Verifying Candidate Matches in Sparse and Wildcard
Matching °

[Extended Abstract] f

Richard Cole
Courant Institute, NYU
251 Mercer Street
NY, NY 10012

cole@cs.nyu.edu

ABSTRACT

This paper obtains the following results on pattern matching
problems in which the text has length n and the pattern has
length m.

e An O(nlogm) time deterministic algorithm for the
String Matching with Wildcards problems, even when
the alphabet is large.

e An O(klog® m) time Las Vegas algorithm for the Sparse
String Matching with Wildcards problem, where k <<
n is the number of non-zeros in the text. We also give
Las Vegas algorithms for the higher dimensional ver-
sion of this problem.

e As an application of the above, an O(nlog?m) time
Las Vegas algorithm for the Subset Matching and Tree
Pattern Matching problems, and a Las Vegas algo-
rithm for the Geometric Pattern Matching problem.

e Finally, an O(nlog®m) time deterministic algorithm
for Subset Matching and Tree Pattern Matching.

The crucial new idea underlying the first three results above
is that of confirming matches by convolving vectors obtained
by coding characters in the alphabet with non-boolean (i.e.,
rational or even complex) entries; in contrast, almost all
previous pattern matching algorithms consider only boolean
codes for the alphabet. The crucial new idea underlying
the fourth result is a simpler method of shifting characters
which ensures that each character occurs as a singleton in
some shift.

*This work was supported in part by NSF grants
CCR9800085 and CCR0105678.

Work partly done when both authors were visiting King’s
College, London, and when the second author was visiting
NYU.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC 02 May 19-21, 2002, Montreal, Quebec, Canada

Copyright 2002 ACM 1-58113-495-9/02/000585.00.

Ramesh Hariharan
Indian Institute of Science
Bangalore 560012
India

ramesh@csa.iisc.ernet.in

1. INTRODUCTION

This paper obtains deterministic and Las Vegas algorithms
for a variety of pattern matching problems. Each of these
problems requires finding all occurrences of a pattern p in
a text t. All the Las Vegas algorithms we give have the
following form: find a set of candidate matches and then
verify them. Indeed, the deterministic algorithm for wild-
card matching can also be viewed in this spirit. While this
approach is not new (see e.g., [3] and [14]), the method in
this paper appears to be considerably more general.

The criteria for defining pattern occurrences differ for each
of the problems we consider. We describe previous history
and our results for each of these problems in turn. In each
problem, unless otherwise specified, we will use n to denote
|t| and m to denote |p|.

The Wildcard Matching Problem. Here, p is said to
occur at location ¢ in ¢ if, for each non-wildcard symbol
p[j] in p, 0 < j < m, the corresponding text symbol ¢[i +
j] is either identical to p[j] or is itself a wildcard symbol.
Let ¥ denote the alphabet set from which the non-wildcard
symbols in ¢, p are drawn.

A classic result of Fischer and Paterson [7] states that this
problem can be solved in O(nlog mlog|X|) time. Removing
the dependence on |X| in the above time complexity has
been an important open problem for a long time. Recently,
Indyk [11] removed the dependence on |X| but by using a
Monte Carlo randomized algorithm which took O(nlogn)
time. Kalai [13] gave another (simpler) Monte Carlo ran-
domized algorithm with a running time of O(nlogm).

We give a very simple deterministic algorithm for the
above problem which runs in O(nlogm) time. The main
idea here is to assign a two character rational code to each
non-wildcard character in ¢ and p and then perform a convo-
lution. This convolution will allow us to count the number
of aligned matching non-wildcard characters.

Most previous approaches have used boolean codes for
the alphabet in conjunction with convolution. One possible
exception is Indyk’s algorithm [11], which uses a boolean
encoding for the alphabet but then performs a convolution
modulo 2 in linear time; this modulo 2 convolution involves
performing a regular convolution on vectors of size ©(;2)
with entries in a field defined by irreducible degree O(log n)
boolean polynomials. Kalai’s algorithm [13] is another ex-
ception which effectively uses integer codes. Note that in

contrast to Indyk’s and Kalai’s algorithms, all matches re-
ported by our algorithm are certain.

The Shift Matching Problem. In this problem, the char-
acters in the text and pattern are either integers or wild-
cards. Pattern p is said to occur at location i in ¢ if there
exists an integer /; such that one of the following conditions
holds for all non-wildcard symbols p[j] in p:

1. The text character t[i + j] aligned with p[j] is a wild-
card.

2. t[i+ 5] — plj] = L.

This problem has not been previously studied. Our moti-
vation in defining this problem is its crucial use in solving the
Sparse Wildcard Matching problem (which will be described
shortly). We give a deterministic algorithm which takes
O(nlog max{N, m}) time, where N is a parameter such that
the entries in ¢, p come from the range 0... N —1. The main
idea here is to assign a complex code to each non-wildcard
character in ¢ and p and then perform a convolution; again,
this convolution will allow us to count the number of aligned
pairs of characters satisfying condition 2 above.

The d-Dimensional Sparse Wildcard Matching Al-
gorithm. In this problem, ¢,p are d-dimensional arrays of
size n? and m?, respectively. Text ¢ is sparse, i.e., it has
only k non-zero characters, where k& << n?, and no wild-
card characters. The pattern p comprises wildcard and non-
zero non-wildcard characters. p is said to occur at location
i1,... ,iq in t if, for all non-wildcard characters p[ji1,. .. , jd
inp, t[ir+j1, ... ,4a+ja] = plj1,- .., ja]; in other words, each
non-wildcard character in p must be aligned with an identi-
cal character in ¢t. Clearly, the number of non-wildcards in
p must be at most k for it to occur anywhere in the text.
We assume that both the text and the pattern are given by
the implicit O(kd) size description which specifies the list of
non-zero entries in each.

This problem was defined (implicitly) by Cardoze and
Schulman [2] with the aim of solving the Geometric Pattern
Matching problem (which will be defined shortly). They
gave a Monte Carlo randomized algorithm with running time
O(klog k+ kd) and failure probability inverse polynomial in
k. The key idea in this algorithm was to hash the text and
pattern down to strings of size O(k); this hashing preserves
all matches and does not introduce new spurious matches,
with high probability.

We will show how to solve this problem using a Las Vegas
randomized algorithm whose running time is O(dk log k log n),
with failure probability inverse polynomial in k. For md <
n, a variant of the standard trick of breaking the text into
smaller pieces decreases this running time to

O(dk log min{k, (dm)*}1og dm + dk log k)

The failure probability is inverse polynomial in min{k, (dm)?}.

Our Las Vegas algorithm essentially adds a verification
step to the Monte Carlo algorithm of Cardoze and Schulman
[2]. Verification requires the detection of spurious matches
introduced by the hashing mentioned above. To detect such
matches, one needs to check whether each pair of aligned
characters (in the text and pattern obtained after hash-
ing) in a claimed match actually corresponds to a pair of
aligned characters in the original text and pattern, respec-
tively. This was precisely our motivation for defining the

Shift Matching problem. Our algorithms for Wildcard Match-
ing and Shift Matching above play a crucial role in detecting
these spurious matches.

Subset Matching and Tree Pattern Matching. In the
Subset Matching problem, each text location and each pat-
tern location is a set of characters drawn from an alphabet
3 of size 0. Let s denote the total sum of the sizes of all
text and pattern sets. The pattern p is said to occur at text
position i if the set p[j] is a subset of the set t[i + j], for all
locations j in p.

This problem was defined by Cole and Hariharan [3], as
an intermediate problem in solving the Tree Pattern Match-
ing problem (to be defined shortly). The previous best al-

3
légglogss
Las Vegas algorithm due to Cole, Hariharan and Indyk [4],
an O(slog s) time Monte Carlo algorithm due to Indyk [11],
and an O(slog® s) time deterministic algorithm due to Cole,
Hariharan and Indyk [4]. The above time complexities are
for the case when s > n,m (if not, then the running times

gorithms known for this problem were an O(s) time

log2 s
loglog s
O(nlog? slog max{m, s}), respectively.

As a direct application of our 1-d Sparse Wildcard Match-
ing algorithm, we give a Las Vegas algorithm with run-
ning time O(slog®s), with failure probability at most in-
verse polynomial in s (assuming s > n,m, if not, then the
running time becomes O(slog slog max{m, s}), with failure
probability still inverse polynomial in s).

In addition, we give a deterministic algorithm with run-
ning time O(slog® s) (assuming s > n,m, if not, then the
running time becomes O(nlog slog max{m,s})). This algo-
rithm is based on the idea of choosing collections of shifts
for characters in ¢ and p such that each character occurs as
a singleton in at least one of the collections. This idea was
the basis for the algorithm in [3]; however, that paper chose
shifts randomly, in contrast to our deterministic construc-
tion. A deterministic construction based on convolution was
given in [4]. The present deterministic construction does not
use convolutions and is faster by a log s factor. The result-
ing algorithm is substantially simpler than the O(slog?® s)
time deterministic algorithm in [4].

In the Tree Pattern Matching problem, ¢ and p are or-
dered, node-labelled trees of size n and m respectively. The
pattern occurs at a particular text position if placing the
pattern with root at that text position leads to a situation
in which each pattern node overlaps some text node with the
same label. As shown in [3, 5], the Tree Pattern Matching
problem can be reduced in linear time to the Subset Match-
ing problem. The above results for the Subset Matching
problem immediately lead to O(nlog?m) time Las Vegas
and deterministic algorithms for Tree Pattern Matching.

become O(n

log max{m, s}), O(nlog s) and

Geometric Pattern Matching. In this problem, ¢ and p
are collections of points in d-dimensional space. Let k de-
note the number of points in . We assume that these points
have integer coordinates and that the coordinates of points
in t and p come from the ranges [0...n—1] and [0...m—1],
respectively. The aim is to determine whether there exists
a transformation from an allowed class of transformations
which when applied to p ensures that each point in p is
within a specified threshold distance A of some point in ¢t.
The two kinds of transformations we consider are transla-
tions and rigid motions, i.e., translations coupled with rota-

tions.

The previous best algorithm for translations was a Monte
Carlo algorithm due Cardoze and Schulman [2] and had a
running time of O(k(2A+41)% log[k(2A+41)¢]). For rotations,
Cardoze and Schulman [2] gave a Monte Carlo algorithm
with a running time of O(f(k,d, A €)log f(k,d, A, €)) for
an appropriate function f(k,d, A ¢), where € is a tolerance
parameter in measuring distances.

For translations, we give a Las Vegas algorithm with run-
ning time O(dk(2A 4 1)?log[k(2A + 1)?]logn), with fail-
ure probability inverse polynomial in k(2A + 1)¢. For the
case when md < n, this can be improved to O(dk(2A +
1) log min{k(2A+1)?, (dm)?} log dm+dk(2A+1) log k(2A+
1)4); the failure probability is at most inverse polynomial in
min{k(2A 4 1)?, (dm)*}. For rigid motions, we give a Las
Vegas algorithm with running time

O(f(k,d, A, €) log min{ f (k,d, A, €), M}l m\[)

The failure probability is inverse polynomial in

min{f(k,d, A e), M}

These algorithms are direct consequences of our Sparse Wild-
card Matching algorithm.

Sparse Convolution. In the Sparse Convolution problem,
the aim is to find the convolution vector w of two given
vectors ¢ and p, comprising only non-negative entries. We
assume that ¢ and p are given not as explicit vectors but
rather as lists of location-value pairs comprising locations
which have non-zero values. The aim is to compute w in
an output sensitive way, i.e., in time proportional to the
number of non-zero entries in w. This problem was posed
in [15].

Let ||w|| denote the number of non-zero entries in w. We
show how to obtain these non-zero entries in O(||w]|| log® m)
time, using a Las Vegas randomized algorithm, whose failure
probability is inverse polynomial in m. To the best of our
knowledge, this is the first algorithm for this problem. We
remark that if we wanted to allow negative entries in ¢ and
p, we would need to define ||w|| as the number of non-zero
entries in W, where @ is as follows. Let ¢ and § be ¢ and p,
respectively, with non-zero entries replaced by 1; w is the
product of ¢ and p.

Roadmap. Section 2 describes the definitions, notations
and a basic tool used by our algorithms. Each subsequent
section describes our algorithms for the problems listed above,
in turn. Proofs of lemmas and the description of the Sparse
Convolution algorithm are omitted for lack of space.

2. PRELIMINARIES

All algorithms in this paper will assume the RAM model
of computation, which allows arithmetic on log N bit num-
bers in O(1) time, where N is of the order of the maximum
problem size.

In all our problems, we will use n to denote |t| and m
to denote |p| (except in the d-Dimensional Sparse Wild-
card Matching problem in which the corresponding terms
are n? and m?, respectively). Using a standard reduction,
we will assume that n < 2m for all problems in which ¢ and
p are strings (using the standard trick of breaking the text
into pieces of length 2m, consecutive pieces overlapping by

m). t and p are indeed strings in all problems, except for
the d-Dimensional Sparse Wildcard Matching Problem, the
Tree Pattern Matching problem, and the Geometric Pattern
Matching problem.

The following definition will be central to the techniques
used in this paper.

Convolution. The convolution vector of two vectors u, v is
defined as the vector w such that w[i] = Z‘"‘A u[flv[(i +
j)(mod|v|)]. We use the notation u & v to denote w. Note
that this definition of convolution involves wrap-around (i.e.,
v is assumed to be a cyclic vector). In this paper, we will
also use the non wrap-around notion of convolution, i.e.,
wli] = Z “Io " uljlofi + j], with out of range entries taken
as 0. However unless otherwise specified, all references to
convolution will refer to the wrap-around definition.

The Fast Convolution Theorem. The following theorem
and its consequent corollary on the RAM model are standard
(see for example, [17], page 1) and crucial to our algorithms.
They hold for both definitions of convolution above.

THEOREM 1. Consider two vectors u,v, each vector hav-
ing length O(m) and comprising l-bit entries. Let M(l) be
the time taken to multiply two 1 bit numbers. Then u G v
with entries precise up to Il — ©(logm) bits can be obtained
m O(mlogm * M(l)) time.

Since M(l) = O(1) on the RAM model for | = O(log N),
we get the following corollary.

CoROLLARY 2. Ifl = O(log N) then u & v with entries
precise up to l—O(logm) bits can be obtained in O(mlogm)
time.

3. THEWILDCARD MATCHING ALGORITHM

As stated in Section 2, we assume that n < 2m and show
how Corollary 2 yields a simple O(m logm) time algorithm
for Wildcard Matching. We assume, without loss of gen-
erality, that symbols in ¢ and p are drawn from the integer
alphabet 0...m—1 (otherwise, sort and rename the symbols
at an expense of O(mlogm) time).

Our algorithm performs the following two non-wrap-around
convolutions.

Step 1. The aim of this convolution is to compute, for each
location ¢ of ¢, the number of non-wildcards in p that are
aligned with non-wildcards in ¢ when p[0] is aligned with
t[¢]. Call this count nwi]. This is calculated as follows.

We obtain a new text ¢’ from ¢ by replacing each non-
wildcard by 1 and each wildcard by 0. A new pattern p'
is obtained from p in the same way. It is easily seen that
(t' ®p')[i] = nw[i]. By Corollary 2, t' & p' can be computed
in O(mlogm) time.

Step 2. The aim of this convolution is to compute, for each
location ¢ of ¢, a quantity which indicates whether or not
p matches at i. The following convolution will yield value
2 % nw[i] if and only if p matches at location 3. Since nwli]
is already known from Step 1, this information is sufficient
to find all occurrences of p in .

This convolution involves a new text t' obtained from #
by replacing each non-wildcard character a by two adjacent
numbers a and 1/a (i.e., if t[j] = a then t'[2j] = a and
t'[2j + 1] = 1/a), and each wildcard by two 0’s. A new

pattern p' is obtained from p in the same way, except that
1/a and a are switched (i.e., if p[j] = a then p'[2j] = 1/a
and p'[2j+1] = a). It is easily seen that p occurs at location
i if and only if (¢’ ®p')[2i] = 2*nw[i] (this uses the fact that
a/b+bla>2+ ﬁ for a # b). It remains to determine
the time taken for this convolution.

Time and Precision Analysis. Using the fact that a/b+

b/a > 2+ m for a # b, it follows that (¢ @ p')[2i] —

(

2 % nwli] either equals 0 or is at least m Therefore,
O(log m) bits of precision are sufficient to detect which of
these two cases occurs. By Corollary 2, ' & p’ can be com-
puted to this level of precision in O(mlogm) time, provided
the input vectors ¢’ and p’ themselves have entries which are
correct up to ©(log m) bits of precision. Setting up t' and p’
with this level of precision is easily done in O(mlogm) time
(the only issue is that of determining ©(logm) significant
digits of 1/a, which is easily done in O(logm) time). This
concludes the algorithm.

4. THE SHIFT MATCHING ALGORITHM

As stated in Section 2, we assume that n < 2m. We
show how Corollary 2 yields a simple O(mlog(mN)) time
algorithm for Shift Matching. As in Wildcard Matching,
there are two steps. The first step is identical to the first
step in Wildcard Matching and obtains the count nw(i] for
all text locations ¢. The second step is also similar, but uses

a different encoding, as detailed below. In what follows, let

2/ —1
N -

« denote

Step 2. The aim of this step is to compute, for each location
i of t, a quantity which indicates whether or not p matches
at ¢. The following convolution will yield a complex number
with modulus nw[i] if and only if p matches at location i.
Since nwli] is already known from Step 1, this information
is sufficient to find all occurrences of p in t.

This convolution involves a new text ¢’ obtained from ¢
by replacing each non-wildcard character a by e** and each
wildcard character by 0. Similarly, a new pattern p' is ob-
tained from p by replacing each non-wildcard character a by
e~ “* and each wildcard character by 0. It is easily seen that
p occurs at location 7 if and only if (£ @ p')[i] = e® * nwd],
for some integer I; (which is also the difference between any
aligned pair of non-wildcard text and pattern characters in
this match). It remains to determine the time and precision
required for this convolution.

Time and Precision Analysis. It is easily seen that |(¢' &
p')[i] — Y % nwli]| either equals 0 or is at least

. . 1
jeots _ galli=1) = QSin% > = for N > 2.

Therefore, O(log N) bits of precision in the output are suf-
ficient to detect which of these two cases occurs. By Corol-
lary 2, ' @ p’ can be computed to this level of precision in
O(mlogm) time, provided the input vectors ¢ and p’ them-
selves have entries which are correct up to ©(logm + log N)
bits of precision. Setting up t' and p’ with this level of pre-
cision is easily done in O(mlog(mN)) time.

Remark. We claim that if required, then for each match
t[i] of p in ¢, I;, if defined, can be computed as well in the
above mentioned time (by computing I; from e*¢). Note
that I; is defined as long as the pattern and the text have at
least one pair of aligned non-wildcard characters.

5. THE D-DIMENSIONAL SPARSE WILD-
CARD MATCHING ALGORITHM

Before we describe our algorithm for the Sparse Wildcard
Matching problem, we need to describe two basic tools used
in this algorithm: dimension reduction and length reduction
by hashing.

Dimension Reduction. Consider two possibly sparse d-
dimensional arrays t and p, with |t| = n?, [p| = m?. ¢
comprises some zeros and k non-zeros and p comprises wild-
cards and non-zero non-wildcard characters. As in [2], we
use random projections to obtain strings ¢ and p’ from ¢
and p, respectively. t and p’ have length polynomial in k
and matches of p in t will be related to matches of p’ in #'
as described shortly.

Choose integers b ...bs independently and uniformly at
random from a range polynomial in k. Map each location
tli1, ..., iq] to t'[>°0_, bri,] and likewise for p. It is easy to
see that distinct non-zeros in ¢ map to distinct locations in
t', with failure probability inverse polynomial in k. Further,
this property is easily verified in O(kd + klogk) time. A
similar property holds for non-wildcards in p; these map to
distinct locations in p’. A location in #' to which no non-
zero in t maps is set to 0 and a location in p’ to which no
non-wildcard in p maps is set to the wildcard character. The
following important lemma holds.

LEMMA 3. If p matches starting at t[i1,... ,iq] then p'
matches starting at t'[Zf:I brir]. Further, if p does not
match starting at t[i1,... ,i4] then p' does not match at
t'[X:f:1 brir], with failure probability inverse polynomial in
k.

Length Reduction by Hashing. Consider two possibly
sparse strings ¢ and p, with |t| = n, |p| = m. ¢ comprises
zeros and non-zeros and p comprises wildcards and non-zero
non-wildcard characters (which we will sometimes refer to as
just non-zeros). As in [2], we use hashing to obtain shorter
strings (of an appropriately chosen length s) from ¢ and p
as follows.

Let H denote a family of hash functions given by ax(mod
q)(mod s), where p is a prime in 2n...4n,a € 0...q — 1,
and s is a number possibly much smaller than n. We choose
a random hash function h = ax(mod ¢)(mod s) from H
(i.e., we choose a uniformly from 0...q — 1). Using h, we
will map ¢ and p to small strings ¢, and pj, respectively, as
below.

Each location 4 in ¢, and pp will correspond to a set of
non-zero locations in ¢ and p, respectively, which map to
i. tp is obtained by mapping each location z in ¢ to the
following two locations in ¢j:

e az(mod g)(mod s)
e [ax(mod ¢) + ¢](mod s)

Thus each location in ¢ has 2 images in t5,. pj, is obtained by
mapping each location z in p to location az(mod ¢)(mod
s) in pp.

Definitions. A location is ¢ is called empty, if no non-zero
locations in ¢ map to it, singleton, if exactly one non-zero
location in ¢ maps to it, and multiple otherwise. Analogous

definitions hold for locations in p,. A wrap-around place-
ment of py, starting at location i in ¢, is a placement of py,
such that pp[j] is aligned with #,[(i + 7)(mod s)].

The following properties of ¢5 and p, will be crucial and
are easy to show.

LEMMA 4. Consider a wrap-around placement of pp in
tn with pn[0] aligned with tx[h(i)]. Then for each j,0 <
j <m-—1, pp[h(j)] is aligned with tx[(h(i) + h(j))(mod s)],
which is one of the images of t[i + j].

LeEMMA 5. Let k denote the number of non-zeros in t.
Consider a wrap-around placement of pp in tn, with pp[0]
aligned with ty[h(i)] and consider any location p[j]. If q
is indeed a prime, then with probability O(%), pr[h(5)] s
aligned with a non-empty location in ty if and only if t[i +

j1#0.
5.1 The Monte-Carlo Algorithm

We assume that the text ¢ has size n? and the pattern
p has size m?. Let k denote the number of non-zeros in .
We describe the Monte Carlo algorithm of [2] first and then
use the Wildcard Matching and Shift Matching algorithms
above to get a Las Vegas algorithm. We describe this algo-
rithm only for the case when all non-zeros in ¢ and p equal
1. The Las Vegas algorithm to be described will handle the
more general case as well.

First, we do the dimension reduction described above to
obtain strings t' and p’' from ¢ and p, respectively. This
takes O(dk + klog k) time. Note that ¢ and p' have length
polynomial in k. Next, we set s = O(k) (recall from above
that s is the range of the hash functions to be chosen), with
the constant chosen appropriately, so that the probability
in Lemma 5 is a small enough constant. Then we choose
O(log k) hash functions h independently and uniformly at
random from #; for each chosen hash function h, we obtain
t, and py, from ' and p’ as described above. The time taken
in this process is O(polylog(k)) for choosing g and O(k log k)
for constructing ¢, and py, over all h.

For each chosen hash function h, we find all wrap-around
placements of pj in ¢, such that each non-empty location
in pj is aligned with a non-empty location in #,. This is
done easily by a simple reduction to the Boolean Wildcard
Matching problem and takes O(k log® k) time over all chosen
hash functions h. Location ¢[i] is said to be a match for py,
if the wrap-around placement of p;, starting at ¢,[i] satisfies
the above property.

Let M denote the set of potential matches of p in t (i.e.,
those placements of p in ¢ for which the lexicographically
least non-zero location in p is aligned with a non-zero in t);
note that |M| < k. Then, for each i1,... ,iq € M, we check
in O(d +log k) time whether p;, matches ¢, at h(Z‘::l briy)
for all chosen h. Potential matches in M satisfying this con-
dition are declared real matches. This takes O(kd + klog k)
time overall.

It remains to show correctness. From Lemmas 4 and 3,
it is easily seen that if p matches ¢ at location i1,... ,i4,
then pp matches ¢, at location h(Zf:Isz’T), for all cho-
sen h. Further, from Lemmas 5 and 3, if p does not match
t at location ¢1,... 14, then p, mismatches ¢, at location
h(z:f:1 brir), for at least one of the chosen h, with failure
probability inverse polynomial in k. Thus, all matches of p

in ¢ will pass the above test with certainty, while the proba-
bility of any mismatch passing this test is inverse polynomial
in k.

The total time taken is O(polylog(k)+dk+ klog? k). Car-
doze and Schulman [2] in fact obtain a slightly faster algo-
rithm running in O(polylog(k)+dk+klog k) by using a linear
time Monte Carlo algorithm for doing convolution modulo
2 [11].

5.2 The Las Vegas Algorithm

We now show how to convert the above Monte Carlo algo-
rithm to a Las Vegas algorithm running in time O(polylog(k)
+dklog klogn), even for the case when the non-zeros in ¢
and p come from a large alphabet. Note that this essentially
adds a multiplicative factor of O(dlogn) to the Monte Carlo
algorithm.

The main idea is to focus on singleton locations in ¢, and
pr, and compute various statistics on these singletons. The
following fact is crucial and the proof is similar to the proof
of Lemma 5. Recall that following the dimension reduction
and hashing steps, each non-zero location in ¢ has two images
in tp.

Fact 6. The following holds with failure probability in-
verse polynomial in k: for each non-zero location in t, there
exists a chosen hash function h such that both images of this
non-zero are singletons in ty.

Step 1: Ensuring Singletons. We begin with the fol-
lowing preliminary test. Having chosen the ©(log k) hash
functions h, we check whether; for each non-zero location
in t, there exists a chosen hash function h such that both
images of this non-zero location are singletons in ¢j,.

This property takes O(klog k) time to check. If this prop-
erty does not hold then the verification fails, and the entire
algorithm is repeated. By Fact 6, the probability of this
happening is inverse polynomial in k. In the sequel, we as-
sume that, for each non-zero location in ¢, there exists a
chosen hash function h such that both images of this non-
zero location are singletons in 5.

Step 2: Checking that Singletons Match. For each
chosen hash function h, we find all wrap-around placements
of py in t5, such that the following conditions are satisfied:

1. Each non-empty location in pj is aligned with a non-
empty location in ¢p,.

2. For each pair of aligned singleton locations in ¢, and
ph, if any, the following property holds: the non-zero
characters in ¢ and p, respectively, which map to these
singleton locations are identical.

Both conditions are checked easily by a simple reduction to
the Wildcard Matching problem. This step takes O(k log? k)
time over all chosen hash functions h.

Definition. Location ¢,[i] is said to be a match for p,
if the wrap-around placement of pp starting at ¢[i] satis-
fies the above properties. We say that a potential match
of p at t[i1,... ,4q] is a claimed match if p, matches at
th[h(Z:f:1 brir)], for all chosen hash functions h. Further,
this claimed match of p at t[i1,. .., i4] is said to correspond
to a match of py, at t4[R(37_, brir)].

Note that by Lemmas 4, 5, and 3, all matches of p in ¢
must be claimed matches, and all claimed matches are true
matches with failure probability inverse polynomial in k.
Next, we need identify which, if any, of the claimed matches
are false matches.

False Match Scenarios. We enumerate the scenarios in
which a claimed match is a false match. Consider one such
false match of p at location t[i1, ... ,iq]. Since this is not ac-
tually a match, there exists a non-zero location p[ji1,. .. , jd
whose value is different from t[i1 + ji,...,%a + ja]. For
brevity, let ¢ denote h(ZfZl
Since p;, matches ¢, at 7, the location th[f + j] aligned with
prlj] is non-empty, for all chosen hash functions h.
There are only three possible false match scenarios.

1. t4[i + j] is singleton but pp[j] is multiple, for some
chosen h.

2. th[i +§] and pp, [5] are both singletons, for some chosen
h.

3. ty[i + 7] is multiple, for all chosen h.

We briefly describe how to detect false matches in each sce-
nario. Whatever remains will be a true match and all true
matches will indeed be detected.

Detecting Scenario 1. Note that a true match can never
lead to Scenario 1. In other words, if p indeed matches ¢ at
location i1, ... ,iq then Scenario 1 does not hold. This can
be seen as follows. If multiple non-zeros in p map to pp[j]
then the non-zeros in ¢ aligned with these non-zeros in p
must all map to 4[24], by Lemmas 4 and 3. But this would
mean that ¢5[i + 7] is multiple and not singleton. Therefore,
for any claimed match of p at t[i1, .. .14], if Scenario 1 holds
for the wrap-around placement of py, at ,[z] for even one of
the chosen hash functions h, then this claimed match is not
an actual match.

Detecting Scenario 1 is easily done in O(klog? k) time
using a simple reduction to the Boolean Wildcard Match-
ing problem. All claimed matches satisfying Scenario 1 are
eliminated by this process.

Detecting Scenario 2. Consider a particular claimed but
false match of p at [i1, ... ,4q] in which p[j1,. .., ja] is non-
zero and the aligned character t[i1+71,. .. , iq+j4] is either 0,
or non-zero and different from p[ji,... ,jq]. Consider that
hash function h for which Scenario 2 holds in the corre-
sponding match of p, in ¢,. So both th[% + 3] and ph[j] are
singletons.

They key property which enables us to identify this mis-
match via Shift Matching is the following. Clearly, the
unique non-zero location in p which maps to pa[j] is the
location plj1,...,ja]. Let t[é1, ... ,iy] denote that unique
non-zero location in ¢ which maps to th[% + 5], note that
i, # i» + j» for some r, otherwise the claimed match being
considered would not have passed Step 2. Then the vector
(47 — j1,... ,4y — ja) is not equal to the vector (i1,... ,iq4)-
This suggests that Scenario 2 can be detected by performing
Shift Matching on each dimension separately as follows.

Consider each dimension r and each chosen hash function
h in turn. Obtain new strings t, and pj, from ¢, and p,
respectively, by replacing each singleton by the rth dimen-
sion of the unique non-zero location in ¢ and p, respectively,

brir) and j denote h(3°?_, by j»).

which maps to this singleton. All other locations in ¢}, and
p), get wild-cards. For each wrap-around placement ¢},[i] of
p},, we determine whether this placement of pj, matches t},
under the definition of Shift Matching, and if so, we com-
pute the quantity I; (see the remark at the end of Section
4). The time taken in this process is O(dklog klogn) over
all A and all d dimensions.

Finally, a particular claimed match of p at t[i1,... ,iq4] is
eliminated unless the following holds for all chosen h: pj,
matches at t},[i] and I; for dimension d’ is either undefined
(i.e., one at least of each pair of aligned characters in p), and
t, is a wildcard, so Scenario 2 does not hold trivially) or
equals iy, for all dimensions d’.

Detecting Scenario 3. Assuming that Scenarios 1 and 2
never apply, we detect false matches corresponding to Sce-
nario 3 using the following statistic. Recall that by Step 1,
for each non-zero location in ¢, there exists a chosen hash
function h such that both images of this non-zero location
are singletons in t;,. We associate each non-zero location in
t with exactly one of the various h’s for which the above
property holds. Singletons in ¢, corresponding to non-zero
locations in ¢ associated with h, are called special singletons.

For each claimed match of p in ¢, and for each chosen hash
function h, we consider the corresponding match of py, in #.
In this match, we count the number of singletons associated
with ¢, which are aligned with singletons in p;. This is done
in O(klog k) time per chosen hash function h by convolving
the string obtained by replacing special singletons in t5 by
1 and others by 0, with the string obtained by replacing
singletons in p;, by 1 and others by 0. The total time taken
by this step is O(klog? k).

For each claimed match of p in ¢, we sum the above count
over all hash functions h. By the following lemma, this
claimed match is eliminated if and only if the above sum
does not equal #p, where #p is the number of non-zeros in

yB

LeEMMA 7. The above sum equals #p for a claimed match
if and only if it is a true match.

Total Time Taken. The total time taken by the algo-
rithm is O(polylog(k) + dklogklogn) = O(dklogklogn),
with failure probability inverse polynomial in k.

For md < n, the above time can be improved to

O(dklog min{k, (dm)*}1og dm + dk log k)

using a variant of the standard trick of breaking ¢ into subar-
rays of smaller size; the failure probability is at most inverse
polynomial in min{k, (dm)?}. Breaking the text involves di-
viding it into smaller texts of size dm and overlap m along
each dimension, chosen so as to ensure that the number of
non-zero elements in the smaller texts sum (over all smaller
texts) to O(k(1 + 1)%) = O(k).

Remark on improving success probability. The failure
probability can in fact be reduced to m based on the
observation that failure in the verification process results
solely from failure in Step 1. The probability of failure in
Step 1 can be reduced to ke(1+gk) by repeating the dimension
reduction and hashing steps O(log k) times. The extra time
taken in this process is O(dk logk + klog® k).

6. APPLICATIONS OF SPARSEWILDCARD
MATCHING

6.1 Subset Matching and Tree Pattern Match-
ing

First, consider Subset Matching. For each distinct char-
acter ¢ € ¥ which occurs in p, we obtain a 1-d instance of
the Sparse Wildcard matching problem as follows. We ob-
tain a new text t. from ¢ by replacing each set ¢[i] which
does not have ¢ by 0 and each set ¢[i] which has ¢ by 1. We
obtain a new pattern p. from p by replacing each set pli]
which does not have ¢ by a wildcard and each set p[i] which
has ¢ by 1. It is easily seen that all occurrences of p in ¢ can
be found by solving the Sparse Wildcard matching problem
on pe, t. for all ¢ € ¥ and taking the intersection of the sets
of matches obtained. This gives a Las Vegas algorithm with
running time O(slog? s), with failure probability at most
inverse polynomial in s. Further, as mentioned in the intro-
duction, this leads to improved algorithms for Tree Pattern
Matching.

6.2 Geometric Pattern Matching

It is easily seen that the case of translations reduces to the
d-dimensional Sparse Wildcard Matching problem in which
the text has size n?, the pattern has size m?, the number of
1’s in the text (all non-zeros are 1’s) is O((2A + 1)%k) and
the number of 1’s in the pattern is the number of points in p.
Using the above mentioned algorithm for the d-dimensional
Sparse Wildcard Matching problem, we get an algorithm
with running time O(dk(2A +1)¢ log[k(2A+1)4]log n), with
failure probability inverse polynomial in k(2A + 1)¢. For
the case when md < n, this can be improved to O(dk(2A +
1)% log min{k(2A+1)%, (dm)?} log dm~+dk(2A+1)% log k(2A
+1)%); the failure probability is at most inverse polynomial
in min{k(2A + 1)¢, (dm)?}.

Next, consider the case of rigid motions. In [2, 12], it
is shown how this problem reduces to several instances of
the 1-d Sparse Wildcard Matching problem; the total num-
ber of non-zeros over all problems is f(k,d, A, ¢€), where f()
is as in the introduction, and the pattern size in each such
problem is O("‘T‘/d). Our algorithm for the 1-d Sparse Wild-
card Matching problem leads to a Las Vegas algorithm hav-
ing O(f(k,d, A, €)log min{ f(k,d, A, €), Y2} 1og 24 ryp.
ning time and failure probability inverse polynomial in
min{f(k,d, A, ¢), =¥},

7. FASTDETERMINISTIC SUBSET MATCH-
ING AND TREE PATTERN MATCHING

We give a deterministic O(slog? s) algorithm for the Sub-
set Matching Problem based on the following crucial fact
from [3, 5]. This immediately leads to an O(nlog® m) time
deterministic algorithm for Tree Pattern Matching.

Character Shifting. Recall that each set in the text/pattern

is drawn from an alphabet of size . We create a new text ¢’
and a new pattern p' as follows. For each character e in the
above alphabet, a shift shift(e) is chosen, where shift(e) is
an integer in an appropriate range (to be described later).
t' and p' are created as follows: if e is in the set ¢[i] then e is
put in the set t'[i + shift(e)]; p’ is built analogously from p.
p' is said to match at location 4 in ' if 1 <4 < |t| — |p| +1
and further, set p'[j] is a subset of the set #'[i + j — 1], for

all locations j in p’. It can easily be seen that the set of
matches of p in t is identical to the set of matches of p' in
t.

We will perform character shifting O(log s) times; the ith
such operation will result in new strings ¢;, p;. We will ensure
that the various shiftings satisfy the following properties:

e Each character in each set in ¢ is in a singleton set in
at least one of the t,’s.

e The t;’s and p}’s have length O(s) each.

We will show how to perform character shiftings satisfying
these two properties in Section 7.1. The overall time taken
in this process will be O(slog? s).

Next, we show how to find all matches of p in ¢t using the
t;’s and p;’s. Since the techniques here are similar in spirit
to those used in the Sparse Wildcard Matching problem and
the Sparse Matching problem, we will describe them in less
detail.

The Algorithm.
Step 1. We find a candidate set of matches in this step.

Location i is termed a candidate match if for all #}, pl’s,
the placement of p starting at ¢;[i] satisfies the following
property: each non-empty set in pj is aligned with a non-
empty location in ¢;; further each singleton in ¢} is aligned
with either a singleton or an empty location in p}. This
is easily done in O(slog?s) time overall using the Wildcard
Matching algorithm.

It is easily seen that all true matches will survive this
stage. In particular, note that a singleton set S in t} can-
not be aligned with a non-empty non-singleton set S’ =
{a,b,...} in a true match because the characters in ¢ match-
ing a,b in this true match must then appear in S and S
would no longer be singleton.

Step 2. For each candidate match i and for all ¢}, p}, we
check whether the placement of pj starting at ¢}[i] satis-
fies the following property: if a singleton in p} is aligned
with a singleton in t}, then the two characters correspond-
ing to these singleton sets are identical. This is easily done
in O(slog®s) time overall using a simple reduction to the
Wildcard Matching problem and using the algorithm in Sec-
tion 3. Candidate matches which violate this property are
discarded. All true matches will survive this stage as well.

Step 3. Recall that each character in each set in ¢ is in a
singleton set in at least one of the tj’s. We associate each
character in t with exactly one of the t} ’s in which it appears
as a singleton.

For each remaining candidate match i and for each ¢}, p’,
we compute the following quantity: the number n(i, j) of
singletons associated with ¢} which are aligned with single-
tons in pj in the placement of pj starting at ¢}[¢]. This is
easily done in O(slog? s) time overall using Corollary 2.

Finally, we claim that, analogous to Lemma 7, a claimed
match 7 is a true match if and only if }°; n(i, j) equals the
total sum of the sizes of the pattern sets. The total time
taken is O(slog? s).

7.1 Computing Good Character Shifts

Our aim is to obtain O(log s) collections of character shifts
in O(slog? s) time so that the two properties mentioned ear-
lier are indeed satisfied. Each successive collection of shifts

we obtain has the property that a constant fraction of the
characters in ¢t which have not yet appeared as singletons
in previous collections of shifts appear as singletons in this
collection.

Definitions. We associate an integer weight w(a) with each
instance a of each character in ¥ which appears in some set
in t. Note that different instances of the same character
could have different weights. The term weight-sum denotes
the sum 3 2%(®) where the sum is over all instances a of
all characters in ¢. A character in ¢ is liwe if it has not
appeared as a singleton in any of the previous collections
of shifts. Let t' be obtained from ¢ by a character shifting
step. The weight of set t'[i] is defined as (IT;;,. wepi 2w(@))x

(X non_tive act'[i] 2w(@)) with the first term missing if there

are no live characters in #'[i] and the second term missing if
there are no non-live characters in t'[¢{]. The weight wt(¢')
of ¢ is defined to be the sum of the weights of non-empty
sets in t'. Let s’ denote the sum of the sizes of the sets in ¢.

The intuition for defining the weight of ¢’ as above is to
penalize live characters occurring with other live or non-
live characters, while not putting any constraint on non-live
characters. This ensures that a small weight for ' forces
a good fraction of the live characters to occur as singleton
but allows non-live characters to occur with other non-live
characters.

Successive runs of the following key procedure shall give
us the successive collections of shifts.

The Key Procedure. Given a weight assignment to each
instance of each character in ¢, with weight-sum W = O(s),
this procedure uses a collection of character shifts to obtain
t' and p’ with the following properties:

e The weight of ¢ is at most (1+ %) W, for some constant
k> 2.

o [t']1p'| = O(s).

This procedure takes O(slogs + Llog?s) time, where L is
the number of live characters in the current run of this proce-
dure. As we will show, L decreases geometrically with each
run. Next, we describe how this procedure indeed gives us
the requisite t;, p;’s satisfying the two properties mentioned
earlier.

Using the Above Procedure. We begin with charac-
ter weights equal to 2 and weight-sum 4s' = O(s). Next, we
perform O(log s) iterations, modifying the character weights
in each iteration. In general, suppose i — 1 iterations have
been performed and t7,... ,t,_; have been determined. We
identify those instances of characters in ¢ which appear in
singleton sets in at least one of 1, ... ,t;_,; these characters
now get weight 1. We then give new weights to the re-
maining characters by weighting then equally and fixing the
weight-sum restricted to these characters to be between 4s’
and 8s' (this range is needed if we want character weights to
be integral); the weight-sum W obtained by including weight
1 characters would then be at most 10s’ = O(s). Note that
W/s' > 4. Next, we call the ahove procedure with these
weights to obtain ¢;. Finally, we stop when all instances of
all characters in ¢ satisfy the singleton appearance property.
The following lemma shows that L decreases geometrically
and therefore O(log s) iterations will suffice. The total time
taken by the above procedure is thus O(slog® s).

LemMA 8. The text t; obtained in the ith iteration of the
above procedure has the property that all but a % fraction of
the live characters (i.e., those which have not appeared in
singleton sets in any of t1, ... ,t;_1) appear in singleton sets
in t}.

COROLLARY 9. After O(log s) iterations, each instance of
each character would have appeared in a singleton set in
some t;.

It remains to describe how the above key procedure works.

7.2 Computing Small Weight': The Row Ro-
tation Problem

We formulate the problem of determining shifts to the
characters in ¥ to obtain a ¢ with small weight as follows.
We will restrict our shifts to size Y = O(s). Consider a ¥ xY
size matrix A. This matrix has two kinds of entries: empty
and non-empty. Ale, j] is empty if e € ¥ does not occur in
text set t[j], and Ale, j] equals the weight of the instance
of character e in the set ¢[j], otherwise. Clearly, the total
number of non-empty entries in A and their weight-sum W
are both O(s). The aim is to find collections of circular shifts
of the rows (these circular shifts can then be linearized) so
that the properties mentioned earlier are satisfied. We
achieve this using a deterministic O(slog s + Llog? s) time
algorithm with the following overall framework.

At each step, the rows of A are partitioned in megarows.
Initially, each row is a megarow. The general step considers
two megarows and determines a “good” relative shift of one
entire megarow with respect to the other. This shift is ap-
plied to the rows of the second megarow and then the two
sets of rows are placed in a single combined megarow. Note
that no shifting happens within either of the two megarows
in this step; relative shifts within each megarow have been
determined and frozen already. The procedure ends when all
rows come together into a single megarow. Two issues needs
further description: which two megarows are chosen at each
instant and how a good relative shift between megarows is
determined.

7.2.1 Shifting Megarows

First, we describe how a good relative shift between two
megarows v, w is determined. Our algorithm needs the fol-
lowing definitions.

Megarows as Vectors. We define a vector v of weights
for each megarow as follows. Consider the non-empty en-
tries ai,as ..., if any, in the ¢th position in the shifted rows
forming the megarow; then the weight stored in v[i] is:

1. 0, if all entries in this position are empty.

2. (Hlive aj 2w(aj)) X (Znonfli'ue aj 210(0]‘))’ with the first
term (second term, respectively) missing if there are
no live (non-live, respectively) entries.

The weight, wt(v), of the megarow corresponding to v is
>, v[i]. Vector v is called the megarow weight vector or
megarow-vector for short. We will say that v[i] is live if at
least one of ai,as,... is live. One technical issue before
we proceed is that of representing a megarow-vector. We
represent such a vector as a list of non-zero entries.

Let v, w, respectively, be the megarow-vectors for the two
megarows being combined. Consider a particular shift w' of

w. Suppose we apply this shift to the megarow correspond-
ing to w and then combine the megarows corresponding to
v and w into one megarow with megarow-vector w. Our aim
is to choose the shift w’ of w so as to keep the weight of
u as small as possible. In fact, we will be able to keep the
weight of u below wt(v) + wt(w) + w Note that the
new megarow-vector 4 obtained by combining the megarows
corresponding to v and w will have the following properties.

1. ufi] < v[i] x w'[i], for i such that both v[i] and w'[7]
are non-zero and at least one of v[i], w'[i] is live.

2. uli] = v[é] + w'[i], otherwise.

Contributions to wt(u) — wt(v) — wt(w) come from just the
first term above and this is the ezcess which we seek to
minimize in our algorithm. In the algorithm, this excess
will be upper bounded at each step by a potential, which we
shall define shortly.

Our Algorithm. Let sh denote the amount by which w
needs shifting to obtain w'. We will determine sh by de-
termining the O(log s) bits in the binary representation of
sh one by one in increasing order of significance. In other
words, we will first determine whether sh is even or odd.
If sh is committed to the even option in this step then we
will determine whether sh is 0 (mod 4) or 2 (mod 4) in the
next step. And if sh is committed to the odd option in the
first step then we will determine whether sh is 1 (mod 4)
or 3 (mod 4) in the next step. This is repeated until sh
is completely determined. Note that there are two options
available at each step and we will pick the one which leads
to the smaller increase in weight. We explain this procedure
in further detail below.

We run a number of iterations (this number will be spec-
ified shortly). Iteration j > 1 computes the jth least sig-
nificant bit of sh and is performed in the following setting.
Consider non-empty locations in v and partition these into
residue classes modulo 29!, This results in 277! sets of lo-
cations (e.g., for j = 1, there is only one set comprising all
non-empty locations, and for j = 2, there are two sets, one
comprising the even locations and another comprising the
odd locations); call these Vi ...Vyj-1. Let Wi ... Wy;—1 de-
note the analogous sets for w. Going into the jth iteration,
we would have computed a matching between the V'’s and
the W’s (initially, i.e., for j = 1, there is only one set V; for
v and this is matched to the only set Wi for w). For sim-
plicity, we assume that V; is matched to W;, 1 <1 < 2971,
using appropriate permutations to rename sets if necessary.
Further, we would have a potential for this matching defined
as the following quantity summed over all [such that either
Vi or W, contains a live location:

(sum of values in non-zero locations in V})

X (sum of values in non-zero locations in W;)

We now describe how to perform the jth iteration so that a
new matching is computed for sets corresponding to residue
classes modulo 27. The potential of this resulting matching
will be at most half the potential of the original matching
and the time taken in this process will be proportional to
the number of live locations in v and w put together (this
will be explained shortly).

Note that each residue modulo 2~ corresponds to ex-
actly one of two possible residues modulo 27 (i.e., I(mod

2971 equals either [(mod 27) or I 4+ 297! (mod 27)). Based
on this observation, we split V; and W; into two sets each,;
call these sets V;*, V;? and W}', W}, respectively. Setting the
jth bit of sh to 0 corresponds to matching V;' with W;' and
V;? with W72, for each I. And setting the jth bit of sh to 1
corresponds to matching V;' with W)> and V;? with W}, for
each I. It is easily seen that one of these two choices will
lead to a potential which is at most half the potential of the
previous matching. We perform log Y = O(log s) iterations.

The final potential will then be <+ times the initial poten-

Y
tial, which is wt(v)wt(w). It is easily seen that the weight
wt(u) of the new megarow obtained by shifting w by sh and

combining it with v is at most

wt(v)wt(w)

wt(v) + wt(w) + v

Implementation Details: Tries. The main issue in im-
plementing the above algorithm is the maintenance of the
sets and their associated potentials so that the jth iteration
can be performed in time proportional to the number of
live locations in v and w put together. The key observation
which makes this possible is the fact that computing the po-
tential requires computing sums only over [such that either
Vi or W, contains a live location. Thus, in each iteration it
suffices to maintain only sets V;, W, such that at least one
of these has a live location. Clearly, the number of such sets
is bounded by the number of live locations in v and w put
together. Maintenance of these sets is easily handled with
the following preprocessing.

Initially, we build a trie of all non-empty locations in v.
For each non-empty location in v, the reverse of its binary
representation is used to build the trie. A similar trie is built
for w. Note that each non-empty set V; will be identical to
the set of leaves in some appropriate subtree of the trie for v,
and similarly for w. Thus, instead of maintaining the V;’s,
we will maintain nodes in the trie. Each node in the trie will
maintain two quantities, the sum of the values of the leaves
in its subtree, and a binary string identifying the path from
the root to that node. Using this information, it is easily
seen that given a particular V; (i.e., a node in the trie),
the sets V;', V}? along with the associated potentials can be
obtained in O(1) time (using table look-up if necessary to
identify the nodes for the new sets).

Time Complexity. The tries are built in time linear in the
number of non-empty items in v and w using constant time
LCA computation on consecutive items [18]. The time taken
in trie building is thus O(max{wt(v), wt(w)}). Subsequent
to this, the jth iteration runs in time bounded by the num-
ber of live locations in v and w put together. The number
of iterations performed is O(log s). The total time over all
iterations is thus O(max{wt(v), wt(w)} + #live locations x
log s).

7.2.2 Pairing Megarows and Analysis

The order is which megarows are paired depends on the
weights of the associated vectors. Recall W = O(s) denotes
the sum of the megarow-vector weights at the very begin-
ning (because, each megarow is just a single row at the very
beginning). We need to show that the final megarow-vector
weight is (1 4+ £)W. We also need to show that the total
time taken is O(slog? s).

We classify the megarow-vector weights into categories
[2,2"T1), 0 < i = O(log s). The pairings are now performed
in phases, with several pairings being performed in each
phase. Consider a particular phase and consider the current
lowest non-empty category, [2¢,2F!), say. If this category
has at least two megarows then we pair the megarows in
this category (leaving out one megarow, possibly) and com-
bine the megarows in each pairing within this phase. The
unpaired megarow, if any, is put on hold. If there is already
another megarow on hold, necessarily from a lower index
category, then the two megarows on hold are combined. It
is easily seen that the new megarow which results from com-
bining two paired megarows in the same category will be in
a strictly higher category. As we will show, megarow-vector
weights will always be O(s). It follows that the number of
phases will be ©(log s).

Bounding Megarow-Vector Weights. The megarow-
vector weights are bounded by the following lemma.

LemMMA 10. Consider a phase in which all but at most
one of the megarows which are combined belong to category
[29,20%1). Let O and N denote the sum of the megarow-
vector weights at the beginning and the end of this phase,

respectively. Then & < (1+ 21‘:1).

By choosing Y = ©(s) appropriately, we get:

COROLLARY 11. The final megarow-vector weight is W (14
%), for an appropriately chosen constant k > 2.

Time Complexity. It remains to determine the time taken
by the above algorithm. Recall that the process of merg-
ing two megarows v, w takes time O(max{wt(v), wt(w)}} +
#live locations x log s), where #live locations is the num-
ber of live locations in v and w put together. Since, by
Corollary 11, the sum of megarow-vector weights is always
bounded by O(s), each phase takes time O(s+Llog s). Since
the number of phases is O(log s), the total time taken is
O(slog s + Llog® s), as required.

8. REFERENCES

[1] L. Adleman, M. Huang. Recognizing Primes in
Random Polynomial Time. Proceedings of the 19th
ACM Symposium on Theory of Computing, 1987,
pp. 462 469.

[2] D. Cardoze, L. Schulman. Pattern Matching for
Spatial Point Sets. Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science,
1998, pp. 156-165.

[3] R. Cole, R. Hariharan. Tree pattern matching and
subset matching in randomized O(nlog® m) time.
Proceedings of the 29th ACM Symposium on
Theory of Computing, 1997, pp. 66 75.

[4] R. Cole, R. Hariharan, P. Indyk. Tree pattern
matching and subset matching in deterministic
O(nlog®m) time. Proceedings of the 10th
ACM-SIAM Symposium on Discrete Algorithms,
1999, pp. 245 254.

[5] R. Cole, R. Hariharan. Tree pattern matching to
subset matching in linear time. Submitted to STAM
Journal on Computing, 2000.

[6]

[7]

(8]

[10]

[11]

[15]

M. Dubiner, Z. Galil, E. Magen. Faster tree pattern
matching. Proceedings of the 81st IEEE Symposium
on Foundations of Computer Science, 1990,

pp- 145-150.

M.J. Fisher, M.S. Paterson. String matching and
other products. Complezity of Computation,
SIAM-AMS proceedings, ed. R.M. Karp, 1974,

pp. 113 125.

S. Goldwasser and J. Kilian, Almost all primes can
be quickly certified. Proceedings of 18th Annual
IEEE Symposium on Foundations of Computer
Science, 1986, pp. 316-329.

C.M. Hoffman, M.J. O’Donell. Pattern matching in
trees. Journal of the ACM, 1982, pp. 68-95.

P. Indyk. Deterministic superimposed coding with
applications to pattern matching. Proceedings of
the 38th IEEE Symposium on Foundations of
Computer Science, 1997, pp. 127 136.

P. Indyk. Faster algorithms for string matching
problems: matching the convolution bound.
Proceedings of the 39th IEEE Symposium on
Foundations of Computer Science, 1998,

pp- 166-173.

P. Indyk, R. Motwani, S. Venkatasubramanian,
Geometric matching under noise: combinatorial
bounds and algorithms. Proceedings of the 10th
ACM-SIAM Symposium on Discrete Algorithms,
1999, pp. 457-465.

A. Kalai, Efficient Pattern Matching with Don’t
Cares. Proceedings of the 13th ACM-SIAM
Symposium on Discrete Algorithms, 2002,

pp- 655-656.

S. Muthukrishnan, Detecting false matches in
string matching algorithms. Proceedings of the 4th
Conference on Combinatorial Pattern Matching,
Lecture Notes in Computer Science, 684,
Springer-Verlag, 1993, pp. 164 178.

S. Muthukrishnan, New results and open problems
related to non-standard stringology. Proceedings of
the 6th Conference on Combinatorial Pattern
Matching, Lecture Notes in Computer Science, 937,
Springer-Verlag, 1995, pp. 298 317.

M. O. Rabin, A probabilistic algorithm for testing
primality. Journal of Number Theory, 12, 1980, pp.
128 138.

A. Shokrollahi, J. Buhler, V. Stemann, Fast and
precise computations of discrete fourier transforms
using cyclotomic integers. Proceedings of the 29th
ACM Symposium on Theory of Computing, 1997,
pp. 40-47.

B. Schieber, U. Vishkin, On finding lowest common
ancestors in trees: simplification and parallelization.
SIAM Journal on Computing, 17, 1988, pp.
1253-1262.

