
Verifying Candidate Matches in Sparse and Wildcard
Matching �

[Extended Abstract]
y

Richard Cole
Courant Institute, NYU

251 Mercer Street
NY, NY 10012

cole@cs.nyu.edu

Ramesh Hariharan
Indian Institute of Science

Bangalore 560012
India

ramesh@csa.iisc.ernet.in

ABSTRACTThis paper obtains the following results on pattern mat
hingproblems in whi
h the text has length n and the pattern haslength m.� An O(n logm) time deterministi
 algorithm for theString Mat
hing with Wild
ards problems, even whenthe alphabet is large.� AnO(k log2m) time Las Vegas algorithm for the SparseString Mat
hing with Wild
ards problem, where k <<n is the number of non-zeros in the text. We also giveLas Vegas algorithms for the higher dimensional ver-sion of this problem.� As an appli
ation of the above, an O(n log2m) timeLas Vegas algorithm for the Subset Mat
hing and TreePattern Mat
hing problems, and a Las Vegas algo-rithm for the Geometri
 Pattern Mat
hing problem.� Finally, an O(n log2m) time deterministi
 algorithmfor Subset Mat
hing and Tree Pattern Mat
hing.The
ru
ial new idea underlying the �rst three results aboveis that of
on�rming mat
hes by
onvolving ve
tors obtainedby
oding
hara
ters in the alphabet with non-boolean (i.e.,rational or even
omplex) entries; in
ontrast, almost allprevious pattern mat
hing algorithms
onsider only boolean
odes for the alphabet. The
ru
ial new idea underlyingthe fourth result is a simpler method of shifting
hara
terswhi
h ensures that ea
h
hara
ter o

urs as a singleton insome shift.�This work was supported in part by NSF grantsCCR9800085 and CCR0105678.yWork partly done when both authors were visiting King'sCollege, London, and when the se
ond author was visitingNYU.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC 02 May 19-21, 2002, Montreal, Quebec, Canada
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

1. INTRODUCTIONThis paper obtains deterministi
 and Las Vegas algorithmsfor a variety of pattern mat
hing problems. Ea
h of theseproblems requires �nding all o

urren
es of a pattern p ina text t. All the Las Vegas algorithms we give have thefollowing form: �nd a set of
andidate mat
hes and thenverify them. Indeed, the deterministi
 algorithm for wild-
ard mat
hing
an also be viewed in this spirit. While thisapproa
h is not new (see e.g., [3℄ and [14℄), the method inthis paper appears to be
onsiderably more general.The
riteria for de�ning pattern o

urren
es di�er for ea
hof the problems we
onsider. We des
ribe previous historyand our results for ea
h of these problems in turn. In ea
hproblem, unless otherwise spe
i�ed, we will use n to denotejtj and m to denote jpj.The Wild
ard Mat
hing Problem. Here, p is said too

ur at lo
ation i in t if, for ea
h non-wild
ard symbolp[j℄ in p, 0 � j < m, the
orresponding text symbol t[i +j℄ is either identi
al to p[j℄ or is itself a wild
ard symbol.Let � denote the alphabet set from whi
h the non-wild
ardsymbols in t; p are drawn.A
lassi
 result of Fis
her and Paterson [7℄ states that thisproblem
an be solved in O(n logm log j�j) time. Removingthe dependen
e on j�j in the above time
omplexity hasbeen an important open problem for a long time. Re
ently,Indyk [11℄ removed the dependen
e on j�j but by using aMonte Carlo randomized algorithm whi
h took O(n log n)time. Kalai [13℄ gave another (simpler) Monte Carlo ran-domized algorithm with a running time of O(n logm).We give a very simple deterministi
 algorithm for theabove problem whi
h runs in O(n logm) time. The mainidea here is to assign a two
hara
ter rational
ode to ea
hnon-wild
ard
hara
ter in t and p and then perform a
onvo-lution. This
onvolution will allow us to
ount the numberof aligned mat
hing non-wild
ard
hara
ters.Most previous approa
hes have used boolean
odes forthe alphabet in
onjun
tion with
onvolution. One possibleex
eption is Indyk's algorithm [11℄, whi
h uses a booleanen
oding for the alphabet but then performs a
onvolutionmodulo 2 in linear time; this modulo 2
onvolution involvesperforming a regular
onvolution on ve
tors of size �(nlogn)with entries in a �eld de�ned by irredu
ible degree �(log n)boolean polynomials. Kalai's algorithm [13℄ is another ex-
eption whi
h e�e
tively uses integer
odes. Note that in

ontrast to Indyk's and Kalai's algorithms, all mat
hes re-ported by our algorithm are
ertain.The Shift Mat
hing Problem. In this problem, the
har-a
ters in the text and pattern are either integers or wild-
ards. Pattern p is said to o

ur at lo
ation i in t if thereexists an integer li su
h that one of the following
onditionsholds for all non-wild
ard symbols p[j℄ in p:1. The text
hara
ter t[i+ j℄ aligned with p[j℄ is a wild-
ard.2. t[i+ j℄� p[j℄ = li.This problem has not been previously studied. Our moti-vation in de�ning this problem is its
ru
ial use in solving theSparse Wild
ard Mat
hing problem (whi
h will be des
ribedshortly). We give a deterministi
 algorithm whi
h takesO(n log maxfN;mg) time, where N is a parameter su
h thatthe entries in t; p
ome from the range 0 : : : N�1. The mainidea here is to assign a
omplex
ode to ea
h non-wild
ard
hara
ter in t and p and then perform a
onvolution; again,this
onvolution will allow us to
ount the number of alignedpairs of
hara
ters satisfying
ondition 2 above.The d-Dimensional Sparse Wild
ard Mat
hing Al-gorithm. In this problem, t; p are d-dimensional arrays ofsize nd and md, respe
tively. Text t is sparse, i.e., it hasonly k non-zero
hara
ters, where k << nd, and no wild-
ard
hara
ters. The pattern p
omprises wild
ard and non-zero non-wild
ard
hara
ters. p is said to o

ur at lo
ationi1; : : : ; id in t if, for all non-wild
ard
hara
ters p[j1; : : : ; jd℄in p, t[i1+j1; : : : ; id+jd℄ = p[j1; : : : ; jd℄; in other words, ea
hnon-wild
ard
hara
ter in p must be aligned with an identi-
al
hara
ter in t. Clearly, the number of non-wild
ards inp must be at most k for it to o

ur anywhere in the text.We assume that both the text and the pattern are given bythe impli
it O(kd) size des
ription whi
h spe
i�es the list ofnon-zero entries in ea
h.This problem was de�ned (impli
itly) by Cardoze andS
hulman [2℄ with the aim of solving the Geometri
 PatternMat
hing problem (whi
h will be de�ned shortly). Theygave a Monte Carlo randomized algorithm with running timeO(k log k+kd) and failure probability inverse polynomial ink. The key idea in this algorithm was to hash the text andpattern down to strings of size �(k); this hashing preservesall mat
hes and does not introdu
e new spurious mat
hes,with high probability.We will show how to solve this problem using a Las Vegasrandomized algorithm whose running time is O(dk log k log n),with failure probability inverse polynomial in k. For md �n, a variant of the standard tri
k of breaking the text intosmaller pie
es de
reases this running time toO(dk log minfk; (dm)dg log dm+ dk log k)The failure probability is inverse polynomial in minfk; (dm)dg.Our Las Vegas algorithm essentially adds a veri�
ationstep to the Monte Carlo algorithm of Cardoze and S
hulman[2℄. Veri�
ation requires the dete
tion of spurious mat
hesintrodu
ed by the hashing mentioned above. To dete
t su
hmat
hes, one needs to
he
k whether ea
h pair of aligned
hara
ters (in the text and pattern obtained after hash-ing) in a
laimed mat
h a
tually
orresponds to a pair ofaligned
hara
ters in the original text and pattern, respe
-tively. This was pre
isely our motivation for de�ning the

Shift Mat
hing problem. Our algorithms for Wild
ard Mat
h-ing and Shift Mat
hing above play a
ru
ial role in dete
tingthese spurious mat
hes.Subset Mat
hing and Tree Pattern Mat
hing. In theSubset Mat
hing problem, ea
h text lo
ation and ea
h pat-tern lo
ation is a set of
hara
ters drawn from an alphabet� of size �. Let s denote the total sum of the sizes of alltext and pattern sets. The pattern p is said to o

ur at textposition i if the set p[j℄ is a subset of the set t[i+ j℄, for alllo
ations j in p.This problem was de�ned by Cole and Hariharan [3℄, asan intermediate problem in solving the Tree Pattern Mat
h-ing problem (to be de�ned shortly). The previous best al-gorithms known for this problem were an O(s log3 slog log s) timeLas Vegas algorithm due to Cole, Hariharan and Indyk [4℄,an O(s log s) time Monte Carlo algorithm due to Indyk [11℄,and an O(s log3 s) time deterministi
 algorithm due to Cole,Hariharan and Indyk [4℄. The above time
omplexities arefor the
ase when s � n;m (if not, then the running timesbe
ome O(n log2 slog log s log maxfm; sg), O(n log s) andO(n log2 s log maxfm; sg), respe
tively.As a dire
t appli
ation of our 1-d Sparse Wild
ard Mat
h-ing algorithm, we give a Las Vegas algorithm with run-ning time O(s log2 s), with failure probability at most in-verse polynomial in s (assuming s � n;m, if not, then therunning time be
omes O(s log s log maxfm; sg), with failureprobability still inverse polynomial in s).In addition, we give a deterministi
 algorithm with run-ning time O(slog2 s) (assuming s � n;m, if not, then therunning time be
omes O(nlog s log maxfm; sg)). This algo-rithm is based on the idea of
hoosing
olle
tions of shiftsfor
hara
ters in t and p su
h that ea
h
hara
ter o

urs asa singleton in at least one of the
olle
tions. This idea wasthe basis for the algorithm in [3℄; however, that paper
hoseshifts randomly, in
ontrast to our deterministi

onstru
-tion. A deterministi

onstru
tion based on
onvolution wasgiven in [4℄. The present deterministi

onstru
tion does notuse
onvolutions and is faster by a log s fa
tor. The result-ing algorithm is substantially simpler than the O(s log3 s)time deterministi
 algorithm in [4℄.In the Tree Pattern Mat
hing problem, t and p are or-dered, node-labelled trees of size n and m respe
tively. Thepattern o

urs at a parti
ular text position if pla
ing thepattern with root at that text position leads to a situationin whi
h ea
h pattern node overlaps some text node with thesame label. As shown in [3, 5℄, the Tree Pattern Mat
hingproblem
an be redu
ed in linear time to the Subset Mat
h-ing problem. The above results for the Subset Mat
hingproblem immediately lead to O(n log2m) time Las Vegasand deterministi
 algorithms for Tree Pattern Mat
hing.Geometri
 Pattern Mat
hing. In this problem, t and pare
olle
tions of points in d-dimensional spa
e. Let k de-note the number of points in t. We assume that these pointshave integer
oordinates and that the
oordinates of pointsin t and p
ome from the ranges [0 : : : n�1℄ and [0 : : :m�1℄,respe
tively. The aim is to determine whether there existsa transformation from an allowed
lass of transformationswhi
h when applied to p ensures that ea
h point in p iswithin a spe
i�ed threshold distan
e � of some point in t.The two kinds of transformations we
onsider are transla-tions and rigid motions, i.e., translations
oupled with rota-

tions.The previous best algorithm for translations was a MonteCarlo algorithm due Cardoze and S
hulman [2℄ and had arunning time of O(k(2�+1)d log[k(2�+1)d℄). For rotations,Cardoze and S
hulman [2℄ gave a Monte Carlo algorithmwith a running time of O(f(k; d;�; �) log f(k; d;�; �)) foran appropriate fun
tion f(k; d;�; �), where � is a toleran
eparameter in measuring distan
es.For translations, we give a Las Vegas algorithm with run-ning time O(dk(2� + 1)d log[k(2� + 1)d℄ log n), with fail-ure probability inverse polynomial in k(2� + 1)d. For the
ase when md � n, this
an be improved to O(dk(2� +1)d log minfk(2�+1)d; (dm)dg log dm+dk(2�+1)d log k(2�+1)d); the failure probability is at most inverse polynomial inminfk(2� + 1)d; (dm)dg. For rigid motions, we give a LasVegas algorithm with running timeO(f(k; d;�; �) log minff(k; d;�; �); mpd� g log mpd�)The failure probability is inverse polynomial inminff(k; d;�; �); mpd� gThese algorithms are dire
t
onsequen
es of our Sparse Wild-
ard Mat
hing algorithm.Sparse Convolution. In the Sparse Convolution problem,the aim is to �nd the
onvolution ve
tor w of two givenve
tors t and p,
omprising only non-negative entries. Weassume that t and p are given not as expli
it ve
tors butrather as lists of lo
ation-value pairs
omprising lo
ationswhi
h have non-zero values. The aim is to
ompute w inan output sensitive way, i.e., in time proportional to thenumber of non-zero entries in w. This problem was posedin [15℄.Let jjwjj denote the number of non-zero entries in w. Weshow how to obtain these non-zero entries in O(jjwjj log2m)time, using a Las Vegas randomized algorithm, whose failureprobability is inverse polynomial in m. To the best of ourknowledge, this is the �rst algorithm for this problem. Weremark that if we wanted to allow negative entries in t andp, we would need to de�ne jjwjj as the number of non-zeroentries in ~w, where ~w is as follows. Let ~t and ~p be t and p,respe
tively, with non-zero entries repla
ed by 1; ~w is theprodu
t of ~t and ~p.Roadmap. Se
tion 2 des
ribes the de�nitions, notationsand a basi
 tool used by our algorithms. Ea
h subsequentse
tion des
ribes our algorithms for the problems listed above,in turn. Proofs of lemmas and the des
ription of the SparseConvolution algorithm are omitted for la
k of spa
e.
2. PRELIMINARIESAll algorithms in this paper will assume the RAM modelof
omputation, whi
h allows arithmeti
 on logN bit num-bers in O(1) time, where N is of the order of the maximumproblem size.In all our problems, we will use n to denote jtj and mto denote jpj (ex
ept in the d-Dimensional Sparse Wild-
ard Mat
hing problem in whi
h the
orresponding termsare nd and md, respe
tively). Using a standard redu
tion,we will assume that n � 2m for all problems in whi
h t andp are strings (using the standard tri
k of breaking the textinto pie
es of length 2m,
onse
utive pie
es overlapping by

m). t and p are indeed strings in all problems, ex
ept forthe d-Dimensional Sparse Wild
ard Mat
hing Problem, theTree Pattern Mat
hing problem, and the Geometri
 PatternMat
hing problem.The following de�nition will be
entral to the te
hniquesused in this paper.Convolution. The
onvolution ve
tor of two ve
tors u; v isde�ned as the ve
tor w su
h that w[i℄ = Pjuj�1j=0 u[j℄v[(i +j)(modjvj)℄. We use the notation u � v to denote w. Notethat this de�nition of
onvolution involves wrap-around (i.e.,v is assumed to be a
y
li
 ve
tor). In this paper, we willalso use the non-wrap-around notion of
onvolution, i.e.,w[i℄ = Pjuj�1j=0 u[j℄v[i + j℄, with out of range entries takenas 0. However, unless otherwise spe
i�ed, all referen
es to
onvolution will refer to the wrap-around de�nition.The Fast Convolution Theorem. The following theoremand its
onsequent
orollary on the RAMmodel are standard(see for example, [17℄, page 1) and
ru
ial to our algorithms.They hold for both de�nitions of
onvolution above.Theorem 1. Consider two ve
tors u; v, ea
h ve
tor hav-ing length O(m) and
omprising l-bit entries. Let M(l) bethe time taken to multiply two l bit numbers. Then u � vwith entries pre
ise up to l ��(logm) bits
an be obtainedin O(m logm �M(l)) time.Sin
e M(l) = O(1) on the RAM model for l = O(logN),we get the following
orollary.Corollary 2. If l = O(logN) then u � v with entriespre
ise up to l��(logm) bits
an be obtained in O(m logm)time.
3. THE WILDCARD MATCHING ALGORITHMAs stated in Se
tion 2, we assume that n < 2m and showhow Corollary 2 yields a simple O(m logm) time algorithmfor Wild
ard Mat
hing. We assume, without loss of gen-erality, that symbols in t and p are drawn from the integeralphabet 0 : : :m�1 (otherwise, sort and rename the symbolsat an expense of O(m logm) time).Our algorithm performs the following two non-wrap-around
onvolutions.Step 1. The aim of this
onvolution is to
ompute, for ea
hlo
ation i of t, the number of non-wild
ards in p that arealigned with non-wild
ards in t when p[0℄ is aligned witht[i℄. Call this
ount nw[i℄. This is
al
ulated as follows.We obtain a new text t0 from t by repla
ing ea
h non-wild
ard by 1 and ea
h wild
ard by 0. A new pattern p0is obtained from p in the same way. It is easily seen that(t0� p0)[i℄ = nw[i℄. By Corollary 2, t0� p0
an be
omputedin O(m logm) time.Step 2. The aim of this
onvolution is to
ompute, for ea
hlo
ation i of t, a quantity whi
h indi
ates whether or notp mat
hes at i. The following
onvolution will yield value2 � nw[i℄ if and only if p mat
hes at lo
ation i. Sin
e nw[i℄is already known from Step 1, this information is suÆ
ientto �nd all o

urren
es of p in t.This
onvolution involves a new text t0 obtained from tby repla
ing ea
h non-wild
ard
hara
ter a by two adja
entnumbers a and 1=a (i.e., if t[j℄ = a then t0[2j℄ = a andt0[2j + 1℄ = 1=a), and ea
h wild
ard by two 0's. A new

pattern p0 is obtained from p in the same way, ex
ept that1=a and a are swit
hed (i.e., if p[j℄ = a then p0[2j℄ = 1=aand p0[2j+1℄ = a). It is easily seen that p o

urs at lo
ationi if and only if (t0�p0)[2i℄ = 2�nw[i℄ (this uses the fa
t thata=b+ b=a � 2 + 1m(m�1) for a 6= b). It remains to determinethe time taken for this
onvolution.Time and Pre
ision Analysis. Using the fa
t that a=b+b=a � 2 + 1m(m�1) for a 6= b, it follows that (t0 � p0)[2i℄ �2 � nw[i℄ either equals 0 or is at least 1m(m�1) . Therefore,O(logm) bits of pre
ision are suÆ
ient to dete
t whi
h ofthese two
ases o

urs. By Corollary 2, t0 � p0
an be
om-puted to this level of pre
ision in O(m logm) time, providedthe input ve
tors t0 and p0 themselves have entries whi
h are
orre
t up to �(logm) bits of pre
ision. Setting up t0 and p0with this level of pre
ision is easily done in O(m logm) time(the only issue is that of determining �(logm) signi�
antdigits of 1=a, whi
h is easily done in O(logm) time). This
on
ludes the algorithm.
4. THE SHIFT MATCHING ALGORITHMAs stated in Se
tion 2, we assume that n < 2m. Weshow how Corollary 2 yields a simple O(m log(mN)) timealgorithm for Shift Mat
hing. As in Wild
ard Mat
hing,there are two steps. The �rst step is identi
al to the �rststep in Wild
ard Mat
hing and obtains the
ount nw[i℄ forall text lo
ations i. The se
ond step is also similar, but usesa di�erent en
oding, as detailed below. In what follows, let� denote 2�p�1N .Step 2. The aim of this step is to
ompute, for ea
h lo
ationi of t, a quantity whi
h indi
ates whether or not p mat
hesat i. The following
onvolution will yield a
omplex numberwith modulus nw[i℄ if and only if p mat
hes at lo
ation i.Sin
e nw[i℄ is already known from Step 1, this informationis suÆ
ient to �nd all o

urren
es of p in t.This
onvolution involves a new text t0 obtained from tby repla
ing ea
h non-wild
ard
hara
ter a by e�a and ea
hwild
ard
hara
ter by 0. Similarly, a new pattern p0 is ob-tained from p by repla
ing ea
h non-wild
ard
hara
ter a bye��a and ea
h wild
ard
hara
ter by 0. It is easily seen thatp o

urs at lo
ation i if and only if (t0� p0)[i℄ = e�li �nw[i℄,for some integer li (whi
h is also the di�eren
e between anyaligned pair of non-wild
ard text and pattern
hara
ters inthis mat
h). It remains to determine the time and pre
isionrequired for this
onvolution.Time and Pre
ision Analysis. It is easily seen that j(t0�p0)[i℄� e�li � nw[i℄j either equals 0 or is at leastje�li � e�(li�1)j = 2Sin �N � 1N ; for N � 2:Therefore, O(logN) bits of pre
ision in the output are suf-�
ient to dete
t whi
h of these two
ases o

urs. By Corol-lary 2, t0 � p0
an be
omputed to this level of pre
ision inO(m logm) time, provided the input ve
tors t0 and p0 them-selves have entries whi
h are
orre
t up to �(logm+logN)bits of pre
ision. Setting up t0 and p0 with this level of pre-
ision is easily done in O(m log(mN)) time.Remark. We
laim that if required, then for ea
h mat
ht[i℄ of p in t, li, if de�ned,
an be
omputed as well in theabove mentioned time (by
omputing li from e�li). Notethat li is de�ned as long as the pattern and the text have atleast one pair of aligned non-wild
ard
hara
ters.

5. THE D-DIMENSIONAL SPARSE WILD-
CARD MATCHING ALGORITHMBefore we des
ribe our algorithm for the Sparse Wild
ardMat
hing problem, we need to des
ribe two basi
 tools usedin this algorithm: dimension redu
tion and length redu
tionby hashing.Dimension Redu
tion. Consider two possibly sparse d-dimensional arrays t and p, with jtj = nd, jpj = md. t
omprises some zeros and k non-zeros and p
omprises wild-
ards and non-zero non-wild
ard
hara
ters. As in [2℄, weuse random proje
tions to obtain strings t0 and p0 from tand p, respe
tively. t0 and p0 have length polynomial in kand mat
hes of p in t will be related to mat
hes of p0 in t0as des
ribed shortly.Choose integers b1 : : : bd independently and uniformly atrandom from a range polynomial in k. Map ea
h lo
ationt[i1; : : : ; id℄ to t0[Pdr=1 brir℄ and likewise for p. It is easy tosee that distin
t non-zeros in t map to distin
t lo
ations int0, with failure probability inverse polynomial in k. Further,this property is easily veri�ed in O(kd + k log k) time. Asimilar property holds for non-wild
ards in p; these map todistin
t lo
ations in p0. A lo
ation in t0 to whi
h no non-zero in t maps is set to 0 and a lo
ation in p0 to whi
h nonon-wild
ard in pmaps is set to the wild
ard
hara
ter. Thefollowing important lemma holds.Lemma 3. If p mat
hes starting at t[i1; : : : ; id℄ then p0mat
hes starting at t0[Pdr=1 brir℄. Further, if p does notmat
h starting at t[i1; : : : ; id℄ then p0 does not mat
h att0[Pdr=1 brir℄, with failure probability inverse polynomial ink.Length Redu
tion by Hashing. Consider two possiblysparse strings t and p, with jtj = n, jpj = m. t
ompriseszeros and non-zeros and p
omprises wild
ards and non-zeronon-wild
ard
hara
ters (whi
h we will sometimes refer to asjust non-zeros). As in [2℄, we use hashing to obtain shorterstrings (of an appropriately
hosen length s) from t and pas follows.Let H denote a family of hash fun
tions given by ax(modq)(mod s), where p is a prime in 2n : : : 4n, a 2 0 : : : q � 1,and s is a number possibly mu
h smaller than n. We
hoosea random hash fun
tion h = ax(mod q)(mod s) from H(i.e., we
hoose a uniformly from 0 : : : q � 1). Using h, wewill map t and p to small strings th and ph, respe
tively, asbelow.Ea
h lo
ation i in th and ph will
orrespond to a set ofnon-zero lo
ations in t and p, respe
tively, whi
h map toi. th is obtained by mapping ea
h lo
ation x in t to thefollowing two lo
ations in th:� ax(mod q)(mod s)� [ax(mod q) + q℄(mod s)Thus ea
h lo
ation in t has 2 images in th. ph is obtained bymapping ea
h lo
ation x in p to lo
ation ax(mod q)(mods) in ph.De�nitions. A lo
ation is th is
alled empty, if no non-zerolo
ations in t map to it, singleton, if exa
tly one non-zerolo
ation in t maps to it, and multiple otherwise. Analogous

de�nitions hold for lo
ations in ph. A wrap-around pla
e-ment of ph starting at lo
ation i in th is a pla
ement of phsu
h that ph[j℄ is aligned with th[(i+ j)(mod s)℄.The following properties of th and ph will be
ru
ial andare easy to show.Lemma 4. Consider a wrap-around pla
ement of ph inth with ph[0℄ aligned with th[h(i)℄. Then for ea
h j; 0 �j � m�1, ph[h(j)℄ is aligned with th[(h(i)+h(j))(mod s)℄,whi
h is one of the images of t[i+ j℄.Lemma 5. Let k denote the number of non-zeros in t.Consider a wrap-around pla
ement of ph in th with ph[0℄aligned with th[h(i)℄ and
onsider any lo
ation p[j℄. If qis indeed a prime, then with probability O(ks), ph[h(j)℄ isaligned with a non-empty lo
ation in th if and only if t[i +j℄ 6= 0.
5.1 The Monte-Carlo AlgorithmWe assume that the text t has size nd and the patternp has size md. Let k denote the number of non-zeros in t.We des
ribe the Monte Carlo algorithm of [2℄ �rst and thenuse the Wild
ard Mat
hing and Shift Mat
hing algorithmsabove to get a Las Vegas algorithm. We des
ribe this algo-rithm only for the
ase when all non-zeros in t and p equal1. The Las Vegas algorithm to be des
ribed will handle themore general
ase as well.First, we do the dimension redu
tion des
ribed above toobtain strings t0 and p0 from t and p, respe
tively. Thistakes O(dk + k log k) time. Note that t0 and p0 have lengthpolynomial in k. Next, we set s = O(k) (re
all from abovethat s is the range of the hash fun
tions to be
hosen), withthe
onstant
hosen appropriately, so that the probabilityin Lemma 5 is a small enough
onstant. Then we
hoose�(log k) hash fun
tions h independently and uniformly atrandom from H; for ea
h
hosen hash fun
tion h, we obtainth and ph from t0 and p0 as des
ribed above. The time takenin this pro
ess is O(polylog(k)) for
hoosing q and O(k log k)for
onstru
ting th and ph, over all h.For ea
h
hosen hash fun
tion h, we �nd all wrap-aroundpla
ements of ph in th su
h that ea
h non-empty lo
ationin ph is aligned with a non-empty lo
ation in th. This isdone easily by a simple redu
tion to the Boolean Wild
ardMat
hing problem and takes O(k log2 k) time over all
hosenhash fun
tions h. Lo
ation th[i℄ is said to be a mat
h for phif the wrap-around pla
ement of ph starting at th[i℄ satis�esthe above property.Let M denote the set of potential mat
hes of p in t (i.e.,those pla
ements of p in t for whi
h the lexi
ographi
allyleast non-zero lo
ation in p is aligned with a non-zero in t);note that jM j � k. Then, for ea
h i1; : : : ; id 2M , we
he
kin O(d+ log k) time whether ph mat
hes th at h(Pdr=1 brir)for all
hosen h. Potential mat
hes in M satisfying this
on-dition are de
lared real mat
hes. This takes O(kd+ k log k)time overall.It remains to show
orre
tness. From Lemmas 4 and 3,it is easily seen that if p mat
hes t at lo
ation i1; : : : ; id,then ph mat
hes th at lo
ation h(Pdr=1 brir), for all
ho-sen h. Further, from Lemmas 5 and 3, if p does not mat
ht at lo
ation i1; : : : ; id, then ph mismat
hes th at lo
ationh(Pdr=1 brir), for at least one of the
hosen h, with failureprobability inverse polynomial in k. Thus, all mat
hes of p

in t will pass the above test with
ertainty, while the proba-bility of any mismat
h passing this test is inverse polynomialin k.The total time taken is O(polylog(k)+dk+k log2 k). Car-doze and S
hulman [2℄ in fa
t obtain a slightly faster algo-rithm running inO(polylog(k)+dk+k log k) by using a lineartime Monte Carlo algorithm for doing
onvolution modulo2 [11℄.
5.2 The Las Vegas AlgorithmWe now show how to
onvert the above Monte Carlo algo-rithm to a Las Vegas algorithm running in timeO(polylog(k)+dk log k log n), even for the
ase when the non-zeros in tand p
ome from a large alphabet. Note that this essentiallyadds a multipli
ative fa
tor of O(d log n) to the Monte Carloalgorithm.The main idea is to fo
us on singleton lo
ations in th andph, and
ompute various statisti
s on these singletons. Thefollowing fa
t is
ru
ial and the proof is similar to the proofof Lemma 5. Re
all that following the dimension redu
tionand hashing steps, ea
h non-zero lo
ation in t has two imagesin th.Fa
t 6. The following holds with failure probability in-verse polynomial in k: for ea
h non-zero lo
ation in t, thereexists a
hosen hash fun
tion h su
h that both images of thisnon-zero are singletons in th.Step 1: Ensuring Singletons. We begin with the fol-lowing preliminary test. Having
hosen the �(log k) hashfun
tions h, we
he
k whether, for ea
h non-zero lo
ationin t, there exists a
hosen hash fun
tion h su
h that bothimages of this non-zero lo
ation are singletons in th.This property takes O(k log k) time to
he
k. If this prop-erty does not hold then the veri�
ation fails, and the entirealgorithm is repeated. By Fa
t 6, the probability of thishappening is inverse polynomial in k. In the sequel, we as-sume that, for ea
h non-zero lo
ation in t, there exists a
hosen hash fun
tion h su
h that both images of this non-zero lo
ation are singletons in th.Step 2: Che
king that Singletons Mat
h. For ea
h
hosen hash fun
tion h, we �nd all wrap-around pla
ementsof ph in th su
h that the following
onditions are satis�ed:1. Ea
h non-empty lo
ation in ph is aligned with a non-empty lo
ation in th.2. For ea
h pair of aligned singleton lo
ations in th andph, if any, the following property holds: the non-zero
hara
ters in t and p, respe
tively, whi
h map to thesesingleton lo
ations are identi
al.Both
onditions are
he
ked easily by a simple redu
tion tothe Wild
ard Mat
hing problem. This step takes O(k log2 k)time over all
hosen hash fun
tions h.De�nition. Lo
ation th[i℄ is said to be a mat
h for phif the wrap-around pla
ement of ph starting at th[i℄ satis-�es the above properties. We say that a potential mat
hof p at t[i1; : : : ; id℄ is a
laimed mat
h if ph mat
hes atth[h(Pdr=1 brir)℄, for all
hosen hash fun
tions h. Further,this
laimed mat
h of p at t[i1; : : : ; id℄ is said to
orrespondto a mat
h of ph at th[h(Pdr=1 brir)℄.

Note that by Lemmas 4, 5, and 3, all mat
hes of p in tmust be
laimed mat
hes, and all
laimed mat
hes are truemat
hes with failure probability inverse polynomial in k.Next, we need identify whi
h, if any, of the
laimed mat
hesare false mat
hes.False Mat
h S
enarios. We enumerate the s
enarios inwhi
h a
laimed mat
h is a false mat
h. Consider one su
hfalse mat
h of p at lo
ation t[i1; : : : ; id℄. Sin
e this is not a
-tually a mat
h, there exists a non-zero lo
ation p[j1; : : : ; jd℄whose value is di�erent from t[i1 + j1; : : : ; id + jd℄. Forbrevity, let î denote h(Pdr=1 brir) and ĵ denote h(Pdr=1 brjr).Sin
e ph mat
hes th at î, the lo
ation th [̂i+ ĵ℄ aligned withph[ĵ℄ is non-empty, for all
hosen hash fun
tions h.There are only three possible false mat
h s
enarios.1. th [̂i + ĵ℄ is singleton but ph[ĵ℄ is multiple, for some
hosen h.2. th [̂i+ ĵ℄ and ph[ĵ℄ are both singletons, for some
hosenh.3. th [̂i+ ĵ℄ is multiple, for all
hosen h.We brie
y des
ribe how to dete
t false mat
hes in ea
h s
e-nario. Whatever remains will be a true mat
h and all truemat
hes will indeed be dete
ted.Dete
ting S
enario 1. Note that a true mat
h
an neverlead to S
enario 1. In other words, if p indeed mat
hes t atlo
ation i1; : : : ; id then S
enario 1 does not hold. This
anbe seen as follows. If multiple non-zeros in p map to ph[ĵ℄then the non-zeros in t aligned with these non-zeros in pmust all map to th [̂i+ĵ℄, by Lemmas 4 and 3. But this wouldmean that th [̂i+ ĵ℄ is multiple and not singleton. Therefore,for any
laimed mat
h of p at t[i1; : : : id℄, if S
enario 1 holdsfor the wrap-around pla
ement of ph at th [̂i℄ for even one ofthe
hosen hash fun
tions h, then this
laimed mat
h is notan a
tual mat
h.Dete
ting S
enario 1 is easily done in O(k log2 k) timeusing a simple redu
tion to the Boolean Wild
ard Mat
h-ing problem. All
laimed mat
hes satisfying S
enario 1 areeliminated by this pro
ess.Dete
ting S
enario 2. Consider a parti
ular
laimed butfalse mat
h of p at t[i1; : : : ; id℄ in whi
h p[j1; : : : ; jd℄ is non-zero and the aligned
hara
ter t[i1+j1; : : : ; id+jd℄ is either 0,or non-zero and di�erent from p[j1; : : : ; jd℄. Consider thathash fun
tion h for whi
h S
enario 2 holds in the
orre-sponding mat
h of ph in th. So both th [̂i+ ĵ℄ and ph[ĵ℄ aresingletons.They key property whi
h enables us to identify this mis-mat
h via Shift Mat
hing is the following. Clearly, theunique non-zero lo
ation in p whi
h maps to ph[ĵ℄ is thelo
ation p[j1; : : : ; jd℄. Let t[i01; : : : ; i0d℄ denote that uniquenon-zero lo
ation in t whi
h maps to th [̂i + ĵ℄; note thati0r 6= ir + jr for some r, otherwise the
laimed mat
h being
onsidered would not have passed Step 2. Then the ve
tor(i01 � j1; : : : ; i0d � jd) is not equal to the ve
tor (i1; : : : ; id).This suggests that S
enario 2
an be dete
ted by performingShift Mat
hing on ea
h dimension separately as follows.Consider ea
h dimension r and ea
h
hosen hash fun
tionh in turn. Obtain new strings t0h and p0h from th and ph,respe
tively, by repla
ing ea
h singleton by the rth dimen-sion of the unique non-zero lo
ation in t and p, respe
tively,

whi
h maps to this singleton. All other lo
ations in t0h andp0h get wild-
ards. For ea
h wrap-around pla
ement t0h[i℄ ofp0h, we determine whether this pla
ement of p0h mat
hes t0hunder the de�nition of Shift Mat
hing, and if so, we
om-pute the quantity li (see the remark at the end of Se
tion4). The time taken in this pro
ess is O(dk log k log n) overall h and all d dimensions.Finally, a parti
ular
laimed mat
h of p at t[i1; : : : ; id℄ iseliminated unless the following holds for all
hosen h: p0hmat
hes at t0h [̂i℄ and l̂i for dimension d0 is either unde�ned(i.e., one at least of ea
h pair of aligned
hara
ters in p0h andt0h is a wild
ard, so S
enario 2 does not hold trivially) orequals id0 , for all dimensions d0.Dete
ting S
enario 3. Assuming that S
enarios 1 and 2never apply, we dete
t false mat
hes
orresponding to S
e-nario 3 using the following statisti
. Re
all that by Step 1,for ea
h non-zero lo
ation in t, there exists a
hosen hashfun
tion h su
h that both images of this non-zero lo
ationare singletons in th. We asso
iate ea
h non-zero lo
ation int with exa
tly one of the various h's for whi
h the aboveproperty holds. Singletons in th
orresponding to non-zerolo
ations in t asso
iated with h, are
alled spe
ial singletons.For ea
h
laimed mat
h of p in t, and for ea
h
hosen hashfun
tion h, we
onsider the
orresponding mat
h of ph in th.In this mat
h, we
ount the number of singletons asso
iatedwith th whi
h are aligned with singletons in ph. This is donein O(k log k) time per
hosen hash fun
tion h by
onvolvingthe string obtained by repla
ing spe
ial singletons in th by1 and others by 0, with the string obtained by repla
ingsingletons in ph by 1 and others by 0. The total time takenby this step is O(k log2 k).For ea
h
laimed mat
h of p in t, we sum the above
ountover all hash fun
tions h. By the following lemma, this
laimed mat
h is eliminated if and only if the above sumdoes not equal #p, where #p is the number of non-zeros inp. Lemma 7. The above sum equals #p for a
laimed mat
hif and only if it is a true mat
h.Total Time Taken. The total time taken by the algo-rithm is O(polylog(k) + dk log k log n) = O(dk log k log n),with failure probability inverse polynomial in k.For md � n, the above time
an be improved toO(dk log minfk; (dm)dg log dm+ dk log k)using a variant of the standard tri
k of breaking t into subar-rays of smaller size; the failure probability is at most inversepolynomial in minfk; (dm)dg. Breaking the text involves di-viding it into smaller texts of size dm and overlap m alongea
h dimension,
hosen so as to ensure that the number ofnon-zero elements in the smaller texts sum (over all smallertexts) to O(k(1 + 1d)d) = O(k).Remark on improving su

ess probability. The failureprobability
an in fa
t be redu
ed to 1k�(log k) based on theobservation that failure in the veri�
ation pro
ess resultssolely from failure in Step 1. The probability of failure inStep 1
an be redu
ed to 1k�(log k) by repeating the dimensionredu
tion and hashing steps �(log k) times. The extra timetaken in this pro
ess is O(dk log k + k log2 k).

6. APPLICATIONS OF SPARSE WILDCARD
MATCHING

6.1 Subset Matching and Tree Pattern Match-
ingFirst,
onsider Subset Mat
hing. For ea
h distin
t
har-a
ter
 2 � whi
h o

urs in p, we obtain a 1-d instan
e ofthe Sparse Wild
ard mat
hing problem as follows. We ob-tain a new text t
 from t by repla
ing ea
h set t[i℄ whi
hdoes not have
 by 0 and ea
h set t[i℄ whi
h has
 by 1. Weobtain a new pattern p
 from p by repla
ing ea
h set p[i℄whi
h does not have
 by a wild
ard and ea
h set p[i℄ whi
hhas
 by 1. It is easily seen that all o

urren
es of p in t
anbe found by solving the Sparse Wild
ard mat
hing problemon p
; t
 for all
 2 � and taking the interse
tion of the setsof mat
hes obtained. This gives a Las Vegas algorithm withrunning time O(s log2 s), with failure probability at mostinverse polynomial in s. Further, as mentioned in the intro-du
tion, this leads to improved algorithms for Tree PatternMat
hing.

6.2 Geometric Pattern MatchingIt is easily seen that the
ase of translations redu
es to thed-dimensional Sparse Wild
ard Mat
hing problem in whi
hthe text has size nd, the pattern has size md, the number of1's in the text (all non-zeros are 1's) is O((2� + 1)dk) andthe number of 1's in the pattern is the number of points in p.Using the above mentioned algorithm for the d-dimensionalSparse Wild
ard Mat
hing problem, we get an algorithmwith running time O(dk(2�+1)d log[k(2�+1)d℄ log n), withfailure probability inverse polynomial in k(2� + 1)d. Forthe
ase when md � n, this
an be improved to O(dk(2�+1)d log minfk(2�+1)d; (dm)dg log dm+dk(2�+1)d log k(2�+1)d); the failure probability is at most inverse polynomialin minfk(2� + 1)d; (dm)dg.Next,
onsider the
ase of rigid motions. In [2, 12℄, itis shown how this problem redu
es to several instan
es ofthe 1-d Sparse Wild
ard Mat
hing problem; the total num-ber of non-zeros over all problems is f(k; d;�; �), where f()is as in the introdu
tion, and the pattern size in ea
h su
hproblem is O(mpd�). Our algorithm for the 1-d Sparse Wild-
ard Mat
hing problem leads to a Las Vegas algorithm hav-ing O(f(k; d;�; �) log minff(k; d;�; �); mpd� g log mpd�) run-ning time and failure probability inverse polynomial inminff(k; d;�; �); mpd� g.
7. FAST DETERMINISTIC SUBSET MATCH-

ING AND TREE PATTERN MATCHINGWe give a deterministi
 O(slog2 s) algorithm for the Sub-set Mat
hing Problem based on the following
ru
ial fa
tfrom [3, 5℄. This immediately leads to an O(nlog2m) timedeterministi
 algorithm for Tree Pattern Mat
hing.Chara
ter Shifting. Re
all that ea
h set in the text/patternis drawn from an alphabet of size �. We
reate a new text t0and a new pattern p0 as follows. For ea
h
hara
ter e in theabove alphabet, a shift shift(e) is
hosen, where shift(e) isan integer in an appropriate range (to be des
ribed later).t0 and p0 are
reated as follows: if e is in the set t[i℄ then e isput in the set t0[i+ shift(e)℄; p0 is built analogously from p.p0 is said to mat
h at lo
ation i in t0 if 1 � i � jtj � jpj+ 1and further, set p0[j℄ is a subset of the set t0[i + j � 1℄, for

all lo
ations j in p0. It
an easily be seen that the set ofmat
hes of p in t is identi
al to the set of mat
hes of p0 int0.We will perform
hara
ter shifting O(log s) times; the ithsu
h operation will result in new strings t0i; p0i. We will ensurethat the various shiftings satisfy the following properties:� Ea
h
hara
ter in ea
h set in t is in a singleton set inat least one of the t0i's.� The t0i's and p0i's have length O(s) ea
h.We will show how to perform
hara
ter shiftings satisfyingthese two properties in Se
tion 7.1. The overall time takenin this pro
ess will be O(slog2 s).Next, we show how to �nd all mat
hes of p in t using thet0i's and p0i's. Sin
e the te
hniques here are similar in spiritto those used in the Sparse Wild
ard Mat
hing problem andthe Sparse Mat
hing problem, we will des
ribe them in lessdetail.The Algorithm.Step 1. We �nd a
andidate set of mat
hes in this step.Lo
ation i is termed a
andidate mat
h if for all t0j ; p0j 's,the pla
ement of p0j starting at t0j [i℄ satis�es the followingproperty: ea
h non-empty set in p0j is aligned with a non-empty lo
ation in t0j ; further ea
h singleton in t0j is alignedwith either a singleton or an empty lo
ation in p0j . Thisis easily done in O(slog2 s) time overall using the Wild
ardMat
hing algorithm.It is easily seen that all true mat
hes will survive thisstage. In parti
ular, note that a singleton set S in t0j
an-not be aligned with a non-empty non-singleton set S0 =fa; b; : : : g in a true mat
h be
ause the
hara
ters in tmat
h-ing a; b in this true mat
h must then appear in S and Swould no longer be singleton.Step 2. For ea
h
andidate mat
h i and for all t0j ; p0j , we
he
k whether the pla
ement of p0j starting at t0j [i℄ satis-�es the following property: if a singleton in p0j is alignedwith a singleton in t0j , then the two
hara
ters
orrespond-ing to these singleton sets are identi
al. This is easily donein O(slog2 s) time overall using a simple redu
tion to theWild
ard Mat
hing problem and using the algorithm in Se
-tion 3. Candidate mat
hes whi
h violate this property aredis
arded. All true mat
hes will survive this stage as well.Step 3. Re
all that ea
h
hara
ter in ea
h set in t is in asingleton set in at least one of the t0j 's. We asso
iate ea
h
hara
ter in t with exa
tly one of the t0j 's in whi
h it appearsas a singleton.For ea
h remaining
andidate mat
h i and for ea
h t0j ; p0j ,we
ompute the following quantity: the number n(i; j) ofsingletons asso
iated with t0j whi
h are aligned with single-tons in p0j in the pla
ement of p0j starting at t0j [i℄. This iseasily done in O(slog2 s) time overall using Corollary 2.Finally, we
laim that, analogous to Lemma 7, a
laimedmat
h i is a true mat
h if and only if Pj n(i; j) equals thetotal sum of the sizes of the pattern sets. The total timetaken is O(slog2 s).
7.1 Computing Good Character ShiftsOur aim is to obtain O(log s)
olle
tions of
hara
ter shiftsin O(s log2 s) time so that the two properties mentioned ear-lier are indeed satis�ed. Ea
h su

essive
olle
tion of shifts

we obtain has the property that a
onstant fra
tion of the
hara
ters in t whi
h have not yet appeared as singletonsin previous
olle
tions of shifts appear as singletons in this
olle
tion.De�nitions. We asso
iate an integer weight w(a) with ea
hinstan
e a of ea
h
hara
ter in � whi
h appears in some setin t. Note that di�erent instan
es of the same
hara
ter
ould have di�erent weights. The term weight-sum denotesthe sum P 2w(a), where the sum is over all instan
es a ofall
hara
ters in t. A
hara
ter in t is live if it has notappeared as a singleton in any of the previous
olle
tionsof shifts. Let t0 be obtained from t by a
hara
ter shiftingstep. The weight of set t0[i℄ is de�ned as (Qlive a2t0[i℄ 2w(a))�(Pnon�live a2t0[i℄ 2w(a)), with the �rst term missing if thereare no live
hara
ters in t0[i℄ and the se
ond term missing ifthere are no non-live
hara
ters in t0[i℄. The weight wt(t0)of t0 is de�ned to be the sum of the weights of non-emptysets in t0. Let s0 denote the sum of the sizes of the sets in t.The intuition for de�ning the weight of t0 as above is topenalize live
hara
ters o

urring with other live or non-live
hara
ters, while not putting any
onstraint on non-live
hara
ters. This ensures that a small weight for t0 for
esa good fra
tion of the live
hara
ters to o

ur as singletonbut allows non-live
hara
ters to o

ur with other non-live
hara
ters.Su

essive runs of the following key pro
edure shall giveus the su

essive
olle
tions of shifts.The Key Pro
edure. Given a weight assignment to ea
hinstan
e of ea
h
hara
ter in t, with weight-sum W = O(s),this pro
edure uses a
olle
tion of
hara
ter shifts to obtaint0 and p0 with the following properties:� The weight of t0 is at most �1+ 1k�W , for some
onstantk > 2.� jt0j; jp0j = O(s).This pro
edure takes O(s log s + L log2 s) time, where L isthe number of live
hara
ters in the
urrent run of this pro
e-dure. As we will show, L de
reases geometri
ally with ea
hrun. Next, we des
ribe how this pro
edure indeed gives usthe requisite t0i; p0i's satisfying the two properties mentionedearlier.Using the Above Pro
edure. We begin with
hara
-ter weights equal to 2 and weight-sum 4s0 = O(s). Next, weperform O(log s) iterations, modifying the
hara
ter weightsin ea
h iteration. In general, suppose i � 1 iterations havebeen performed and t01; : : : ; t0i�1 have been determined. Weidentify those instan
es of
hara
ters in t whi
h appear insingleton sets in at least one of t01; : : : ; t0i�1; these
hara
tersnow get weight 1. We then give new weights to the re-maining
hara
ters by weighting then equally and �xing theweight-sum restri
ted to these
hara
ters to be between 4s0and 8s0 (this range is needed if we want
hara
ter weights tobe integral); the weight-sumW obtained by in
luding weight1
hara
ters would then be at most 10s0 = O(s). Note thatW=s0 � 4. Next, we
all the above pro
edure with theseweights to obtain t0i. Finally, we stop when all instan
es ofall
hara
ters in t satisfy the singleton appearan
e property.The following lemma shows that L de
reases geometri
allyand therefore O(log s) iterations will suÆ
e. The total timetaken by the above pro
edure is thus O(slog2 s).

Lemma 8. The text t0i obtained in the ith iteration of theabove pro
edure has the property that all but a 2k fra
tion ofthe live
hara
ters (i.e., those whi
h have not appeared insingleton sets in any of t01; : : : ; t0i�1) appear in singleton setsin t0i.Corollary 9. After O(log s) iterations, ea
h instan
e ofea
h
hara
ter would have appeared in a singleton set insome t0i.It remains to des
ribe how the above key pro
edure works.
7.2 Computing Small Weightt0: The Row Ro-

tation ProblemWe formulate the problem of determining shifts to the
hara
ters in � to obtain a t0 with small weight as follows.We will restri
t our shifts to size Y = O(s). Consider a ��Ysize matrix A. This matrix has two kinds of entries: emptyand non-empty. A[e; j℄ is empty if e 2 � does not o

ur intext set t[j℄, and A[e; j℄ equals the weight of the instan
eof
hara
ter e in the set t[j℄, otherwise. Clearly, the totalnumber of non-empty entries in A and their weight-sum Ware both O(s). The aim is to �nd
olle
tions of
ir
ular shiftsof the rows (these
ir
ular shifts
an then be linearized) sothat the properties mentioned earlier are satis�ed. Wea
hieve this using a deterministi
 O(s log s + L log2 s) timealgorithm with the following overall framework.At ea
h step, the rows of A are partitioned in megarows.Initially, ea
h row is a megarow. The general step
onsiderstwo megarows and determines a \good" relative shift of oneentire megarow with respe
t to the other. This shift is ap-plied to the rows of the se
ond megarow and then the twosets of rows are pla
ed in a single
ombined megarow. Notethat no shifting happens within either of the two megarowsin this step; relative shifts within ea
h megarow have beendetermined and frozen already. The pro
edure ends when allrows
ome together into a single megarow. Two issues needsfurther des
ription: whi
h two megarows are
hosen at ea
hinstant and how a good relative shift between megarows isdetermined.
7.2.1 Shifting MegarowsFirst, we des
ribe how a good relative shift between twomegarows v; w is determined. Our algorithm needs the fol-lowing de�nitions.Megarows as Ve
tors. We de�ne a ve
tor v of weightsfor ea
h megarow as follows. Consider the non-empty en-tries a1; a2 : : : , if any, in the ith position in the shifted rowsforming the megarow; then the weight stored in v[i℄ is:1. 0, if all entries in this position are empty.2. (Qlive aj 2w(aj))�(Pnon�live aj 2w(aj)), with the �rstterm (se
ond term, respe
tively) missing if there areno live (non-live, respe
tively) entries.The weight, wt(v), of the megarow
orresponding to v isPi v[i℄. Ve
tor v is
alled the megarow weight ve
tor ormegarow-ve
tor for short. We will say that v[i℄ is live if atleast one of a1; a2; : : : is live. One te
hni
al issue beforewe pro
eed is that of representing a megarow-ve
tor. Werepresent su
h a ve
tor as a list of non-zero entries.Let v; w, respe
tively, be the megarow-ve
tors for the twomegarows being
ombined. Consider a parti
ular shift w0 of

w. Suppose we apply this shift to the megarow
orrespond-ing to w and then
ombine the megarows
orresponding tov and w into one megarow with megarow-ve
tor u. Our aimis to
hoose the shift w0 of w so as to keep the weight ofu as small as possible. In fa
t, we will be able to keep theweight of u below wt(v)+wt(w)+ wt(v)wt(w)Y . Note that thenew megarow-ve
tor u obtained by
ombining the megarows
orresponding to v and w will have the following properties.1. u[i℄ � v[i℄ � w0[i℄, for i su
h that both v[i℄ and w0[i℄are non-zero and at least one of v[i℄; w0[i℄ is live.2. u[i℄ = v[i℄ +w0[i℄, otherwise.Contributions to wt(u)�wt(v)�wt(w)
ome from just the�rst term above and this is the ex
ess whi
h we seek tominimize in our algorithm. In the algorithm, this ex
esswill be upper bounded at ea
h step by a potential, whi
h weshall de�ne shortly.Our Algorithm. Let sh denote the amount by whi
h wneeds shifting to obtain w0. We will determine sh by de-termining the O(log s) bits in the binary representation ofsh one by one in in
reasing order of signi�
an
e. In otherwords, we will �rst determine whether sh is even or odd.If sh is
ommitted to the even option in this step then wewill determine whether sh is 0 (mod 4) or 2 (mod 4) in thenext step. And if sh is
ommitted to the odd option in the�rst step then we will determine whether sh is 1 (mod 4)or 3 (mod 4) in the next step. This is repeated until shis
ompletely determined. Note that there are two optionsavailable at ea
h step and we will pi
k the one whi
h leadsto the smaller in
rease in weight. We explain this pro
edurein further detail below.We run a number of iterations (this number will be spe
-i�ed shortly). Iteration j � 1
omputes the jth least sig-ni�
ant bit of sh and is performed in the following setting.Consider non-empty lo
ations in v and partition these intoresidue
lasses modulo 2j�1. This results in 2j�1 sets of lo-
ations (e.g., for j = 1, there is only one set
omprising allnon-empty lo
ations, and for j = 2, there are two sets, one
omprising the even lo
ations and another
omprising theodd lo
ations);
all these V1 : : : V2j�1 . Let W1 : : :W2j�1 de-note the analogous sets for w. Going into the jth iteration,we would have
omputed a mat
hing between the V 's andthe W 's (initially, i.e., for j = 1, there is only one set V1 forv and this is mat
hed to the only set W1 for w). For sim-pli
ity, we assume that Vl is mat
hed to Wl, 1 � l � 2j�1,using appropriate permutations to rename sets if ne
essary.Further, we would have a potential for this mat
hing de�nedas the following quantity summed over all l su
h that eitherVl or Wl
ontains a live lo
ation:(sum of values in non-zero lo
ations in Vl)�(sum of values in non-zero lo
ations in Wl)We now des
ribe how to perform the jth iteration so that anew mat
hing is
omputed for sets
orresponding to residue
lasses modulo 2j . The potential of this resulting mat
hingwill be at most half the potential of the original mat
hingand the time taken in this pro
ess will be proportional tothe number of live lo
ations in v and w put together (thiswill be explained shortly).Note that ea
h residue modulo 2j�1
orresponds to ex-a
tly one of two possible residues modulo 2j (i.e., l(mod

2j�1) equals either l(mod 2j) or l + 2j�1(mod 2j)). Basedon this observation, we split Vl and Wl into two sets ea
h;
all these sets V 1l ; V 2l and W 1l ;W 2l , respe
tively. Setting thejth bit of sh to 0
orresponds to mat
hing V 1l with W 1l andV 2l with W 2l , for ea
h l. And setting the jth bit of sh to 1
orresponds to mat
hing V 1l with W 2l and V 2l with W 1l , forea
h l. It is easily seen that one of these two
hoi
es willlead to a potential whi
h is at most half the potential of theprevious mat
hing. We perform log Y = �(log s) iterations.The �nal potential will then be 1Y times the initial poten-tial, whi
h is wt(v)wt(w). It is easily seen that the weightwt(u) of the new megarow obtained by shifting w by sh and
ombining it with v is at mostwt(v) + wt(w) + wt(v)wt(w)Y.Implementation Details: Tries. The main issue in im-plementing the above algorithm is the maintenan
e of thesets and their asso
iated potentials so that the jth iteration
an be performed in time proportional to the number oflive lo
ations in v and w put together. The key observationwhi
h makes this possible is the fa
t that
omputing the po-tential requires
omputing sums only over l su
h that eitherVl or Wl
ontains a live lo
ation. Thus, in ea
h iteration itsuÆ
es to maintain only sets Vl;Wl su
h that at least oneof these has a live lo
ation. Clearly, the number of su
h setsis bounded by the number of live lo
ations in v and w puttogether. Maintenan
e of these sets is easily handled withthe following prepro
essing.Initially, we build a trie of all non-empty lo
ations in v.For ea
h non-empty lo
ation in v, the reverse of its binaryrepresentation is used to build the trie. A similar trie is builtfor w. Note that ea
h non-empty set Vl will be identi
al tothe set of leaves in some appropriate subtree of the trie for v,and similarly for w. Thus, instead of maintaining the Vl's,we will maintain nodes in the trie. Ea
h node in the trie willmaintain two quantities, the sum of the values of the leavesin its subtree, and a binary string identifying the path fromthe root to that node. Using this information, it is easilyseen that given a parti
ular Vl (i.e., a node in the trie),the sets V 1l ; V 2l along with the asso
iated potentials
an beobtained in O(1) time (using table look-up if ne
essary toidentify the nodes for the new sets).Time Complexity. The tries are built in time linear in thenumber of non-empty items in v and w using
onstant timeLCA
omputation on
onse
utive items [18℄. The time takenin trie building is thus O(maxfwt(v); wt(w)g). Subsequentto this, the jth iteration runs in time bounded by the num-ber of live lo
ations in v and w put together. The numberof iterations performed is O(log s). The total time over alliterations is thus O(maxfwt(v); wt(w)g+#live lo
ations�log s).
7.2.2 Pairing Megarows and AnalysisThe order is whi
h megarows are paired depends on theweights of the asso
iated ve
tors. Re
all W = O(s) denotesthe sum of the megarow-ve
tor weights at the very begin-ning (be
ause, ea
h megarow is just a single row at the verybeginning). We need to show that the �nal megarow-ve
torweight is (1 + 1k)W . We also need to show that the totaltime taken is O(s log2 s).

We
lassify the megarow-ve
tor weights into
ategories[2i; 2i+1), 0 < i = O(log s). The pairings are now performedin phases, with several pairings being performed in ea
hphase. Consider a parti
ular phase and
onsider the
urrentlowest non-empty
ategory, [2i; 2i+1), say. If this
ategoryhas at least two megarows then we pair the megarows inthis
ategory (leaving out one megarow, possibly) and
om-bine the megarows in ea
h pairing within this phase. Theunpaired megarow, if any, is put on hold. If there is alreadyanother megarow on hold, ne
essarily from a lower index
ategory, then the two megarows on hold are
ombined. Itis easily seen that the new megarow whi
h results from
om-bining two paired megarows in the same
ategory will be ina stri
tly higher
ategory. As we will show, megarow-ve
torweights will always be O(s). It follows that the number ofphases will be �(log s).Bounding Megarow-Ve
tor Weights. The megarow-ve
tor weights are bounded by the following lemma.Lemma 10. Consider a phase in whi
h all but at mostone of the megarows whi
h are
ombined belong to
ategory[2j ; 2j+1). Let O and N denote the sum of the megarow-ve
tor weights at the beginning and the end of this phase,respe
tively. Then NO � (1 + 2j+1Y).By
hoosing Y = �(s) appropriately, we get:Corollary 11. The �nal megarow-ve
tor weight isW (1+1k), for an appropriately
hosen
onstant k > 2.Time Complexity. It remains to determine the time takenby the above algorithm. Re
all that the pro
ess of merg-ing two megarows v; w takes time O(maxfwt(v); wt(w)gg+#live lo
ations� log s), where #live lo
ations is the num-ber of live lo
ations in v and w put together. Sin
e, byCorollary 11, the sum of megarow-ve
tor weights is alwaysbounded byO(s), ea
h phase takes time O(s+L log s). Sin
ethe number of phases is O(log s), the total time taken isO(s log s+ L log2 s), as required.
8. REFERENCES[1℄ L. Adleman, M. Huang. Re
ognizing Primes inRandom Polynomial Time. Pro
eedings of the 19thACM Symposium on Theory of Computing, 1987,pp. 462{469.[2℄ D. Cardoze, L. S
hulman. Pattern Mat
hing forSpatial Point Sets. Pro
eedings of the 39th IEEESymposium on Foundations of Computer S
ien
e,1998, pp. 156{165.[3℄ R. Cole, R. Hariharan. Tree pattern mat
hing andsubset mat
hing in randomized O(n log3m) time.Pro
eedings of the 29th ACM Symposium onTheory of Computing, 1997, pp. 66{75.[4℄ R. Cole, R. Hariharan, P. Indyk. Tree patternmat
hing and subset mat
hing in deterministi
O(n log3m) time. Pro
eedings of the 10thACM-SIAM Symposium on Dis
rete Algorithms,1999, pp. 245{254.[5℄ R. Cole, R. Hariharan. Tree pattern mat
hing tosubset mat
hing in linear time. Submitted to SIAMJournal on Computing, 2000.

[6℄ M. Dubiner, Z. Galil, E. Magen. Faster tree patternmat
hing. Pro
eedings of the 31st IEEE Symposiumon Foundations of Computer S
ien
e, 1990,pp. 145{150.[7℄ M.J. Fisher, M.S. Paterson. String mat
hing andother produ
ts. Complexity of Computation,SIAM-AMS pro
eedings, ed. R.M. Karp, 1974,pp. 113{125.[8℄ S. Goldwasser and J. Kilian, Almost all primes
anbe qui
kly
erti�ed. Pro
eedings of 18th AnnualIEEE Symposium on Foundations of ComputerS
ien
e, 1986, pp. 316{329.[9℄ C.M. Ho�man, M.J. O'Donell. Pattern mat
hing intrees. Journal of the ACM, 1982, pp. 68{95.[10℄ P. Indyk. Deterministi
 superimposed
oding withappli
ations to pattern mat
hing. Pro
eedings ofthe 38th IEEE Symposium on Foundations ofComputer S
ien
e, 1997, pp. 127{136.[11℄ P. Indyk. Faster algorithms for string mat
hingproblems: mat
hing the
onvolution bound.Pro
eedings of the 39th IEEE Symposium onFoundations of Computer S
ien
e, 1998,pp. 166-173.[12℄ P. Indyk, R. Motwani, S. Venkatasubramanian,Geometri
 mat
hing under noise:
ombinatorialbounds and algorithms. Pro
eedings of the 10thACM-SIAM Symposium on Dis
rete Algorithms,1999, pp. 457{465.[13℄ A. Kalai, EÆ
ient Pattern Mat
hing with Don'tCares. Pro
eedings of the 13th ACM-SIAMSymposium on Dis
rete Algorithms, 2002,pp. 655-656.[14℄ S. Muthukrishnan, Dete
ting false mat
hes instring mat
hing algorithms. Pro
eedings of the 4thConferen
e on Combinatorial Pattern Mat
hing,Le
ture Notes in Computer S
ien
e, 684,Springer-Verlag, 1993, pp. 164{178.[15℄ S. Muthukrishnan, New results and open problemsrelated to non-standard stringology. Pro
eedings ofthe 6th Conferen
e on Combinatorial PatternMat
hing, Le
ture Notes in Computer S
ien
e, 937,Springer-Verlag, 1995, pp. 298{317.[16℄ M. O. Rabin, A probabilisti
 algorithm for testingprimality. Journal of Number Theory, 12, 1980, pp.128{138.[17℄ A. Shokrollahi, J. Buhler, V. Stemann, Fast andpre
ise
omputations of dis
rete fourier transformsusing
y
lotomi
 integers. Pro
eedings of the 29thACM Symposium on Theory of Computing, 1997,pp. 40-47.[18℄ B. S
hieber, U. Vishkin, On �nding lowest
ommonan
estors in trees: simpli�
ation and parallelization.SIAM Journal on Computing, 17, 1988, pp.1253{1262.

