Verifying and enforcing network
paths with ICING

Jad Naous, Michael Walfish,
Antonio Nicolosi, David Mazieres,
Michael Miller, and Arun Seehra

Today: New protocol for every feature

e Remote VPN, Private WANSs, Specifying QoS,
Firewalls, Filters, DoS protection, ACLs, Secure
routing, ...

* Tomorrow: security outsourcing, access
delegation, better DoS protection, source
routing?

Today: New protocol for every feature

e Remote VPN, Private WANSs, Specifying QoS,
Firewalls, Filters, DoS protection, ACLs, Secure
routing, ...

* Tomorrow: security outsourcing, access
delegation, better DoS protection, source
routing?

Complexity, Incompatibility, Ossification

Example: enterprise outsourcing
deep-packet inspection

Anonymous Middlebox Provider Destination
A \Y/ P D

] g s e

Employee

=

Packets from Internet go through M
Packets from employees don’t

Example: service provider verifies
business relationship

Anonymous Middlebox Provider Destination

A VI P D
bl | _ S
Employee
E

Only check packets from customers

=

One primitive to rule them all?

Path Consent:

Every entity on the path (or a delegate) has to approve
the whole path.

Path Verification:

Upon receiving a packet, every entity on the path can
verify that the packet has followed an approved path

Difficult Challenge

Path Consent and Path Verification
In action

Anonymous Middlebox Provider Destination

3

Employee
Approve paths according to policies
Drop packets with unapproved paths

=

Why are Path Consent and Path
verification sufficient?

Other protocols give one entity more control
over the other entities on the path.

What are the guarantees?

Granularity: Domain level guarantees.

Role of honest nodes: Honest nodes drop
non-compliant packets.

No skipping: Cannot skip an uncompromised
honest hop, even with collusion.

No negative policies: Cannot prove a packet
did not pass through a certain entity.

Does not prove trustworthiness: “Trusted”
does not mean “Trustworthy”.

This talk will answer

* How can we provide Path Consent and Path
verification?

e At what cost?

Outline

* Design in three iterations

* Prototype implementation and results

* Related work and conclusion

Operational constraints

Adversarial
Decentralized

High performance

Sender

Architecture:
Control plane/Data plane split

Consent
Server 1

Consent
Server 2

Consent
Server 3

13

Communication starts by contacting
consent servers

Ri
| Path=<..,, R, ..>
/(Consent
= | Server
o Proof
Sender root;

>y

ICING Header:
Path = <Sender, R1, R2, R3>
Payload

Verif =<V1, V2, V3>

14

Forwarder uses its verifier to
implement Path Verification

. A

ICING Header:
Path = <Sender, R1, R2, R3>
N Verif=<vi(v2,v3>

Payload

N

15

Strawman 1: Public key crypto

Name entities by self-minted
public keys (PK/SK)

Use signatures for
Path Consent and Path Verification

Operational constraints

v Adversarial
« Decentralized

X High performance

17

Strawman 2: Symmetric Key Crypto

1 PK/SK — R pair-wise shared keys

1 Sig —> n MACs

R = number of realms on Internet
n = number of realms on a path

O(R) symmetric keys for configuration
O(n?) overhead in the packet

Strawman 2: Sender inserts proofs of

consent in the packet

Path

Proofs

Verifiers

RO

R1

Created using symmetric shared
keys between consent server
forwarder.

R2

> Jses

R3

>Uses

>*Uses

R1’s consent

R2’s consent

R3’s consent

ey s,

ey s,

Key S,

19

realms it has passed the packet using

Strawman 2: Sender proves to later

O(R) preconfigured keys

Path

Proofs Verifiers

RO

R1

R2

Uses
>lJses

R3

B B

>Jses

Koy S
Kop S

Koz S

ndarec
ndarec

narec

petween
petween

petween

RO,
RO,

RO,

R1
R2
R3

20

Strawman 2: Forwarders use O(R)
symmetric keys for verification

Path Proofs Verifiers

RO

A D -~

R2
. Consent server, R1: s,

- B B RO, R1: k,

Strawman 2:
Forwarder adds proof for later realms

Path Proofs Verifiers Path Proofs Verifiers
RO RO
s B0 - EE
R2 R2
L R1, R2: ky,

- 0 . R1,R3: ky; [L]

22

Operational constraints

v Adversarial
« Decentralized

X High performance

23

ICING: Decrease overhead by
XORing MACs and Proofs

Path Proofs Verifiers Path Verifiers
RO PKO

XOR
« [l B | < B
2 BB o [
- o Em o B

24

ICING: public keys as names and pairwise

keys non-interactive key exchange

Path

Verifiers

PKO

PK1

PK2

8

Path

Verifiers

PKO

ﬂ@ PK1

PK2

PK3

m Usess,: consent server, R2

Ko, = KEY-EXCH(SKO, PK2) = KEY-EXCH(SK2, PKO)
¢, = KEY-EXCH(SK1, PK2) = KEY-EXCH(SK2, PK1)

K,5 = KEY-EXCH(SK2, PK3) = KEY-EXCH(SK3, PK2)

25

Missing functionality:
Realm-specific services and delegation

* |Indicate entity-specific meaning: QoS, billing,
DPI, etc.

* Delegate ability to create proofs

Extend hop specification with tag

e Path
<(PK,, tag,), (PK,, tag,), ..., (PK_, tag,)>

* Each (PK, tag) has a unique consent key (s))

* Keys generated from master keys, can be
delegated by prefix.

Outline

* Design in three iterations

* Prototype implementation and results

* Related work and conclusion

Hardware implementation uses
three main pipeline stages

path verifiers

tag Consent
Key

Lookup
Drop
or
path Pair-wise 399
Forward

Key
Lookup

CBC-MAC 20> New

Verifiers

29

Slow path in software does
key exchange

Calculate Software
Shared Keys

Insert calculated keys

Packet missing keys _
into cache

Hardware

30

Evaluation questions

 What is throughput of the forwarder? Can it
handle whatever packets are thrown at it?

— Bottleneck at the hash function

e What is the hardware cost of an ICING
forwarder?

* How much packet overhead does ICING add?

Throughput: Connect all forwarder ports to
NetFPGA packet generators

NetFPGA Packet
Generator

ICING
Forwarder

NetFPGA Packet
Generator

32

Throughput vs. Payload Size
(Path Length=7)

4000 + . 100%
3500 : .
3000
Throughput 2500 -
(Mbps) 2000 - 50%
1500 -
1000
500
o +———] 0%

0 500 1000

Payload Size (bytes)

33

Hardware Cost

* Measure cost as equivalent gate count
generated by Xilinx ISE 10.1i

* Our implementation costs 54% more than
NetFPGA IP router and is 20% slower.

* Normalized cost (for the same throughput) is
93% more than NetFPGA IP router.

Packet overhead increase:
Estimate from backbone trace

15-minute trace from Trans-Pacific 150Mbps
line

Assuming average path length of 5

ICING would add < 25% more overhead

187.5Mbps ICING line = 150Mbps IP line

Outline

* Design in three iterations

* Prototype implementation and results

* Related work and conclusion

Selected related work

* Enriching control and policy:
— [Calvert et al, Broadnets ‘07] PoMo

— [Popa et al, OSDI ‘10] RBF
'Yang et al, ACM/IEEE Trans. on networking ‘04] NIRA

* Related mechanisms:
— [Liu et al, NSDI ‘08] Passport
— [Andersen et al, SIGCOMM ‘08] AIP
'Raghavan and Snoeren, SIGCOMM ‘04] Platypus

Conclusion

Single primitive with two simple properties can
provide functions of many other protocols.

Solving hard problems using scalable per-packet
cryptography

Line-rate enforcement and verification at an
additional hardware cost of 93% and
<25% average packet overhead

