
Verifying Candidate Matches in Sparse and Wildcard
Matching �

[Extended Abstract]
y

Richard Cole
Courant Institute, NYU

251 Mercer Street
NY, NY 10012

cole@cs.nyu.edu

Ramesh Hariharan
Indian Institute of Science

Bangalore 560012
India

ramesh@csa.iisc.ernet.in

ABSTRACTThis paper obtains the following results on pattern mathingproblems in whih the text has length n and the pattern haslength m.� An O(n logm) time deterministi algorithm for theString Mathing with Wildards problems, even whenthe alphabet is large.� AnO(k log2m) time Las Vegas algorithm for the SparseString Mathing with Wildards problem, where k <<n is the number of non-zeros in the text. We also giveLas Vegas algorithms for the higher dimensional ver-sion of this problem.� As an appliation of the above, an O(n log2m) timeLas Vegas algorithm for the Subset Mathing and TreePattern Mathing problems, and a Las Vegas algo-rithm for the Geometri Pattern Mathing problem.� Finally, an O(n log2m) time deterministi algorithmfor Subset Mathing and Tree Pattern Mathing.The ruial new idea underlying the �rst three results aboveis that of on�rming mathes by onvolving vetors obtainedby oding haraters in the alphabet with non-boolean (i.e.,rational or even omplex) entries; in ontrast, almost allprevious pattern mathing algorithms onsider only booleanodes for the alphabet. The ruial new idea underlyingthe fourth result is a simpler method of shifting haraterswhih ensures that eah harater ours as a singleton insome shift.�This work was supported in part by NSF grantsCCR9800085 and CCR0105678.yWork partly done when both authors were visiting King'sCollege, London, and when the seond author was visitingNYU.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC 02 May 19-21, 2002, Montreal, Quebec, Canada
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

1. INTRODUCTIONThis paper obtains deterministi and Las Vegas algorithmsfor a variety of pattern mathing problems. Eah of theseproblems requires �nding all ourrenes of a pattern p ina text t. All the Las Vegas algorithms we give have thefollowing form: �nd a set of andidate mathes and thenverify them. Indeed, the deterministi algorithm for wild-ard mathing an also be viewed in this spirit. While thisapproah is not new (see e.g., [3℄ and [14℄), the method inthis paper appears to be onsiderably more general.The riteria for de�ning pattern ourrenes di�er for eahof the problems we onsider. We desribe previous historyand our results for eah of these problems in turn. In eahproblem, unless otherwise spei�ed, we will use n to denotejtj and m to denote jpj.The Wildard Mathing Problem. Here, p is said toour at loation i in t if, for eah non-wildard symbolp[j℄ in p, 0 � j < m, the orresponding text symbol t[i +j℄ is either idential to p[j℄ or is itself a wildard symbol.Let � denote the alphabet set from whih the non-wildardsymbols in t; p are drawn.A lassi result of Fisher and Paterson [7℄ states that thisproblem an be solved in O(n logm log j�j) time. Removingthe dependene on j�j in the above time omplexity hasbeen an important open problem for a long time. Reently,Indyk [11℄ removed the dependene on j�j but by using aMonte Carlo randomized algorithm whih took O(n log n)time. Kalai [13℄ gave another (simpler) Monte Carlo ran-domized algorithm with a running time of O(n logm).We give a very simple deterministi algorithm for theabove problem whih runs in O(n logm) time. The mainidea here is to assign a two harater rational ode to eahnon-wildard harater in t and p and then perform a onvo-lution. This onvolution will allow us to ount the numberof aligned mathing non-wildard haraters.Most previous approahes have used boolean odes forthe alphabet in onjuntion with onvolution. One possibleexeption is Indyk's algorithm [11℄, whih uses a booleanenoding for the alphabet but then performs a onvolutionmodulo 2 in linear time; this modulo 2 onvolution involvesperforming a regular onvolution on vetors of size �(nlogn)with entries in a �eld de�ned by irreduible degree �(log n)boolean polynomials. Kalai's algorithm [13℄ is another ex-eption whih e�etively uses integer odes. Note that in

ontrast to Indyk's and Kalai's algorithms, all mathes re-ported by our algorithm are ertain.The Shift Mathing Problem. In this problem, the har-aters in the text and pattern are either integers or wild-ards. Pattern p is said to our at loation i in t if thereexists an integer li suh that one of the following onditionsholds for all non-wildard symbols p[j℄ in p:1. The text harater t[i+ j℄ aligned with p[j℄ is a wild-ard.2. t[i+ j℄� p[j℄ = li.This problem has not been previously studied. Our moti-vation in de�ning this problem is its ruial use in solving theSparse Wildard Mathing problem (whih will be desribedshortly). We give a deterministi algorithm whih takesO(n log maxfN;mg) time, where N is a parameter suh thatthe entries in t; p ome from the range 0 : : : N�1. The mainidea here is to assign a omplex ode to eah non-wildardharater in t and p and then perform a onvolution; again,this onvolution will allow us to ount the number of alignedpairs of haraters satisfying ondition 2 above.The d-Dimensional Sparse Wildard Mathing Al-gorithm. In this problem, t; p are d-dimensional arrays ofsize nd and md, respetively. Text t is sparse, i.e., it hasonly k non-zero haraters, where k << nd, and no wild-ard haraters. The pattern p omprises wildard and non-zero non-wildard haraters. p is said to our at loationi1; : : : ; id in t if, for all non-wildard haraters p[j1; : : : ; jd℄in p, t[i1+j1; : : : ; id+jd℄ = p[j1; : : : ; jd℄; in other words, eahnon-wildard harater in p must be aligned with an identi-al harater in t. Clearly, the number of non-wildards inp must be at most k for it to our anywhere in the text.We assume that both the text and the pattern are given bythe impliit O(kd) size desription whih spei�es the list ofnon-zero entries in eah.This problem was de�ned (impliitly) by Cardoze andShulman [2℄ with the aim of solving the Geometri PatternMathing problem (whih will be de�ned shortly). Theygave a Monte Carlo randomized algorithm with running timeO(k log k+kd) and failure probability inverse polynomial ink. The key idea in this algorithm was to hash the text andpattern down to strings of size �(k); this hashing preservesall mathes and does not introdue new spurious mathes,with high probability.We will show how to solve this problem using a Las Vegasrandomized algorithm whose running time is O(dk log k log n),with failure probability inverse polynomial in k. For md �n, a variant of the standard trik of breaking the text intosmaller piees dereases this running time toO(dk log minfk; (dm)dg log dm+ dk log k)The failure probability is inverse polynomial in minfk; (dm)dg.Our Las Vegas algorithm essentially adds a veri�ationstep to the Monte Carlo algorithm of Cardoze and Shulman[2℄. Veri�ation requires the detetion of spurious mathesintrodued by the hashing mentioned above. To detet suhmathes, one needs to hek whether eah pair of alignedharaters (in the text and pattern obtained after hash-ing) in a laimed math atually orresponds to a pair ofaligned haraters in the original text and pattern, respe-tively. This was preisely our motivation for de�ning the

Shift Mathing problem. Our algorithms for Wildard Math-ing and Shift Mathing above play a ruial role in detetingthese spurious mathes.Subset Mathing and Tree Pattern Mathing. In theSubset Mathing problem, eah text loation and eah pat-tern loation is a set of haraters drawn from an alphabet� of size �. Let s denote the total sum of the sizes of alltext and pattern sets. The pattern p is said to our at textposition i if the set p[j℄ is a subset of the set t[i+ j℄, for allloations j in p.This problem was de�ned by Cole and Hariharan [3℄, asan intermediate problem in solving the Tree Pattern Math-ing problem (to be de�ned shortly). The previous best al-gorithms known for this problem were an O(s log3 slog log s) timeLas Vegas algorithm due to Cole, Hariharan and Indyk [4℄,an O(s log s) time Monte Carlo algorithm due to Indyk [11℄,and an O(s log3 s) time deterministi algorithm due to Cole,Hariharan and Indyk [4℄. The above time omplexities arefor the ase when s � n;m (if not, then the running timesbeome O(n log2 slog log s log maxfm; sg), O(n log s) andO(n log2 s log maxfm; sg), respetively.As a diret appliation of our 1-d Sparse Wildard Math-ing algorithm, we give a Las Vegas algorithm with run-ning time O(s log2 s), with failure probability at most in-verse polynomial in s (assuming s � n;m, if not, then therunning time beomes O(s log s log maxfm; sg), with failureprobability still inverse polynomial in s).In addition, we give a deterministi algorithm with run-ning time O(slog2 s) (assuming s � n;m, if not, then therunning time beomes O(nlog s log maxfm; sg)). This algo-rithm is based on the idea of hoosing olletions of shiftsfor haraters in t and p suh that eah harater ours asa singleton in at least one of the olletions. This idea wasthe basis for the algorithm in [3℄; however, that paper hoseshifts randomly, in ontrast to our deterministi onstru-tion. A deterministi onstrution based on onvolution wasgiven in [4℄. The present deterministi onstrution does notuse onvolutions and is faster by a log s fator. The result-ing algorithm is substantially simpler than the O(s log3 s)time deterministi algorithm in [4℄.In the Tree Pattern Mathing problem, t and p are or-dered, node-labelled trees of size n and m respetively. Thepattern ours at a partiular text position if plaing thepattern with root at that text position leads to a situationin whih eah pattern node overlaps some text node with thesame label. As shown in [3, 5℄, the Tree Pattern Mathingproblem an be redued in linear time to the Subset Math-ing problem. The above results for the Subset Mathingproblem immediately lead to O(n log2m) time Las Vegasand deterministi algorithms for Tree Pattern Mathing.Geometri Pattern Mathing. In this problem, t and pare olletions of points in d-dimensional spae. Let k de-note the number of points in t. We assume that these pointshave integer oordinates and that the oordinates of pointsin t and p ome from the ranges [0 : : : n�1℄ and [0 : : :m�1℄,respetively. The aim is to determine whether there existsa transformation from an allowed lass of transformationswhih when applied to p ensures that eah point in p iswithin a spei�ed threshold distane � of some point in t.The two kinds of transformations we onsider are transla-tions and rigid motions, i.e., translations oupled with rota-

tions.The previous best algorithm for translations was a MonteCarlo algorithm due Cardoze and Shulman [2℄ and had arunning time of O(k(2�+1)d log[k(2�+1)d℄). For rotations,Cardoze and Shulman [2℄ gave a Monte Carlo algorithmwith a running time of O(f(k; d;�; �) log f(k; d;�; �)) foran appropriate funtion f(k; d;�; �), where � is a toleraneparameter in measuring distanes.For translations, we give a Las Vegas algorithm with run-ning time O(dk(2� + 1)d log[k(2� + 1)d℄ log n), with fail-ure probability inverse polynomial in k(2� + 1)d. For thease when md � n, this an be improved to O(dk(2� +1)d log minfk(2�+1)d; (dm)dg log dm+dk(2�+1)d log k(2�+1)d); the failure probability is at most inverse polynomial inminfk(2� + 1)d; (dm)dg. For rigid motions, we give a LasVegas algorithm with running timeO(f(k; d;�; �) log minff(k; d;�; �); mpd� g log mpd�)The failure probability is inverse polynomial inminff(k; d;�; �); mpd� gThese algorithms are diret onsequenes of our Sparse Wild-ard Mathing algorithm.Sparse Convolution. In the Sparse Convolution problem,the aim is to �nd the onvolution vetor w of two givenvetors t and p, omprising only non-negative entries. Weassume that t and p are given not as expliit vetors butrather as lists of loation-value pairs omprising loationswhih have non-zero values. The aim is to ompute w inan output sensitive way, i.e., in time proportional to thenumber of non-zero entries in w. This problem was posedin [15℄.Let jjwjj denote the number of non-zero entries in w. Weshow how to obtain these non-zero entries in O(jjwjj log2m)time, using a Las Vegas randomized algorithm, whose failureprobability is inverse polynomial in m. To the best of ourknowledge, this is the �rst algorithm for this problem. Weremark that if we wanted to allow negative entries in t andp, we would need to de�ne jjwjj as the number of non-zeroentries in ~w, where ~w is as follows. Let ~t and ~p be t and p,respetively, with non-zero entries replaed by 1; ~w is theprodut of ~t and ~p.Roadmap. Setion 2 desribes the de�nitions, notationsand a basi tool used by our algorithms. Eah subsequentsetion desribes our algorithms for the problems listed above,in turn. Proofs of lemmas and the desription of the SparseConvolution algorithm are omitted for lak of spae.
2. PRELIMINARIESAll algorithms in this paper will assume the RAM modelof omputation, whih allows arithmeti on logN bit num-bers in O(1) time, where N is of the order of the maximumproblem size.In all our problems, we will use n to denote jtj and mto denote jpj (exept in the d-Dimensional Sparse Wild-ard Mathing problem in whih the orresponding termsare nd and md, respetively). Using a standard redution,we will assume that n � 2m for all problems in whih t andp are strings (using the standard trik of breaking the textinto piees of length 2m, onseutive piees overlapping by

m). t and p are indeed strings in all problems, exept forthe d-Dimensional Sparse Wildard Mathing Problem, theTree Pattern Mathing problem, and the Geometri PatternMathing problem.The following de�nition will be entral to the tehniquesused in this paper.Convolution. The onvolution vetor of two vetors u; v isde�ned as the vetor w suh that w[i℄ = Pjuj�1j=0 u[j℄v[(i +j)(modjvj)℄. We use the notation u � v to denote w. Notethat this de�nition of onvolution involves wrap-around (i.e.,v is assumed to be a yli vetor). In this paper, we willalso use the non-wrap-around notion of onvolution, i.e.,w[i℄ = Pjuj�1j=0 u[j℄v[i + j℄, with out of range entries takenas 0. However, unless otherwise spei�ed, all referenes toonvolution will refer to the wrap-around de�nition.The Fast Convolution Theorem. The following theoremand its onsequent orollary on the RAMmodel are standard(see for example, [17℄, page 1) and ruial to our algorithms.They hold for both de�nitions of onvolution above.Theorem 1. Consider two vetors u; v, eah vetor hav-ing length O(m) and omprising l-bit entries. Let M(l) bethe time taken to multiply two l bit numbers. Then u � vwith entries preise up to l ��(logm) bits an be obtainedin O(m logm �M(l)) time.Sine M(l) = O(1) on the RAM model for l = O(logN),we get the following orollary.Corollary 2. If l = O(logN) then u � v with entriespreise up to l��(logm) bits an be obtained in O(m logm)time.
3. THE WILDCARD MATCHING ALGORITHMAs stated in Setion 2, we assume that n < 2m and showhow Corollary 2 yields a simple O(m logm) time algorithmfor Wildard Mathing. We assume, without loss of gen-erality, that symbols in t and p are drawn from the integeralphabet 0 : : :m�1 (otherwise, sort and rename the symbolsat an expense of O(m logm) time).Our algorithm performs the following two non-wrap-aroundonvolutions.Step 1. The aim of this onvolution is to ompute, for eahloation i of t, the number of non-wildards in p that arealigned with non-wildards in t when p[0℄ is aligned witht[i℄. Call this ount nw[i℄. This is alulated as follows.We obtain a new text t0 from t by replaing eah non-wildard by 1 and eah wildard by 0. A new pattern p0is obtained from p in the same way. It is easily seen that(t0� p0)[i℄ = nw[i℄. By Corollary 2, t0� p0 an be omputedin O(m logm) time.Step 2. The aim of this onvolution is to ompute, for eahloation i of t, a quantity whih indiates whether or notp mathes at i. The following onvolution will yield value2 � nw[i℄ if and only if p mathes at loation i. Sine nw[i℄is already known from Step 1, this information is suÆientto �nd all ourrenes of p in t.This onvolution involves a new text t0 obtained from tby replaing eah non-wildard harater a by two adjaentnumbers a and 1=a (i.e., if t[j℄ = a then t0[2j℄ = a andt0[2j + 1℄ = 1=a), and eah wildard by two 0's. A new

pattern p0 is obtained from p in the same way, exept that1=a and a are swithed (i.e., if p[j℄ = a then p0[2j℄ = 1=aand p0[2j+1℄ = a). It is easily seen that p ours at loationi if and only if (t0�p0)[2i℄ = 2�nw[i℄ (this uses the fat thata=b+ b=a � 2 + 1m(m�1) for a 6= b). It remains to determinethe time taken for this onvolution.Time and Preision Analysis. Using the fat that a=b+b=a � 2 + 1m(m�1) for a 6= b, it follows that (t0 � p0)[2i℄ �2 � nw[i℄ either equals 0 or is at least 1m(m�1) . Therefore,O(logm) bits of preision are suÆient to detet whih ofthese two ases ours. By Corollary 2, t0 � p0 an be om-puted to this level of preision in O(m logm) time, providedthe input vetors t0 and p0 themselves have entries whih areorret up to �(logm) bits of preision. Setting up t0 and p0with this level of preision is easily done in O(m logm) time(the only issue is that of determining �(logm) signi�antdigits of 1=a, whih is easily done in O(logm) time). Thisonludes the algorithm.
4. THE SHIFT MATCHING ALGORITHMAs stated in Setion 2, we assume that n < 2m. Weshow how Corollary 2 yields a simple O(m log(mN)) timealgorithm for Shift Mathing. As in Wildard Mathing,there are two steps. The �rst step is idential to the �rststep in Wildard Mathing and obtains the ount nw[i℄ forall text loations i. The seond step is also similar, but usesa di�erent enoding, as detailed below. In what follows, let� denote 2�p�1N .Step 2. The aim of this step is to ompute, for eah loationi of t, a quantity whih indiates whether or not p mathesat i. The following onvolution will yield a omplex numberwith modulus nw[i℄ if and only if p mathes at loation i.Sine nw[i℄ is already known from Step 1, this informationis suÆient to �nd all ourrenes of p in t.This onvolution involves a new text t0 obtained from tby replaing eah non-wildard harater a by e�a and eahwildard harater by 0. Similarly, a new pattern p0 is ob-tained from p by replaing eah non-wildard harater a bye��a and eah wildard harater by 0. It is easily seen thatp ours at loation i if and only if (t0� p0)[i℄ = e�li �nw[i℄,for some integer li (whih is also the di�erene between anyaligned pair of non-wildard text and pattern haraters inthis math). It remains to determine the time and preisionrequired for this onvolution.Time and Preision Analysis. It is easily seen that j(t0�p0)[i℄� e�li � nw[i℄j either equals 0 or is at leastje�li � e�(li�1)j = 2Sin �N � 1N ; for N � 2:Therefore, O(logN) bits of preision in the output are suf-�ient to detet whih of these two ases ours. By Corol-lary 2, t0 � p0 an be omputed to this level of preision inO(m logm) time, provided the input vetors t0 and p0 them-selves have entries whih are orret up to �(logm+logN)bits of preision. Setting up t0 and p0 with this level of pre-ision is easily done in O(m log(mN)) time.Remark. We laim that if required, then for eah matht[i℄ of p in t, li, if de�ned, an be omputed as well in theabove mentioned time (by omputing li from e�li). Notethat li is de�ned as long as the pattern and the text have atleast one pair of aligned non-wildard haraters.

5. THE D-DIMENSIONAL SPARSE WILD-
CARD MATCHING ALGORITHMBefore we desribe our algorithm for the Sparse WildardMathing problem, we need to desribe two basi tools usedin this algorithm: dimension redution and length redutionby hashing.Dimension Redution. Consider two possibly sparse d-dimensional arrays t and p, with jtj = nd, jpj = md. tomprises some zeros and k non-zeros and p omprises wild-ards and non-zero non-wildard haraters. As in [2℄, weuse random projetions to obtain strings t0 and p0 from tand p, respetively. t0 and p0 have length polynomial in kand mathes of p in t will be related to mathes of p0 in t0as desribed shortly.Choose integers b1 : : : bd independently and uniformly atrandom from a range polynomial in k. Map eah loationt[i1; : : : ; id℄ to t0[Pdr=1 brir℄ and likewise for p. It is easy tosee that distint non-zeros in t map to distint loations int0, with failure probability inverse polynomial in k. Further,this property is easily veri�ed in O(kd + k log k) time. Asimilar property holds for non-wildards in p; these map todistint loations in p0. A loation in t0 to whih no non-zero in t maps is set to 0 and a loation in p0 to whih nonon-wildard in pmaps is set to the wildard harater. Thefollowing important lemma holds.Lemma 3. If p mathes starting at t[i1; : : : ; id℄ then p0mathes starting at t0[Pdr=1 brir℄. Further, if p does notmath starting at t[i1; : : : ; id℄ then p0 does not math att0[Pdr=1 brir℄, with failure probability inverse polynomial ink.Length Redution by Hashing. Consider two possiblysparse strings t and p, with jtj = n, jpj = m. t ompriseszeros and non-zeros and p omprises wildards and non-zeronon-wildard haraters (whih we will sometimes refer to asjust non-zeros). As in [2℄, we use hashing to obtain shorterstrings (of an appropriately hosen length s) from t and pas follows.Let H denote a family of hash funtions given by ax(modq)(mod s), where p is a prime in 2n : : : 4n, a 2 0 : : : q � 1,and s is a number possibly muh smaller than n. We hoosea random hash funtion h = ax(mod q)(mod s) from H(i.e., we hoose a uniformly from 0 : : : q � 1). Using h, wewill map t and p to small strings th and ph, respetively, asbelow.Eah loation i in th and ph will orrespond to a set ofnon-zero loations in t and p, respetively, whih map toi. th is obtained by mapping eah loation x in t to thefollowing two loations in th:� ax(mod q)(mod s)� [ax(mod q) + q℄(mod s)Thus eah loation in t has 2 images in th. ph is obtained bymapping eah loation x in p to loation ax(mod q)(mods) in ph.De�nitions. A loation is th is alled empty, if no non-zeroloations in t map to it, singleton, if exatly one non-zeroloation in t maps to it, and multiple otherwise. Analogous

de�nitions hold for loations in ph. A wrap-around plae-ment of ph starting at loation i in th is a plaement of phsuh that ph[j℄ is aligned with th[(i+ j)(mod s)℄.The following properties of th and ph will be ruial andare easy to show.Lemma 4. Consider a wrap-around plaement of ph inth with ph[0℄ aligned with th[h(i)℄. Then for eah j; 0 �j � m�1, ph[h(j)℄ is aligned with th[(h(i)+h(j))(mod s)℄,whih is one of the images of t[i+ j℄.Lemma 5. Let k denote the number of non-zeros in t.Consider a wrap-around plaement of ph in th with ph[0℄aligned with th[h(i)℄ and onsider any loation p[j℄. If qis indeed a prime, then with probability O(ks), ph[h(j)℄ isaligned with a non-empty loation in th if and only if t[i +j℄ 6= 0.
5.1 The Monte-Carlo AlgorithmWe assume that the text t has size nd and the patternp has size md. Let k denote the number of non-zeros in t.We desribe the Monte Carlo algorithm of [2℄ �rst and thenuse the Wildard Mathing and Shift Mathing algorithmsabove to get a Las Vegas algorithm. We desribe this algo-rithm only for the ase when all non-zeros in t and p equal1. The Las Vegas algorithm to be desribed will handle themore general ase as well.First, we do the dimension redution desribed above toobtain strings t0 and p0 from t and p, respetively. Thistakes O(dk + k log k) time. Note that t0 and p0 have lengthpolynomial in k. Next, we set s = O(k) (reall from abovethat s is the range of the hash funtions to be hosen), withthe onstant hosen appropriately, so that the probabilityin Lemma 5 is a small enough onstant. Then we hoose�(log k) hash funtions h independently and uniformly atrandom from H; for eah hosen hash funtion h, we obtainth and ph from t0 and p0 as desribed above. The time takenin this proess is O(polylog(k)) for hoosing q and O(k log k)for onstruting th and ph, over all h.For eah hosen hash funtion h, we �nd all wrap-aroundplaements of ph in th suh that eah non-empty loationin ph is aligned with a non-empty loation in th. This isdone easily by a simple redution to the Boolean WildardMathing problem and takes O(k log2 k) time over all hosenhash funtions h. Loation th[i℄ is said to be a math for phif the wrap-around plaement of ph starting at th[i℄ satis�esthe above property.Let M denote the set of potential mathes of p in t (i.e.,those plaements of p in t for whih the lexiographiallyleast non-zero loation in p is aligned with a non-zero in t);note that jM j � k. Then, for eah i1; : : : ; id 2M , we hekin O(d+ log k) time whether ph mathes th at h(Pdr=1 brir)for all hosen h. Potential mathes in M satisfying this on-dition are delared real mathes. This takes O(kd+ k log k)time overall.It remains to show orretness. From Lemmas 4 and 3,it is easily seen that if p mathes t at loation i1; : : : ; id,then ph mathes th at loation h(Pdr=1 brir), for all ho-sen h. Further, from Lemmas 5 and 3, if p does not matht at loation i1; : : : ; id, then ph mismathes th at loationh(Pdr=1 brir), for at least one of the hosen h, with failureprobability inverse polynomial in k. Thus, all mathes of p

in t will pass the above test with ertainty, while the proba-bility of any mismath passing this test is inverse polynomialin k.The total time taken is O(polylog(k)+dk+k log2 k). Car-doze and Shulman [2℄ in fat obtain a slightly faster algo-rithm running inO(polylog(k)+dk+k log k) by using a lineartime Monte Carlo algorithm for doing onvolution modulo2 [11℄.
5.2 The Las Vegas AlgorithmWe now show how to onvert the above Monte Carlo algo-rithm to a Las Vegas algorithm running in timeO(polylog(k)+dk log k log n), even for the ase when the non-zeros in tand p ome from a large alphabet. Note that this essentiallyadds a multipliative fator of O(d log n) to the Monte Carloalgorithm.The main idea is to fous on singleton loations in th andph, and ompute various statistis on these singletons. Thefollowing fat is ruial and the proof is similar to the proofof Lemma 5. Reall that following the dimension redutionand hashing steps, eah non-zero loation in t has two imagesin th.Fat 6. The following holds with failure probability in-verse polynomial in k: for eah non-zero loation in t, thereexists a hosen hash funtion h suh that both images of thisnon-zero are singletons in th.Step 1: Ensuring Singletons. We begin with the fol-lowing preliminary test. Having hosen the �(log k) hashfuntions h, we hek whether, for eah non-zero loationin t, there exists a hosen hash funtion h suh that bothimages of this non-zero loation are singletons in th.This property takes O(k log k) time to hek. If this prop-erty does not hold then the veri�ation fails, and the entirealgorithm is repeated. By Fat 6, the probability of thishappening is inverse polynomial in k. In the sequel, we as-sume that, for eah non-zero loation in t, there exists ahosen hash funtion h suh that both images of this non-zero loation are singletons in th.Step 2: Cheking that Singletons Math. For eahhosen hash funtion h, we �nd all wrap-around plaementsof ph in th suh that the following onditions are satis�ed:1. Eah non-empty loation in ph is aligned with a non-empty loation in th.2. For eah pair of aligned singleton loations in th andph, if any, the following property holds: the non-zeroharaters in t and p, respetively, whih map to thesesingleton loations are idential.Both onditions are heked easily by a simple redution tothe Wildard Mathing problem. This step takes O(k log2 k)time over all hosen hash funtions h.De�nition. Loation th[i℄ is said to be a math for phif the wrap-around plaement of ph starting at th[i℄ satis-�es the above properties. We say that a potential mathof p at t[i1; : : : ; id℄ is a laimed math if ph mathes atth[h(Pdr=1 brir)℄, for all hosen hash funtions h. Further,this laimed math of p at t[i1; : : : ; id℄ is said to orrespondto a math of ph at th[h(Pdr=1 brir)℄.

Note that by Lemmas 4, 5, and 3, all mathes of p in tmust be laimed mathes, and all laimed mathes are truemathes with failure probability inverse polynomial in k.Next, we need identify whih, if any, of the laimed mathesare false mathes.False Math Senarios. We enumerate the senarios inwhih a laimed math is a false math. Consider one suhfalse math of p at loation t[i1; : : : ; id℄. Sine this is not a-tually a math, there exists a non-zero loation p[j1; : : : ; jd℄whose value is di�erent from t[i1 + j1; : : : ; id + jd℄. Forbrevity, let î denote h(Pdr=1 brir) and ĵ denote h(Pdr=1 brjr).Sine ph mathes th at î, the loation th [̂i+ ĵ℄ aligned withph[ĵ℄ is non-empty, for all hosen hash funtions h.There are only three possible false math senarios.1. th [̂i + ĵ℄ is singleton but ph[ĵ℄ is multiple, for somehosen h.2. th [̂i+ ĵ℄ and ph[ĵ℄ are both singletons, for some hosenh.3. th [̂i+ ĵ℄ is multiple, for all hosen h.We briey desribe how to detet false mathes in eah se-nario. Whatever remains will be a true math and all truemathes will indeed be deteted.Deteting Senario 1. Note that a true math an neverlead to Senario 1. In other words, if p indeed mathes t atloation i1; : : : ; id then Senario 1 does not hold. This anbe seen as follows. If multiple non-zeros in p map to ph[ĵ℄then the non-zeros in t aligned with these non-zeros in pmust all map to th [̂i+ĵ℄, by Lemmas 4 and 3. But this wouldmean that th [̂i+ ĵ℄ is multiple and not singleton. Therefore,for any laimed math of p at t[i1; : : : id℄, if Senario 1 holdsfor the wrap-around plaement of ph at th [̂i℄ for even one ofthe hosen hash funtions h, then this laimed math is notan atual math.Deteting Senario 1 is easily done in O(k log2 k) timeusing a simple redution to the Boolean Wildard Math-ing problem. All laimed mathes satisfying Senario 1 areeliminated by this proess.Deteting Senario 2. Consider a partiular laimed butfalse math of p at t[i1; : : : ; id℄ in whih p[j1; : : : ; jd℄ is non-zero and the aligned harater t[i1+j1; : : : ; id+jd℄ is either 0,or non-zero and di�erent from p[j1; : : : ; jd℄. Consider thathash funtion h for whih Senario 2 holds in the orre-sponding math of ph in th. So both th [̂i+ ĵ℄ and ph[ĵ℄ aresingletons.They key property whih enables us to identify this mis-math via Shift Mathing is the following. Clearly, theunique non-zero loation in p whih maps to ph[ĵ℄ is theloation p[j1; : : : ; jd℄. Let t[i01; : : : ; i0d℄ denote that uniquenon-zero loation in t whih maps to th [̂i + ĵ℄; note thati0r 6= ir + jr for some r, otherwise the laimed math beingonsidered would not have passed Step 2. Then the vetor(i01 � j1; : : : ; i0d � jd) is not equal to the vetor (i1; : : : ; id).This suggests that Senario 2 an be deteted by performingShift Mathing on eah dimension separately as follows.Consider eah dimension r and eah hosen hash funtionh in turn. Obtain new strings t0h and p0h from th and ph,respetively, by replaing eah singleton by the rth dimen-sion of the unique non-zero loation in t and p, respetively,

whih maps to this singleton. All other loations in t0h andp0h get wild-ards. For eah wrap-around plaement t0h[i℄ ofp0h, we determine whether this plaement of p0h mathes t0hunder the de�nition of Shift Mathing, and if so, we om-pute the quantity li (see the remark at the end of Setion4). The time taken in this proess is O(dk log k log n) overall h and all d dimensions.Finally, a partiular laimed math of p at t[i1; : : : ; id℄ iseliminated unless the following holds for all hosen h: p0hmathes at t0h [̂i℄ and l̂i for dimension d0 is either unde�ned(i.e., one at least of eah pair of aligned haraters in p0h andt0h is a wildard, so Senario 2 does not hold trivially) orequals id0 , for all dimensions d0.Deteting Senario 3. Assuming that Senarios 1 and 2never apply, we detet false mathes orresponding to Se-nario 3 using the following statisti. Reall that by Step 1,for eah non-zero loation in t, there exists a hosen hashfuntion h suh that both images of this non-zero loationare singletons in th. We assoiate eah non-zero loation int with exatly one of the various h's for whih the aboveproperty holds. Singletons in th orresponding to non-zeroloations in t assoiated with h, are alled speial singletons.For eah laimed math of p in t, and for eah hosen hashfuntion h, we onsider the orresponding math of ph in th.In this math, we ount the number of singletons assoiatedwith th whih are aligned with singletons in ph. This is donein O(k log k) time per hosen hash funtion h by onvolvingthe string obtained by replaing speial singletons in th by1 and others by 0, with the string obtained by replaingsingletons in ph by 1 and others by 0. The total time takenby this step is O(k log2 k).For eah laimed math of p in t, we sum the above ountover all hash funtions h. By the following lemma, thislaimed math is eliminated if and only if the above sumdoes not equal #p, where #p is the number of non-zeros inp. Lemma 7. The above sum equals #p for a laimed mathif and only if it is a true math.Total Time Taken. The total time taken by the algo-rithm is O(polylog(k) + dk log k log n) = O(dk log k log n),with failure probability inverse polynomial in k.For md � n, the above time an be improved toO(dk log minfk; (dm)dg log dm+ dk log k)using a variant of the standard trik of breaking t into subar-rays of smaller size; the failure probability is at most inversepolynomial in minfk; (dm)dg. Breaking the text involves di-viding it into smaller texts of size dm and overlap m alongeah dimension, hosen so as to ensure that the number ofnon-zero elements in the smaller texts sum (over all smallertexts) to O(k(1 + 1d)d) = O(k).Remark on improving suess probability. The failureprobability an in fat be redued to 1k�(log k) based on theobservation that failure in the veri�ation proess resultssolely from failure in Step 1. The probability of failure inStep 1 an be redued to 1k�(log k) by repeating the dimensionredution and hashing steps �(log k) times. The extra timetaken in this proess is O(dk log k + k log2 k).

6. APPLICATIONS OF SPARSE WILDCARD
MATCHING

6.1 Subset Matching and Tree Pattern Match-
ingFirst, onsider Subset Mathing. For eah distint har-ater 2 � whih ours in p, we obtain a 1-d instane ofthe Sparse Wildard mathing problem as follows. We ob-tain a new text t from t by replaing eah set t[i℄ whihdoes not have by 0 and eah set t[i℄ whih has by 1. Weobtain a new pattern p from p by replaing eah set p[i℄whih does not have by a wildard and eah set p[i℄ whihhas by 1. It is easily seen that all ourrenes of p in t anbe found by solving the Sparse Wildard mathing problemon p; t for all 2 � and taking the intersetion of the setsof mathes obtained. This gives a Las Vegas algorithm withrunning time O(s log2 s), with failure probability at mostinverse polynomial in s. Further, as mentioned in the intro-dution, this leads to improved algorithms for Tree PatternMathing.

6.2 Geometric Pattern MatchingIt is easily seen that the ase of translations redues to thed-dimensional Sparse Wildard Mathing problem in whihthe text has size nd, the pattern has size md, the number of1's in the text (all non-zeros are 1's) is O((2� + 1)dk) andthe number of 1's in the pattern is the number of points in p.Using the above mentioned algorithm for the d-dimensionalSparse Wildard Mathing problem, we get an algorithmwith running time O(dk(2�+1)d log[k(2�+1)d℄ log n), withfailure probability inverse polynomial in k(2� + 1)d. Forthe ase when md � n, this an be improved to O(dk(2�+1)d log minfk(2�+1)d; (dm)dg log dm+dk(2�+1)d log k(2�+1)d); the failure probability is at most inverse polynomialin minfk(2� + 1)d; (dm)dg.Next, onsider the ase of rigid motions. In [2, 12℄, itis shown how this problem redues to several instanes ofthe 1-d Sparse Wildard Mathing problem; the total num-ber of non-zeros over all problems is f(k; d;�; �), where f()is as in the introdution, and the pattern size in eah suhproblem is O(mpd�). Our algorithm for the 1-d Sparse Wild-ard Mathing problem leads to a Las Vegas algorithm hav-ing O(f(k; d;�; �) log minff(k; d;�; �); mpd� g log mpd�) run-ning time and failure probability inverse polynomial inminff(k; d;�; �); mpd� g.
7. FAST DETERMINISTIC SUBSET MATCH-

ING AND TREE PATTERN MATCHINGWe give a deterministi O(slog2 s) algorithm for the Sub-set Mathing Problem based on the following ruial fatfrom [3, 5℄. This immediately leads to an O(nlog2m) timedeterministi algorithm for Tree Pattern Mathing.Charater Shifting. Reall that eah set in the text/patternis drawn from an alphabet of size �. We reate a new text t0and a new pattern p0 as follows. For eah harater e in theabove alphabet, a shift shift(e) is hosen, where shift(e) isan integer in an appropriate range (to be desribed later).t0 and p0 are reated as follows: if e is in the set t[i℄ then e isput in the set t0[i+ shift(e)℄; p0 is built analogously from p.p0 is said to math at loation i in t0 if 1 � i � jtj � jpj+ 1and further, set p0[j℄ is a subset of the set t0[i + j � 1℄, for

all loations j in p0. It an easily be seen that the set ofmathes of p in t is idential to the set of mathes of p0 int0.We will perform harater shifting O(log s) times; the ithsuh operation will result in new strings t0i; p0i. We will ensurethat the various shiftings satisfy the following properties:� Eah harater in eah set in t is in a singleton set inat least one of the t0i's.� The t0i's and p0i's have length O(s) eah.We will show how to perform harater shiftings satisfyingthese two properties in Setion 7.1. The overall time takenin this proess will be O(slog2 s).Next, we show how to �nd all mathes of p in t using thet0i's and p0i's. Sine the tehniques here are similar in spiritto those used in the Sparse Wildard Mathing problem andthe Sparse Mathing problem, we will desribe them in lessdetail.The Algorithm.Step 1. We �nd a andidate set of mathes in this step.Loation i is termed a andidate math if for all t0j ; p0j 's,the plaement of p0j starting at t0j [i℄ satis�es the followingproperty: eah non-empty set in p0j is aligned with a non-empty loation in t0j ; further eah singleton in t0j is alignedwith either a singleton or an empty loation in p0j . Thisis easily done in O(slog2 s) time overall using the WildardMathing algorithm.It is easily seen that all true mathes will survive thisstage. In partiular, note that a singleton set S in t0j an-not be aligned with a non-empty non-singleton set S0 =fa; b; : : : g in a true math beause the haraters in tmath-ing a; b in this true math must then appear in S and Swould no longer be singleton.Step 2. For eah andidate math i and for all t0j ; p0j , wehek whether the plaement of p0j starting at t0j [i℄ satis-�es the following property: if a singleton in p0j is alignedwith a singleton in t0j , then the two haraters orrespond-ing to these singleton sets are idential. This is easily donein O(slog2 s) time overall using a simple redution to theWildard Mathing problem and using the algorithm in Se-tion 3. Candidate mathes whih violate this property aredisarded. All true mathes will survive this stage as well.Step 3. Reall that eah harater in eah set in t is in asingleton set in at least one of the t0j 's. We assoiate eahharater in t with exatly one of the t0j 's in whih it appearsas a singleton.For eah remaining andidate math i and for eah t0j ; p0j ,we ompute the following quantity: the number n(i; j) ofsingletons assoiated with t0j whih are aligned with single-tons in p0j in the plaement of p0j starting at t0j [i℄. This iseasily done in O(slog2 s) time overall using Corollary 2.Finally, we laim that, analogous to Lemma 7, a laimedmath i is a true math if and only if Pj n(i; j) equals thetotal sum of the sizes of the pattern sets. The total timetaken is O(slog2 s).
7.1 Computing Good Character ShiftsOur aim is to obtain O(log s) olletions of harater shiftsin O(s log2 s) time so that the two properties mentioned ear-lier are indeed satis�ed. Eah suessive olletion of shifts

we obtain has the property that a onstant fration of theharaters in t whih have not yet appeared as singletonsin previous olletions of shifts appear as singletons in thisolletion.De�nitions. We assoiate an integer weight w(a) with eahinstane a of eah harater in � whih appears in some setin t. Note that di�erent instanes of the same haraterould have di�erent weights. The term weight-sum denotesthe sum P 2w(a), where the sum is over all instanes a ofall haraters in t. A harater in t is live if it has notappeared as a singleton in any of the previous olletionsof shifts. Let t0 be obtained from t by a harater shiftingstep. The weight of set t0[i℄ is de�ned as (Qlive a2t0[i℄ 2w(a))�(Pnon�live a2t0[i℄ 2w(a)), with the �rst term missing if thereare no live haraters in t0[i℄ and the seond term missing ifthere are no non-live haraters in t0[i℄. The weight wt(t0)of t0 is de�ned to be the sum of the weights of non-emptysets in t0. Let s0 denote the sum of the sizes of the sets in t.The intuition for de�ning the weight of t0 as above is topenalize live haraters ourring with other live or non-live haraters, while not putting any onstraint on non-liveharaters. This ensures that a small weight for t0 foresa good fration of the live haraters to our as singletonbut allows non-live haraters to our with other non-liveharaters.Suessive runs of the following key proedure shall giveus the suessive olletions of shifts.The Key Proedure. Given a weight assignment to eahinstane of eah harater in t, with weight-sum W = O(s),this proedure uses a olletion of harater shifts to obtaint0 and p0 with the following properties:� The weight of t0 is at most �1+ 1k�W , for some onstantk > 2.� jt0j; jp0j = O(s).This proedure takes O(s log s + L log2 s) time, where L isthe number of live haraters in the urrent run of this proe-dure. As we will show, L dereases geometrially with eahrun. Next, we desribe how this proedure indeed gives usthe requisite t0i; p0i's satisfying the two properties mentionedearlier.Using the Above Proedure. We begin with hara-ter weights equal to 2 and weight-sum 4s0 = O(s). Next, weperform O(log s) iterations, modifying the harater weightsin eah iteration. In general, suppose i � 1 iterations havebeen performed and t01; : : : ; t0i�1 have been determined. Weidentify those instanes of haraters in t whih appear insingleton sets in at least one of t01; : : : ; t0i�1; these haratersnow get weight 1. We then give new weights to the re-maining haraters by weighting then equally and �xing theweight-sum restrited to these haraters to be between 4s0and 8s0 (this range is needed if we want harater weights tobe integral); the weight-sumW obtained by inluding weight1 haraters would then be at most 10s0 = O(s). Note thatW=s0 � 4. Next, we all the above proedure with theseweights to obtain t0i. Finally, we stop when all instanes ofall haraters in t satisfy the singleton appearane property.The following lemma shows that L dereases geometriallyand therefore O(log s) iterations will suÆe. The total timetaken by the above proedure is thus O(slog2 s).

Lemma 8. The text t0i obtained in the ith iteration of theabove proedure has the property that all but a 2k fration ofthe live haraters (i.e., those whih have not appeared insingleton sets in any of t01; : : : ; t0i�1) appear in singleton setsin t0i.Corollary 9. After O(log s) iterations, eah instane ofeah harater would have appeared in a singleton set insome t0i.It remains to desribe how the above key proedure works.
7.2 Computing Small Weightt0: The Row Ro-

tation ProblemWe formulate the problem of determining shifts to theharaters in � to obtain a t0 with small weight as follows.We will restrit our shifts to size Y = O(s). Consider a ��Ysize matrix A. This matrix has two kinds of entries: emptyand non-empty. A[e; j℄ is empty if e 2 � does not our intext set t[j℄, and A[e; j℄ equals the weight of the instaneof harater e in the set t[j℄, otherwise. Clearly, the totalnumber of non-empty entries in A and their weight-sum Ware both O(s). The aim is to �nd olletions of irular shiftsof the rows (these irular shifts an then be linearized) sothat the properties mentioned earlier are satis�ed. Weahieve this using a deterministi O(s log s + L log2 s) timealgorithm with the following overall framework.At eah step, the rows of A are partitioned in megarows.Initially, eah row is a megarow. The general step onsiderstwo megarows and determines a \good" relative shift of oneentire megarow with respet to the other. This shift is ap-plied to the rows of the seond megarow and then the twosets of rows are plaed in a single ombined megarow. Notethat no shifting happens within either of the two megarowsin this step; relative shifts within eah megarow have beendetermined and frozen already. The proedure ends when allrows ome together into a single megarow. Two issues needsfurther desription: whih two megarows are hosen at eahinstant and how a good relative shift between megarows isdetermined.
7.2.1 Shifting MegarowsFirst, we desribe how a good relative shift between twomegarows v; w is determined. Our algorithm needs the fol-lowing de�nitions.Megarows as Vetors. We de�ne a vetor v of weightsfor eah megarow as follows. Consider the non-empty en-tries a1; a2 : : : , if any, in the ith position in the shifted rowsforming the megarow; then the weight stored in v[i℄ is:1. 0, if all entries in this position are empty.2. (Qlive aj 2w(aj))�(Pnon�live aj 2w(aj)), with the �rstterm (seond term, respetively) missing if there areno live (non-live, respetively) entries.The weight, wt(v), of the megarow orresponding to v isPi v[i℄. Vetor v is alled the megarow weight vetor ormegarow-vetor for short. We will say that v[i℄ is live if atleast one of a1; a2; : : : is live. One tehnial issue beforewe proeed is that of representing a megarow-vetor. Werepresent suh a vetor as a list of non-zero entries.Let v; w, respetively, be the megarow-vetors for the twomegarows being ombined. Consider a partiular shift w0 of

w. Suppose we apply this shift to the megarow orrespond-ing to w and then ombine the megarows orresponding tov and w into one megarow with megarow-vetor u. Our aimis to hoose the shift w0 of w so as to keep the weight ofu as small as possible. In fat, we will be able to keep theweight of u below wt(v)+wt(w)+ wt(v)wt(w)Y . Note that thenew megarow-vetor u obtained by ombining the megarowsorresponding to v and w will have the following properties.1. u[i℄ � v[i℄ � w0[i℄, for i suh that both v[i℄ and w0[i℄are non-zero and at least one of v[i℄; w0[i℄ is live.2. u[i℄ = v[i℄ +w0[i℄, otherwise.Contributions to wt(u)�wt(v)�wt(w) ome from just the�rst term above and this is the exess whih we seek tominimize in our algorithm. In the algorithm, this exesswill be upper bounded at eah step by a potential, whih weshall de�ne shortly.Our Algorithm. Let sh denote the amount by whih wneeds shifting to obtain w0. We will determine sh by de-termining the O(log s) bits in the binary representation ofsh one by one in inreasing order of signi�ane. In otherwords, we will �rst determine whether sh is even or odd.If sh is ommitted to the even option in this step then wewill determine whether sh is 0 (mod 4) or 2 (mod 4) in thenext step. And if sh is ommitted to the odd option in the�rst step then we will determine whether sh is 1 (mod 4)or 3 (mod 4) in the next step. This is repeated until shis ompletely determined. Note that there are two optionsavailable at eah step and we will pik the one whih leadsto the smaller inrease in weight. We explain this proedurein further detail below.We run a number of iterations (this number will be spe-i�ed shortly). Iteration j � 1 omputes the jth least sig-ni�ant bit of sh and is performed in the following setting.Consider non-empty loations in v and partition these intoresidue lasses modulo 2j�1. This results in 2j�1 sets of lo-ations (e.g., for j = 1, there is only one set omprising allnon-empty loations, and for j = 2, there are two sets, oneomprising the even loations and another omprising theodd loations); all these V1 : : : V2j�1 . Let W1 : : :W2j�1 de-note the analogous sets for w. Going into the jth iteration,we would have omputed a mathing between the V 's andthe W 's (initially, i.e., for j = 1, there is only one set V1 forv and this is mathed to the only set W1 for w). For sim-pliity, we assume that Vl is mathed to Wl, 1 � l � 2j�1,using appropriate permutations to rename sets if neessary.Further, we would have a potential for this mathing de�nedas the following quantity summed over all l suh that eitherVl or Wl ontains a live loation:(sum of values in non-zero loations in Vl)�(sum of values in non-zero loations in Wl)We now desribe how to perform the jth iteration so that anew mathing is omputed for sets orresponding to residuelasses modulo 2j . The potential of this resulting mathingwill be at most half the potential of the original mathingand the time taken in this proess will be proportional tothe number of live loations in v and w put together (thiswill be explained shortly).Note that eah residue modulo 2j�1 orresponds to ex-atly one of two possible residues modulo 2j (i.e., l(mod

2j�1) equals either l(mod 2j) or l + 2j�1(mod 2j)). Basedon this observation, we split Vl and Wl into two sets eah;all these sets V 1l ; V 2l and W 1l ;W 2l , respetively. Setting thejth bit of sh to 0 orresponds to mathing V 1l with W 1l andV 2l with W 2l , for eah l. And setting the jth bit of sh to 1orresponds to mathing V 1l with W 2l and V 2l with W 1l , foreah l. It is easily seen that one of these two hoies willlead to a potential whih is at most half the potential of theprevious mathing. We perform log Y = �(log s) iterations.The �nal potential will then be 1Y times the initial poten-tial, whih is wt(v)wt(w). It is easily seen that the weightwt(u) of the new megarow obtained by shifting w by sh andombining it with v is at mostwt(v) + wt(w) + wt(v)wt(w)Y.Implementation Details: Tries. The main issue in im-plementing the above algorithm is the maintenane of thesets and their assoiated potentials so that the jth iterationan be performed in time proportional to the number oflive loations in v and w put together. The key observationwhih makes this possible is the fat that omputing the po-tential requires omputing sums only over l suh that eitherVl or Wl ontains a live loation. Thus, in eah iteration itsuÆes to maintain only sets Vl;Wl suh that at least oneof these has a live loation. Clearly, the number of suh setsis bounded by the number of live loations in v and w puttogether. Maintenane of these sets is easily handled withthe following preproessing.Initially, we build a trie of all non-empty loations in v.For eah non-empty loation in v, the reverse of its binaryrepresentation is used to build the trie. A similar trie is builtfor w. Note that eah non-empty set Vl will be idential tothe set of leaves in some appropriate subtree of the trie for v,and similarly for w. Thus, instead of maintaining the Vl's,we will maintain nodes in the trie. Eah node in the trie willmaintain two quantities, the sum of the values of the leavesin its subtree, and a binary string identifying the path fromthe root to that node. Using this information, it is easilyseen that given a partiular Vl (i.e., a node in the trie),the sets V 1l ; V 2l along with the assoiated potentials an beobtained in O(1) time (using table look-up if neessary toidentify the nodes for the new sets).Time Complexity. The tries are built in time linear in thenumber of non-empty items in v and w using onstant timeLCA omputation on onseutive items [18℄. The time takenin trie building is thus O(maxfwt(v); wt(w)g). Subsequentto this, the jth iteration runs in time bounded by the num-ber of live loations in v and w put together. The numberof iterations performed is O(log s). The total time over alliterations is thus O(maxfwt(v); wt(w)g+#live loations�log s).
7.2.2 Pairing Megarows and AnalysisThe order is whih megarows are paired depends on theweights of the assoiated vetors. Reall W = O(s) denotesthe sum of the megarow-vetor weights at the very begin-ning (beause, eah megarow is just a single row at the verybeginning). We need to show that the �nal megarow-vetorweight is (1 + 1k)W . We also need to show that the totaltime taken is O(s log2 s).

We lassify the megarow-vetor weights into ategories[2i; 2i+1), 0 < i = O(log s). The pairings are now performedin phases, with several pairings being performed in eahphase. Consider a partiular phase and onsider the urrentlowest non-empty ategory, [2i; 2i+1), say. If this ategoryhas at least two megarows then we pair the megarows inthis ategory (leaving out one megarow, possibly) and om-bine the megarows in eah pairing within this phase. Theunpaired megarow, if any, is put on hold. If there is alreadyanother megarow on hold, neessarily from a lower indexategory, then the two megarows on hold are ombined. Itis easily seen that the new megarow whih results from om-bining two paired megarows in the same ategory will be ina stritly higher ategory. As we will show, megarow-vetorweights will always be O(s). It follows that the number ofphases will be �(log s).Bounding Megarow-Vetor Weights. The megarow-vetor weights are bounded by the following lemma.Lemma 10. Consider a phase in whih all but at mostone of the megarows whih are ombined belong to ategory[2j ; 2j+1). Let O and N denote the sum of the megarow-vetor weights at the beginning and the end of this phase,respetively. Then NO � (1 + 2j+1Y).By hoosing Y = �(s) appropriately, we get:Corollary 11. The �nal megarow-vetor weight isW (1+1k), for an appropriately hosen onstant k > 2.Time Complexity. It remains to determine the time takenby the above algorithm. Reall that the proess of merg-ing two megarows v; w takes time O(maxfwt(v); wt(w)gg+#live loations� log s), where #live loations is the num-ber of live loations in v and w put together. Sine, byCorollary 11, the sum of megarow-vetor weights is alwaysbounded byO(s), eah phase takes time O(s+L log s). Sinethe number of phases is O(log s), the total time taken isO(s log s+ L log2 s), as required.
8. REFERENCES[1℄ L. Adleman, M. Huang. Reognizing Primes inRandom Polynomial Time. Proeedings of the 19thACM Symposium on Theory of Computing, 1987,pp. 462{469.[2℄ D. Cardoze, L. Shulman. Pattern Mathing forSpatial Point Sets. Proeedings of the 39th IEEESymposium on Foundations of Computer Siene,1998, pp. 156{165.[3℄ R. Cole, R. Hariharan. Tree pattern mathing andsubset mathing in randomized O(n log3m) time.Proeedings of the 29th ACM Symposium onTheory of Computing, 1997, pp. 66{75.[4℄ R. Cole, R. Hariharan, P. Indyk. Tree patternmathing and subset mathing in deterministiO(n log3m) time. Proeedings of the 10thACM-SIAM Symposium on Disrete Algorithms,1999, pp. 245{254.[5℄ R. Cole, R. Hariharan. Tree pattern mathing tosubset mathing in linear time. Submitted to SIAMJournal on Computing, 2000.

[6℄ M. Dubiner, Z. Galil, E. Magen. Faster tree patternmathing. Proeedings of the 31st IEEE Symposiumon Foundations of Computer Siene, 1990,pp. 145{150.[7℄ M.J. Fisher, M.S. Paterson. String mathing andother produts. Complexity of Computation,SIAM-AMS proeedings, ed. R.M. Karp, 1974,pp. 113{125.[8℄ S. Goldwasser and J. Kilian, Almost all primes anbe quikly erti�ed. Proeedings of 18th AnnualIEEE Symposium on Foundations of ComputerSiene, 1986, pp. 316{329.[9℄ C.M. Ho�man, M.J. O'Donell. Pattern mathing intrees. Journal of the ACM, 1982, pp. 68{95.[10℄ P. Indyk. Deterministi superimposed oding withappliations to pattern mathing. Proeedings ofthe 38th IEEE Symposium on Foundations ofComputer Siene, 1997, pp. 127{136.[11℄ P. Indyk. Faster algorithms for string mathingproblems: mathing the onvolution bound.Proeedings of the 39th IEEE Symposium onFoundations of Computer Siene, 1998,pp. 166-173.[12℄ P. Indyk, R. Motwani, S. Venkatasubramanian,Geometri mathing under noise: ombinatorialbounds and algorithms. Proeedings of the 10thACM-SIAM Symposium on Disrete Algorithms,1999, pp. 457{465.[13℄ A. Kalai, EÆient Pattern Mathing with Don'tCares. Proeedings of the 13th ACM-SIAMSymposium on Disrete Algorithms, 2002,pp. 655-656.[14℄ S. Muthukrishnan, Deteting false mathes instring mathing algorithms. Proeedings of the 4thConferene on Combinatorial Pattern Mathing,Leture Notes in Computer Siene, 684,Springer-Verlag, 1993, pp. 164{178.[15℄ S. Muthukrishnan, New results and open problemsrelated to non-standard stringology. Proeedings ofthe 6th Conferene on Combinatorial PatternMathing, Leture Notes in Computer Siene, 937,Springer-Verlag, 1995, pp. 298{317.[16℄ M. O. Rabin, A probabilisti algorithm for testingprimality. Journal of Number Theory, 12, 1980, pp.128{138.[17℄ A. Shokrollahi, J. Buhler, V. Stemann, Fast andpreise omputations of disrete fourier transformsusing ylotomi integers. Proeedings of the 29thACM Symposium on Theory of Computing, 1997,pp. 40-47.[18℄ B. Shieber, U. Vishkin, On �nding lowest ommonanestors in trees: simpli�ation and parallelization.SIAM Journal on Computing, 17, 1988, pp.1253{1262.

