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List of Papers

This thesis is based on the following publications, which are referred to
in the text as Papers A to D. The thesis contains extended versions of
Papers A, B and D, and a reprint of Paper C.
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17th International Conference on Concurrency Theory, volume 4137
of Lecture Notes in Computer Science, pages 95–109. Springer Ver-
lag, 2006.

C. Systematic acceleration in regular model checking.
Bengt Jonsson and Mayank Saksena.
In W. Damm and H. Hermanns, editors, Proceedings 19th Interna-
tional Conference on Computer Aided Verification, volume 4590 of
Lecture Notes in Computer Science, pages 131–144. Springer Verlag,
2007.

D. Graph grammar modeling and verification of ad hoc rout-
ing protocols.
Mayank Saksena, Oskar Wibling, and Bengt Jonsson.
In C. R. Ramakrishnan and J. Rehof, editors, Proceedings 14th In-
ternational Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 4963 of Lecture Notes in Com-
puter Science. Springer Verlag, 2008. To appear.

Author order conventions.

Papers A–C have the authors in alphabetical order, which is what we
normally do. Paper D — the only exception — has the students in
alphabetical order and the professor last.
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My Contribution

Roughly, Paper C is an improvement over Paper A in terms of verifica-
tion results, and was originally motivated by Paper A. The work leading
up to Paper C was in fact begun before Paper B, but was published af-
terwards. Paper B is an attempt to speed up the verification of liveness
properties, by avoiding the computation of reachable loops, and as such
was motivated by Paper A.

In Paper D we shift our focus from word shaped systems to graphs.
Paper D started out as a case study of a routing protocol.

A. I participated in all parts of the work: discussions, implementation,
experiments, proofs and writing. My main contributions were mod-
eling and implementation.

For the version included in this thesis, I extended the theoretical
part.

B. The original idea was Bengt Jonsson’s. I played a major role in
working it out and making the original formulation of the method
stronger. I applied the method by hand to many examples, to mo-
tivate further work. Theorem 2 was my idea — it was necessary to
verify key examples. I also implemented the method, and my imple-
mentation was used for the experiments.

I wrote the extended version included in this thesis (except the sec-
tion about the alternating bit protocol).

C. This project started out being largely experimental. I led the im-
plementation work throughout the project. I was the driving force
behind the theory and implementation, guided by feedback from
Bengt Jonsson.

D. Oskar Wibling and I collaborated closely on all the work presented in
this paper. We developed the theory (including the proofs) together,
as well as implementing and optimizing our verification tool. Oskar
did most of the protocol modeling and led the implementation work.
I devised proof strategies for our theory. Bengt Jonsson made many
important suggestions, which had a significant impact on our work.
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Other Publications

� Insights to Angluin’s learning.
Therese Berg, Bengt Jonsson, Martin Leucker, and Mayank
Saksena.
In S. Etalle, S. Mukhopadhyay, and A. Roychoudhury, editors,
Proceedings of the International Workshop on Software
Verification and Validation (SVV 2003), volume 118 of Electronic
Notes in Theoretical Computer Science, pages 3–18. Elsevier,
2005.

Therese Berg and I did roughly the same share of work, supervised
by Martin Leucker and Bengt Jonsson. This was my first project
as a Ph.D. student, which is slightly off topic.

� A survey of regular model checking.
Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank
Saksena.
In P. Gardner and N. Yoshida, editors, Proceedings CONCUR
2004, 15th International Conference on Concurrency Theory, vol-
ume 3170 of Lecture Notes in Computer Science, pages 35–48.
Springer Verlag, 2004.

Marcus Nilsson and Bengt Jonsson did most of the work. I wrote
about extrapolation (essentially, Section 3.3 of the survey). This
paper, and Marcus Nilsson’s thesis [Nil05], are good sources for
anyone curious about regular model checking.
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Sammanfattning p̊a svenska
(Summary in Swedish)

“Det finns inga signifikanta buggar i v̊ar mjukvara som ett signifikant
antal användare vill f̊a åtgärdade.”

Bill Gates [Gat95]

Datorer blir allt mer en del av v̊art vardagliga liv. Program körs i varje
tänkbar apparat, och tillämpningarna har en enorm bredd; fr̊an fordon
till pulsgeneratorer (pacemakers), till handel och telekommunikation. . .
IT finns överallt. Däremot är det ytterst sällan vi kan garantera att ett
program fungerar korrekt!

Om program som kontrollerar, exempelvis, en bils styrsystem fungerar
felaktigt kan resultatet bli livsfarligt. Felaktiga program utgör ett enormt
slöseri av resurser — även om det inte rör sig om säkerhetskritiska pro-
gram — direkt, via förlorad funktionalitet, och indirekt, via arbetet som
krävs för att rätta till felen.

Inom industrin idag s̊a testas program, men utan att kunna ge korrekt-
hetsgarantier. Verifieringstekniker är under utveckling inom den teore-
tiska datavetenskapen med syftet att ge ett definitivt svar p̊a huruvida
ett program fungerar korrekt.

Turing, Church, och Gödel grundade den teoretiska datavetenskapen
p̊a 30-talet, genom sina arbeten p̊a att formalisera beräkningsbarhet (vad
är en algoritm?), och deras resultat har fortfarande djupa implikationer
för dagens vetenskap. Verifieringstekniker, och verktyg, har utvecklats
sedan 70-talet. Det inom datavetenskapen prestigefyllda Turingpriset —
v̊art Nobelpris — gavs 2007 till Clarke, Emerson och Sifakis, för deras
pionjärsarbete om verifieringstekniken modellkontroll (model checking).
Även om stora framsteg har gjorts sedan introduktionen p̊a 70-talet, s̊a
utgör verifiering fortfarande ett sv̊art problem i allmänhet.

För att verifiera att ett program är korrekt, modellerar vi först pro-
grammet som ett transitionssystem, genom att representera alla tillst̊and
som programmet kan vara i, och transitioner mellan dessa tillst̊and.
Vi formulerar sedan en korrekthetsegenskap om programmets beteende,
som ett villkor p̊a transitionssystemets körningar. Vi kan allts̊a, n̊agot
förenklat, betrakta programmets alla körningar som en (ibland oändlig)
graf, och utföra v̊ar korrekthetsanalys p̊a denna graf. Målet för analysen
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är att svara p̊a om det finns n̊agon körning som inte uppfyller korrekt-
hetskravet — om det inte finns det, svarar vi att programmet är korrekt,
annars konstruerar vi ett motexempel som visar varför programmet inte
uppfyller kravet.

Program kan vara ytterst komplicerade, och det är en enorm utma-
ning att utveckla effektiva verifieringstekniker — program kan köras
parallellt, eller distribuerat över ett nätverk, och utbyta information via
meddelanden; och processer kan dynamiskt skapas och dödas. Många
intressanta program uppvisar, tyvärr, ett enormt antal olika tillst̊and,
och är därmed sv̊ara att analysera. Speciellt sv̊art är det att analysera
parallella och distribuerade program, d̊a antalet deltagande processer
växer.

Avhandlingens inneh̊all i stora drag

Det finns ett behov för verifieringstekniker som kan analysera godtyckligt
stora nätverk av processer. I denna avhandling förbättrar och utvecklar
vi s̊adana tekniker.

Vi förbättrar verifieringsteknikerna inom ett specifikt modellerings-
och verifieringsramverk, kallat RMC, och lyckas verifiera icke-triviala
egenskaper hos en stor mängd program för första g̊angen.

Vi utvecklar ocks̊a en helt ny teknik för verifiering av s̊a kallade fram-
stegsegenskaper (progress/liveness), där man undrar om ett program till
slut lyckas uppn̊a ett visst mål — ett typiskt exempel är att kontrollera
huruvida en process som ber om tillg̊ang till en resurs s̊a småningom
faktiskt f̊ar tillg̊ang till den. Vi har implementerat tekniken inom RMC,
och v̊ara experiment är lovande. Det finns utrymme för intressant vida-
reutveckling p̊a samma sp̊ar.

Slutligen har vi utvecklat ytterligare en verifieringsteknik, den här
g̊angen för grafformade system — ett typiskt exempel är ett nätverk av
mobila noder som kommunicerar med varandra genom att skicka med-
delanden (t.ex. studenter som kaotiskt rör sig runt i staden, med bärbara
datorer, och chattar med varandra, eller forumsurfar ;). Vi gör en fallstu-
die p̊a protokollet DYMO, som används för att möjliggöra kommunika-
tion mellan tr̊adlösa mobila noder d̊a infrastruktur saknas, och verifierar
att den senaste versionen av protokollet är korrekt. Detta protokoll h̊aller
p̊a att granskas av IETF, för att eventuellt bli en Internetstandard.

14
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Overview of Thesis

This thesis is organized as follows.
In Chapter 1 we motivate and give an overview of the research area.
Chapter 2 contains a presentation of problems we have worked with

(as well as some interesting problems which we have not worked with).
In Chapter 3 we give a formal treatment of the program models which

we have worked with in the papers, as a pleasant introduction for the
reader. In Chapter 4 we give a formal treatment of safety and liveness
properites, and present standard analysis methods. Chapters 3 and 4
should together give a student a good idea of the area.

In Chapter 5 we summarize the papers, and in Chapter 6 we present
related work. We end the introduction by giving concluding remarks
about our work, and a personal view on promising future research, in
Chapter 7.

Papers A–D follow. Papers A, B and D are extended versions of the
publications [AJN+04], [AJRS06], and [SWJ08]. Paper C is a (minimally
edited) reprint of the publication [JS07], with an appendix.
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1. Introduction

“There are no significant bugs in our released software that any signifi-
cant number of users want fixed.”

Bill Gates [Gat95]

Program Errors

Computer systems in domains such as telecommunications, industrial
control, security, and even operating systems, are inherently complex.
It is difficult to foresee and correctly handle all events to which a system
must react. Therefore many programs behave incorrectly in particular
situations. A large program is typically built by “interconnecting” mod-
ules, each of which provides functionality for solving a smaller problem.
A module may be incorrectly documented or used, resulting in malfunc-
tion when used in an unhandled or unintended way.

Given the complexity of creating correct programs, whether they are
implemented in hardware or software, it is not surprising that programs
often have bugs ; errors which cause the program to malfunction. Bugs
may result in irritating behavior, such as your PC at home crashing, or
life-threatening behavior, such as a pacemaker or car brake not function-
ing. Somewhere between “irritating” and “life-threatening” in impor-
tance, there is the cost to correct and replace a malfunctioning program,
as well as potential damage caused to the user of the program, in terms
of lost income and additional expenses.

By definition, safety-critical systems, such as pacemakers, and elec-
tronic controls for vehicles and traffic, power plants etc. must work
correctly, since lives are at stake. For other systems, the tolerance for
bugs is greater, yet it is desirable that they are correct; no-one (developer
nor user) wants their resources to be wasted due to program errors.

There are many reasons why errors frequently occur in programs. Er-
rors are often logical , i.e., due to an incorrect solution of the problem at
hand. For example, the programmer may have had a particular case of
the problem in mind and thereby missed special cases, resulting in an
incomplete solution of the problem and infrequently occurring incorrect
program behaviors. Errors may also be due to bad instructions (specifi-
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cations), i.e., the programmer (attempted to) solve the wrong problem.
As we will see, the techniques described in this thesis can be used to
detect some errors of both types mentioned above.

The following famous bugs could likely have been avoided if more
careful development and error detection methods had been used.

� In 1985–1987 a total of six patients, in USA and Canada, died
or received serious injury due to overdoses caused by bugs in the
radiation therapy machine Therac-25 ; see e.g. [LT93].

� In 1994 a bug in the floating point division unit of Intel’s Pen-
tium processor was publically disclosed, which ultimately led to
the recalling of those processors; see e.g. [Coe95].

� In 1996 the rocket Ariane 5 self-destructed, caused by a variable
having a value outside its expected range, resulting in a loss of
about $370 million. The programmers did not foresee the problem,
due to poor specifications [Dow97].
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1.1 Verification

With the increasing amount of IT around us, we recognize the need for
bug-free programs. But how can we avoid program errors? How do we
find important errors? How can we ensure that a program is bug-free?

Correctness

One view of correctness is that of functional correctness — namely that
for each possible input to the program, the correct output is produced.
However, not all programs terminate; so-called reactive systems loop
forever, reacting when input is received. To analyze also reactive systems
we would thus like to generalize functional correctness to allow at least
state dependent conditions — “on this input, when the program is in
this state, then this output should be produced”.

Since correctness is a rather vague concept, we require that a speci-
fication exists, which implicitly defines correctness; a specification is a
description of how the program should and should not behave. Thus,
a program is correct (with respect to a specification) if it satisfies the
specification. We thus state the central problem studied in this thesis
— the verification problem :

Does a given program satisfy a given specification ?

While, in practice, a specification can be ambiguous, or not exist at all,
we need a precise specification to instantiate the verification problem.
Hence, a specification stated in a precise language, such as a logic, is
required before analysis can begin.

The verification problem can be applied at different levels of detail.
Indeed, a specification can be seen as a high level program, and so the
roles of “program” and “specification” in our formulation are better
understood as descriptions of programs at lower and higher levels of
detail.

The most straight-forward instantiation of the verification problem is
software analysis, where the “program” is a mathematical model of the
program under analysis, and the “specification” is a formal specification
of the program. We can also analyze hardware; e.g., we can ask whether
a circuit is correctly designed — then the “program” is a model of the
circuit, and the “specification” is a description of what the circuit should
compute. We can even analyze specifications, by asking whether they
satisfy a set of design requirements ; then the “program” is a specifica-
tion, and the “specification” consists of the design requirements.

Note that even if we could solve the verification problem, the spec-
ification may not cover all bugs. Using verification we can only find
bugs which violate a given specification. In other words, we can only
answer whether a program is correct, if we have already defined what
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correct means. However, this is the case for all program analysis. We
can potentially solve the verification problem for any specification we
can think of — hence, most critical bugs are amenable to our analysis.

Tackling the Verification Problem

A wide range of methods tackle the verification problem in different
ways, from the practical but imprecise to the theoretical and precise
(but sometimes impractical). On one end of the scale we have “com-
mon sense” and notions of good programming; testing, development and
debugging tools and methodologies; and on the other end we have the
topic of this thesis — formal verification.

The widely used meaning of testing a program is to examine if a num-
ber of computations (program execution scenarios) work as expected;
for example, by inserting assertions in the code, or inspecting the value
of data at certain program locations. Myers’ classic work [Mye79] set
the standards for systematic testing. Nonetheless, testing suffers from
the following incompleteness issues:

1. It is often infeasible to test all program computations explicitly
(unless the program is simple); thus the analysis is not complete.

2. Given that we cannot test all computations, how do we select good
test cases?

The second problem of testing (see the list above) can be handled sys-
tematically by introducing different coverage metrics, which give mean-
ing to how much program behavior has been tested. A test can be
measured to have a certain percentage of coverage; the higher coverage,
the more reliable is the test.

Perhaps surprisingly, the first problem is handled by formal verifica-
tion, where the goal is to prove whether a program is correct. There
is no contradiction here — it is indeed sometimes possible to guarantee
correctness, even for large programs, by using mathematical methods!

In verification, we first construct a mathematical model of the program
under analysis. Then, the model is analyzed for correctness. Abstraction
is an essential part of the construction of a model — before applying
verification techniques one should abstract away from detail (i.e., remove
features not relevant for the analysis) to make the program smaller, and
thus easier to analyze. If the model is verified to be correct, we conclude
that the program is indeed correct. Otherwise, we have found an error
in our model, which represents an error in the real program. In that
case, we often want to improve the program, in a debugging phase, so
that the found error does not occur, and repeat the above steps for the
improved program.

The debugging phase is inherently difficult (or impossible?) to auto-
mate, as we have to fix a flaw in the design of the program — perhaps we
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found a major flaw which cannot be solved by anything remotely similar
to the program. This touches upon another approach to program er-
rors — namely, to generate guaranteed correct code from specifications.
While a beautiful thought, it does not allow us to analyze existing code,
and has to tackle the difficult problem of generating efficient code.

Verification Techniques

Verification covers a large number of techniques. Large classes are: static
analysis, theorem proving, and model checking. A short overview follows.
For a broader overview of model checking and theorem proving, see e.g.
[CWA+96], and for work closely related to this thesis, see Chapter 6.

Static analysis is the analysis of program code (as opposed to dynamic
analysis, where the program executions are studied — although, the
distinction is not always clear). Thus, the code is inspected in order to
find flaws. Typical examples of what can be found by static analysis
are memory leaks, dead code, uninitialized variables, indexing outside
of arrays and dereferencing of null pointers. A well-known early tool
for static analysis is Lint [Joh78]. State-of-the-art static analysis tools
include Astrée [CCF+07] and TVLA [BLARS07], as well as a number
of commercial tools.

In (interactive) theorem proving, the approach is semi-automatic (i.e.,
much human interaction is required), and the program analysis is done
by an expert using a theorem prover (a program which assists the con-
struction of proofs) to produce a correctness proof. Human interaction
on the one hand enforces (and is helped by) human understanding of
the analysis, but on the other hand it is very time consuming. (In con-
trast, model checking uses no human interaction during the analysis.)
An important early contribution was LCF by Gordon et al. [GMW79].
State-of-the-art theorem provers include Coq [BC04, CH85], Isabelle
[NPW02] and PVS [ORSSC98]. Famous applied results include (1) Nip-
kow et al. [NBS06] establishing the correctness of Hales’ proof [Hal00]
of the Kepler Conjecture; and (2) Gonthier’s proof of the Four Color
Theorem [Gon04].

Theoretical Limitations

Can we solve the verification problem, as we have informally defined
it, for all programs and all specifications? Note that our verification
methods are programs themselves — we write programs which analyze
other programs. Our curiosity can thus be phrased:

Does there exist a program which can decide whether any given program
satisfies any given specification?
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A famous negative answer to this question comes from Turing’s proof
that the halting problem is undecidable [Tur36]. Hence, we cannot solve
the verification problem once and for all by writing a “universal verifi-
cation program” — intuitively, we must make “program” and “specifi-
cation” less general to obtain positive answers.

A consequence of Turing’s result, and in fact any undecidability result
concerning the verification problem (notably, [AK86]), is that we must
restrict our ambitions of solving the verification problem to subclasses
of programs (and specifications). We are thus left to either look for
decidable subclasses, i.e. subclasses which we can guarantee answers
for, or design verification methods which work well for a selection of
interesting programs. In the latter case, we can only suggest that the
method works well for “similar programs”, rather than classifying a set
of programs and specifications for which we can guarantee that it works.

Finite- and Infinite-State Programs

For the analysis of many classes of programs, typically communication
and synchronization protocols, control programs, circuit designs, etc., we
model a program as a transition system — at any given time the program
is in a so-called state and the program can transition from one state to
another via so-called transitions. We often refer to all possible states
of a program collectively as the state-space of the program. Informally,
we may look at a program under execution as executing an instruction,
then pausing, then executing an instruction again, and so forth. A state
is then a snapshot of the program during such a pause — essentially,
the current data the program uses and a pointer to the next instruction
(for each process). For example, the program variables and their values
are part of a state.

Programs which have an infinite number of states are called infinite-
state programs (and analogously we have finite-state programs). The
source of infinity may be unbounded data domains, the number of pro-
cesses, or unbounded data structures (such as queues or message buffers);
there are infinitely many integers, reals etc.

But what do we really mean by infinite here? A pragmatic view is
that everything is finite, and that infinity is an abstract mathematical
concept. Certainly, computer memory is finite, and numbers in com-
puters necessarily have finite range. However, we can often analyze a
program with integers more successfully when treating them as being
arbitrarily large, rather than finite (e.g., as 32 bit words).

Parameterized Systems

An important class of programs, in some sense between finite- and
infinite-state, are the so-called parameterized systems, where an arbi-
trary number of processes �, given as a parameter, execute the same
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program in parallel. The processes may communicate with each other,
via shared memory or message passing. Many communication and syn-
chronization protocols are parameterized systems — a number of partici-
pating processes each follow the same protocol to achieve some objective,
as specified by the protocol.

While each instance of a parameterized system is finite-state, the col-
lection of all instances is infinite-state, as the parameter is an arbitrarily
large integer. The uniform verification of a parameterized system, where
we ask whether each instance satisfies its specification, is therefore an
infinite-state problem.

Examples of parameterized protocols, which we have also analyzed in
this thesis, are mutual exclusion and routing protocols. A mutual ex-
clusion protocol is a program executed by a number of processes, who
compete for access to a resource. The purpose of a mutual-exclusion pro-
tocol is to ensure that the access to the resource is mutually exclusive —
i.e., that at most one process has access to the resource at any time. In-
stances are lock-based solutions for accessing shared memory (e.g., reads
and writes to a shared variable). Examples are the protocols of Burns
[Bur81] (and Lamport [Lam86]), Dijkstra [Dij65] and Szymanski [Szy90],
and Lamport’s bakery protocol [Lam74, Lam79]. See also Lynch’s book
[Lyn96]. Correctness properties of interest for mutual exclusion proto-
cols, other than mutual exclusion, are: deadlock (a.k.a deadly embrace)
freedom, starvation (a.k.a. lockout) freedom, and whether the access
to the resource is First-Come-First-Serve. A deadlock is a situation
where two processes or more are waiting for each other to access the
resource, with the result that no process obtains access [CES71]. A
process starves, if it never accesses the resource despite wanting to do
so.

A routing protocol is used to provide routing information in networks.
More precisely, to provide information about which node (called the next
hop) a message should be sent to, in order to eventually reach the desired
destination. A current example of a routing protocol is the DYMO ad-
hoc routing protocol [CP07], intended for networks whose structure can
change frequently, e.g. due to nodes moving in and out of range of
each other. Correctness properties of interest for routing protocols are:
routing loop freedom — that there are no “loops” of next hop nodes (not
including the destination), as this would cause a message to never reach
its intended destination; and whether a sequence of next hops actually
lead to the intended destination.
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1.2 Model Checking

Model checking is a class of techniques for solving the verification prob-
lem for finite-state [CGP99] and infinite-state programs. Typically, the
specification is formulated in a logic, and if the model checker (the anal-
ysis program conducting the verification) terminates, it outputs a “yes”
if the specification is satisfied, or a “no” together with a counterexam-
ple — a computation showing a violation of the specification — if the
specification is not satisfied.

The first model checking algorithms were introduced in the 80s in-
dependently by Clarke and Emerson [CE81, CES86], and Queille and
Sifakis [QS82]. Only relatively small programs (having about a hundred
thousand states), could be analyzed then. The introduction of model
checking was recently recognized by the ACM, when Clarke, Emerson
and Sifakis were given the 2007 Turing award for their pioneering work.

Another important contribution was the introduction of symbolic
model checking (see, e.g., [McM93]), where the state-space exploration
is done implicitly, by considering symbolic representations of potentially
large sets of states. Symbolic model checking allowed the analysis of
programs with trillions of states [BCM+92]. The underlying symbolic
representation was BDDs [Bry86, Bry92]. In the late 90s, bounded
model checking [BCCZ99, PBG05] emerged as a complementary
technique, motivated by the success of SAT solvers [CM97]. In
bounded model checking, all finite computations of a given length can
be analyzed as a SAT problem. The analysis is typically repeated for
longer computations, until a counterexample is found, or one runs out
of memory or time.

Specifying Correctness

Two main classes of correctness properties are typically specified and an-
alyzed: safety properties and liveness properties (see e.g. [Kin94]). The
classification is attributed to Lamport [Lam77]. The concepts were later
formalized by Alpern and Schneider [AS85], who also proved that any
property is the intersection of a safety property and a liveness property.

Safety Properties

A safety property is of the form “something bad never happens (in any
computation of the program)”, where the “bad thing” typically repre-
sents a specific critical error. A common type of safety property says
that “no bad state is visited” — meaning that bad states should not be
visited in order for the program to function safely. For example, when
checking mutual exclusion, we would classify any state where two or
more processes simultaneously have access to the resource as bad. In
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general, we can check whether a bad state can be visited in a computa-
tion by:

1. computing the states which are reachable by a sequence of tran-
sitions from an initial state, and checking whether they contain a
bad state; or

2. computing the states which can reach a bad state by a sequence
of transitions, and checking whether they contain an initial state.

We call (1) forward reachability analysis, and (2) backward reachability
analysis.

Liveness Properties

A liveness property is essentially of the form “something good eventually
happens (in every computation of the program)”, usually under some
conditions, i.e. “something good eventually happens whenever we have
visited certain states”. A liveness property thus typically represents
some sort of progress requirement, such as “a process asking for a service
eventually receives it”, or “the computation eventually terminates”.

For example, a liveness property can be specified as a (set of) pair(s)
of states (�� �), with the meaning that “whenever state � is visited in
a computation, then eventually � should be visited as well”. A pro-
gram model thus satisfies such a liveness property if all computations
visit state � after visiting �. To answer whether the liveness property is
satisfied we may:

1. exhaustively search for a computation which visits � but never
visits �; or

2. compute the set of states which must visit �, and check whether �

is included.

Option (1) is typically analyzed by a repeated search over the state-
space, by so-called repeated reachability analysis. In Paper B we present
a method based on option (2).

Model Checking Tools

At the time of writing, well-known (software) model checking tools in-
clude Blast [BHJM05], Magic [CCG+04], Slam [BR02], Spin [Hol97]
and UppAal [LPY97]. UppAal is for the analysis of real-time systems,
while the others are for “ordinary” systems, such as C/C++ programs.
More recently, we have also Terminator [CPR06a, CPR06b]. There
are also a number of tools for the verification of Java programs, such as
Bandera [HDPR02], Java PathFinder [VHB+03], and jMoped [SSE05].

While many programming languages are similar from an analysis point
of view, focusing on a widely used language has some benefits. First, it
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allows the construction of tools working directly on “real” code, mini-
mizing the need of manual modeling. Second, it gives access to a large
amount of programs of industrial importance, which make up interest-
ing benchmarks. All in all, working with “real” code is expected to
speed up the emergence of verification tools in industry. The (non real-
time) model checkers are typically able to analyze C programs with tens
of thousands of lines of code, with a trade-off between precision and
program size. Many practical and theoretical problems remain, such
as scalability, pointer analysis, handling libraries (external code), and
recursion.

State-of-the-Art Verification

There is a great incentive to incorporate formal verification into
industrial-size software development, as an aid for bug finding in
general. The emergence of various tools for model checking software
(e.g., C/C++ and Java code) is promising, but we have yet to see
large-scale use of these tools in the industry.

The nature of verification, i.e., an exact analysis which is sensitive
to program size, seems to be more suitable for safety-critical systems.
Such important programs must work correctly. Their core should be
relatively simple, so that we can understand if and why they are correct.
We should only trust that the program is error free if we can actually
prove it. But, if the core is relatively simple, we should be able to
automatically produce such a proof, much faster than a human expert
would be able to. . .
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2. Problem Statements

The complex behavior of computer systems1 offers many challenges for
formal verification. Programs may run in parallel on a single computer;
or distributed over a network of computers, exchanging information
through message passing; and processes may be dynamically created
and destroyed during program execution. Computer systems typically
exhibit a huge number of possible visited states and computations (often
arbitrarily many). We understand that the analysis of parallel or dis-
tributed programs therefore quickly becomes difficult, or even infeasible,
as the number of participating processes increases. While much of the
work on model checking has been for finite-state systems, we recognize
the need for methods able to analyze arbitrarily large networks of pro-
cesses. In this thesis we try to improve the state-of-the-art verification
techniques to better deal with the analysis of these programs.

The automated analysis of parameterized and infinite-state systems
has been the subject of research over the last 15–20 years [AK86, GS92,
EN96, WB98, KMM+01, ZP04, AJNS04]. One major approach has been
to extend symbolic model checking techniques [BCM+90] to new classes
of systems. Much of the work has been focusing on the verification of
safety properties. Progress in the analysis of liveness properties has been
slow, as this is a more difficult problem in general. For a more detailed
account of related work, see Chapter 6.

Regular model checking was advocated by Kesten et al. [KMM+01] and
by Boigelot and Wolper [WB98] as a framework for analyzing several
classes of parameterized and infinite-state systems [WB98, KMM+01,
AJNS04, Nil05]. This model checking framework is for systems whose
states can be represented as finite words of arbitrary length over a finite
alphabet. A set of states is symbolically represented as a regular set (i.e.,
as a regular expression) — hence the name “regular” model checking.

Systems suitably represented in this way include parameterized sys-
tems consisting of arbitrarily many finite-state processes, connected in a
linear or ring-shaped topology, and systems operating on queues, stacks
and other linear unbounded structures.

1By “computer system” we typically mean that more than one process is involved. It

is a superficial distinction in formal verification, where a system is just a program.
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Over the years, methods for computing the set of reachable states
of a system, as well as the set of reachable loops (used to analyze
liveness properties), have been developed for regular model checking
[BJNT00, JN00, PS00, DLS01, AJNd02, AJNd03]. Computing the set
of reachable states, as well as the transitive closure of the transition rela-
tion, is undecidable for these systems in general. However, decidability
results for certain classes have been obtained [JN00].

The goal of regular model checking has always been to be a rela-
tively general framework, and we should strive to support analysis of
both safety and liveness properties. Within the framework, the anal-
ysis of safety properties is a computationally easier problem than live-
ness, and progress in the verification of liveness has been slow. Sev-
eral specialized techniques exist which work for safety, but not liveness
[ACJT00, ADHR07, ADR07] (see also Chapter 6). In this thesis we
therefore aim to improve the state-of-the-art techniques for the verifica-
tion of liveness properties, in particular within the regular model check-
ing framework. We have considered the following specific problems.

Uniform Specification and Verification

Within the regular model checking framework, existing techniques for
computing reachable states and reachable loops can in principle be used
to verify both safety and liveness properties of parameterized system
descriptions, but do not provide a convenient approach for checking
arbitrary temporal logic properties of parameterized and infinite-state
systems. Significant ingenuity is required in order to manually trans-
form the verification of a temporal property of a parameterized system
into a property of reachable states and reachable loops, in particular
if the verification uses fairness properties that are parameterized on
system components [BJNT00, PS00]. It would be desirable to have a
framework, analogous to the automata-theoretic approach in finite-state
model checking [Var07], where the property of verifying a temporal prop-
erty is automatically transformed into a problem of checking emptiness
for a Büchi automaton. Essentially, we ask ourselves:

Can we design a specification language which is sufficiently expressive
for the regular model checking framework, in which we can also specify
arbitrary temporal properties, and automatically transform the system
and property specifications into an analyzable verification model?

Another benefit of a uniform specification language is that of stan-
dardization — a common language allows several tools and methods to
work on the same models, promoting competition, co-operation, and
progress within the field.
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Automatic Powerful Acceleration

A major problem when model checking parameterized and infinite-state
systems is that the computation of fixed-points representing the set of
reachable states or loops does not terminate in general, since there is no
uniform bound on the number of transitions between reachable config-
urations. To make fixed-point computations terminate more frequently,
so-called acceleration techniques have been developed, which calculate
the effect of arbitrarily long sequences of transitions [BP96, BGWW97,
ABJ98, ABJN99, BH99, PS00, ACABJ04, AJNS04, JS07] (sometimes
called meta transitions).

Acceleration is undecidable in general. In practice, we can acceler-
ate small relatively simple actions. Typically, encountered transition
relations are large, and cannot directly be accelerated. A problem is,
therefore, how to decompose a large transition relation into acceleratable
subrelations. In other words, the research problem is essentially:

Given an efficient acceleration technique for a class of transition rela-
tions, can we find a way to automatically and systematically apply the
acceleration technique to arbitrarily large transition relations?

Light-Weight Verification of Liveness

The verification of liveness properties is more difficult than the verifi-
cation of safety properties. Typically, verification of safety properties
amounts to computing the set of reachable states, while liveness proper-
ties require computing the transitive closure of the transition relation.

The general approach for proving liveness involves finding auxiliary
assertions associated with well-founded ranking functions and helpful
directions (e.g., [MP84, MP96]). Finding such ranking functions is
not easy, and automation requires techniques adapted to specific data
domains.

This motivates the development of techniques for automatic verifica-
tion, which avoid the computation of transitive closures, or other expen-
sive computations. In other words:

Can we design an automatic verification technique for liveness which is
more light-weight than current approaches?

Such a technique which is complete would be a breakthrough. It is
more reasonable to expect that we can find such an incomplete tech-
nique. We should then look for a technique which is powerful enough to
motivate not being complete.
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Verification of Graph Shaped Systems

The verification of network protocols has been one of the most impor-
tant driving forces for the development of model checking technology.
Most approaches (e.g., [Hol97, CGL92]) analyze finite-state models of
protocols, but an increasing number of techniques are developed for an-
alyzing parameterized or infinite-state models (see, e.g., [ACJT96, ZP04,
AJNS04]).

There is a need for models which can represent networks with a poten-
tially unbounded number of nodes, possibly with a dynamically changing
topology. This covers a large class of systems, including protocols for
wireless ad hoc networks, many distributed algorithms, security proto-
cols, telephone system services, etc. The framework of regular model
checking, for example, cannot handle such systems in a straight-forward
way, as they would have to be encoded into words. We thus ask:

Can we construct an efficient verification framework suitable for the ver-
ification of network protocols over arbitrary topologies, and in general,
graph shaped systems?

�

Before presenting our contributions, we give an introduction to the pro-
gram models we have used, focusing on the regular model checking
framework, and to the verification of safety and liveness properties in
general, in Chapters 3 and 4.
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3. Program Models

In this thesis, we have used a number of different models for the analysis
of programs. Each model is suitable for modeling a specific type of
program, and for each model we will present a particular analysis method
(as we will see in the Papers). All models are transition systems; they
represent a program as a “state machine” consisting of a set of states
which the program can be in, and transitions between these states. We
use the standard definition of a transition system.

Definition 3.1 (Transition System)
A transition system is a tuple � = ��� ����� , where

� � is a set of states,

� � � � is a set of initial states, and

� �� � ��� is a transition relation.

If (�� �) 	 �� , also written � �� � , it means that the program can
transition (i.e., change state) from � to � .

A computation of � from a state � 	 � is a (possibly infinite) sequence
of states � = �0 �1 �2 
 
 
 where �0 = �, and ���1 �� �� for each � � 1
(and � less than the length of � if the computation is finite). We assume
that the computation is initialized by default, i.e., that � 	 �, unless
otherwise stated.

The transition relation is often given as a union of actions. An action
is simply a relation � ��� . To specify that (�� �) 	 � , we write �

�
�� � ,

and say that � from state � can execute (or take) action � and reach
state � . Action � is enabled in state � if there is some state � such that
�

�
�� � . The set of states in which the action � is enabled is denoted

En(�). �

Running Example

To demonstrate our program models, we will use a (toy) example — the
token ring protocol. A token is passed around between a fixed number
	 of participating processes. The intention is that the process which
holds the token has exclusive rights to some resource. The processes
are indexed from 0 to 	� 1, and initially the token is at process 0, say.
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The token can be passed from process � to its higher-indexed neighbor,
process (� + 1) mod�. We can model the system using a word of length
�. The letter at position �, denoted �(�), then models the local state
of process �. The local state of a process is either �, meaning that this
process has a token, or �, otherwise.

A transition system model ��� ����� of this protocol, could thus be
the following, where the indices increase to the right and the leftmost
process has index 0.

� � = ����	� — the set of states are all words of length � over the
alphabet ����	

� � = �� 
 ���1	 — the initial state is the word where a token is at
the leftmost process, and the other �� 1 processes have no token

� �� = ���(�) = � ; �(�) = �� �((�+1) mod�) = �� � � = 0����1	,
meaning that any process � which has the token can pass the token
to its right neighbor.

The predicates �(�) = � and �(�) = � above mean that process � has,
respectively has not, got a token.
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3.1 Fair Transition Systems

In Papers A, B and C, we use the standard concept of (weak) fairness,
a.k.a. justice [MP96]. Fairness allows us to model natural progress re-
quirements. For example, it is obvious that a process will eventually
take an action which remains enabled; at least if all other processes run
on different processors. Without assuming fairness, one process may re-
peatedly act in a computation, even though another process could act
independently — which is unrealistic if the processes run on different
processors, and “unfair” if they run on the same processor. When an-
alyzing liveness properties, fairness conditions are used to discard such
unrealistic or unfair behavior.

We now extend our basic definition of computation to respect certain
fairness conditions.

Definition 3.2 (Fair Transition System)
A fair transition system is a tuple � = ��� ������� , where

� ��� ����� is a transition system, and

� � is a set of actions, denoted fair actions.

A fair computation of � from a state � � � is an infinite computation
� = �0 �1 �2 	 	 	 from � which satisfies the following fairness condition:
for each � � � , there are infinitely many � 
 0 where either ��

�
�� ��+1

or �� �� En(�). �

In our definition of fairness, the indices � represent “opportunities to
act”. Thus, we require that a fair action should be executed, or blocked
(not enabled), infinitely often (intuitively, “when it gets an opportunity
to act”). In particular, it follows that a computation in which some
fair action is enabled in each state, but never executed, is not a fair
computation.

Why Infinite Computations?

Note that we defined fair computations to be infinite. The reason is
that finite computations are not sufficient to analyze liveness properties
of programs which do not terminate, such as reactive systems.

An example of a property which requires infinite computations is the
absence of livelocks — a situation where two or more processes loop
repeatedly, stopping each other from progressing. Intuitively, this sit-
uation is similar to what can happen if two people meet in a corridor,
trying to pass each other, all the time choosing the same side.

We can also model finite computations as infinite, by including an idle
action which does nothing; we would then model a finite computation as
having an infinite suffix of the last state � of the finite computation, i.e.,
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� forever idles (transitions to itself on the idle action). Hence, without
loss of generality, we consider only infinite computations.

Running Example

Now suppose that we add the idle action, which equals the identity
relation ���� �� � � � �� � ��� , to the transition relation.

First, if 	 = 
, then the fair computations of the program are all
computations where the token is passed an arbitrary number of times,
with an arbitrary number of idling steps in between. For example, the
token need not be passed at all — the idle action can repeatedly be
executed.

Now suppose that we instead let the token passing action be fair.
Since this action is always enabled, the fair computations now involve
an infinite number of executions of the token passing action. Intuitively,
this corresponds to the assumption that a process cannot forever hold
the token — it must eventually pass it on to its neighbor.

Büchi Acceptance Conditions

A Büchi automaton [Büc62, Tho90] is an acceptor of infinite words,
typically used to represent properties of infinite computations. A Büchi
automaton is a finite automaton with so-called Büchi acceptance condi-
tions, used to specify which infinite words are accepted.

Here, and in Paper A, we use Büchi acceptance conditions to describe
the computations of a transition system.

Definition 3.3 (Büchi Transition System)
A Büchi transition system is a tuple � = ��� ���� � �, where

� ��� ���� is a transition system, and

� � is a set of accepting states.

A computation of � from a state � � � is an infinite computation
� = �0 �1 �2 � � � of ��� ���� from � which satisfies the following Büchi
acceptance condition: some accepting state is infinitely often visited; i.e.,
there exists � � � such that �� = � for infinitely many � � 0 . �

Running Example

Let us see what happens if we let � = �. By definition, then the
computations of the system have to visit � infinitely often. This can be
achieved by eventually visiting � and then idling forever, or passing the
token around infinitely often.
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3.2 Regular Transition Systems

Papers A and C are conducted within the verification framework called
Regular Model Checking (RMC) [Nil05, AJNS04], where regular rela-
tions are used to model programs. We here use the standard automata
theoretic definition of “regular”, see e.g. [HMU07].

Regular model checking is a framework for the symbolic verification
of parameterized and infinite-state systems [WB98, BJNT00, KMM+01,
Mai01, BLW03]. The program is modeled as a regular transition sys-
tem; thus a configuration should be represented as a word over a finite
alphabet. Regular transition systems are therefore suitable for modeling
linear structures, such as a vector of finite-state processes, or stacks and
queues.

If the transition relation is regular and length-preserving, meaning
that related configurations have the same length, we can efficiently rep-
resent it using a finite automaton over the alphabet Σ � Σ — a so-
called transducer. For example, a regular transition relation �� =
�(�1 � � � ��� �1 � � � ��)� can be represented by a transducer which accepts
the language �(�1� �1) � � � (��� ��) � (�1 � � � ��� �1 � � � ��) ���� .

The limitation that transition relations should be length-preserving
sometimes makes modeling dynamic structures difficult (or impossible).
We can however represent that an arbitrarily large amount of space is
“pre-allocated” by including an arbitrary number of “empty slots”, using
so-called padding symbols.

Preliminaries

An alphabet is a finite set of symbols, denoted Σ . We use Σ� to denote
the set of finite words over Σ .

A relation 	 on Σ� is length-preserving if � and �� have the same
length whenever (����) � 	 .

A relation 	 on Σ� is regular if it is length-preserving and the set
�(�1� �1) � � � (��� ��) � (�1 � � � ��� �1 � � � ��) � 	� is regular — i.e., is ac-
cepted by a finite automaton with alphabet Σ�Σ .

Given the definition of regular relation, the program models of RMC
are straight-forward to define — we simply require some relations to be
regular.

Definition 3.4 (Regular Transition System)
A regular transition system (over alphabet Σ) is a transition system

 = ��� ����� , where

 � � Σ� is a regular set of configurations,

 � is a regular set of initial configurations, and
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� ��� ��� is a regular relation. �

We typically use “configuration” to denote a state which represents a
“global state” (e.g., representing more than one process). Note that a
configuration is a word over Σ . Often a word � � � represents a vector
of finite-state processes, each having their “local state” in Σ .

Definition 3.5 (Büchi Regular Transition System)
A Büchi regular transition system (over alphabet Σ) is a Büchi transition
system � = ��� ����� � �, where

	 ��� ����� is a regular transition system (over Σ). �

In Paper A, we let � be a relation instead, which allows us to specify
accepting transitions — i.e., we can say that a pair of states should be
visited infinitely often. That is a convenient formulation, which is how-
ever equivalent, since we can encode accepting transitions as accepting
states by adding extra state.

Running Example

Let us now model the token passing protocol as a parameterized system,
by letting the number of processes � be a parameter. Thus, every value
of � defines one transition system, like the one we saw before.

A nice thing is now that we can model all instances of the protocol as a
single regular transition system. As we saw before, the states of a system
instance with � processes, can be represented as words of length �. As
a symbolic representation of all instances, we use regular expressions.
A comparison with the transition system model shows that we simply
generalize from � to � .

	 � = 
���� — the set of states are all words of arbitrary length
over the alphabet �����

� � = � � �� — the set of initial states contains all words where a
token is at the leftmost process, and the other processes have no
token

� �� = �	� � � � � � �� ; � � � � � � ��
� � �	� � � � � ; � � � � �
�
where ���� � � are arbitrary words.

The first part of �� describes an action where a process, which is
not the rightmost one, passes the token to its right neighbor. The sec-
ond part describes what happens when the rightmost process passes the
token, namely that the token reaches the leftmost process.
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4. Correctness

In this thesis, we are concerned with the analysis of correctness of pro-
grams. In Chapter 3 we described our program models (as transition
systems). Here we will clarify what we mean by correctness, and what
type of analyses we actually make.

Specifying Correctness Properties

We formally define a property, � , to be a (usually infinite) set of com-
putations. We say that a computation � satisfies a property � , written
� �= � , if � � � . Thus, a property is specified as the set of all sat-
isfying computations. A transition system satisifies a property if every
computation of the transition system satisfies the property. If a compu-
tation or transition system does not satisfy a property, we say that it
violates the property. We call a computation which violates the property
a counterexample to the property.

Two classes of properties are typically distinguished: safety properties
and liveness properties [Lam77, AS85, Kin94]. It can be shown that any
property is the intersection of a safety property and a liveness property
[AS85].

39



4.1 Safety Properties

A safety property is of the form “something bad never happens (in any
computation of the program)”, where the “bad thing” typically rep-
resents a critical error. Following the style of Alpern and Schneider
[AS85, Sis85], the intuition is that the “error is irremediable”, i.e. that
any computation which extends a computation violating the property
also violates the property. Hence a violating computation has some fi-
nite prefix leading to the error. This latter formulation is the basis of
the formal definition of a safety property in [AS85], which we will use
here. Below, we use the notation �[����] for the finite subcomputation
�� � � � � � �� of � = �0 �1 �2 � � � .

Definition 4.1 (Safety Property)
A safety property � is a property which for all computations � satisfies:

� �= � �� �� � 0 ��� : �[0���] � �� �= � �

�

The definition says that a computation � satisfies the property if and
only if every prefix of � has some extension which satisfies the property.

Note that if we negate both sides we obtain the equivalent statement
“� violates � if and only if there is a prefix of � such that all its extensions
violate � ” — just as the intuitive formulation above.

It follows that a system violates a safety property if and only if there
exists a finite prefix of some computation � , such that all extending
computations � ��� violate the property. Thus, in that case, there exists
a finite prefix which, intuitively, witnesses an irremediable error.

In light of the above, we understand that a counterexample to a safety
property is characterized by a finite computation. Equivalently, we could
therefore specify a safety property as the set of prefixes which charac-
terize its counterexamples.

Examples of Safety Properties

Consider a set of program states � and a property of form “a process
never visits a state in �”. This is a safety property, where the “bad
thing” is visiting �. If a computation visits �, then whatever extends
the prefix leading up to � also violates the property. Similarly, if there
is a prefix for which all extensions violate the property, then this prefix
must (eventually) lead up to �. If we add a condition, such as “a process
never visits � after visiting �”, where � is another set of states, we get
another safety property, where the “bad thing” is visiting � after visiting
� . A computation where the process has visited � and thereafter never
sees � , or never sees � at all, satisfies the property. A computation where
the process has seen �, but afterwards visits � , violates the property.
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4.2 Liveness Properties

A liveness property is of the form “something good eventually happens
(in every computation of the program)”. Often the “good thing” should
happen under some conditions, i.e. “something good eventually hap-
pens provided that we have visited certain states”. A liveness property
typically represents some sort of progress requirement, such as “a pro-
cess asking for a service eventually receives it”, or “the computation
eventually terminates”.

Again using the definitions of [AS85], the defining characteristic for
liveness is that the “good thing” can always be postponed, i.e. that
any partial computation is allowed before the “good thing” happens.
Thus, if a computation �� satisfies a liveness property, then any finite
computation which has �� as suffix should also satisfy the property.

Below, we use the notation �� for the set of all finite sequences of
states.

Definition 4.2 (Liveness Property)
A liveness property � is a property satisfying:

�� � �� ��� : � � �� �= � �

�

The definition says that any finite computation must have an exten-
sion which satisfies the liveness property, following the intuitive formu-
lation above.

Examples of Liveness Properties

Consider a liveness property of form “a process eventually receives a
service”, and a finite computation � where the process has not yet re-
ceived the service. According to the definition, any extension of � where
the process eventually receives the service, no matter how long it has
to wait, satisfies the property. A computation where the process never
receives the service violates the property.

If we add a condition, such as “a process asking for a service eventually
receives it”, we get the following. Any extension of � where the process
has asked for the service and eventually receives the service, no matter
how long it has to wait, satisfies the property. Computations where
the process never asks for the service also satisfy the property. Finally,
a computation where the process has asked for the service, but never
receives it, violates the property.
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4.3 Analysis

In the automata-theoretic approach (see, e.g., [VW86, Var91] and Pa-
per A), the system and property are given as (or translated to) Büchi
transition systems (Definition 3.3), allowing the analysis of arbitrary cor-
rectness properties. In Paper A we describe the translation for regular
transition systems. Here we instead look directly at safety and liveness
properties.

4.3.1 Analyzing Safety

How can we check whether a transition system satisfies a given safety
property �? To check whether a safety property with an infinite set of
counterexamples is satisfied, we need a finite representation of them. In
general, an observer is used — a transition system which keeps track
of whether a counterexample has been seen. In the automata-theoretic
approach, we use automata for this purpose.

Given a program and a safety property � we can check whether the
program satisfies the property by:

1. modeling the program as a transition system �;

2. specifying the computations which violate � as an automaton �
��

which accepts exactly all the prefixes which characterize the coun-
terexamples to the safety property;

3. constructing the synchronized product � ��
�� ;

4. checking whether there is a computation of � ��
�� which visits

an accepting state of �
�� .

In the last step, we essentially run � and �
�� in parallell, and answer

“not satisfied” if we reach an accepting state of �
�� . It is sufficient to

compute the states of ���
�� which are reachable. Below, we formalize

the fixed-point analysis.

Definition 4.3 (Post- and Pre-Images)
The post-�-image of a set of states � � � with respect to a set of actions
�, denoted Post

�(�� �), is the set of states � such that there exists a

sequence of transitions �
�1

��� � �
��
�� � where � � �, and �� � � for

each 	 � [1� 
]. The post-image, denoted Post (�� �), is defined as the
post-�-image, except that the sequence is of length 1 (i.e., 
 = 1).

The pre-�-image, Pre
�(�� �), is the set of states � such that there

exists a sequence of transitions �
�1

��� � �
��
�� � where � � �, and �� � �

for each 	 � [1� 
]. The pre-image, Pre (�� �), is defined analogously.
If � is in Post

�(�� �), we say that � is (forwards) reachable from �

(with respect to �). If � is in Post (�� �), we call � an (immediate)
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successor of �. We analogously define predecessor and backward reacha-
bility, and extend our image definitions to allow single states and actions
as parameters. �

Definition 4.4 (Reachability)
A set of states � � � is (forwards) reachable from a set of states � � �

with respect to a set of actions � if � � Post
�(�� �) �= � .

A set of states � � � is backwards reachable from a set of states
� � � with respect to a set of actions � if � � Pre

�(�� �) �= � .
By default, if no actions � are mentioned, we assume that reachability

is with respect to the entire transition relation (��). �

Definition 4.5 (Synchronized Product)
Given a transition system � = 	�� ����
 and an automaton � =
	�� � �� � ��� � ��
 with accepting states �� � �� .

The synchronized product of � and � is the automaton

� �� = 	���� � � � �� ����� �� ��


where (�� �)���(��� ��) if and only if � �� �� and �
�
�

��� �� . �

Definition 4.6 (Safety by Reachability)
Given a transition system � = 	�� ����
 and a safety property 	 .
Suppose that ��� = 	��� � ��� � ���� � ���
 is an automaton accept-
ing precisely a set of prefixes which characterize all counterexamples
to the property. Construct the synchronized product � � ��� . The
violating states of the synchronized product are �� ��� .
� satisfies 	 if and only if the set of violating states are not forwards

reachable from �� ��� . Equivalently, � satisfies 	 if and only if �� ���
is not backwards reachable from any violating state. �

4.3.2 Analyzing Liveness

Given a fair transition system � = 	�� ������
 and a liveness property
	 . Following the automata-theoretic approach, we look for counterex-
amples to the property; namely any computation of the transition system
for which the “good thing” never happens. Thus, we should augment
the transition system � so that �	 is enforced, and check whether the
resulting system actually has a computation.

In Paper A (see also [VW86]), we show a reduction from a fair tran-
sition system � and �	 to a Büchi transition system by encoding the
fairness conditions as Büchi acceptance conditions.

Infinite-state systems can have computations which do not visit any
state twice. Hence, not all infinite-state systems are representable as
Büchi transition systems.
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Given a Büchi transition system, we can find counterexamples to the
liveness property by using a technique based on so-called loop-finding.

Below, we formalize the technique, which essentially conducts a re-
peated search over the states.

Definition 4.7 (Repeated Reachability)
The reflexive-transitive closure of a transition relation �� is the relation
�(�� �) � � � Post

�(��� �)�.
A state � is repeatedly reachable from a state � with respect to a tran-

sition relation �� if � � Post
�(��� �) and there exists some �� such that

�� � Post
�(��� �) and � � Post

�(��� ��). �

The definition says that a state � is repeatedly reachable from � if it
can be visited repeatedly in a “loop” in a computation from � .

We see that the reflexive-transitive closure of a transition relation
allows us to check repeated reachability.

Definition 4.8 (Liveness by Loop-Finding)
Given a fair transition system � and a liveness property � .

Given a Büchi transition system �� = ��� � �� � ��� � ��	 which
exactly represents all computations of � which violate � .1

The following technique, called repeated reachability analysis, or loop-
finding, simply computes a representation of all “loop-shaped” compu-
tations of �� — the “reachable fair loops”.

1. Compute the reachable states Inv = Post
�(���� ��).

2. Compute the transitive closure of ��� starting from ��:

���� = �(�� �) � � � Inv 
 �� and � � Post
�(���� �)� �

3. The set of states 		 = �� � (�� �) ������ are repeatedly reach-
able from some initial state.

If 		 �= � then � has a fair computation, which by construction is
a counterexample to the property. �

Remark. The technique is sound for Büchi transition systems; i.e., if a
“reachable loop” is found, there exists a violating computation, and the
property is false.

The technique is (obviously) complete for Büchi transition systems
where all computations are loop-shaped. This includes, e.g., finite-state
and regular transition systems.

1The construction is not central here. Suffice it to say that the cross product used for

safety works, except we have to make sure that both Büchi conditions are satisfied

componentwise, by using an “alternating” construction.
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It is not complete for Büchi transition systems in general, as we note
that a state can be infinitely often visited in a computation which is
not “loop-shaped” — hence, computations which are not “loop-shaped”
may exist.
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5. Summary of Papers

This chapter contains a summary of the papers included in this thesis.

A. Regular model checking for LTL(MSO).

An important component of automated analysis is the modeling and
specification of the system and property, and their translation into
a verification problem.

The manual translation of a fair transition system and a property
into an analyzable Büchi transition system is non-trivial and error-
prone, in particular for regular model checking.

In the automata-theoretic approach [Var91] one checks whether a
property � of a program � is true, by constructing a Büchi au-
tomaton which accepts all incorrect computations of �, i.e., every
computation which violates � . The point of the automata-theoretic
approach is to reduce the checking of any correctness property to
one problem, namely checking whether a corresponding Büchi au-
tomaton has an empty language. The main contribution of Paper A
is to extend the automata-theoretic approach to regular transition
systems.

A two-dimensional specification logic, called ���(���), is defined
for the specification of programs and correctness properties. The
space dimension is used to model system configurations, and the
time dimension is used to express linear time properties.

We present an automatic procedure for translating any (restricted)
���(���) formula � into a Büchi regular transition system (see
Definition 3.5) whose computations are exactly the set of all models
of the formula.

A program � and a (negated) property � , both specified in
���(���), can thus be translated into a Büchi transition system
accepting precisely all computations of � which violate � .

Marcus Nilsson and I implemented the translation for our regular
model checking framework (see, e.g., [Nil05]) and automatically an-
alyzed a number of parameterized mutual-exclusion protocols from
the literature.
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B. Proving liveness by backwards reachability.

The analysis of liveness properties is more difficult than the analysis
of safety properties. Established complete techniques are based on
finding a well-founded ranking function [MP96], or computing the
transitive closure of the transition relation [VW86] (see also Paper
A).

We introduce a technique for proving liveness properties based on
reachability, thus avoiding the potentially expensive computation of
the transitive closure of the transition relation.

The technique is expected to scale better than techniques based on
the computation of reachable loops (see Chapter 4), but it is not
meaningful for the analysis of safety properties.

The reduction of liveness to fair termination is a standard task
[Var91]. In this work, we assume that the liveness property has
been reduced to the problem of fair termination.

A liveness property of form “whenever � is visited, � will eventually
be visited”, where � and � are sets of states, is analyzed by comput-
ing a set of states which are terminating — here, termination means
to reach � . If we find that all states in � are terminating, then the
original liveness property is true.

Starting out with a set of states known to terminate (� in our ex-
ample), we compute a larger set of states which is guaranteed to
also terminate (i.e., which eventually must visit � ), using backward
reachability analysis with a special transition relation.

Even though the technique is incomplete, it potentially simplifies
further analysis (if such is needed) by enlarging the set of states
known to terminate. For example, we may find out that some set of
states � is terminating. The original termination problem can now
be simplified to checking whether � � � leads to � � � .

Since the technique computes a set of states � guaranteed to termi-
nate, and is incomplete, we can not say anything about states not
in � — they may or may not terminate. However, the technique is
powerful enough to verify liveness of many infinite-state programs,
including the parameterized protocols considered in Paper A.

We have implemented the technique in our regular model checking
framework, and automatically analyzed the programs considered in
Paper A. Additionally, we used the technique to verify some pro-
grams, for which we did not have backward reachability analysis
tools, by hand.
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C. Systematic acceleration in regular model checking.

The computation of reachable states and loops (see Definitions 4.4
and 4.7) of infinite-state systems is a major problem.

Fixed-point computations used to compute reachable states and
loops do not terminate in general for infinite-state systems, as the
number of transitions between reachable states and loops can be in-
finite. To make the computations terminate more often, acceleration
techniques have been developed (see Chapter 2).

In this paper, we present a technique for automatically accelerating
all actions of a certain kind, for the analysis of regular transition sys-
tems. The actions considered are so-called unary separable actions,
because we can accelerate them efficiently [ABJN99, JN00, PS00],
and they occur frequently in parameterized programs. The acceler-
ation technique can, in principle, be extended to any class of actions
which we can accelerate efficiently.

The technique improves upon previous work (e.g., Paper A) in two
ways: (1) it allows us to automatically accelerate certain actions,
which previously were accelerated manually (they were included in
the system model); and (2) a larger number of actions are acceler-
ated, which therefore improves the power of our fixed-point analysis.

Using the techniques of this paper, we were able to verify liveness
properties of certain parameterized protocols for the first time.

D. Graph grammar modeling and verification of ad hoc routing proto-
cols.

In this paper, we consider a more general class of systems (although
we only analyze safety properties).

We present a technique for the specification and symbolic verification
of graph-shaped systems, such as network protocols, based on graph
transformation.

Our program model represents configurations using hypergraphs. A
hypergraph is a graph with hyperedges — labelled edges of arbitrary
finite arity. Actions are represented as rewrite rules, which describe
how to rewrite a part of a hypergraph.

We use a symbolic representation of hypergraphs, called patterns. A
pattern contains a positive condition to say that a subgraph should
be contained in a configuration, as well as a set of negative condi-
tions, to express that certain subgraphs should not be contained.

We present a technique for the automatic analysis of some safety
properties in this setting — namely those safety properties for which
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all bad states can be expressed with patterns. A symbolic back-
ward analysis is conducted, which over-approximates the set of states
backwards reachable from some violating state. If the analysis ter-
minates, we can check if the initial state was reached. If not, then
the property is true. If it was reached, then there is still a possibility
that the initial states were only reached due to over-approximation,
but are not reachable by an exact computation.

As a main example, we verify routing loop freedom of the ad hoc
routing protocol DYMO, which is currently on the IETF standards
track, to potentially become an Internet standard [CP08]. We also
verify some other graph-shaped systems; e.g., a firewall example.
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6. Related Work

This thesis covers approximately the following topics/keywords (grouped
by Paper):

A, C parameterized systems, safety and liveness, symbolic model
checking for infinite-state systems, regular model checking,
acceleration, the automata-theoretic approach, specification logic,
Büchi acceptance, translation into Büchi automata;

B liveness as fair termination, liveness using backwards reachability
without computing transitive closures, incomplete analysis of live-
ness;

D routing protocols, DYMO, graph grammars, rewriting, symbolic
backwards reachability, patterns, negative application conditions
(NACs).

Generalizations of Regular Model Checking

There is a large body of work related to regular model checking, where
some modeling restrictions have been lifted, thus obtaining a more gen-
eral framework.

By not requiring a length-preserving transition relation, we can more
naturally model e.g. dynamic process creation and deletion. We can
model a non-length-preserving transition relation as length-preserving
by using so-called padding symbols to represent a “pre-allocated buffer”
of arbitrary but fixed size. This is sufficient for the analysis of safety,
but not in general for liveness.

Transition relations which are not length-preserving have been consid-
ered in [DLS01, BLW05]. Dams et al. [DLS01] present a technique for
computing the transitive closure of a not necessarily length-preserving
transition relation.

One difficulty which arises in this setting is that loop-finding (a.k.a.
cycle detection) for the analysis of liveness (see Section 4.3) is no longer
complete; i.e., there may exist counterexamples which are not loop-
shaped — e.g., because the size of the state vector grows unbound-
edly. The analysis of safety and liveness is described for non-length-
preserving transition relations, and for infinite words, by Bouajjani et
al. in [BLW05], where a simulation property replaces loop-finding.
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Boigelot et al. and Bouajjani et al. consider configurations modeled
as infinite words instead of finite words, used to represent, e.g., real
numbers [BLW04, BLW05].

Context-free languages, rather than regular languages, were consid-
ered in [BH99, FP01, Lan04], motivated by the need for non-regular
invariants.

We need not limit ourselves to words. Several works consider tree
or graph shaped configurations. Works close to regular model checking
consider, e.g., regular sets of trees [KMM+01, AJMd02, BT02, LS02,
ALdR06].

We can also relax the assumptions on the atomicity of the program
statements, by for example evaluating global conditions in guards of
actions “non-atomically”, allowing other actions to take place while the
condition is being evaluated. This has been examined for parameterized
systems by Abdulla et al. for the analysis of safety properties [AHDR08].

Acceleration

In symbolic model checking [BCM+90], we iteratively compute succes-
sors (or predecessors) with a transition relation until a fixed-point has
been reached. For parameterized and infinite-state systems, such a com-
putation need not terminate; in fact any non-trivial model checking
problem is undecidable [AK86].

To make the fixed-point computation terminate more often, so-called
acceleration techniques have been developed which compute the tran-
sitive closure �+ of an action � as an aid to compute Pre

�(��� �) or
Post

�(��� �) for some set of states � and a transition relation �� with
� ��� .

Acceleration techniques have been developed for regular model check-
ing [JN00, BJNT00, DLS01, AJNd02, BLW03]. Here, �+ is not com-
putable in general; however, computability results have been established
for some classes of actions [JN00]. Finkel et al. developed systematic
acceleration techniques for programs with a finite number of variables,
typically ranging over integers [FL02, BFLS05].

There is much work on extending symbolic model checking to
different classes of infinite-state systems. Acceleration techniques
have been developed for systems with unbounded FIFO channels
[BP96, BGWW97, ABJ98, BH99, ACABJ04], with stacks
[Cau92, BEM97, Cau92, FWW97, ES01, EKS06], with counters
[BW94, CJ98, BW02, BLW03], and for Petri nets [Mur89]. These
works define a specific symbolic representation — e.g., SRE [ABJ98] for
lossy FIFO channels, and QDD [BP96, BGWW97] for FIFO channels
— for sets of states, and give specialized procedures for computing
the set of reachable states. A scheme for extending symbolic model
checking to infinite-state systems was presented by Kesten et al. in
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[KMM+01], and illustrated for the analysis of safety. Usually the
verification problem is undecidable, with exceptions for e.g. pushdown
systems [BEM97, FWW97, ES01, EKS06] and well-structured systems
[ACJT00].

A related approach is widening, or extrapolation, where a (sometimes
exact) over-approximation of �+ or Post

�(�� �) for some set of states �
is computed [BJNT00, Tou01, BLW03].

Abstraction

An abstract version of a program is a “simplification” of the program,
with less “detail”. As such, it over-approximates the behavior of the
program. The point of abstraction is to simplify the verification, by
obtaining a simpler program from which we can draw conclusions about
the original system [CC77, Sif84, CGL92, LGS+95, KP00]. Many tech-
niques based on abstraction compute an over-approximation of the set of
reachable states (or, for the analysis of liveness, of the reachable loops).
Any abstract system which over-approximates the set of reachable states
of the original (concrete) program has the following property: if the ab-
stract system satisfies a safety property, then so does the concrete one.
The analogous holds for over-approximation of the fair computations, for
liveness properties. Many different abstraction based techniques exist.
A brief overview follows.

In [KP99, KPV01], Kesten et al. introduce so-called verification by
augmented finitary abstraction (VAA). This is a finitary abstraction
framework — meaning that the obtained abstract program is finite-state
— for infinite-state model checking of safety and liveness (LTL) which is
sound and complete, in the sense that: (1) it abstracts an (infinite-state)
Büchi automaton into a finite-state Büchi automaton; (2) if the abstract
system satisfies the property, then so does the concrete one; and (3)
whenever an infinite-state Büchi automaton has no computations (i.e.,
the system satisfies a property), there exists a finitary abstraction into a
corresponding finite-state Büchi automaton which has no computations.
The framework gives us another complete approach to verification. In
order to effectively automatize the approach, heuristic support for find-
ing a suitable ranking function and an abstraction function is needed.

Another interesting approach is the use of counter abstraction by
Pnueli, Xu, and Zuck [PXZ02, ZP04], where a finite abstract system
is constructed on the principle that there is one counter for each local
state, which counts how many processes are in that local state: 0, 1, or
� (where � means “� 1”). Guidelines for finding sound abstract fair-
ness requirements were also given. A potential problem is the blow-up of
the number of states of the finite-state system. For example, a param-
eterized system where each process has � possible local states results
in an abstract finite-state system with up to 3� states. For example,
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Szymanski’s algorithm [Szy90] can be modeled (see Paper B) for safety
as having 7 � 2 � 2 local states, resulting in a counter abstracted sys-
tem with 328 states (roughly 2� 1013). In [PXZ02], however, a reduced
model is used, using only 7 counters. The local state has been reduced to
essentially one variable, the program counter, which is motivated since
the values of � and � are functions of the program counter. This gives a
model of at most 37 (roughly 2000) states for safety, and up to around
15000 states for liveness. Establishing safety required under a second
for this reduced model, and liveness under two minutes,

When using counter abstraction to analyze properties which distin-
guish individual processes, a modification is required. Consider for ex-
ample an individual liveness property of form ���(�[�] � �� [�]) where
� ranges over process indices (see Paper A). A counterexample to this
property is that some distinguished process � at some point in time sat-
isfies �[�] but thereafter never � [�]. An abstract state then contains
an exact representation of the local state of process �, while the other
processes are counter abstracted as before.

A technique for the analysis of safety properties uses upward closed
sets [ACJT00] as a symbolic representation of configurations. The rep-
resentation is upward closed with respect to an ordering on the config-
urations, which must be provided. For example, for a system where a
configuration is a graph, one could choose “subgraph” as the ordering,
with the implication that a graph should simulate all its supergraphs
(i.e. the graphs which it is a subgraph of). A limitation is that univer-
sal constraints (i.e., using a � quantifier) cannot be represented exactly
as upward closed sets, whereby an over-approximation is introduced.
Upward closed sets have been used recently to verify parameterized sys-
tems [ADHR07, ADR07]. In some sense, Paper D is also based on
upward closed sets, as the symbolic representation used — patterns —
are upward closed sets.

When using over-approximation in abstractions, a spurious counterex-
ample may be found by the model checker, i.e., a false alarm, which exists
only in the abstract program. Then the abstraction should be refined,
so that the same counterexample is not found again, and the analysis
restarted.

A general approach, where the abstraction is automatically refined, is
so-called counterexample-guided abstraction refinement (CEGAR). The
technique was introduced in [CGJ+00] by Clarke et al. as a complete
procedure for finite-state model checking (for a fragment of CTL� with-
out existential path quantification). Sufficient conditions for sound ab-
straction are given.

A CEGAR approach was presented for regular model checking by
Bouajjani et al. in [BHV04]. Their approach for checking liveness
is to first translate the system into a Büchi regular transition system
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which accepts all counterexamples, as in the automata-theoretic ap-
proach [Var91]. Then the loop-finding is reduced to reachability (as
in [SB04] — see “Checking Liveness as Safety” below), after which ab-
stractions are applied in the computation of the reachable states. This
results in an over-approximation of the counterexamples, and is therefore
sound. Since the verification problem is undecidable, the refinement loop
need not terminate. This approach is interesting, and proven effective at
least for safety [BHV04], but it is difficult to foresee which abstraction
schemes are suitable, in particular for the verification of liveness. To
understand which abstraction schemes are efficient for liveness, I believe
it would be useful to have specialized abstractions for fairness instead,
as in [CGJ+00, PXZ02, ZP04].

Fair Termination and Liveness

An established approach for the analysis of safety and liveness is that
of deductive verification, which requires to validate a list of premises
of a proof rule, in order to establish a property of the system [MP91,
MP95, MP96]. For liveness, we can use ranking functions to measure
progress towards a goal, and helpful directions, which say which tran-
sition promotes progress towards the goal, to establish the validity of
a property under (weak) fairness [LPS81, MP91, MP96]. Fang et al.
[FPPZ06] develop rules for the verification of liveness of parameterized
systems. Their approach is to automatically compute assertions needed
to apply a proof rule, which they provide for liveness, and then use a
small model theorem to reduce the problem to checking a small instance
of the parameterized system.

Podelski and Rybalchenko [PR04, PR05] and Cook [CPR05] develop
novel techniques for the verification of liveness leading up to the state-
of-the-art liveness tool Terminator [CPR06a, CPR06b].

In [PR04], Podelski and Rybalchenko give a theoretical result on how
to prove liveness. They use an over-approximation of the transitive clo-
sure of the transition relation — a so-called transition invariant. They
prove that a program � terminates if and only if there exists a disjunc-
tively well-founded transition invariant for �, i.e., a transition invariant
which is contained in the finite union of a set of well-founded relations.
Intuitively, this result reduces the termination proof to proving termina-
tion of smaller transition relations whose union contains the transition
relation. To establish that a liveness property � holds for a program �

one has to validate that (1) � is a transition invariant for �, and (2)
� � (�� ��� ) is disjunctively well-founded; where � is the transition
relation of a Büchi automaton � accepting the computations of � which
violate � , and �� are the accepting states of � [Var91]. To establish
(2) for � = �1 � � � � ��� we should prove that each “disjunct” �� is well-
founded, which is a simpler problem for a well-chosen � than proving
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that � is well-founded. No clue is given in this work on how to find �
automatically.

In [PR05], Podelski and Rybalchenko extend predicate abstraction to
so-called transition predicate abstraction, focusing on the abstraction of
transitions instead of states, for the analysis of liveness under fairness.
The work can be viewed as a step towards automating the method of
transition invariants. Their approach is to first transform a program
� into a finite abstract-transition program �#, which is a graph where
nodes are labeled with abstract transitions and edges by concrete tran-
sitions, and then marking nodes as terminating and fair after suitable
tests, so that the liveness property is true if each fair node is marked ter-
minating. Intuitively, the abstract program represents all compositions
of actions. The marking of nodes as terminating, amounts to checking
well-foundedness of abstract transitions. In order to apply their tech-
nique, one needs to find suitable transition predicates upon which to
abstract — a transition predicate is an over-approximation of a pro-
gram action. The approach has been proven effective for programs with
linear arithmetic, using linear arithmetic predicates, but is difficult to
automate for general programs. The method is not complete, but in
[CPR05] a counterexample-guided abstraction refinement algorithm is
presented.

Checking Liveness as Safety

In [SB04] Schuppan and Biere present a reduction from liveness checking
to safety checking for finite-state systems. Actually, the reduction finds
any loop-shaped counterexample, and therefore it is “as complete” as the
loop-finding procedure we described in Chapter 4.

As a brief example (for details, see [SB04]), we explain their reduction
applied to the formula �� (“eventually �” expressed in LTL — see
[Pnu77] or Paper A). The reduction is based on extending the system
with a variable looped which keeps track of whether a loop is closed (a
loop can start non-deterministically at any time), and a variable live
which checks whether � has been seen. The liveness formula is thus
equivalent to the safety formula �(looped � live). The loop is checked
by a state-recording construction, where a copy of the state where the
loop starts is stored, and the end is determined by comparison with
the stored starting state. The start of the loop is non-deterministically
chosen (hence it can start in any state).

In [SB06] Schuppan and Biere extend the reduction in a straight-
forward way to many classes of infinite-state systems, including regular
transition systems (for which loop-finding is complete). It seems that
this construction is equivalent with the way loops are checked in [Nil05]
and Paper A (see also Section 4.3). We do not, however, explicitly en-
code the variables looped and live — it is implicit in the computation of
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the transitive closure. Schuppan and Biere keep a copy of the configura-
tion where the start of a loop is stored, and use the variables looped and
live, as described above. The reduction to safety essentially computes
the transitive closure of the transition relation, as the recorded state can
be any reachable state and the loop can start at any state. One differ-
ence is that in our description at Section 4.3, the reachable states are
first computed, before looking for loops, but this is not strictly necessary
— we could directly compute the transitive closure (which however is
more expensive for our examples).

Regular Inference

Habermehl and Vojnar use regular inference, a.k.a. learning, to verify
safety properties of parameterized systems [HV05]. Their approach is
based on the observation that there exist techniques for inferring a reg-
ular language based on positive and negative samples of accepted words
[TB73, Ang87]. This can be used to verify regular transition systems,
as follows. Suppose that the regular transition system represents a pa-
rameterized system �(�) where � is the number of processes. The goal
is to check whether, for some �, the set of reachable configurations of
�(�) can reach a set of bad configurations. The procedure either finds
an inductive invariant strong enough to prove the property, or finds a
counterexample, or it does not terminate. Termination is guaranteed
if the set of reachable configurations is regular. The procedure works
as follows. First compute the reachable configurations of the (finite)
instance �(1) — call them Inv1 — which are words of length 1 (option-
ally, we could start with a higher instance). Observe that Inv1 should
be accepted, and any other word of length 1 should not be. Continue
in this way, by using Inv2 � Inv3 � � � � as samples of what should be in
the inductive invariant and their (length-wise) complements as negative
samples. If after some iteration, the inferred language is an inductive
invariant (i.e., includes the initial configurations and is closed under the
transition relation) and does not intersect the set of bad configurations,
the property is true. Similarly, if the inferred language intersects the set
of bad configurations, the property is false.

Reduction to Small Instances

A number of techniques are based on a proof that it is sufficient to check
a small instance of a parameterized system, in order to guarantee that
the property holds for all instances. The small instance can then be
verified using finite-state techniques.

We have already mentioned the work by Fang et al. [FPPZ06]. The
approach was also followed by Emerson, Namjoshi and Kahlon [EN95,
EK00, EK02, EK04]. In [EK02] the reduction of the uniform verification
problem to a finite-state verification problem for three or fewer processes
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works for both safety and liveness. The systems considered are so-called
resource allocation systems consisting of an arbitrary finite number of
processes, where each process can acquire a set of tokens, and release
all its tokens, or take a local transition. However, modeling of global
conditions as guards for actions — such as “if all other processes are
in a specific local state, then take a local transition” — is limited or
impossible in this setting, but occurs in many parameterized protocols
we have studied.
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7. Conclusions and Future Work

We have developed and improved methods for the verification of correct-
ness properties of parameterized and infinite-state systems. Most of our
experiments have been made in the framework of regular model check-
ing (in Papers A, B, C), motivated by the difficulty of verifying liveness.
Now we summarize our experiences, draw conclusions, and elaborate on
future work based on ours. Afterwards we “zoom out” and give our
personal view on interesting directions for future work, also taking into
account related work in the community.

Conclusions and Future Work by Paper

A. Regular model checking for LTL(MSO). We extended the automata-
theoretic approach [Var91] to regular transition systems. The auto-
matic translation is valuable as it allows us to quickly and correctly
translate models into automata.

In order to obtain a stand-alone model checker for regular model
checking, a number of practical (and hopefully theoretically chal-
lenging) tasks remain. One direction is to optimize the translation
of the logic into automata, on which much effort has been spent in,
for example, Mona [KMS02].

Natural directions are to extend the logic to other models for which
related techniques exist, such as tree- or graph-shaped structures.

Our acceleration techniques work best when applied to individual
actions. One issue with writing the system and negated property
as one formula, and translating this formula into an automaton, is
that we no longer recognize the individual actions. We do, however,
want a uniform model checker, which searches for models of any
formula. We conclude that the way to go to achieve both a uniform
model checker and to conform with current verification techniques is
to accelerate “parts” (subrelations) of the automaton obtained after
translation, which correspond to the program actions.

Hence, we extend the objectives for acceleration techniques so that
whenever we construct an acceleration scheme for a class of actions,
we should also figure out how to efficiently “extract” such actions
from an automaton representing the entire transition relation. This
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approach was pursued for one class of actions, with good results, in
Paper C.

B. Proving liveness by backwards reachability. We have developed a
backward reachability based method for proving liveness, and given
two techniques to prove liveness. One technique is commutativity
based, and the other is based on “executing statements in some
order”.

Theoretical results which establish completeness for classes of pro-
grams, or relates the two techniques, are lacking. A second problem
is that the “executing statements” technique does not say which
action to choose, in a general setting. There is more development
possible here, possibly leading up to a collection of reachability based
proof techniques. We should consider many (commonly occurring)
ways in which a set of states can terminate in � steps.

Our experiments were for regular model checking. It would be in-
teresting to see how our techniques perform in frameworks where
backward reachability is extra efficient (even decidable). In order
to improve the performance of these techniques, clearly, one should
optimize the backward reachability computation itself. In the con-
text of regular model checking, this can be done on a high level by
optimizing the acceleration techniques (we know how to do this effi-
cently for many classes of actions). On a lower level, one must look
at the automata representation, and the minimization and deter-
minization. Finally, heuristic support for choosing which technique
to apply when is necessary for efficient automatization.

C. Systematic acceleration in regular model checking. We developed a
technique for efficiently accelerating a class of actions, in a system-
atic and automatic way, using compositions of actions.

One conclusion is that automatic composition and acceleration gives
us acceleration power “beyond modeling ingenuity”. Concretely,

(a) compositions of actions which were before manually added to
the model, necessary for verification, were now found automat-
ically

(b) our technique gave us accelerations sufficiently strong to verify
liveness of a program, but we could not reproduce the result
by identifying which compositions were necessary and adding
them to the model manually.

In other words, our experiments witness that we can not only re-
produce “modeling ingenuity”, we can also outperform it. Thus we
have reduced the need for smart modeling somewhat.
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We can apply these acceleration techniques on an automaton which
represents the entire transition relation, by first extracting the ac-
tions from the automaton. Hence, these techniques can, in principle,
be applied on any automaton output by the logic translation of Pa-
per A.

An important result of this work is that using these techniques we
can compute an exact representation of the reachable fair loops of
our entire benchmark. An important conclusion is therefore that
composition and acceleration is sufficient to prove safety and liveness
(at least, many properties) for the protocols considered.

D. Graph grammar modeling and verification of ad hoc routing proto-
cols. We developed a symbolic backward reachability framework for
graph transformation systems, based on using so-called patterns as
a symbolic representation. We use a subsumption ordering � on
patterns, with the semantics that � � � iff [[�]] � [[�]] . The frame-
work is “almost” that of well-structured systems [ACJT00] — except
that the transition system used is not monotonic and not well quasi-
ordered (!). The transition system is not monotonic, because of the
negative conditions. For a better understanding, see the proofs in
Paper D. A proof sketch for why it is not well quasi-ordered follows.

Consider a sequence of patterns (��) ��1 where �� is of the form:

Æ
�
���

�
��� � � � �

�
���

� �� �

���

�
��Æ

where we have used Æ to represent absence of a node and � to rep-
resent existence (see Paper D for the exact syntax and semantics
of patterns). This sequence forms an infinite anti-chain (i.e. for
no � � � do we have �� � ��). Intuitively, �� represents the con-
straint “there exists a sequence of exactly � nodes, connected via
edges labeled � ”.

Regardless, our main example is relatively large, and the number
of patterns obtained in the backward analysis is so great that a
theoretical guarantee for termination would not comfort much —
rather, the focus has been on reducing the number of patterns which
must be considered, using various optimizations.

Directions for future work include developing a counterexample-
guided abstraction scheme for this framework. Practical tasks in-
clude optimizing the predecessor computations further.
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Conclusions about Papers A, B and C

Papers A, B and C have the verification of liveness of parameterized
systems in common. While Paper B introduces a general backward
reachability based framework for proving liveness, we have implemented
it for regular model checking.

The methods of Papers A and C are both complete, in the sense that
(if the analysis terminates) they can answer whether a liveness property
holds for the system. The method of Paper B on the other hand, is
not complete, and therefore it is possible that the analysis terminates
without answering our question.

In some sense, Paper C extends Paper A, as Paper C uses the same
complete verification set up, but gives better verification results for our
benchmark.

The motivation for Paper C originally came from Paper A. Our ac-
celeration techniques work best when applied to individual program ac-
tions, but the formula obtained from the logic model, which describes
the system conjoined with the negated correctness property, hides the
actions. In Paper A we syntactically extracted them from the mentioned
formula. In order to obtain syntax independence, Paper A pointed to a
technique for semantically extracting actions. An alternative would be
to keep the program actions separated during the translation process,
but it is currently unclear how to achieve this. The technique of Paper C
is useful independently of how the actions are represented — whether it
is as one automaton representing their union, or as separate automata.

The performance improvement in Paper C relative to Paper A is es-
sentially due to the improved acceleration power. By composing the
actions before acceleration, we find sufficiently strong accelerations for
our benchmark automatically, which would require much ingenuity from
the modeller to find manually. The verification times in Paper C are
slightly better than those in Paper A, and liveness properties of more
programs are proven. The token pass and token ring examples were not
included in Paper C as the new technique introduced is superfluous for
them (since no compositions are necessary), and the focus in Paper C
was on unary actions.

In comparison with the computation of the reachable loops, done in
Papers A and C, the backward reachability based method of Paper B
has to conduct many reachability computations, instead of one transitive
closure computation. A comparison of the experimental results of Papers
B and C show that no single approach is uniformly faster — it depends
on the programs considered.

We conclude by emphasizing what is necessary to optimize the ap-
proaches. The main cause for slow performance in Paper B is backward
reachability computations with large automata. Time spent on accel-
eration, whenever acceleration is used, can be more or less eliminated,
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by using “pattern-based”/precomputed acceleration schemes, known for
many types of actions [ABJN99]. To some extent, we can use optimiza-
tions to avoid unnecessary reachability computations, and we can try
to keep the automata small. Once that has been done, further perfor-
mance gains must come from lower level optimizations, such as focusing
on representation, minimization and determinization of automata. Such
lower level optimizations of course pay off for all regular model checking
based verification, including Papers A and C.

Other Directions for Future Work

Let us now look at the area as a whole. Starting out on a high level,
it would be desirable to set up a common specification language, or a
minimal set of specification languages, for parameterized systems, and
other programs of interest, and effectively set up a library of program
models. This would encourage more competition, and a quicker devel-
opment of the field. Annual competitions could then be held, much like
the SAT-solver competitions we have seen lately.

Approximation based techniques have been proven successful in many
problem domains. My opinion is that a CEGAR approach, for both
safety and liveness, or just liveness, with specific handling of fairness,
should be developed for regular model checking. We are not far from
this, as a CEGAR approach for regular model checking has already been
developed by Bouajjani, Habermehl and Vojnar [BHV04]. However, the
approach chosen there was to verify liveness by applying abstraction
after the automata-theoretic translation was applied, which perhaps
hides the problems involving fairness. They did not report verifica-
tion of the examples we have verified, which further motivates another
go at abstractions for liveness. Other works handle fairness explicitly
[KP00, CGJ+00, PXZ02]. As mentioned, another interesting approach
is to continue the development of reachability based liveness techniques.

The learning based approach of Habermehl and Vojnar [HV05] is po-
tentially useful in a wider context, such as acceleration and liveness, as
well. A performance check would be interesting.

If we relax the assumptions on the atomicity of program statements,
e.g., by allowing other actions to take place while a global condition is
being evaluated, the linear structure of programs is lost, and regular
model checking cannot be used. This has been examined for parame-
terized systems by Abdulla et al. for the analysis of safety properties
[AHDR08]. Further development in this direction is possible.

Finally, there is today an abundance of techniques for regular model
checking. Perhaps it is due time to write a unifying tool, with plug-in
support for different methods, and a common specification language —
suitably something like LTL(MSO) — with all the benefits that brings.
This would promote further development of the field.
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Abstract

Regular model checking is a form of symbolic model checking for pa-
rameterized and infinite-state systems whose states can be represented
as words of arbitrary length over a finite alphabet, in which regular sets
of words are used to represent sets of states. We present LTL(MSO),
a combination of the logics ��� and ��� as a natural logic for ex-
pressing temporal properties to be verified in regular model checking.
In other words, LTL(MSO) is a natural specification language for both
the system and the property under consideration. LTL(MSO) is a two-
dimensional modal logic, where ��� is used for specifying properties
of system states and transitions, and ��� is used for specifying tem-
poral properties. In addition, the first-order quantification in ��� can
be used to express properties parameterized on a position or process.
We give a technique for model checking LTL(MSO), which is adapted
from the automata-theoretic approach: a formula is translated to a Büchi
regular transition system with a regular set of accepting states, and reg-
ular model checking techniques are used to search for models. We have
implemented the technique, and show its application to a number of
parameterized algorithms from the literature.

A.1 Introduction

Regular model checking is a framework for algorithmic symbolic verifi-
cation of parameterized and infinite-state systems [BLW03, KMM+01,

1



WB98, BJNT00]. It considers systems whose states can be represented as
finite words of arbitrary length over a finite alphabet, including array or
ring-formed parameterized systems with an arbitrary number of finite-
state processes, and systems that operate on queues, stacks, integers, and
other linear unbounded data structures. In a system description, the set
of initial states is represented as a regular set of strings, and the tran-
sition relation is given as a finite regular length-preserving transducer.
Previous work on regular model checking [JN00, BJNT00, AJNd02] has
developed methods for computing the set of reachable states of a sys-
tem description, as well as the set of reachable loops, obtained from
the transitive closure of the transition relation. In general, this prob-
lem is undecidable, but decidability results for certain classes have been
obtained [JN00].

The techniques for computing reachable states and reachable loops
can in principle be used to verify both safety and liveness properties of
parameterized system descriptions, but do not provide a convenient ap-
proach for checking arbitrary temporal logic properties of parameterized
and infinite-state systems. Significant ingenuity is required in order to
manually transform the verification of a temporal property of a param-
eterized system into a property of reachable states and reachable loops,
in particular if the verification uses fairness properties that are param-
eterized on system components [BJNT00, PS00]. It would be desirable
to have a framework, analogous to the automata-theoretic approach in
finite-state model checking [VW86], where the property of verifying a
temporal property is automatically transformed into a problem of check-
ing emptiness for a Büchi automaton.

In this paper, we address this problem by presenting an extension of
the automata-theoretic approach [VW86] to the setting of regular model
checking. We present a logic for expressing system models and temporal
properties, which is a combination of the logics ��� over finite words
and ���. We use ��� for specifying sets of states and transition rela-
tions and ��� for specifying temporal constraints. The result is a two-
dimensional modal logic, where ��� is used in the “space” (system
state) dimension and ��� is used in the “time” dimension. Models of
the logic are infinite sequences of (constant-length) words, representing
computations of the specified system. We can then specify a verification
problem as the conjunction of a system specification and a negation of
the property to be verified.

Following the automata-theoretic approach, we present an automated
translation from the translation from a formula � in LTL(MSO) to a
Büchi regular transition system (BRTS), consisting of a regular set � of
initial states, a regular length-preserving transducer � , and a regular set
� of accepting states. Accepting runs of the BRTS are infinite sequences
of words, where the first word is in �, consecutive words satisfy � , and
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infinitely many words are in � . We prove that � is satisfiable if and
only if the BRTS has an accepting run. Since � is length-preserving, the
existence of an accepting run can be checked by searching for a reachable
loop which contains a state in � .

A nice feature of our combination of ��� with ��� is that we get the
power to express temporal properties parameterized over positions for
free: ��� offers variables to represent positions and quantify over them,
which can be interleaved with temporal operators. As a concrete exam-
ple, for a parameterized mutual exclusion algorithm, a typical property
one would want to express is the following.

If all processes satisfy a weak fairness requirement, then each process
that is interested in entering its critical section will eventually do so.

If the number of processes is fixed, the terms like “each process” can
be replaced by explicit conjunctions to obtain a standard model check-
ing problem in propositional temporal logic. However, for parameterized
systems the number of processes is arbitrary. Fortunately, we can express
this property directly in our logic, by a formula like

�� : ��[blocked(�) � progressing(�)] �� �� : � [trying(�) � �critical(�)]

where � ranges over positions in the state, and each position represents
a process. In this formula, we apply ��� operators (� and �) to formu-
las with the ��� variable �, and later use ��� quantification over �
to express parameterized properties. In our logic LTL(MSO), temporal
operators can be applied to formulas with at most one free first-order
variable and no free second-order variables. This restriction allows to
express parameterized temporal properties (e.g., fairness constraints)
of individual processes in a parameterized system, as well as temporal
properties of pairs of adjacent processes (in positions � and � + 1 using
one free variable �). The restriction has to do with the translation into
automata, explained in Section A.7.

A further nice property of adapting the automata-theoretic approach
is that our transformation results in a uniform problem of checking for
accepting runs, for which we can develop techniques that are more uni-
form than those presented in previous work [JN00, BJNT00, AJNd02].
We have extended our tool for regular model checking [AJNd03] to check
whether BRTS have accepting runs. This is done in two steps. First, the
set of reachable states are computed as 	
� = 	 Æ � �. Secondly, loops
are found by identifying identical pairs in (� � � � ���) Æ � �. This
computation is more uniform and more efficient than the approach to
verification of temporal logic properties outlined in [BJNT00], which
builds on computation of the transitive closure �

+ of the transition re-
lation. We have verified safety properties with the tool for many of the
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examples in our previous work, as well as liveness properties for some of
the examples.

As special cases, when the formula contains no temporal operators,
our method specializes into a decision procedure for��� similar to that
of MONA [HJJ+96], and when the formula contains no quantifiers our
method specializes to ordinary (i.e. finite-state) ��� model checking.

The remainder of the paper is structured as follows. In the next two
sections, we present the logic LTL(MSO). Section A.4 illustrates how it
can be used to model and specify parameterized algorithms. The model
checking technique, including the translation to BRTS is presented and
proven correct in Section A.7. Verification is discussed in Section A.8.

Related Work Kesten et al. [KMM+97] and Pnueli and Shahar
[PS00] use the logic fs1s which has the expressive power of regular
expressions, to specify sets of states of parameterized systems, just as
we do with our logic. The difference is essentially that we have a higher
level approach, considering all of (future) ��� [Pnu77], and automatic
translation. However, unlike us, Kesten et al. [KMM+97] also consider
a logic for trees.

Bouajjani, Legay, and Wolper [BLW05] independently (from us) char-
acterize global and local-oriented properties in the framework of (�-)
regular model checking, and work out how to analyze such properties.
They also consider �-regular systems, i.e., systems where configurations
are infinite words. However, they do not provide an automatic transla-
tion from a system and property description into a verification problem,
as we do here.

Our logic LTL(MSO) applied to words is related to existential
monadic second-order logic (����) on grids to define picture
languages accepted by tiling systems (see e.g. [GR97]). Indeed,
transducers over words can be considered as tiling systems where
each transition represents a tile. Thus, it is expected that our logic
LTL(MSO) is equivalent to ���� on grids. However, the two logics
come from different motivations. While ���� on grids is used to
reason about pictures, our logic is used to reason about parameterized
structures over time. When applied to the word structure, the two
logics coincide.

In addition to the work on regular model checking, cited earlier, there
is a large body of research on the problem of model checking parameter-
ized systems of identical processes, in which there is no ordering between
processes, and hence the system state can be represented as a multiset of
process states (e.g., [BLS01, Del00, EK03, EK00, GS92]). This problem
is substantially simpler, since ordering between processes need not be
considered.
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Emerson and Namjoshi [EN95] give a technique for verifying a re-
stricted class of parameterized token-passing algorithms by reducing
an arbitrary ring to a small fixed-size ring under certain conditions.
These restrictions are substantially stronger than in our framework.
Sistla [Sis97] uses Büchi automata over two dimensional languages (re-
minding of transducers) to specify network invariants when verifying
systems by induction over their linear process structure. It is unclear
what class of systems can be handled automatically by this technique.

The problem of checking liveness properties of array-shaped parame-
terized systems was considered by Pnueli and Shahar [PS00], who pre-
sented a technique for computing the transitive closure of a restricted
class of transition relations. They also first manually employ abstractions
to make the implementation terminate.

Pnueli, Xu, and Zuck [PXZ02] present an interesting use of special-
ized abstractions in order to prove absence of starvation properties for
Szymanski’s algorithm and the Bakery algorithm. The abstractions keep
track of the number of processes with certain properties, and generate a
finite-state system, which can be model-checked. The presented abstrac-
tion is specialized to prove non-starvation, and loses much information
so that, e.g., safety properties can no longer be checked.

A.2 Introduction to LTL(MSO)

We introduce the logic LTL(MSO) [AJN+04], intended for reasoning
about infinite sequences of words of arbitrary length. Such sequences are
useful to model executions of parameterized systems, where there are an
arbitrary number of processes organized in a linear network. Each word
in an execution models a system configuration, where each position in
the word contains the local state of each process.

We follow the approach of the Temporal Logic of Actions by Lamport
[Lam94], where both the protocol and the properties are specified by
formulas in a single logic. Correctness of the protocol means that the
formula specifying the protocol implies the formula specifying the prop-
erty. We show how to specify protocols and properties using this logic
and how to set up verification problems. Formulas in this logic can then
be translated into BRTS, introduced in Section A.8, which can be used
to find models of the original formula.

As a running example, we use a token passing protocol. It consists
of an arbitrary number of processes organized in a linear array and
numbered from 0 to �� 1. The processes are ordered from left to right
such that process 0 is the leftmost process and process � � 1 is the
rightmost process. Initially, the leftmost process has the token. In each
step, a process can pass the token to its right neighbor. We model each
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configuration as a word � over the alphabet ����� where the local
configuration of process � is modeled by the symbol �(�), i.e., the symbol
at position � of the word. The symbol � denotes a process that does not
have the token, while the symbol � denotes a process that has the token.

In a system where configurations are modeled as words, an execution
is an infinite sequence of words. All words in an execution have the same
arbitrary length. Thus, we are working with two different dimensions.
One dimension refers to the positions of the word, called the space di-
mension, and the other dimension refers to the points in time, called the
time dimension. An execution of the token passing protocol is shown
below; it can be seen as a matrix in which each element is indexed by a
timepoint and a position, where the position refers to a process.

� Space

Time
�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �
...

Formulas in LTL(MSO) will be interpreted over such matrices. The
logic consists of constructs for handling both the space and the time
dimensions. Below, we introduce the constructs of LTL(MSO) and illus-
trate with the token passing protocol.

Configuration Variables and Positions The atomic formulas are
of the form �[�] where � is a configuration variable and � is a position vari-
able. The configuration variables model the global state of the protocol
we are modeling. Each configuration variable contains a boolean vari-
able for each position in the word, and is therefore essentially a boolean
array (bit vector). The formula �[�] denotes the boolean value of � at
position �, at the timepoint at which the formula is interpreted. In the
case of the token passing example, we use a configuration variable � such
that �[�] is true if and only if process � has the token.

MSO To specify configurations, i.e., the space dimension, we use
Monadic Second-Order Logic (���) over words [Tho90, HJJ+95], a
logic that can express regular sets of words. It contains first-order
position variables �� 	� � � � denoting positions, and second-order position
variables 
� �� � � � denoting sets of positions. The atomic formulas of

6



��� are of the form � = � + 1 (successor), � � �, and � � � , where
�� � are position variables and �� � are sets of position variables. A
configuration variable 	 can be seen as a special case of a second-order
variable, where 	[�] means � � 	, except that a configuration variable
may change over time. Configuration variables are used for the
purpose of modeling configurations, and always occur free in formulas.
First-order quantification over positions and second-order quantification
over sets of positions are allowed, for example the formula

�� : 	[�]

can be used to specify that the configuration variable 	 is true at all
positions. Using a combination of successor and quantification, we can
express ordering, e.g., ��� : � = � + 1 can be used to express that � = 0.
We can also express constant distances between positions of the form
� = � +  for any constant  , as well as the ordering � , using second-
order quantification. We will use formulas with position variables like
	[� + 1] to mean �� : � = � + 1 � 	[�].

In the token passing protocol, we can specify the initial condition that
the first process has the token by the formula

�� : �[�] �� � = 0

Primed Variables To specify transition relations, we need a relation
between the current and the next timepoint. We use primed configura-
tion variables for this, where 	�[�] is the value of 	 at position � at the
next timepoint. In the token passing protocol, the transition relation
where a process passes the token to its right neighbor is specified by

�� :

�
�[�] � ���[�] � ��[� + 1] � ��[� + 1]

� �� 	� 
�� � + 1� : ��[�] = �[�]

�

Temporal Operators While ��� is used to reason about the space
dimension, linear temporal logic (�) [Pnu77, Pnu82, MP92] is used
to reason about the time dimension. The linear temporal logic adds
the connectives � (always in the future), � (eventually) and � (weak
until). In the token passing protocol, the following formula can be used
to express that eventually the rightmost process has the token.

��� : �[�] � � = $

where � = $ means that � is the rightmost process (which can be ex-
pressed in ���). Similarly, we can use the following formula to denote
that there is always at least one token in the system

��� : �[�]
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Combining the two logics ��� and ���, we obtain the logic
LTL(MSO) by allowing the position quantifiers and the temporal
connectives to interleave. For example, we can express that at some
point in time there is a process which from then on always has the
token:

��� : � �[�]

Given a formula � representing a transition relation, we can use the
formula �� to specify that all pairs of consecutive (in time) configu-
rations will satisfy the constraints of the transition relation. The token
passing protocol can thus be specified by conjoining the specification of
the set of initial configurations and the transition relation:

�� : �[�] �� � = 0

� ��� :

�
�[�] � ���[�] � ��[� + 1] � ��[� + 1]

� �	 �� 	�
 � + 1
 : ��[	] = �[	]

�

Interleaving of position quantifiers and temporal operators will be re-
stricted so that there can be at most one free position quantifier inside
temporal operators (otherwise they cannot be translated — see Sec-
tion A.7). For example,

�� : ��	 : �[�] = �[	]

is allowed but not

�� : �	 : ��[�] = �[	]

A.3 LTL(MSO)

We give the syntax and semantics of LTL(MSO).

Syntax We assume a set of configuration variables �, denoted by
�
 �
 
 � � � , a set of first-order position variables, denoted by �
 	
 �
 � � � ,
and a set of second-order position variables, denoted by �
 �
�
 � � � . An
LTL(MSO) formula is inductively defined as follows.

� � �  � � �  � = 	 + 1 Atomic MSO formulas

�[�]
 ��[�] Configuration Variables

true  false Boolean constants

� � �  � � �  �� Propositional connectives

�� : �  �� : �  �� : �  �� : � MSO Quantification

��  ��  �� � Temporal operators
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We impose the restriction that in each subformula of the form ��

or �� or �� � there is at most one free first-order position variable
and no free second-order position variable. For reference, let us simply
call a formula with this restriction a restricted formula. The restriction
is required for the translation of a formula into Büchi Normal Form,
given later in Section A.7. It is well-known that the temporal operators
� (until) and � (release) can be expressed using the operators above
[MP92]. Hence we include all of (future) ��� [Pnu77]. We will use the
following abbreviations.

� �� �
�
= �� � �

��� �
�
= (� �� �) 	 (� �� �)

�(�(�))
�
= 
� : � = �(�) 	 �(�)

where �(�) is an expression over �, such as � + 1

� � �
�
= �	 :

�
� + 1 � 	

	 �
 : [
 � 	 �� 
 + 1 � 	] �� � � 	

�

� = 0
�
= �
� : � = � + 1

� = $
�
= �
� : � = � + 1

Semantics LTL(MSO) formulas are interpreted over matrices � over
2� of dimension � �, for some �  0, given as a parameter. We call
the vertical (first) dimension time, and the horizontal (second) dimension
space.

Let N be the set of natural numbers, and Z� = �0� � � � � � � 1�. The
element �(�� �) � � for � � N and � � Z� represents the system con-
figuration at time � of position (or subsystem) �, which assigns truth
values to the configuration variables � — the variables assigned true are
included in �(�� �), those assigned false are not. We denote by �(�) the
row �(�� 0) �(�� 1) � � ��(�� �� 1). The row �(�) represents the system
configuration at time �.

In general, a formula � depends on its free first- and second-order
variables and a timepoint, and the configuration variables of � . A valu-
ation Val is a mapping from first-order variables to Z� and second-order
variables to 2Z� . We define satisfaction of formulas, (��Val � �) �= � ,
with respect to a matrix � , a valuation Val , and a timepoint � as
shown in Figure A.1. For a closed formula � we denote by � �= �

that (�� �� 0) �= � .
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(��Val � �) ��= �����

(��Val � �) �= �	
�

� � � if Val(�) � Val(�)

� �  if Val(�) � Val()

� = � + 1 if Val(�) = Val(�) + 1

�[�] if � ��(��Val(�))

��[�] if � ��(� + 1�Val (�))

� � � if (��Val � �) �= � or (��Val � �) �= �

� � � if (��Val � �) �= � and (��Val � �) �= �

�� if (��Val � �) ��= �

�� : � if for all � � Z� we have

(��Val [� 	
 �]� �) �= �

�� : � if for all � � Z� we have

(��Val [� 	
 �]� �) �= �

�� : � if there exists � � Z� such that

(��Val [� 	
 �]� �) �= �

�� : � if there exists � � Z� such that

(��Val [� 	
 �]� �) �= �

�� if for all �� � � we have

(��Val � ��) �= �

�� if there exists �� � � such that

(��Val � ��) �= �

� � if (��Val � �) �= �� or there exists �� � �

such that (��Val � ��) �= � and for all ���

with � � ��� � �� we have (��Val � ���) �= �

Figure A.1: Semantics of LTL(MSO). The valuation Val [� �� �] acts as Val
except that it maps � to � . The valuation Val [� �� �] is defined analogously.
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A.4 Modeling in LTL(MSO)

In this section, we discuss how to model systems and set up verifications
problem in LTL(MSO).

A.4.1 Specifying Systems

A state formula is a formula without temporal operators and primed
variables, used for specifying constraints on only one configuration. An
action formula is a formula over unprimed and primed configuration
variables without temporal operators, used for specifying constraints
on two consecutive configurations. For an action formula �� , we can
use ��� to specify that a transition satisfying �� is taken at each
timepoint. Conjoining this with a state formula �� specifying the set
of initial configurations, we get the formula �� � ��� whose models
correspond to executions of the transition system where �� specifies the
set of initial configurations and �� specifies the transition relation.

Extended Syntax for Modeling Apart from the abbreviations al-
ready introduced, we will also use the following abbreviations to make
our models more readable.

��� : �
�
= �� : ��

where �� equals � except that all occurrences of
the form ��[�] are replaced by � � �, and � is a
fresh second-order position variable

Enabled �
�
= ���1� �

�
2� � � � � �

�
� : �

where � is an action formula, and �1� �2� � � � � ��
are all configuration variables occurring in �

�[�](�� ��)
�
= �[�] = � � ��[�] = ��

The formula Enabled � is used to test if the transition represented by �

can be taken, and the formula �[�](�� ��) is used to say that the value of �
changes from � to �� . Furthermore, we extend the range of configuration
variables to any finite domain (rather than just boolean values) by using
a standard encoding of a finite domain into a set of boolean variables.
For example, when � is a configuration variable representing a program
counter, we can use �[�](5� 6) to express that the value of � changes
from 5 to 6.

To model the token passing protocol introduced in Section A.2, we
use a configuration variable variable 
 where 
[�] is true iff process � has
the token. The protocol is modeled by the formulas below. Note that if
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� = $ , the token cannot be passed since there is no position � + 1.

initial = �� : �[�] �� � = 0

passtoken(�) =

�
�[�] � ���[�] � ��[� + 1] � ��[� + 1]

� �� �� ��� � + 1	 : ��[�] = �[�]

�

transition = 
� : passtoken(�)

idle = �� : ��[�] = �[�]

sys = initial � � (transition � idle)

The set of initial configurations, where the first process has the token, is
specified by the state formula initial. The formula passtoken(�) speci-
fies that the token is passed by process � to its neighbor, and the formula
idle specifies that nothing happens. The formula idle is used to model
that the system may do things between passing the token, and will be
necessary for adequately modeling liveness properties. The transition
relation is obtained by conjoining the action formulas transition and
idle, which is combined with initial to form the system formula sys,
representing executions of the system.

A model of the formula sys from the token passing example is given
below:

�    

 �   

  �  

  �  

  �  

   � 

    �

    �

    �
...

A.4.2 Fairness

To verify liveness properties, we need to add fairness assumptions. In this
paper, we use weak fairness, although the logic can be used to express
other kinds of fairness assumptions as well, e.g., strong fairness. Weak
fairness is specified on an action formula, and can be defined as

WF (�� ) = �� (�� � �Enabled �� )

which states that the action specified by the formula �� is either taken
infinitely often or disabled infinitely often. When specifying fairness for
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concurrent systems, it is useful to specify weak fairness for each process,
stating that each process that may execute will eventually do so. This
is an assumtion on the scheduler of the system, assuring that the all
processes in a system are scheduled infinitely often. We call this process
fairness, and express it as:

�� : WF (�� (�))

where �� (�) specifies all transitions in which process � is active. In the to-
ken passing example, we add process fairness to the transitions specified
by passtoken(�) using the formula:

�fair = �� : WF (passtoken(�))

Let us expand the defintions to demonstrate the meaning of �fair . Sub-
stituting the definition of Enabled we obtain the formula

�� : ��

�
�����

passtoken(�)

� ��� : �� :

�
��

� = � + 1

� �[�] � � �� � � ��[�] � � � �

� �� �� ��� �	 : � � � 
� �[�]

�
��

�
�����

which after removal of the existential quantifier on � (an interpretation
of � will always exist provided the other conditions hold) becomes:

�� : ��

�
passtoken(�)

� ��� : � = � + 1 � �[�] � ��[�]

�

meaning that for all processes �, it is infinitely often the case that the
token is passed or the token cannot be passed either because it is the
rightmost process (no � exists such that � = �+ 1), the process does not
have the token (�[�] is false), or the neighboring process already has a
token (�[�] is true).

A.4.3 Specifying and Checking Properties

Let

�� � ��� � �fair

be a system specified with fairness assumptions. A property is given as
a formula �; for instance, an invariant property is of the form ��Inv for
a state formula �Inv . To check whether the system model satisfies the
property �, we check whether the formula

�� � ��� � �fair � ��
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is satisfiable. If � is a safety property, the fairness assumptions �fair are
not necessary, and can be omitted.

Continuing the token passing example, we can check that there is
never more than one token in the system by searching for models of the
formula

initial � � (transition � idle) � ������ � � �= � � �[�] � �[�]

and whether the rightmost process must eventually get the token search-
ing for models of the formula

initial

� � (transition � idle)

� �� : �� (transition(�) � �Enabled transition(�))

� ���� : � = $ � �[�] �

In the following sections, we discuss how to model parameterized al-
gorithms and algorithms with different kinds of datatypes in our logic.

A.5 Parameterized Systems

Consider a system parameterized by the number of processes. Typical
examples are algorithms designed to work for an arbitrary number of
processes. In this case, we want to verify the system regardless of the
number of processes.

We assume that the processes are homogeneous, i.e., that all processes
have the same set of local states. We use a configuration variable � so
that the value of �[�] represents the local state of process �.

Local transitions, where a process can change local state from � to ��

independently of other processes, can be expressed as

�� : �[�](�� ��) � �� �= � : �[�] = ��[�] �

Other transitions need global conditions, for example that all pro-
cesses at a position with a lower index should be in a particular state,
say ��. We can express this as

�� : �[�](�� ��) � (�� � � : �[�] = ��) � �� �= � : �[�] = ��[�] �

We can also model transitions representing communication between
two processes, e.g.,

�� : �[�](�� ��) � �[� + 1](	� 	�) � �� �� ��� � + 1	 : �[�] = ��[�] �

We illustrate this type of representation using a number of examples.
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Idle: ������ := 1 + max
�

������

Waiting: await �� �= � : (������ � ������ � ������ = 0)

Critical: ������ := 0

Figure A.2: Bakery algorithm

A.5.1 The Bakery Algorithm

In the bakery algorithm for mutual exclusion due to Lamport [Lam74],
there are an arbitrary number of processes waiting to get a “ticket” to
get into the critical section. Each process that wants to get into the
critical section receives a ticket which is the maximum of all the out-
standing tickets plus one. When a process has the lowest outstanding
ticket, it enters the critical section and drops the ticket when leaving.
The algorithm is shown in Fig. A.2, where ������ is used to denote the
ticket value of process � or 0 if it does not have a ticket.

To model the bakery algorithm in LTL(MSO), we change the perspec-
tive: rather than modeling the vector of process states, we let a configu-
ration represent the states of the sequence of ticket numbers, using the
configuration variable �. For each �, the value of �[�] is

� � if there is no process that has ticket � + 1,

� � if some process with ticket � + 1 is Waiting, and

� � if some process with ticket � + 1 is in Critical.

Note that we do not model tickets with number 0, since this is the
ticket number of all “inactive” processes, and that ticket �+1 is modeled
by �[�]. We implicitly use the invariant that each positive ticket number
can be held by at most one process. This invariant can be verified sepa-
rately, or not be assumed (for example by adding one more value of �[�]
representing that several processes have this ticket number).

The initial configuration and transition relation of the bakery algo-
rithm can then be specified by the formulas shown in Fig. A.3.

We use the auxiliary formula maxplusone(�) to specify that � refers
to the position representing next ticket, i.e., the maximum ticket number
plus one, and the auxiliary formula min(�) to specify that � refers to the
position representing the ticket that is next in line, i.e., the ticket with
the minimum ticket number.

We use one action formula for the transition between states: ticket(�)
specifies the transitions from � to � , allowing ticket number �+1 to be
taken, enter(�) specifies the transition from � to �, allowing a process
with ticket number � + 1 to proceed to the critical section, and finally
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maxplusone(�) = (� �= 0 �� �[�� 1] �=�) � �� � � : �[�] =�

min(�) = �[�] �=� ��� � � : �[�] =�

ticket(�) = �[�](��� ) � maxplusone(�)

enter(�) = �[�](���) � min(�)

exit(�) = �[�](���)

copy(�) = �[�] = ��[�]

idle = �� : copy(�)

a(�) = (ticket(i) � enter(�) � exit(�))�

�� �= � : copy(�)

initial = �� : �[�] =�

sys = initial � �(�� : a(�) � idle)

Figure A.3: Bakery algorithm in LTL(MSO)

exit(�) specifies the transitions from � to �, allowing a process with
ticket number � + 1 to leave the critical section and return the ticket.

The system is specified by the formula sys which is the conjunction
of the formula initial specifying the set of initial configurations and
the formula �(�� : a(�) � idle) specifying that in each step either some
action a(�) is taken by process �, or the system idles. The idle transitions
are needed to verify liveness properties.

Mutual exclusion can be specified by the formula

mutex = ��(�� : �� : � �= � � �[�] = � � �[�] = �) �

In order to specify non-starvation, we add a fairness assumption for
the actions enter(�) and exit(�). We add no fairness assumption for
ticket(�), since the arrival of new processes should not be controlled by
the algorithm itself.

faira(�) = (enter(�) � exit(�)) � (�� �= � : copy(�))

fairness = �� : �� (faira(�) � �Enabled(faira(�)))

non-starvation = �� : � (�[�] = � �	 ��[�] = �)

To check that the algorithm satisfies mutual exclusion and
non-starvation, we check whether the formulas

sys � �mutex

sys � fairness � �non-starvation

have any models.
The property that models are of arbitrary but fixed size implies that

we actually verify the algorithm under the assumption that there is an
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1: await �� : � �= � : ��[�]

2: �[�]� �[�] := true� true

3: if �� : � �= � : (�[�] �= 1) � (��[�])

then �[�] := false ; goto 4

else �[�] := false ; goto 5

4: await �� : � �= � : �[�] � ��[�] then �[�]� �[�] := false� true

5: await �� : � �= � : ��[�]

6: await �� : � � � : ��[�]

7: �[�] := false ; goto 1

Figure A.4: Szymanski’s algorithm

arbitrarily chosen upper bound on the number of tickets in use at any
time. For safety properties, this is not a limitation since violations will
be finite sequences of execution steps, but for fairness assumptions it can
play a role. For the bakery algorithm, it can be seen that an arbitrary
upper limit on ticket numbers does not affect non-starvation for waiting
processes, but in general one must be aware of this modeling constraint.

A.5.2 Szymanski’s Algorithm

In the previous example there were an arbitrary number of processes, but
there was a complete symmetry between the processes. In this example
we will look at another algorithm that works for an arbitrary number
of processes, but with the difference that they are organized in a linear
array and thus will not be completely symmetric with respect to each
other.

In Szymanski’s algorithm for mutual exclusion [Szy90, GZ98], there
are an arbitrary number of processes organized in a linear array, where
the index of the array denotes the process ID. In the algorithm, the local
state of each process � consists of a control state �[�], ranging over the
integers from 1 to 7 and of two boolean flags, �[�] and �[�]. A process
� is in the critical section when its control state �[�] is equal to 7. We
model this using three variables named �, and �, and �, ranging over
an array of the same length as the number of processes. The behavior for
each process � is given in Fig. A.4, expressed in pseudo-code where the
lines are numbered with the value of the control state �. The version
considered here is an idealized version. In most implementations a global
guard (such as, e.g., �� : � � � : �[�]) is not atomic: in a more refined
description of the algorithm this is a loop which checks the states of
other processes.

For instance, according to the statement at line 6, if the control state
of a process � is 6, and the value of � is false in all processes with a
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lower index (i.e., for all processes � with � � �), then the control state
of process � may be changed to 7. In a similar manner, according to the
statement at line 4, if the control state of a process � is 4, and if there is
at least another process � (either with a lower index or a higher index
than �) where the value of �[�] is true and the value of �[�] is false, then
the control state, �[�], and �[�], in � may be changed to 5, false, and
true, respectively.

The full model in LTL(MSO) is given in Fig. A.5. Auxiliary predicates
copy, copy-w, copy-s and copy-other have been added to denote that
some variables are not affected by the transition. The action formulas
a1(�) through a7(�) are used to specify the transitions in the algorithm.
To see how the above statements are modeled, line 1 can for example be
modeled by the following formula:

�� : �[�](1� 2) � (�� : � �= � : ��[�]) � ��[�] = �[�] � ��[�] = �[�]

where the difference to line 1 is mainly that the program counter � is
made explicit.

Like in the Bakery algorithm in Section A.5.1, we add a system for-
mula sys by conjoining the formula initial specifying the set of initial
configurations and the formulas for the transitions of the algorithm. The
formulas safety for verifying mutual exclution and liveness for verifying
non-starvation are also written in a similar way.

A.5.3 Dijkstra’s Algorithm

In Fig. A.6, we show an idealized version of Dijkstra’s protocol [LPS93]
for ensuring mutual exclusion among an arbitrary number of processes.
Each process � has a control state ranging over the integers from 1 to
7 and a variable ����[�] ranging over �0� 1� 2�. Furthermore, a global
variable � ranging over process indices is used. In the algorithm, line 6
represents the critical section.

We model the global variable with a configuration variable � such that
�[�] is true iff the global variable � points to process �. The resulting
LTL(MSO) model is given in Fig. A.7.

A.5.4 Burns’s Algorithm

Burns’s mutual exclusion algorithm [LPS93] is given in Fig. A.8. Each
process � has a control state ranging over the integers from 1 to 7 and
a variable ����[�] ranging over �0� 1�. The critical section is represented
by line 6.

We model the values 0 and 1 with the booleans such that 0 is false and
1 is true. The LTL(MSO) model for the algorithm is given in Fig. A.9.
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copy(�) = �[�] = ��[�] � �[�] = ��[�] � �[�] = ��[�]

idle = �� : copy(�)

copy-w(�) = �[�] = ��[�]

copy-s(�) = �[�] = ��[�]

copy-other(�) = (�� �= � : copy(�))

a1(�) = �[�](1� 2) � (�� �= � : ��[�])�

copy-w(�) � copy-s(�)

a2(�) = �[�](2� 3) � ��[�] � ��[�]

a3a(�) = �[�](3� 4) � ���[�] � copy-w(�)�

�� �= � : �(�[�] = 1) � ��[�]

a3b(�) = �[�](3� 5) � ���[�] � copy-s(�)�

�(�� �= � : �(�[�] = 1) � ��[�])

a3(�) = a3a(�) � a3b(�)

a4(�) = �[�](4� 5) � ���[�] � ��[�]�

(�� �= � : �[�] � ��[�])

a5(�) = �[�](5� 6) � (�� �= � : ��[�])�

copy-w(�) � copy-s(�)

a6(�) = �[�](6� 7) � (�� � � : ��[�])�

copy-w(�) � copy-s(�)

a7(�) = �[�](7� 1) � ���[�] � copy-w(�)

a(�) = a1(�) � a2(�) � a3(�) � a4(�)�

a5(�) � a6(�) � a7(�)

initial = �� : �[�] = 1

sys = initial�

�(�� : (a(�) � copy-other(�)) � idle)

fairness = �� : ��(a(�) � �Enabled(a(�)))

mutex = ���� : �� : � �= � � �[�] = 7 � �[�] = 7

non-starvation = �� : � (�[�] = 2 �� ��[�] = 7)

safety = sys � �mutex

liveness = sys � fairness � �non-starvation

Figure A.5: Szymanski’s algorithm in LTL(MSO)
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1: ����[�] := 1

2: if � �= � then

await ����[�] = 0 then

3: � := �

4: ����[�] := 2

5: if �� �= � : ����[�] = 2 then goto 1

6: ����[�] := 0 ; goto 1

Figure A.6: Dijkstra’s algorithm

A.5.5 A Termination Detection Algorithm

We can also models ring shaped parameterized systems in our frame-
work, which we illustrate with an algorithm for termination detection
among an arbitrary number of processes organized in a ring shaped net-
work, due to Dijkstra et al. [DFvG83]. The algorithm uses a colored
token which is passed around the ring to check that all processes in the
ring have terminated.

A process can either be non-idle or idle. When all processes are idle,
we say that the system has terminated. A process can spontaneously
change its state from non-idle to idle, i.e., it terminates. To detect that
all processes are idle, a designated processes sends out a token which it
colors white. When the token is passed to the next processes, the process
passing the token paints it black if it is non-idle. When the token comes
back to the process which sent out the token, it is white if the system
has terminated, and black otherwise.

The system can be modeled by numbering the processes from 0 to
�� 1 and using three arrays holding three local variables the processes.
Only process 0 may initiate the algorithm by sending out a new token.
The variables are �[�] which is true iff process � is idle, and �[�] ranging
over �black�white�none�, which has the value none when process �

does not have the token, and otherwise denotes the color of the token.
In addition, process 0 has a boolean variable �, which is true if it has
stayed idle during the current round. The value of � is only relevant for
process 0.

Initially, we have �[�] = false for all �, and �[0] = black, and �[�] =
none for all 0 � � � �, and � = false . The algorithm can be described
by the statements in Fig. A.10, for each process �.

The three first types of statements describe the underlying computa-
tion: a process can become idle autonomously (first statement), and it
can become non-idle if its predecessor is non-idle (second statement). In
addition (third statement), process 0 must set � to false if it becomes
non-idle. The fourth statement starts a round of the detection algorithm.
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copy(�) = �[�] = ��[�] � ����[�] = �����[�] � �[�] = ��[�]

copy-flag(�) = ����[�] = �����[�]

copy-p = �� : �[�] = ��[�]

copy-other(�) = �	 �= � : copy(	)

idle = �� : copy(�)

set-p(�) = �	 : ��[	] �� 	 = �

zeropflag = �� : (�[�] �� ����[�] = 0)

a1(�) = �[�](1
 2) � �����[�] = 1 � copy-p

a2a(�) = �[�](2
 3) � ��[�] � zeropflag � copy-p

a2b(�) = �[�](2
 4) � �[�] � copy-flag(�) � copy-p

a2(�) = a2a(�) � a2b(�)

a3(�) = �[�](3
 4) � set-p(�) � copy-flag(�)

a4(�) = �[�](4
 5) � �����[�] = 2 � copy-p

a5a(�) = �[�](5
 1) � copy-flag(�) � copy-p�

		 �= � : ����[	] = 2

a5b(�) = �[�](5
 6) � copy-flag(�) � copy-p�

�		 �= � : ����[	] = 2

a5(�) = a5a(�) � a5b(�)

a6(�) = �[�](6
 1) � �����[�] = 0 � copy-p

a(�) = a1(�) � a2(�) � a3(�)�

a4(�) � a5(�) � a6(�)

initial = �� : �[�] = 1 � ����[�] = 0 � ��[�]

sys = initial�

�(	� : (a(�) � copy-other(�)) � idle)

fairness = �� : ��(a(�) � �Enabled(a(�)))

mutex = ��	� : 		 : � �= 	 � �[�] = 6 � �[	] = 6

non-starvation = �� : � (�[�] = 1 �� ��[�] = 6)

safety = sys � �mutex

liveness = sys � fairness � �non-starvation

Figure A.7: Dijkstra’s algorithm in LTL(MSO)

1: ����[�] := 0

2: if 		 � � : ����[	] = 1 then goto 1

3: ����[�] := 1

4: if 		 � � : ����[	] = 1 then goto 1

5: await �	 � � : ����[	] �= 1

6: ����[�] := 0 ; goto 1

Figure A.8: Burns’s algorithm
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copy(�) = �[�] = ��[�] � ����[�] = �����[�]

copy-flag(�) = ����[�] = �����[�]

copy-other(�) = �� �= � : copy(�)

idle = �� : copy(�)

a1(�) = �[�](1	 2) � ������[�]

a2a(�) = �[�](2	 1) � (�� 
 � : ����[�]) � copy-flag(�)

a2b(�) = �[�](2	 3) � (��� 
 � : ����[�]) � copy-flag(�)

a2(�) = a2a(�) � a2b(�)

a3(�) = �[�](3	 4) � �����[�]

a4a(�) = �[�](4	 1) � (�� 
 � : ����[�]) � copy-flag(�)

a4b(�) = �[�](4	 5) � (��� 
 � : ����[�]) � copy-flag(�)

a4(�) = a4a(�) � a4b(�)

a5(�) = �[�](5	 6) � (�� � � : �����[�]) � copy-flag(�)

a6(�) = �[�](6	 1) � ������[�]

a(�) = a1(�) � a2(�) � a3(�)�

a4(�) � a5(�) � a6(�)

initial = �� : �[�] = 1 � ����[�] = 0

sys = initial�

�(�� : (a(�) � copy-other(�)) � idle)

fairness = �� : ��(a(�) � �Enabled(a(�)))

mutex = ���� : �� : � �= � � �[�] = 6 � �[�] = 6

non-starvation = �� : � (�[�] = 1 �� ��[�] = 6)

safety = sys � �mutex

liveness = sys � fairness � �non-starvation

Figure A.9: Burns’s algorithm in LTL(MSO)

22



� �[�] := true

� if � � 0 � ��[�� 1] then �[�] := false

� if ��[�� 1] then �[0]� � := false� false

� if � = 0 � �[0] � (�[0] = black � ��) then �[0]� �[1]� � :=
none�white� true

� if � � �� 1 � �[�] �= none � �[�] then �[�]� �[� + 1] := none� �[�]

� if � = �� 1 � �[�� 1] �= none � ��[�� 1] then �[�� 1]� �[0] :=
none� �[�]

� if � � ��1 � �[�] �= none � ��[�] then �[�]� �[�+1] := none�black

� if � = �� 1 � �[�� 1] �= none � ��[�� 1] then �[�� 1]� �[0] :=
none�black

Figure A.10: A Termination Detection Algorithm

In the next two statements, a process just forwards the token if it is idle.
Finally, in the last two statements, if a process is non-idle, the token is
painted black and then forwarded. Note how the ring is modeled by
allowing process �� 1 to communicate with process 0.

The model is given in Fig. A.11. The formula safety is used to verify
that if process 0 signals termination, then all processes are idle.

A.6 Communication Protocols

Our framework can be used to model queues and stacks by letting each
position in the word represent a position in the queue or the stack. Inte-
ger variables can also be modeled, using the word to represent the digits
of the word in some base. These data types are common in commu-
nication protocols, where processes communicate through a queue and
integer variables can be used to model sequence numbers of the messages
that are passed. We will use communication protocols to illustrate how
we can represent these data types and operations on them.

Queues and Stacks Let us describe how to represent queues and
stacks in our framework. We use a configuration variable � where �[�] is
the queue or stack content at position �. Since our transitions preserve
the length of the words, we cannot dynamically create new positions.
Therefore, to allow for a dynamic data structure, we add a padding
symbol � to represent empty slots. Recall that configurations are of
arbitrary length, so even though we can not model unbounded queues, we
can model arbitrary-length queues. The difference between unbounded
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copy(�) = �[�] = ��[�] � �[�] = ��[�] � �[�] = ��[�]

copy-other(�) = �� �= � : copy(�)

copy-other2(�� �) = �� : �(� = � � � = �) �� copy(�)

copy-q(�) = �[�] = ��[�]

copy-t(�) = �[�] = ��[�]

idle = �� : copy(�)

move-token(�� �) = �[�] = ��[�]

adjacent(�� �) = � = � + 1 � (� = 0 � � = $)

pass(�� �) = � �= 0 � �[�] �= none�

(��[�] �� ��[�] = black)�

(�[�] �� move-token(�� �)) � ��[�] = none�

copy-q(�) � copy-q(�) � �[0] = ��[0]

start(�� �) = � = 0 � �[�] � (�[�] = black � ��[0])�

��[�] = none � ��[�] = white � ��[0]�

copy-q(�) � copy-q(�)

comp1(�) = ��[�] � copy-t(�) � �[0] = ��[0]

comp2(�� �) = ��[�] � copy(�) � copy-t(�) � ��[�]�

(� = 0 �� ���[0]) � (� �= 0 �� �[0] = ��[0])

a1(�) = copy-other(�) � comp1(�)

a2(�) = �� : adjacent(�� �) � copy-other2(�� �)�

(start(�� �) � pass(�� �) � comp2(�� �))

a(�) = a1(�) � a2(�)

initial = �� : (� = 0 �� �[�] = black � ��[�])�

(� �= 0 �� �[�] = none) � ��[�]

sys = initial � �(�� : a(�) � idle)

termination = � (�� = 0 : �[�] = white � �[0]) �� �� : �[�]

safety = sys � �termination

Figure A.11: A Termination Detection Algorithm in LTL(MSO)
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and arbitrary length is important for liveness properties, but not for
safety properties.

Below, we model sending and receiving a message denoted by the
parameter � to and from a queue represented using a configuration
variable denoted by the parameter �. Messages are sent by replacing the
� to the right of the rightmost message, and received by replacing the
leftmost message by a �. The empty queue is described by empty(�).

send(���) = �� :

�
�����

��[�] = � � �[�] = �

� �� �= � : �[�] = ��[�]

� �� : � = � + 1 �� �[�] �= �

� �� � � : �[�] = �

�
�����

receive(���) = �� :

�
��

��[�] = � � �[�] = �

� �� �= � : �[�] = ��[�]

� �� � � : �[�] = �

�
��

empty(�) = �� : �[�] = �

For stacks, we model the push and pop operations below. The stack
grows from left to right. The empty stack is described by empty(�).

push(���) =

�
�����

��[�] = � � �[�] = �

� �� �= � : �[�] = ��[�]

� �� : � = � + 1 �� �[�] �= �

� �� � � : �[�] = �

�
�����

pop(���) =

�
�����

��[�] = � � �[�] = �

� �� �= � : �[�] = ��[�]

� �� : � = � + 1 �� �[�] �= �

� �� � � : �[�] = �

�
�����

empty(�) = �� : �[�] = �

We model sends to lossy channels, where messages may be lost, with
the formula lossend(���) defined as

send(���) � �� : �[�] = ��[�]

i.e., the message can be lost immediately when sending.

Integers Integer variables can be represented in many ways using a
word. One alternative is to use a binary encoding of the integer value,
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such that the word represents the value of the integer variable in binary
with the most significant bit to the left. This has the advantage that
addition and multiplication can be performed using a regular transition
relation. For example, if we use the configuration variable � and � to
represent two numbers, the operation � := �+ � can be modeled by the
formula

�� :

�
�������

$ �� �

� �� : (��[�] �� �[�]) �� (�[�] �� � � �)

� �� : �� 1 � � ��

�
��

(�[�] � �[�])

	 (�[�] � � � �)

	 (�[�] � � � �)

�
��

�
�������

The second-order variable � is used to implement a carry-bit in the addi-
tion. The formula consists of three conjuncts. The first sets the carry-bit
to false in the last position, corresponding to the least significant bit.
The second part adds �[�] and �[�] and the carrybit � � �, putting the
result in ��[�] (to see this, note that (�1 �� �2) �� (�3 �� �4) is
true iff an even number of the formulas �1� �2� �3� �4 are true). The last
part updates the carry-bit for �� 1 in case there was an overflow.

The binary encoding works well when the system consists only of
integer variables and has been used for the verification of numerous
examples, for example in the tool LASH [BFL]. When integer variables
are used in combination with other datatypes, for example as a process
index or a sequence number in a communication protocol, it can be
more natural to use a unary encoding. With this encoding, addition and
multiplication can not be expressed as a regular transition relation, but
operations relating the variable with the other datatypes, for example
changing the state of a process pointed to by a process index variable,
can be performed.

In the following subsections, we model two communication protocols
using the encodings of data types described above.

A.6.1 The Alternating Bit Protocol

We illustrate encoding of queues in our framework with the well-known
Alternating Bit Protocol [BSW69], a protocol used for delivering mes-
sages over unbounded channels which are faulty in the sense that they
may lose messages but not reorder them.

There are two channels, one for sending messages from the sender to
the receiver, and one for sending acknowledgments from the receiver to
the sender. Each message is given a sequence number and the sender
waits for an acknowledgment from the receiver before sending a new
message. Until this acknowledgment is received, the sender may resend
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Sender

1: protsend

2: (lossend(���� 0) OR receive(��� 1)) ; goto 2

OR

receive(��� 0)

3: protsend

4: (lossend(���� 1) OR receive(��� 0)) ; goto 4

OR

receive(��� 1) ; goto 1

Receiver

1: (lossend(��� 1) OR receive(���� 1)) ; goto 1

OR

receive(���� 0)

2: protreceive

3: (lossend(��� 0) OR receive(���� 0)) ; goto 3

OR

receive(���� 1)

4: protreceive ; goto 1

Figure A.12: The Alternating Bit Protocol

the message. When the receiver has acknowledged the message, the pro-
cedure is repeated but with the sequence number inverted. Both the
sender and the receiver ignore messages with unexpected sequence num-
bers.

To model the service provided by the protocol, we consider two opera-
tions protsend and protreceive, modeling calls from the upper layers
of the protocols. Thus, protsend denotes that there is a new message
from the sender side, and protreceive denotes that the receiver side
signals that a message has been received. We denote the two channels
��� and ��, where ��� is the channel used for messages and �� is
the channel used for acknowledgments.

A high level description for the sender and the receiver is given in
Fig. A.12. The notation � OR �� means that either � or �� is executed,
but not both of them.

One property of the algorithm specifies that the operations protsend

and protreceive alternate after each other such that the two opera-
tions never occur consecutively. We model this by adding an observer
that records the last operation (protsend or protreceive) initialized
to protreceive and checks that a protsend operation can not occur
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when the observer is in state protsend and similarly that a protreceive

operation can not occur when the observer is in state protreceive.
An LTL(MSO) model of the Alternating Bit Protocol is given in

Fig. A.13.

A.6.2 A Sliding Window Protocol

We illustrate the use of integers with a sliding window protocol (for a
general description on sliding window protocols, see, e.g., Tannenbaum
[Tan96] Ch. 3). Like the Alternating Bit Protocol, the protocol is in-
tended to provide reliable transmission of messages across an unreliable
channel.

The sender and receiver employ a so-called sliding window protocol,
in which messages sent over the channel are provided with a sequence
number, assigned in a cyclic fashion from 0 to max �1 and then starting
at 0 again. The receiver acknowledges messages using a separate channel,
which we model with a direct communication between the receiver and
the sender.

Initially, the sender transmits messages with consecutive sequence
numbers 0� 1� 2� etc. Since the channel may lose messages, the sender
cannot know whether the messages will reach the receiver. Therefore, the
sender also waits for acknowledgments from the receiver. An acknowl-
edgment with sequence number � signals that the receiver has correctly
received messages up to sequence number � � 1. There must never be
more than max �1 outstanding messages. Therefore, after sending mes-
sages 0 through max � 2, the sender must wait for an acknowledgment.
After receiving an acknowledgment for a message, say 3, the sender may
continue to send messages max � 1, 0, and 1. If no acknowledgment
arrives for any outstanding messages, it is assumed to be lost and the
sender should resend outstanding messages after some period of time.

The range of sequence number representing the outstanding messages
is called the sender window and is modeled by two variables low and
high, where the outstanding messages have sequence numbers � with
low � � � high, if low � high, and with low � � or � � high, if
high � low . The integer variable next denotes the sequence number of
the next message the receiver expects to receive. A high level version of
the protocol is given in Fig. A.14, where addition is performed modulo
max .

We model this protocol in LTL(MSO) with a configuration variable for
each of the integer variables with the same name. The formula ���[�] will
be true if and only if the integer variable low is equal to �. The channel
will be limited to a fixed capacity (say 3). Since the messages contains
arbitrary sequence numbers and we have a finite alphabet, we can not
model a channel of arbitrary size. Instead, we use three configuration
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copy(�) = �� : �[�] = ��[�]

copy-other(�� �) = �� �= � : �[�] = ��[�]

copy-channels = copy(���) � copy(�
)

idle = copy-channels � copy(�) � copy(��)

observe(�) = ���[0] = � � copy-other(��� �)

sa1 = �[0](1� 2) � copy-other(�� 0)�

copy-channels � observe(protsend)

sa2a = �[0](2� 2) � copy-other(�� 0)�

lossend(���� 0) � copy(�
) � copy(��)

sa2b = �[0](2� 2) � copy-other(�� 0)�

receive(�
� 1) � copy(���) � copy(��)

sa2c = �[0](2� 3) � copy-other(�� 0)�

receive(�
� 0) � copy(���) � copy(��)

sa3 = �[0](3� 4) � copy-other(�� 0)�

copy-channels � observe(protsend)

sa4a = �[0](4� 4) � copy-other(�� 0)�

lossend(���� 1) � copy(�
) � copy(��)

sa4b = �[0](4� 4) � copy-other(�� 0)�

receive(�
� 0) � copy(���) � copy(��)

sa4c = �[0](4� 1) � copy-other(�� 0)�

receive(�
� 1) � copy(���) � copy(��)

sender = sa1 � sa2a � sa2b � sa2c � sa3�

sa4a � sa4b � sa4c

receiver = Defined similarly as sender with
�[1] instead of �[0] and observ-
ing protreceive

a = sender � receiver

initial = �[0] = 1 � �[1] = 1�

empty(���) � empty(�
)�

��[0] = protreceive

sys = initial � �(a � idle)

receivealt = � (��[0] = protreceive �� �(ra2 � ra4))

sendalt = � (��[0] = protsend �� �(sa1 � sa3))

safety = sys � �sendalt � �receivealt

Figure A.13: The Alternating Bit Protocol in LTL(MSO)
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Initially, ��� = 0, ���� = 0, and �	
� = 0.

� (enlarge window) if ��� �= �	
� + 1 then �	
� := �	
� + 1

� (send) for any � if

�
(��� � �	
� �� ��� � � � � � �	
�)

� (�	
� � ��� �� ��� � � � � � �	
�)

�

then send( �)

� (receive) receive( ����);���� := ���� + 1

� (synchronous ack) ��� := ����

Figure A.14: A Sliding Window Protocol

variables 1,2 and 3 where �[�] is true if and only if position � in the
channel contains a message with sequence number �.

The full LTL(MSO) model is given in Fig. A.15. The formula a1 cor-
responds to enlarging the window, the formula a2 to sending a message,
the formula a3 to receiving a message, the formulas a4 and a5 to move-
ment within the channel and the formula a6 to a synchronous ack.

The safety property inside-window specifies that the receiver is
never outside the sending window, which can be seen as a check that
the protocol synchronizes correctly.

A.7 Büchi Normal Form

In this section, we describe how to transform a restricted formula in
LTL(MSO) into an equivalent formula in Büchi Normal Form, defined
as follows.

Definition A.1 (Büchi Normal Form) A formula is in Büchi Nor-
mal Form if it is of the form

�� � ��� � ����

where the formulas �� � �� � �� are MSO formulas without temporal op-
erators. �

Formulas in Büchi Normal Form correspond to Büchi regular tran-
sition systems (BRTS), defined in Section A.8, which accept models
of a formula. In this section, we show how to transform a formula in
LTL(MSO) into an equivalent formula in Büchi Normal Form.

The idea of the construction is to generalize the standard translation
of propositional temporal logic to Büchi Automata [VW86, Var91] —
the semantics of temporal operators is translated to additional state
and transition information in the BRTS. In our case, temporal opera-
tors are translated to new configuration variables which represent the
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copy(�) = �� : �[�] = ��[�]

copy-other(�� �) = �� �= � : �[�] = ��[�]

copy-channel = copy(1) � copy(2) � copy(3)

copy-proc = copy(���) � copy(	�
	) � copy(���)

idle = copy-channel � copy-proc

adjacent(�� �) = � = � + 1 � (� = 0 � � = $)

between(�� �� �) = (� � � �� � � � � � � �)�

(� � � �� � � � � � � �)

addone(�) = ��� � : adjacent(�� �)�

�[�] � 	��[�] � ��[�]�

�� : � = � � � = � � (	�[�] � 	��[�])

allfalse(�) = �� : 	�[�]

a1 = ��� 	 : ���[�] � 	�
	[	] � 	adjacent(	� �)�

copy(���) � addone(	�
	) � copy(���)�

copy-channel

a2 = ��� 	�� : ���[�] � ���[�] � 	�
	[	]�

between(���� 	) � copy-proc

� �

1[�] � allfalse(1)�

copy-other(1��) � copy(2) � copy(3)

a3 = �� : 3[�] � 	�

3[�] � ���[�]�

copy(���) � copy(	�
	) � addone(���)�

copy(1) � copy(2) � copy-other(3� �)

a4 = �� : 1[�] � 	�

1[�] � allfalse(2) � �

2[�]�

copy-proc � copy-other(1� �)�

copy-other(2� �) � copy(3)

a5 = �� : 2[�] � 	�

2[�] � allfalse(3) � �

3[�]�

copy-proc � copy(1)�

copy-other(2� �) � copy-other(3� �)

a6 = (�� : ����[�] 
� ���[�])�

copy(	�
	) � copy(���) � copy-channel

a = a1 � a2 � a3 � a4 � a5 � a6

sys = initial � �(a � idle)

initial = �� : (� = 0 
� ���[�]) � (� = 0 
� 	�
	[�])�

(� = 0 
� ���[�]) � 	1[�] � 	2[�] � 	3[�]

inside-window = ���� �� 	 :�
���[�] � ���[�] � 	�
	[	]

�� � = 	 � between(�� �� 	)

�

safety = sys � 	inside-window

Figure A.15: A Sliding Window Protocol in LTL(MSO)
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values of certain temporal subformulas. The semantics of temporal op-
erators is maintained by constraints on the possible changes of the new
configuration variables.

We assume, without loss of generality, that a formula � is in negative
normal form, i.e., that negations only occur in front of atomic formulas
(as negations can always be “pushed” to the atomic formulas). Note that
�(�� �) equals ��� (�� � ��) � ���. Define a core subformula
of � as a subformula of � which has a temporal operator as its main
connective. We will denote by �(�) a formula where � is the (possibly)
only free variable of � . We introduce auxiliary variables to track the
values of core subformulas of � , as follows.

� For each core subformula �(�) we introduce an auxiliary config-
uration variable �� . Intuitively, the value of ��[�] represents the
same value as �(�) at each timepoint.

� For each core subformula of the form ��1(�) we introduce an aux-
iliary configuration variable ���1

(called an eventuality variable).
Intuitively, if the formula ���1

[�] is true, then the formula �1(�)
must be true at some future time point.

The value of any subformula � can be represented by an encoding �����
into the extended set of configuration variables, together with constraints
on the auxiliary variables. We first define the encoding ����� of a formula
� as follows. Note that the only change is to replace core subformulas
by a corresponding auxiliary variable.

�����
�
= � for � in MSO

���1 � �2��
�
= ���1�� � ���2��

���1 � �2��
�
= ���1�� � ���2��

���� : �1��
�
= �� : ���1��

��	� : �1��
�
= 	� : ���1��

���� : �1��
�
= �� : ���1��

��	� : �1��
�
= 	� : ���1��

����1(�)��
�
= ���1

[�]

����1(�)��
�
= ���1

[�]

���1(�)� �2(�)��
�
= ��1��2

[�]

Let localconstr(�) be the conjunction of a set of local constraints on
the auxiliary variables of � as defined below.

1. For each auxiliary variable �� the corresponding local constraint
is:
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�� :
�
���1

[�] ��
�
���1(�)�� � ��

��1
[�]
��

when �(�) is ��1(�),

�� :
�
���1

[�] ��
�
���1(�)�� � ��

��1
[�]
��

when �(�) is ��1(�), and

�� :
�
��1��2

[�] ��
�
���2(�)�� �

�
���1(�)�� � ���1��2

[�]
���

when �(�) is �1(�)� �2(�) .

2. Let ���1
� � � � � ���� be the set of eventuality variables. We define

their local constraint as follows.

��

�=1

�� :
��
����[�] � ���

���
[�]
�
�� ����(�)��

�

Intuitively, whenever ����[�] flips from true to false, it has “observed”
that ��(�) was true in the previous state. Then we know that ��(�) was
true at least once in the past.

We will require that all eventuality variables are false infinitely often
and that they become true when appropriate. Let evconstr(�) be the
eventuality constraint, defined below.

��

�=1

�� :
�
�����[�] �

�
��

���
[�] �� ��

���
[�]
��

Intuitively, that the eventuality variables are false means that they have
witnessed the “eventuality” (that which should become true). The sec-
ond constraint says that they should “reset” — i.e., they should check
whether another eventuality should be witnessed, which is the case pre-
cisely when ��

���
[�] is true.

Note that, in case some core subformula � does not have a free variable
�, the local constraints encode the value of � on each of the positions �.
This is correct, but perhaps not optimal.

We will transform a formula � into the formula
����� � � localconstr(�) � �� evconstr(�) , which is clearly
in Büchi Normal Form. The rest of this section will establish soundness
of this transformation — meaning that a formula is satisfiable if and
only if the transformed formula is satisfiable. The proof is done in
two steps. The first lemma below states properties of the auxiliary
variables, while the second proves soundness of the construction.

Lemma A.2 If (��Val � �) 	= � localconstr(�) � �� evconstr(�),
then for all core subformulas �(�) of � we have

1. (��Val � �) 	= �� : (���1
[�] �� ����1(�)��) for �(�) = ��1(�)

2. (��Val � �) 	= �� : (���1
[�] �� ����1(�)��) for �(�) = ��1(�)

3. (��Val � �) 	= �� : (��1��2
[�] �� ���1(�)�� 
 ���2(�)��)

for �(�) = �1(�)
 �2(�) .
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Proof. 1. Suppose (��Val �� �) �= ���1
[�] for some valuation Val � =

Val [� �� �]. Since (��Val � �) �= � localconstr(�) we have

(��Val �� �) �= �

�
���1

[�] ��
�
���1(�)�� � ��

��1
[�]

��
	

By induction, it follows that (��Val �� ��) �= ���1(�)�� for every �� �
� and thus (��Val �� �) �= � ���1(�)��.

2. Suppose (��Val �� �) �= ���1
[�] for some valuation Val � = Val [� ��

�]. Suppose that (��Val �� �) 	�= ����1(�)��. Then (��Val �� �) �=
�
���1(�)��.

Together with

(��Val �� �) �= �

�
���1

[�] ��
�
���1(�)�� � ��

��1
[�]

��

from the local constraints, we therefore get (��Val �� �) �=
����1

[�] .

The eventuality constraint gives

(��Val �� ��) �= 
�

��1
[�] �� ��

��1
[�], for some �� � � 	

Then it follows from (��Val �� �) �= ����1
[�] that

(��Val �� ��) �= 
�

��1
[�]

and thus

(��Val �� �� + 1) �= 
��1
[�] 	

Let ��� � �� + 1 be the earliest point in time after �� (which has to
exist because of the eventuality constraint) when

(��Val �� ���) �= 

��1
[�] 	

But then since ��� was the earliest point in time we have

(��Val �� ��� � 1) �= 
��1
[�] � 

�

��1
[�]

which together with the local constraint of 
�� gives us

(��Val �� ��� � 1) �= ���1(�)�� 	

Since ��� � 1 � �� � � we conclude that

(��Val �� �) �= ����1(�)��

which contradicts the assumption.
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3. Suppose (��Val �� �) �= ��1��2
[�] for some valuation Val � =

Val [� �� �]. Since (��Val � �) �= � localconstr(�) we have
(��Val �� �) �=

�

�
��1��2

[�] ��
�
���2(�)�� �

�
���1(�)�� � ���1��2

[�]
���

	

By induction on � it follows that either (��Val �� �) �= � ���1(�)��,
or that eventually for some �� 	 � we have (��Val �� ��) �= ���2(�)��
before which we have (��Val �� ���) �= ���1(�)�� for each ��� : � 

��� 
 �� . Hence (��Val �� �) �= ���1(�)�� � ���2(�)�� as desired.

�

Lemma A.3 Let � be a subformula of �, Val a valuation, and � a
timepoint. There is a matrix � such that (��Val � �) �= � if and only if
there is a matrix � �, different from � only in the auxiliary variables of
�, such that (� ��Val � �) �= ����� �� localconstr(�) ��� evconstr(�).

Proof. =� : Define � � to be the same as � (of width �) except for the
auxiliary variables. We will show that the auxiliary variables can be set in
� � so that (� ��Val � �) �= ����� � � localconstr(�) � �� evconstr(�).

 For each core subformula ��(�) of � and for each ��� � N and
� � Z� let:

��� �� �(�����) �� (��Val [� �� �]� ���) �= ��(�) 	 (�)

 We show that there exists an infinite sequence of timepoints (��)��0

with � = �0 
 �1 
 � � � such that for each  � 1 (� ��Val � ��) �=
evconstr(�) . For each such �� and for each core subformula of �
of the form ��1(�) and � � Z� we thus put:

– ���1
��� �(����), and

– ���1
�� �(1 + ����) �� ���1

�� �(1 + ����) . (��)

From �� we find ��+1 by defining � � for �� with �� 
 �� 
 ��+1

inductively, as follows. The strategy we employ is to choose the
timepoint ��+1 such that the values of each variable ���1

are all
false, i.e.:

– For each core subformula ��1(�) let

���1
�� �(�� + 1��)

��

���1
�� �(����) � (��Val [� �� �]� ��) ��= �1(�) 	

35



– If for some earliest point in time �� � �� we for every core
subformula ��1(�) and � � Z� have ���1

�� � �(����) then
let ��+1 = �� .

Thus we allow the values of ���1
between �� and ��+1 to change

from true to false, but not from false to true. Note that the even-
tuality variables satisfy their local constraints. Now we show that
we can always find ��+1 from �� . Suppose, in contrary, that we
cannot. Then there is some core subformula ��1(�) and � � Z�

such that:

���1
�� �(����) for all �� � �� 	

Since the above holds in particular for �� = 1 + �� we have by (

)
that ���1

�� �(1+ ����) and therefore by (
) we get (��Val [� ��
�]� 1 + ��) �= ��1(�) . Then (��Val [� �� �]� ���) �= �1(�) for some
��� � �� and thus our strategy described above gives ���1

��� �(���+
1��). This is a contradiction.

�= : We prove that (� ��Val � �) �= ����� 	 �localconstr(�) 	
��evconstr(�) implies (� ��Val � �) �= � .

Let thus � = � � . We proceed by induction over the structure of � .

� in MSO : Since ����� = �, we get (��Val � �) �= � .

� = �1 
 �2 : We get (��Val � �) �= �1 or (��Val � �) �= �2 by induc-
tion.

� = �1 	 �2 : We get (��Val � �) �= �1 and (��Val � �) �= �2 by induc-
tion.

� = ��1 : Then � must be in MSO, since � is in negative normal form.

� = �� : �1 : We get (��Val � �) �= �� : ���1�� and by the semantics

(��Val [� �� �]� �) �= ���1��

for some � � Z� . Hence (��Val � �) �= ���1(�)�� . Since

�localconstr(�) 	 ��evconstr(�)

is a closed formula, and thus does not depend on �, it follows that

(��Val � �) �= ���1(�)�� 	 �localconstr(�) 	 ��evconstr(�) 	

By the induction hypothesis we get (��Val � �) �= �1(�) and by
the semantics we obtain (��Val � �) �= �� : �1(�) .

� � � : �1��� : �1�� : �1� : Analogous with � = �� : �1.
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� = ��1(�) : We get (��Val � �) �= ���1
[�] . Hence (��Val � �) �=

����1(�)�� by Lemma A.2. This means that (��Val � ��) �= ���1(�)��
for all �� � � . By induction we thus obtain (��Val � ��) �= �1(�) for
all �� � � which means that (��Val � �) �= ��1(�) .

� = ��1(�) : Analogous with � = ��1(�) .

� = �1(�)� �2(�) : We get (��Val � �) �= ��1��2
[�] . Hence by

Lemma A.2 we have (��Val � �) �= ���1(�)�� � ���2(�)��. By the
semantics and the induction hypothesis we thus obtain that
either (��Val � �) �= ��1(�), or that eventually for some �� � � we
have (��Val � ��) �= �2(�) before which (��Val � ���) �= �1(�) for
each ��� : � � ��� � �� . Thus (��Val � �) �= �1(�)� �2(�) .

�

We are now ready to prove the main theorem.

Theorem A.4 For any restricted formula � there exists a formula
	
� (�) in Büchi Normal Form such that

� �= � for some matrix �

if and only if

� � �= 	
� (�) for some matrix � � �

Proof. The following formula is in Büchi Normal Form:

	
� (�) = ����� � � localconstr(�) � �� evconstr(�) �

It follows from Lemma A.3 that there is a matrix � such that � �= �

if and only if there is a matrix � � such that � � �= 	
� (�) . �

A.8 Verification

As shown in Section A.4.3, to verify that a property holds for a system,
we search for models of a formula that is a conjunction of the formula
describing the system and the negation of the property. If no such models
exist, the property holds. Models of the formula are counterexamples
that explain why the property does not hold. Thus, the verification task
is to find models of formulas.

To search for models of formulas, we use Büchi regular transition
systems, defined below. They play the role of Büchi automata in the
automata-theoretic approach but for LTL(MSO) instead of �. A
Büchi regular transition system is an automaton whose states are words
and where the transition relation is represented using a regular set. We
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say that a length-preserving relation � on Σ� is regular if the set (of
words over Σ� Σ)

(�(1)� ��(1))(�(2)� ��(2)) � � � (�(�)� ��(�))

such that (����) � � is regular. The transition relation of a BRTS is
given by such a regular length-preserving relation, which can also be
described by a finite-state transducer — a finite-state automaton over
pairs of words.

Definition A.5 (Büchi Regular Transition System)
A Büchi regular transition system (BRTS) over an alphabet Σ is a

tuple �Σ���� � ��� where

� � � Σ� is a regular set of words over Σ called the set of initial
configurations,

� � � Σ� �Σ� is a regular length-preserving relation on words over
Σ, called the transition relation, and

� � � Σ� �Σ� is a regular length-preserving relation on words over
Σ, called the set of final transitions.

An accepting run of �Σ����� ��� is a matrix � such that

� �(0) 	 �,

� (�(�)��(� + 1)) 	 � for any � 
 0, and

� (�(�)��(� + 1)) 	 � for infinitely many �. �

In the previous section, we showed how to translate a formula in
LTL(MSO) into an equivalent formula in Büchi Normal Form. This form
is characterized by BRTS.

Theorem A.6 For every formula � in Büchi Normal Form, there is a
Büchi regular transition system �Σ����� ��� such that, for every matrix
� , we have � �= � if and only if � is an accepting run of �Σ�� �� � ���.

Proof. Let � be in Büchi Normal Form

�� ���� �����

and �Σ����� ��� be the BRTS such that for all matrices � :

– �(0) 	 � � � �= �� and

– (�(0)��(1)) 	 � � � �= �� and

– (�(0)��(1)) 	 � � � �= �� .

The BRTS �Σ����� ��� exists because �� � �� � �� are formulas in
MSO, and thus can be translated into finite-state automata. �
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Safety Liveness

Token Pass 5.5 16.0

Token Ring 8.4 9.8

Bakery 13.9 44.2

Burns 39.6

Szymanski 34.3

Dijkstra 36.4

Termination Detection 38.0

Alternating Bit 179.2

Sliding Window 1687.2

Table A.1: Experimental Results

Just like in the automata-theoretic approach, checking models of a
formula thus reduces into checking for accepting runs of a BRTS. Since
the transition relation of a BRTS is length-preserving, the existence of
an accepting run can be checked by searching for a reachable loop which
contains an accepting state. Unlike the automata-theoretic approach,
however, the set of states of a BRTS is infinite, requiring new techniques
for finding accepting runs.

The procedure we use for finding accepting runs can roughly be de-
scribed as follows. First, the set of reachable states is computed as
��� = � Æ � �. Secondly, loops are found by identifying identical pairs in
(� � � � (���� ���)) Æ � �. Thus, the problem reduces to computing
transitive closures � Æ � � and reachability sets � Æ � �.

We have verified safety properties with our tool for regular model
checking with techniques for computing transitive closures and reach-
ability sets from [BJNT00, AJNd02], as well as liveness properties for
some of the examples. Execution times are given in the table below.

Conclusions Experience has shown [Nil05] that it is efficient to com-
pute e.g. the invariant � Æ � � using so-called meta actions, which are
(under-approximations of) the transitive closures of program actions. We
typically compute the invariant iteratively as the fixed-point � Æ(

�
�
�

+)
where ��� are the actions of the program. To identify the individual
program actions in a setting where the system and negated property is
given as one formula, we can either syntactically identify them from the
formula before the translation to BRTS, or semantically identify them
after the translation. In the pursuit of a uniform model checker, the
semantic approach is more appealing, as we then do not have to distin-
guish between syntactically different, but equivalent, models of actions.
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In [JS07], we explored a way to semantically extract a certain class of
actions after the translation, with good results. As a general principle,
to obtain syntax independence, whenever we have an efficient technique
for computing the transitive closure of a class of actions, we should also
investigate how these actions can be extracted from the transducer rep-
resentation of the transition relation.

A.9 Bibliography

[AJN+04] P.A. Abdulla, B. Jonsson, Marcus Nilsson, Julien d’Orso, and

M. Saksena. Regular model checking for MSO + LTL. In Proc.
16�� Int. Conf. on Computer Aided Verification, pages 348–

360, 2004.

[AJNd02] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien

d’Orso. Regular model checking made simple and efficient. In

Proc. CONCUR 2002, 13�� Int. Conf. on Concurrency The-
ory, volume 2421 of Lecture Notes in Computer Science, pages

116–130, 2002.

[AJNd03] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien

d’Orso. Algorithmic improvements in regular model checking. In

Proc. 15�� Int. Conf. on Computer Aided Verification, volume

2725 of Lecture Notes in Computer Science, 2003.

[BFL] B. Boigelot, J-M. François, and L. Latour. The Liége automata-
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Abstract

We present a new method for proving liveness and termination properties
for fair concurrent programs, which does not rely on finding a ranking
function or on computing the transitive closure of the transition rela-
tion. The set of states from which termination or some liveness property
is guaranteed is computed by backward reachability analysis. A central
technique for handling concurrency is a check for certain commutativ-
ity properties. The method is not complete. However, it can be seen
as a complement to other methods for proving termination, in that it
transforms a termination problem into a simpler one with a larger set of
terminated states. We show the usefulness of our method by applying it
to existing programs from the literature. We have also implemented it in
the framework of Regular Model Checking, and used it to automatically
verify non-starvation for parameterized algorithms.

B.1 Introduction

The last decade has witnessed impressive progress in the ability of tools
to verify properties of hardware and software systems automatically
(e.g., [BMMR01, CGJ+03, Hol97]). The success has to a large extent
concerned safety properties, e.g., absence of run-time errors, deadlocks,
race conditions, etc. Progress in verification of liveness properties has
been less prominent. A major reason is that they are harder to verify

1Supported by the Swedish Research Council (http://www.vr.se/).
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than safety properties. For finite-state systems and some parameterized
systems, safety properties can be verified by computing (some approx-
imation of) the set of reachable states. In enumerative model check-
ers [Hol97] verifying liveness properties, requires at least a repeated
search through the state space. In symbolic model checkers, a natu-
ral but more expensive technique is to compute the transitive closure
of the transition relation. Multiple fairness requirements can make the
situation even more complicated. For general infinite-state systems, the
difference between safety and liveness properties is even larger. E.g., for
some classes of systems, such as lossy channel systems, checking safety
properties is decidable [AJ96b], whereas checking liveness properties is
undecidable [AJ96a].

The general approach for proving liveness involves finding auxiliary
assertions associated with well-founded ranking functions and helpful di-
rections (e.g., [MP84]). Finding such ranking functions is not easy, and
automation requires techniques adapted to specific data domains. Tech-
niques have been developed for programs with integers or reals [BMS05a,
BMS05b, BMS05c, CS01, CS02], for functional programs [LJBA01], and
for parameterized systems [FPPZ04a, FPPZ04b].

It is well-known that verification of a liveness property can be re-
duced to the property of fair termination of a Büchi automaton —
the property is true if the automaton has no fair infinite computations
[VW86, Var91]. Equivalently, we can rephrase the problem as follows.
Given a cross product of the program with an observer automaton for
the negated property, which accepts all counterexamples of the prop-
erty. The liveness property is then true if all fair computations even-
tually never visit any accepting state of the cross product. Therefore,
we can alternatively prove liveness by showing that all program states
eventually (via the cross product) reach a program state from which no
computations reach an accepting state (of the cross product). If we can
compute the sets of states from which accepting states are never seen,
we have reduced liveness to the problem of checking whether a set of
states must eventually reach another set of states.

The main technique of software model checking, using finite-state
abstractions [CGJ+03] has been difficult to apply when proving live-
ness properties, since abstractions may introduce spurious loops that
do not preserve liveness properties. Podelski and Rybalchenko therefore
extended the framework of predicate abstraction to that of transition
predicate abstraction [PR04, PR05], which involves finding a finite set
of suitable transition predicates — essentially over-approximations of
actions — and proving well-foundedness of abstract transitions.

In this paper, we present a new method for proving liveness based on
reachability analysis. We do not compute the transitive closure of the
transition relation, nor do we explicitly construct ranking functions. The
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method gives a way to compute program states which must eventually,
assuming fairness, reach a given set of terminated states. While general
liveness properties can be considered, as argued for above, the most
straight-forward application of our method is to verify so-called response
properties of form �(� � �� ), where � and � are sets of states [MP90].
This can be done by computing a set of states which are guaranteed to
eventually visit � , and checking whether this set includes �.

We obtain a set of terminating states for which termination is guar-
anteed, by computing the set of states that are backward reachable from
a set of terminated states under a particular transition relation — a so-
called convergence relation. Computing the set of backward reachable
states is computationally easier than finding ranking functions or com-
puting the transitive closure. Thus, in many cases, liveness properties
can be established for a class of systems, provided that there is a power-
ful way to compute sets of backward reachable states. For many classes
of parameterized and infinite-state systems, the set of backward reach-
able states is computable (e.g., [AJ96b, AČJYK00]). For other classes
of infinite-state systems, powerful acceleration techniques have been de-
veloped that compute or under-approximate the set of reachable states
(e.g., [WB98, ACABJ04]). It should be possible to develop equally pow-
erful techniques for backward reachability analysis, and apply them to
proving liveness properties.

The use of convergence relations is inspired by termination proofs
for simple programs. For a simple deterministic (non-concurrent) pro-
gram, the set of states from which termination is guaranteed can be
calculated as the set of states that are backward reachable from some
terminated state. We generalize this observation to develop techniques
for using backward reachability analysis to prove termination for gen-
eral concurrent programs with arbitrary (weak) fairness (a.k.a. justice)
requirements; backward reachability analysis should be the only non-
trivial computation on the verified program. A central technique for
handling concurrency is a new use of commutativity properties between
different actions of the program.

Our technique is not complete, in general. It computes an under-
approximation of the states from which termination is guaranteed. In
case the approximation of the terminating states does not include the
states for which we intend to prove termination, there are several ways
to increase the power of the method. Continuing the example with a re-
sponse property �(� � �� ), this is the situation where we have found
that some �

� is terminating, but it is not the case that � � �
� . Es-

sentially, it then remains to check the “smaller” termination problem,
which asks whether � � �

� is terminating, when the terminated states
are � � ��.
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� We can repeat the backward reachability analysis, letting the com-
puted under-approximation play the role of terminated states. One
then exploits the fact that our convergence relation increases when
the set of terminated states increases — another reachability anal-
ysis will therefore improve the under-approximation.

� We can also apply other techniques (e.g. complete methods based
on ranks or transitive closure computation) to prove termination
for the remaining states of interest (hopefully, our technique sim-
plified the problem).

� We have developed a complementary technique, suitable for pa-
rameterized systems, which also uses backward reachability anal-
ysis. It is introduced in Section B.6.

To show the usefulness of our method, we apply it to all examples used
by Podelski and Rybalchenko to illustrate their method of transition in-
variants in [PR04]. We also apply it to the well-known alternating bit
protocol. This is an example of a lossy channel system, for which liveness
properties are undecidable [AJ96a]. Our example shows that backward
reachability analysis (which is guaranteed to terminate [AJ96b]) can
prove liveness properties for some of these systems, although in general
they are undecidable. Finally, we have implemented our techniques in the
framework of regular model checking [AJNS04], and proved starvation-
freedom automatically for several parameterized mutual exclusion pro-
tocols.

Related Work For infinite-state systems, fair termination is typically
proven by finding auxiliary assertions associated with well-founded rank-
ing functions and helpful directions (e.g., [MP84, MP91]). Automated
construction of such ranking functions is a challenging task, which re-
quires techniques adapted to specific data domains. Recently, signifi-
cant progress has been achieved for programs that operate on numerical
domains, integers or reals [BMS05a, BMS05b, BMS05c, CS01, CS02,
Cou05]. Rather few papers present efficient techniques to prove termi-
nation for programs that operate on arbitrary data domains. For fami-
lies of parameterized systems, where each system instance is finite-state,
liveness can in principle be proven by computing the transitive closure
of the transition relation; this is typically expensive, or difficult to au-
tomatize (requiring, e.g., acceleration) [PS00, AJN+04, JS07]. In [JS07]
liveness was proven for the parameterized programs considered in this
paper, using transitive closure computation. The essential difference is
that there the reachable loops are computed using one “heavy” transi-
tive closure computation, while here we compute many sets of reachable
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states using backward reachability computations. No single approach is
faster on our entire benchmark, as we will see in Section B.6.

Another approach is to develop heuristics to automate the search for
rank functions [FPPZ04a, FPPZ04b] and procedures to check the con-
ditions in a general proof rule [MP91] automatically. A third approach
has been to find specialized abstractions, e.g., into integers, which work
in certain cases [PXZ02].

Podelski and Rybalchenko extend the framework of predicate abstrac-
tion to that of transition predicate abstraction [PR04, PR05, PPR05,
CPR05], in order to verify liveness properties as fair termination. In or-
der to apply their technique, one needs to find suitable transition pred-
icates — a transition predicate is an over-approximation of a program
action. The technique also involves checking well-foundedness of abstract
transitions. The approach has been proven effective for programs with
linear arithmetic, using linear arithmetic predicates, but is difficult to
automatize for general programs. Extensions of predicate abstraction
techniques for synthesizing ranking functions have also been developed
by Balaban, Pnueli, and Zuck [BPZ05].

Our use of commutativity between actions is inspired by the use of
commutativity in partial-order techniques to optimize state-space explo-
ration [CGMP99] in finite-state model checking.

Organization of the Paper Section B.2 contains basic definitions,
Section B.3 an informal overview of our method, and Section B.4
the formal presentation of the method. In Section B.5, we illustrate
the use of our method on examples considered by Podelski and
Rybalchenko [PR04], and the alternating bit protocol. In Section B.6,
we give experimental results on non-starvation for parameterized
mutual exclusion algorithms, and describe our complementary
technique, particularly developed for parameterized systems.
Section B.7 contains conclusions.

B.2 Preliminaries

Programs We consider fair concurrent programs modeled as tran-
sition systems. A program may contain a set of actions with (weak)
fairness requirements (a.k.a. justice).

Formally, a program � is a triple ��������, where

� � is a set of states,

� �� � � 	 � is a transition relation on � which includes the
identity relation (denoted Id),
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� � is a finite or countable set of fair actions, each of which is a
subset of �� , and required to be deterministic.

An action is any subset of the transition relation. We write � �� ��

for (�� ��) ��� . For an action � , we use �
�

�� �� to denote (�� ��) � � .
An action � is enabled in a state � if there is some state �� such that
�

�

�� ��. The set of states in which the action � is enabled is denoted
En(�). If � is a set of states, then � � � denotes the set of pairs (�� ��)
of states such that �

�

�� �� and � � � . For a set � of actions, let � � �
denote �� � � � � � ��. By the complement �� of an action, we mean
the action �� �� .

A computation of 	 from a state � � � is an infinite sequence of states
�0 �1 �2 
 
 
 such that (1) � = �0; (2) ���� ��+1 for each � � 0; and (3)
for each fair action � � �, there are infinitely many � � 0 where either
��

�
�� ��+1 or �� � En(�).
For a set � of states and action �, let Pre (�� �) be the set of states �

such that �
�
�� � for some � � �. For a set of actions �, let Pre�(�� �) be

the union of � and the set of states � such that �
�1��
 
 


���� � for some
� � � and �1 � 
 
 
 � �� � �.

Termination Given a program 	 = ��������. A terminated set
of states � is a subset of � which is stable, meaning that whenever
� � � and � �� �� then �� � � . Define �� , called the terminating
states, as the set of states � such that any computation of 	 from �

contains a state in � . In other words, �� is the set of states from which
termination is guaranteed, in the sense that each computation from �

will eventually reach the terminated states � . A set of states � � �

terminates (with respect to � ) if � � �� . In this paper we present
techniques for computing (an under-approximation of) �� .

Remarks The restriction that each fair action be deterministic can
sometimes be circumvented by representing a nondeterministic action
as a union of several deterministic ones.

That the terminated states should be stable can always be enforced,
by restricting the transition relation. For example, to make � � � stable,
we could use the restricted transition relation (�� ���) � Id .

Our definition of program does not mention initial states. When initial
states are given, a typical use of our techniques will be to first compute
the set of reachable states (or an over-approximation), and let them be
the states of the program as defined above.

6



B.3 Informal Overview of the Proof Method

In this section, we give an overview of our method for computing (an
under-approximation of) the set �� , where � is a terminated set of
states of a program � = ��������.

The inspiration for our method is the simple observation that when �
is a deterministic program with only one fair action � , then �� is the
set Pre�(�� � ). Our goal is therefore a technique for proving termina-
tion properties, where the only nontrivial computation is a predecessor
calculation, i.e., computing Pre�(�� �) for some set of states � and set
of actions �.

Our method works by computing a so-called convergence relation, here
denoted ��� , on the states of �. We define a convergence relation to
be a relation with the property that if � ��� � and � � �� then also
� � �� . From this property it follows that Pre�(��� � � ) 	 �� for any
convergence relation ��� .

The construction of a convergence relation ��� depends in general on
� . Once we have constructed ��� we use it to compute Pre�(��� � � ).
Since ��� is intended to be used in a predecessor calculation, it is natural
to allow the use of predecessor calculations also in the construction of
��� itself (but to avoid computations of transitive closures or other more
powerful techniques). In Section B.4 we show a technique for how this
can be done.

Introductory Example Our main technique for constructing a con-
vergence relation ��� uses a commutativity argument to infer that it
satisfies the required properties. To explain its intuition, consider the
following simple program, which models two deterministic processes ex-
ecuting in parallel.

�1 : 	 := 	� 1 if 	 
 0

�2 : � := � � 1 if � 
 0

Variables 	 and � assume values in the natural numbers. Each process
executes one action repeatedly — for � = 1� 2, process � repeatedly exe-
cutes action �� . We model the program as � = ��������, where


 � = �(� �) � � � � N representing values of (	� �),


 ��= �1� �2 � Id , and


 � = ��1� �2, i.e. both actions are fair.

The set � of terminated states is the single state with 	 = � = 0. We
want to examine whether every state in � is terminating.
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In this example, our technique computes ��� as �1 � �2 . Our tech-
nique implicitly ascertains that ��� is a convergence relation using a
commutativity argument. To understand why �1 is in ��� , assume that
�

�1

�� � and � � �� . Consider any computation from � — we argue that
it must eventually see � . If it goes first to � we are done. Otherwise, the
computation starts with a sequence of executions of action �2 . During
this sequence, �1 remains enabled, and so must eventually (by fairness)
be executed, leading to some state �. Now observe that since �1 and �2

commute, � is also reachable from �. Since � � �� we infer, using the
fact that �� is a stable set, that � � �� and hence that � � �� .

We conclude that, for states in Pre�(��� � � ), termination is guaran-
teed, which here is the set of all states.

The above technique can prove termination for many programs with
a regular structure. It is in general incomplete. For programs where the
above technique computes a too small under-approximation of �� , we
can proceed in the following ways.

� The backward reachability computation can be repeated several
times. If one application produces an under-approximation � of
�� , the next application of our technique will compute �� using
a convergence relation ��� that is larger than in the first compu-
tation, since it depends on � instead of � . This increases the set
of terminating states.

Let us illustrate a repeated application by changing the guard of
�1 in the above program into 0 	 
 � � � � = 0. This de-
stroys commutativity between �1 and �2 in case � = 
 . However,
a first backward reachability computation will produce the set �

consisting of states with 0 � 
 � 1 or with 0 � � 	 
 as an
under-approximation of �� . A second backward reachability com-
putation thereafter reveals that all states are in ��, hence also in
�� .

� In many cases, the under-approximation of �� computed by our
technique is sufficiently large that other techniques (e.g., complete
techniques based on ranks or transitive closure computation) be-
come computationally feasible.

� In particular, we have developed another technique, which also uses
backward reachability. This technique is useful for parameterized
systems. It is described in detail in Section B.6.
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B.4 Proving Termination as Backward Reacha-
bility

In this section we formalize the techniques for calculating (an under-
approximation of) the set �� by backward reachability analysis, pre-
sented in the previous section. Given a program ��������. Let � be a
set of terminated states.

Definition B.1 A convergence relation for � is a relation ��� � ���

such that

� ��� � � � 	 �� =
 � 	 �� �

��

The point of convergence relations is that if ��� is a convergence
relation for � , then Pre�(��� � � ) � �� , i.e., we can use a predecessor
calculation to prove that termination is guaranteed from a set of states.
Larger convergence relations allow to prove termination for larger sets of
states. Any number of convergence relations can also be combined into
one, since the union of two convergence relations is again a convergence
relation. Furthermore, even if we cannot precisely calculate Pre�(���

� � ), any under-approximation of this set is also in �� .
To apply these ideas, we need techniques to compute sufficiently pow-

erful convergence relations. Now we present our main technique, which
is based on a commutativity argument. First we define the key concepts.

Definition B.2 Let � be a deterministic fair action, and let � be a set
of states. Define the left moving states for (�� � ), denoted Left(�� � ), as
the set of states � satisfying

 whenever there are states ��� �� with �� �	 � such that ��� �� �
�� ��,

then there is a state � with �
�
�� ��� ��. ��

Intuitively, if � 	 Left(�� � ), then � can “move left” of �� , and still
reach the same state. We say that � is left commutative or left moving
at state �. The definition is illustrated in Figure B.1.

� �� ��

� ��� ��
�
�
�

�
�
�

� � �� ��

Figure B.1: Action � is left commutative at state � — i.e., � � Left(�� � ). Note
that �� �� � .
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Definition B.3 The �-helpful states, denoted Helpful(�� � ), is the
largest set of states � with � � � � (��(�) � Left(�� � )) which satisfies

� � � � ��� � =� �
�

�� � 	 � � � � � 	


�

Intuitively, a state is �-helpful if the properties that � is enabled and
left moving remain true when any sequence of transitions not in � are
taken, unless � is reached. The above concepts can be used to define a
convergence relation as follows. Recall that a terminated set of states is
stable.

Theorem B.4 Let � � � be a fair action of 
������ and � be a

terminated set of states. Then the relation
�

��� defined by

�

���

�
= Helpful(�� � ) � �

is a convergence relation for � .

Proof. Assume that �
�

��� � and � � �� . Consider any computation
�0 �1 �2 � � � from � = �0 . We must show that it contains a state in � .

� If there is a � with �� � � we are done.

� Otherwise, if there is a � with ��
�
�� ��+1 , let � be the least such

index. By induction, using the definition of Helpful(�� � ), we infer
that for  = 0� 	 	 	 � � �� � Helpful(�� � ); hence �� � ��(�) and
�� � Left(�� � ).

Let �� be the unique state with ��
�
�� �� . In particular �� = ��+1 .

By induction we infer, using the definition of Left(�� � ), that �� is
reachable from � for all  with 0 �  � � . In particular, �� = ��+1

is reachable from � . From � � �� and the stability of �� , we infer
��+1 � �� and hence the computation must contain a state in � .
An illustration of this argument is provided in Figure B.2.

� Otherwise, we infer by induction over �, using � � Helpful(�� � ),
that � is enabled in all states of the computation. By fairness, �
will eventually be executed, and we are back to the previous case.


�

Corollary B.5 Pre�(�
�

��� � � � ��� � ) � �� 	 
�

In order to show how termination can be proven by backward reach-
ability analysis, we must finally explain how to compute Helpful(�� � ),
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�
��

�� �1
��

�� �2
��

�� � � �
��

�� ��
�
�
�

�
�
�

�
�
�

�
�
�

� �� �1 �� �2 �� � � � �� ��

Figure B.2: Illustration of the commutativity principle. �
�

��� �. The �-successor
of any ��-successor of � is either reachable from �, or in � .

or an under-approximation of it, by backward reachability analysis. We
first observe that:

Left(�� � ) = �Pre ((�� Æ�)� (� Æ ��)��� ) �

In other words, the set of states Left(�� � ) consists of those states from
which there is no state in �� which can be reached by executing ��

followed by � , but not by � followed by �� .

Proposition B.6 The set Helpful(�� � ) is the complement of the set

Pre�(�� � �� ��� � (�Left(�� � ) � ���(�))) �

Proof. According to Definition B.3, a state � is in Helpful(�� � ) if �
remains enabled, and only states in Left(�� � ) are visited, unless � is
executed or � is seen. It follows that a state � is not in Helpful(�� � ) if
a state not in � and not in Left(�� � ) or En(�) can be reached, without
executing � or seeing � . The set of such states � is exactly what is
computed above (before taking the complement). ��

B.5 Examples

In this section we illustrate our technique, defined in Section B.4, by
applying it to examples from the literature. We consider the examples
Any-Down, Choice, Conc-Whiles and Loops used by Podelski and Ry-
balchenko to illustrate their method of transition invariants [PR04]. Our
technique can handle all the examples given in [PR04] in two iterations
or less. We also consider the alternating bit protocol.

B.5.1 Any-Down

This is the program Any-Down [PR04]. For readability, we reformulate
the program into the action-based syntax of the example in Section B.3,
as follows.

�1 : 	 := 	 + 1 if 
 = 1

�2 : 
 := 0 if true

�3 : 	 := 	 � 1 if 
 = 0 	 	 � 0
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The program variable � assumes values in the natural numbers, and the
variable � assumes values in �0� 1�. Both �2 and �3 are fair actions. The
transition relation is the union of all three actions plus the identity rela-
tion. The set � of terminated states is the single state with � = � = 0.
It is well-known that a standard termination proof for this program will
require a ranking function whose range is larger than the natural num-
bers. This suggests that we need at least two iterations of our technique
to compute the set �� , as, intuitively, one iteration covers at most �

computation steps.
In the first iteration we compute Helpful(�� � � ) for � = 2� 3. The

computations are summarized in the table below.

�� �	(��) Left(��� � ) Helpful(��� � )

�2 true � = 0 � = 0

�3 � = 0 � � 
 0 � = 0 � � = 0 � � = 1 � = 0

We explain the entries of the table for �2 . The set Left(�2� � ) includes all
states � where � = 0. This is since either (1) � = 0 in which case � � � ;
or (2) � 
 0, which means that �1 is not enabled, and �2 commutes
with �3 . On the other hand, Left(�2� � ) does not include any state �

with � = 1, which we see as follows. Consider �
�1��

�2�� �, for some �

with � 
 0. Clearly � �� � , but we do not have �
�2���� �.

The set Helpful(�2� � ) includes all states � where � = 0. The action �2

stays enabled from such a state �. Furthermore, the action �1 is disabled,
while the execution of �3 from � again leads to a state in Helpful(�2� � ).

By Corollary B.5, the following set is in �� :


�
= Pre�(�Helpful(��� � ) � �� 	 � = 2� 3�� � ) 
 � = 0

In the second iteration we repeat the procedure with a larger set of
terminated states . The interesting difference is that Left(�2� ), which
is true, is larger than Left(�2� � ), since any execution of �2 leads to .
Hence also Helpful(�2� ), which is true, is larger than Helpful(�2� � ).

�� �	(��) Left(��� ) Helpful(��� )

�2 true true true

�3 � = 0 � � 
 0 true � = 0

Again, by Corollary B.5, the following set is in �, hence in �� :

Pre�(�
�2

��� �
�3

����� ) 
 true

Hence, all states are terminating. ��
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Figure B.3: The program Choice.

B.5.2 Choice

This is the program Choice [PR04].

� : (�� �) := (�� 1� �) if � � 0 � � � 0

� : (�� �) := (� � 2� � + 1) if � � 0 � � � 0

The actions are taken in a loop while � � 0 � � � 0. The question is
whether the loop terminates.

Both actions are fair. A state is of the form (�� �), where � and � are
in Z. We consider any initial values where � � 0 � � � 0 (otherwise the
loop trivially terminates, as no action is enabled). We let the set � of
states be those that are reachable from the initial states. The terminated
states are �

�
= � = 0 � � = 0. We obtain the following.

� 	
(�) � Left(�� � ) Helpful(�� � )

� � � 2 � � = �� 2 �
� = � � 1

� � 2 � � = �� 2 �
� = � � 1 � �

� � � 1 � � 1 � �

By Corollary B.5, �
�
= Pre�(�

�
��� �

�
���	� � ) 
 �� . We observe that

� includes � � 1 � � � 2 � � = � � 2 � � = � � 1.
In a second iteration, considering � as the set of terminated states,

we obtain the sets summarized in the table below.

� 	
(�) � Left(�� �) Helpful(�� �)

� � � 0 � � � 0 � � 0 � � � 0

� � � 0 � � � 0 � � 0 � � � 0

Notice that
�
��� = � since 	
(�) 
 Helpful(���). We also have

�
��� = �.

By Corollary B.5, therefore Pre�(��� �	� �) 
 �� 
 �� , which in-
cludes the initial values. Thus the loop always terminates. �
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B.5.3 Conc-Whiles

This is the program Conc-Whiles [PR04].

Figure B.4: The program Conc-Whiles.

�1 : (�� �) := (�� �� 1) if � = �0 � � � 0

�2 : (�� �) := (� � 1� �) if � = �0 � � � 0

�3 : (�� �� �) := (�2� �� 0) if � = �0 � � � 0

�4 : (���� �) := (�2� 0� �) if � = �0 � � � 0

This program models two processes running in parallel. All actions are
fair. A state is of the form (���� �� �), where � � ��0� �2�, � � ��0��2�,
and �� � � Z. Any state where � = �0, � = �0, � � 0 and � � 0 is an
initial state. We let � be the states reachable from the initial states. The
terminated states are 	

�
= � = �2 � � = �2 � � = 0 � � = 0. We

obtain the following.

�� 
�(��) � Left(��� 	 ) Helpful(��� 	 )

�1 �(�0��0� �� � + 1) � � � 0� �(�0��0� �� � + 1) � � � 0� 	 	

	�(�0��0� �� 0) � � 
 1�

�2 �(�0��0� � + 1� �) � � � 0� �(�0��0� � + 1� �) � � � 0� 	 	

	�(�0��0� 0� �) � � 
 1�

�3 �(�0��0� 0� �) � � 
 0� �(�0��0� 0� �) � � = 0� 1�

	 �(�0��2� 0� 0)� 	 �(�0��2� 0� 0)� 	 	

�4 �(�0��0� �� 0) � � 
 0� �(�0��0� �� 0) � � = 0� 1�

	 �(�2��0� 0� 0)� 	 �(�2��0� 0� 0)� 	 	
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By Corollary B.5, the set �
�
= Pre�(�

��

��� � � = 1��4�� � ) � �� .
Note that � includes �(�0��0� 	� 	 + 1) � 	 � 0�, �(�0��0� 	 + 1� 	) �

	 � 0�, and �(���� 0� 0) � � = �0� �2�� = �0��2�, but not all of 
.
Repeating the procedure on � gives the following.

�� �(��) � Left(��� � ) Helpful(��� �)

�1 �(�0��0� 	� �) � 	 � 0� � � 0� �(�0��0� �� �) � � � 0� � �

�2 �(�0��0� �� �) � � � 0� � � 0� �(�0��0� �� �) � � � 0� � �

�3 �(�0��0� 0� �) � � � 0� �(�0��0� 0� �) � � � 0�

� �(�0��2� 0� 0)� � �(�0��2� 0� 0)� � �

�4 �(�0��0� �� 0) � � � 0� �(�0��0� �� 0) � � � 0�

� �(�2��0� 0� 0)� � �(�2��0� 0� 0)� � �

By Corollary B.5, the set Pre�(�
��

	�� � 
 = 1��4�� �), which includes
the initial states, is in ��, and therefore in �� . ��

B.5.4 Loops

This is the program Loops [PR04].

Figure B.5: The program Loops.

� : (�� �) := (�� �	 1) if � = �0 
 � � 0

 : (�� �) := (� 	 1� �) if � = �0 
 � � 0

� : (�� �� �) := (�2� �� 0) if � = �0 
 � � 0

In this program, all actions are fair. A state is of the form (�� �� �),
where � � ��0� �2� and �� � � Z. Any state (�0� �� �) with � � 0 is an
initial state. Let the set of terminated states � be �(�0� �� �) � � � 0�.
We wonder whether all initial states terminate.
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� ��(�) � Left(�� � ) Helpful(�� � )

� �(�0� �� �) � � � 0� �(�0� �� �) � � � 0� � �

	 �(�2� �� �) � � 
 �� �(�2� �� �) � � 
 �� � �

� �(�2� �� �) � � � �� �(�2� �� �) � � � �� � �

Note that
�

�	� = � since ��(�) 
 Helpful(�� � ). The corresponding
holds for 	 and �. By Corollary B.5 therefore Pre�(��� 	� ��� � ), which
includes the initial states, is in �� . ��

B.5.5 Alternating Bit Protocol

This protocol consists of finite-state processes that communicate over
unbounded and lossy FIFO channels. As shown in our earlier work, it
is decidable whether such a protocol satisfies a safety property [AJ96b],
but undecidable whether a protocol satisfies a liveness property [AJ96a].
Using our technique, we can prove liveness properties for some of these
protocols.

The alternating bit protocol involves a sender and a receiver that com-
municate over two channels � and �. Channel � is used to transmit
messages from the sender to the receiver, and channel � to transmit ac-
knowledgments from the receiver to the sender. Both channels are FIFO
and faulty in the sense that messages may be lost but not reordered.
The purpose of the protocol is to transmit messages from the sender to
the receiver in correct order, in spite of the fact that the channels can
lose messages. Corruption of messages can also be taken into account
by modeling it as a loss (some mechanism will detect and discard a cor-
rupted message). Each channel is “fair” in the sense that if infinitely
many messages are input, then infinitely many messages will be deliv-
ered.

We describe the operations of sender and receiver in the protocol. At
one end of the channels, the sender constructs a message �� by adding
a sequence number � in �0� 1� to a pending message �, and sends it on
the channel � to the receiver. The sender waits for an acknowledgment
�� with the same sequence number on the channel �. If �� arrives, the
procedure is repeated with the next pending message but with an in-
verted sequence number (1 �). If no acknowledgment �� arrives within
a specified time period the sender retransmits the message ��. Retrans-
missions are repeated until an acknowledgment �� with a corresponding
sequence number arrives. Acknowledgments with non-corresponding se-
quence numbers are discarded. On the other end of the channels, the
receiver receives messages �� from the incoming channel � . A message
�� is delivered if the corresponding sequence number � was expected.
After delivery of �� , the receiver sends on channel � an acknowledg-
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Figure B.6: The alternating bit protocol.

ment �� with the same sequence number to the sender. The receiver
expects a message with an inverted sequence number (1� �). Messages
with non-expected sequence numbers are discarded.

The sender and the receiver are modeled by the finite-state processes
depicted in Figure B.6. The states of the sender are in ��0� �1�, while
those of the receiver are in ��0� �1�. A state of the system is of form
� � (�� � ��) where � is a sender state, � is a receiver state, �� is the
content of channel � , and �� is the content of channel �. The initial
state is �0�0(��� ��) with both channels empty. From a state � � (�� � ��),
the effects of the actions !�� and !�� , with � in �0� 1�, are respectively
� � (����� � ��) and � � (�� � �����) — the operator “�” is concatenation
of channel content. The state � � (�� � ��) results from applying the
action ?�� to the state � � (�� � ��� ��), or from applying the action
?�� to the state � � (�� � �� � ��). Here, � and � are perfect FIFO
buffers, and message losses are modeled as a non-deterministic choice
between a send and a skip action.

There are techniques to automatically calculate the set of states reach-
able from the initial state �0�0(��� ��). An example is to start from the
initial state and to apply the technique of loop-first search [BG96]. This
technique generates the set of reachable states by taking all possible tran-
sitions, and evaluating (whenever possible) the effect of performing an
arbitrary number of the same transition. Examples of such accelerations
are 	�

1 or 	�

2, resulting in the addition of to the tail of � , respectively
the substraction from the head of �, of an arbitrary number of �0, re-
spectively �1. Sets of states can be captured by Queue-content Decision
Diagram (QDD) of the form � � (�� � ��) where �� and �� are regular
languages. The search stops once the set of generated states stabilizes,
i.e. no new states are generated when applying transitions. For the pro-
tocol at hand, this technique returns the set of reachable states as the
union of the four sets �0�0(��

0�
�

1� �
�

1), �0�1(��

0� �
�

0�
�

1), �1�0(��

1� �
�

1�
�

0),
and �1�1(��

1�
�

0� �
�

0).
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We describe the program �������� corresponding to the alternat-
ing bit protocol. The set � is here chosen to be the set of reachable
states computed above. The transition relation �� is the union of the
actions skip and �1� � � � � �12. All these actions, except skip, are in �.
This corresponds to the assumption that if a message is continuously
retransmitted, then eventually one of the messages is not lost.

We use the technique defined in Section B.4 to prove the following
four progress properties of the protocol.

��0�1
: �0�0(��

0�
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1� 	
�

1) � ��0�1(��

0� 	
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0	
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1)
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1)

Observe that property ��0�1
implies that from any state in

�0�0(��

0�
�

1� 	
�

1), the system is guaranteed to reach a state in
�0�1(��

0� 	
�

0	
�

1). This means the receiver changed state from �0 to �1.
In other words, the receiver is guaranteed to take action �11 and to
receive the message �0. A similar reasoning with ��0�1

, ��1�0
and ��1�0

ensures sender and receiver indefinitely alternate sending �0, 	0, �1

and 	1. We show in the following how to prove the property ��0�1
; the

other properties can be proven similarly.

Let 

�
= �0�1(��

0� 	
�

0	
�

1). We use the technique defined in Section B.4
to calculate a set of states included in �
 . To ensure the stability of 
 ,
we first modify all actions � to �
 � �. The sets where the actions are
enabled are shown in Figure B.7. Observe that �
 � �5 is empty. The
results of the computations (according to Proposition B.6) of the helpful
set of states for each fair action �� in � appear in the same figure. Let
us give an intuition of why Helpful(�7� 
 ) equals the union of the sets
�0�0(��

0�
+
1 � 	

�

1), �1�0(�+
1 � 	

�

1	
�

0) and �0�1(��

0� 	
�

0	
�

1). For every state � in
this union, it is the case that either (1) � is in 
 = �0�1(��

0� 	
�

0	
�

1); or (2)
� is in the union of �0�0(��

0�
+
1 � 	

�

1) and �1�0(�+
1 � 	

�

1	
�

0). In the second
case, observe that �7 is enabled and that the only action that does not
commute with �7 is action �11 (which is not enabled). We have that (1)
�7 is enabled from � and commutes with any other enabled action; and
(2) the execution of any other action from � leads to the same union
of �0�0(��

0�
+
1 � 	

�

1) and �1�0(�+
1 � 	

�

1	
�

0). Observe that �7 is not enabled
outside the union of �0�0(��

0�
+
1 � 	

�

1), �1�0(�+
1 � 	

�

1	
�

0) and �0�1(��

0� 	
�

0	
�

1).

By Corollary B.5, we have �
�
= Pre�(�

��

��� �  =

1��12	� 
 ) � �
 . Observe that �0�0(��
0�

�
1� 	

�
1) = Pre�(�

��

��� �
 = 2� 7� 11	� �0�0(��

0� 	
�

1)) � �. Hence �0�0(��
0�

�
1� 	

�
1) � �
 . 
�
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Figure B.7: Alternating bit protocol. Calculation of � �0�1(��

0� �
�

0�
�

1)

19



B.6 Parameterized Systems

In this section we consider verification of liveness properties for param-
eterized systems; these are systems with an arbitrary number of similar
(finite-state) processes operating in parallel. Although each instance of a
parameterized system is finite, the union of all instances of the system is
infinite-state, since the number of processes is unbounded. Therefore the
task of verifying a property for all instances of the system, so-called uni-
form verification, is an infinite-state verification problem. We describe
an implementation of our method in the framework of Regular Model
Checking [AJNS04]. For several examples in this section, the technique
of Section B.4 computes a strict under-approximation of the set �� ;
therefore we also present a complementary technique which can prove
termination for those examples.

Example: Szymanski’s Algorithm As an example of a parameter-
ized system, we describe the mutual exclusion algorithm by Szyman-
ski [Szy90]. In the algorithm, an arbitrary number of processes compete
for a critical section. The processes are numbered, say from 1 to � .

The local state of each process consists of a control state ranging over
the integers from 1 to 7 and of two Boolean flags, � and �. A global state,
representing the system state, is essentially an array of local states, in-
dexed by the process indices. A pseudo-code description of the behavior
of process number � is shown in Figure B.8.

1: await �� : � �= � : ��[�]

2: �[�]� �[�] := true� true

3: if �� : � �= � : �[�] �= 1 � ��[�]

then �[�] := false ; goto 4

else �[�] := false ; goto 5

4: await �� : � �= � : �[�] � ��[�]

then �[�]� �[�] := false � true

5: await �� : � �= � : ��[�]

6: await �� : � � � : ��[�]

7: �[�] := false ; goto 1

Figure B.8: Szymanski’s algorithm. Pseudo code for process �.

For instance, according to the code on line 6, if the control state of
a process � is 6, and if the value of � is false for all processes � � �,
then the control state of � may be changed to 7. Line 7 represents the
critical section. Each process � has an action ��(�) corresponding to
the statement beginning at line � in the pseudo-code for process �. All
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actions are fair, except �1(�); this action represents process � entering the
competition for the critical section, and therefore its execution should
not be enforced.

Intuitively, and figuratively, the algorithm simulates a number of pro-
cesses “gathering in a waiting room”, after which some process in the
waiting room can “shut the door” (i.e., set their � to true) so that no
more processes can “enter” (as this disables transitions from line 1), af-
ter which the processes “exit the room” in order. Thinking of � and � as
“wait” and “shut” may help. Entering the room corresponds to reaching
line 2, and “locking the door” to reaching line 5. The difference between
“shut” and “lock” is that a shut door can be reopened (the transition
from line 3 and line 4 again opens the door), while a locked door remains
closed until the processes have exited the room.

Let us explain how mutual exclusion is achieved. Initially, all processes
are at line 1 with local variables � = � = false . A process executing �3

will go to line 4 if it sees another process at line 2 and there wait for
another process to reach line 5 — otherwise it goes directly to line 5. In
the latter case, no-one else entered the room and the process can proceed
alone, after locking the door. In the former case, the processes “in the
room” eventually meet up at line 5, after which they enter the critical
section and exit the room in order.

Starvation freedom can be formulated as follows: whenever any process
is at line 2 it will eventually reach line 7. To formalize this property, pick
a process �. Define �� to be all states in which process � is at line 7. To
prove starvation freedom for a process � we must show that all reachable
states where process � is at line 2 are in ��� .

B.6.1 A Complementary Termination Rule

In this section, we present a proof rule for termination, which is partic-
ularly suitable for the class of parameterized systems considered in this
section. It will be used to complement the commutativity-based tech-
nique of Corollary B.5 (in Section B.4). The rule assumes that we select
a finite number of fair actions of the program, and establishes that a
state � is in �� provided that computations from � satisfy:

� whenever one of the selected actions is enabled, it remains enabled
until it is executed,

� each of the actions can be executed at most once before � is
reached, and

� when all these actions are disabled, the computation has reached
� .
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This rule is particularly useful for parameterized systems, since termi-
nation is often achieved by letting a selected subset of the processes
execute a fixed sequence of actions (i.e., statements). Typically, we will
select one parameterized action �(�) for all �, or all � except a distin-
guished process � for which we want to prove termination. The rule is
useful when the actions disable themselves immediately after being ex-
ecuted, which is the case in protocols where actions “change line”. The
intuition behind the rule, in this case, is that we are able to deduce that
Pre�(��(�) � � � N�� � ) terminates, if we know that states where all
�(�) are disabled (for each �) are in � .

Let us define the involved properties formally. Given a program
�������	. Let � be a terminated set of states.


 Persist(�� � ) is the set of states � such that in any computation
from �, whenever � is enabled, it remains enabled unless it is exe-
cuted or � is reached.


 Twice(�� � ) is the set of states, from which there exists a compu-
tation where � is executed twice (or more) without visiting � .


 Let � be a finite set of actions. After(�� � ) is the set of states �

such that in any computation from �, whenever all actions in �
are disabled at a state ��, then �� � � .

Note that the set � used in After(�� � ) is typically a parameterized
set of actions, containing actions of form ��(�) for a finite set ���, and
an arbitrary � with 1 � � � 	 . Thus the set � is unboundedly large.
Care must be taken to handle the parameters correctly when performing
the predecessor calculations. Now we state the termination rule.

Theorem B.7 Let � be a set of fair actions of �������	, and let �
be a set of states in �. Then�

After(�� � ) 
�
���

[�Twice(�� � )  Persist(�� � )]

�
� �� 


Proof. Let � be a state in the set defined by the left-hand side. Consider
any computation from �. Since � � �Twice(�� � )Persist(�� � ) for each
� � �, all actions in � are enabled until executed or � has been seen,
and they cannot be executed twice without seeing � . They might also be
disabled at �. Since � � After(�� � ), when all actions of � are disabled,
we have reached � . By fairness, the actions will eventually be executed,
and so we must eventually see � . Thus � � �� . ��

Corollary B.8 The statement of Theorem B.7 is true also for any
under-approximations of the sets After(�� � ), �Twice(�� � ) and
Persist(�� � ). ��
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The sets used in the rule can be computed using backward reachability
analysis, in a manner analogous to the way Helpful(�� � ) is computed
(see Proposition B.6). We give the computations without proof, as they
are rather self-explanatory. Figure B.9 illustrates the computation of
Persist(�� � ) according to Proposition B.9 — the other computations
are similar.

Proposition B.9 The set Persist(�� � ) is the complement of the set

Pre�(�� � �� ��� � �En(�)) �

��

Proposition B.10 The set Twice(�� � ) can be computed as follows (in
order):

(1) � := Pre�(�� ������ ) (2) � := Pre (�� � � � �)

(3) � := Pre�(�� ���� �) (4) � := Pre (�� � � � �)

(5) � := Pre�(�� ���� �) �
��

Proposition B.11 The set After(�� � ) is the complement of the set

Pre�(�� � �� � �� � �� 	 ��En(�) ) �

��

�
��
��

��
��

��
�� 
 
 


��
��

� �� �

��

�� � �En(�)

Figure B.9: Computation of Persist(�� � ). In the figure, the state � is in the
complement of Persist(�� � ).

Optimizations While it is possible to compute the sets Persist(�� � ) ,
Twice(�� � ) and After(�� � ) as described in Propositions B.9–B.11 —
that is how we did in the experiments in [AJRS06] — we will here elab-
orate on how they can be computed faster. We give sufficient conditions
for when reachability computations can be avoided, to save time. We
illustrate the conditions using “transition diagrams” of the form

�
�
���

where � and � are sets of states. The interpretation of this diagram is:
“is it possible to execute � from some state in � and thereby reach some
state in � ?”
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The mentioned optimizations are sufficiently strong to speed up the
application of Theorem B.7 in, e.g., the verification of Szymanski’s and
Dijkstra’s algorithms (see Section B.6.2).

Persist(�� � ). If the action � cannot be disabled by other actions
(without reaching � ), then Persist(�� � ) is the set of all states. A suffi-
cient check for this is whether

En(�)
��

���En(�) � ��

which can be checked without reachability.
Twice(�� � ). The intuition here is that we want to ascertain that

an action cannot be executed several times (in particular, cannot loop)
outside of � . Any sufficient condition for this would work. For example,
if the action cannot again be enabled outside of � , i.e.,

�En(�)
��

��En(�) � ��

then we know it cannot be twice executed before � .
A stronger version, which requires two reachability computations

instead of the three in Proposition B.10, is to first compute the set
MayEnable(�� � ) of states � satisfying

� �� � � � ��
� �� �

��

En(�) � �� �

Using a second reachability computation we obtain the set � of states �

satisfying
� �� � � � ��
� �� �

��

�
�� MayEnable(�� � ) �

Clearly � cannot be executed twice (outside of � ) in any computation
starting in the complement of �. Therefore �� � �Twice(�� � ).

After(�� � ). Without using reachability, we can find out whether
After(�� � ) is the set of all states, by checking whether

[�� 	 � �En(�)] � �

which becomes stronger if we restrict the left hand side to the set of
reachable states.

B.6.2 Implementation

We have implemented a verification method based on Corollary B.5 and
Theorem B.7 in the framework of Regular Model Checking [AJNS04],
and applied it to a number of well-known parameterized mutual exclu-
sion protocols. We have verified the liveness property individual starva-
tion freedom — is it always the case that when a process is in a certain
local state, it will eventually visit the critical section? More precisely,
the properties are of the following form (using pseudo temporal logic):

�� � (process � at local state � =
 �(process � in critical section)) �
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Verification Procedure For each protocol, we have modeled �� as
the set of states where process � is in the critical section. Note that the
property is checked for all possible values of � — i.e. � can be any process.
We have thereafter computed an under-approximation �� of ��� using
the technique of Section B.4, and thereafter applied the complementary
rule described in Section B.6.1 to compute (an under-approximation of)
��� . To ensure that predecessors are reachable states, we first com-
puted the set of (forwards) reachable states, and restricted all actions
to this set.

In our experiments we manually chose what rules to apply and when,
to be able to observe their power more precisely. In other words, the
experiments were made semi-automatically, in that we gave instructions
of the form “first apply this rule a number of times, and then this”. For
the application of the complementary rule to our examples, we chose
the set � as three types of parameterized actions: � = ��(�) � � � N�,
� = ��(�)�, or � = ��(�) � � �= ��, where � ranges over the actions
of the program. The approach can be fully automated by e.g. applying
the rules alternatingly. By using sufficient conditions and heuristics, we
can try to avoid wasting time on “bad choices” of applications (although
any application is sound).

Example: Szymanski’s Algorithm We describe how our verifica-
tion techniques worked when verifying starvation freedom for Szyman-
ski’s algorithm. Recall that the pseudo code for this algorithm is given
in Figure B.8.

Three successive applications of Corollary B.5 establish starvation
freedom for “almost all” the system states where process � is waiting.
These are the sets of states of form Inv � �@�5� 6� 7� — meaning, all
reachable states where process � is at lines 5, 6, or 7, for all possible
values of �.

However, Corollary B.5 cannot prove starvation freedom for system
states where there are processes at both line 1 and line 2. In more detail,
we are able to prove that sets of states of form � = �1� 3� 4�� � �@3 �
�1� 3� 4�� and �� = �2� 3� 4�� � �@2 � �2� 3� 4�� are in ��� , where we have
used regular expressions over line numbers to describe sets of states. For
example, � is the set of all states where an arbitrary number of proceses
on lines 1, 3 or 4 occur to the left and right of process �, which itself is
on line 3.

Corollary B.5 does not allow us to conclude that ��� = �1� 2� 3� 4�� �
�@2 � �1� 2� 3� 4�� is terminating. The reason is that the actions of line
2 may disable the actions of line 1 — i.e., they do not commute. It is
however the case that the actions of line 2 are persistent, and cannot be
executed twice before � , and the set of states where no processes are
at line 2 is known to be in �� , so that one application of Theorem B.7
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Model Time Starvation Free States

Token Pass 9 s Whenever the token is to the left
of �

Token Ring 14 s Whenever process � does not
have the token

Bakery 36 s Whenever process � has taken a
ticket

Szymanski� 5 min 45 s Whenever � is at line 2

Burns 7 min 30 s All processes from line 5, and the
first process from any line

Dijkstra� 38 min 43 s Whenever � = �, and ����[�] �=
0, and there are no processes at
line 3

Table B.1: Experimental Results. The entries marked with “�” have been ver-
ified using the optimizations described in Section B.6.1. The other times are
copied from [AJRS06], but it is reasonable to expect a similar speed up (say
25%).

(using � = ��2(�) � � � N� where �2 is the action of line 2) suffices to
prove that 	�� is terminating. In fact, 	�� is the exact set of reachable
states for when � is at line 2, which establishes that whenever process �
is at line 2 it will reach the critical section.

Results The verification results of our implementation are presented
in Table B.1. The models are available in [Nil05]. We have computed
sets of states — so-called starvation free states — from which starvation
freedom for process � under weak fairness is guaranteed, as a set which
depends on �. In all cases, the starvation free states contain all of �
� ,
to our knowledge. For example, the starvation free states of Szymanski’s
algorithm are: “whenever process � is at line 2”. The column “Time”
contains time measured from our implementation. The experiments were
run on a PC with a 2.4 GHz processor and 1 GB of RAM.

For the first three protocols, we need apply only Corollary B.5. For the
last three protocols, we need also Theorem B.7 — first one application
of Corollary B.5 (three for Szymanski), and thereafter one application
of Theorem B.7 (four for Dijkstra).

A Case Study We take a closer look at the verification of Szyman-
ski’s and Dijkstra’s algorithms, to explain what takes time. We present
measurements for these algorithms in Tables B.2 and B.3. Their pseudo
code is shown in Figures B.8 and B.10.
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1: ����[�] := 1

2: if � �= � then

await ����[�] = 0 then

3: � := �

4: ����[�] := 2

5: if �� �= � : ����[�] = 2 then goto 1

6: ����[�] := 0 ; goto 1

Figure B.10: Dijkstra’s algorithm. Pseudo code for process �.

The verification was done as follows (see also Tables B.2 and B.3).
The “preprocessing phase” consists of (1) accelerating the program ac-
tions, (2) computing the invariant (the reachability computation shown
in the tables), (3) restricting the domain of the actions to �� and to
the invariant, (4) again accelerating the restricted actions — hence, in
total two acceleration phases and one reachability computation. After
the preprocessing phase, follow three applications of Corollary B.5 for
Szymanski’s algorithm, and one for Dijkstra’s. Each such application
consists of: (1) computing the helpful states (one reachability compu-
tation per action), (2) accelerating the corresponding convergence rela-
tions, and (3) computing an under-approximation of�� using backward
reachability with the convergence relations. Finally, we apply Theorem
B.7 once (with � = ��2(�) � � � N�) for Szymanski’s algorithm, and
four times for Dijkstra’s algorithm (with � = ��(�) � � � N� � �= �� for
� = �1� �6� �5� �4).

Alternatively, we can verify Dijkstra’s algorithm by replacing the ap-
plication of Corollary B.5 by applications of Theorem B.7 on � = ��(�)�
(in effect “backing” the process � to terminating states), and then pro-
ceeding as before. This gives us a total verification time of 38 min 43 s,
of which Theorem B.7 takes up 23 min 29 s. The preprocessing phase is
then as before.

The “Total” time is the total time for the phase in question. It is
slightly higher than the sum of the acceleration and reachability times,
as other computations also take place (e.g., computation of left moving
states). The “Completion” row shows the total verification time; again,
slightly higher than the sum of the presented parts, for the same reason.

No acceleration takes place when we apply Theorem B.7, since we
reuse the accelerations made in the preprocessing phase. For Szyman-
ski’s algorithm, the 40 s of Theorem B.7 are distributed as follows: com-
puting After(�� � ), 2 s; computing Persist(�� � ), 0 s; and computing
�Twice(�� � ), 36 s. The computation of �Twice(�� � ) is the most time
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Phase � Task Acceleration Reachability Total

Preprocessing two: 32 s and 44 s one: 1 s 79 s

3 � Corollary B.5 three: 24 s, 13 s,
28 s

17: 130 s 217 s

1 � Theorem B.7 none three: 38 s 40 s

Completion 5 min 45 s

Table B.2: Overview of the verification of Szymanski’s algorithm. The Acceler-
ation column shows both the number of accelerations and the time each accel-
eration took. The same holds for the Reachability column.

Phase � Task Acceleration Reachability Total

Preprocessing two: 24 s and
860 s

one: 4 s 888 s

1 � Corollary B.5 one: 357 s six: 461 s 859 s

4 � Theorem B.7 none 4�3: 330 s, 327
s, 253 s, 260 s

1177 s

Completion 49 min 9 s

Table B.3: Overview of the verification of Dijkstra’s algorithm. The Acceleration
column shows both the number of accelerations and the time each acceleration
took. The same holds for the Reachability column.

consuming part by far also for Dijkstra’s algorithm (in total 1127 out of
1170 s).

We note that the acceleration of the restricted actions for Dijkstra’s
algorithm is very expensive (860 s). For example, the first action �1(�)
of Dijkstra’s algorithm, which for process � changes the � from 1 to
2 and sets the flag to 1, takes 2 s to accelerate unrestricted, 76 s when
restricted to �� , 213 s restricted to the invariant, and 166 s restricted to
both �� and the invariant. Similarly, the action �3(�) which for process
� changes the � from 3 to 4 and sets the global variable � to �, takes 2
s to accelerate unrestricted, 467 s when restricted to the invariant, 468
s when restricted to both �� and the invariant, and the acceleration
when restricted to only �� was aborted after 30 minutes.

Acceleration of, and reachability computations with, large actions
(i.e., whose automata representation is large — see e.g. [AJNS04]) is
clearly the bottle-neck.

Discussion Quick acceleration techniques exist for most actions oc-
curing in the considered protocols — referring to actions for which the
transitive closure is known, in advance, as a function of the action —
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for such actions we can essentially eliminate the time spent on acceler-
ation. It is however motivated to develop quick acceleration techniques
for actions with global variables, such as �3 of Dijkstra’s algorithm.

Whenever possible, large actions (meaning, whose automata represe-
nation is large) should be avoided. Actions typically become large when
restricted to a “complex” domain or range.

While in Sections B.4 and B.6 we often say that actions should be
restricted to �� , the results are still sound without that restriction —
we just risk proving termination for a smaller set of states. If we do
not restrict the actions to Inv , we may end up proving termination
for unreachable states as well, which is meaningless but sound. In the
following we present an optimization which allows us to avoid restricting
the actions, without introducing any approximation.

We observe that it is sometimes not necessary to restrict the actions,
as the backward reachable states are already in the desired set. This is
simple and efficient to check, yet potentially saves much acceleration and
reachability computation time. We say that a set of states � is backward
stable (with respect to �) if:

Pre (�� �) � � �

Given a set of states � and a set of actions � for which � is backward
stable. The point of backward stableness, is simply that

Pre�(�� �) � � �

We can use this to avoid potentially costly accelerations, and reacha-
bility computations, by not restricting an action to Inv � �� , if that
set is anyway backward stable with respect to the action. Better yet,
it suffices that Inv � Pre (�� �) � � where Inv is the invariant. The
saving essentially comes from not having to compute ((Inv � �� ) � �)+,
and instead compute just �+, and thereafter e.g. Inv � �+. However,
reachability computations are also faster, as we will demonstrate (later,
see Table B.4).

In practice, we expect that almost all actions (typically, all but one)
are backward stable with respect to Inv��� , because not being so means
that it is possible to leave � by executing the action. In our experiments,
� is the set “process � is in the critical section”, and therefore the only
action which is not backward stable, should be the parameterized action
� such that �(�) leaves � (takes process � out of the critical section).

The optimization to keep the actions small, described above, pays off
well. Motivating measurements are shown in Table B.4.

Finally, we present one more optimization, which we however have
not implemented. We can speed up the computation of Twice(�� � ) at
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Model Szymanski Dijkstra

Backward stable
actions

all except �7 all except �6

Preprocessing ac-
celeration

32 s and 16 s (cf. 44
s)

24 s and 27 s (cf. 860
s)

Total verification
time

5 min 12 s (cf. 5 min
45 s)

24 min 38 s (cf. 38
min 43 s)

Table B.4: Verification of Szymanski’s and Dijkstra’s algorithms, when optimiz-
ing the acceleration done in the preprocessing phase. The times are compared
with Tables B.2 and B.3. Note that the comparison is made with the second
acceleration of the two (the first is as before). Actions for which Inv � ��
is backward stable need not be restricted to Inv � �� before acceleration, as
described in the discussion. The verification of Dijkstra’s algorithm was done
using only Theorem B.7, which was suggested as an alternative in the discus-
sion.

least when � = ��(�) � � � N� using the following over-approximation:
if we know the invariant, we can compute an over-approximation of e.g.
Twice(�(�)� � ) by iterating with the local transition relation �� (�) =
��(�) � � ���� and intersecting with the invariant after each step. In
other words,

Twice(�(�)� � ) 	 LocalApprox (�(�)� � )

where the latter set is computed in a finite number of steps as follows:

(1) (� := � 
 Post (��(�)� �) � Inv)+

(2) � := Post (�(�)� Inv )

(3) (� := � 
 Post (��(�)� �) � Inv)+

(4) � := Post (�(�)� Inv )

(5) (� := � 
 Post (��(�)� �) � Inv)+

as usual restricting ourselves to outside of � . The meaning of a compu-
tation marked with a “+” above is to take the fixed point of � under the
operation. These computations must terminate if the set of local states
of process � is finite (in at most as many steps as the number of local
states). The idea behind the optimization is essentially to replace reach-
ability computations, which involve a particular number of applications
of a specific action, with local fixed points. Let us call this optimization
local reachability. Note the similarity with Proposition B.10. We believe
this is useful for our benchmark at least. The speed up should be signif-
icant, as we replace the most expensive computations with an elegant
computation which does not use reachability at all.
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Comparison with Related Work Several works have considered
verification of individual starvation freedom for parameterized mutual
exclusion protocols. In papers [PXZ02, BHV04] Szymanski’s protocol
and the Bakery protocol are verified in 95.87 seconds and 9 seconds re-
spectively, using manually supplied abstractions. The works [FPPZ04a,
FPPZ04b] verify the Bakery protocol using automatically generated
ranking functions, but do not report running times. We have previously
verified the Bakery protocol in 44.2 seconds using repeated reachability
[Nil05], on the same system.

To our knowledge, starvation freedom for Burns’ and Dijkstra’s al-
gorithms has not been automatically verified before, except recently in
[JS07]. There liveness was proven for the parameterized programs con-
sidered in this paper, using transitive closure computation. The times
obtained were: Bakery, 13 s; Szymanski, 22 min 49 s; Burns, 98 s; and
Dijkstra, 6 min 4 s. Thus, the verification was sometimes faster there. In
that work a quicker acceleration scheme was used, but that alone does
not explain the difference. We have investigated the reason, and con-
clude that it is also due to the cost of reachability with relatively large
actions — our techniques require many computations of reachable states,
rather than one computation of the reachable loops. Techniques exist for
quicker accelerations, which can drastically reduce the acceleration time
([ABJN99, PS00, JS07]).

Our techniques cannot find counterexamples, as they are not com-
plete. However, one advantage is that fairness is not explicitly encoded,
and therefore the problem setting is much like that of safety analysis,
for which many efficient techniques exist [CGJ+03]. For example, over-
approximation of reachable states is sound in our setting, in the sense
that if we over-approximate the backward reachable states used in our
computations, their complements will be under-approximations, but we
only risk proving termination for a smaller set of states.

B.7 Conclusions

We have presented techniques for proving liveness and termination prop-
erties of fair concurrent programs using backward reachability analysis.
The techniques use neither computation of transitive closure nor ex-
plicit construction of ranking functions and helpful directions, and relies
instead on showing certain commutativity properties between different
actions of the program, as well as computing sets of states reachable by
certain transition relations (which are subsets of the transition relation
of the program).

The advantage of our techniques is that reachability analysis can typ-
ically be expected to be simpler to perform than computation of tran-
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sitive closures or ranking functions. We further note that the transition
relations used for the reachability analysis do not encode fairness ex-
plicitly — they are merely subsets of the original transition relation.
Because our techniques rely on computing complements of sets of states
using backward reachability, over-approximating the set of backward
reachable states is sound (but rather than “spuriousness”, we risk that
the computed set of terminating states becomes too small). A priori, any
method successful for the analysis of safety can be used together with
our techniques.

We expect that it should be possible to use and develop powerful
techniques for backward reachability analysis for many classes of pa-
rameterized and infinite-state programs. While our techniques are in
general incomplete, their power can be increased by performing repeated
applications or by applying complementary techniques afterwards. The
examples in the paper indicate that the method should be applicable
to several classes of infinite-state systems. In particular, we have shown
that our technique is able to prove starvation-freedom for several pa-
rameterized mutual exclusion protocols, for which liveness is relatively
difficult.
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Abstract

Regular model checking is a form of symbolic model checking technique
for systems whose states can be represented as finite words over a fi-
nite alphabet, where regular sets are used as symbolic representation. A
major problem in symbolic model checking of parameterized and infinite-
state systems is that fixpoint computations to generate the set of reach-
able states or the set of reachable loops do not terminate in general.
Therefore, acceleration techniques have been developed, which calculate
the effect of arbitrarily long sequences of transitions generated by some
action. We present a systematic method for using acceleration in regu-
lar model checking, for the case where each transition changes at most
one position in the word; this includes many parameterized algorithms
and algorithms on data structures. The method extracts a maximal (in
a certain sense) set of actions from a transition relation. These actions,
and systematically obtained compositions of them, are accelerated to
speed up a fixpoint computation. The extraction can be done on any
representation of the transition relation, e.g., as a union of actions or as
a single monolithic transducer. Using this approach, we are for the first
time able to verify completely automatically both safety and absence of
starvation properties for a collection of parameterized synchronization
protocols from the literature; for some protocols, we obtain significant
improvements in verification time. The results show that symbolic state-
space exploration, without using abstractions, is a viable alternative for
verification of parameterized systems with a linear topology.

C.1 Introduction

A major approach in algorithmic verification of parameterized
and infinite-state systems is to extend the paradigm of symbolic
model checking [BCMD92] by appropriate symbolic representations;
examples include Petri nets, timed automata, systems with unbounded

1



communication channels, integers and reals. One direction is regular
model checking, which considers systems whose states can be
represented as finite words over a finite alphabet; regular sets are used
to represent sets of states and transition relations. Regular model
checking has been proposed as a uniform paradigm for algorithmic
verification of several classes of parameterized and infinite-state
systems [KMM+01, WB98, BJNT00, AJNS04].

In symbolic model checking of parameterized and infinite-state sys-
tems, a major problem is that fixpoint computations that generate the
set of reachable states or the set of reachable loops (for verifying live-
ness properties) do not terminate in general, since there is no uniform
bound on the distance (in number of transitions) from an initial con-
figuration to any reachable configuration. To make fixpoint computa-
tions converge more frequently, acceleration techniques have been devel-
oped, which calculate the effect of arbitrarily long sequences of tran-
sitions generated by some action (i.e., a subset of the transition re-
lation). This has been done, e.g., for systems with unbounded FIFO
channels [BG96, BGWW97, BH99, ACABJ04], systems with counters
[BW94, CJ98], and for parameterized systems [ABJN99]. Acceleration
is typically applied to small actions, e.g., corresponding to a single pro-
gram statement or simple loop, since acceleration of larger actions or
the entire transition relation is often intractable. Fixpoint computations
can be sped up by using accelerated actions in each iteration, thereby
allowing the fixpoint computation to converge in many practical cases
(e.g., [ACABJ04]).

For regular model checking, methods have been developed for com-
puting the set of reachable configurations or reachable loops [JN00,
BJNT00, DLS02, AJNd03]. These algorithms typically work well for
small system models, but have difficulties to cope with large transition
relations. For instance, the automata-theoretic approach for parame-
terized systems [AJN+04] transforms verification of a liveness property
into the problem of finding reachable loops for a system with a rather
large transition relation. There has been no systematic way to to extract
actions for acceleration from such a transition relation, and therefore
liveness properties for several parameterized mutual exclusion protocols
have not been proven automatically by this class of techniques.

In this paper, we present a systematic approach for using acceleration
to speed up fixpoint computations in regular model checking. We con-
sider unary systems, in which each computation step changes at most
one position in the word; many models of parameterized algorithms and
algorithms on data structures are unary. Our approach is based on ac-
celerating a class of actions (called separable) which can be efficiently
accelerated. We present techniques for
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(a) systematically extracting a set of separable actions which is max-
imal in the sense that any other separable action is included in
some extracted one; the extraction can be done on any represen-
tation of the transition relation, e.g., as a union of actions or as a
single monolithic transducer,

(b) systematically composing actions to form separable actions that
represent the effect of several transitions; such compositions are
analogous to program loops; many verification examples require
the acceleration of such compositions, rather than single actions,
for termination.

We have implemented our approach in the context of our LTL(MSO)
model checker for parameterized systems [AJN+04], and verified safety
and liveness properties of several idealized parameterized protocols from
the literature, including parameterized algorithms for mutual exclusion
(e.g., the Bakery algorithm by Lamport, algorithms by Burns, Szyman-
ski, and Dijkstra). The most important result is that, for the first time,
liveness properties have been successfully verified for all of these algo-
rithms; previous approaches have not been successfully applied to all
of them. One should also note that our verification, following the au-
tomata theoretic approach, does not employ any form of abstraction:
it computes an exact representation of the set of reachable states and
reachable loops.

Related Work. Works on acceleration techniques in other
contexts include techniques for systems with FIFO chan-
nels [ACABJ04, BGWW97, BH99] and systems with counter
variables [AAB00, WB98]. Finkel, Leroux and colleagues have
presented a systematic framework for acceleration techniques for
programs with a finite number of variables, typically ranging over
integers [BFLS05, FL02]. Their approach cannot be used for regular
model checking, in which systems can not be modeled by a fixed
number of integer variables. For regular model checking, Pnueli and
Shahar [PS00] show how specific acceleration schemes can be defined
in a version of S1S. They did not consider composition of actions,
which is necessary in many cases, and they have reported verification
of liveness for only one example, after applying a manually supplied
abstraction. In our earlier work [ABJN99], we proved safety properties
of several parameterized protocols by accelerating individual actions;
this approach did not consider composition of actions and would
therefore not have been able to verify liveness properties.

Proving liveness properties of parameterized systems has been con-
sidered also in other approaches. Pnueli, Xu, and Zuck [PXZ02] use a
version of counter abstraction to prove absence of starvation properties
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for Szymanski’s algorithm and the Bakery algorithm. Their abstractions
are rather coarse, and lose information so that, e.g., safety properties
can no longer be checked. Fang, Piterman, Pnueli, and Zuck [FPPZ04b,
FPPZ04a] infer a ranking function and helpful directions of a certain
form, by generalizing from the verification of finite instances. These ap-
proaches require that a system can be verified using assertions of a cer-
tain form. In our earlier work [AJSR06], we proved liveness properties by
backwards reachability analysis from “terminated” configurations; this
technique can be combined with other techniques for proving liveness,
but can not be used to find counterexamples (bugs); our technique is
based on state-space exploration, which is guaranteed to report coun-
terexamples when they exist.

Abdulla et al. [ADHR07] verify safety properties of parameterized
protocols by over-approximation of backwards reachable states; their
approach can not be used for proving liveness properties. Other works
apply abstraction [BHV04] or regular inference [HV05] directly on the
automata that represent reachable states or the transition relation.

Outline. In the next section, we introduce the framework of regular
model checking and the fixpoint computations that are our concern.
Section C.3 presents our technique for extracting parts of a transition
relation for acceleration. In Section C.4, we present how to use our sys-
tematic acceleration in the verification of liveness properties. Experi-
mental results from our implementation, and comparisons with other
results are presented in Section C.5. Section C.6 presents conclusions
and future work directions.

C.2 The Regular Model Checking Framework

Let Σ be a finite alphabet. A relation � on Σ� (the set of finite words
over Σ) is length-preserving if � and �

� are of equal length whenever
(���

�) � �. In this paper, we will only consider length-preserving rela-
tions on Σ�. A relation � on Σ� is regular if the set �(�1� �

�
1) � � � (��� �

�
�
) �

(�1 � � � ��� �
�
1 � � � �

�
�
) � �� is a regular subset of (Σ � Σ)�. A regular re-

lation Σ� can be represented by a finite-state transducer, i.e., a finite
automaton over (Σ � Σ).

Regular relations are closed under union �, intersection 	, relational

composition Æ, as well as concatenation � defined by � � �� �
= �(�1 �

�
�
1� �2 � �

�
2) � �1 � �2 and �

�
1 ��

�
�
2�. For a (regular) set 
 of words,

let 
 Æ � denote the (regular) set �� � ��� � 
� �� � ��. We use �+

to denote the (not necessarily regular) transitive closure of �; and ��

the reflexive-transitive closure. We denote by Id = �(���
�) � � = �

��
the identity relation on Σ�.
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Definition C.1 A regular transition system (RTS for short) over Σ is
a pair (���), where

� is a regular set over Σ, denoting a set of initial configurations, and

� is a regular relation on Σ�, denoting the transition relation.

A fair regular transition system (FRTS for short) over Σ is a tuple
(�����), where (���) is an RTS and � is a regular set over Σ, denoting
the set of accepting configurations. Transition relations and regular sets
are typically represented by transducers and automata, or by regular
expressions. �

A configuration � of an RTS (���) is a word �1 �2 � � � �� � Σ�. A
computation of (���) is a finite or infinite sequence �0� �1� �2� � � � of
configurations such that �0 � � and �����+1 for all adjacent pairs of
configurations. A configuration is reachable if it occurs in some compu-
tation. An infinite computation �0� �1� �2� � � � of a FRTS is accepting if
�� � � for infinitely many �.

Many parameterized systems with linear or ring-shaped topologies
can be modeled as regular transition systems, by letting each position
in a configuration model the local state of a system component. As an
example of a parameterized system, we describe the mutual exclusion
algorithm by Burns. In the algorithm, an arbitrary number of processes
compete for a critical section. The processes are numbered, say from 1
to � . The local state of each process consists of a control state ranging
over the integers from 1 to 7 and one Boolean flag, ���	. A pseudo-code
description of the behavior of process number � is shown in Figure C.1.
For instance, according to the code on line 4, if the control state of a

1: ����[�] := 0

2: if �� � � : ����[�] = 1 then goto 1

3: ����[�] := 1

4: if �� � � : ����[�] = 1 then goto 1

5: await �� � � : ����[�] �= 1

6: ����[�] := 0

7: goto 1

Figure C.1: Burns’ mutual exclusion algorithm. Pseudo code for process �.

process � is 4, and if the value of ���	 is 1 for some process 
 � �, then the
control state of � may be changed to 1; otherwise to 5. Line 7 represents
the critical section.

To model Burns’ algorithm as an RTS, we let Σ be the set of possible
local states, e.g., represented as tuples ��� � ��	�. A system configuration
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is a word in Σ�. The effect of line � can be represented by a regular
relation ��. For instance, �1 corresponds to Id � [(� = 1) �� (� :=
2� � ��	 := 0)] � Id where the notation (� = 1) �� (� := 2� � ��	 :=
0) represents the relation �(��1� � ��	1�� ��2� � ��	2�) � �1 = 1� �2 =
2 and ���	2 = 0�. To distinguish between branches, let ���� ��� denote
the if and else branch of ��, for � = 2� 4.

It is also possible to model programs that operate on linear unbounded
data structures such as queues, stacks, integers, etc. For instance, a
stack can be modeled by letting each position in the word represent a
position in the stack. The stack should initially contain an arbitrary
but bounded number of empty stack positions, which are “statically
allocated”. We can then faithfully model all finite computations of the
system, by initially allocating sufficiently many empty stack positions.
We will consider two verification problems:

Reachability: Compute the set of reachable states of a given RTS
(	�
), i.e., the set 	 Æ 
�. The problem of verifying any safety
property can in the standard way be reduced to that of computing
the set of reachable states of a suitable RTS.

Repeated Reachability: Does a given FRTS (	�
��) have an in-
finite accepting computation? The problem of verifying a live-
ness properties can, using the classical automata-theoretic frame-
work [VW86] adapted to regular model checking [AJN+04], be re-
duced to the problem of repeated reachability of a suitable FRTS.
A repeated reachability problem can be checked by computing the
transitive closure of a transition relation, to be described in Sec-
tion C.4.

In general, these problems are undecidable, but techniques have been
developed which are complete for certain classes of RTSs, and also verify
examples from the literature (e.g., [JN00, AJNd03]).

C.3 Verification using Acceleration

We can attempt to compute both reachable and repeatedly reachable
configurations by standard fixpoint iterations. Let us describe this for
the case of reachability. A naive computation of the set 	Æ
� of reachable
states is to compute the sequence �0� �1� �2� � � � , where �0 = 	 and ��+1 =
��  (�� Æ
), until a fixpoint is reached, i.e., ��+1 = �� for some 
. This
approach is guaranteed to terminate for finite-state systems, but not
in general for parameterized and infinite-state systems, since there is no
uniform bound on the number of computation steps needed to reach any
particular configuration. For RTSs, 	 Æ 
� and 
+ are in general not
computable, but incomplete techniques have been developed [AJNd02,
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BJNT00, DLS02], which are guaranteed to complete under conditions
which are typically satisfied when � is “simple”, but not when � is the
entire transition relation of an RTS. We therefore present a method to
compute � Æ�� or �+ by decomposing � into “simple” parts, compute
the transitive closure of each part, and then use the results in a refined
fixpoint computation.

To this end, let an action of the RTS (���) be any subset of �. We
use � to range over actions. By acceleration, we mean to compute �+

from �. The fixpoint computation described in the previous paragraph is
modified by instead defining ��+1 as the result of choosing an appropriate
�� � �+, and letting ��+1 = �� � (�� Æ �

+
�

). The test for convergence
remains the same: is �� = �� � (�� Æ �)? The main problem is to decide
how to choose the sequence of actions �0 �1 � � � to accelerate, in order
to converge at � Æ ��.

We will consider the class of unary RTS, in which each computation
step changes at most one position in a configuration. This class contains
many parameterized synchronization algorithms. For unary RTSs, there
is a particular class of actions (called separable) which can be accelerated
efficiently.

Definition C.2 A regular relation � is unary if � and �� differ in at
most one position whenever � � ��. A RTS (���) is unary if � is
unary. A unary relation is separable if it is of form �� � � � �� , where
��� �� � Id , and � is a relation on Σ. We call �� the left context and
�� the right context of �� � � � �� .

Separable unary actions are interesting, because there are efficient
techniques for accelerating them, which are complete when �� and ��
satisfy certain conditions that hold for a majority of separable unary
actions encountered in practice [ABJN99, JN00], and yield good under-
approximations otherwise. Our verification strategy is therefore to gen-
erate a sequence �0 �1 � � � of separable unary actions to drive the above
modified fixpoint computation. To avoid over-approximation, we must
obviously require �� � �� for each �. To make the fixpoint computation
as powerful as possible, we will generate as “large” actions as possible.
By this, we will mean that any unary separable action in � is sub-
sumed. We would also like to require the same for any composition of
such actions, but this is not possible, since if � and �� are separable
unary actions, then in general � Æ �� is not unary and � � �� is not
separable. We therefore define restricted versions of these operations,
separable composition Æ� and separable union ��, as follows

(�� � � � ��) Æ� (��
�
� � � � ��

�
)

�
= (�� � ��

�
) � � Æ � � � (�� � ��

�
)

(�� � � � ��) �� (��
�
� � � � ��

�
)

�
= (�� � ��

�
) � � � � � � (�� � ��

�
)
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where the changes in � and �
� are constrained to occur in the same

position. The resulting actions are separable, and can be efficiently ac-
celerated.

Definition C.3 Let � be a regular relation. A set of actions � is
separable-complete with respect to �, if it satisfies:
(U) For any sequence �1� � � � � �� of separable unary actions, where
�� � � for � � [1� �], there is an action � � � such that

(�1 Æ� � � � Æ� ��)+ � �+

If condition (U) is true for � � �, for some bound �, the set is separable-
complete up to �, and � is called the composition depth. �

As a special case, if � is separable-complete up to 1, then any sepa-
rable unary action �� � � is subsumed by some � � �.

Let us see why separable-completeness is relevant for Burns’ algo-
rithm. Imagine that we are computing � Æ �� for Burns’ algorithm,
using a fixpoint computation. Consider a configuration where there are
arbitrarily many processes on line 2, each with �2� enabled. It is then
possible for any single process to proceed to line 5, via lines 3 and 4.
However, whenever �3 is executed by some process �, all processes � � �

are blocked. Hence, in order for arbitrarily many processes to move from
2 to 5, they must act sequentially from higher to lower index. It follows
that we need the accelerated sequential composition (�2� Æ� �3 Æ� �4�)

+,
to capture this behaviour; a fixpoint computation using only �+

2�� �
+
3 � �

+
4�

would need unboundedly many computation steps. If (U) were true, we
would have an action with �+ � (�2� Æ� �3 Æ� �4�)

+, allowing us to
compute the set of reachable configurations.

We are now ready to present our technique for generating actions to be
accelerated in the fixpoint computation; it will automatically generate
a finite set of actions which is separable-complete.

Generation Procedure. Our procedure for generating a sequence of
actions that satisfy condition (U) has three steps.

1. We obtain any finite set of separable actions �� such that � = ���.

One way to do this is to extract such actions from a representation
of � as a minimal deterministic automaton 	 = 
	�Σ�Σ� 
0� Æ� � �,
as follows. Let 	 (
�	) equal 	 but with 
0 = 
 and � = 	. Then
� is the union of actions �� �  ���� where �� = 	 (
0� 
�)� Id ,
and �� = 	 (�� � ) � Id , and  = Æ(
� �) for states 
� � � 	 (and
��� ���  �= �).
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2. We thereafter transform �� so that it has the property that any
separable unary action � � � is in (i.e., a subset of) the separa-
ble union of some actions in ��. For this purpose, we define two
operations on separable unary actions:

(�� � � � ��) �� (��

� � �
� � ��

�)
�
=

(�� � ���) � (� � � �) � (�� � ���)

(�� � � � ��) �� (��� � �
� � ���)

�
=

(�� � ���) � (� � � �) � (�� � ���)

Closing the set of actions under the operations �� and �� achieves
the goal. As an optimization, we delete actions that are then sub-
sets of other actions.

3. Finally, we close the set of actions ��, from previous step, under ��.
Again, as an optimization, we delete actions that become subsets
of other actions.

We motivate step 2 for Burns’ algorithm. Suppose step 1 is applied
to a deterministic representation of �. We get �� � 	�� ��
, with � =
��4� � (�3��) � Id , and �� = ��4� � (�3��

�) � Id , for some �� � �. The desired
property is false: �3 is not in the separable union of �� �� (nor of ��). The
left context of �3 has been divided. However, �3 = (��� ��), giving the
desired property. Without step 2, our procedure under-approximates �3

and sequential compositions involving �3.

The generated actions are separable-complete up to 1 by construction
(by steps 2 and 3). Let us now establish that they are even separable-
complete. We use the following lemma, which establishes how Æ� and ��
are related.

Lemma C.4 Let �� = 	�1� � � � � ��
 be a set of separable unary actions,
with �� = �

�
� � �� � �

�
�, for � � [1��]. Let � = ��1 Æ� ��2 Æ� � � � Æ� ��� be

any composition such that each � � �� occurs at least once. Then:

� � � 1
� � � � � � ��

� � (�1 � � � � � ��)+ � � 1
� � � � � � ��

�

�

Theorem C.5 The set of actions generated by steps 1– 3 is separable-
complete.

Proof. Given any sequence �1� � � � � �	, where �� � � for � � [1� 	]. Let
us denote the fact that the generated actions have composition depth
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1 by (U1). By (U1), there are actions ��

1� � � � � �
�

�
generated by our pro-

cedure such that �� � ��

�, for each �. Again by (U1), there exists a
generated � = �� � � � �� such that � � ��

1 �� � � � �� �
�

�. Now, by the
lemma, ��

1 Æ� � � � Æ� �
�

� � �� � �
+ � ��. Finally, (�� � �

+ � ��)+ � �+. �

Note on Complexity. Our procedure is essentially conjoining the
guards of the actions; so an upper bound of the number of obtained
actions is 2��

��, where �� is the least set satisfying the property of step 2.
For our benchmark (see Section C.5), the actions can only be composed
in a monotonic order, so the bound is only ����2. Nonetheless, in practice,
we may choose to combine actions under �� a fixed number of iterations
in step 3, obtaining � with composition depth �.

C.4 Verifying Liveness

In this section, we describe how to verify liveness properties, which are
reduced to the repeated reachability problem of a suitable FRTS. In par-
ticular, we describe how liveness properties of parameterized algorithms
are verified using our �	�(
��) model checker [AJN+04].

Recall that the falsification of a liveness property can be reduced
to checking whether an FRTS has an infinite accepting run. Since the
transition relation is length-preserving, so that each computation can
visit only a finite set of configurations, this problem can be solved by
repeated reachability, i.e., by checking whether there exists a reach-
able loop containing some configuration from � . This is equivalent to
checking whether there is a reachable configuration  in � such that
(�) � Id 	 
+, which can be checked as follows [Nil05].

(1) Compute the set of reachable configurations ��� = � Æ 
�, as
described in Section C.3.

(2) Let ���� = �(��) �  � ��� 	 � � (��) � 
, i.e., the relation
containing all pairs of consecutive reachable configurations, where
the first satisfies � .

(3) Compute the relation ���� Æ 
� as a fixpoint, which in the
acceleration-based version constructs the sequence �0� �1� �2� � � � ,
where �0 = ���� and ��+1 = �� � �� Æ �

+
�

for a suitable action
�� � 
+, until �� = �� � �� Æ 
.

(4) If the fixpoint computation in (3) converges, a repeatedly reachable
configuration  exists if and only if (���� Æ


�)	 Id is non-empty.

Note that if �� 	 Id is non-empty for some approximation ��, we can
abort the fixpoint computation of (3), and report that �� contains a
repeatedly reachable configuration.
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The reachability phase (1) computes a fixpoint on sets of configura-
tions, while the repeated reachability phase (3) computes a fixpoint on
relations of configurations; the latter is significantly more difficult to
compute.

We next show how this procedure specializes to verifying absence of
starvation for parameterized systems. A typical liveness property, ab-
sence of starvation, is of form ��� (�(�) �� ��(�)), where � ranges
over processes modeled by positions in the configuration. For instance,
for Burns’ algorithm we check the property ��� ((pc[�] = 1 � � = 0) ��
�pc[�] = 7). This property is proven assuming weak process fairness,
i.e., that in an infinite computation, each process is infinitely often ei-
ther blocked or progressing, which can be expressed as ����(�(�) �
�En(�(�))), where �(�) is a disjunction of all actions process � can take,
and En(�(�)) is true if and only if process � is not blocked.

To verify absence of starvation using the automata-theoretic ap-
proach [VW86, AJN+04], the transition relation, fairness requirements
and the negation of the liveness properties are conjoined and compiled
into an FRTS, which accepts all fair computations of the system
which violate the liveness property, i.e., satisfy ��� (�(�) � ���(�)).
The negation of the liveness property is transformed into an extra
boolean component ��������(�) in the local state of each position �,
such that if ��������(�) is true, then process � satisfies ���(�). Process
� may non-deterministically set ��������(�) to true. The weak fairness
requirement is transformed into an extra boolean component ����	(�)
in the local state of each position � and the set � of accepting
configurations in which ����	(�) is 1 for all � and ��������(�) is 1 for
some �. All components ����	(�) are set to 0 immediately after some
configuration in � was visited, and each ����	(�) is thereafter set
to 1 whenever process � satisfies �(�) � �En(�(�)). The repeated
reachability problem becomes to check whether there is an infinite
computation which first visits a configuration where ��������(�) is 1 for
some �, and thereafter infinitely often visits a configuration in � .

The above procedure can be adapted to this setting by inserting a
step (1�) between steps (1) and (2), which computes the set ���� =
[������(�(�)���������(�))]Æ	�� , where 	� is 	 constrained to follow the
semantics of ��������, as described above. For the remaining steps, ����

and 	
� take the roles of ��� and 	. For step (3), we further constrain

	� to follow the semantics of ����	. We have also added the following
optimizations to our model checker.


 Separating updates of ����	(�). We separate the updates of ����	(�)
into one action that sets it when �(�) is taken, and one action
that sets it when �En(�(�)); this equivalent modeling makes the
acceleration work more efficiently, since actions remain unary.
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� One violating witness. We constrain the transition relation so that
��������(�) can be true for at most one process �; this simplifies the
transition relation. Note that this does not forbid other processes
from violating the property.

C.5 Experimental Results

We have implemented the systematic acceleration method described in
this paper in our ���(���) model checker [AJN+04], and used it to
generate the set of reachable states, as described in Section C.3, and to
check absence of individual starvation under weak fairness for parame-
terized synchronization algorithms from the literature, as described in
Section C.4. The models are described in detail in [Nil05], and are also
available in the Appendix. For the Bakery algorithm, we verified the

property Ba
�
= ��� (q[�] = � �� �q[�] = 	). All other checked live-

ness properties were of form ��� (
(�) �� ��(�)), where �(�), defined
as pc[�] = 	, represents that process � is in the critical section, and
where 
(�) expresses that process � intends to reach the critical section,
and that also it is reasonable to suspect that process � is guaranteed to
succeed in doing so. For each choice of 
(�) our implementation either re-
ports a success in verification, or a counterexample. We checked several
properties, whose 
(�) are given below, named after the initial letters of
their corresponding protocols; Bakery, Burns, Szymanski, Dijkstra.

Bu1 : pc[�] = 1 � � = 0 Sz1 : pc[�] = 1

Bu2 : pc[�] = 1 � � �= 0 Sz2 : pc[�] = 2

Bu3 : pc[�] �= 1 � � �= 0 Sz3 : pc[�] �= 1

Bu4 : � = 0

Di1 : p[�] � flag[�] �= 0 � �� �= �  pc[�] �= 3

Di2 : p[�] � flag[�] = 0 � �� �= �  pc[�] �= 3

We used composition depth � as a parameter, successively using higher
values if the verification did not succeed within a certain time bound.
The times are given for the best values of �, not including “too low
�” time. All protocols worked with some � � [2� 5]. Dijkstra’s protocol
needed 5, and Szymanski’s protocol was significantly slower with � � 2,
due to its actions using many different guards. If the generated actions
become separable-complete for parameter �, using a higher value is not
significantly slower, as testing for separable-completeness is quick. By
Lemma 1, we need not consider � higher than the number of actions
generated in step 2 of the generation procedure – that � gives the best
approximation of �+, but can be suboptimal with respect to time. To
handle the fact that one action of Dijkstra’s protocol is not unary, we
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extended the composition techniques to a class of non-unary actions in
the most straight-forward way. The experiments were run on a PC with
a 2.4 GHz processor and 1 GB of RAM.

Results and Comparison with Related Work. Our verification
results are presented in Tables C.1 and C.2. The table contains time
measured in seconds for the analysis, but does not include the transla-
tion from LTL(MSO) formulas into FRTSs. False properties, for which
a counterexample was found, are marked “(f)”. In the table, we com-
pare our times with the works [Nil05, AJN+04, AJSR06], as they use
similar techniques, and were in fact timed on the same system. We also
present related work, in alphabetical order with respect to authors. Note
that works [Nil05, AJN+04, PS00] could only have succeeded to verify
Burns’ and Dijkstra’s protocols if the right sequential compositions were
included; but they are difficult to find manually.

� Abdulla et al. [ADHR07] use over-approximation for safety prop-
erties, obtaining times an order of magnitude better than ours
(0�004–3�9 seconds), but the technique can not be extended to
liveness properties.

� The techniques of [AJSR06] compute states which are guaranteed
to satisfy �(�) using backwards reachability, thus avoiding the re-
peated reachability problem. However, they are not able to pro-
duce counterexamples, and are sometimes slower (due to requiring
many accelerations).

� Bouajjani et al. [BHV04] verify liveness of Bakery, as well as safety
of all listed protocols, using counter-example guided abstractions,
in 0�06–0�73 seconds.

� Fang et al. [FPPZ04a, FPPZ04b, FMPZ06] verify the Bakery pro-
tocol using automatically generated ranking functions, but do not
report running times.

� The works of Nilsson et al. [Nil05, AJN+04] report times for es-
sentially the same technique, so we gave the best time for each
protocol. The verification setting is as ours, but without the sys-
tematic addition of sequential compositions.

� Pnueli and Shahar [PS00], use user defined accelerations to verify
safety properties of Szymanski’s protocol in 0.2 seconds, as well as
some protocols not in our benchmark.

� Pnueli et al. [PXZ02] verify liveness of the Bakery and Szymanski
protocols using manually supplied counter abstractions, in 1 and

13



Table C.1: Liveness. Comparison of verification times with [Nil05, AJN+04,
AJSR06].

Property This work [Nil05, AJN+04] [AJSR06]

Ba 13 23 36

Bu1 98 450

Bu2 56 (f)

Bu3 60 (f)

Bu4 144

Sz1 540 (f)

Sz2 1369 435

Sz3 1635

Di1 244 3311

Di2 1031 (f)

Table C.2: Safety. Comparison of verification times with [Nil05, AJN+04,
AJSR06].

Protocol This work [Nil05, AJN+04]

Bakery 4 5

Burns 15 39

Szymanski 19 34

Dijkstra 25 38

96 seconds respectively. Their modeling of Szymanski’s protocol is
slightly different from ours, so we can not say which of the true
properties were checked.

Using the techniques of this paper, we can compute an exact repre-
sentation of the reachable loops for all the above protocols. It has, to our
knowledge, never been done for Burns’ and Dijkstra’s protocols before.

C.6 Conclusions and Future Work

We have presented a systematic method for using acceleration to speed
up fixpoint computations in regular model checking. The method is de-
fined for unary transition relations, and is independent of how the tran-
sition relation is represented. We show how to accelerate a set of actions
which is maximal in a certain sense, in order to make the verification
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as powerful as possible. Using this approach, we have succeeded in ver-
ifying safety and liveness of parameterized synchronization protocols,
whose verification has not been reported before.

Our work shows that acceleration-based symbolic state-space explo-
ration can be used efficiently also in regular model checking, thus ex-
tending this approach from other classes of systems (e.g., [ACABJ04,
BGWW97, BH99, WB98, BFLS05, FL02]). Future work includes ex-
tending the approach to non-unary transition relations, in order to han-
dle, e.g., systems with synchronous communication between adjacent
processes.
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C.8 Appendix

We give the pseudo code, and ���(���) models of the mutual ex-
clusion protocols we have verified. A more thorough description of the
models are found in the thesis [Nil05].

C.8.1 Protocols

Pseudo code for the Bakery, Szymanski, Burns, and Dijkstra mutual
exclusion protocols are given in figures C.2, C.3, C.4, C.5 respectively.

Idle: ������ := 1 + max� ������

Waiting: await �� �= � : (������ � ������ � ������ = 0)

Critical: ������ := 0

Figure C.2: The bakery algorithm. Pseudo code for process �.

1: await �� : � �= � : ��[�]

2: 	[�]
 �[�] := true
 true

3: if �� : � �= � : (�[�] �= 1) � �	[�]

then �[�] := false ; goto 4

else 	[�] := false ; goto 5

4: await �� : � �= � : �[�] � �	[�]

then 	[�]
 �[�] := false 
 true

5: await �� : � �= � : �	[�]

6: await �� : � � � : ��[�]

7: �[�] := false ; goto 1

Figure C.3: Szymanski’s algorithm. Pseudo code for process �.

1: ���[�] := 0

2: if �� � � : ���[�] = 1 then goto 1

3: ���[�] := 1

4: if �� � � : ���[�] = 1 then goto 1

5: await �� � � : ���[�] �= 1

6: ���[�] := 0

7: goto 1

Figure C.4: Burns’ algorithm. Pseudo code for process �.
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1: ����[�] := 1

2: if � �= � then

await ����[�] = 0 then

3: � := �

4: ����[�] := 2

5: if �� �= � : ����[�] = 2 then goto 1

6: ����[�] := 0

7: goto 1

Figure C.5: Dijkstra’s algorithm. Pseudo code for process �.

C.8.2 ���(���) models

Models for the Bakery, Szymanski, Burns, and Dijkstra mutual exclu-
sion protocols are given in figures C.6, C.7, C.8, C.9 respectively. We
have used “syntactic sugar” to make the models more readable. The ex-
pression En(�) represents the guard of � (obtained as the “unprimed”
part of �). The following formula definitions are common for all models.

- idle
�
= �� copy(�)

- copy-other(�)
�
= �� �= � ���(�)

- sys
�
= initial � �(�� �(�) � ��	
)

- safety-check
�
= sys � �mutex

- fairness
�
= �� ��(�(�) � �En(�(�)))

- liveness-check
�
= sys � fairness � �liveness

� array of �������

copy(�)
�
= �[�] = ��[�]

�1(�)
�
= �[�] = � � ��[�] = � � �� 	 � �[�] = � �

(� = 0 � �[�� 1] = � � �[�� 1] = �)

�2(�)
�
= �[�] = � � ��[�] = � � �� 
 � �[�] = �

�3(�)
�
= �[�] = � � ��[�] = �

�(�)
�
= copy-other(�) � (�1(�) � �2(�) � �3(�))

initial
�
= �� �[�] = �

mutex
�
= ���� �� 	= � (�[�] = � � �[�] = �)

liveness
�
= ��� (�[�] = � �
 � �[�] = �)

Figure C.6: The bakery algorithm. Pseudo code for process � in ���(��).
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pc array of �1, . . . , 7�

copy-w(�)
�
= �[�] �� ��[�]

copy-s(�)
�
= �[�] �� ��[�]

copy(�)
�
= �[�] = ��[�] � copy-w(�) � copy-s(�)

�1(�)
�
= �[�] = 1 � �� �= � ��[�] � ��[�] = 2 �

copy-w(�) � copy-s(�)

�2(�)
�
= �[�] = 2 � ��[�] = 3 � ��[�] � ��[�]

�3(�)
�
= (�[�] = 3 � �� �= � (�[�] �= 1 � ��[�]) �

��[�] = 4 � ���[�] � copy-w(�))�

(�[�] = 3 � ��� �= � (�[�] �= 1 � ��[�]) �
��[�] = 5 � ���[�] � copy-s(�))

�4(�)
�
= �[�] = 4 � �� �= � (�[�] � ��[�]) � ��[�] =

5 � ���[�] � ��[�]

�5(�)
�
= �[�] = 5 � �� �= � ��[�] � ��[�] = 6 �

copy-w(�) � copy-s(�)

�6(�)
�
= �[�] = 6 � �� � � ��[�] � ��[�] = 7 �

copy-w(�) � copy-s(�)

�7(�)
�
= �[�] = 7 � ��[�] = 1 � ���[�] � copy-w(�)

�(�)
�
= copy-other(�) � (�1(�) � 	 	 	 � �7(�))

initial
�
= �� �[�] = 1 � ��[�] � ��[�]

mutex
�
= ���� �� �= � (�[�] = 7 � �[�] = 7)

liveness1

�
= ��� (�[�] = 1 	� � �[�] = 7) false

liveness2

�
= ��� (�[�] = 2 	� � �[�] = 7) true

liveness3

�
= ��� (�[�] �= 1 	� � �[�] = 7) true

Figure C.7: Szymanski’s algorithm. Pseudo code for process � in 
�
(��).
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pc array of �1, . . . , 6�

copy-flag(�)
�
= ����[�] �� �����[�]

copy(�)
�
= �[�] = ��[�] � copy-flag(�)

�1(�)
�
= �[�] = 1 � ��[�] = 2 � ������[�]

�2(�)
�
= (�[�] = 2 � �	 
 � ����[	] � ��[�] =

1 � copy-flag(�))�

(�[�] = 2 � ��	 
 � ����[	] � ��[�] =
3 � copy-flag(�))

�3(�)
�
= �[�] = 3 � ��[�] = 4 � �����[�]

�4(�)
�
= (�[�] = 4 � �	 
 � ����[	] � ��[�] =

1 � copy-flag(�))�

(�[�] = 4 � ��	 
 � ����[	] � ��[�] =
5 � copy-flag(�))

�5(�)
�
= �[�] = 5 � 		 � � �����[	] � ��[�] = 6 �

copy-flag(�)

�6(�)
�
= �[�] = 6 � ��[�] = 1 � ������[�]

�(�)
�
= copy-other(�) � (�1(�) � � � � � �6(�))

initial
�
= 	� �[�] = 1 � �����[�]

mutex
�
= ���� �	 
= � (�[�] = 6 � �[	] = 6)

liveness1

�
= �	� ((�[�] = 1 � � = 0) �� � �[�] =

6) true

liveness2

�
= �	� ((�[�] = 1 � � 
= 0) �� � �[�] =

6) false

liveness3

�
= �	� ((�[�] 
= 1 � � 
= 0) �� � �[�] =

6) false

liveness4

�
= �	� (� = 0 �� � �[�] = 6) true

Figure C.8: Burns’ algorithm. Pseudo code for process � in �(���).
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� array of �1� � � � � 6�� � ��� array of �0� 1� 2�

p-set(	)
�
= �
 ��[
] �� 
 = 	

flag-zero-at-p
�
= �	 �[	] �� ����[	] = 0

copy(	)
�
= �[	] = ��[	] � ����[	] = �����[	] �

(�[	] �� ��[	])

copy-other-except-p(	)
�
= �
 �= 	 �[
] = ��[
]� ����[
] = �����[
]

copy-p
�
= �	 �[	] �� ��[	]

copy-flag(	)
�
= ����[	] = �����[	]

�1(	)
�
= �[	] = 1 � �����[	] = 1 � ��[	] = 2 �

copy-p

�2(	)
�
= (�[	] = 2 � 	�[	] � flag-zero-at-p �

��[	] = 3 � copy-flag(	) � copy-p)


(�[	] = 2 � �[	] � ��[	] = 4 �
copy-flag(	) � copy-p)

�3(	)
�
= �[	] = 3 � p-set(	) � ��[	] = 4 �

copy-flag(	)

�4(	)
�
= �[	] = 4 � �����[	] = 2 � ��[	] = 5 �

copy-p

�5(	)
�
= (�[	] = 5 � �
 �= 	� ���[
] = 2 �

��[	] = 1 � copy-flag(	) � copy-p)


(�[	] = 5 � 	�
 �= 	� ���[
] = 2 �
��[	] = 6 � copy-flag(	) � copy-p)

�6(	)
�
= �[	] = 6 � �����[	] = 0 � ��[	] = 1 �

copy-p

�(	)
�
= (copy-other(	)� (�1(	) 
 �2(	)
 �4(	)


�5(	) 
 �6(	)))


(copy-other-except-p(	) � �3(	))

initial
�
= �	 �[	] = 1 � ����[	] = 0 � 	�[	]

mutex
�
= �	�	 �
 �= 	 (�[	] = 6 � �[
] = 6)

liveness1

�
= ��	 ((�[	] � ����[	] �= 0 � �
 �= 	 �[
] �=

3) �� � �[	] = 6) true

liveness2

�
= ��	 ((�[	] � ����[	] = 0 � �
 �= 	 �[
] �=

3) �� � �[	] = 6) false

liveness3

�
= ��	 ((�[	] � �[	] �= 1 � �
 �= 	 �[
] �=

3) �� � �[	] = 6) true

liveness4

�
= ��	 ((�[	] � �
 �= 	 �[
] �= 3) ��

� �[	] = 6) false

liveness5

�
= ��	 (�[	] �� � �[	] = 6) false

liveness6

�
= ��	 (�[	] = 1 �� � �[	] = 6) false

Figure C.9: Dijkstra’s algorithm. Pseudo code for process 	 in ��(���).
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Abstract

We present a technique for modeling and automatic verification of net-
work protocols, based on graph transformation. It is suitable for proto-
cols with a potentially unbounded number of nodes, in which the struc-
ture and topology of the network is a central aspect, such as routing
protocols for ad hoc networks. Safety properties are specified as a set of
undesirable global configurations. We verify that there is no undesirable
configuration which is reachable from an initial configuration, by means
of symbolic backward reachability analysis.

In general, the reachability problem is undecidable. We implement
the technique in a graph grammar analysis tool, and automatically verify
several interesting nontrivial examples. Notably, we prove loop freedom
for the DYMO ad hoc routing protocol. DYMO is currently on the IETF
standards track, to potentially become an Internet standard.

D.1 Introduction

The verification of network protocols has been one of the most important
driving forces for the development of model checking technology. Most
approaches (e.g., [Hol97, CGL92]) analyze finite-state models of proto-
cols, but an increasing number of techniques are developed for analyz-
ing parameterized or infinite-state models (see, e.g., [AČJYK00, ZP04,
AJNS04]). In this paper, we consider verification of protocols for net-
works with a potentially unbounded number of nodes, possibly with a
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dynamically changing topology. This is a large class of protocols, includ-
ing protocols for wireless ad hoc networks, many distributed algorithms,
security protocols, telephone system services, etc. Global configurations
of such protocols are naturally modeled using graphs, that are trans-
formed by the dynamic behavior of the protocol, and therefore various
forms of graph transformation systems have been used to model and
analyze them [KK06, BBG+06].

In this paper, we present a technique for modeling and verification
of protocols using a variant of graph transformation systems (GTSs)
[KK06, BBG+06]. We use a general mechanism for expressing condi-
tions on the applicability of a rule, in the form of negative application
conditions (NACs). Sets of global configurations are symbolically rep-
resented by graph patterns [BBG+06], which are graphs extended with
NACs. Intuitively, a graph pattern represents the set of configurations
that contain it as a subgraph, but none of the NACs. A safety property
of a protocol is represented by a set of graph patterns that represent
undesirable global configurations.

We consider the problem of verifying safety properties. This can be
reduced to the problem whether an undesirable configuration can be
reached, by a sequence of graph transformation steps, from some initial
global configuration. We present a method for automatically checking
such a reachability problem by backward reachability analysis. Back-
ward reachability analysis is a powerful verification technique, which
has generated decidability results for many classes of parameterized and
infinite-state systems (e.g., [AJ96, AČJYK00, EFM99]) and proven to be
highly useful also for undecidable verification problems (e.g., [ADBR07]).
By fixed-pointcomputation, we compute an over-approximation of the
set of configurations from which a bad configuration can be reached, and
check that this set contains no initial configuration. The central part of
the backward reachability procedure is to compute the predecessors of
a set of configurations in this symbolic representation. Since the reach-
ability problem is undecidable in general, the fixed-pointcomputation
is not guaranteed to terminate. However, we show that the techniques
are powerful enough for verifying several interesting nontrivial examples,
indicating that the approach is useful for network protocols where the
dynamically changing topology of the network is a central aspect.

A main motivation for our work is to analyze protocols for wire-
less ad hoc networks, including the important class of routing protocols.
We have implemented our technique, and successfully verified that the
DYMO protocol [CP07a] will never generate routing loops. Verifying
loop freedom for ad hoc routing protocols has been the subject of much
work [BOG02, DD02]; several previous protocol proposals have been
incorrect in this respect [BMJ+98, AWD04]. Our verification method
handles a detailed ad hoc routing protocol model, with relatively little
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effort. In our work, we have also found GTSs to be an intuitive and
visually clear form of modeling.

Related Work. There have been several efforts to verify loop freedom
of routing protocols for ad hoc networks. Bhargavan et al. [BOG02] ver-
ified AODV [PBR99] to be loop free, using a combination of SPIN for
model checking a finite network model, and HOL theorem proving for
generalizing the proof. In contrast, we prove the same property automat-
ically for an arbitrary number of nodes. Our experience is that modeling
using GTSs is more intuitive than to separately construct SPIN mod-
els and HOL proofs. Das and Dill [DD02] developed automatic predicate
discovery for use in predicate abstraction, and proved loop freedom for a
simplified version of AODV, excluding timeouts. The construction of an
abstract system and discovery of relevant abstraction predicates require
many calls to a theorem prover; our method does not need to interact
with a theorem prover. We check the graphs directly for inconsistencies.

There have been several other approaches to modeling and analysis
using variants of GTSs. König and Kozioura [KK06] over-approximate
graph transformation systems using Petri nets, successively constructed
using forward counter-example guided abstraction refinement. Their
technique does not support the use of NACs. We have found NACs to
be an advantage during modeling and verification. For example, our
first approach at verifying the DYMO protocol was without NACs,
resulting in a more complex model with features not directly related to
the central protocol function.

Kastenberg and Rensink [KR06] translate GTSs to finite-state mod-
els in the GROOVE tool by putting an upper bound on the number
of nodes in a network. Becker et al. [BBG+06] verified safety proper-
ties of mechatronic systems, modeled by GTSs that are similar to ours.
However, they only check that the set of non-bad configurations is an
inductive invariant. That worked for their application, but for verifying
safety properties in general it requires the user to supply an inductive
invariant. Bauer and Wilhelm [BW07, Bau06] use partner abstraction to
verify dynamic communication systems; two nodes are not distinguished
if they have the same labels and the sets of labels of their adjacent nodes
are equal, respecting edge directions. That abstraction is not suited for
ad hoc protocols, because nodes do not have dedicated roles.

Backward reachability analysis has also been used to verify safety
properties in many parameterized and infinite-state system models, with
less general connection patterns than those possible in GTSs. Examples
include totally homogeneous topologies in which nodes can not identify
different partners, resulting in Petri nets with variants (e.g., [EFM99]),
systems with linear structure and some extensions (e.g., [ADBR07]), and
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systems with binary connections between nodes, tailored for modeling
telephone services [JK95].

Organization of Paper. We give a brief outline of the DYMO proto-
col in Section D.2. The graph transformation system formalism and the
backward reachability procedure are presented in Sections D.3 and D.4.
In Section D.5 we describe how we modeled DYMO, and present our
verification results in Section D.6. Finally, Section D.8 concludes the
paper.

D.2 DYMO

We are interested in modeling and verification of ad hoc routing proto-
cols. These protocols are used in networks that vary dynamically in size
and topology. Every network node that participates in an ad hoc routing
protocol acts as a router, using forwarding information stored in a rout-
ing table. The purpose of the ad hoc routing protocol is to dynamically
update the routing tables so that they reflect the current network topol-
ogy. DYMO [CP07a] is one of two ad hoc routing protocols currently
considered for standardization by the IETF MANET group [The]. The
latest DYMO version at the time of writing is specified in version 10 of
the DYMO Internet draft [CP07b]. This is the version we have used as
basis for our modeling. The following is a simplified description of the
main properties of DYMO. The reader is referred to the Internet draft
for the details.

In our protocol model, each DYMO network node � has an address,
a routing table and a sequence number. The sequence number of �
is included in routing messages originating from �, as a measure of
freshness, and is incremented for each such message. The routing table
of � contains the following fields for each destination node �.

� RouteNextHopAddress�(�) is the node to which � currently
forwards packets, destined for node �.

� RouteSeqNo�(�) is the sequence number that node � has
recorded for the route to destination �. It is a measure of the
freshness of a route; a higher number means more recent routing
information. Note that this sequence number concerns the route
to � from �, and is not related to the sequence number of �.

� RouteHopCnt�(�) is the recorded distance from � to node �,
in terms of number of hops.

� Broken�(�) is an indicator of whether or not the route from �

to � can be used. The protocol has a mechanism to detect when
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a link on a route is broken [CP07b]. Information regarding broken
links is propagated through route error messages (RERR).

When a network node � wants to send a packet to another network
node �, it first checks its routing table to see if it has an entry with
Broken�(�) = false. If that is the case, it forwards the packet to node
RouteNextHopAddress�(�). Otherwise, node � needs to find a route
to �, which it does by issuing a route request (RREQ) message. The route
request is flooded through the network. It contains the addresses of nodes
� and �, the sequence number of �, and a hop counter. The hop counter
contains the value 1 when the RREQ is issued; each re-transmitting node
then increases it by one. Node � increases its own sequence number after
each issued route request.

When the destination of a route request, �, receives it, it generates a
route reply message (RREP). The route reply contains the same fields as
the request. Route replies are not flooded, but instead routed through
the network using available routing table entries. RREPs and RREQs are
collectively referred to as routing messages (RMs).

Whenever a network node � receives an RM, the routing table of �
is compared to the RM. If � does not have an entry pertaining to the
originator of the RM, then the information in the RM is inserted into
the routing table of �. Otherwise, the information in the RM replaces
that of the routing table if the information is more recent, or equally
recent but better, in terms of distance to the originator. The routing
table update rules are detailed in Section D.5.

D.3 Modeling Using Graph Transformation
Systems

We model systems as transition systems of a particular form, in which
configurations are hypergraphs, and transitions between configurations
are specified by graph rewriting rules. Constraints on configurations are
represented by so-called patterns, which are hypergraphs extended with
a mechanism to describe the absence of certain hyperedges: negative
application conditions (NACs). Our definitions are similar to the ones
used by, e.g., Becker et al. [BBG+06], but with a more general facility
for expressing NACs.

Assume a finite set Λ of labels. A hypergraph is a pair �����, where
� is a finite set of nodes, and � � Λ��� is a finite set of hyperedges.
A hyperedge is a pair (����� ), where � � Λ is its label and ��� � ��.
The length of ��� is called the arity of the hyperedge. A hyperedge is
essentially a relation on nodes, and can be visualized as a box labeled
�, with connections to each node � � ��� .
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Figure D.1: A pattern containing a NAC.

A pattern is a tuple � = ���� ������ �, where ���� ��� is a hypergraph,
and ��

�
is a set of NACs. Each NAC is a hypergraph �� = ���� ���,

where �� is a finite set of negative nodes disjoint from �� , and �� �
Λ � (�� � ��)� is a finite set of negative hyperedges. We refer to ��

and �� as positive nodes and edges of � . We define � (�) = �� 	 
�� �
(��
�� ) 	 �.

Example. Figure D.1 shows a pattern — the left-hand side of one
of the DYMO model routing table update rules. The pattern models
a network node receiving routing information for a node to which it
currently has no route. In the pattern, positive nodes are drawn as cir-
cles and negative nodes as double circles. Nodes have numeric names
for identification. Positive and negative edges are drawn as boxes and
double boxes. Edge connections are numbered, to indicate their order.
The pattern contains a single NAC, consisting of the negative edges
labeled RouteEntry and RouteAddress along with their connected
nodes. Without the possibility to express non-existence, we would need
to model traversal through the entries to conclude the absence of an
entry. In more detail, the pattern consists of a network node � (node
3) and a routing message (node 1). � has a routing table (node 4) that
contains no routing table entry pointing to network node 	 (node 6).
The message has originator 	, a hop count (node 7), a sequence number
(node 5) and an IP source (node 2).

A hypergraph 
 = ���� ��� is subsumed by a pattern
� = ���� ������ �, written 
 � � , if there exists an injection
� : �� � �� satisfying:

1. for each (��
�� ) 	 �� we have (�� �(
�� )) 	 �� and

2. there exists no ���� ��� 	 ��
�

and no injection � : �� � �� such
that (�� (� � �)(
�� )) 	 �� for each (��
�� ) 	 ��, where (� � �) is
defined as � on �� and as � on �� .
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Intuitively, a pattern � = ���� ������ � is a constraint, saying that a
hypergraph must contain ���� ��� as a subgraph, which does not have
a “match” for any NAC in ��� .

Above we let �((�1� � � � � ��)) = (�(�1)� � � � � �(��)) for a function on
nodes applied to a vector of nodes. If an injection � satisfying the above
conditions exists, we say that � � 	 is witnessed by �, written � �� 	 .

For a pattern 	 we use [[	]] to denote the set of hypergraphs � such
that � � 	 . For a set of patterns Φ, we let [[Φ]] = ��[[	]] � 	 � Φ	. We
call pattern 	 = ���� ������ � consistent if ���� ��� � 	. Informally,
	 is consistent if none of its NACs contradicts its positive nodes and
edges. An inconsistent pattern 
 represents an empty set, as � � 
 is
not satisfied by any � .

A pattern 	 is subsumed by the pattern 
 , denoted 	 � 
 , if
[[	]] 
 [[
]] . The relation � on patterns can be checked according to
the following Proposition.

Proposition D.1 Given patterns consistent patterns 	 = ���� ������ �

and 
 = ���� ����
�

� �, we have that 	 � 
 iff there exists an injection
� : �� � �� such that ���� ��� �� ���� ��� �� and for each NAC
���� ��� � ��� there is a NAC ���� ��� � ��� and an injection  :

����� such that

 (� (��) ���) 
 �(��), and

 for each (����� ) � ��, we have (�� (��1 � )(��� )) � �� . �

Intuitively, 	 � 
 if and only if the positive part of 
 is a subgraph of
the positive part of 	 , and for each NAC in ��

�
, there is a corresponding

NAC in ��� which is a subgraph of the former NAC.
In our system model, configurations are represented by hypergraphs.

Transitions are specified by actions, which are (hypergraph) rewrite
rules.

Definition D.2 An action is a pair �����, where � = ���� ����
�

� �
is a pattern and � = ���� ��� is a hypergraph with �� 
 �� (i.e.,
actions can create nodes, but not delete them). The action � = �����
denotes the set [[�]] of pairs of configurations (��� �), with �� = ���� � ����,
� = ���� ��� and ��� 
 �� such that there is an injection � : �� � ��

satisfying:

 �� � � is witnessed by the restriction of � to ��

 �� = ��� � �(��)

 �� = (��� � �(��)) � �(��) . �
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�

�

��

(b) Pair of configurations (��
� � � �

���

(c) Configuration � such that ����(��
� �) � [[�]]

Figure D.2: Example of an action and its semantics.

Example. Figure D.2(a) shows an action � = �����. The pattern �

is to the left of the arrow (=�) and � to the right. The action does not
create any nodes, i.e., �� = �� . Figure D.2(b) shows a pair (��� �) �
[[�]], i.e., �� can be rewritten via � to �. The subsumption �� � � is
witnessed by the injection � = �1 	� �� 2 	� 	
. The injection � satisfies
�� = ��� � �(��) = ��� 	
 and 
� = (
�� � �(
�)) � �(
�) = �(
�).
Figure D.2(c) shows a configuration �� such that there is no � with
(��� �) � [[�]], since �� �� � . In other words, �� cannot be rewritten via � .

Definition D.3 A system model is a pair ��0�� consisting of an initial
configuration �0 together with a finite set of actions . �

For a set Γ of configurations and an action � , let Pre (��Γ) = ��� �
�� � Γ� (��� �) � [[�]]
, i.e., the configurations which in one step can be
rewritten to Γ using � . Similarly, for a set of actions , let Pre�(�Γ)
denote the set of configurations which can reach a configuration in Γ by
a sequence of rewritings using actions in .

D.4 Symbolic Verification

We formulate a verification scenario as the problem whether a set of con-
figurations, represented by a set of patterns, is reachable. More precisely,
given a system model ��0��, and a set of patterns Φ, the reachability
problem asks whether there is a sequence of transitions from �0 to some
configuration in [[Φ]].

In our approach, we analyze a reachability problem using backward
reachability analysis, in which we compute an over-approximation of the
set Pre�(� [[Φ]]) of configurations, and check whether it includes �0 . We
clarify why and when the computation is not exact in the Approximation
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paragraph below. In general, the reachability problem is undecidable,
and our analysis is not guaranteed to terminate. However, the technique
is sufficiently powerful to verify several nontrivial network protocols (see
Section D.6).

We attempt to compute Pre�(�� [[Φ]]) by standard fixed-pointiteration,
using predecessor computation, as shown in Procedure 1. In the proce-

Procedure 1 Backward Reachability Analysis

Require: System model ��0��� and a set Φ of (bad) patterns
Ensure: If terminates; answers whether a configuration in [[Φ]] is reach-

able from �0

1 � := �, � := Φ
2 while � �= � do

3 choose � ��

4 � := � � ���
5 if �0 � [[�]] then

6 return “Reachable”
7 if 	� � (� 
� )� �(� � �) then

8 � := � 
 ���
9 for each � � � do

10 � := � 
 Pre(���)
11 return “Unreachable”

dure, � and � are sets of patterns whose predecessors already have
(� ) and have not (� ) been computed. In each iteration of the while
loop, we choose a pattern � from � . If �0 � [[�]] then we have found a
(possibly spurious) path from �0 to [[Φ]]. Otherwise, we check whether �
is redundant, meaning that it is subsumed by some other pattern which
will be or has been explored. If not, we add to � a set of patterns
over-approximating Pre (�� [[�]]). As a further optimization, not shown
in Procedure 1, at line 7 we also remove patterns from � and � that
are subsumed by � ; keeping � and � small speeds up the procedure.

The central part of Procedure 1 is the (nontrivial) computation of
predecessors of a pattern; it is done as in Procedure 2, whose description
follows. Procedure 2 terminates on any input, as all loops are finite.

Let a partial injection, or matching, from a set 	 to a set 	 � be an
injection from a nonempty subset of 	 to 	 �. For two patterns � =
	�� 
���

�

� � and � = 	�� 
���
�

� �, we use � + � to denote 	� 


	� � 
� 
 
� � �
�

� 
 ��� �. When adding patterns, if the node and edge
sets are not disjoint, the result is a “merge”. No automatic renaming is
assumed.

We use the following two subtraction operations in Procedure 2. First,
for a pattern � = 	�� 
���

�

� �, and an action � = ����, let � �� �
be the pattern � = 	�� 
���

�

� �, with 
� = 
� � 
� and 	� = 	� �
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Procedure 2 Pre(�,�)

Require: Action � = �����, pattern � = ���� ������ �
Ensure: Φ is a set of patterns satisfying Pre (�� [[�]]) � [[Φ]]

1 Φ := �
2 Rename all nodes in �, so that they are disjoint from the nodes in
� and �

3 for each partial injection � : �� � �� do

4 Rename each node �(	) in the range of � to 	

5 if �	 � Dom (�)	�� 
 
+(	� �) �� 
+(	��) �
	�	���	�(� + �) then

6 skip

7 else

8 �� := (����) + �

9 for each �� � ��� do

10 if 	�	���	�((� �� �) + ��) then

11 �� = ��	��

12 if �	�	���	�(��) then

13 Φ := Φ � ��

14 return Φ

(�� � ��) . Second, for a pattern � = ���� ����
�

� �, and a hypergraph
� = ���� ���, let � �� � be the pattern � = ���� ����

�

� �, with �� =
�� � �� and �� = � (��).

For a NAC ��, we use � + �� to denote ���� ��� �
�

� � ��� and
�	�� to denote ���� ��� ��� ��

��. If 	 � �� , let 
+(	� ���� ������ �)
denote the set of edges in �� connected to 	.

Procedure 2 first renames the nodes (line 2) to avoid unintended node
collisions between � and � . Thereafter, the loop starting at line 3 per-
forms a sequence of operations for each possible matching between some
nodes of �� and �� .

On line 4 each node �(	) in the range of � is renamed to 	, in order to
“merge” � and � according to �. Since nodes that are created by � must
also have all their edges created by �, we should discard matchings which
violate this (line 5). On line 5 we also discard inconsistent matchings.
The check 	�	���	�(�) is true iff pattern � is not consistent.

On line 8 the action � is “executed” backwards to obtain a pattern ��

that is a potential predecessor of � . Using the special subtraction ��
nodes and edges created by � are removed from � . On lines 9–11, we
remove all NACs from �� which contradict subgraphs removed by � . The
backward execution (on line 8) and the NAC removal may both introduce
approximation (see the paragraph below). Since by definition � cannot
remove nodes, we use the special subtraction �� which ignores nodes
not connected to edges. On line 12, we discard the resulting predecessor
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�
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(b) Predecessor computation showing intermediate pattern

Figure D.3: Approximation due to upwards-closure.

pattern if it is inconsistent — this can happen if a NAC in � contradicts
a positive subgraph of ��. Finally, if we reach line 13, we have found a
predecessor pattern, which is added to Φ.

Approximation. The predecessor computation in Procedure 2 may
introduce an approximation at line 8 or line 11. If � removes a hyper-
edge (����� ) of arity zero or one, and this edge is included in � , then
Pre (�� [[�]]) should contain two copies of (����� ), representing “two or
more” occurrences of (����� ). However, the use of sets to contain the
hyperedges of patterns results in Pre(���) containing only one copy of
(����� ), after line 8, representing “one or more” occurrences of (����� ).

Further, if � removes a subgraph which is forbidden by � , then
Pre (�� [[�]]) should say that there is exactly one subgraph of this form.
However, patterns cannot always express “exactly one” occurrence of
a subgraph. In this situation, Procedure 2 therefore lets the resulting
pattern say that “there is at least one occurrence” of this subgraph.
As an example, consider the simple situation in Figure D.3, where � ,
shown in Figure D.3(a), removes an RM-edge between two nodes, and � ,
the rightmost pattern in Figure D.3(b), says that there is no RM-edge.
The exact predecessor of � is: “there is exactly one RM-edge between
two nodes”. However, the resulting predecessor (the leftmost pattern in
Figure D.3(b)) represents that there is at least one RM-edge connected
to graph node 1. To illustrate the effect of lines 9–11 of Procedure 2, an
intermediate pattern, where the contradiction has not yet been resolved,
is shown in Figure D.3(b).

Optimizations. To make the analysis more efficient, we have (imple-
mented) two mechanisms for the user to specify simple type constraints.
One is to annotate nodes with types that are respected in the anal-
ysis, with the semantics that nodes may only “match” nodes of same
type. Another is to add patterns that describe multiplicity constraints
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on edges. For example, our DYMO models use “a network node can have
at most one routing table”, by specifying a pattern where a node has
two routing tables as “impossible”.

We need to model integer-valued variables, as DYMO uses sequence
numbers and hop counts. This is done by representing integers as nodes,
and greater than (�) and equality (=) relations as edges between these
nodes. We do not represent concrete integer values. Hence, we cannot
compare integers which are not connected by a relational edge. We have
extended our tool to handle the transitive closure of � and = , as part
of the predecessor computation. For each predecessor pattern generated,
the closure of all transitive numerical relations present in the pattern is
computed. New relational edges are then added to the pattern accord-
ingly. The reason is that our syntactic subsumption check cannot deduce
such semantic information about relations. The check for created nodes
on line 5 of Procedure 2 was also extended to take into account the
transitivity of numerical relations.

D.5 Modeling and Verification of DYMO

In this section we describe how we modeled the DYMO protocol (more
precisely, the latest version at the time of writing, version 10 [CP07b],
and version 5). See our project home page [GBT] for the complete mod-
els. In total, our DYMO v10 model consists of one initial graph (“an
empty network”) and 77 actions. Of these, 38 actions model routing ta-
ble update rules, similar to the one in Figure D.4 below. We have only
used unary and binary hyperedges in our models, although our imple-
mentation supports hyperedges of any arity.

Modeling Network Topology and Message Transmission. We
represent arbitrary network topologies by letting the initial system con-
figuration be an empty network (i.e., an empty graph), and including an
action for creating an arbitrary network node; thus any initial topology
can be formed. We do not explicitly model connectivity in the network.
Instead all nodes can potentially react on all messages in the network;
this reaction on a message can be postponed indefinitely, corresponding
to a node being out of range or otherwise incapable of receiving the mes-
sage. Messages can also be non-deterministically removed, correspond-
ing to message loss. In our modeling of message transmission, messages
are left in the network after a node has handled them (until they are
potentially dropped): this accounts for messages being duplicated.

Handling of Timeouts and Hop Limits. DYMO uses timeouts to
determine if a RREQ should be retransmitted, if a link is broken, or
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if a routing table entry should be removed. We over-approximate time-
outs as “event x can happen at any time”, which covers all possibilities
for a timeout. It is known from previous work on the AODV protocol
[BOG02], that if entries are removed from the routing table, loops may
form. The reason is that obsolete information can then be accepted. In
DYMO, routing table entries are invalidated (set to broken) after some
time, and later removed; temporary loops are thus tolerated. We exclude
removal of routing table entries from our analysis; they can only be in-
validated. In practice, we thus verify loop-freedom under the assumption
that routing table entries are kept “long enough”.

We do not model DYMO hop limits [CP07b], used to limit packet
traversal. However, since we include actions for arbitrary dropping of
RMs and RERRs, we implicitly cover all possible hop limit settings.

Routing Table Update Rules. The DYMO specification [CP07b]
prescribes when a node should update its own routing table upon re-
ceiving routing data, i.e., when received routing data should replace
existing data. Existing data is represented by a routing table entry, with
fields RouteSeqNo, RouteHopCnt, and Broken. Received data is rep-
resented by a routing message with fields OrigSeqNo, NodeHopCnt
and message type RM – either a route request (RREQ) or a route reply
(RREP). The table entry should be updated in the following cases:

1. OrigSeqNo � RouteSeqNo

2. OrigSeqNo = RouteSeqNo � NodeHopCnt � RouteHopCnt

3. OrigSeqNo = RouteSeqNo � NodeHopCnt = RouteHopCnt

� RM = RREP

4. OrigSeqNo = RouteSeqNo � NodeHopCnt = RouteHopCnt

� Broken

The rules say that an update is allowed if (1) the message has a higher
sequence number for the destination, or (2) the message has the same
sequence number, but a shorter route, or (3) the message has the same
routing metric value, and the message is a route reply, or (4) the table
entry is broken. See Figure D.4 for an illustration of how we model the
update rules. The figure corresponds to rule (2). In our framework, we
have to model each combination of network nodes used in the rules, such
as when IPSource equals Orig, or RouteNextHopAddress equals
RouteAddress, etc., as separate actions; however, we have tool support
for doing this.

Formalizing the Non-Looping Property. A central property of ad
hoc routing protocols is that they never cause routing loops, as a routing
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Figure D.4: Action modeling a routing table update.

loop prevents a packet from reaching its intended destination. A routing
loop is a nonempty finite sequence of nodes �1� � � � � �� such that for some
destination � it holds that for all � : 1 � � � � node �(�+1)(��� �) is the
next hop towards � from node �� , and �� �= �.

We define the ordering �� on nodes in a configuration as: � �� ��

iff RouteSeqNo�(�) � RouteSeqNo��(�) � (RouteSeqNo�(�) =
RouteSeqNo��(�) � RouteHopCnt�(�) � RouteHopCnt��(�)).
There can be no routing loops towards a destination �, if each hop
from a node � towards � goes to a node �� with �� �� � . Since ��

is a partial order, any routing path towards � can contain a node at
most once. The same ordering was used in the proof of loop freedom for
AODV in [BOG02]. The following property, 	
 , implies the pairwise
ordering along routing paths; if 	
 is invariant for DYMO, there are
no routing loops.

������ � �= ��� �= ��� �= �

RouteNextHopAddress�(�) = � =� � �� � (	
 )

By negating the loop property (LP), we obtain a characterization of
the bad system configurations. Loops may thus form if the sequence
number strictly decreases, or the sequence number stays the same but
the hop count does not decrease, between a node � and its next hop �

on a route towards a destination node �. In our verification of DYMO,
we verify unreachability for a set of six bad patterns. Three represent a
disjunct of (�	
 ) under quantification; two represent a network node
with a routing table entry pointing to the node itself; and one pattern
represents that a node has a next hop (which is not �) towards some
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Figure D.5: Graph pattern representing a set of bad system configurations in
DYMO.

destination �, but the next hop has no entry for �. As an example, a
pattern representing one of the disjuncts of (��� ) is shown in Figure
D.5.

D.6 Experimental Results

We have modeled and verified the DYMO protocol as described in Sec-
tions D.5 and D.4. Recall that the analysis is under an assumption of
routing table entries not being removed. The analysis has been per-
formed using our tool GBT (Graph Backwards Tool). GBT and the
models are available at our project home page [GBT]. The tool uses the
.dot format for describing hypergraphs and patterns (input and out-
put). If the initial configuration can be reached, an error trace, showing
a sequence of actions leading to one of the bad patterns, is provided.
Note that this trace may be spurious, due to over-approximation.

We have verified the latest DYMO version at the time of writing,
namely version 10 of the Internet draft [CP07b], as well as an older draft
(version 5). Our results are presented in Table D.1. In the “dest. reply”
models, only the destination node replies to an RREQ, whereas in “in-
term. reply”, intermediate nodes may also reply (in case they have a fresh
enough route, see [CP07b]). Column � contains the number of actions
in the model. Seen contains the total number of unique non-impossible
patterns generated by the predecessor computation, plus the ones given
as input. � contains the patterns which were subsumed (see Section
D.4). Left contains the patterns left after the analysis has finished; none
of them contain the initial graph. Time contains the total verification
time (GBT start to end) on a machine with an AMD Opteron 2220 2.8
GHz processor.

In Table D.1 we have also included GBT verification results for the
“Public/private servers” and “Firewall” examples, used by König and
Kozioura [KK06]. These examples required modifications to work with
our tool. The abstraction introduced from using sets to contain the hy-
peredges of patterns required us to add a zero arity edge to the right
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Table D.1: Measurement results from using GBT. Updated results are available
in [SWJ07].

Protocol � Seen � Left Time

DYMO draft 10

- dest. reply 56 185751 185695 56 2h 24 min

- interm. reply 77 295164 295108 56 4h 31 min

DYMO draft 05 50 118685 118637 48 1h 20 min

Pub/priv srv I 12 498 484 14 0.73 s

Pub/priv srv II 13 629 609 20 0.94 s

Firewall I 6 129 126 3 0.11 s

Firewall II 6 129 126 3 0.11 s

hand side of two actions in “Public/private servers II”. The transitiv-
ity handling in our tool was also extended to include communication
channels.

D.7 Proofs

We prove that our backward reachability analysis (Procedure 1) is cor-
rect.

In practice, the analysis has to use the syntactic characterization of �
to check subsumption of patterns, as stated in Proposition D.1. Thus,
we will have to prove Proposition D.1 .

The underlying assumption in Procedure 1 is that we can throw away
patterns � which are subsumed by some previously seen pattern � (see
line 7). The motivation is that, since any hypergraph in [[�]] is contained
in [[�]], it should suffice to take predecessors of � . We prove that, indeed,
our predecessor computation on patterns (Procedure 2) is adequate —
meaning that Pre(���) subsumes Pre (�� [[�]]).

Notations and Conventions We will use the following notations and
conventions in the proofs.

If an injection � satisfying the conditions of Proposition D.1 exists for
patterns � and � , we say that � � � is witnessed by �, written � �� � .

An injection � : � � � � can be applied on any pattern, hypergraph,
edge or NAC in a distributed fashion, with the convention that �(�) = �

for nodes � �� � . For example, �(��� ) is the set ��(��� ) � ��� � ��� � etc.
For a set of NACs ��� we let 	 (��� ) = �	 (��) � 
��� ��� � ��� .
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Two sets of NACs ��� and ��� are isomorphic, written ��� � ��� , if

there exists a bijection � : � (��� ) � � (��� ) such that �(��� ) = ��� and

��1(��� ) = ��� .
Let � be the set of all nodes (negative and positive).
The identity between sets of nodes is the bijection

�� : � � � ; �(�) = � .

D.7.1 Pattern Subsumption

Proposition D.1. Given patterns � = ���� ����
�

� � and 	 =

��� � ����
�

� � which are consistent, we have that � � 	 iff there exists
an injection � : �� � ��, such that (1) ���� ��� �� ���� ��� �� and
(2) for each NAC �
�� ��� 	 ��� there is a NAC ���� ��� 	 ��� and

an injection � : ���
� such that


 (� (��) ���) � �(��), and


 for each (��� ) 	 ��, we have (� (��1 � �)(�� )) 	 �� .

Proof. (“=�”) Assume that � � 	, i.e., [[�]] � [[	]] .
Since � is consistent, we know that ���� ��� 	 [[�]], and by assump-

tion, ���� ��� 	 [[	]], so ���� ��� � 	 . There thus exists � witnessing
���� ��� � ���� ��� ��.

Now suppose that every � witnessing ���� ��� � ��� � ��� �� fails to
satisfy the condition (2). Thus, for every � there exists ��

�
	 ��

�
such

that for each ��� 	 �
�

� there is no � with (��1 � �)(��� ) � ��
�

.
Let � = �� � ���� ��� �� ���� ��� ��� , which contains at least

one element, as shown above. For each � 	 �, we define a hyper-
graph �+

� , where �+
� = ��+

� � �
+
� � . Intuitively, �+

� is a positive in-
terpretation of ��� = ���� � �

�

� � where the negative edges are inter-
preted as positive edges with the same labels. More precisely, �+

� =
�+(��� ) � (���+)(� (��� )) and �+

� = (���+)(��� ) with the injection
�+ : ��� � �+

� and (�+
� ���) = � .

Now consider the hypergraph �� = ���� ��� �
�
��+

�
� � 	 �� .

Intuitively, �� consists of the positive part of � and for each � 	 � a
part which contradicts a NAC in 	 but not a NAC in � .

Now note that �� � � . In fact, �� �� � for any � 	 � since we do not
contradict ��� by our assumption. Moreover, no matter which � 	 �

we choose, we get �(�� �� 	), since we map to a part which contra-
dicts ��

� 	 ��� . But � contains all possible witnesses of ���� ��� ��
��� � ��� ��. Hence, �� 	 [[�]] � [[	]], contradicting [[�]] � [[	]] . Therefore,
there must exist an � satisfying (1) which also satisfies (2).

(“�=”) Given an injection � : �� � �� and a set of injections
��� : ���
� — one for each NAC �
�� ��� 	 ��� as defined above
— satisfying (1) and (2). We show that [[�]] � [[	]] .
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Consider any � = ���� ��� � [[�]] . There exists an injection �� : �� �

�� witnessing � � � . Consider also the composed injection �� = �� Æ � :
�� � ��; � �� ��(�(�)) . It witnesses � � � as we will see.

We have ��(��) � �� since for each (	���� ) � �� there is a corre-
sponding edge �((	���� )) � �� and again ��(�((	���� ))) � �� .

Now suppose that � �� � because the second condition (on page 6)
fails. Then there exists some NAC 
� = 	��� ��� � 
�� which con-

tradicts � . More precisely, there exists an injection � : �� � �� such
that for each (	���� ) � �� we have (	� (�� � �)(��� )) � �� .

But then there is a corresponding NAC 	��� ��� � 
�� which also
contradicts � . To see this, we use the injection �� : ����� with the
properties defined above, and the injection �� = � Æ �� : ��� �� ;
� �� �(��(�)) . Now for each (	���� ) � �� we have (	� ((�� Æ ��1) �
��)(��� )) � �� . But this contradicts � � � . Hence, � � � and � � � .

�

D.7.2 Correctness of the Predecessor Calculation

We prove the correctness of Procedure 2. First we establish a property of
the symbolic predecessor computation, which will be used in the proof.

Symbolic Predecessor Computation

We prove a useful property of the symbolic predecessor computation.

Proposition D.4 Given patterns � = 	��� ���

�

� �, � = 	��� ���

�

� �

and an action � = 	����. If � �� � and �(
�� ) � 
�� , then for each
�� � Pre(���) there exists some �� � Pre(���) such that �� � �� .

Proof. Assume that � �� � and �(
�� ) � 
�� . We show that for each
predecessor �� of � there exists a predecessor �� of � such that �� � ��

as illustrated below.

��
Pre(�)
���� �

� �
�

���
Pre(�)
���� �

After renaming the nodes so that the sets of nodes are disjoint, we
compute Pre(���) and Pre(���) according to Procedure 2.

We consider all predecessors of � . Let thus ��� : �� � �� be the
chosen partial injection on line 3 which causes the predecessor �� of � to
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be output. We show that a corresponding injection gives us the desired
predecessor �� — namely the following:

��� = ��1 Æ ��� : �� � �� ; � �� ��1(���(�)) �

We now argue line by line, of Procedure 2, that subsumption is pre-
served during the predecessor computation for our choices of injections.
Initially, we have � �� � . Clearly, after the renaming done on line 4 we
still have subsumption. The following gives us a simpler correspondence
between � and � .

Lemma D.5 If � �� � then �� ���
�� , where �� = ��1

��(�) and �� =

��1
��(�) are the patterns obtained after the renaming.

Proof. Since � �� � we have ��1(�) ��� � . Since the sets �� and ��

are disjoint, we can apply ��1
�� to both sides, obtaining ��1

�� Æ�
�1(�) ���

�� . By definition ��1
��

= (��1 Æ ���)�1 = (��1
�� Æ �) so the left hand side

becomes �� .
�

For readability, we abuse notation slightly, and continue to call the
renamed patterns � and � . Let thus � := ��1

��(�) and � := ��1
��(�). By

Lemma D.5 we thus have � ��� � .
We continue with the test on line 5 . It suffices to show that if � is not

skipped, i.e. both clauses are false, then � is not skipped either.

Lemma D.6 If the first clause of the test on line 5 is false for � then
it is also false for � .

Proof. That the first clause is false, means that for the quantified � ,
�+(�� �) � �+(���) . Since � ��� � we get �� � �� and 	� � 	� ,
and the statement follows.

�

Lemma D.7 If the second clause of the test on line 5 is false for � then
it is also false for � .

Proof. That the second clause is false for � means that
�����������(� + �) . This means that there is no NAC in 	�� which
contradicts � . The statement follows since � ��� � as for Lemma
D.6. �

Next we show that the computation on line 8 preserves subsumption.
Let �� = (�
��) + � and �� = (� 
��) + � .

Lemma D.8 If � ��� � then �� ��� �
� .
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Proof. Suppose that � ��� � .

(����) + � = ��� � (�� ���) ���� �� ��� �����
�

� � �
�

� �

(� ���) + � = ��� � (�� ���) ���� �� ��� �����
�

�
� ��� �

We check the conditions of Proposition 1 after line 8.

1. This condition is true, because the same edges are removed from
and added to � and � .

2. This condition holds, because the same NACs are added to � and
� .

�

We show that the NAC handling done on lines 9–11 also preserves
subsumption. We will use ��� and ��� to denote the results from executing
lines 9–11.

Lemma D.9 If �� ��� �
� then ��� ��� �

�� .

Proof. Because the sets of NACs are isomorphic, whenever a NAC is
removed from �� it is also removed from �� . Hence subsumption is pre-
served. �

For the inconsistency check on line 12 of Procedure 2 we conclude that
since we have ��� ��� �

�� , if ��� is inconsistent, then so is ��� . Hence, if
��� passes the test, it is not inconsistent and neither is ��� .

Let us return to the original notations, used in the statement. We
simply rename our patterns: �� := ��� and �� := ��� . Since �� is a
predecessor of � , it will pass this last inconsistency check. It follows
that so will �� . Hence, we have found our �� with �� � Pre(���) such
that �� � ��, concluding the proof. �

Main Proof

Now we continue with the main proof. We will use the following corre-
spondence between graph and pattern subsumption.

Lemma D.10 Given a hypergraph 	 = ���� ��� and a consistent pat-
tern � = ���� ����

�

� �.

	 �	 � 	
 �� = ���� ��� 
(��� )� �	 � and �� is consistent �
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��
pre (�)
������ �

� �

���
Pre(�)
����� ���

� �

��
Pre(�)
����� �

Figure D.1: Proof strategy. We show that the patterns preceded by “�” exist.
The proposition statement then follows by transitivity of � .

Proof. (=�). Suppose � �� � . Then � does not contradict any NAC of
� . Hence, ���� ��� �(��� )� is consistent and subsumed by � (witnessed
by � and the identity mapping between the NACs).

(	=). Suppose �� = ���� ��� �(��� )� �� � and �� is consistent. Since
�� is consistent, we get � = ���� ��� ��� �� . Furthermore, since �� � �

we have � ��� �� � � . Hence, � � � . �

Finally, we are ready to prove correctness.

Proposition D.11 Given an action � = �	�
�, and a consistent pat-
tern � = ���� ����

�

� �.

Φ = Pre(���) satisfies Pre (�� [[�]]) 
 [[Φ]] �

Proof. Our proof strategy is depicted in Figure D.1. We consider any
pair of graphs (��� �) � [[�]] where � � � . We first show that there exist
patterns �� and �� as shown in the figure — i.e., such that � � �� ,
�� � � , �� � Pre(����) and �� � �� . Once this has been established,
we get by Proposition D.4 that there exists a pattern � � Pre(���)
such that �� � � . Finally, we get �� � � by transitivity.

By Lemma D.10 we get that �� = ���� ����
�

� � � � and, by con-
sistency, that � � �� . Now, by Proposition D.4, we get that for any
�� � Pre(����) there exists � � Pre(���) with �� � � . It now suffices
to show that there exists a predecessor �� of �� such that �� � �� .

Suppose that the injection � : �� � �� relates �� and � according to
Definition D.2. Hence we have � = ���� ��� with �� = ��� �(��) and
�� = �����(��)�(��) . We show that, if we choose this same injection
on line 3 in the computation of Pre(���), we obtain an adequate �� .
Let us, then, go through lines 4–13 of Procedure 2 using the injection
� : �� � �� from above.
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� Line 4. After the renaming we obtain �� =
���1(���) ��� � �

�1(���)��� ��� � �
�1(��� )� .

� Line 5, first clause. This clause is false, since the edges of �� are
��1(���)������ . Thus �+(����) is clearly a subset of �+(����)
for � � (�� ���) (in fact, the sets are equal).

� Line 5, second clause.

�� + � =

���1(���) ��� ���� �
�1(���)��� ��� ���� �

�1(��� )� = ��

Since �� is consistent, so is �� + � .

� Line 8. We here obtain the pattern

�� = (�� 	� �) + � = ���1(���) � ��1(���) � ��1(��� ) � ��� � 	

� Lines 9–11. Suppose that 
� 
� �� . Since condition 1 of subsump-
tion is satisfied (as defined on page 6), the reason must be that
condition 2 is not. But since by definition 
� �� � , the violated
NAC must be in ��� . Moreover, since �+� is consistent, the part
of �� which contradicts the NAC cannot be in � . The only remain-
ing alternative is that something (positive) in �	� � contradicts
the NAC. Hence, condition 2 is met, and 
� � �� , if all contradic-
tions of this form are resolved. This is precisely what is done on
lines 9–11.

� Line 12. Finally, �� is consistent, since 
� � ��, and the test on
this line is passed. �

D.8 Conclusions and Future Work

We have described and implemented a general framework for modeling
and verification of protocols using a variant of graph transformation sys-
tems, and applied it to automatically prove loop freedom of the DYMO
v10 ad hoc routing protocol. We expect that several of the actions used in
our DYMO model need only small modifications to work for other ad hoc
routing protocols categorized as reactive (i.e., on-demand). The reason
is that reactive ad hoc routing protocols generally use the same kind of
flooding route discovery mechanism; examples include AODV[PBR99],
DSR[JMB01], and LUNAR[TGRW04] (see [Lis] for an extensive list).

As GTSs with NACs make up quite a generic modeling framework,
there should be possibilities for interesting case studies, and further de-
velopment. Directions for future work include further optimizations of
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the predecessor computation, e.g., by early detection of unfruitful match-
ings. We are currently working on a new DYMO model, to investigate the
effect on run-time performance when using hyperedges of arity greater
than two. Termination of the reachability analysis can be obtained by
bounding and truncating the generated patterns, at the cost of over-
approximation, e.g., by enforcing a maximum size. The possibility of
spurious counter-examples, due to approximations in the predecessor
computation, motivates looking at counter-example guided abstraction
refinement.
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