
Verifying and enforcing network
paths with ICING

Jad Naous, Michael Walfish,
Antonio Nicolosi, David Mazières,
Michael Miller, and Arun Seehra

1

Today: New protocol for every feature

• Remote VPN, Private WANs, Specifying QoS,
Firewalls, Filters, DoS protection, ACLs, Secure
routing, …

• Tomorrow: security outsourcing, access
delegation, better DoS protection, source
routing?

2

Today: New protocol for every feature

• Remote VPN, Private WANs, Specifying QoS,
Firewalls, Filters, DoS protection, ACLs, Secure
routing, …

• Tomorrow: security outsourcing, access
delegation, better DoS protection, source
routing?

3

Complexity, Incompatibility, Ossification

Example: enterprise outsourcing
deep-packet inspection

4

Anonymous
A

Destination
D

Middlebox
M

Provider
P

Employee
E Packets from Internet go through M

Packets from employees don’t

Example: service provider verifies
business relationship

5

Anonymous
A

Destination
D

Middlebox
M

Provider
P

Employee
E Only check packets from customers

One primitive to rule them all?

Path Consent:
Every entity on the path (or a delegate) has to approve
the whole path.

Path Verification:
Upon receiving a packet, every entity on the path can
verify that the packet has followed an approved path

Difficult Challenge

6

Path Consent and Path Verification
in action

7

Anonymous
A

Destination
D

Middlebox
M

Provider
P

Employee
E Approve paths according to policies

Drop packets with unapproved paths
Approve paths according to policies

Drop packets with unapproved paths

Why are Path Consent and Path
verification sufficient?

Other protocols give one entity more control
over the other entities on the path.

8

What are the guarantees?

• Granularity: Domain level guarantees.

• Role of honest nodes: Honest nodes drop
non-compliant packets.

• No skipping: Cannot skip an uncompromised
honest hop, even with collusion.

• No negative policies: Cannot prove a packet
did not pass through a certain entity.

• Does not prove trustworthiness: “Trusted”
does not mean “Trustworthy”.

9

This talk will answer

• How can we provide Path Consent and Path
verification?

• At what cost?

10

Outline

• Design in three iterations

• Prototype implementation and results

• Related work and conclusion

11

Operational constraints

Adversarial

Decentralized

High performance

12

Consent
Server 3

Architecture:
Control plane/Data plane split

Consent
Server 1

Consent
Server 2

Sender
R3

R1

R2

13

Communication starts by contacting
consent servers

Consent
Server

Sender

14

Ri

Path= <…, Ri, …>

Proofi

Payload
ICING Header:
 Path = <Sender, R1, R2, R3>
 Verif = <V1, V2, V3>

15

Payload

ICING Header:
 Path = <Sender, R1, R2, R3>
 Verif = <V1, V2, V3>

Forwarder

Forwarder uses its verifier to
implement Path Verification

Strawman 1: Public key crypto

Name entities by self-minted
public keys (PK/SK)

Use signatures for
Path Consent and Path Verification

16

Operational constraints

Adversarial

Decentralized

High performance

17

Strawman 2: Symmetric Key Crypto

R = number of realms on Internet
n = number of realms on a path

O(R) symmetric keys for configuration

O(n2) overhead in the packet

18

1 PK/SK

1 Sig

R pair-wise shared keys

n MACs

Strawman 2: Sender inserts proofs of
consent in the packet

19

Path Verifiers

R0

R1

R2

R3

Proofs

Created using symmetric shared
keys between consent server
forwarder.

Uses R1’s consent key s1

Uses R2’s consent key s2

Uses R3’s consent key s3

Strawman 2: Sender proves to later
realms it has passed the packet using

O(R) preconfigured keys

20

Path Verifiers

R0

R1

R2

R3

Proofs

Uses k01 shared between R0, R1

Uses k02 shared between R0, R2

Uses k03 shared between R0, R3

Strawman 2: Forwarders use O(R)
symmetric keys for verification

21

Path Verifiers

R0

R1

R2

R3

R1

Proofs

Consent server, R1: s1

R0, R1: k01

Strawman 2:
Forwarder adds proof for later realms

22

R1, R2: k12

R1, R3: k13

Path Verifiers

R0

R1

R2

R3

R1

Proofs Path Verifiers

R0

R1

R2

R3

Proofs

Operational constraints

Adversarial

Decentralized

High performance

23

ICING: Decrease overhead by
XORing MACs and Proofs

24

Path Verifiers

R0

R1

R2

R3

Proofs Path

PK0

PK1

PK2

PK3

Verifiers

XOR

ICING: public keys as names and pairwise
keys non-interactive key exchange

25

Uses s2: consent server, R2

R2

Path

PK0

PK1

PK2

PK3

Verifiers

Uses k02 = KEY-EXCH(SK0, PK2) = KEY-EXCH(SK2, PK0)

Uses k12 = KEY-EXCH(SK1, PK2) = KEY-EXCH(SK2, PK1)

Path

PK0

PK1

PK2

PK3

Verifiers

Uses k23 = KEY-EXCH(SK2, PK3) = KEY-EXCH(SK3, PK2)

Missing functionality:
Realm-specific services and delegation

• Indicate entity-specific meaning: QoS, billing,
DPI, etc.

• Delegate ability to create proofs

26

Extend hop specification with tag

• Path

<(PK1, tag1), (PK2, tag2), …, (PKn, tagn)>

• Each (PK, tag) has a unique consent key (si)

• Keys generated from master keys, can be
delegated by prefix.

27

Outline

• Design in three iterations

• Prototype implementation and results

• Related work and conclusion

28

Hardware implementation uses
three main pipeline stages

29

Hash
(CHI)

Pair-wise
Key

Lookup

PMAC

CBC-MAC

Consent
Key

Lookup

tag

path

payload

+ =

verifiers

Drop
or

Forward

path

+ New
Verifiers

Slow path in software does
key exchange

30

Calculate
Shared Keys

Packet missing keys Insert calculated keys
into cache

Software

Hardware

Evaluation questions

• What is throughput of the forwarder? Can it
handle whatever packets are thrown at it?
– Bottleneck at the hash function

• What is the hardware cost of an ICING
forwarder?

• How much packet overhead does ICING add?

31

Throughput: Connect all forwarder ports to
NetFPGA packet generators

32

ICING
Forwarder

NetFPGA Packet
Generator

NetFPGA Packet
Generator

2Gbps

2Gbps

R?

R?

Throughput vs. Payload Size
(Path Length=7)

33

100%

50%

0% 0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000

Payload Size (bytes)

Throughput
(Mbps)

Hardware Cost

• Measure cost as equivalent gate count
generated by Xilinx ISE 10.1i

• Our implementation costs 54% more than
NetFPGA IP router and is 20% slower.

• Normalized cost (for the same throughput) is
93% more than NetFPGA IP router.

34

Packet overhead increase:
Estimate from backbone trace

• 15-minute trace from Trans-Pacific 150Mbps
line

• Assuming average path length of 5

• ICING would add < 25% more overhead

• 187.5Mbps ICING line = 150Mbps IP line

35

Outline

• Design in three iterations

• Prototype implementation and results

• Related work and conclusion

36

Selected related work

• Enriching control and policy:

– [Calvert et al, Broadnets ‘07] PoMo

– [Popa et al, OSDI ‘10] RBF

– [Yang et al, ACM/IEEE Trans. on networking ‘04] NIRA

• Related mechanisms:

– [Liu et al, NSDI ‘08] Passport

– [Andersen et al, SIGCOMM ‘08] AIP

– [Raghavan and Snoeren, SIGCOMM ‘04] Platypus

37

Conclusion

Single primitive with two simple properties can
provide functions of many other protocols.

Solving hard problems using scalable per-packet
cryptography

Line-rate enforcement and verification at an
additional hardware cost of 93% and
<25% average packet overhead

38

