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Today: New protocol for every feature 

• Remote VPN, Private WANs, Specifying QoS, 
Firewalls, Filters, DoS protection, ACLs, Secure 
routing, … 

• Tomorrow: security outsourcing, access 
delegation, better DoS protection, source 
routing? 
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Complexity, Incompatibility, Ossification 



Example: enterprise outsourcing 
deep-packet inspection 
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Example: service provider verifies 
business relationship 
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One primitive to rule them all? 
 

Path Consent: 
Every entity on the path (or a delegate) has to approve 
the whole path. 

 

Path Verification: 
Upon receiving a packet, every entity on the path can 
verify that the packet has followed an approved path 

 

Difficult  Challenge 
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Path Consent and Path Verification 
in action 
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Why are Path Consent and Path 
verification sufficient? 

 

 

Other protocols give one entity more control 
over the other entities on the path. 
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What are the guarantees? 

• Granularity: Domain level guarantees. 

• Role of honest nodes: Honest nodes drop 
non-compliant packets. 

• No skipping: Cannot skip an uncompromised 
honest hop, even with collusion. 

• No negative policies: Cannot prove a packet 
did not pass through a certain entity. 

• Does not prove trustworthiness: “Trusted” 
does not mean “Trustworthy”. 
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This talk will answer 

 

• How can we provide Path Consent and Path 
verification? 

 

• At what cost? 
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Outline 

 

• Design in three iterations 

 

• Prototype implementation and results 

 

• Related work and conclusion 
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Operational constraints 

 

Adversarial 

 

Decentralized 

 

High performance 
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Consent 
Server 3 

Architecture: 
Control plane/Data plane split 
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Communication starts by contacting 
consent servers 

Consent 
Server 

 
 
 

Sender 
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Ri 

Path= <…, Ri, …> 

Proofi 

Payload 
ICING Header: 
        Path = <Sender, R1, R2, R3> 
        Verif = <V1, V2, V3> 



 

 

 

15 

Payload 

ICING Header: 
 Path = <Sender, R1, R2, R3> 
 Verif = <V1, V2, V3> 

Forwarder 

Forwarder uses its verifier to 
implement Path Verification 



Strawman 1: Public key crypto 

 

Name entities by self-minted 
public keys (PK/SK) 

 

Use signatures for 
Path Consent and Path Verification 
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Operational constraints 

 

Adversarial 

 

Decentralized 

 

High performance 
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Strawman 2: Symmetric Key Crypto 

 
 
 
 

R = number of realms on Internet 
n = number of realms on a path 

 
O(R) symmetric keys for configuration 

O(n2) overhead in the packet 
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Strawman 2: Sender inserts proofs of 
consent in the packet 
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Uses R2’s consent key s2 
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Strawman 2: Sender proves to later 
realms it has passed the packet using 

O(R) preconfigured keys 
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Uses k01 shared between R0, R1 

Uses k02 shared between R0, R2 

Uses k03 shared between R0, R3 



Strawman 2: Forwarders use O(R) 
symmetric keys for verification 
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Strawman 2: 
Forwarder adds proof for later realms 
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Operational constraints 

 

Adversarial 

 

Decentralized 

 

High performance 
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ICING: Decrease overhead by 
XORing MACs and Proofs 
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ICING: public keys as names and pairwise 
keys non-interactive key exchange 
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Uses s2: consent server, R2 
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Missing functionality: 
Realm-specific services and delegation 

 

• Indicate entity-specific meaning: QoS, billing, 
DPI, etc. 

 

• Delegate ability to create proofs 
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Extend hop specification with tag 

• Path 

<(PK1, tag1), (PK2, tag2), …, (PKn, tagn)> 

 

• Each (PK, tag) has a unique consent key (si) 

 

• Keys generated from master keys, can be 
delegated by prefix. 
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Outline 

 

• Design in three iterations 

 

• Prototype implementation and results 

 

• Related work and conclusion 
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Hardware implementation uses 
three main pipeline stages 
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Slow path in software does 
key exchange 
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Calculate 
Shared Keys 

Packet missing keys Insert calculated keys 
into cache 

Software 

Hardware 



Evaluation questions 

 

• What is throughput of the forwarder? Can it 
handle whatever packets are thrown at it? 
– Bottleneck at the hash function 

 

• What is the hardware cost of an ICING 
forwarder? 

 

• How much packet overhead does ICING add? 
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Throughput: Connect all forwarder ports to 
NetFPGA packet generators 
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Throughput vs. Payload Size 
(Path Length=7) 
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Hardware Cost 

• Measure cost as equivalent gate count 
generated by Xilinx ISE 10.1i 

 

• Our implementation costs 54% more than 
NetFPGA IP router and is 20% slower. 

 

• Normalized cost (for the same throughput) is 
93% more than NetFPGA IP router. 
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Packet overhead increase: 
Estimate from backbone trace 

• 15-minute trace from Trans-Pacific 150Mbps 
line 

• Assuming average path length of 5 

• ICING would add < 25% more overhead 

 

• 187.5Mbps ICING line = 150Mbps IP line 
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Outline 

 

• Design in three iterations 

 

• Prototype implementation and results 

 

• Related work and conclusion 
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Selected related work 

• Enriching control and policy: 

– [Calvert et al, Broadnets ‘07] PoMo 

– [Popa et al, OSDI ‘10] RBF 

– [Yang et al, ACM/IEEE Trans. on networking ‘04] NIRA 

• Related mechanisms: 

– [Liu et al, NSDI ‘08] Passport 

– [Andersen et al, SIGCOMM ‘08] AIP 

– [Raghavan and Snoeren, SIGCOMM ‘04] Platypus 
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Conclusion 

Single primitive with two simple properties can 
provide functions of many other protocols. 

 

Solving hard problems using scalable per-packet 
cryptography 

 

Line-rate enforcement and verification at an 
additional hardware cost of 93% and  
<25% average packet overhead 
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