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Today: New protocol for every feature

e Remote VPN, Private WANSs, Specifying QoS,
Firewalls, Filters, DoS protection, ACLs, Secure
routing, ...

* Tomorrow: security outsourcing, access
delegation, better DoS protection, source
routing?
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Complexity, Incompatibility, Ossification




Example: enterprise outsourcing
deep-packet inspection
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Example: service provider verifies
business relationship
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One primitive to rule them all?

Path Consent:

Every entity on the path (or a delegate) has to approve
the whole path.

Path Verification:

Upon receiving a packet, every entity on the path can
verify that the packet has followed an approved path

Difficult Challenge



Path Consent and Path Verification
In action

Anonymous Middlebox  Provider  Destination

3

Employee
Approve paths according to policies
Drop packets with unapproved paths

=



Why are Path Consent and Path
verification sufficient?

Other protocols give one entity more control
over the other entities on the path.



What are the guarantees?

Granularity: Domain level guarantees.

Role of honest nodes: Honest nodes drop
non-compliant packets.

No skipping: Cannot skip an uncompromised
honest hop, even with collusion.

No negative policies: Cannot prove a packet
did not pass through a certain entity.

Does not prove trustworthiness: “Trusted”
does not mean “Trustworthy”.



This talk will answer

* How can we provide Path Consent and Path
verification?

e At what cost?



Outline

* Design in three iterations

* Prototype implementation and results

* Related work and conclusion



Operational constraints

Adversarial
Decentralized

High performance



Sender

Architecture:
Control plane/Data plane split
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Communication starts by contacting
consent servers
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ICING Header:
Path = <Sender, R1, R2, R3>
Payload

Verif =<V1, V2, V3>
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Forwarder uses its verifier to
implement Path Verification

. A

ICING Header:
Path = <Sender, R1, R2, R3>
N Verif=<vi(v2,v3>

Payload

N
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Strawman 1: Public key crypto

Name entities by self-minted
public keys (PK/SK)

Use signatures for
Path Consent and Path Verification



Operational constraints

v Adversarial
«  Decentralized

X High performance
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Strawman 2: Symmetric Key Crypto

1 PK/SK — R pair-wise shared keys

1 Sig —> n MACs

R = number of realms on Internet
n = number of realms on a path

O(R) symmetric keys for configuration
O(n?) overhead in the packet



Strawman 2: Sender inserts proofs of

consent in the packet
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realms it has passed the packet using

Strawman 2: Sender proves to later

O(R) preconfigured keys
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Strawman 2: Forwarders use O(R)
symmetric keys for verification
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Strawman 2:
Forwarder adds proof for later realms
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Operational constraints

v Adversarial
«  Decentralized

X High performance
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ICING: Decrease overhead by
XORing MACs and Proofs
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ICING: public keys as names and pairwise

keys non-interactive key exchange
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Missing functionality:
Realm-specific services and delegation

* |Indicate entity-specific meaning: QoS, billing,
DPI, etc.

* Delegate ability to create proofs



Extend hop specification with tag

e Path
<(PK,, tag,), (PK,, tag,), ..., (PK_, tag,)>

* Each (PK, tag) has a unique consent key (s))

* Keys generated from master keys, can be
delegated by prefix.



Outline

* Design in three iterations

* Prototype implementation and results

* Related work and conclusion



Hardware implementation uses
three main pipeline stages

path verifiers
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Slow path in software does
key exchange

Calculate Software
Shared Keys

Insert calculated keys

Packet missing keys _
into cache

Hardware
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Evaluation questions

 What is throughput of the forwarder? Can it
handle whatever packets are thrown at it?

— Bottleneck at the hash function

e What is the hardware cost of an ICING
forwarder?

* How much packet overhead does ICING add?



Throughput: Connect all forwarder ports to
NetFPGA packet generators

NetFPGA Packet
Generator

ICING
Forwarder

NetFPGA Packet
Generator
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Throughput vs. Payload Size
(Path Length=7)
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Hardware Cost

* Measure cost as equivalent gate count
generated by Xilinx ISE 10.1i

* Our implementation costs 54% more than
NetFPGA IP router and is 20% slower.

* Normalized cost (for the same throughput) is
93% more than NetFPGA IP router.



Packet overhead increase:
Estimate from backbone trace

15-minute trace from Trans-Pacific 150Mbps
line

Assuming average path length of 5

ICING would add < 25% more overhead

187.5Mbps ICING line = 150Mbps IP line
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* Design in three iterations
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Selected related work

* Enriching control and policy:
— [Calvert et al, Broadnets ‘07] PoMo

— [Popa et al, OSDI ‘10] RBF
'Yang et al, ACM/IEEE Trans. on networking ‘04] NIRA

* Related mechanisms:
— [Liu et al, NSDI ‘08] Passport
— [Andersen et al, SIGCOMM ‘08] AIP
'Raghavan and Snoeren, SIGCOMM ‘04] Platypus




Conclusion

Single primitive with two simple properties can
provide functions of many other protocols.

Solving hard problems using scalable per-packet
cryptography

Line-rate enforcement and verification at an
additional hardware cost of 93% and
<25% average packet overhead



