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Abstract. The problem of reliably certifying the outcome of a com-
putation performed by a quantum device is rapidly gaining relevance.
We present two protocols for a classical verifier to verifiably delegate a
quantum computation to two non-communicating but entangled quan-
tum provers. Our protocols have near-optimal complexity in terms of the
total resources employed by the verifier and the honest provers, with the
total number of operations of each party, including the number of entan-
gled pairs of qubits required of the honest provers, scaling as O(g log g)
for delegating a circuit of size g. This is in contrast to previous protocols,
whose overhead in terms of resources employed, while polynomial, is far
beyond what is feasible in practice. Our first protocol requires a num-
ber of rounds that is linear in the depth of the circuit being delegated,
and is blind, meaning neither prover can learn the circuit or its input.
The second protocol is not blind, but requires only a constant number
of rounds of interaction.

Our main technical innovation is an efficient rigidity theorem which
allows a verifier to test that two entangled provers perform measurements
specified by an arbitrary m-qubit tensor product of single-qubit Clifford
observables on their respective halves of m shared EPR pairs, with a
robustness that is independent of m. Our two-prover classical-verifier del-
egation protocols are obtained by combining this rigidity theorem with
a single-prover quantum-verifier protocol for the verifiable delegation of
a quantum computation, introduced by Broadbent.

1 Introduction

Quantum computers hold the potential to speed up a wide range of computa-
tional tasks (see, for example, [Mon16]). Recent progress towards implementing
limited quantum devices has added urgency to the already important question
of how a classical verifier can test a quantum device. This verifier could be an
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experimentalist running a new experimental setup; a consumer who has pur-
chased a purported quantum device; or a client who wishes to delegate some
task to a quantum server. In all cases, the user would like to exert some form
of control over the quantum device. For example, the experimentalist may think
that she is testing that a particular experiment prepares a certain quantum
state by performing a series of measurements, i.e. by state tomography, but this
assumes some level of trust in the measurement apparatus being used. For a
classical party to truly test a quantum system, that system should be modeled
in a device-independent way, having classical inputs (e.g. measurement settings)
and classical outputs (e.g. measurement results).

Tests of quantum mechanical properties of a system first appeared in the form
of Bell tests [Bel64,CHSH69]. In a Bell test, a verifier asks classical questions to
a quantum-device and receives classical answers. These tests make one crucial
assumption on the system to be tested: that it consists of two spatially isolated
components that are unable to communicate throughout the experiment. One
can then upper bound the value of some statistical quantity of interest subject
to the constraint that the two devices do not share any entanglement. Such a
bound is referred to as a Bell inequality. While the violation of a Bell inequal-
ity can be seen as a certificate of entanglement, the area of self-testing, first
introduced in [MY04], allows for the certification of much stronger statements,
including about which measurements are being performed, and on which state.
Informally, a robust rigidity theorem is a statement about which kind of appara-
tus, quantum state and measurements, must be used by a pair of isolated devices
in order to succeed in a given statistical test. Following a well-established tradi-
tion, we will refer to such tests as games, call the devices players (or provers),
and the quantum state and measurements that they implement the strategy of
the players. A rigidity theorem is a statement about the necessary structure of
near-optimal strategies for a game.

In 2012, Reichardt, Unger and Vazirani proved a robust rigidity theorem for
playing a sequence of n CHSH games [RUV13]. Aside from its intrinsic inter-
est, this rigidity theorem had two important consequences. One was the first
device-independent protocol for quantum key distribution. The second was a
protocol whereby a completely classical verifier can test a universal quantum
computer consisting of two non-communicating devices. The resulting protocol
for delegating quantum computations has received a lot of attention as the first
classical-verifier delegation protocol. The task is well-motivated: for the foresee-
able future, making use of a quantum computer will likely require delegating the
computation to a potentially untrusted cloud service, such as that announced
by IBM [Cas17].

Unfortunately, the complexity overhead of the delegation protocol
from [RUV13], in terms of both the number of EPR pairs needed for the provers
and the overall time complexity of the provers as well as the (classical) verifier,
while polynomial, is prohibitively large. Although the authors of [RUV13] do
not provide an explicit value for the exponent, in [HPDF15] it is estimated that
their protocol requires resources that scale like Ω(g8192), where g is the number of
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gates in the delegated circuit (notwithstanding the implicit constant, this already
makes the approach thoroughly impractical for even a 2-gate circuit!). The large
overhead is in part due to a very small (although still inverse polynomial) gap
between the completeness and soundness parameters of the rigidity theorem; this
requires the verifier to perform many more Bell tests than the actual number
of EPR pairs needed to implement the computation, which would scale linearly
with the circuit size.

Subsequent work has presented significantly more efficient protocols for
achieving the same, or similar, functionality [McK16,GKW15,HPDF15]. We
refer to Table 1 for a summary of our estimated lower bounds on the complexity
of each of these results (not all papers provide explicit bounds, in which case our
estimates, although generally conservative, should be taken with caution). Prior
to our work, the best two-prover delegation protocol required resources scaling
like g2048 for delegating a g-gate circuit. Things improve significantly if we allow
for more than two provers, however, the most efficient multi-prover delegation
protocols still required resources that scale as at least Ω(g4 log g) for delegat-
ing a g-gate circuit on n qubits. Since we expect that in the foreseeable future
most quantum computations will be delegated to a third-party server, even such
small polynomial overhead is unacceptable, as it already negates the quantum
advantage for a number of problems, such as quantum search.

The most efficient classical-verifier delegation protocols known [FH15,NV17],
with poly(n) and 7 provers, respectively, require resources that scale as O(g3),
but this efficiency comes at the cost of a technique of “post-hoc” verification. In
this technique, the provers must learn the verifier’s input even before they are
separated, so that they can prepare the history state for the computation.1 As a
result, these protocols are not blind2. Moreover, while the method does provide
a means for verifying the outcome of an arbitrary quantum computation, in
contrast to [RUV13] it does not provide a means for the verifier to test the
provers’ implementation of the required circuit on a gate-by-gate basis. Other
works, such as [HH16], achieve two-prover verifiable delegation with complexity
that scales like O(g4 log g), but in much weaker models; for example, in [HH16]
the provers’ private system is assumed a priori to be in tensor product form,
with well-defined registers. General techniques are available to remove the strong
assumption, but they would lead to similar large overhead as previous results.

In contrast, in the setting where the verifier is allowed to have some limited
quantum power, such as the ability to generate single-qubit states and measure
them with observables from a small finite set, efficient schemes for blind verifiable
delegation do exist [ABE10,FK17,Mor14,Bro18,HM15,MF16,FH17,MTH17]
(see also [Fit16] for a recent survey). In this case, only a single prover is needed,
and the most efficient single-prover quantum-verifier protocols can evaluate a

1 Using results of Ji [Ji16], this allows the protocol to be single-round. Alternatively,
the state can be created by a single prover and teleported to the others with the
help of the verifier, resulting in a two-round protocol.

2 Blindness is a property of delegation protocols, which informally states that the
prover learns nothing about the verifier’s private circuit.
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Table 1. Resource requirements of various delegation protocols in the multi-prover
model. We use n to denote the number of qubits and g the number of gates in the del-
egated circuit. “depth” refers to the depth of the delegated circuit. “Total Resources”
refers to the gate complexity of the provers, the number of EPR pairs of entanglement
needed, and the number of bits of communication in the protocol. To ensure fair com-
parison, each protocol is required to produce the correct answer with probability 99%.
For all protocols except our two new protocols, this requires a polynomial number of
sequential repetitions, which is taken into account when computing the total resources.

Provers Rounds Total Resources Blind

RUV 2012 [RUV13] 2 poly(n) ≥ g8192 yes

McKague 2013 [McK16] poly(n) poly(n) ≥ 2153g22 yes

GKW 2015 [GKW15] 2 poly(n) ≥ g2048 yes

HDF 2015 [HPDF15] poly(n) poly(n) Θ(g4 log g) yes

Verifier-on-a-Leash Protocol (Sect. 4) 2 O(depth) Θ(g log g) yes

Dog-Walker Protocol (Sect. 5) 2 O(1) Θ(g log g) no

quantum circuit with g gates in time O(g). The main reason these protocols are
much more efficient than the classical-verifier multi-prover protocols is that they
avoid the need for directly testing any of the qubits used by the prover, instead
requiring the trusted verifier to directly either prepare or measure the qubits
used for the computation.

New Rigidity Results. We overcome the efficiency limitations of multi-prover
delegation protocols by introducing a new robust rigidity theorem. Our theorem
allows a classical verifier to certify that two non-communicating provers apply a
measurement associated with an arbitrary m-qubit tensor product of single-qubit
Clifford observables on their respective halves of m shared EPR pairs. This is
the first result to achieve self-testing for such a large class of measurements. The
majority of previous works in self-testing have been primarily concerned with
certifying the state and were limited to simple single-qubit measurements in the
X-Z plane. Prior self-testing results for multi-qubit measurements only allow to
test for tensor products of σX and σZ observables. While this is sufficient for
verification in the post-hoc model of [FH15], testing for σX and σZ observables
does not directly allow for the verification of a general computation (unless
one relies on techniques such as process tomography [RUV13], which introduce
substantial additional overhead).

Our first contribution is to extend the “Pauli braiding test” of [NV17], which
allows to test tensor products of σX and σZ observables with constant robustness,
to allow for σY observables as well. This is somewhat subtle due to an ambiguity
in the complex phase that cannot be detected by any classical two-player test;
we formalize the ambiguity and show how it can be effectively accounted for.
Our second contribution is to substantially increase the set of elementary gates
that can be tested, to include arbitrary m-qubit tensor products of single-qubit
Clifford observables. This is achieved by introducing a new “conjugation test”,
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which tests how an observable applied by the provers acts on the Pauli group.
The test is inspired by general results of Slofstra [Slo16], but is substantially
more direct.

A key feature of our rigidity results is that their robustness scales indepen-
dently of the number of EPR pairs tested, as in [NV17]. This is crucial for the
efficiency of our delegation protocols. The robustness for previous results in par-
allel self-testing typically had a polynomial dependence on the number of EPR
pairs tested. We give an informal statement of our robust rigidity theorem.

Theorem 1 (Informal). Let m ∈ Z>0. Let G be a fixed, finite set of single-qubit
Clifford observables. Then there exists an efficient two-prover test rigid(G,m)
with O(m)-bit questions (a constant fraction of which are of the form W ∈ Gm)
and answers such that the following properties hold:

– (Completeness) There is a strategy for the provers that uses m+1 EPR pairs
and succeeds with probability at least 1 − e−Ω(m) in the test.

– (Soundness) For any ε > 0, any strategy for the provers that succeeds with
probability 1 − ε in the test must be poly(ε)-close, up to local isometries, to
a strategy in which the provers begin with (m + 1) EPR pairs and is such
that upon receipt of a question of the form W ∈ Gm the prover measures the
“correct” observable W .

Although we do not strive to obtain the best dependence on ε, we believe
it should be possible to obtain a scaling of the form C

√
ε for a reasonable con-

stant C. We discuss the test in Sect. 3. The complete analysis can be found in
the full version of the paper.

New Delegation Protocols. We employ the new rigidity theorem to obtain two
new efficient two-prover classical-verifier protocols in which the complexity of
verifiably delegating a g-gate quantum circuit solving a BQP problem scales as
O(g log g).3

We achieve our protocols by adapting the efficient single-prover quantum-
verifier delegation protocol introduced by Broadbent [Bro18] (we refer to this as
the “EPR protocol”), which has the advantage of offering a direct implementa-
tion of the delegated circuit, in the circuit model of computation and with very
little modification needed to ensure verifiability, as well as a relatively simple
and intuitive analysis.

Our first protocol is blind, and requires a number of rounds of interaction
that scales linearly with the depth of the circuit being delegated. The second
protocol is not blind, but only requires a constant number of rounds of inter-
action with the provers. Our work is the first to propose verifiable two-prover

3 The log g overhead is due to the complexity of sampling from the right distribution
in rigidity tests. We leave the possibility of removing this by derandomization for
future work. Another source of overhead is in achieving blindness: in order to hide
the circuit, we encode it as part of the input to a universal circuit, introducing a
factor of O(log g) overhead.
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delegation protocols that overcome the prohibitively large resource requirements
of all previous multi-prover protocols, requiring only a quasilinear amount of
resources, in terms of number of EPR pairs and time. However, notwithstanding
our improvements, a physical implementation of verifiable delegation protocols
remains a challenging task for the available technology.

We introduce the protocols in more detail. The protocols provide different
methods to delegate the quantum computation performed by the quantum ver-
ifier from [Bro18] to a second prover (call him PV for Prover V ). The rigidity
test is used to verify that the second prover indeed performs the same actions as
the honest verifier, which are sequences of single-qubit measurements of Clifford
observables from the set Σ = {X,Y, Z, F,G} (where F and G are defined in (2)).

In the first protocol, one of the provers plays the role of Broadbent’s prover
(call him PP for Prover P ), and the other plays the role of Broadbent’s verifier
(PV). As PV just performs single-qubit and Bell-basis measurements, universal
quantum computational power is not needed for this prover. The protocol is
divided into two sub-games; which game is played is chosen by the verifier by
flipping a biased coin with appropriately chosen probabilities.

– The first game is a sequential version of the rigidity game rigid(Σ,m) (from
Theorem 1) described in Fig. 9. This aims to enforce that PV performs pre-
cisely the right measurements;

– The second game is the delegation game, described in Figs. 6, 7, and 8, and
whose structure is summarized in Fig. 4. Here the verifier guides PP through
the computation in a similar way as in the EPR Protocol.

We remark that in both sub-games, the questions received by PV are of the
form W ∈ Σm, where Σ = {X,Y, Z, F,G} is the set of measurements performed
by the verifier in Broadbent’s EPR protocol. The questions for PV in the two
sub-games are sampled from the same distribution. This ensures that the PV

is not able to tell which kind of game is being played. Hence, we can use our
rigidity result of Theorem1 to guarantee honest behavior of PV in the delegation
sub-game. We call this protocol Verifier-on-a-Leash Protocol, or “leash protocol”
for short.

The protocol requires (2d + 1) rounds of interaction, where d is the depth of
the circuit being delegated (see Sect. 2.3 for a precise definition of how this is
computed). The protocol requires O(n+g) EPR pairs to delegate a g-gate circuit
on n qubits, and the overall time complexity of the protocol is O(g log g). The
input to the circuit is hidden from the provers, meaning that the protocol can
be made blind by encoding the circuit in the input, and delegating a universal
circuit. We note that using universal circuits incurs a log n factor increase in the
depth of the circuit [BFGH10].

The completeness of the protocol follows directly from the completeness of
[Bro18]. Once we ensure the correct behavior of PV using our rigidity test,
soundness follows from [Bro18] as well, since the combined behavior of our verifier
and an honest PV is nearly identical to that of Broadbent’s verifier.

The second protocol also starts from Broadbent’s protocol, but modifies it
in a different way to achieve a protocol that only requires a constant number
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of rounds of interaction. The proof of security is slightly more involved, but the
key ideas are the same: we use a combination of our new self-testing results
and the techniques of Broadbent’s protocol to control the two provers, one of
which plays the role of Broadbent’s verifier, and the other the role of the prover.
Because of the more complicated “leash” structure in this protocol, we call it
the Dog-Walker Protocol. Like the leash protocol, the Dog-Walker Protocol has
overall time complexity O(g log g). Unlike the leash protocol, the Dog-Walker
protocol is not blind. In particular, while PV and PP would have to collude
after the protocol is terminated to learn the input in the leash protocol, in the
Dog-Walker protocol, PV simply receives the input in clear.

Based on the Dog-Walker Protocol, it is possible to design a classical-verifier
two-prover protocol for all languages in QMA. This is achieved along the same
lines as the proof that QMIP = MIP∗ from [RUV13]. The first prover, given
the input, creates the QMA witness and teleports it to the second prover with
the help of the verifier. The verifier then delegates the verification circuit to the
second prover, as in the Dog-Walker Protocol; the first prover can be re-used to
verify the operations of the second one.

Subsequent Work. Bowles et al. [BvCA18] have independently re-derived a vari-
ant of our rigidity test for multi-qubit σX , σY and σZ observables in the con-
text of entanglement certification protocols in quantum networks. Their self-test
result has a slightly smaller set of questions but significantly weaker robustness
bounds.

Recently [Gri17] proposed the first protocol for verifiable delegation of quan-
tum computation by classical clients where such space-like separation can replace
the non-communication assumption, but his protocol is not blind.

Open Questions and Directions for Future Work. We have introduced a new
rigidity theorem and shown how it can be used to transform a specific quantum-
verifier delegation protocol, due to Broadbent, into a classical-verifier protocol
with an additional prover, while suffering very little overhead in terms of the
efficiency of the protocol. We believe that a similar transformation could be per-
formed starting from delegation protocols based on other models of computation,
such as the protocol in the measurement-based model of [FK17] or the protocol
based on computation by teleportation considered in [RUV13], and would lead
to similar efficiency improvements.

Recently, [HZM+17] provided an experimental demonstration of a two-prover
delegation protocol based on [RUV13] for a 3-qubit quantum circuit based on
Shor’s algorithm to factor the number 15; in order to obtain an actual imple-
mentation, necessitating “only” on the order of 6000 CHSH tests, the authors
had to make the strong assumption that the devices behave in an i.i.d. manner
at each use, and could not use the most general testing results from [RUV13].
We believe that our improved rigidity theorem could lead to an implementation
that does not require any additional assumption. We also leave as an open prob-
lem investigating whether (a variant of) our protocol can be made fault-tolerant,
making it more suitable for future implementation.
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We note that our protocols require the verifier to communicate with one prover
after at least one round of communication with the other has been completed.
Therefore, the requirement that the provers do not communicate throughout the
protocol cannot be enforced through space-like separation, and must be taken as
an a priori assumption. Since the protocol of [Gri17] is not blind, it is an open ques-
tion whether there exists a two-prover delegation protocol that consists of a single
round of simultaneous communication with each prover, and is blind and verifi-
able. We also wonder if the fact that blindness is compromised after the provers
collude is unavoidable in this model. A different avenue to achieve this is to rely
on computational assumptions on the power of the provers to achieve protocols
with more properties (non-interactive, blind, verifiable) [DSS16,ADSS17,Mah17,
Mah18], albeit not necessarily in a truly efficient manner.

Finally, due to its efficiency and robustness, our ridigity theorem is a poten-
tially useful tool in many other cryptographic protocols. For instance, an inter-
esting direction to explore is the possibility of exploiting our theorem to achieve
more efficient protocols for device-independent quantum key distribution, entan-
glement certification or other cryptographic protocols involving more complex
untrusted computation of the users.

Organization. In Sect. 2, we give the necessary preliminaries, including outlining
Broadbent’s EPR Protocol (Sect. 2.3). In Sect. 3, we introduce our new rigidity
theorems. In Sect. 4, we present our first protocol, the leash protocol, and in
Sect. 5, we discuss our second protocol, the Dog-Walker Protocol.

2 Preliminaries

2.1 Notation

We often write x = (x1, . . . , xn) ∈ {0, 1}n for a string of bits, and W =
W1 · · ·Wm ∈ Σm for a string, where Σ is a finite alphabet. If S ⊆ {1, . . . , m} we
write WS for the sub-string of W indexed by S. For an event E, we use 1E to
denote the indicator variable for that event, so 1E = 1 if E is true, and otherwise
1E = 0. We write poly(ε) for O(εc), where c is a universal constant that may
change each time the notation is used.

H is a finite-dimensional Hilbert space. We denote by U(H) the set of unitary
operators, Obs(H) the set of binary observables (we omit the term “binary” from
here on; in this paper all observables are binary) and Proj(H) the set of projective
measurements on H respectively. We let |EPR〉 denote an EPR pair:

|EPR〉 =
1√
2

(|00〉 + |11〉) .

Observables. We use capital letters X,Z,W, . . . to denote observables. We use
greek letters σ, τ with a subscript σW , τW , to emphasize that the observable W
specified as subscript acts in a particular basis. For example, X is an arbitrary
observable but σX is specifically the Pauli X matrix defined in (1).
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For a ∈ {0, 1}n and commuting observables σW1
, . . . , σWn

, we write σW (a) =∏n
i=1(σWi

)ai . The associated projective measurements are σWi
= σ0

Wi
−σ1

Wi
and

σu
W = Ea(−1)u·aσW (a). Often the σWi

will be single-qubit observables acting on
distinct qubits, in which case each is implicitly tensored with identity outside of
the qubit on which it acts.

Pauli and Clifford groups. Let

σI =

(
1 0
0 1

)
, σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
and σZ =

(
1 0
0 −1

)
(1)

denote the standard Pauli matrices acting on a qubit. The single-qubit Weyl-
Heisenberg group

H(1) = H(Z2) =
{

(−1)cσX(a)σZ(b), a, b, c ∈ {0, 1}
}

is the matrix group generated by the Pauli σX and σZ . We let H(n) = H(Zn
2 )

be the direct product of n copies of H(1). The n-qubit Clifford group is the
normalizer of H(n) in the unitary group, up to phase:

G
(n)
C =

{
G ∈ U((C2)⊗n) : GσG† ∈ H(n) ∀σ ∈ H(n)

}
.

Some Clifford observables we will use include

σH =
σX + σZ√

2
, σH′ =

σX − σZ√
2

, σF =
−σX + σY√

2
, σG =

σX + σY√
2

.

(2)
Note that σH and σH′ are characterized by σXσHσX = σH′ and σZσHσZ =
−σH′ . Similarly, σF and σG are characterized by σXσF σX = −σG and
σY σF σY = σG.

2.2 Quantum Circuits

We use capital letters in sans-serif font to denote gates. We work with the uni-
versal quantum gate set {CNOT,H,T}, where the controlled-not gate is the two-
qubit gate with the unitary action

CNOT|b1, b2〉 = |b1, b1 ⊕ b2〉,

and the Hadamard and T gates are single-qubit gates with actions

H|b〉 =
1√
2

(
|0〉 + (−1)b|1〉

)
and T|b〉 = eibπ/4|b〉,

respectively. We will also use the following gates:

X|b〉 = |b ⊕ 1〉, Z|b〉 = (−1)b|b〉, and P|b〉 = ib|b〉.

Measurements in the Z basis (or computational basis) will be denoted by the
standard measurement symbol:
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To measure another observable, W , we can perform a unitary change of basis
UW before the measurement in the computational basis.

We assume that every circuit has a specified output wire, which is measured
at the end of the computation to obtain the output bit. Without loss of generality,
we can assume this is always the first wire. For an n-qubit system, we let Πb,
for b ∈ {0, 1}, denote the orthogonal projector onto states with |b〉 in the output
wire: |b〉〈b|⊗Id. For example, the probability that a circuit Q outputs 0 on input

|x〉 is ‖Π0Q|x〉‖2
.

We can always decompose a quantum circuit into layers such that each layer
contains at most one T gate applied to each wire. The minimum number of
layers for which this is possible is called the T depth of the circuit. We note that
throughout this work, we will assume circuits are compiled in a specific form
that introduces extra T gates (see the paragraph on the H gadget in Sect. 2.3).
The T depth of the resulting circuit is proportional to the depth of the original
circuit.

2.3 Broadbent’s EPR Protocol

In this section we summarize the main features of a delegation protocol intro-
duced in [Bro18], highlighting the aspects that will be relevant to understanding
our subsequent adaptation into two-prover protocols. The “EPR Protocol” from
[Bro18] involves the interaction between a verifier VEPR and a prover P . We
write PEPR for the “honest” behavior of the prover. The verifier VEPR has lim-
ited quantum powers. Her goal is to delegate a BQP computation to the prover
P in a verifiable way. Specifically, the verifier has as input a quantum circuit Q
on n qubits and an input string x ∈ {0, 1}n, and the prover gets as input Q. The
verifier and prover interact. At the end of the protocol, the verifier outputs either
accept or reject. The protocol is such that there exist values psound and pcompl

with psound < pcompl such that pcompl−psound, called the soundness-completeness
gap, is a constant independent of input size, and moreover:

Completeness: If the prover is honest and ‖Π0Q|x〉‖2 ≥ 2/3, then the verifier
outputs accept with probability at least pcompl;

Soundness: If ‖Π0Q|x〉‖2 ≤ 1/3, then the probability the verifier outputs accept

is at most psound.

In the EPR protocol, VEPR and PEPR are assumed to share (n + t) EPR
pairs at the start of the protocol, where t is the number of T gates in Q and n
the number of input bits. (In [Bro18] the EPR protocol is only considered in the
analysis, and it is assumed that the EPR pairs are prepared by the verifier.) The
first n EPR pairs correspond to the input to the computation; they are indexed
by N = {1, . . . , n}. The remaining pairs are indexed by T = {n + 1, . . . , n + t};
they will be used as ancilla qubits to implement each of the T gates in the
delegated circuit.
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The behavior of VEPR depends on a round type randomly chosen by VEPR

after her interaction with PEPR. There are three possible round types:

– Computation round (r = 0): the verifier delegates the computation to PEPR,
and at the end of the round can recover its output if PEPR behaves honestly;

– X-test round (r = 1) and Z-test round (r = 2): the verifier tests that PEPR

behaves honestly, and rejects if malicious behavior is detected.

For some constant p, V chooses r = 0 with probability p, and otherwise chooses
r ∈ {1, 2} with equal probability. Since the choice of round type is made after
interaction with PEPR, PEPR’s behavior cannot depend on the round type. In
particular, any deviating behavior in a computation round is reproduced in both
types of test rounds. The analysis amounts to showing that any deviating behav-
ior that affects the outcome of the computation will be detected in at least one
of the test rounds.

In slightly more detail, the high-level structure of the protocol is the following.
VEPR measures her halves of the n qubits in N in order to prepare the input state
on PEPR’s system. As a result the input is quantum one-time padded with keys
that depend on VEPR’s measurement results. For example, in a computation
round, VEPR measures each input qubit in the Z basis, and gets some result
d ∈ {0, 1}n, meaning the input on PEPR’s side has been prepared as Xd |0〉⊗n.
In [Bro18], the input is always considered to be 0, but we can also prepare an
arbitrary classical input x ∈ {0, 1}n by reinterpreting the one-time pad key as
a = d ⊕ x so that the input state on PEPR’s side is Xa |x〉. In a test round,
on the other hand, the input is prepared as the one-time pad of either |0〉⊗n or
|+〉⊗n. Note that as indicated in Fig. 2 this choice of measurements will be made
after the interaction with PEPR has taken place.

The honest prover PEPR applies the circuit Q, which we assume is compiled
in the universal gate set {H,T,CNOT}, to his one-time padded input. We will
shortly describe gadgets that PEPR can apply in order to implement each of the
three gate types. The gadgets are designed in a way that in a test round each
gadget amounts to an application of an identity gate; this is what enables VEPR

to perform certain tests in those rounds that are meant to identify deviating
behavior of a dishonest prover. After each gadget, the one-time padded keys can
be updated by VEPR, who is able to keep track of the keys at any point in the
circuit using the update rules in Table 2.

We now describe the three gadgets, before giving a complete description of
the protocol.

CNOT Gadget. To implement a CNOT gate on wires j and j′, PEPR sim-
ply performs the CNOT gate on those wires of his input qubits. The one-time
pad keys are changed by the update rule in Table 2, because CNOT · Xaj Zbj ⊗
Xaj′ Zbj′ = Xaj Zbj+bj′ ⊗ Xaj+aj′ Zbj′ · CNOT. Note that CNOT|0〉|0〉 = |0〉|0〉 and
CNOT|+〉|+〉 = |+〉|+〉, so in the test runs, PEPR is applying the identity.

H Gadget. To implement an H gate on wire j, PEPR simply performs the H on
wire j, and the one-time-pad keys are changed as in Table 2. Unlike CNOT, H
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Table 2. Rules for updating the one-time-pad keys after applying each type of gate
in the EPR Protocol, in particular: after applying the i-th T gate to the j-th wire;
applying an H gate to the j-th wire; or applying a CNOT gate controlled on the j-th
wire and targeting the j′-th wire.

Key Update Rule

T Computation Round (aj , bj) ← (aj + ci, bj + ei + aj + ci + (aj + ci)zi)

X-Test, even parity; or Z-test, odd parity (aj , bj) ← (ei, 0)

Z-Test, even parity; or X-test, odd parity (aj , bj) ← (0, bj + ei + zi)

H (aj , bj) ← (bj , aj)

CNOT (aj , bj , aj′ , bj′ ) ← (aj , bj + bj′ , aj + aj′ , bj′ )

does not act as the identity on |0〉 and |+〉, so it is not the identity in a test round.
To remedy this, assume that Q is compiled so that every H gate appears in a
pattern H(TTH)k, where the maximal such k is odd. This can be accomplished
by replacing each H by HTTHTTHTTH, which implements the same unitary. In
test rounds, the T gadget, described shortly, implements the identity, and since
H(Id H)k for odd k implements the identity, H(TTH)k will also have no effect in
test rounds.

Parity of a T Gate. Within a pattern H(TTH)k, the H has the effect of switching
between an X-test round scenario (the state |0〉) and a Z-test round scenario
(the state |+〉). In order to consistently talk about the type of a round while
evaluating the circuit, we can associate a parity with each T gate in the circuit.
The parity of the T gates that are not part of the pattern H(TTH)k will be
defined to be even. A H will always flip the parity, so that within such a pattern,
the first two T gates will be odd, the next two will be even, etc., until the last
two T gates will be odd again.

T Gadget. The gadget for implementing the i-th T gate on the j-th wire is per-
formed on PEPR’s j-th input qubit, and his i-th auxiliary qubit (indexed by n+i),
which we can think of as being prepared in a particular auxiliary state by VEPR

measuring her half of the corresponding EPR pair, as shown in Fig. 1. The gadget
depends on a random bit zi that is chosen by VEPR and sent to the prover.

Fig. 1. The gadget for implementing the i-th T gate on the j-th wire. The gate UWi

implementing the change of basis associated with observable Wi is applied as part of
the procedure V r

EPR (see Fig. 3b) and is determined by the round type r, the parity of
the i-th T gate, zi, ci, and a′

i (the X-key going into the i-th T gate), as in Table 3.
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Table 3. The choice of UWi in the T gadget. We also indicate the observable Wi

associated with the final measurement Wi = U
†
Wi

ZUWi .

UWi (observable Wi)

Computation Round a′
i ⊕ ci ⊕ zi = 0 HT (observable G)

a′
i ⊕ ci ⊕ zi = 1 HPT (observable F )

X-Test Round even T gate Id (observable Z)

odd T gate zi = 0 H (observable X)

zi = 1 HP (observable Y )

Z-Test Round odd T gate Id (observable Z)

even T gate zi = 0 H (observable X)

zi = 1 HP (observable Y )

Fig. 2. This figure describes how different pieces of the protocol fit together. VEPR

and PEPR share n + t EPR pairs. The honest prover PEPR can be seen as a procedure
that acts on n + t qubits—the EPR pair halves—depending on a t-bit string z. We
have separated the quantum part of VEPR into its own procedure, called V r

EPR, where
r ∈ {0, 1, 2} indicates the round type, which VEPR runs on her n + t EPR halves, and
the 2t bits c and z. Aside from running V r

EPR, VEPR is classical.

The EPR Protocol. We show how the gadgets just described are used in the
complete protocol. We first describe the protocol for VEPR below. For later
convenience we have divided the action of VEPR into classical actions and a
single quantum subroutine V r

EPR depending on the round type.
The procedure V r

EPR measures each of the n + t EPR halves according to
some observable that depends on r, c, and z. In the case of a computation round,
V 0

EPR measures the qubits in T adaptively. We describe the steps of VEPR, V r
EPR

and the honest behaviour of PEPR in Fig. 3.

Completeness and Soundness. We summarize the relevant part of the analy-
sis of the EPR protocol from [Bro18]. First suppose PEPR behaves honestly. If
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Fig. 3. The EPR Protocol.

‖Π0Q|0n〉‖2
= p, then in a computation round, VEPR outputs accept with prob-

ability p, whereas in a test round, VEPR outputs accept with probability 1. This
establishes completeness of the protocol:

Theorem 2 (Completeness). Suppose the verifier executes the EPR Protocol,

choosing r = 0 with probability p, on an input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≥
1 − δ. Then the probability that VEPR accepts when interacting with the honest
prover PEPR is at least (1 − p) + p(1 − δ).

The following theorem is implicit in [Bro18, Section 7.6], but we include a
brief proof sketch:

Theorem 3 (Soundness). Suppose the verifier executes the EPR Protocol,

choosing r = 0 with probability p, on an input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ δ.
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Let P ∗
EPR be an arbitrary prover such that P ∗

EPR is accepted by VEPR with prob-
ability qt conditioned on r = 0, and qc conditioned on r = 0. Then the prover’s
overall acceptance probability is pqc + (1 − p)qt, and

qc ≤ 2 (qt δ + (1 − qt)) − δ.

Proof (Proof sketch). Using the notation of [Bro18], let A =
∑

k

∑
Q∈B′

t,n

|αk,Q|2.4 For intuition, A should be thought of as the total weight on attacks
that could change the outcome of the computation, called non-benign attacks
in [Bro18]. By [Bro18], the probability of rejecting in a computation round is
1 − qc ≥ (1 − δ)(1 − A), whereas the probability of rejecting in a test round is
1 − qt ≥ 1

2A. Combining these gives qc ≤ 2(qtδ + (1 − qt)) − δ.

3 Rigidity

Each of our delegation protocols includes a rigidity test that is meant to verify
that one of the provers measures his half of shared EPR pairs in a basis specified
by the verifier, thereby preparing one of a specific family of post-measurement
states on the other prover’s space; the post-measurement states will form the
basis for the delegated computation. This will be used to certify that one of the
provers in our two-prover schemes essentially behaves as the quantum part of
VEPR would in the EPR protocol.

In this section we outline the structure of the test, giving the important
elements for its use in our delegation protocols. We refer the reader to the full
version of the paper for a detailed presentation, including the soundness analysis.
The test is parametrized by the number m of EPR pairs to be used. The test
consists of a single round of classical interaction between the verifier and the
two provers. With constant probability the verifier sends one of the provers a
string W chosen uniformly at random from Σm where the set Σ = {X,Y, Z, F,G}
contains a label for each single-qubit observable to be tested. With the remaining
probability, other queries, requiring the measurement of observables not in Σm

(such as the measurement of pairs of qubits in the Bell basis), are sent.
In general, an arbitrary strategy for the provers consists of an arbitrary entan-

gled state |ψ〉 ∈ HA ⊗HB (which we take to be pure), and measurements (which
we take to be projective) for each possible question.5 This includes an m-bit out-
come projective measurement {Wu}u∈{0,1}m for each of the queries W ∈ Σm.
Our rigidity result states that any strategy that succeeds with probability 1 − ε
in the test is within poly(ε) of the honest strategy, up to local isometries (see

4 Here, we consider the decomposition of the attack as a sum of tensors of Pauli
A =

∑
k

∑
Q∈{I,X,Z,Y } αk,QQ.

5 We make the assumption that the players employ a pure-state strategy for conve-
nience, but it is easy to check that all proofs extend to the case of a mixed strategy.
Moreover, it is always possible to consider (as we do) projective strategies only by
applying Naimark’s dilation theorem, and adding an auxiliary local system to each
player as necessary, since no bound is assumed on the dimension of their systems.
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Theorem 4 for a precise statement). This is almost true, but for an irreconcilable
ambiguity in the definition of the complex phase

√
−1. The fact that complex

conjugation of observables leaves correlations invariant implies that no classical
test can distinguish between the two nontrivial inequivalent irreducible repre-
sentations of the Pauli group, which are given by the Pauli matrices σX , σY , σZ

and their complex conjugates σX = σX , σZ = σZ , σY = −σY respectively. In
particular, the provers may use a strategy that uses a combination of both rep-
resentations; as long as they do so consistently, no test will be able to detect this
behavior.6 The formulation of our result accommodates this irreducible degree
of freedom by forcing the provers to use a single qubit, the (m + 1)-st, to make
their choice of representation (so honest provers require the use of (m + 1) EPR
pairs to test the operation of m-fold tensor products of observables from Σs).

Theorem 4 below summarizes the guarantees of our main test, which is
denoted as rigid(Σ,m). Informally, Theorem4 establishes that a strategy that
succeeds in rigid(Σ,m) with probability at least 1− ǫ must be such that (up to
local isometries):

– The players’ joint state is close to a tensor product of m EPR pairs, together
with an arbitrary ancilla register;

– The projective measurements performed by either player upon receipt of a
query of the form W ∈ Σm are, on average over the uniformly random choice
of W ∈ Σm, close to a measurement that consists in first, measuring the
ancilla register to extract a single bit that specifies whether to perform the
ideal measurements or their conjugated counterparts, and second, measuring
the player’s m half-EPR pairs in either the bases indicated by W , or their
complex conjugate, depending on the bit obtained from the ancilla register.

For an observable W ∈ Σ, let σW = σ+1
W − σ−1

W be its eigendecomposition,
where σW are the “honest” Pauli matrices defined in (1) and (2). For u ∈ {±1}
let σu

W,+ = σu
W for W ∈ Σ, and

σu
X,− = σu

X , σu
Z,− = σu

Z , σu
Y,− = σ−u

Y , σu
F,− = σ−u

G , σu
G,− = σ−u

F .

(In words, σu
W,− is just the complex conjugate of σu

W .) We note that for the
purpose of our delegation protocols, we made a particular choice of the set Σ. The
result generalizes to any constant-sized set of single-qubit Clifford observables,
yielding a test for m-fold tensor products of single-qubit Clifford observables
from Σ.

Theorem 4. Let ε > 0 and m an integer. Suppose a strategy for the players
succeeds with probability 1−ε in test rigid(Σ,m). For W ∈ Σm and D ∈ {A,B}
let {Wu

D
}u be the measurement performed by prover D on question W . Let also

|ψ〉 be the state shared by the players. Then for D ∈ {A,B} there exists an
isometry

VD : HD → (C2)⊗m
D′ ⊗ H

D̂

6 See [RUV12, Appendix A] for an extended discussion of this issue, with a similar
resolution to ours.
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such that

∥∥(VA ⊗ VB)|ψ〉AB − |EPR〉⊗m ⊗ |aux〉
ÂB̂

∥∥2
= O(

√
ε), (3)

and positive semidefinite matrices τλ on Â with orthogonal support, for λ ∈
{+,−}, such that Tr(τ+) + Tr(τ−) = 1 and

E
W∈Σm

∑

u∈{±1}m

∥∥∥VATrB
(
(IdA ⊗Wu

B
)|ψ〉〈ψ|AB(IdA ⊗Wu

B
)†

)
V †

A

−
∑

λ∈{±}

( m⊗

i=1

σui

Wi,λ

2

)
⊗ τλ

∥∥∥
1

= O(poly(ε)).

Moreover, players employing the honest strategy succeed with probability 1 −
e−Ω(m) in the test.

The proof of the theorem is based on standard techniques developed in the
literature on “rigidity theorems” for nonlocal games. We highlight two compo-
nents. The first is a “conjugation test” that allows us to extend the guarantees of
elementary tests based on the CHSH game or the Magic Square game, which test
for Pauli σX and σZ observables, to a test for single-qubit Clifford observables—
since the latter are characterized by their action on the Pauli group (see full
version of the paper for details). The second is an extension of the “Pauli braid-
ing test” from [NV17] to handle tensor products of not only σX and σZ , but
also σY Pauli observables (see full version of the paper for details). As already
emphasized in the introduction, the improvements in efficiency of our scheme
are partly enabled by the strong guarantees of Theorem4, and specifically the
independence of the final error dependence from the parameter m.

4 The Verifier-on-a-Leash Protocol

4.1 Protocol and Statement of Results

The Verifier-on-a-Leash Protocol (or “Leash Protocol” for short) involves a clas-
sical verifier and two quantum provers. The idea behind the Leash Protocol
is to have a first prover, nicknamed PV for Prover V , carry out the quantum
part of VEPR from Broadbent’s EPR Protocol by implementing the procedure
V r

EPR. (See Sect. 2.3 for a summary of the protocol and a description of VEPR.
Throughout this section we assume that the circuit Q provided as input is com-
piled in the format described in Sect. 2.3.). A second prover, nicknamed PP for
Prover P , will play the part of the prover PEPR. Unlike in the EPR Protocol,
the interaction with PV (i.e. running V r

EPR) will take place first, and PV will
be asked to perform random measurements from the set Σ = {X,Y, Z, F,G}.
The values z, rather than being chosen at random, will be chosen based on the
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corresponding choice of observable. We let n be the number of input bits and t
number of T gates in Q.

The protocol is divided into two sub-games; which game is played is chosen
by the verifier by flipping a biased coin with probability (pr, pd = 1 − pr).

– The first game is a sequential version of the rigidity game rigid(Σ,m)
described in Fig. 9. This aims to enforce that PV performs precisely the right
measurements;

– The second game is the delegation game, described in Figs. 6, 7, and 8, and
whose structure is summarized in Fig. 4. Here the verifier guides PP through
the computation in a similar way as in the EPR Protocol.

We call the resulting protocol the Leash Protocol with parameters (pr, pd). In
both sub-games the parameter m = Θ(n+ t) is chosen large enough so that with
probability close to 1 each symbol in Σ appears in a random W ∈ Σm at least
n+t times. It is important that PV is not able to tell which kind of game is being
played. Notice also that in order to ensure blindness, we will require that the
interaction with PV in the delegation game is sequential (more details on this
are found in Sect. 4.4). In order for the two sub-games to be indistinguishable,
we also require that the rigidity game rigid(Σ,m) be played sequentially (i.e.
certain subsets of questions and answers are exchanged sequentially, but the
acceptance condition in the test is the same). Note, importantly, that the rigidity
guarantees of rigid(Σ,m) hold verbatim when the game is played sequentially,
since this only reduces the number of ways that the provers can cheat. The
following theorem states the guarantees of the Leash Protocol.

Theorem 5. There are constants pr, pd = 1 − pr, and ∆ > 0 such that the
following hold of the Verifier-on-a-Leash Protocol with parameters (pr, pd), when
executed on an input (Q, |x〉).
– (Completeness:) Suppose that ‖Π0Q|x〉‖2 ≥ 2/3. Then there is a strategy

for PV and PP that is accepted with probability at least pcompl = pr(1 −
e−Ω(n+t)) + 8pd/9.

– (Soundness:) Suppose that ‖Π0Q|x〉‖2 ≤ 1/3. Then any strategy for PV and
PP is accepted with probability at most psound = pcompl − ∆.

Further, the protocol leaks no information about x to either prover individually,
aside from an upper bound on the length of x.

The proof of the completeness property is given in Lemma1. The soundness
property is shown in Lemma4. Blindness is established in Sect. 4.4. We first give a
detailed description of the protocol. We start by describing the delegation game,
specified in Figs. 6, 7 and 8, which describe the protocol from the verifier’s view,
an honest PV’s view, and an honest PP’s view respectively. This will motivate
the need for a sequential version of the game rigid(Σ,m), described in Fig. 9.
As we will show, the rigidity game forces PV to behave honestly. Thus, for
the purpose of exposition, we assume for now that PV behaves honestly, which
results in the joint behavior of PV and V being similar to that of the verifier
VEPR in the EPR Protocol.
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Fig. 4. Structure of the delegation
game.

From the rigidity game we may also
assume that PV and PP share m EPR pairs,
labeled {1, . . . , m}, for m = Θ(n + t). We
will assume that the circuit Q is broken into
d layers, Q = Q1 . . . Qd, such that in every
Qℓ, each wire has at most one T gate applied
to it, after which no other gates are applied
to that wire. We will suppose the T gates are
indexed from 1 to t, in order of layer.

The protocol begins with an interac-
tion between the verifier and PV. The ver-
ifier selects a uniformly random partition
A,B1, . . . , Bd of {1, . . . , m}, with |A| = Θ(n),
and for every ℓ ∈ {1, . . . , d}, |Bℓ| = Θ(tℓ),
where tℓ is the number of T gates in Qℓ. The
verifier also selects a uniformly random W ∈
Σm, and partitions it into substrings WA and
WB1

, . . . , WBd
, meant to contain observables

to initialize the computation qubits and aux-
iliary qubits for each layer of T gates respec-

tively. The verifier instructs PV to measure his halves of the EPR pairs using
the observables WA first, and then WB1

, . . . , WBd
, sequentially. Upon being

instructed to measure a set of observables, PV measures the corresponding half-
EPR pairs and returns the results e to the verifier. Breaking this interaction
into multiple rounds is meant to enforce that, for example, the results output
by PV upon receiving WBℓ

, which we call eBℓ
, cannot depend on the choice of

observables WBℓ+1
. This is required for blindness.

Once the interaction with PV has been completed, as in the EPR Protocol,
V selects one of three round types: computation (r = 0), X-test (r = 1), and
Z-test (r = 2). The verifier selects a subset N ⊂ A of size n of qubits to play
the role of inputs to the computation. These are chosen from the subset of A
corresponding to wires that PV has measured in the appropriate observable for
the round type (see Table 4). For example, in an X-test round, PV’s EPR halves
corresponding to input wires should be measured in the Z basis so that PP is left
with a one-time pad of the state |0〉⊗n, so in an X-test round, the computation
wires are chosen from the set {i ∈ A : Wi = Z}. The input wires N are labeled
by X1, . . . ,Xn.

The verifier also chooses subsets Tℓ = T 0
ℓ ∪ T 1

ℓ ⊂ Bℓ of sizes tℓ,0 and tℓ,1 =
tℓ − tℓ,0 respectively, where tℓ,0 is the number of odd T gates in the ℓ-th layer
of Q (recall the definition of even and odd T gates from Sect. 2.3). The wires T 0

ℓ

and T 1
ℓ will play the role of auxiliary states used to perform T gates from the

ℓ-th layer. They are chosen from those wires from Bℓ whose corresponding EPR
halves have been measured in a correct basis, depending on the round type. For
example, in an X-test round, the auxiliaries corresponding to odd T gates should
be prepared by measuring the corresponding EPR half in either the X or Y basis



266 A. Coladangelo et al.

(see Table 3), so in an X-test round, T 1
ℓ is chosen from {i ∈ Bℓ : Wi ∈ {X,Y }}

(see Table 4). We will let T1, . . . , Tt label those EPR pairs that will be used as
auxiliary states. In particular, the system Ti will be used for the i-th T gate in
the circuit, so if the i-th T gate is even, Ti should be chosen from T 0 = ∪ℓT

0
ℓ ,

and otherwise it should be chosen from T1 = ∪ℓT
1
ℓ . The verifier sends labels

T1, . . . , Tt and X1, . . . ,Xn to PP, who will act as PEPR on the n + t qubits
specified by these labels.

Just as in the EPR Protocol, the input on PP’s system specified by
X1, . . . ,Xn is a quantum one-time pad of either |x〉, |0〉⊗n, or |+〉⊗n, depending
on the round type, with V holding the keys (determined by e). Throughout the
interaction, PP always maintains a one-time pad of the current state of the com-
putation, with the verifier in possession of the one-time-pad keys. The verifier
updates her keys as the computation is carried out, using the rules in Table 2.

From PP’s perspective, the protocol works just as the EPR Protocol, except
that he does not receive the bit zi needed to implement the T gadget until during
the T gadget, after he has sent V his measurement result ci (see Fig. 5).

To perform the i-th T gate on the j-th wire, PP performs the circuit shown
in Fig. 5. As Fig. 5 shows, PV has already applied the observable specified by V

to his half of the EPR pair. The T gadget requires interaction with the verifier,
to compute the bit zi, which depends on the measured ci, the value Wi, and one-
time-pad key aj , however, this interaction can be done in parallel for T gates in
the same layer.

Fig. 5. The gadget for implementing the i-th T gate, on the j-th wire.

It is simple to check that the T gadget in Fig. 5 is the same as the T gadget
for the EPR Protocol shown in Fig. 1. In the case of the leash protocol, W is
chosen at random, and then z is chosen accordingly, whereas in the case of the
EPR Protocol, z is chosen at random and then W is chosen accordingly.

We now give the precise protocols for V (Fig. 6) and honest provers PV

(Fig. 7) and PP (Fig. 8).
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Table 4. How the verifier chooses index sets T = T 0∪T 1 and N for each type of round.
These sets determine which systems are labeled by {Ti}

t
i=1 and {Xj}

n
j=1, respectively.

Computation Round X-test Round Z-test Round

N {i ∈ A : Wi = Z} {i ∈ A : Wi = Z} {i ∈ A : Wi = X}

T 0

ℓ {i ∈ Bℓ : Wi ∈ {G, F}} {i ∈ Bℓ : Wi = Z} {i ∈ Bℓ : Wi ∈ {X, Y }}

T 1

ℓ {i ∈ Bℓ : Wi ∈ {G, F}} {i ∈ Bℓ : Wi ∈ {X, Y }} {i ∈ Bℓ : Wi = Z}

Fig. 6. The Delegation Game: Verifier’s point of view.

Finally, we describe the sequential version of the game rigid(Σ,m) in Fig. 9.
It is no different than rigid(Σ,m), except for the fact that certain subsets of
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Fig. 7. Honest strategy for PV

Fig. 8. Honest strategy for PP

questions and answers are exchanged sequentially, but the acceptance condition
is the same. As mentioned earlier, running the game sequentially only reduces the
provers’ ability to cheat. Hence the guarantees from rigid(Σ,m) hold verbatim
for the sequential version.

Fig. 9. Sequential version of rigid(Σ, m).
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4.2 Completeness

Lemma 1. Suppose the verifier executes the rigidity game with probability pr

and the delegation game with probability pd = 1 − pr, on an input (Q, |x〉) such
that ‖Π0Q|x〉‖2 ≥ 2/3. Then there is a strategy for the provers which is accepted
with probability at least pcompl = pr(1 − e−Ω(n+t)) + 8

9pd.

Proof. The provers PV and PP play the rigidity game according to the honest
strategy, and the delegation game as described in Figs. 7 and 8 respectively. Their
success probability in the delegation game is the same as the honest strategy in
the EPR Protocol, which is at least 2

3 + 2
3

1
3 = 8

9 , by Theorem 2 and since in our
protocol the verifier chooses each of the three types of rounds uniformly.

4.3 Soundness

We divide the soundness analysis into three parts. First we analyze the case of an
honest PV, and a cheating PP (Lemma 2). Then we show that if PV and PP pass
the rigidity game with almost optimal probability, then one can construct new
provers PV

′ and PP
′, with PV

′ honest, such that the probability that they are
accepted in the delegation game is not changed by much (Lemma3). In Lemma 4,
we combine the previous to derive the desired constant soundness-completeness
gap, where we exclude that the acceptance probability of the provers in the
rigidity game is too low by picking a pr large enough.

Lemma 2 (Soundness against PP). Suppose the verifier executes the delega-
tion game on input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ 1/3 with provers (PV,PP

∗)
such that PV plays the honest strategy. Then the verifier accepts with probability
at most 7/9.

Proof. Let PP
∗ be any prover. Assume that PV behaves honestly and applies

the measurements specified by his query W on halves of EPR pairs shared with
PP

∗. As a result the corresponding half-EPR pair at PP
∗ is projected onto the

post-measurement state associated with the outcome reported by PV to V.
From PP

∗, we define another prover, P ∗, such that if P ∗ interacts with
VEPR, the honest verifer for the EPR Protocol (Fig. 3a), then VEPR rejects with
the same probability that V would reject on interaction with PP

∗. The main
idea of the proof can be seen by looking at Fig. 5, and noticing that: (1) the
combined action of V and PV is unchanged if instead of choosing the Wi-values
at random and then choosing zi as a function of these, the zi are chosen uniformly
at random, and then the Wi are chosen as a function of these; and (2) with this
transformation, the combined action of V and PV is now the same as the action
of VEPR in the EPR Protocol.

We now define P ∗. P ∗ acts on a system that includes n + t qubits that,
in an honest run of the EPR Protocol, are halves of EPR pairs shared with
VEPR. P ∗ receives {zi}t

i=1 from VEPR. P ∗ creates m − (n + t) half EPR pairs
(i.e. single-qubit maximally mixed states) and randomly permutes these with
his n + t unmeasured qubits, n of which correspond to computation qubits on



270 A. Coladangelo et al.

systems X1, . . . ,Xn—he sets N to be the indices of these qubits—and t of which
correspond to T-auxiliary states—he sets T 0 and T 1 to be the indices of these
qubits. P ∗ simulates PP

∗ on these m qubits in the following way. First, P ∗ gives
PP

∗ the index sets N , T 0, and T 1. In the ℓ-th iteration of the loop (Step 2. in
Fig. 8), PP

∗ returns some bits {ci}i∈Tℓ
, and then expects inputs {zi}i∈Tℓ

, which
P ∗ provides, using the bits he received from VEPR. Finally, at the end of the
computation, PP

∗ returns a bit cf , and P ∗ outputs {ci}i∈T and cf .
This completes the description of P ∗. To show the lemma we argue that for

any input (Q, |x〉) the probability that V outputs accept on interaction with PV

and PP
∗ is the same as the probability that VEPR outputs accept on interaction

with P ∗, which is at most 2
3qt + 1

3qc whenever ‖Π0Q|x〉‖2 ≤ 1/3, by Theorem 3.
Using δ = 1

3 , Theorem 3 gives qc ≤ 5
3 − 4

3qt, which yields

2

3
qt +

1

3
qc ≤ 5

9
+

2

9
qt ≤ 7

9
.

There are two reasons that VEPR might reject: (1) in a computation or X-
test round, the output qubit decodes to 1; or (2) in an evaluation of the gadget
in Fig. 5 (either an X-test round for an even T gate, or a Z-test round for an
odd T gate) the condition ci = aj ⊕ ei fails.

We first consider case (1). This occurs exactly when cf ⊕ af = 1, where af

is the final X key of the output wire, held by VEPR. We note that af is exactly
the final X key that V would hold in the Verifier-on-a-Leash Protocol, which
follows from the fact that the update rules in both the EPR Protocol and the
leash protocol are the same. Thus, the probability that VEPR finds vf ⊕ af = 1
on interaction with P ∗ is exactly the probability that V finds cf ⊕ af = 1 in
Step 5 of Fig. 6.

Next, consider case (2). The condition ci = aj ⊕ ei is exactly the condition
in which a verifier interacting with P ∗ as in Fig. 6 would reject (see Step 4.(b)).

Thus, the probability that VEPR outputs reject upon interaction with P ∗ is
exactly the probability that V outputs reject on interaction with PP

∗, which, as
discussed above, is at most 7/9.

The following lemma shows soundness against cheating PV
∗.

Lemma 3. Suppose the verifier executes the leash protocol on input (Q, |x〉)
such that ‖Π0Q|x〉‖2 ≤ 1/3 with provers (PV

∗,PP
∗), such that the provers are

accepted with probability 1 − ε, for some ε > 0, in the rigidity game, and with
probability at least q in the delegation game. Then there exist provers PP

′ and
PV

′ such that PV
′ applies the honest strategy and PP

′ and PV
′ are accepted

with probability at least q − poly(ε) in the delegation game.

Proof. By assumption, PP
∗ and PV

∗ are accepted in the rigidity game with
probability at least 1−ε. Let VA, VB be the local isometries guaranteed to exist by
Theorem 4, and {τλ} the sub-normalized densities associated with PP

∗’s Hilbert
space (recall that playing the rigidity game sequentially leaves the guarantees
from Theorem 4 unchanged, since it only reduces the provers’ ability to cheat).
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First define provers PV
′′ and PP

′′ as follows. PP
′′ and PV

′′ initially share
the state

|ψ′〉AB = ⊗m
i=1|EPR〉〈EPR|AB ⊗

∑

λ∈{±}

|λ〉〈λ|A′ ⊗ |λ〉〈λ|B′ ⊗ (τλ)A′′ ,

with registers AA′A′′ in the possession of PP
′′ and BB′ in the possession of PV

′′.
Upon receiving a query W ∈ Σm, PV

′′ measures B′ to obtain a λ ∈ {±}. If λ = +
he proceeds honestly, measuring his half-EPR pairs exactly as instructed. If
λ = − he proceeds honestly except that for every honest single-qubit observable
specified by W , he instead measures the complex conjugate observable. Note
that this strategy can be implemented irrespective of whether W is given at
once, as in the game rigid, or sequentially, as in the Delegation Game. PP

′′

simply acts like PP
∗, just with the isometry VA applied.

First note that by Theorem4, the distribution of answers of PV
′′ to the ver-

ifier, as well as the subsequent interaction between the verifier and PP, generate
(classical) transcripts that are within statistical distance poly(ε) from those gen-
erated by PV

∗ and PP
∗ with the same verifier.

Next we observe that taking the complex conjugate of both provers’ actions
does not change their acceptance probability in the delegation game, since the
interaction with the verifier is completely classical. Define PP

′ as follows: PP
′

measures A′ to obtain the same λ as PV
′′, and then executes PP

′′ or its complex
conjugate depending on the value of λ. Define PV

′ to execute the honest behavior
(he measures to obtain λ, but then discards it and does not take any complex
conjugates).

Then PV
′ applies the honest strategy, and (PV

′,PP
′) applies either the same

strategy as (PV
′′,PP

′′) (if λ = +) or its complex conjugate (if λ = −). Therefore
they are accepted in the delegation game with exactly the same probability.

Combining Lemmas 2 and 3 gives us the final soundness guarantee.

Lemma 4. (Constant soundness-completeness gap) There exist constants
pr, pd = 1 − pr and ∆ > 0 such that if the verifier executes the leash proto-
col with parameters (pr, pd) on input (Q, |x〉) such that ‖Π0Q|x〉‖2 ≤ 1/3, any
provers (PV

∗,PP
∗) are accepted with probability at most psound = pcompl − ∆.

Proof. Suppose provers PP
∗ and PV

∗ succeed in the delegation game with prob-
ability 7

9 + w for some w > 0, and the testing game with probability 1 − ε∗(w),
where ε∗(w) will be specified below. By Lemma 3, this implies that there exist
provers PP

′ and PV
′ such that PV

′ is honest and the provers succeed in the dele-
gation game with probability at least 7

9+w−g(ε∗(w)), where g(ε) = poly(ε) is the
function from the guarantee of Lemma3. Let ε∗(w) be such that g(ε∗(w)) ≤ w

2 .
In particular, 7

9 + w − g(ε∗(w)) ≥ 7
9 + w

2 > 7
9 . This contradicts Lemma 2.

Thus if provers PP and PV succeed in the delegation game with probability
7
9 + w they must succeed in the rigidity game with probability less than 1 −
ε∗(w). This implies that for any strategy of the provers, on any no instance, the
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probability that they are accepted is at most

max
{

pr + (1 − pr)
(7

9
+

1

18

)
, pr

(
1 − ε∗

( 1

18

))
+ (1 − pr) · 1

}
. (4)

Since ε∗(
1
18 ) is a positive constant, it is clear that one can pick pr large enough

so that

pr

(
1 − ε∗

( 1

18

))
+ (1 − pr) · 1 < pr + (1 − pr)

(7

9
+

1

18

)
. (5)

Select the smallest such pr. Then the probability that the two provers are
accepted is at most

psound := pr + (1 − pr)
(7

9
+

1

18

)
< pr

(
1 − e−Ω(n+t)

)
+ (1 − pr)

8

9
= pcompl,

which gives the desired constant completeness-soundness gap ∆.

4.4 Blindness

We now establish blindness of the Leash Protocol. In Lemma5, we will prove
that the protocol has the property that neither prover can learn anything about
the input to the circuit, x, aside from its length. Thus, the protocol can be
turned into a blind protocol, where Q is also hidden, by modifying any input
(Q,x) where Q has g gates and acts on n qubits, to an input (Ug,n, (Q,x)),
where Ug,n is a universal circuit that takes as input a description of a g-gate
circuit Q on n qubits, and a string x, and outputs Q|x〉. The universal circuit
Ug,n can be implemented in O(g log n) gates. By Lemma 5, running the Leash
Protocol on (Ug,n, (Q,x)) reveals nothing about Q or x aside from g and n.

In the form presented in Fig. 6, the verifier V interacts first with PV, sending
him random questions that are independent from the input x, aside from the
input length n. It is thus clear that the protocol is blind with respect to PV.

In contrast, the questions to PP depend on PV’s answers and on the input,
so it may a priori seem like the questions can leak information to PP. To show
that the protocol is also blind with respect to PP, we show that there is an
alternative formulation, in which the verifier first interacts with PP, sending him
random messages, and then only with PV, with whom the interaction is now
adaptive. We argue that, for an arbitrary strategy of the provers, the reduced
state of all registers available to either prover, PP or PV, is exactly the same
in both formulations of the protocol—the original and the alternative one. This
establishes blindness for both provers. This technique for proving blindness is
already used in [RUV13] to establish blindness of a two-prover protocol based
on computation by teleportation.

Lemma 5 (Blindness of the Leash Protocol). For any strategy of PV
∗ and

PP
∗, the reduced state of PV

∗ (resp. PP
∗) at the end of the leash protocol is

independent of the input x, aside from its length.
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Proof. Let PV
∗ and PP

∗ denote two arbitrary strategies for the provers in the
leash protocol. Each of these strategies can be modeled as a super-operator

TPV : L(HTPV
⊗ HPV) → L(HT ′

PV
⊗ HPV),

TPP,ad : L(HTPP
⊗ HPP) → L(HT ′

PP
⊗ HPP).

Here HTPV
and HT ′

PV
(resp. HTPP

and HT ′

PP
) are classical registers containing the

inputs and outputs to and from PV
∗ (resp. PP

∗), and HPV (resp. HPP) is the
private space of PV

∗ (resp. PP
∗). Note that the interaction of each prover with

the verifier is sequential, and we use TPV and TPP,ad to denote the combined
action of the prover and the verifier across all rounds of interaction (formally
these are sequences of superoperators).

Consider an alternative protocol, which proceeds as follows. The verifier first
interacts with PP. From Fig. 8 we see that the inputs required for PP are subsets
N and T1, . . . , Td, and values {zi}i∈Tℓ

for each ℓ ∈ {1, . . . , d}. To select the
former, the verifier proceeds as in the first step of the Delegation Game. She
selects the latter uniformly at random. The verifier collects values {ci}i∈Tℓ

from
PP exactly as in the original Delegation Game.

Once the interaction with PP has been completed, the verifier interacts with
PV. First, she selects a random string WN ∈ ΣN , conditioned on the event
that WN contains at least n copies of each symbol in Σ, and sends it to PV,
collecting answers eN . The verifier then follows the same update rules as in the
delegation game. We describe this explicitly for computation rounds. First, the
verifier sets a = eN . Depending on the values {ci}i∈T1

and {zi}i∈T1
obtained in

the interaction with PP, using the equation zi = aj + 1Wi=F + ci she deduces
a value for 1Wi=F for each i ∈ T1 ⊆ B1. She then selects a uniformly random
WB1

∈ ΣB1 , conditioned on the event that WB1
contains at least t1 copies of each

symbol from Σ, and for i ∈ T1 it holds that Wi = F if and only if zi = aj +1+ci.
The important observation is that, if T1 is a uniformly random, unknown subset,
the marginal distribution on WB1

induced by the distribution described above is
independent of whether zi = aj +1+ci or zi = aj +0+ci: precisely, it is uniform
conditioned on the event that WB1

contains at least t1 copies of each symbol
from Σ. The verifier receives outcomes eB1

∈ {0, 1}B1 from PV, and using these
outcomes performs the appropriate key update rules; she then proceeds to the
second layer of the circuit, until the end of the computation. Finally, the verifier
accepts using the same rule as in the last step of the original delegation game.

We claim that both the original and alternative protocols generate the same
joint final state:

TPP,ad ◦TPV(ρorig) = TPV,ad ◦TPP(ρalt) ∈ HPP ⊗HT ′

PP
⊗HV ⊗HT ′

PV
⊗HPV, (6)

where we use ρorig and ρalt to denote the joint initial state of the provers, as well
as the verifier’s initialization of her workspace, in the original and alternative
protocols respectively, and TPV,ad and TPP are the equivalent of TPV and TPP,ad

for the reversed protocol (in particular they correspond to the same strategies
PV

∗ and PP
∗ used to define TPV and TPP,ad). Notice that TPV,ad and TPP are
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well-defined since neither prover can distinguish an execution of the original
from the alternative protocol.7 To see that equality holds in (6), it is possible to
re-write the final state of the protocol as the result of the following sequence of
operations. First, the verifier initializes the message registers with PP

∗ and PV
∗

using half-EPR pairs, keeping the other halves in her private workspace. This
simulates the generation of uniform random messages to both provers. Then,
the superoperator TPV ⊗ TPP is executed. Finally, the verifier post-selects by
applying a projection operator on HTPV

⊗ HT ′

PV
⊗ HTPP

⊗ HT ′

PP
that projects

onto valid transcripts for the original protocol (i.e. transcripts in which the
adaptive questions are chosen correctly). This projection can be implemented
in two equivalent ways: either the verifier first measures HTPV

⊗ HT ′

PV
, and then

HTPP
⊗HT ′

PP
; based on the outcomes she accepts a valid transcript for the original

protocol or she rejects. Or, she first measures HTPP
⊗HT ′

PP
, and then HTPV

⊗HT ′

PV
;

based on the outcomes she accepts a valid transcript for the alternative protocol
or she rejects. Using the commutation of the provers’ actions, conditioned on
the transcript being accepted, the first gives rise to the first final state in (6),
and the second to the second final state. The two are equivalent because the
acceptance condition for a valid transcript is identical in the two versions of the
protocol.

Since in the first case the reduced state on HT ′

PV
⊗HPV is independent of the

input to the computation, x, and in the second the reduced state on HPP ⊗HT ′

PP

is independent of x, we deduce that the protocol hides the input from each of
PV

∗ and PP
∗.

Remark 1. In order to make a fair comparison between previous delegated com-
putation protocols and ours (see Fig. 1), one must analyze their resource require-
ments under the condition that they produce the correct outcome of the com-
putation with a fixed, let us say 99%, probability. For most protocols, this
is achieved by sequentially repeating the original version, in order to amplify
the completeness-soundness gap. We refer to the full version of the paper for a
sequencial procedure that allows the verifier to obtain the correct output with a
fixed probability (or abort whenever the provers are malicious).

5 Dog-Walker Protocol

The Dog-Walker Protocol again involves a classical verifier V and two provers
PV and PP. As in the leash protocol presented in Sect. 4, PP and PV take the
roles of PEPR and VEPR from [Bro18] respectively. The main difference is that
the Dog-Walker Protocol gives up blindness in order to reduce the number of
rounds to two (one round of interaction with each prover, played sequentially).
After one round of communication with PP, who returns a sequence of mea-
surement outcomes, V communicates all of PP’s outcomes, except for the one

7 One must ensure that a prover does not realize if the alternative protocol is executed
instead of the original; this is easily enforced by only interacting with any of the
provers at specific, publicly decided times.
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Fig. 10. Overview of the soundness of the Dog-Walker Protocol

corresponding to the output bit of the computation, as well as the input x, to
PV. With these, PV can perform the required adaptive measurements with-
out the need to interact with V. It may seem risky to communicate bits sent
by PP directly to PV—this seems to allow for communication between the two
provers! Indeed, blindness is lost. However, if PP is honest, his outcomes {ci}i in
the computation round are the result of measurements he performs on half-EPR
pairs, and are uniform random bits. If he is dishonest, and does not return the
outcomes obtained by performing the right measurements, he will be caught in
the test rounds. It is only in computation rounds that V sends the measurement
results {ci}i to PV.

We notice that PV has a much more important role in this protocol: he
decides himself the measurements to perform according to previous measure-
ments’ outcomes as well as the input x. For this reason, we must augment the
test discussed in Sect. 3 in order to test if PV remains honest with respect to
these new tasks. For this reason, we introduce the Tomography test and prove a
rigidity theorem that will allow us to prove the soundness of the Dog-walker pro-
tocol (see Fig. 10 for a glimpse of the proof structure). Due to space limitations
we refer to the full version of the paper for a presentation of the Tomography
Test, a formal description of the Dog-walker protocol and the proof for their
correctness.

Finally, the Dog-Walker Protocol can be easily extended to a classical-verifier
two-prover protocol for all languages in QMA. Along the same lines of the proof
that QMIP = MIP∗ from [RUV13], one of the provers plays the role of PP, run-
ning the QMA verification circuit, while the second prover creates and teleports
the corresponding QMA witness. In our case, it is not hard to see that the second
prover can be re-used as PV in the Dog-Walker Protocol, creating the necessary
gadgets for the computation and allowing the Verifier to check the operations
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performed by the first prover. We describe this approach in more details in the
full version of the paper.
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