArrDecl

Fig. 6. Selected semantic rules from C∗

block and deallocated upon exiting such block. A frame memory is just a partial map from block

identifiers to value lists. Each C
∗
statement performs at most one function call, or otherwise, at

most one side effect. Thus, C
∗
is deterministic.

The semantics of C
∗
is shown to the right in Figure 6, also illustrating the translation from λow∗

to C
∗
. There are three main differences. First, C

∗
’s calling convention (rule Call) shows an explicit

call frame being pushed on the stack, unlike λow∗’s β reduction. Additionally, C
∗
expressions

do not have side effects and do not access memory; thus, their evaluation order does not matter

and their evaluation can be formalized as a big-step semantics; by themselves, expressions do not

produce events. This is apparent in rules like CIfF and CRead, where the expressions are evaluated

atomically in the premises. Finally, newbuf in λow∗ is translated to an array declaration followed

by a separate initialization. In C
∗
, declaring an array allocates a fresh memory block in the current

memory frame, and makes its memory locations available but uninitialized. Memory write (resp.

read) produces a write (resp. read) event.memset ê1 m ê2 producesm write events, and can be used

only for arrays.

Correctness of the λow∗-to-C∗ transformation. We proved that execution traces are exactly pre-

served from λow∗ to C
∗
:

Lemma 3.2 (λow∗ to C
∗
). Let P be a λow∗ program and e be a λow∗ entry point expression, and

assume that they compile: ⇊ (P) = P̂ for some C∗ program P̂ and ↓ (e) = Ð⇀s ; ê for some C∗ list of
statements Ð⇀s and expression ê .

Let V be a mapping of local variables containing the initial values of secrets. Then, the C∗ program
P̂ terminates with trace ℓ and return value v , i.e., P̂ ⊢ ((︀⌋︀,V ,Ð⇀s ; return ê)

ℓ,∗
→ ((︀⌋︀,V ′, return v) if, and

only if, so does the λow∗ program: P ⊢ ({},e(︀V ⌋︀)
ℓ,∗
→ (H ′,v); and similarly for divergence.

In particular, if the source λow∗ program is safe, then so is the target C
∗
program. It also follows

that the trace equality security property is preserved from λow∗ to C
∗
. We prove this theorem by

bisimulation. In fact, it is enough to prove that any λow∗ behavior is a C∗ behavior, and flip the

diagram since C
∗
is deterministic. That C

∗
semantics use big-step semantics for C

∗
expressions

complicates the bisimulation proof a bit because λow∗ and C
∗
steps may go out-of-sync at times.
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Within the proof we used a relaxed notion of simulation (“quasi-refinement”) that allows this

temporary discrepancy by some stuttering, but still implies bisimulation.

3.3 From C∗ to CompCert Clight and Beyond
CompCert Clight is a deterministic (up to system I/O) subset of C with no side effects in expressions,

and actual byte-level representation of values. Clight has a realistic formal semantics [Blazy

and Leroy 2009; Leroy 2016] and tractable enough to carry out the correctness proofs of our

transformations from λow∗ to C. More importantly, Clight is the source language of the CompCert

compiler backend, which we can thus leverage to preserve at least safety and functional correctness

properties of Low
∗
programs down to assembly.

3

Recall that we need to produce an event in the trace whenever a memory location is read

or written, and whenever a conditional branch is taken, to account for memory accesses and

statements in the semantics of the generated Clight code for the purpose of our noninterference

security guarantees. However, the semantics of CompCert Clight per se produces no events on

memory accesses; instead, CompCert provides a syntactic program annotation mechanism using

no-op built-in calls, whose only purpose is to add extra events in the trace. Thus, we leverage this

mechanism by prepending each memory access and conditional statement in the Clight generated

code with one such built-in call producing the corresponding events.

The main two differences between C
∗
and Clight, which our translation deals with as described

below, are immutable local structures, and scope management for local variables.

Immutable local structures. C∗ handles immutable local structures as first-class values, whereas

Clight only supports non-compound data (integers, floating-points or pointers) as values.

If we naively translate immutable local C
∗
structures to C structures in Clight, then CompCert

will allocate them in memory. This increases the number of memory accesses, which not only

introduces discrepancies in the security preservation proof from C
∗
to Clight, but also introduces

significant performance overhead compared to GCC, which optimizes away structures whose

addresses are never taken.

Instead, we split an immutable structure into the sequence of all its non-compound fields, each

of which is to be taken as a potentially non-stack-allocated local variable,
4
except for functions

that return structures, where, as usual, we add, as an extra argument to the callee, a pointer to the

memory location written to by the callee and read by the caller.

Local variable hoisting. Scoping rules for C
∗
local arrays are not exactly the same as in C, in

particular for branches of conditional statements. So, it is necessary to hoist all local variables to

function-scope. CompCert 2.7.1 does support such hoisting but as an unproven elaboration step.

While existing formal proofs (e.g., Dockins’ [Dockins 2012, §9.3]) only prove functional correctness,

we also prove preservation of security guarantees, as shown below.

Proof techniques. Contrary to the λow∗-to-C∗ transformation, our subsequent passes modify the

memory layout leading to differences in traces between C
∗
to Clight, due to pointer values. Thus,

we need to address security preservation separately from functional correctness.

For each pass changing the memory layout, we split it into three passes. First, we reinterpret the
program by replacing each pointer value in event traces with the function name and recursion

depth of its function call, the name of the corresponding local variable, and the array index and

3
As a subset of C, Clight can be compiled by any C compiler, but only CompCert provides formal guarantees.

4
Our benchmark without this structure erasure runs 20% slower than with structure erasure, both with CompCert 2.7.

Without structure erasure, code generated with CompCert is 60% slower than with gcc -O1. CompCert-generated code

without structure erasure may even segfault, due to stack overflow, which structure erasure successfully overcomes.
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structure field name within this local variable. Then, we perform the actual transformation and

prove that it exactly preserves traces in this new “abstract” trace model. Finally, we reinterpret

the generated code back to concrete pointer values. We successfully used this technique to prove

functional correctness and security preservation for variable hoisting.

For each pass that adds new memory accesses, we split it into two passes. First, a reinterpretation

pass produces new events corresponding to the provisional memory accesses (without actually

performing those memory accesses). Then, this pass is followed by the actual trace-preserving

transformation that goes back to the non-reinterpreted language but adds the actual memory

accesses into the program. We successfully used this technique to prove functional correctness

and security preservation for structure return, where we add new events and memory accesses

whenever a C
∗
function returns a structure value.

In both cases, we mean reinterpretation as defining a new language with the same syntax and

small-step semantic rules except that the produced traces are different, and relating executions of

the same program in the two languages. There, it is easy to prove functional correctness, but for

security preservation, we need to prove an invariant on two small-step executions of the same

program with different secrets, to show that two equal pointer values in event traces coming from

those two different executions will actually turn into two equal abstract pointer values in the

reinterpreted language.

Our detailed functional correctness and security preservation proofs from λow∗ to Clight can be

found in the appendix.

Towards verified assembly code. We conjecture that our reinterpretation techniques can be gener-

alized to most passes of CompCert down to assembly. While we leave such generalization as future

work, some guarantees from C to assembly can be derived by instrumenting CompCert [Barthe

et al. 2014] and LLVM [Almeida et al. 2016b; Zhao et al. 2012, 2013] and turning them into certifying
(rather than certified) compilers where security guarantees are statically rechecked on the compiled

code through translation validation, thus re-establishing them independently of source-level secu-

rity proofs. In this case, rather than being fully preserved down to the compiled code, Low
∗
-level

proofs are still useful to practically reduce the risk of failures in translation validation.

4 KREMLIN: A COMPILER FROM LOW∗TO C
4.1 From Low∗ to Efficient, Elegant C
As explained previously, λow∗ is the core of Low∗, post erasure. Transforming Low

∗
into λow∗

proceeds in several stages. First, we rely on F
∗
’s existing normalizer and erasure and extraction

facility (similar to features in Coq [Letouzey 2008]), to obtain an ML-like AST for Low
∗
terms.

Then, we use our new tool KreMLin that transforms this AST further until it falls within the λow∗
subset formalized above. KreMLin then performs the λow∗ to C

∗
transformation, followed by the

C
∗
to C transformation and pretty-printing to a set of C files. KreMLin generates C11 code that

may be compiled by GCC; Clang; Microsoft’s C compiler or CompCert. We describe the main

transformations performed by KreMLin, beyond those formalized in §3, next.

Structures by value. We described earlier (§2.2) our Low
∗
struct library that grants the programmer

fine-grained control over thememory layout, as well asmutability of interior fields. As an alternative,

KreMLin supports immutable, by-value structs. Such structures, being pure, come with no liveness

proof obligations. The performance of the generated C code, however, is less predictable: in many

cases, the C compiler will optimize and pass such structs by reference, but on some ABIs (x86), the

worst-case scenario may be costly.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.



17:20 Protzenko et.al.

Concretely, the F
∗
programmer uses tuples and inductive types. Tuples are monomorphized into

specialized inductive types. Then, inductive types are translated into idiomatic C code: single-branch

inductive types (e.g., records) become actual C structs, inductives with only constant constructors

become C enums, and other inductives becomes C tagged unions, leveraging C11 anonymous

unions for syntactic elegance. Pattern matches become, respectively, switches, let-bindings, or a

series of cascading if-then-elses.

Whole-program transformations. KreMLin perform a series of whole-program transformations.

First, the programmer is free to use parameterized type abbreviations. KreMLin substitutes an

application of a type abbreviation with its definition, since C’s typedef does not support parameters.

(C++11 alias templates would support this use-case.) Second, KreMLin recursively inlines all

StackInline functions, as required for soundness (cf. §2.4). Third, KreMLin performs a reachability

analysis. Any function that is not reachable from the main function or, in the case of a library, from a

distinguished API module, is dropped. This is essential for generating palatable C code that does not

contain unused helper functions used only for verification. Fourth, KreMLin supports a concept of

“bundle”, meaning that several F
∗
modules may be grouped together into a single C translation unit,

marking all of the functions as static, except for those reachable via the distinguished API module.

This not only makes the code much more idiomatic, but also triggers a cascade of optimizations

that the C compiler is unable to perform across translation units.

Going to an expression language. F∗ is, just like ML, an expression language. Two transformations

are required to go to a statement language: stratification and hoisting. Stratification places buffer

allocations, assignments and conditionals in statement position before going to C
∗
. Hoisting, as

discussed in §3.3, deals with the discrepancy between C99 block scope and Low
∗with_frame; a buffer

allocated under a then branch must be hoisted to the nearest enclosing push_frame, otherwise its

lifetime would be shortened by the resulting C99 block after translation.

Readability. KreMLin puts a strong emphasis on generating readable C, in the hope that security

experts not familiar with F
∗
can review the generated C code. Names are preserved; we use enum and

switch whenever possible; functions that take unit are compiled into functions with no parameters;

functions that return unit are compiled into void-returning functions. The internal architecture relies

on an abstract C AST and what we believe is a correct C pretty-printer.

Implementation. KreMLin represents about 10,000 lines of OCaml, along with a minimal set

of primitives implemented in a few hundred lines of C. After F
∗
has extracted and erased the

AEAD development, KreMLin takes less than a second to generate the entire set of C files. The

implementation of KreMLin is optimized for readability and modularity; there was no specific

performance concern in this first prototype version. KreMLin was designed to support multiple

backends; we are currently implementing a WebAssembly backend to provide verified, efficient

cryptographic libraries for the web.

4.2 Integrating KreMLin’s Output
KreMLin generates a set of C files that have no dependencies, beyond a single .h file and C11

standard headers, meaning KreMLin’s output can be readily integrated into an existing source tree.

To allow code sharing and re-use, programmers may want to generate a shared library, that

is, a .dll or .so file that can be distributed along with a public header (.h) file. The programmer can

achieve this by writing a distinguished API module in F
∗
, exposing only carefully-crafted function

signatures. As exemplified earlier (Figure 2), the translation is predictable, meaning the programmer

can precisely control, in F
∗
, what becomes, in C, the library’s public header. The bundle feature of
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KreMLin then generates a single C file for the library; upon compiling it into a shared object, the

only visible symbols are those exposed by the programmer in the header file.

We used this approach for our HACL
∗
library. Our public header file exposes functions that

have the exact same signature as their counterpart in the NaCL library. If an existing binary was

compiled against NaCL’s public header file, then one can configure the dynamic linker to use our

HACL
∗
library instead, without recompiling the original program (using the infamous “LD preload

trick”).

The functions exposed by the library comply with the C ABI for the chosen toolchain. This means

that one may use the library from a variety of programming languages, relying on foreign-function

interfaces to interoperate. One popular approach is to generate bindings for the C library at run-time
using the ctypes and the libffi [Green 2014] libraries. This is an approach leveraged by languages

such as JavaScript, Python or OCaml, and requires no recompilation.

An alternative is to write bindings by hand, which allows for better performance and control

over how data is transformed at the boundary, but requires writing and recompiling potentially

error-prone C code. This is the historical way of writing bindings for many languages, including

OCaml. We plan to have KreMLin generate these bindings automatically. We used this approach in

miTLS, effectively making it a mixed C/OCaml project. We intend to eventually lower all of miTLS

into Low
∗
.

5 BUILDING VERIFIED LOW∗LIBRARIES AND APPLICATIONS

Table 1. Evaluation of verified Low∗ libraries and applications (time reported on an Intel Core E5 1620v3 CPU)

Codebase LoC C LoC %annot Verif. time

Low
∗
standard library 8,936 N/A N/A 8m

HACL
∗

6,050 11,220 28% 12h

miTLS AEAD 13,743 14,292 56.5% 1h 10m

In this section, we describe two examples (summarized in Table 1) that show how Low
∗
can be

used to build applications that balance complex verification goals with high performance. First, we

describe HACL
∗
, an efficient library of cryptographic primitives that are verified to be memory safe,

side-channel resistant, and, where there exists a simple mathematical specification, functionally

correct. Then, we show how to use Low
∗
for type-based cryptographic security verification by

implementing and verifying the AEAD construction in the Transport Layer Security (TLS) protocol.

We show how this Low
∗
library can be integrated within miTLS, an F

∗
implementation of TLS that

is compiled to OCaml.

5.1 HACL∗: A Fast and Safe Cryptographic Library
In the wake of numerous security vulnerabilities, Bernstein et al. [2012] argue that libraries like

OpenSSL are inherently vulnerable to attacks because they are too large, offer too many obsolete

options, and expose a complex API that programmers find hard to use securely. Instead they

propose a new cryptographic API called NaCl that uses a small set of modern cryptographic

primitives, such as Curve25519 [Bernstein 2006] for key exchange, the Salsa family of symmetric

encryption algorithms [Bernstein 2008], which includes Salsa20 and ChaCha20, and Poly1305 for

message authentication [Bernstein 2005]. These primitives were all designed to be fast and easy to

implement in a side-channel resistant coding style. Furthermore, the NaCl API does not directly

expose these low-level primitives to the programmer. Instead it recommends the use of simple
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composite functions for symmetric key authenticated encryption (secretbox/secretbox_open)
and for public key authenticated encryption (box/box_open).

The simplicity, speed, and robustness of the NaCl API has proved popular among developers. Its

most popular implementation is Sodium [lib 2017], which has bindings for dozens of programming

languages and is written mostly in C, with a few components in assembly. An alternative imple-

mentation called TweetNaCl [Bernstein et al. 2014] seeks to provide a concise implementation

that is both readable and auditable for memory safety bugs, a useful point of comparison for our

work. With Low
∗
, we show how we can take this approach even further by placing it on formal,

machine-checked ground, without compromising performance.

A Verified NaCl Library. We implement the NaCl API, including all its component algorithms, in

a Low
∗
library called HACL

∗
, mechanically verifying that all our code is memory safe, functionally

correct, and side-channel resistant. The C code generated from HACL
∗
is ABI-compatible and can

be used as a drop-in replacement for Sodium or TweetNaCl in any application, in C or any other

language, that relies on these libraries. Our code is written and optimized for 64-bit platforms;

on 32-bit machines, we rely on a stub library for performing 64x64-bit multiplications and other

128-bit operations.

We implement and verify four cryptographic primitives: ChaCha20, Salsa20, Poly1305, and

Curve25519, and then use them to build three cryptographic constructions: AEAD, secretbox and

box. For all our primitives, we prove that our stateful optimized code matches a high-level functional

specification written in F
∗
. These are new verified implementations. Previously, Tomb [2016] used

SAW and Cryptol to verify C and Java implementations of Chacha20, Salsa20, Poly1305, AES, and

ECDSA. Using a different methodology, Bond et al. [2017] verifies an assembly version of Poly1305.

Curve25519 has been verified before: Chen et al. [2014] verified an optimized low-level assembly

implementation using an SMT solver; Zinzindohoué et al. [2016] wrote and verified a high-level

library of three curves, including Curve25519, in F* and generated an OCaml implementation from

it. Our verified Curve25519 code explores a third direction by targeting reference C code that is

both fast and readable.

A companion paper currently under review [Zinzindohoué et al. 2017] is entirely devoted to

the HACL
∗
library, and contains an in-depth evaluation of the proof methodology, several new

algorithms that were verified since the present paper was written, along with a more comprehensive

performance analysis.

Table 2. Performance in CPU cycles: 64-bit HACL∗, 64-bit Sodium (pure C, no assembly), 32-bit TweetNaCl, 64-
bit OpenSSL (pure C, no assembly), and the fastest assembly implementation included in eBACS SUPERCOP.
All code was compiled using gcc -O3 optimized and run on a 64-bit Intel Xeon CPU E5-1630. Results are
averaged over 1000 measurements, each processing a random block of 214 bytes; Curve25519 was averaged
over 1000 random key-pairs.

Algorithm HACL
∗

Sodium TweetNaCl OpenSSL eBACS Fastest

ChaCha20 6.17 cy/B 6.97 cy/B - 8.04 cy/B 1.23 cy/B

Salsa20 6.34 cy/B 8.44 cy/B 15.14 cy/B - 1.39 cy/B

Poly1305 2.07 cy/B 2.48 cy/B 32.32 cy/B 2.16 cy/B 0.68 cy/B

Curve25519 157k cy/mul 162k cy/mul 1663k cy/mul 359k cy/mul 145k cy/mul

AEAD-ChaCha20-Poly1305 8.37 cy/B 9.60 cy/B - 8.53 cy/B

SecretBox 8.43 cy/B 11.03 cy/B 50.56 cy/B -

Box 18.10 cy/B 20.97 cy/B 149.22 cy/B -

Performance. Table 2 compares the performance of HACL
∗
to Sodium, TweetNaCl, and OpenSSL

by running each primitive on a 16KB input; we chose this size since it corresponds to the maximum
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Table 3. Performance in operations per second: 64-bit HACL∗, 64-bit OpenSSL (assembly disabled) and
Microsoft’s “Crypto New Generation” (CNG) library on a 64-bit Windows 10 machine. These results were
obtained by writing an OpenSSL engine that calls back to either HACL∗, CNG, or OpenSSL itself (so as to
include the overhead of going through a pluggable engine). The speed ecdhx25519 command runsmultiplications
for 10s, then counts the number of multiplications performed. We show the average over 10 runs of this
command. The machine is a desktop machine with a 64-bit Intel Xeon CPU E5-1620 v2 nominally clocked at
3.70Ghz.

Algorithm HACL
∗

OpenSSL CNG

Curve25519 17700 mul/s (σ = 246) 8033 mul/s (σ = 120) 7490 mul/s (σ = 114)

record size in TLS and represents a good balance between small network messages and large files.

We report averages over 1000 iterations expressed in cycles/byte. For Curve25519, we measure

the time taken for one call to scalar multiplication. For comparison with state-of-the-art assembly

implementations, for each primitive, we also include the best performance for any implementation

(assembly or C) included in the eBACS SUPERCOP benchmarking framework.
5
These fastest

implementation are typically in architecture-specific assembly.

We performed these tests on a variety of 64-bit Intel CPUs (the most popular desktop configura-

tion) and these performance numbers were similar across machines. To confirm these measurements,

we also ran the full eBACS SUPERCOP benchmarks on our code, as well as the OpenSSL speed
benchmarks, and the results closely mirrored Table 2. However, we warn the performance numbers

could be quite different on (say) 32-bit ARM platforms.

We observe that for ChaCha20, Salsa20, and Poly1305, HACL
∗
achieves comparable performance

to the optimized C code in OpenSSL and Sodium and significantly better performance than Tweet-

NaCl’s concise C implementation. Assembly implementations of these primitives are about 3-4

times faster; they typically rely on CPU-specific vector instructions and careful hand-optimizations.

Our Curve25519 implementation is about the same speed as Sodium’s 64-bit C implementation

(donna_c64) and an order of magnitude faster than TweetNaCl’s 32-bit code. It is also significantly

faster than OpenSSL because even 64-bit OpenSSL uses a Curve25519 implementation that was

optimized for 32-bit integers, whereas the implementations in Sodium and HACL
∗
take advantage

of the 64x64-bit multiplier available on Intel’s 64-bit platforms. The previous F
∗
implementation

of Curve25519 [Zinzindohoué et al. 2016] running in OCaml was not optimized for performance;

it is more than 100x slower than HACL
∗
. The fastest assembly code for Curve25519 on eBACS is

the one verified in [Chen et al. 2014]. This implementation is only 1.08x faster than our C code,

at least on the platform on which we tested, which supported vector instructions up to 256 bits.

We anticipate that the assembly code may be significantly faster on platforms that support larger

512-bit vector instructions.

AEAD and secretbox essentially amount to a ChaCha20/Salsa20 cipher sequentially followed

by Poly1305, and their performance reflects the sum of the two primitives. Box uses Curve25519 to

compute a symmetric key, which it then uses to encrypt a 16KB input. Here, the cost of symmetric

encryption dominates over Curve25519.

In summary, our measurements show that HACL
∗
is as fast as (or faster than) state-of-the-

art C crypto libraries and within a small factor of hand-optimized assembly code. This finding

is not entirely unexpected, since we wrote our Low
∗
code by effectively porting the fastest C

implementations to F
∗
, and any algorithmic optimization that is implemented in C can, in principle,

be written (and verified) in Low
∗
. What is perhaps surprising is that we get good performance even

though our Low
∗
code, and consequently the generated C, heavily relies on functional programming

5
https://bench.cr.yp.to/supercop.html
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patterns such as tail-recursion, and even though we try to write generic compact code wherever

possible, rather than trying to mimic the verbose inlined style of assembly code. We find that

modern compilers like GCC and CLANG are able to optimize our code quite well, and we are able

to benefit from their advancements, without having to change our coding style. Where needed,

KreMLin helps the C compiler by inserting attributes like const, static and inline that act as
optimization hints.

Balancing Trust and Performance. All the above performance numbers were obtained with GCC-6

with most architecture-specific optimizations turned on (-march=native). Consequently, any bug

in GCC or its plugins could break the correctness and security guarantees we proved in F
∗
for our

source code. For example, GCC has an auto-vectorizer that significantly improves the performance

of our ChaCha20 and Salsa20 code in certain use cases, but does so by substantially changing its

structure to take advantage of the parallelism provided by SIMD vector instructions. To avoid

trusting this powerful but unverified mechanism, and for more consistent results across platforms,

we turned off auto-vectorization (-fno-tree-vectorize) for the numbers in Table 2. For similar

reasons, we turned off link-time optimization (-fno-lto) since it relies on an external linker plugin,

and can change the semantics of our library every time it is linked with a new application.

Ideally, we would completely remove the burden of trust on the C compiler by moving to

CompCert, but at significant performance cost. Our Salsa20 and ChaCha20 code incurs a relatively

modest 3x slowdown when compiled with CompCert 3.0 (with -O3). However, our Poly1305 and
Curve25519 code incurs a 30-60x slowdown, which makes the use of CompCert impractical for our

library. We anticipate that this penalty will reduce as CompCert improves, and as we learn how to

generate C code that would be easier for CompCert to optimize. For now, we continue to use GCC

and CLANG and comprehensively test the generated code using third-party tools. For example, we

test our code against other implementations, and run all the tests packaged with OpenSSL. We also

test our compiled code for side-channel leaks using tools like DUDECT.
6

PneuTube: Fast encrypted file transfer. Using HACL∗, we can build a variety of high-assurance

security applications directly in Low
∗
. PneuTube is a Low

∗
program that securely transfers files

from a host A to a host B across an untrusted network. Unlike classic secure channel protocols

like TLS and SSH, PneuTube is asynchronous, meaning that if B is offline, the file may be cached at

some untrusted cloud storage provider and retrieved later.

PneuTube breaks the file into blocks and encrypts each block using the box API in HACL
∗
(with

an optimization that caches the result of Curve25519). It also protects file metadata, including the

file name and modification time, and it hides the file size by padding the file before encryption to a

user-defined size. We verify that our code is memory-safe, side-channel resistant, and that it uses

the I/O libraries correctly (e.g., it only reads or writes a file or a socket between calling open and

close).

PneuTube’s performance is determined by a combination of the crypto library, disk access (to read

and write the file at each end) and network I/O. Its aynchronous design is particularly rewarding

on high-latency network connections, but even when transferring a 1GB file from one TCP port

to another on the same machine, PneuTube takes just 6s. In comparison, SCP (using SSH with

ChaCha20-Poly1305) takes 8 seconds.

5.2 Cryptographically Secure AEAD for miTLS
We use our cryptographically secure AEAD library (§2.4) within miTLS [Bhargavan et al. 2013],

an existing implementation of TLS in F
∗
. In a previous verification effort, AEAD encryption was

6
https://github.com/oreparaz/dudect
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idealized as a cryptographic assumption (concretely realized using bindings to OpenSSL) to show

that miTLS implements a secure authenticated channel. However, given vulnerabilities such as

CVE-2016-7054, this AEAD idealization is a leap of faith that can undermine security when the real

implementation diverges from its ideal behavior.

We integrated our verified AEAD construction within miTLS at two levels [Bhargavan et al. 2017].

First, we replace the previous AEAD idealization with a module that implements a similar ideal

interface but translates the state and buffers to Low
∗
representations. This reduces the security of

TLS to the PRF and MAC idealizations in AEAD. We integrate AEAD at the C level by substituting

the OpenSSL bindings with bindings to the C-extracted version of AEAD. This introduces a slight

security gap, as a small adapter that translates miTLS bytes to Low
∗
buffers and calls into AEAD in

C is not verified. We confirm that miTLS with our verified AEAD interoperates with mainstream

implementations of TLS 1.2 and TLS 1.3 on ChaCha20-Poly1305 ciphersuites.

6 RELATEDWORK
Many approaches have been proposed for verifying the functional correctness and security of

efficient low-level code. A first approach is to build verification frameworks for C using verification

condition generators and SMT solvers [Cohen et al. 2009; Jacobs et al. 2014; Kirchner et al. 2015].

While this approach has the advantage of being able to verify existing C code, this is very challenging:

one needs to deal with the complexity of C and with any possible optimization trick in the book.

Moreover, one needs an expressive specification language and escape hatches for doing manual

proofs in case SMT automation fails. So others have deeply embedded C, or C-like languages, into

proof assistants such as Coq [Appel 2015; Beringer et al. 2015; Chen et al. 2016] and Isabelle [Schirmer

2006; Winwood et al. 2009] and built program logics and verification infrastructure starting from

that. This has the advantage of using the full expressive power of the proof assistant for specifying

and verifying properties of low-level programs. This remains a very labor-intensive task though,

because C programs are very low-level and working with a deep embedding is often cumbersome.

Acknowledging that uninteresting low-level reasoning was a determining factor in the size of the

seL4 verification effort [Klein et al. 2009], Greenaway et al. [2012, 2014] have recently proposed

sophisticated tools for automatically abstracting the low-level C semantics into higher-level monadic

specifications to ease reasoning. We take a different approach: we give up on verifying existing C

code and embrace the idea of writing low-level code in a subset of C shallowly embedded in F
∗
.

This shallow embedding has significant advantages in terms of reducing verification effort and

thus scaling up verification to larger programs. This also allows us to port to C only the parts of an

F
∗
program that are a performance bottleneck, and still be able to verify the complete program.

Verifying the correctness of low-level cryptographic code is receiving increasing attention [Appel

2015; Beringer et al. 2015; Dodds 2016]. The verified cryptographic applications we have written in

Low
∗
and use for evaluation in this paper are an order of magnitude larger than most previous work.

Moreover, for AEAD we target not only functional correctness, but also cryptographic security.

In order to prevent the most devastating low-level attacks, several researchers have advocated

dialects of C equippedwith type systems formemory safety [Condit et al. 2007; Jim et al. 2002; Tarditi

2016]. Others have designed new languages with type systems aimed at low-level programming,

including for instance linear types as a way to deal with memory management [Amani et al.

2016; Matsakis and Klock II 2014]. One drawback is the expressiveness limitations of such type

systems: once memory safety relies on more complex invariants than these type systems can

express, compromises need to be made, in terms of verification or efficiency. Low
∗
can perform

arbitrarily sophisticated reasoning to establish memory safety, but does not enjoy the benefits of

efficient decision procedures [rus 2017] and currently cannot deal with concurrency.
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We are not the first to propose writing efficient and verified C code in a high-level language.

LMS-Verify [Amin and Rompf 2017] recently extended the LMS meta-programming framework

for Scala with support for lightweight verification. Verification happens at the generated C level,

which has the advantage of taking the code generation machinery out of the TCB, but has the

disadvantage of being far away from the original source code.

Bedrock [Chlipala 2013] is a generative meta-programming tool for verified low-level program-

ming in Coq. The idea is to start from assembly and build up structured code generators that are

associated verification condition generators. The main advantage of this “macro assembly language”

view of low-level verification is that no performance is sacrificed while obtaining some amount of

abstraction. One disadvantage is that the verified code is not portable.

Our companion paper “Implementing and Proving the TLS 1.3 Record Layer” [Bhargavan et al.

2017] is available online. It describes a cryptographic model and proof of security for AEAD using

a combination of F
∗
verification and meta-level cryptographic idealization arguments. To make the

point that verified code need not be slow, the paper mentions that the AEAD implementation can

be “extracted to C using an experimental backend for F
∗
”, but makes no further claims about this

backend. The current work introduces the design, formalization, implementation, and experimental

evaluation of this C backend for F
∗
.

7 CONCLUSION
This paper advocates a new methodology for carrying out high-level proofs on low-level code. By

embedding a low-level language and memory model within F
∗
, the programmer not only enjoys

sophisticated proofs but also gets to write their low-level code in a more modular style, using

features functional programmers take for granted, including recursion and type abstraction. Our

toolchain, relying on partial evaluation and the latest advances in C compilers, shows that we can

write code in a style suitable for verification and enjoy the same performance as hand-written C

code.

We are currently making progress in three different directions. First, continuing our integration

of AEAD within miTLS, we aim to port the miTLS protocol layer to Low
∗
, in order to get an entire

verified, TLS library in C. Second, parts of our toolchain are unverified. We plan to formalize and

verify using F
∗
parts of the KreMLin tool, notably the λow∗ to C

∗
transformation. Third, we are

working on embedding assembly instructions within Low
∗
, allowing us to selectively optimize our

code further towards closing the performance gap that still remains relative to architecture-specific,

hand-written assembly routines.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their excellent reviews. We also thank Abhishek Anand

and Mike Hicks, for useful feedback and discussion which helped shape the work presented here,

as well as Armaël Guéneau, for his work on a mechanized proof.

REFERENCES
2008–2017. The Sodium crypto library (libsodium). (2008–2017). https://www.gitbook.com/book/jedisct1/libsodium/details

2010–2017. The Rust Programming Language. (2010–2017). https://www.rust-lang.org

2016. CVE-2016-7054: ChaCha20/Poly1305 heap-buffer-overflow. (Nov. 2016). http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2016-7054

2017. Common Weakness Enumeration (CWE-190: Integer Overflow or Wraparound). (2017). https://cwe.mitre.org/data/

definitions/190.html

2017. Common Weakness Enumeration (CWE-415: Double Free). (2017). http://cwe.mitre.org/data/definitions/415.html

2017. Common Weakness Enumeration (CWE-416: Use After Free). (2017). http://cwe.mitre.org/data/definitions/416.html

J. Afek and A. Sharabani. 2007. Dangling Pointer – Smashing The Pointer For Fun And Profit. BlackHat USA. (July 2007).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.

https://www.gitbook.com/book/jedisct1/libsodium/details
https://www.rust-lang.org
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7054
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7054
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html


Verified Low-Level Programming Embedded in F∗ 17:27

Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin, Jonathan Protzenko, Aseem Rastogi, and

Nikhil Swamy. 2017. Dijkstra Monads for Free. In 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM, 515–529. DOI:http://dx.doi.org/10.1145/3009837.3009878

Nadhem J. AlFardan and Kenneth G. Paterson. 2013. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In 2013
IEEE Symposium on Security and Privacy. 526–540.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. 2016a. Verifiable Side-Channel Security of

Cryptographic Implementations: Constant-Time MEE-CBC. In Fast Software Encryption - 23rd International Conference,
FSE 2016. 163–184.

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016b. Verifying Constant-

Time Implementations. In 25th USENIX Security Symposium, USENIX Security 16. 53–70.
Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima,

Japheth Lim, Thomas Sewell, and others. 2016. COGENT: Verifying High-Assurance File System Implementations.

In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 175–188.

Nada Amin and Tiark Rompf. 2017. LMS-Verify: Abstraction without Regret for Verified Systems Programming. To

appear in 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’17). (2017). https:

//www.cs.purdue.edu/homes/rompf/papers/amin-draft2016b.pdf

Andrew W. Appel. 2015. Verification of a Cryptographic Primitive: SHA-256. ACM Trans. Program. Lang. Syst. 37, 2 (2015),
7.

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David Pichardie. 2014. System-level Non-

interference for Constant-time Cryptography. In 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014. 1267–1279.

David Benjamin. 2016. poly1305-x86.pl produces incorrect output. https://mta.openssl.org/pipermail/openssl-dev/

2016-March/006161. (2016).

Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. 2002. Reconsidering Custom Memory Allocation. In

Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA 2002. ACM, 1–12.

Lennart Beringer, Adam Petcher, Q Ye Katherine, and Andrew W Appel. 2015. Verified correctness and security of OpenSSL

HMAC. In 24th USENIX Security Symposium (USENIX Security 15). 207–221.
Daniel J Bernstein. 2005. The Poly1305-AES message-authentication code. In International Workshop on Fast Software

Encryption. Springer, 32–49.
Daniel J Bernstein. 2006. Curve25519: new Diffie-Hellman speed records. In International Workshop on Public Key Cryptog-

raphy. Springer, 207–228.
Daniel J Bernstein. 2008. The Salsa20 family of stream ciphers. In New stream cipher designs. Springer, 84–97.
Daniel J Bernstein, Tanja Lange, and Peter Schwabe. 2012. The security impact of a new cryptographic library. In International

Conference on Cryptology and Information Security in Latin America, LATINCRYPT 2012. Springer, 159–176.
Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange, Peter Schwabe, and Sjaak Smetsers. 2014. TweetNaCl:

A crypto library in 100 tweets. In International Conference on Cryptology and Information Security in Latin America,
LATINCRYPT 2014. 64–83.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, , Alfredo Pironti, and Pierre-Yves Strub. 2014. Triple

Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. In 2014 IEEE Symposium on Security and
Privacy. 98–113.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jianyang Pan, Jonathan Protzenko,

Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, and Jean Karim Zinzindohoue. 2017. Implementing and

Proving the TLS 1.3 Record Layer. IEEE Security & Privacy (2017).

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and P Strub. 2013. Implementing TLS with

verified cryptographic security. In IEEE Symposium on Security and Privacy. 445–459.
Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella-

Béguelin. 2014. Proving the TLS handshake secure (as it is). In Advances in Cryptology–CRYPTO 2014. Springer, 235–255.
Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks

on HTTP over TLS and OpenVPN. Cryptology ePrint Archive, Report 2016/798. (2016). http://eprint.iacr.org/2016/798.

Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of Automated
Reasoning 43, 3 (2009), 263–288.

Hanno Böck. 2016. Wrong results with Poly1305 functions. https://mta.openssl.org/pipermail/openssl-dev/2016-March/

006413. (2016).

Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic. 2016. Nonce-Disrespecting Adversaries:

Practical Forgery Attacks on GCM in TLS. Cryptology ePrint Archive, Report 2016/475. (2016). http://eprint.iacr.org/

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.

http://dx.doi.org/10.1145/3009837.3009878
https://www.cs.purdue.edu/homes/rompf/papers/amin-draft2016b.pdf
https://www.cs.purdue.edu/homes/rompf/papers/amin-draft2016b.pdf
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006161
http://eprint.iacr.org/2016/798
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
https://mta.openssl.org/pipermail/openssl-dev/2016-March/006413
http://eprint.iacr.org/2016/475
http://eprint.iacr.org/2016/475


17:28 Protzenko et.al.

2016/475.

Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath

Setty, and Laure Thompson. 2017. Vale: Verifying High-Performance Cryptographic Assembly Code. In Proceedings of
the USENIX Security Symposium.

Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2016. Toward compositional

verification of interruptible OS kernels and device drivers. In 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016. 431–447.

Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and

Shang-Yi Yang. 2014. Verifying curve25519 software. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). 299–309.

Adam Chlipala. 2013. The Bedrock structured programming system: Combining generative metaprogramming and Hoare

logic in an extensible program verifier. In ACM SIGPLAN Notices, Vol. 48. ACM, 391–402.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen, Wolfram Schulte, and

Stephan Tobies. 2009. VCC: A practical system for verifying concurrent C. In International Conference on Theorem Proving
in Higher Order Logics. Springer, 23–42.

Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C Necula. 2007. Dependent types for low-level

programming. In European Symposium on Programming. Springer, 520–535.
Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In 14th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, TACAS (Lecture Notes in Computer Science), Vol. 4963.
Springer, 337–340. DOI:http://dx.doi.org/10.1007/978-3-540-78800-3_24

I. Dobrovitski. 2003. Exploit for CVS double free() for Linux pserver. (Feb. 2003). http://archives.neohapsis.com/archives/

fulldisclosure/2003-q1/0545.html

Robert W. Dockins. 2012. Operational Refinement for Compiler Correctness. Ph.D. Dissertation. Princeton University.

Joey Dodds. 2016. Part one: Verifying s2n HMAC with SAW. Galois Blog. (Sept. 2016). https://galois.com/blog/2016/09/

specifying-hmac-in-cryptol/

Thai Duong and Juliano Rizzo. 2011. Here Come The ⊕ Ninjas. Available at http://nerdoholic.org/uploads/dergln/beast_

part2/ssl_jun21.pdf. (May 2011).

Anthony Green. 2014. The libffi home page. (2014). http://sourceware.org/libffi

David Greenaway, June Andronick, and Gerwin Klein. 2012. Bridging the Gap: Automatic Verified Abstraction of C. In 3rd
International Conference on Interactive Theorem Proving, ITP 2012 (Lecture Notes in Computer Science), Vol. 7406. Springer,
99–115.

David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. 2014. Don’t sweat the small stuff: formal verification of

C code without the pain. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014.
ACM, 429–439.

Heartbleed. 2014. The Heartbleed Bug. http://heartbleed.com/. (2014).

Bart Jacobs, Jan Smans, and Frank Piessens. 2014. The VeriFast Program Verifier: A Tutorial. iMinds-DistriNet, Department

of Computer Science, KU Leuven - University of Leuven, Belgium. (2014). https://people.cs.kuleuven.be/~bart.jacobs/

verifast/tutorial.pdf

Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling Wang. 2002. Cyclone: A Safe

Dialect of C.. In USENIX Annual Technical Conference, General Track. 275–288.
David Kaloper-Meršinjak, Hannes Mehnert, Anil Madhavapeddy, and Peter Sewell. 2015. Not-quite-so-broken TLS: Lessons

in re-engineering a security protocol specification and implementation. In 24th USENIX Security Symposium (USENIX
Security 15). 223–238.

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal Asp. Comput. 27, 3 (2015), 573–609.
G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T.

Sewell, H. Tuch, and S. Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Proceedings of the Symposium on
Operating Systems Principles. ACM, 207–220.

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances in
Cryptology – CRYPTO 1996. Springer, 104–113.

Xavier Leroy. 2004–2016. The CompCert C verified compiler. http://compcert.inria.fr/. (2004–2016).

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.
Research report RR-7987. INRIA. http://hal.inria.fr/hal-00703441

Pierre Letouzey. 2002. A new extraction for Coq. In Types for proofs and programs. Springer, 200–219.
Pierre Letouzey. 2008. Extraction in Coq: An Overview. In 4th Conference on Computability in Europe (Lecture Notes in

Computer Science), Vol. 5028. Springer, 359–369. DOI:http://dx.doi.org/10.1007/978-3-540-69407-6_39

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.

http://eprint.iacr.org/2016/475
http://eprint.iacr.org/2016/475
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://archives.neohapsis.com/archives/fulldisclosure/2003-q1/0545.html
http://archives.neohapsis.com/archives/fulldisclosure/2003-q1/0545.html
https://galois.com/blog/2016/09/specifying-hmac-in-cryptol/
https://galois.com/blog/2016/09/specifying-hmac-in-cryptol/
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf
http://sourceware.org/libffi
http://heartbleed.com/
https://people.cs.kuleuven.be/~bart.jacobs/verifast/tutorial.pdf
https://people.cs.kuleuven.be/~bart.jacobs/verifast/tutorial.pdf
http://compcert.inria.fr/
http://hal.inria.fr/hal-00703441
http://dx.doi.org/10.1007/978-3-540-69407-6_39


Verified Low-Level Programming Embedded in F∗ 17:29

Nicholas D Matsakis and Felix S Klock II. 2014. The Rust language. In ACM SIGAda Ada Letters, Vol. 34. ACM, 103–104.

John McCarthy. 1962. Towards a Mathematical Science of Computation. In IFIP Congress. 21–28.
Microsoft Research and INRIA. 2016. Everest: VERifiEd Secure Transport. https://project-everest.github.io/. (2016).

Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE Bites: Exploiting The SSL 3.0 Fallback. Available at

https://www.openssl.org/~bodo/ssl-poodle.pdf. (2014).

David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2006. The Program Counter Security Model: Automatic

Detection and Removal of Control-flow Side Channel Attacks. In 8th International Conference on Information Security
and Cryptology, ICISC 2005. Springer, 156–168.

Yoav Nir and Adam Langley. 2015. ChaCha20 and Poly1305 for IETF Protocols. IETF RFC 7539. (2015).

nocrypto. 2014–2017. nocrypto: OCaml cryptographic library. (2014–2017). https://github.com/mirleft/ocaml-nocrypto

OpenSSL library. 1998–2017. OpenSSL: Cryptography and SSL/TLS Toolkit. (1998–2017). https://www.openssl.org/

Jonathan D. Pincus and Brandon Baker. 2004. Beyond Stack Smashing: Recent Advances in Exploiting Buffer Overruns.

IEEE Security & Privacy 2, 4 (2004), 20–27.

Jonathan Protzenko. 2017. The KreMLin compiler. (2017). https://www.github.com/FStarLang/kremlin

Julian Rizzo and Thai Duong. 2012. The CRIME Attack. (September 2012).

Norbert Schirmer. 2006. Verification of sequential imperative programs in Isabelle-HOL. Ph.D. Dissertation. Technical

University Munich.

Ben Smyth and Alfredo Pironti. 2014. Truncating TLS Connections to Violate Beliefs in Web Applications. Technical Report
hal-01102013. Inria. https://hal.inria.fr/hal-01102013

Juraj Somorovsky. 2016. Systematic fuzzing and testing of TLS libraries. In 23rd ACM Conference on Computer and
Communications Security, CCS 2016.

Marc Stevens, Pierre Karpman, and Thomas Peyrin. 2016. Freestart Collision for Full SHA-1. In Advances in Cryptology –
EUROCRYPT 2016. Springer, 459–483.

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.

2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ACM, 256–270. https://www.fstar-lang.org/papers/mumon/

Robert Święcki. 2016. ChaCha20/Poly1305 heap-buffer-overflow. CVE-2016-7054. (2016).

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal War in Memory. In IEEE Symposium on Security
and Privacy. IEEE Computer Society, 48–62.

David Tarditi. 2016. Extending C with bounds safety. Checked C Technical Report, Version 0.6. (Nov. 2016). https:

//github.com/Microsoft/checkedc

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Inf. Comput. 132, 2 (Feb. 1997), 109–176.
A. Tomb. 2016. Automated Verification of Real-World Cryptographic Implementations. IEEE Security Privacy 14, 6 (2016),

26–33.

David Wagner and Bruce Schneier. 1996. Analysis of the SSL 3.0 Protocol. In 2nd USENIX Workshop on Electronic Commerce,
WOEC 1996. 29–40.

Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock, and Michael Norrish. 2009. Mind the Gap.

In 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009 (Lecture Notes in Computer
Science), Vol. 5674. Springer, 500–515.

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM intermediate

representation for verified program transformations. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). 427–440.

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2013. Formal verification of SSA-based

optimizations for LLVM. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
175–186.

Jean Karim Zinzindohoué, Evmorfia-Iro Bartzia, and Karthikeyan Bhargavan. 2016. A Verified Extensible Library of Elliptic

Curves. In IEEE Computer Security Foundations Symposium (CSF).
Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified

Modern Cryptographic Library. Cryptology ePrint Archive, Report 2017/536. (2017). http://eprint.iacr.org/2017/536.

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, and Benjamin Beurdouche. 2017. HACL*: A Verified Modern Crypto-

graphic Library. (2017). https://www.github.com/mitls/hacl-star

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 17. Publication date: September 2017.

https://project-everest.github.io/
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://github.com/mirleft/ocaml-nocrypto
https://www.openssl.org/
https://www.github.com/FStarLang/kremlin
https://hal.inria.fr/hal-01102013
https://www.fstar-lang.org/papers/mumon/
https://github.com/Microsoft/checkedc
https://github.com/Microsoft/checkedc
http://eprint.iacr.org/2017/536
https://www.github.com/mitls/hacl-star

	Abstract
	1 Introduction
	2 A Low Tutorial
	2.1 A First Example: the ChaCha20 Stream Cipher
	2.2 Low: An Embedded DSL for Low-Level Code
	2.3 Using Low for Proofs of Functional Correctness and Side-Channel Resistance
	2.4 Cryptographic Provable-Security Example: AEAD

	3 A formal translation from Low to Clight
	3.1 low*: A Formal Core of Low Post-Erasure
	3.2 C: An Intermediate Language
	3.3 From C to CompCert Clight and Beyond

	4 KreMLin: a Compiler from Low to C
	4.1 From Low to Efficient, Elegant C
	4.2 Integrating KreMLin's Output

	5 Building Verified Low Libraries and Applications
	5.1 HACL: A Fast and Safe Cryptographic Library
	5.2 Cryptographically Secure AEAD for miTLS

	6 Related Work
	7 Conclusion
	References

