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Abstract—Popup blocking, form filling, and many other fea-
tures of modern web browsers were first introduced as third-
party extensions. New extensions continue to enrich browsers
in unanticipated ways. However, powerful extensions require
capabilities, such as cross-domain network access and local
storage, which, if used improperly, pose a security risk. Several
browsers try to limit extension capabilities, but an empirical
survey we conducted shows that many extensions are over-
privileged under existing mechanisms.

This paper presents IBEX, a new framework for authoring,
analyzing, verifying, and deploying secure browser extensions.
Our approach is based on using type-safe, high-level languages
to program extensions against an API providing access to
a variety of browser features. We propose using Datalog to
specify fine-grained access control and data flow policies to
limit the ways in which an extension can use this API, thus
restricting its privilege over security-sensitive web content and
browser resources. We formalize the semantics of policies in
terms of a safety property on the execution of extensions and
develop a verification methodology that allows us to statically
check extensions for policy compliance. Additionally, we provide
visualization tools to assist with policy analysis, and compilers
to translate extension source code to either .NET bytecode or
JavaScript, facilitating cross-browser deployment of extensions.

We evaluate our work by implementing and verifying 17
extensions with a diverse set of features and security policies.
We deploy our extensions in Internet Explorer, Chrome, Firefox,
and a new experimental HTML5 platform called C3. In so doing,
we demonstrate the versatility and effectiveness of our approach.

I. INTRODUCTION

Like operating systems, IDEs, and other complex software

systems, web browsers may be extended by third-party code.

Extensions provide unforeseen new functionality and are sup-

ported by all major browsers. Although a precise count for

each browser is hard to obtain, various sources estimate that

a third of all users of Firefox (some 34 million) use exten-

sions [27], while the 50 most popular Chrome extensions have

each been downloaded several hundred thousand times [13].

Notwithstanding their popularity, extensions can pose a

significant risk to the security and reliability of the browser

platform. Unlike JavaScript served on web pages, extensions

can access cross-domain content, make arbitrary network

requests, and can make use of local storage. A malicious or

buggy extension can easily void many security guarantees that

a browser tries to provide; e.g., with extensions installed, the

same-origin restriction enforced by browser to prevent cross-

domain flows is easily circumvented. Additionally, extensions

affect page load times and browser responsiveness.

In light of these concerns, browser vendors have put in place

various processes to control how extensions are distributed, in-

stalled, and executed. Mozilla, for example, manages a hosting

service for Firefox extensions. Newly submitted extensions are

subject to an ad hoc community review process to identify

extensions that violate best practices, e.g., polluting the global

JavaScript namespace. In contrast, Google Chrome extensions

request privileges they need in an explicit manifest [3], and,

when installing an extension, the user is prompted to grant it

these privileges.

We view the Chrome model as a step in the right direction—

privileges in the manifest can be inspected independently of

extension code; and the browser assumes the responsibility of

enforcing access controls. However, from an empirical study

of over 1,000 Chrome extensions (Section II), we find that

this model is often not very effective in limiting the privileges

of extensions. For example, nearly a third of the extensions

we surveyed request full privileges over data on arbitrarily

many web sites; and as many as 60% have access to a user’s

entire browsing history. In many of these cases, the language of

Chrome’s security manifests makes it impossible to state finer-

grained policies to more precisely capture extension behavior.

In an effort to alleviate some of these shortcomings, we

propose IBEX, a new framework for authoring, analyzing, ver-

ifying, and deploying secure browser extensions. Our model

speaks to three main groups of principals: extension develop-

ers, curators of extension hosting services, and end-users.

While this paper focuses primarily on the subject of browser

extensions, our work is motivated by, and speaks to, several

important trends in software distribution. As evidenced by

app stores for iOS, Windows, and Android devices and web

apps in Chrome OS [32], software distribution is increasingly

mediated by a centralized, curated service. In this context,

automated software checking for both security and reliability

becomes a plausible alternative to manual vetting, since cura-

tors have the ability to reject distributing applications that risk

compromising the integrity of the ecosystem. Our work also

explores the space of policies that apply to a growing number

of HTML5 applications, running on the web, on the desktop,

a mobile device, or within a browser. (Trends in Chrome OS

suggest a convergence between these forms of applications.) A

key component of IBEX is a lightweight, logic-based approach

to policies that aims to find a balance between resources and

rights specified at a flexible level of granularity, while still

allowing for efficient and reliable enforcement.

A. Overview of IBEX and contributions

We discuss the key elements of IBEX (illustrated in Fig-

ure 1) in conjunction with our technical contributions, below.



Browser-agnostic API for extensions. We provide developers

with an API that exposes core browser functionality to ex-

tensions. We expect programmers to write extensions in high-

level, type-safe languages that are amenable to formal analysis,

including, for example, the .NET family of languages, or

JavaScript subsets like those explored in Gatekeeper [17]. Our

API is designed for the static verification of extension security

and thus mediates access to features that can be abused by

buggy or malicious extensions.

A policy language for stating extension privileges. To de-

scribe an extensions privilege over specific browser resources,

we propose using a logic-based policy language. Our language,

based on Datalog, allows the specification of fine-grained

authorization and data flow policies on web content and

browser state accessible by extensions. We expect policies to

be developed in conjunction with the extension code, either

authored manually by extension developers, or, in the future,

extracted automatically via analysis of extension code.

Tools for curators of an extension hosting service. We

envisage the distribution of extensions to end-users via a

curated extension hosting service, as adopted by Chrome,

or Firefox. Extension developers submit extension code and

policy to the hosting service and curators can avail of policy

analysis tools we provide to determine whether or not an

extension is fit for public distribution. Specifically, we discuss

a policy visualization tool that helps a curator to estimate an

extensions access rights on specific web pages.

A formal semantics of policies and extension safety. We give

a formal notion of extension safety to define precisely when

an extension can be said to be in compliance with a policy.

A distinctive feature of our semantics is that it accounts for

an execution model that involves arbitrary interleavings of

extension code with other untrusted scripts on a web page.

Our safety property is designed to be robust with regard to

the composition of safe extension code with untrusted scripts.

Static checking of extension safety. We develop a method-

ology based on refinement typing (proven sound) to verify

that extensions written in Fine [30], a dependently typed

ML dialect, satisfies our safety condition. Static verification

eliminates the overhead of runtime security monitoring, and

promotes robustness of the browser platform since extensions

can never raise unexpected security exceptions. We expect

our verification tools to be used both by extension developers

and, importantly, by curators prior to accepting extensions for

distribution.

Cross-browser deployment. We utilize multiple code gener-

ators implemented by the Fine compiler (including a new

JavaScript backend) to allow the same extension source to be

deployable in multiple browsers. A key enabler of this feature

is the use of a browser-agnostic core extension API, combined

with the use of a standard ML-like source language. To date,

we have deployed extensions in Internet Explorer 8, Chrome,

and Firefox. Additionally, we show how to deploy extensions

in C3 [23], a new platform for HTML5 experimentation

developed entirely in a type-safe, managed language.

Fine

Verifier

Compiler

Extension 

code

Firefox IE C3

.NETJavaScript .NET

Visualization 

tools

Policy

Chrome

extract

JavaScript

· Authors code and policy

· Uses Fine to check code

· Inspects policy using visualizer

· Uses Fine to check for compliance

· Hosts extension gallery

· Trusts curator’s gallery
· Downloads extension

· Installs and uses extension

Developer

Curator

User

Fig. 1: Users, developers, and curators: an overview of IBEX.

Empirical evaluation. Our evaluation includes program-

ming 17 extensions in Fine, specifying a range of fine-

grained authorization and data flow properties for each, and

automatically verifying them for policy compliance. Among

these 17 extensions are several ported versions of widely-used

Chrome extensions, which shows that our model also brings

benefits to existing legacy extension architectures.

B. Outline of the paper

We begin in Section II by discussing existing extension

security models. Section III presents an overview of the design

of IBEX. Section IV discusses our policy language and its visu-

alization tool. Section V formalizes the semantics of policies

and our safety property. Section VI shows how to statically

verify extensions using refinement type checking. Section VII

presents our experimental evaluation and discusses the code of

two extensions in detail. Section VIII discusses our support for

cross-browser deployment of extensions. Section IX discusses

limitations and future work. Section X discusses related work,

and Section XI concludes.

II. A SURVEY OF EXISTING EXTENSION MODELS

Extensions have access to browser resources not usually

available to scripts running on web pages. Unlike scripts on

web pages, which can can only affect the page on which

they are hosted, extensions can read and modify arbitrary

web pages, and can even customize browsers’ interfaces.

Extensions are also not subject to the same-origin policy

that applies to scripts on web pages—this allows them to

communicate with arbitrary web hosts. With access to these

and other capabilities, extensions, if malicious, pose a security

risk. Moreover, since extensions interact with web pages, a

malicious page could exploit a vulnerable extension to access

capabilities that web pages do not ordinarily possess.

Below, we discuss the security mechanisms employed by

Internet Explorer, Firefox, and Chrome to motivate the design

of IBEX. Of these browsers, Chrome has the most security-

aware extension system to date. We perform a detailed study

of over 1,000 Chrome extensions to study the effectiveness
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of its security model and conclude that many, if not most,

extensions are unnecessarily over-privileged.

A. Internet Explorer’s extension model

Internet Explorer supports several extension mechanisms of

which browser helper objects or BHOs are probably the most

commonly used. BHOs (usually native binaries) have virtually

unrestricted access to IE’s event model and, as such, have

been used by malware writers in the past to create password

capturing programs and key loggers. This is especially true

because some BHOs run without changes to the user interface.

For instance, the ClSpring Trojan [4] uses BHOs to install

scripts to provide a number of instructions to be performed

such as adding and deleting registry values and downloading

additional executable files, all completely transparent to the

user. Even if the BHO is completely benign, but buggy, its

presence might be enough to open up exploits in an otherwise

fully patched browser.

B. Firefox’s extension model

Firefox extensions are typically written in JavaScript and

can modify Firefox in fairly unrestricted ways. This flexibility

comes with few security guarantees. Extensions run with the

same privilege as the browser process, so a malicious extension

can cause arbitrary damage. Firefox extensions often employ

highly dynamic programming techniques that make it difficult

to reason about their behavior [22].

To protect end-users, Firefox relies on a community review

process to determine which extensions are safe. Only exten-

sions deemed safe are added to Mozilla’s curated extension

gallery. Firefox ordinarily refuses to install extensions that do

not originate from this gallery. Users are thus protected from

unreviewed extensions, but reviews themselves are error-prone

and malicious extensions are sometimes accidentally added to

the gallery. An example of this is Mozilla Sniffer [28], an

extension which was downloaded close to 2,000 times, before

being removed from the gallery after it was deemed malicious.

C. Chrome’s extension model

Google Chrome extensions are written in JavaScript and

hosted on extension pages, but they have access to APIs that

are not available to web pages. Extension pages run in the

context of the extension process, different from the browser

processes and has the ability to both access and augment the

browser UI. Extension pages can register to listen to special

browser events such as tab switching, window closing, etc.

Extension manifests: Extensions specify their resources and

the capabilities they require in an extension manifest file.

When a user tries to install an extension, Chrome reads the

extension manifest and displays a warning. Figure 2 shows

the manifest of an extension called Twitter Extender and the

warning raised by Chrome before the extension is installed.

In this example, the manifest requests (roughly) read and

write privileges over all content on http://api.bit.ly and

http://twitter.com. Additionally, this extension requires

access to events related to browser tab manipulations. In

"update_url":"http://clients2.google.com/service/...",
"name": "Twitter Extender", "version": "2.0.3",
"description": "Adds new Features on Twitter.com ",
"page_action": { ... }, "icons": { ... }, \\
"content_scripts": [ {

"matches": [
"http://twitter.com/*", "https://twitter.com/*"],

"js": ["jquery-1.4.2.min.js","code.js"]
} ],

"background_page": "background.html",
"permissions": [ "tabs", "http://api.bit.ly/" ]

Fig. 2: A fragment of Twitter Extender’s manifest and the dialog that
prompts a user for access privileges when the extension is installed

Name Behavior

Google Reader client Sends RSS feed links to Google Reader

Gmail Checker Plus Rewrites mailto : links

Bookmarking Sends selected text to delicious.com

Dictionary lookup sends selected text to online dictionary

JavaScript toolbox edits selected text

Password manager stores and retrieves passwords per page

Short URL expander sends URLs to longurlplease.com

Typography modifies values on <input> elements

Fig. 3: Some over-privileged Chrome extensions that require access
to “your data on all websites”

Chrome’s model, access to tabs implies that the extension has

access to the user’s browsing history. This is unfortunate—

this extension does not need access to all of a user’s browsing

history to function properly, but Chrome’s model makes it

impossible to restrict its privilege any further.

Over-privileged extensions: Twitter Extender’s access to

browsing history is not an isolated example of an over-

privileged extension. Chrome’s model also allows extensions

to request rights over other resources, including, the privilege

to access “your data on all websites”. Unfortunately, many

simple, seemingly benign operations require extensions to

request access to this very coarse privilege—Figure 3 lists

several of these. In all these cases, manifests are uninformative

and the extensions require manual code review.

Extension study: We conducted a simple analysis of the

manifests for over 1,139 popular Chrome extensions, to

determine how many require the capability to read and write

to all websites. Our results are shown in Figure 4. Over 10%

of all extensions require access to all https : // sites, and

event more need access to http : // sites. About half of all

extensions use wildcards such as http : // ∗ .facebook.com
to specify the sites they want to access.
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Resource Count

all https 143 12%
all http 199 17%
wildcard 536 47%
1 URL 149 13%
2 URLs 30 2%
3 URLs 15 1%
4 URLs 6 <1%
5 URLs 1 <1%
86 URLs 1 <1%

history (tabs) 694 60%

bookmarks 66 5%
notifications 15 1%

Fig. 4: Chrome extensions per-
missions statistics.

Since new sub-domains can

and do appear under a do-

main such as facebook.com,

policies that use wildcards

can be overly permissive.

Only a small percentage of

extensions restrict their ac-

cess to only several URLs

(about 17%).

What is perhaps most trou-

bling about the Chrome ac-

cess control model is that

about 60% of all extensions

have access to a combination

of browser tabs and local storage. Using these two facilities, an

extension can monitor which sites the user goes to, collecting

browser history.

III. AN OVERVIEW OF IBEX

Internet Explorer’s BHOs and Firefox’s JavaScript exten-

sions are very hard to secure reliably. Chrome’s extension sys-

tem, while being the most advanced browser extension model

in everyday use, still admits a large number of over-privileged

extensions. Our work aims to redress these difficulties using

a number of mutually complementary measures. This section

describes our solution using FacePalm, an extension we wrote,

as a running example.

A. A running example: FacePalm

FacePalm is an extension that allows a user to manage an

address book built from contact information that their friends

make accessible on Facebook, a social networking site. When

a user visits a friend’s Facebook page in a browser extended

with FacePalm, the extension crawls the page to identify

any updated contact information and, if it finds anything,

automatically sends the information to an online address book

for the user maintained on a third-party bookmarking service,

say, delicious.com.

While useful, FacePalm raises several potential security

concerns. For one, it violates the browser’s same-origin re-

strictions by sending data from the facebook.com domain

to delicious.com—however, this is part of the intended

behavior of the extension. More significantly, a user may be

concerned that FacePalm manipulates her Facebook data in

other, less desirable ways. For example, FacePalm may auto-

matically send, accept, or reject friend requests on the user’s

behalf, it might send more than just contact information to

Delicious (e.g., a user’s photographs), update status messages

etc. We would like to be able to specify a security policy for

FacePalm that limits its behavior to its advertised functionality,

thus increasing a user’s confidence in the extension. Existing

approaches are inadequate for this purpose. For example, in

the language of Chrome’s security manifests, all that can be

said about FacePalm is that it may manipulate all data on both

facebook.com and delicious.com.

B. Programming type-safe extensions against a browser API

In contrast to Internet Explorer’s native binaries, or Firefox

extensions that make heavy use of dynamic programming

techniques (e.g., “monkey-patching”), in IBEX, we advocate

extensions to be programmed in high-level languages that

are amenable to formal analysis. In this paper, we focus on

extensions authored in an ML dialect for .NET called Fine.

Our approach also applies naturally to other statically typed

languages such as those provided by the .NET platform. In the

future, we anticipate extending our work to handle extensions

authored in statically analyzable subsets of dynamic languages

like JavaScript.

As in Chrome, we provide APIs that allow extensions to

access to browser resources like the DOM, as well as features

like browsing history and the local file system not usually

available to scripts on web pages. We show a fragment of

this API below as a typed ML interface (we refine this API

shortly).

(∗ Simple DOM API ∗)

val tagName: elt → string
val firstChild: elt → elt
val getAttr: elt → string → string
val textContent: elt→ string
(∗ Extension specific functionality ∗)

val readFile: filename → string
val sendRequest: url → string → string
val historyOnSite: string → list url

Two points about the design of this API are worth noting.

First, we aim to provide extensions with functionality that

is a strict super-set of the functionality available to web

pages. However, we also aim for our interface to be browser-

agnostic (to the extent that it is possible) to enable cross-

browser deployment. Second, we provide access to features

like browser history; however, our API is designed to allow

restricting access to these resources at a fine granularity. For

example, rather than providing an extension with access to all

or none of a user’s browsing history, functions like historyOnSite

provide access to browsing history on a per-site basis. Further

refinements of this interface to, say, browsing history restricted

to a particular time interval are also possible.

We show a fragment of the code of FacePalm below. The

getWebsite function inspects the tag and attributes of an element

e, and returns the contents of e if it is a <div> node tagged with

a website CSS class attribute. The rest of FacePalm traverses the

DOM of a Facebook page, calls this function at various points,

and, if appropriate, sends its result to delicious.com,

(∗ Extension code ∗)

let getWebsite e =
if tagName e = "div" && getAttr e "class" = "website"

then textContent (firstChild e) else ""

C. Policies and tool-support fine-grained specifications

Rather than provide all extensions with unfettered access

to the entire extension API, we provide a policy language to

provide specific privileges to extensions. We base the design

of our policy language on the insight that the structure of web

content can be exploited to specify precise security policies.
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For example, the tree structure of the DOM can be used to

grant extensions access to certain fragments of a page; the

structure in various URL schemes can be used to control cross-

domain data flows, etc.

Our policy language takes the form of an ontology for

Datalog, where the predicates in our ontology are chosen with

the structure of web content in mind. As a first example, we

show below a simplified version of the policy for FacePalm:

(∗ Extension policy ∗)

∀e, p. (EltParent e p && EltTagName p ”div” && EltAttr p ”class” ”website”)

⇒ CanRead e

Our aim is for the policies to capture the security-relevant be-

havior of extensions, allowing reviewers to audit extensions for

security without necessarily having to conduct detailed code

reviews. The policy statement above summarizes the behavior

of getWebsite, the part of FacePalm that reads sensitive data out

of a Facebook page, while hiding other details of FacePalm’s

implementation. Informally, this policy allows an extension

to read text contained within <div class="website"> elements.

(The complete policy for FacePalm also describes the cross-

domain flow from Facebook to delicious.com.)

Of course, the structure of real Facebook web pages are con-

siderably more complicated than this first example suggests,

leading to policies that are also more complicated. Rather than

requiring reviewers to examine and understand Datalog, we

provide a visualization tool that interprets policies on specific

web pages, highlighting the content on a page to which an

extension has been granted access.

D. Static verification of policy compliance

While our visualization tool helps provide an informal

understanding of policies, it can also be imprecise. We provide

a formal semantics of policies and define a property, (ℒ;P)-
safety, on program executions that policies are intended to

induce. The main technical development of this paper shows

how, despite the richness of our policy language, we can

statically verify extensions for compliance with a policy.

Our verification methodology involves annotating the API

exposed to extensions with refinement types that capture

security-related pre- and post-conditions. For example, the

fragment of the DOM API shown earlier is annotated as shown

below. This API makes use of dependent refinement types

as provided by the Fine programming language—Section VI

includes a detailed review of Fine, but we give a taste of our

approach here.

(∗ Refined DOM API ∗)

val tagName: e:elt → t:string{EltTagName e t}
val firstChild: p:elt → e:elt{EltParent e p}
val getAttr: e:elt → a:string → v:string{EltAttr e a v}
val textContent: e:elt{CanRead e} → string

The code above declares types for four common functions in

our API that allows extensions to manipulate the DOM. The

type of tagName says that it is a function that takes a DOM

element e (given the abstract type elt) as an argument, and

returns a string t as a result. Additionally, the type of tagName

is annotated with a post-condition asserting that the returned

string t is related to the argument e according to EltTagName e t,

a proposition used in our authorization policies. The types

of firstChild and getAttr are similar. In contrast, the type of

textContent shows it to be a function from DOM elements

e to strings, where the returned string could be security-

sensitive data on a page, e.g., it could represent the contents

of a password field. To ensure that extensions cannot access

such sensitive content without appropriate privileges, the type

of textContent is annotated with a pre-condition that requires

the caller to have the CanRead e privilege on the argument e.

Extension code (like getWebsite) can be statically verified

against this API for policy compliance using refinement type

checking. Extensions that pass the type checker are guaranteed

to be (ℒ;P)-safe.

Static verification has a number of benefits. (1) Extension

code is untrusted and never has to be manually inspected for

potential vulnerabilities or malice. Curators (and interested

end-users) need only look at their policies. (2) Verification

also rules out potential runtime failures that can compromise

the reliability of the browser platform. (3) By requiring access

privileges to be determined statically, we avoid the pitfalls of

dynamic discovery of access privileges identified by Koved

et al. [21] in the context of Java access rights, namely that

it is either error-prone or leads to over privilege. (4) We

also observe that certain policies are not easily or efficiently

enforced dynamically, including those based on (ℒ;P)-safety,

since this requires maintaining additional state at runtime, and

also requires adding taint tags to arbitrary data values. Despite

recent advances, dynamic taint tracking can be prohibitively

expensive [8]. (5) Finally, we note that IBEX’s deployment

model makes the centralized extension hosting service a nat-

ural place for enforcement based on static analysis; such a

facility is absent in decentralized software distribution.

E. Cross-browser deployment of extensions

In addition to verifying extensions, our approach allows

extensions to be developed in a platform-independent manner.

Our tools include a new code generator that allows us to

compile extension code either to JavaScript or to .NET. This

allows extensions to be authored once in Fine, and deployed

on multiple browsers, including, via JavaScript, in Chrome and

Firefox; via bindings from .NET to native code for Internet

Explorer; and directly in .NET for C3.

In addition to cross-browser deployment, JavaScript code

generation allows our approach to be used in combination

with existing extension security models. In particular, we show

how to verify authorization properties for Chrome extensions

by partially porting their content scripts (the interface of a

Chrome extension to the DOM) from JavaScript to Fine—the

much larger extension core can remain in JavaScript and inter-

operates with code generated from Fine. While such hybrid

approaches are attractive for the ease of use and migration,

the security guarantee in such a configuration is, of course,

weaker; for instance, unverified extension cores are free to

violate information flow properties.
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IV. A LANGUAGE FOR FINE-GRAINED POLICIES

This section introduces our policy language, a Datalog-

based framework for specifying fine-grained data confidential-

ity and integrity policies for browser extensions. We present

our policy visualization tool, and discuss how policies may be

analyzed for robustness.

A. Language design

Distinguishing data from metadata: We take the view that

the structure of web content can be interpreted as security

metadata, and can be used to restrict the privilege of extensions

at a fine granularity. As such, we think of page structure as

inducing a kind of dynamic, data-driven, security labeling [35]

on web content. From this perspective, since the extension’s

behavior depends on the metadata of a page, it is most

convenient if the metadata itself can be considered to be not

security sensitive.

Determining which elements of semi-structured web content

constitute metadata is a design decision that involves weighing

several factors. In this work, we view elements’ tag-names

and certain attributes (e.g., styles and identifiers) as security

metadata that an extension can freely inspect but not modify.

In contrast, the text, links, images, and all other content on a

web page is considered, by default, to be high confidentiality

(secret) and immutable. Extension-specific policies must ex-

plicitly grant an extension privileges to access or modify non-

metadata content. Our experience indicates that this choice

represents a good balance of concerns—it leads to a familiar

programming model for extensions, while still providing good

protection for a user’s sensitive web content.

Stability of a security policy and the choice of Datalog: An-

other constraint in the design of our policy language is driven

by the execution model for extensions. Specifically, JavaScript

that appears on the web page can interact with extensions via

shared state in the DOM. Furthermore, while JavaScript and

extension code share a single thread of control, their execution

can be interleaved arbitrarily. A key property that we wish

for our policy language is that the security policies should be

stable. This notion is spelled out in the next section; intuitively,

stability ensures that a well-behaved extension that is deemed

to comply with a policy will never become insecure because

of the actions of unanticipated JavaScript on the web page.

Accounting for these considerations, we choose to base our

policy language on Datalog. We define a set of predicates to

use with policies, where these predicates reflect the structure of

web content. Importantly, Datalog’s restricted use of negation

ensures that policies are always stable.

Figure 5 shows a selection of the predicates we provide. The

figure is split into two parts, the top showing the predicates

we use to speak about security metadata; the bottom showing

predicates that grant privileges to extensions. Most of the

predicates listed in the figure are self-explanatory. However, a

few are worth further discussion. The predicates EltTextValue and

EltAttr appear in the metadata section of the figure. However,

both the text and attribute content of a web page are, by

Metadata predicate Description

DocDomain doc string the document, doc has domain string

EltDoc elt doc the element elt is in the doc

EltParent elt p p is the parent-element of elt

EltTagName elt tagName elt’s tag-name is tagName

EltTextValue elt v elt’s text-value is v

EltAttr elt k v elt has an attribute k, with value v

EltStyle elt sty elt’s style is sty

UrlScheme url s url’s scheme is s (e.g., “http:”, “ftp:”, etc.)

UrlHost url h url’s host is h

UrlQuery url p url’s query parameters are p

FlowsFrom a b a was derived from b

Permission predicate

CanReadSelection doc the extension can determine user’s selection on doc

CanAppend elt the extension can append elements to elt

CanEdit elt the extension can modify elt

CanReadValue elt the extension can read the text value of elt

CanWriteValue elt the extension can write text to elt

CanWriteAttr elt k v the extension can write v to the k-attribute of elt

CanReadAttr elt k the extension can read the attribute named k on elt

CanStyle sty the extension can modify the style sty

CanRequest str the extension can send HTTP requests to url str

CanFlowTo a b the extension is allowed to write a to b

CanReadHistory site the extension is allowed to read history on site

CanReadFile file the extension is allowed to read the local file

Fig. 5: A selection of the predicates in our policies

default, considered sensitive information. In order to be able

to access the text values and attributes of an element e, an

extension must be granted explicit CanReadValue and CanReadAttr

privileges on e. We show an example of this shortly. Note also

that we provide predicates FlowsFrom and CanFlowTo, which allow

a policy to impose data flow constraints on extensions—this is

particularly important for controlling access to resources such

as browsing history (Section VII-B).

An example policy: The top of Figure 6 shows part of

the policy we use with FacePalm. The first rule grants the

extension the ability to read class attributes on all elements in

the page, i.e., class attributes are considered metadata in this

policy. The second rule states that for all elements e that have

their class attribute set to the value ”label”, the extension has

read access to the text content of their immediate children.

The third rule is the most complicated: it states, roughly, that

for a specific sub-element website of a node tagged with the

”label” attribute and ”Website:” text value, the extension has the

right to read a link stored in the website node.

B. Understanding policies

Extensions are often designed with specific websites in

mind, e.g., FacePalm’s code closely tied to the structure of a

Facebook web page. Policies, being an abstraction of the code,

can also be closely tied to the page structure. Such policies

can be hard to understand, unless the reader also understands

the structure of the HTML used on the relevant websites.

We provide a visualization tool to assist users with the task

of understanding security policies. Our idea is to interpret
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(∗ Required to select elements by class (i.e., the ”label” class) ∗)

1. ∀e. CanReadAttr e ”class”

(∗ Requires to read the label text ∗)

2. ∀e, child. EltParent child e

&& EltAttr e ”class” ”label” ⇒ CanReadValue child

(∗ Permission to read website links ∗)

3. ∀data, label, labelText, website, parent.

EltParent data parent && EltParent label parent

&& EltParent website data && EltParent labelText label

&& EltAttr label ”class” ”label” && EltTextValue labelText ”Website:”

⇒ CanReadAttr website ”href”

Fig. 6: FacePalm’s policy and its visualization on a Facebook page

predicates in a policy as XML selectors, and to highlight

elements in a web page for which an extension has read or

write access. Our tool takes the form of an extensions for

Chrome and the bottom of Figure 6 shows a screen-shot of this

extension when applied to FacePalm’s policy. Specifically, it

highlights the elements accessible to FacePalm on a particular

Facebook profile. Various labels such as “Interests”, “Chat”,

“Music”, and “Website:” are highlighted, since the extension

needs to search through the labels until it finds “Website:”.

The websites on the profile are highlighted, since they are

the data that FacePalm reads and sends to delicious.com.

Most important, consider the data that is not highlighted—

email addresses, phone numbers, likes and dislikes, etc.—this

data is inaccessible to FacePalm, as advertised. Therefore, we

can be confident that FacePalm is secure when it runs on this

particular web page.

While helpful, visualization is necessarily imprecise and is

not intended to be a substitute for either manual inspection

or formal analysis of the policy. Visualization only renders

the impact of a policy on a particular web page and, as such,

cannot be used to provide complete coverage since visiting

all Facebook pages is impractical. Second, there are elements

of policies which cannot easily be depicted in visual manner,

e.g., information-flow policies.

Robustness of a policy: Visualization is one tool to assist

with understanding and vetting policies. We envisage building

several other useful tools for policy analysis. An advantage of

using Datalog as the basis of our language is the availability of

tools on which to base such analyses. One obvious analysis is

to check for policies that use specific undesirable patterns. For

example, a policy should not grant an extension the privilege to

modify a page in a way that allows the extension to grant itself

access to protected resources. The following policy illustrates

this undesirable pattern: the attribute (class) that protects access

to an element is mutable by the extension.

∀e. CanWriteAttr e ‘‘class’’

∀e,k. EltAttr e ‘‘class’’ ‘‘readable’’ ⇒ CanReadValue e

Detecting such situations is relatively straightforward since

Datalog policies can be automatically analyzed to enumerate

the set of attributes over which an extension has write privi-

lege. A simple syntactic check to ensure that none of these

attributes ever appear within a metadata predicate ensures

the integrity of security-sensitive metadata. We leave the

implementation of such an analysis to future work.

V. THE SEMANTICS OF SECURITY POLICIES

This section formalizes a core language and execution

model for browser extensions. The distinctive feature of this

model is that the execution of extension code is interleaved

arbitrarily with JavaScript on the web page. We use this

model to provide a semantics for security policies and define

a safety property for extensions—safe extensions never cause

runtime security failures. In the following section, we show

how refinement type checking can be used to soundly decide

extension safety.

A. �BX: A core calculus for browser extensions

The listing below shows the syntax of �BX, a (tiny) lambda

calculus that we use to model extensions and their interactions

with the DOM. We also show a syntax (P) for a model of the

policy language of the previous section. Both �BX and P are

to be understood as minimal core models—we leave out many

elements of our practical implementation, including network

access, event handling, local storage, and browsing history.

Syntax of �BX and policies P

const. c ::= () ∣ true ∣ false ∣ op ∣ s (string) ∣ � (nodes)
values v ::= x ∣ c ∣ (v1, v2) ∣ �x.e
expr. e ::= v ∣ e1 e2 ∣ (e1, e2) ∣ �1e ∣ �2e

∣ if e then e1 else e2
opers. op ::= getAttr ∣ setAttr ∣ getChildren ∣ strEq
policy P ::= ⋅ ∣ ∀x⃗.�1, . . . , �n ⇒ � ∣ P,P ′

preds. � ::= Parent v1 v2 ∣ EltAttr v1 v2 v3
∣ CanReadAttr v1 v2 ∣ CanWriteAttr v1 v2 v3
∣ FlowsFrom v1 v2 ∣ CanFlowTo v1 v2

Values in �BX include variables x, constants c, pairs, and

lambda abstractions. Expressions additionally include applica-

tion, projection, and conditional forms. Constants include the

unit value, booleans, identifiers � (which we use as abstract

handles to DOM nodes), and string literals (for attributes of

DOM nodes). The primitive operators of �BX are the most

interesting parts. These include getAttr and setAttr to access

and mutate the attributes of a node; getChildren to traverse

the DOM (modeled as a binary tree of nodes); and strEq for

primitive equality on strings.
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A policy P is a finite list of Horn clauses. The base predi-

cates � are drawn from the ontology of Figure 5. Importantly,

in order to establish a connection between �BX programs and

their policies, the base predicates of P are defined over the

(first-order) values of �BX.

To relate the syntax of our core language to our other

examples, we reproduce the extension code from Section III-D

below and show its �BX version.

(∗ In Fine ∗)

let extensionCode (e:elt) =
if tagName e = "div" && getAttr e "class" = "website"

then textContent (firstChild e) else ""

(∗ In �BX∗)

�e.if (strEq(getAttr(e, “tagName”), “div”))
then if (strEq(getAttr(e, “class”), “website”))

then getAttr(�1(getChildren e), “textContent”)
else ””

else ””

B. Dynamic semantics of �BX

This section presents a dynamic semantics for �BX programs

governed by P policies. Our semantics is carefully designed to

account for the possibility of interleavings between untrusted,

page-resident JavaScript and extension code. This design of

our semantics and its corresponding safety property results in

a fine-grained security model for extensions that is robust with

respect to the effects of JavaScript on the web page.

To appreciate the design of our semantics, we first dis-

cuss (a straw-man) security property that depends on the

instantaneous dynamic state of a web page. In this model,

consider a well-behaved implementation of an extension like

FacePalm. Such an extension could query a metadata attribute

on a DOM node (e.g., check that the class attribute of a

node is label); decide according to the policy that it has read

privilege over the node; and, could then proceed to read the

contents of the node. If the node’s metadata changes just

prior to the read (due the effect of page-resident JavaScript),

under an instantaneous view of the policy, the read must

be rejected as insecure. Effectively, due to the behavior of

unforeseen JavaScript, unpredictable time-of-check to time-

of-use (TOCTOU) discrepancies can arise. Worse, under this

model, an adversarial web page can cause extensions to throw

runtime security exceptions, making the browser platform

unstable.

To counter such difficulties, the key insight behind our

semantics is to make the security behavior of extensions de-

pendent only on a dynamic log, a monotonically increasing set

ℒ of ground facts about page metadata. While page-resident

JavaScript can cause additional facts to be introduced into the

log, it can never remove facts from the log. In conjunction with

our use of (strictly positive) Datalog as a policy language,

this design ensures that page-resident JavaScript, and any

TOCTOU discrepancies that it may introduce, can never cause

security failures in extension code.

Figure 7 defines a reduction relation P ⊢ (ℒ, e)⇝ (ℒ′, e′),
according to which a runtime configuration (ℒ, e), consisting

of a dynamic log ℒ of ground facts and a �BX term e, reduces

to (ℒ′, e′), while under the purview of an unchanging policy

P . This is a small-step reduction relation for a call-by-value

language, with a left-to-right evaluation order, extended with

reductions for the primitive operators of �BX. The definition

of the relation makes use of an auxiliary judgment ℒ;P ∣=
�, a standard entailment relation for Datalog, stating that the

fact � is derivable from the database of ground facts ℒ and

intensional rules P . We omit the definition of the standard

entailment relation for Datalog.

The rules (E-Ctx), (E-�), (E-If) and (E-�) are standard.

The rule (E-Eq) is unsurprising—it represents an equality test

on string values. (E-SetAttr) is more interesting. It represents

an attempt by the extension program to alter the DOM by

altering the attribute skey on the node � to the value sval.
Our model views attribute mutation as a security-sensitive

event, so the premise of (E-SetAttr) contains a security check.

Specifically, we require the CanWriteAttr � skey sval privilege

to be derivable from the facts in the log ℒ and the policy P .

As discussed in Section IV-A we view the tree structure of

a page as security metadata not subject to access restrictions

itself. This design is reflected in the rule (E-GetCh), which

contains no security check in the premise—an extension is

always free to traverse the structure of the page. However, in

the conclusion of the rule, we record facts in the log ℒ′ to

indicate that the parent/child relationships between �, �1 and

�2. These facts can be used in subsequent security checks to

grant privileges to extensions. Note that for the purposes of

this model, we consider DOM trees as having infinite depth,

i.e., it is always possible to access the children of a node. In

practice (cf. Section VI-B), getChildren returns an option.

Finally, we have (E-GetAttr), which combines elements

from (E-SetAttr) and (E-GetCh). Depending on the policy,

some attributes of a node (say, its innerText field) are con-

sidered security sensitive and are subject to access controls;

other attributes (say, a CSS class) can be treated as security

metadata. For this reason, the premise of (E-GetAttr) contains

a check to ensure that an extension has read privilege on the

requested attribute. Additionally, we record facts in the log ℒ′.

The first fact indicates that the node � indeed has the attribute

(skey, sval); the second records the fact that the value sval was

derived from �. The latter fact is useful for enforcing data flow

properties—we discuss this in Section VII-B.

Modeling the effects of JavaScript via non-determinism:

Extensions and page-resident JavaScript interact via shared

DOM state. In most browsers, extensions and JavaScript

share a single thread of control. An event handler, whether

JavaScript or extension, runs to completion on receiving an

event, and then yields control back to the browser, which

can then schedule another event handler. In general, when

extension code regains control, the page may have evolved

arbitrarily since the last time the extension had control.

We model this characteristic feature of the extension exe-

cution model by making the rules (E-GetCh) and (E-GetAttr)

non-deterministic. The non-determinism in our formal model

is at an arbitrarily fine level of granularity, e.g., successive calls

to (E-GetAttr) with the same arguments are allowed to return
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log ℒ ::= ⋅ ∣ � ∣ ℒ1,ℒ2 eval. contexts E[∙] ::= ∙ ∣ E e ∣ v E ∣ (E, e) ∣ (v,E) ∣ �iE ∣ if E then e1 else e2

P ⊢ (ℒ, e)⇝ (ℒ′, e′)

P ⊢ (ℒ, E[e])⇝ (ℒ′, E[e′])
E-Ctx

P ⊢ (ℒ, �x.e v)⇝ (ℒ, e[v/x])
E-�

e′ = e1 when v = true e′ = e2 when v = false

P ⊢ (ℒ, if v then e1 else e2)⇝ (ℒ, e′)
E-If

P ⊢ (ℒ, �i(v1, v2))⇝ (ℒ, vi)
E-�

v = true when s1 = s2 v = false otherwise

P ⊢ (ℒ, strEq (s1, s2))⇝ (ℒ, v)
E-Eq

ℒ;P ∣= CanWriteAttr � skey sval

P ⊢ (ℒ, setAttr (�, (skey , sval)))⇝ (ℒ′, ())
E-SetAttr

ℒ′ = ℒ,Parent � �1,Parent � �2

P ⊢ (ℒ, getChildren �)⇝ (ℒ′, (�1, �2))
E-GetCh

ℒ;P ∣= CanReadAttr � skey ℒ′ = ℒ,EltAttr � skey sval,FlowsFrom � sval

P ⊢ (ℒ, getAttr (�, skey))⇝ (ℒ′, sval)
E-GetAttr

Fig. 7: Dynamic semantics of �BX: P ⊢ (ℒ, e)⇝ (ℒ′, e′)

different results, modeling the fact that JavaScript code can be

interleaved between the two calls. In practice, interleavings are

not arbitrarily fine—extension code in a single event handler

runs to completion without preemption. However, closures and

shared state across event handler invocations allow extensions

to observe the effects of JavaScript, essentially, between any

pair of syntactically adjacent instructions.

C. (ℒ;P)-safety: A security property for �BX

The main security definition of this paper is a notion of

safety of �BX programs, defined above as a traditional type

soundness property on the reduction relation.

Definition 1 (Safety): An extension e is (ℒ;P)-safe if either

e is a value, or there exists an expression e′ and a log ℒ′ such

that P ⊢ (ℒ, e)⇝ (ℒ′, e′) and e′ is (ℒ′;P)-safe.

(ℒ;P)-safety has the pleasing property that the security of

an extension does not depend on the actions of page-resident

JavaScript. However, it also limits the kinds of security policies

that can be defined. In particular, policies that involve dynamic

revocations cannot be modeled using (ℒ;P)-safety. We leave

to future work the investigation of a security property for

extensions that is suitable for use with revocation, while still

being robust to the effects of untrusted JavaScript on the page.

VI. STATIC ENFORCEMENT OF EXTENSION SAFETY

This section describes a methodology based on refinement

type checking that we use to statically verify that extensions

comply with their policies. Section VI-A briefly reviews

refinement types and Fine. We then discuss the high-level

architecture of our verification methodology and present frag-

ments of the refined APIs that we expose to extensions. We

then present several small examples of extension code and

show how these are verified against the APIs. The section

concludes with a discussion of the main theorem of the paper,

namely that well-typed Fine programs are (ℒ;P)-safe.

Our approach has a number of benefits, some of which

were discussed in Section III-D. In light of the presentation

of our safety property, we begin this section by highlighting

two further benefits of our approach.

Robustness and modular verification: While (ℒ;P)-safety

is weak in the sense that it cannot model revocation, we find it

particularly useful since it lends itself to a modular verification

strategy. We can verify extensions for compliance with this

property independently of page-resident JavaScript, and reason

that this property is still preserved under composition with

JavaScript. As such, this notion of safety is similar to the

notion of robust safety, as formulated for use with model

checking concurrent programs [16], or for verifying authen-

ticity properties of cryptographic protocols [14].

Efficient policy enforcement: Static verification of extension

safety removes the performance cost of runtime monitoring. In

the context of (ℒ;P)-safety, runtime monitoring is particularly

expensive, since it requires a dynamic log to be maintained

at runtime as well as a Datalog interpreter to be invoked

(potentially) on each access to the DOM. Static enforcement

allows the dynamic log to be virtualized, so no log need be

maintained at runtime, and, of course, no runtime Datalog

interpretation is necessary either. Additionally, (ℒ;P)-safety

also allows us to enforce data-flow like taint-based properties

with no runtime overhead.

A. A review of refinement types in Fine

Fine is a verification system for a core, functional subset of

F#. The principal novelty of Fine is in its type system, which

is designed to support static verification of safety properties

via a mixture of refinement and substructural types—for the

purposes of this paper, substructural typing is unimportant.

This section describes the syntax and intuitions behind re-

finement types in Fine. For details, we refer the reader to a

recent comprehensive presentation of Fine and other related

languages [31].

Value-indexed types: Types in Fine can be indexed both by

types (e.g., list int) as well as by values. For example, array int 17

could represent the type of an array of 17 integers, where the

index 17:nat is a natural number value. Value indexes on types

can be used to specify a variety of security constraints, e.g.,

example, labeled int x could represent the type of an integer

whose security label is described by the program variable x.

Note that for uniformity, unlike ML, type applications are

written in prefix notation (e.g., list int instead of int list).

Dependent function types: Functions in Fine are, in general,

given dependent function types, i.e., their range type depends

on their argument. These are written x:t → t’, where the formal

name x of the parameter of type t is in scope in t’. For example,

the type of a function that allocates an array of n integers can

be given the type n:nat → array int n. When a function is non-

dependent, we drop the formal name.

Refinement types: A refinement type in Fine (technically, a

ghost refinement) is written x:t{�}, where � is a formula in
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which the variable x is bound. Fine is parametric in the logic

used for formulas, �, however, in practice, the logic is often a

first-order logic with equality. In this paper, rather than use the

full power of first-order logic, we limit the formula language to

strictly positive Datalog, which, as explained earlier, is suitable

for (ℒ;P)-safety. Formulas are drawn from the same syntactic

category as types, although, for readability, we use italicized

fonts for formulas.

Refinements as pre- and post-conditions: We can use

refinement types to place pre- and post-conditions on func-

tions. For example, we may give the following (partial)

specification to a list permutation, where the refinement for-

mula on the return value m corresponds to a post-condition

of the function, relating the return value to the argument.

∀� .l:list �→m:list � {∀x. In x l ⇔ In x m}. Refinement types can also

be used to state pre-conditions of functions. For example, to

rule out divide-by-zero errors, we could give the following

type to integer division: x:int → y:int{y != 0} → int.

Kind language: Types in Fine are categorized according to

a language of kinds. Types are divided into four basic kinds,

although we only consider two of these kinds in this paper.

The kind ★ is the kind of normal types; and, P , the kind of

propositions. Type constructors are given arrow kinds, which

come in two flavors. The first, �::k ⇒ k′ is the kind of type

functions that construct a k′-kinded type from a k-kinded type

� . Just as at the type level, kind-level arrows are dependent—

the type variable � can appear free in k′. Type functions that

construct value-indexed types are given a kind x:t ⇒ k, where

x names the formal of type t and x can appear free in k. In

both cases, when the kind is non-dependent, we simply drop

the formal name. For example, the kind of list is ★⇒ ★ ; the

kind of the value-indexed array constructor is ★⇒ nat ⇒ ★ ; the

kind of the propositional connective And is P ⇒ P ⇒ P ; the

kind of the user-defined predicate In is �::★⇒ �⇒ list �⇒ P .

Top-level assumptions: The predicates that appear in a refine-

ment formula can be axiomatized using a collection of user-

provided assumptions. For example, in order to axiomatize

the list membership predicate In, the standard library of Fine

contains assumptions of the form assume ∀hd, tl. In hd (Cons hd tl).

In the context of this paper, in addition to axiomatizing

standard predicates, top-level assumptions are used to specify

the security policy that applies to an extension.

Refinement type checking: A refinement type x:t{�} is in-

habited by values v:t, for which �[v/x] is derivable. Formally,

derivability is defined with respect to assumptions induced by

the program context (e.g., equalities due to pattern matching),

the top-level assumptions, and any formulas in a purely

virtual dynamic log ℒ, where the contents of the log is itself

soundly approximated using refinement types. The derivability

of refinement formulas is decided by Fine’s type checker by

relying on Z3 [7], an SMT solver. We show an example

program and its typing derivation in Section VI-C.

B. Refined APIs for extensions

Our verification methodology involves giving refinement-

typed interfaces to browser functionality that is exposed to

extensions. This section presents a fragment of this interface

in detail and discusses how the types of these interfaces map to

the semantics of Section V. We focus here on the API for the

DOM; our implementation uses a similar approach to provide

refined APIs for local storage, network, and browsing history.

The listing below shows a fragment of the refined DOM API

we expose to extensions. It begins by defining two abstract

types, doc and elt, the types of web documents and document

nodes, respectively. Well-typed extensions can only manipulate

values of these types using our exposed APIs.

Next, we define a number of type constructors correspond-

ing to the predicates of our policy language (Figure 5)—Fine’s

type and kind language makes it straightforward to define these

predicates. We start at lines 4-8 by showing the definitions of

several metadata predicates that can be used to speak about

the structure of a web page. Lines 10-14 show predicates

corresponding to authorization privileges. For example, at line

4, DocDomain is defined to construct a proposition (a P -kinded

type) from a doc and a string value. Fine’s kind language

also makes it possible to define polymorphic propositions. For

example, the FlowsFrom proposition at line 8 relates a value v1
of any type � to another value v2 of some other type � , to

indicate that v1 was derived from v2; CanFlowTo is similar.

The DOM API (partial)

1module DOM
2 type doc (∗ abstract type of documents ∗)

3 type elt (∗ abstract type of DOM element nodes ∗)

4 (∗ DOM metadata predicates ∗)

5 type DocDomain :: doc ⇒ string ⇒ P
6 type EltDoc :: elt ⇒ doc ⇒ P
7 type EltTagName :: elt ⇒ string ⇒ P
8 type EltAttr :: elt ⇒ string ⇒ string ⇒ P
9 type FlowsFrom :: �::★ ⇒ �::★ ⇒ �⇒ �⇒ P

10 (∗ DOM permission predicates ∗)

11 type CanAppend :: elt ⇒ elt ⇒ P
12 type CanEdit :: elt ⇒ P
13 type CanReadAttr :: elt ⇒ string ⇒ P
14 type CanWriteAttr :: elt ⇒ string ⇒ string ⇒ P
15 type CanFlowTo :: � ::★ ⇒ � ::★ ⇒ �⇒ �⇒ P
16 (∗ Metadata queries ∗)

17val getChild : p:elt→ int→
18 r:option elt{∀ ch. r=Some ch⇒ EltParent p ch && FlowsFrom r p}
19val parentNode: ch:elt → p:elt{EltParent p ch}
20val getEltById: d:doc→ x:string→ c:elt{EltDoc c d && EltAttr c ”id” x}
21val tagName : ce:elt → r:string{EltTagName ce r}
22 (∗ Protected access to data ∗)

23val getAttr : e:elt → k:string{CanReadAttr e k} →
24 r:string{EltAttr e k r && FlowsFrom r e}
25val setAttr : e:elt→ k:string→ v:string{CanWriteAttr e k v}→
26 :unit{EltAttr e k v}
27val getValue : e:elt{CanReadValue e} → s:string{EltTextValue ce s}
28val createElt : d:doc → t:string →
29 e:elt{EltDoc e d && EltTagName e t && CanEdit e}
30val appendChild : p:elt → c:elt{CanAppend c p} → :unit{EltParent p c}

Lines 16-21 show a sampling of functions that extensions

can use to inspect the structure of a page. Each of these

functions is given a refined type, where the refinement on the

return value corresponds to a post-condition established by
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the function. At lines 24-31 we show functions that provide

extensions with access to security sensitive data, e.g., the

attributes of an element. The types of these functions are

refined with both pre- and post-conditions, where the pre-

conditions correspond to authorization privileges that the caller

must possess in order to access, say, an attribute; while the

post-conditions, as with the metadata queries, record properties

of the page structure.

At one level, one can understand pre- and post-conditions

as predicates that relate the arguments and return value of

each function. However, a more precise reading is in terms

of the dynamic semantics of �BX. To illustrate, consider the

primitive operator getAttr of Figure 7. In our formal model,

the reduction rule for getAttr � skey was guarded by a

premise that required the proposition CanReadAttr � skey
to be derivable from the policy and the facts in the log.

We capture this requirement by giving getAttr a type that

records the corresponding CanReadAttr e k predicate as a pre-

condition. Going back to the formal model, if the policy check

succeeds CanReadAttr � skey reduces to an attribute sval,
and. importantly, records the facts EltAttr � skey sval and

FlowsFrom � sval in the log. We capture this effect on the log

by giving getAttr a type that includes the corresponding version

of these predicates in its post-condition.

With the understanding that log effects correspond to post-

conditions, and that policy checks in the premises of our

reduction rules correspond to pre-conditions, we discuss the

remaining functions in our DOM API. The function getChild is

the analog of the operator getChildren of our formal semantics,

adapted for use with a more realistic DOM. At the moment,

our logical model of the DOM ignores the relative ordering

among the children of a node—we simply record the fact that

a pair of nodes are in a parent/child relationship. Enhancing

this model to include ordering constraints is certainly possible,

however, our examples have so far not required this degree of

precision on the structure of a page to state useful security

policies. Extensions can traverse the DOM in both directions,

using getChild and parentNode. The DOM also includes a

function, getEltById, which provides random access to nodes

using node identifiers—notice that the post-condition of this

function is relatively weak, since the exact placement of the

returned nodes in the DOM is undetermined.

Our API also provides functions that allow extensions to

mutate the DOM. For example, using createElt and appendChild,

a suitably privileged extension can alter the structure of a

web page. The observant reader may wonder how such side-

effecting operations can be soundly modeled using refinement

types in a functional language. The key point here is that we

model such mutation effects purely in terms of their effects

on the dynamic log. Since the log grows monotonically, a

property that was once true of an elt remains valid in the logic

even after the element is mutated.

Concretely, for the example below, suppose we have a pair

of elt values e1 and e2. Then, in a context where CanAppend e2

is derivable, the predicates derivable at each line are shown in

comments.

let p1 = getParent e1 in (∗ EltParent p1 e1 ∗)

appendChild e2 e1 (∗ EltParent p1 e1 && EltParent e2 e1 ∗)

Importantly, even after e1 has been added as a child of e2

on the second line, the predicate EltParent p1 e1 continues to be

derivable, since it remains as a ground fact in the dynamic log.

This behavior reveals two subtleties, which we discuss next.

First, this model of side-effects rules out the possibility of

strong updates, or, equivalently, dynamic revocation. Despite

this weakness, as discussed earlier, the monotonic nature of

our model lends itself to verifying properties of extensions that

are interleaved with arbitrary JavaScript code. By ensuring that

all log effects are strictly positive formulas, we ensure that the

effects of unverified JavaScript cannot undo properties estab-

lished by extensions. This strict positivity condition and its

corresponding monotonic behavior is a characteristic feature

of (ℒ;P)-safety, and our model of side effects is set up to

precisely model this property. Additionally, the robustness of

(ℒ;P)-safety with regard to the effects of JavaScript allows

extension authors (at least from a security standpoint) to be

largely unconcerned with the interleavings of extension code

and JavaScript, which is a significant simplification of the

programming model.

Second, when programming against this model, intuitions

about the meaning of certain predicates, like EltParent, have to

be adjusted slightly. Specifically, we must view EltParent as a

many-to-many relation, since, as the example above illustrates,

the element e1 can have more than one parent. As such, our

logical model of the DOM is a graph recording the history of

parent/child relationships between nodes.

C. Safety by typing

The listing below shows a highly simplified fragment from

FacePalm, code that was presented informally in Section III.

We discuss how this code is verified against the DOM API.

A simplified fragment of FacePalm

1prop EltAncestor :: elt ⇒ elt ⇒ P
2assume ∀e1, e2. EltParent e1 e2 ⇒ EltAncestor e1 e2

3assume ∀e1, e2, e3. EltParent e1 e2 && EltParent e2 e3 ⇒ EltAncestor e1 e3

4assume ∀(e:elt). CanReadAttr e ‘‘class’’

5assume ∀(e:elt), (p:elt). (EltAncestor e p && EltTagName p ”div” &&

6 EltAttr p ”class” ”website”) ⇒ CanReadValue e

7 let extensionCode e =
8 let t = tagName e ‘‘div’’ in
9 let a = getAttr e ‘‘class’’ in

10 if t = "div" && a = "website"

11 then match getChild e 0 with
12 ∣ Some c →Some (getValue c)
13 ∣ None →None
14 else None

Lines 1–6 above show the policy used with the extension

written in Fine using a collection of assumptions. The policy

defines a relation EltAncestor, the transitive closure of EltParent,

and at lines 4 and 5, grants the extension the privilege to

1) read the “class” attribute of every element on the page; and

2) to read the contents of any sub-tree in the page rooted at a

div node whose class attribute is “website”.

Lines 7–14 show the code of the extension. At line 8,

we extract the tag t of the element e; the post-condition
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of this function allows the Fine type checker to conclude,

after line 8, that the proposition EltTagName e p is in the dy-

namic log. In order to check the call at line 9, we have to

prove that the pre-condition CanReadAttr e ‘‘class’’ is derivable—

this follows from the top-level assumptions. After line 9,

we can conclude that the fact EltAttr e ‘‘class’’ a is in the dy-

namic log. At line 11, in the then-branch of the conditional,

the type checker uses the types of the equality operation

(=):x:�→ y:�→ b:bool{b=true ⇔ x=y} and of the boolean operator

(&&):x:bool → y:bool → z:bool{z=true ⇔ x=true && y=true} to refine its

information about the contents of the dynamic log. In particu-

lar, the type checker concludes that if control passes to line 11,

then both EltTagName e ‘‘div’’ and EltAttr e ‘‘class’’ ‘‘website’’ are in the

dynamic log, and, using similar reasoning, it concludes that

if control passes to line 12, EltParent e c is in the dynamic log.

Finally, at the call to getValue c at line 12, we need to show

that the pre-condition CanReadValue c is derivable. Given the top-

level assumptions, and all the accumulated information about

the contents of the dynamic log, the theorem prover Fine uses

can establish this fact.

The main formal result of this section is the theorem

below. It states that a program e that is well-typed against an

interface ΓDOM (representing the type and value signatures

in the module DOM listing), a set of assumptions representing

a Datalog policy P , and a set of ground facts in an abstract

dynamic log ℒ, is guaranteed to be (ℒ;P)-safe.

Theorem 1 (Type-correct programs are (ℒ;P)-safe): Given

a policy P and its translation to a signature S = [[P]];
a dynamic log ℒ and its translation to an environment

ΓL = [[ℒ]]; such that S; ΓDOM ,ΓL is well-formed (i.e.,

⊢ S; ΓDOM ,ΓL). Then, for any assumption-free program e
and type t, if S; ΓDOM ,ΓL ⊢ e : t, then e is (ℒ;P)-safe.

Proof: A straightforward extension of the main soundness

result of Fine, as described by Swamy et al. [31], wherein

a reduction relation for Fine is given while accounting for a

dynamic log of assumptions. We extend the core reduction

rules with four additional cases corresponding to (E-StrEq),

(E-GetAttr), (E-SetAttr), and (E-GetCh). In each case, we

show that reduction preserves typing, according the types

given to the primitive operations in ΓDOM . Finally, we appeal

to a relation between first-order and Datalog derivability,

showing that the former subsumes the latter.

VII. EXPERIMENTAL EVALUATION

We have, to date, written 17 extensions to evaluate our

framework. Some of these extensions are prototypes written

from scratch; others are third-party extensions that we partially

ported and verified. This section summarizes these exten-

sions, their security policies, and discusses our experience

programming and verifying them in Fine. Our experience

suggests that while authoring extension code is relatively

easy and verification times reasonably fast, stating precise

security policies for extensions still demands a non-trivial

amount of work from the programmer. We plan future work to

Name LOC # Assumes Compile (s) #Z3 q’s

Verified for access control properties

Magnifier 23 1 6.0 11

PrintNewYorker 45 2 6.2 15

Dictionary lookup 70 3 6.6 24

FacePalm 142 5 10.7 26

Bib Parser 262 2 5.9 15

Verified for access control and data flow properties

Password Manager 52 2 5.7 14

Twitter Miner 36 2 5.6 18

Bing Miner 35 4 5.7 37

Netflix Miner 110 17 6.2 57

Glue Miner 101 11 8.9 77

News Personalizer 124 7 13.1 125

Search Personalizer 382 12 83.6 339

Partially ported Chrome extensions

Bookmarking (6K) 19 1 5.8 9

Gmail Checker Plus (7K) 43 3 6.5 19

JavaScript Toolbox (2K) 19 1 6.3 9

Short URL Expander (494) 22 1 5.2 9

Typography (20K) 44 2 6.2 15

TOTAL 1,529 78 194.2 819

Fig. 8: Summary of experimental evaluation.

infer policies via program analysis, and expect this to reduce

programmer burden.

A. Summary of results

Figure 8 summarizes our experimental results. It lists the

17 extensions we wrote, the number of lines of code, the

number of policy rules (assumptions), and the time taken

to verify and compile each extension, and the number of

theorem prover queries that were issued during verification.

API LOC

Events + network 31
Local storage 37
JSON + Utilities 58
Behavior mining 260
DOM, URLs, Styles 267

TOTAL 653

Fig. 9: Extensions APIs

Each of these extensions was

programmed against some sub-

set of our refined APIs. Fig-

ure 9 alongside shows the var-

ious components in our APIs

and the lines of code in each.

It is worth pointing out that al-

though most of our extensions

use only a few policy assump-

tions, as illustrated in Section IV-B, logic-based policies are

not always easier to read than code—our visualization tools

go some way towards assisting with policy understanding.

Our extensions fall into three categories. This first group

includes five extensions that we wrote from scratch and veri-

fied for access control properties. Magnifier is an accessibility

extension: it enlarges text under the mouse on any web

page—its policy ensures that only the styling of a page is

changed. PrintNewYorker rewrites links on newyorker.com

to go directly to print-view, removing ads and the multi-page

layout of the site—its policy ensures that the host of a link is

never changed and that only known constants are appended

to the query string of a url. Dictionary queries an online

dictionary for the selected word—only the selected word is

allowed to be sent on the network. Bib Parser uses its own

language of XML patterns to parse the contents of one of the

authors’ bibliography from a web format to bibtex—its policy

guarantees that it only reads data from a specific URL.
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The second group of extensions are all verified for a

combination of authorization and information flow properties.

The miners and personalizers in this group were developed in

conjunction with a project that was specifically investigating

the use of browser extensions for personalizing web content

by mining user behaviors [11]. The next section discusses a

variation of one of these extensions in detail—the others have a

similar flavor. The last group of extensions includes 5 Chrome

extensions that we partially ported to Fine. We discuss these

in detail in Section VII-C.

B. NewsPers: Controlling data flows and browsing history

NewsPers is an extension that personalizes nytimes.com.

It re-arranges the news stories presented on the front page to

link to stories more likely to be interesting to the user. It does

this in four steps, outlined below.

1) When the user browses to nytimes.com, NewsPers

reads a configuration file on the local file system, that

specifies a user’s news preferences.

2) It sends data from this preferences file to digg.com, a

social news website, and obtains a response that lists

currently popular stories.

3) It consults the user’s browsing history to determine

which of these popular stories on nytimes.com have

not been read before by the user.

4) Finally, it re-arranges the nytimes.com page, placing

unread popular stories towards the top.

For this extension, we aim to enforce a policy that ensures

1) that digg.com only obtains data from the configuration file,

and 2) that no information about browsing history is leaked

to nytimes.com (in addition to what it may already know).

Figure 10 shows a fragment of NewsPers.

We begin by showing a fragment of our API that provides

extensions with access to features beyond the DOM. We start

with an API to access the local filesystem, using the readFile

function, which is guarded by the CanReadFile privilege. Next,

we show the API for working with URLs and making network

requests. And, finally, we show the API to the local browsing

history. Rather than providing extensions with access to the

entire browsing history, our API provides finer controls by

which an extension can request to view the history of URLs

that a user may have visited at a particular site.

Using this API, our policy grants NewsPers the privilege

to read the configuration file it needs and to read a user’s

browsing history only for nytimes.com. The assumption at

line 15 illustrates how (ℒ;P)-safety policies can be used to

enforce flow controls. Here, we state that only information

derived from the prefs file can be sent to digg.com.

Lines 16–17 specify that the NewsPers has the privilege

to append an element e2 as the child of another element

e1, but only if e1 is a nytimes.com node, and if e2 was

derived from a node on the same domain. In other words, this

assumption gives NewsPers to reorder the structure of nodes

on an nytimes.com page, but not to add any new content.

This specification is particularly important since NewsPers

has access to a user’s browsing history. If it is able to

1 (∗ Partial API to local file system, URLs, network, and history ∗)

2 type url
3 type CanReadFile :: string ⇒ P
4 type UrlHost :: url ⇒ string ⇒ P
5 type CanRequest :: url ⇒ string ⇒ P
6 type CanReadHistory :: string ⇒ P
7 val readFile: f:filename{CanReadFile f} → s:string{FlowsFrom s f}
8 val mkUrl: s:string → h:string → ... → u:url{UrlHost u h && ...}
9 val sendRequest: u:url → s:string{CanRequest u s} → resp:string

10 val historyOnSite: host:string{CanReadHistory h} → list url
11 (∗ Policy ∗)

12 let prefs = ‘‘AppData∖NewsPers∖prefs.txt’’
13 assume CanReadFile prefs

14 assume CanReadHistory ‘‘nytimes.com’’

15 assume ∀s, u. FlowsFrom s prefs && UrlHost u ‘‘digg.com’’ ⇒

CanRequest s u

16 assume ∀e1 e2 e3. FlowsFrom e2 e3 && EltDomain e3 ‘‘nytimes.com’’

17 EltDomain e1 ‘‘nytimes.com’’ ⇒ CanAppend e1 e2

18 assume ∀e e2 e3. EltAncestor e2 e3 && FlowsFrom e e2 ⇒ FlowsFrom e e3

19 (∗ Sending request to digg.com ∗)

20 val parseResponse: string → list url
21 let getPopularStories () =
22 let p = readFile prefs in
23 let url = mkUrl ‘‘http’’ ‘‘digg.com’’ ... in
24 let resp = sendRequest url p in
25 parseResponse resp
26 (∗ Rearranging nytimes.com ∗)

27 val munge: digg:list url → history:list url → list url
28 val nodesInOrder: o:list url → r:elt → list (e:elt{FlowsFrom e r})
29 let start root =
30 if (domain root) = ‘‘nytimes.com’’ then
31 let popular = getPopularStories () in
32 let h = getHistoryOnSite ‘‘nytimes.com’’ in
33 let ordering = munge popular h in
34 let nodes = nodesInOrder ordering root in
35 iter (fun e → appendChild root e) nodes
36 else ()

Fig. 10: A fragment of NewsPers.

write arbitrary elements to an nytimes.com page, it could,

for example, insert image tags to send requests to a third

party, leaking information about the browsing history. Of

course, by rearranging the structure of the nytimes.com page,

NewsPers reveals the user’s browsing history on nytimes.com

to nytimes.com itself—but this is not a serious concern.

At lines 20–26, we show an implementation of a function

that reads data from the local preferences file and sends it to

digg.com. Lines 27–36 show the high-level structure of the

code that rearranges nytimes.com. We elide the implementa-

tions of several helper functions, but show their signatures—

these are largely free of security-sensitive operations. Notice

that the implementation itself is pleasingly free of type an-

notations. While decorating APIs with precise types requires

some effort, this burden is assumed, once and for all, by us,

the API developers.

Finally, the model of flow controls we adopt here fits natu-

rally into the (ℒ;P)-safety framework. However, in compar-

ison to noninterference-based approaches to information flow

controls, the security property we obtain is relatively weak. In

particular, what we obtain is a form of syntactic secrecy, rather

than an observational equivalence property. Practically, what

this means is that an extension can leak information about the

browsing history to digg.com by choosing to send various

fragments of the user preference information to digg.com
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depending on what URLs appear in the browsing history,

i.e., via a form of implicit flow. While prior work on Fine

shows how to eliminate this form of leak using value-indexed

types, for simplicity, we choose not to discuss this approach

here. Other extensions, including several of the miners, adopt

this approach (with additional programmer effort) to protect

against leaks via implicit flows.

C. Retrofitted security for Chrome extensions

In section II-C, we argued that many Chrome extensions are

over-privileged because Chrome’s access-control system is too

coarse-grained. We also described the innocuous behavior of

eight over-privileged extensions (figure 3). Now that we have

a fine-grained security system, we can consider securing them.

The last section of Figure 8 lists five full-featured exten-

sions. Chrome extensions are split into two components—

the content script and the extension core—that communicate

by message-passing. The size of the extension core ranges

from 500–20,000 lines of JavaScript (shown in parentheses).

The extension core can perform various privileged operations

(e.g., local storage, cross-domain requests, etc.), but it cannot

directly read or write to web pages. Content scripts, on the

other hand, can modify web pages, but they cannot access

the resources that the extension core can. Of course, the two

components can cooperate to provide extension core with

access to the web page, and vice versa, or content script with

access to storage. Nevertheless, the separation does provide a

reasonable degree of isolation.

In principle, we could port the entire Chrome extensions

to Fine and verify them for end-to-end properties. However,

we chose to rewrite only the content scripts in Fine, leaving

extension cores in JavaScript. This approach, while involving

much less effort, provides Chrome extensions with a measure

of the benefits of our fine-grained DOM authorization policies.

As Figure 3 shows, these extensions interact with web pages

in limited ways. However, their limited behavior cannot be

precisely expressed in Chrome manifests, hence they require

access to “your data on all websites”. We can precisely state

the limited privileges that these extensions actually need, and

to verify them automatically for compliance.

Our policy language and API remains the same, with the

exception of trivial, Chrome-specific message-passing func-

tions that allow our Fine-based content-scripts to commu-

nicate with extension cores. Deploying these extensions in

Chrome involves compiling content-scripts written in Fine to

JavaScript—we discuss this next.

VIII. CROSS-BROWSER EXTENSIONS

A significant benefit of IBEX comes from the fact that once

an extension is verified, it can be re-targeted to run in a variety

of modern browsers. To date, we have run our extensions

on four distinct web browsers: Internet Explorer, Google

Chrome, and C3, a research Web browser under development

at Microsoft Research. Additionally, because we can compile

from .NET to JavaScript, we have also retargeted some of our

extensions to run on Firefox. Each browser employs distinct
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Fig. 11: C3 hosting architecture.

back-ends and TCBs. In this section, we discuss system-level

security guarantees that these browsers provide.

Internet Explorer: BHOs: To target Internet Explorer, we

compile our Fine extensions to .NET libraries. These libraries

are then loaded by a single native IE extension, or a BHO,

in IE parlance. The BHO is implemented in F# and hosts our

Fine extensions in an unprivileged AppDomain, a software-

isolated process for .NET. The AppDomain allows us to easily

load and unload extensions while the browser is running, but

is not necessary for security guarantees, which are provided

by Fine’s type system. Although, of course, both the .NET

runtime and the browser itself are part of the TCB.

Google Chrome: porting the content scripts: As discussed

in Section II, Google Chrome’s extension model cannot ade-

quately express least privilege for a large class of extensions.

Using a new JavaScript back-end for Fine, based on the �JS

software [19], we compile our Fine extensions to ordinary

Chrome extensions by translating them to JavaScript. In ad-

dition, we provide a trivial JavaScript runtime system that

exposes JavaScript’s object-oriented DOM API as functions.

Note that we can afford to only translate the content script

of an extension, leaving the extension core of the extension

running separately, in a different Chrome process. However,

by rewriting extension content scripts in Fine, we gain the

ability to reason and restrict how the extension interacts with

HTML pages in a manner that is more restrictive and fine-

grained than the default extension manifest.

A. C3: A fully-managed hosting platform

C3 is an HTML5 experimentation platform written from

the ground up exclusively in C#. Because C# code ultimately

runs in a memory-managed environment, it is not susceptible

to the memory corruption vulnerabilities that are responsible

for many existing browser attacks. Our extension hosting

architecture leverages this characteristic and benefits from the

added safety.

Hosting architecture: Figure 11 illustrates the architecture we

use to host Fine extensions inside of C3. When C3 initializes, it

creates a new AppDomain, used to host all Fine extensions. C3

then loads a hosting module into the new application domain,

which serves a dual purpose. First, the module searches a

pre-defined directory for .NET assemblies that implement the

interface supported by our Fine extensions. On finding such an
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assembly, the module loads it into the new application domain,

and invokes its main function. This process is performed only

once, on browser start-up.

Second, the hosting module acts as a “shim” layer between

the Fine extension API and the internals of C3. This function-

ality is implemented using a .NET proxy object, which is a

type-safe cross-AppDomain communication mechanism. The

proxy object contains one method for each internal C3 method

needed by the API’s, which are then implemented in terms of

methods on the proxy object. When an API function is invoked

by an extension, each subsequent call to a proxy method causes

the CLR to create a remote request to code in C3. Finally,

C3 objects referenced by the proxy object are associated with

integer GUIDs, communicated across AppDomain boundaries

instead of serialized versions of the original objects.

We implemented extension APIs for C3 in about 270 lines

of F#, and the proxy object implementation is 918 lines of F#.

We find these requirements to be modest, and the gains due

to the added type safety to be well worth the effort.

IX. LIMITATIONS AND FUTURE WORK

This section discusses several limitations of approach and

considers directions for future work.

Extension evolution and policy inference: Extension code

is closely tied to the structure of the page. A web-site update

can cause the extension to stop functioning properly. To help

with this situation, we plan to investigate tool support to

help extension authors update their code to account for page

structure changes. In addition to assisting with code changes,

we anticipate making use of weakest pre-condition inference

for refinement types to automatically extract policies from

code, reducing the programmer effort required to produce

verified IBEX extensions.

Verified translation to JavaScript: We can deploy our ex-

tensions on various browsers because our compiler has two

backends. To build extensions for Internet Explorer and C3, we

use Fine’s DCIL backend, which was previously proven type

preserving [5]. To build extensions for Chrome and Firefox,

we use Fine’s new JavaScript backend. This paper does not

establish the soundness of compilation to JavaScript; we leave

this for future work.

Information flow: As presented, our extension APIs do not

support non-interference based information flow control. Prior

work shows that non-interference based information flow con-

trol can be enforced in Fine using monadic libraries equipped

with value-indexed types. However, for simplicity, we restrict

ourselves to policies based on taint-tracking, which yields a

weaker security guarantee. In the future, we aim to make use

of type coercions [29] to transform programs to automatically

use monadic information flow controls.

Revocation: Our log-based model of DOM side effects rules

out the possibility of specifying dynamic revocation policies.

Devising a security property and a verification methodology

that provides a higher fidelity model of effects, while still

being robust to the effects of untrusted JavaScript is an open

problem which we aim to address in the future.

X. RELATED WORK

Browser extension security: Ter Louw et al. [25] monitor

calls by extensions to a subset of Firefox’s privileged APIs, in

order to secure the extension installation process. While this

establishes a form of access control for extension installation,

the primary extension APIs remain unprotected, so extensions

are still over-privileged. Barth et al. [3] develop the security

model used for Google Chrome extensions. While this is the

first extension model with native support for policy enforce-

ment, the policies it supports are significantly more coarse-

grained than the examples we presented in this paper. We

survey the policies in use with Chrome extensions, and find

many extensions to be needlessly over-privileged. Our survey

results are complemented by recent unpublished work by Felt

et al. [10], who also study the permissions used by Chrome

extensions.

A number of researchers have explored the use of infor-

mation flow for browser extension verification. Dhawan et al.

present Sabre [8], a tool that instruments Firefox’s JavaScript

interpreter to track security labels at runtime. Bandhakavi et

al. [2] presented Vex, a tool that statically analyzes Firefox

extensions for a set pre-determined patterns of suspicious

information flows. While not specifically tied to extensions,

other projects such as Chugh et al. [6] and Guarnieri et

al. [17, 18] present information flow analyses for JavaScript

that look for specific patterns of suspicious flows. However,

because of the inherently dynamic nature of JavaScript, fully

static approaches are difficult to apply to large segments

of existing JavaScript code, generating interest in runtime

enforcement [26]. Our Fine-based approach allows us to stati-

cally and soundly verify authorization and data flow properties

of extensions; and our formal model characterizes safety even

in the presence of unverified third-party code.

Many have addressed the problems that arise due to browser

plugins, which consist of native code that executes in the

context of the browser. Internet Explorer’s entire extension

model fits into this description, and much recent research

has addressed the problems that arise. In particular, spyware

extensions have received attention [9, 20, 24]; these systems

use binary taint-tracking to ensure that sensitive personal

information does not flow to untrusted parties. Addressing a

more general set of concerns, Janus [12] and Google’s Na-

tive Client [34] considers system-level sandboxing techniques

for browser extensions. The OP [15] and Gazelle [33] web

browsers are constructed to address this issue, but do so by

applying general principles of secure system design to the

architecture of new browsers. In general, all these works target

the enforcement of isolation and memory safety properties, not

the more fine-grained authorization properties we address.

Verified extensibility: Outside the specific setting of browser

extensions, the question of providing verified extension mech-

anisms for system-level code has received much attention.
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With the SLAM project [1], Ball et al. show that software

model checking is effective at verifying device drivers. More

recently, Zhou et al. explore the use of type safety to provide

fine-grained isolation for drivers [36], and show how to apply

their findings in a nearly backwards-compatible manner. Our

work is in this tradition of static extension verification, but

rather than focusing on system-level properties, we target those

relevant to browser extension functionality.

XI. CONCLUSIONS

This paper proposes a new model for authoring, verifying,

distributing, and deploying safe browser extensions that can

run on all the most popular browser platforms. Our motivation

stems from the fact that even in the case of Chrome, which is,

arguably, the most secure of the browser extension models in

common use, extensions tend to be over-privileged, rendering

many protection mechanisms useless. We propose a finer-

grained access control model for browser extensions, formally

characterize a security property for extensions, and develop

a methodology to enforce safety statically. We evaluate our

approach by developing 17 non-trivial browser extensions,

demonstrating that our approach is viable in practice. It is

our hope that IBEX will pave the way for a static verification

mechanism of HTML5-based centrally-distributed browser ex-

tensions and applications on top of the HTML5 platform.
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