
Verifying Compensating Transactions�

Michael Emmi and Rupak Majumdar

UC Los Angeles
{mje,rupak}@cs.ucla.edu

Abstract. We study the safety verification problem for business-process
orchestration languages with respect to regular properties. Business
transactions involve long-running distributed interactions between mul-
tiple partners which must appear as a single atomic action. This illusion
of atomicity is maintained through programmer-specified compensation
actions that get run to undo previous actions when certain parts of the
transaction fail to finish. Programming languages for business process or-
chestration provide constructs for declaring compensation actions, which
are co-ordinated by the run time system to provide the desired trans-
actional semantics. The safety verification problem for business pro-
cesses asks, given a program with programmer specified compensation
actions and a regular language specifying “good” behaviors of the sys-
tem, whether all observable action sequences produced by the program
are contained in the set of good behaviors.

We show that the usual trace-based semantics for business process
languages leads to an undecidable verification problem, but a tree-based
semantics gives an algorithm that runs in time exponential in the size
of the business process. Our constructions translate programs with com-
pensations to tree automata with one memory.

1 Introduction

Long-running business processes involve hierarchies of interactive activities be-
tween possibly distributed partners whose execution must appear logically
atomic to the environment. The long-running and interactive nature of busi-
ness processes make traditional checkpointing and rollback mechanisms that
guarantee transactional semantics [13] difficult or impossible to implement. For
example, the long-running nature makes the performance penalties associated
with locking unacceptable, and the interactive nature makes rollback impossible
since some parts of the transaction (e.g., communications with external agents)
are inherently impossible to undo automatically. Business processes therefore
implement a weaker notion of atomicity based on compensations, programmer-
specified actions that must be executed to semantically “undo” the effects of
certain actions that cannot be undone automatically, should parts of the trans-
action fail to complete. A long-running transaction is structured as sagas [12],

� This research was sponsored in part by the grants NSF-CCF-0427202, NSF-CNS-
0541606, and NSF-CCF-0546170.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 29–43, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

30 M. Emmi and R. Majumdar

a sequence of several smaller sub-transactions, each with an associated compen-
sation. If one of the sub-transactions in the sequence aborts, the compensations
associated with all committed subtransactions are executed in reverse order.

Flow composition or orchestration languages, such as wscl [17], wsfl [18],
bpml [2], and bpel4ws [1], provide primitives for programming long-running
transactions, including programmer-specified compensations and structured con-
trol flows. For example, bpel4ws provides the compensate construct that can
be used by the programmer to specify actions that must be taken if later ac-
tions fail. The formal semantics for these languages (or their core features) are
given as extensions to process algebras with compensations (e.g., compensating
CSP or cCSP) [6,5] or transaction algebras with compensation primitives (called
the sagas calculus) [4]. One central issue is to develop automatic static analysis
techniques to increase confidence in the correctness of complex business pro-
cesses implemented in these languages [14]. For example, in a business process
implementing an e-commerce application, it may be desirable to verify that no
product is shipped before a credit check is performed, or that the user’s account
is credited if it is found later that the order cannot be fulfilled. In this paper,
we present model checking algorithms for the automatic verification of temporal
safety properties of flow composition languages with compensations. We take
the automata theoretic approach and specify safety properties as regular sets of
traces of observable actions. Then, the verification problem can be formulated
as a language containment question: check that any trace that can be produced
by the execution of a saga also belongs to the set of “good” behaviors prescribed
by the specification.

Our starting point is the sagas calculus [4], although our results generalize to
most other languages with similar core features. We show that the safety verifi-
cation problem for programs in the sagas calculus and safety properties encoded
as finite word automata is undecidable in the usual trace-based semantics [6,3].
On the other hand, perhaps surprisingly, the verification problem becomes de-
cidable (in time exponential in the size of the sagas program) if we associate a
tree semantics with the execution. The tree semantics exposes more structure on
the sequence of observable actions by making the sequential or parallel operator
at each intermediate step observable. For the tree semantics, we consider safety
properties encoded as regular tree languages, rather than word languages. The
key hurdle is that the tree language of a sagas program is not regular: this is
intuitively clear since first, the compensations are dynamically pushed on to a
(possibly unbounded) stack, and second, the actions on the execution path up to
an abort are related to the compensation actions thereby requiring comparisons
on sibling subtrees.

Our main technical tool consists of tree automata with one memory [7], that
generalize finite tree automata by allowing a memory element which is built up
as the automaton walks a tree bottom-up and which can be compared across
children. Specifically, we show that the tree language of any program in the sagas
language is accepted by a tree automaton with one memory. Tree automata with
one memory generalize pushdown automata over words and tree automata with

Verifying Compensating Transactions 31

equality tests [8]. However, their emptiness problem is decidable [7], and they are
closed under intersection with finite tree automata. Our construction, together
with the above properties of tree automata with one memory, provides a decision
procedure for the safety verification problem. While automatic model checking
techniques for web services and business process applications have been proposed
before [10,11,9], to the best of our knowledge, we provide the first automatic
handling of compensation stacks.

2 Sagas with Compensation

A saga is a high-level description of the interaction between components for web
services. The building blocks of sagas are atomic actions, which execute with-
out communication from other services. In addition, to each atomic action is
attached a (possibly null) compensation, which is executed if the action succeeds
but a later action in the saga does not complete successfully. Sagas are then built
from (compensated) atomic actions, sequential and parallel composition, nonde-
terministic choice, and nesting. The execution order for compensating actions is
determined by interpreting each sequential composition operator in reverse.

More formally, given an alphabet Σ of atomic actions containing a special
null action 0, and a set of variable names X , the set of transaction terms T

Σ,X

over Σ and X is the smallest set which includes the atomic terms a ÷ b, for
a, b ∈ Σ, the variables x ∈ X , and is closed under binary operators for sequen-
tial composition (;), parallel composition (‖), and nondeterministic choice (⊕),
and the unary saga-nesting operator {[·]}. The binary expression a ÷ b attaches
to a the compensating action b. The operators ‖ and ⊕ are commutative and
associative, while the sequential operator ; is defined here to be left-associative.
We refer to terms of the form {[t]} as transactions, and use T

Σ,X
{[·]} to denote the

set of transactions. For an atomic action a ∈ Σ, we abbreviate a ÷ 0 with a.
A saga is given as a tuple S = 〈Σ, X, s0, T 〉, where T : X → T

Σ,X
{[·]} maps

variables to transactions, and s0 ∈ X determines the top-level transaction. We
frequently abuse the notation and write x = {[t]} in place of T (x) = {[t]}, and as
Σ, X , and T are usually understood from the context, we often refer to a saga
by its transaction variable s0. We refer to any term of the form {[t]} �= s0 as a
nested saga or subtransaction.

Example 1. The sagas calculus is capable of expressing realistic long-running
business transactions. Suppose AcceptOrder, Restock, FulfilledOK,
CreditCheck, CreditOK, BookCourier, CancelCourier and PackO-

rder are atomic actions with the obvious meanings, and consider the saga

Main = {[(AcceptOrder ÷ Restock); FulfillOrder;FulfilledOK]}
FulfillOrder = {[WarehousePackaging ‖ CreditCheck;CreditOK]}
WarehousePackaging =

{[(BookCourier ÷ CancelCourier)‖PackOrder]}.

32 M. Emmi and R. Majumdar

Table 1. The formal semantics for a saga S = 〈Σ, X, s0, T 〉. The symbols P and Q
range over transaction terms, a and b range over the atomic actions of Σ, x ranges over
the variables of X, α, α′, α′′ range over observations, β, β′, β′′ range over compensation
stacks, and �, �P , �Q range over outcomes.

(null)

〈0, β〉 0−→ 〈�, β〉
(atom-s)

〈a ÷ b, β〉 a−→ 〈�, b; β〉

(atom-f)

〈β, 0〉 α−→ 〈�, 0〉
〈a ÷ b, β〉 α−→ 〈�, 0〉

(atom-a)

〈β, 0〉 α−→ 〈�, 0〉
〈a ÷ b, β〉 α−→ 〈∗, 0〉

(seq-s)

〈P, β〉 α−→ 〈�, β′′〉 〈Q,β′′〉 α′
−→ 〈�, β′〉

〈P ; Q,β〉 α;α′
−−−→ 〈�, β′〉

(seq-fa)

〈P, β〉 α−→ 〈�, 0〉 � ∈ {�, ∗, �, ∗}
〈P ;Q, β〉 α−→ 〈�, 0〉

(par-s)

〈P, 0〉 α−→ 〈�, β′〉 〈Q, 0〉 α′
−→ 〈�, β′′〉

〈P‖Q,β〉 α‖α′
−−−→ 〈�, β′‖β′′; β〉

(par-f)

〈P, 0〉 α−→ 〈�P , 0〉
〈Q, 0〉 α′

−→ 〈�Q, 0〉
�P , �Q ∈ {�, �}
〈β, 0〉 α′′

−−→ 〈�β, 0〉

〈P‖Q,β〉 (α‖α′);α′′
−−−−−−→ 〈�P ∧ �Q ∧ force(�β), 0〉

(par-a)

〈P, 0〉 α−→ 〈�P , 0〉
〈Q, 0〉 α′

−→ 〈�Q, 0〉
�P ∈ {∗, ∗}
�Q ∈ {�, ∗, �, ∗}

〈P‖Q, β〉 α‖α′
−−−→ 〈�P ∧ �Q, 0〉

(nondet)

〈P, β〉 α−→ 〈�, β′〉
〈P ⊕ Q,β〉 α−→ 〈�, β′〉

(var)

〈T (x), β〉 α−→ 〈�, β′〉
〈x, β〉 α−→ 〈�, β′〉

(saga)

〈P, 0〉 α−→ 〈�, β〉
{[P]} α−→ �

(sub-s)

〈P, 0〉 α−→ 〈�, β′〉
〈{[P]}, β〉 α−→ 〈�, β′; β〉

(sub-f)

〈P, 0〉 α−→ 〈�, 0〉
〈{[P]}, β〉 α−→ 〈�, β〉

(sub-a)

〈P, 0〉 α−→ 〈∗, 0〉
〈{[P]}, β〉 α−→ 〈∗, 0〉

(sub-forced-f)

〈P, 0〉 α−→ 〈�, 0〉 〈β, 0〉 α′
−→ 〈�, 0〉

〈{[P]}, β〉 α;α′
−−−→ 〈force(�), 0〉

(sub-forced-a)

〈P, 0〉 α−→ 〈∗, 0〉
〈{[P]}, β〉 α−→ 〈∗, 0〉

(forced)

〈β, 0〉 α−→ 〈�, 0〉
〈P, β〉 α−→ 〈force(�), 0〉

The saga Main encodes a long running business transaction where an order
is deemed a success upon the success of order placement, credit check, courier
booking, and packaging. If some action were to fail during the transaction, then
compensations would be run for the previously completed actions. For example,
if the packaging were to fail after the credit check and courier booking had
completed, then the courier booking would be canceled, and the order restocked.

The operational semantics of sagas are shown in Table 1. To reduce the number
of rules, we define them up to structural congruence implied by the associativity
of ;, ‖ and ⊕, the commutativity of ‖ and ⊕, as well as the identities 0;P ≡
P ; 0 ≡ P and P‖0 ≡ 0‖P ≡ P , for transaction terms P . The execution of a saga
leads to an outcome which is either success, failure, or abortion, represented by
the boxed symbols �, � and ∗ respectively. The semantics is given for a fixed set
of variables X and mapping T : X → T

Σ,X
{[·]} from variables to sub-transactions.

An observation is a term constructed from atomic actions and the sequen-
tial and parallel composition operators. The semantics of sagas is given by the
rule (saga), whose consequent {[P]} α−→ � specifies that the execution of trans-
action {[P]} results in outcome �, emitting the observation α. The semantics
relation uses an auxiliary relation 〈t, β〉 α−→ 〈�, β′〉 which dictates that the ex-
ecution of term t results in the outcome �, while the initial compensations β

Verifying Compensating Transactions 33

Table 2. The composition operation ∧

∧ � � ∗ � ∗
� �
� − �
∗ − ∗ ∗
� − � ∗ �
∗ − ∗ ∗ ∗ ∗

are destructively replaced by the compensations β′. The observation α in these
relations describes the flow of control while t is executed.

The special symbols � and ∗ are the forced failure and abortion outcomes, and
result from failure or abortion in a parallel thread of execution. When a thread
encounters failure, the entire transaction must subsequently fail. When each
thread can complete its compensations, the resulting outcome is �; otherwise
∗ results. The (associative and commutative) binary operator ∧ over the set
{�, �, ∗, �, ∗} determines the outcome of two branches executing in parallel.
Its definition is given in Table 2 (since ∧ is commutative, only half the table is
displayed). The auxiliary function force : {�, �, ∗, �, ∗} → {�, ∗} is given by
force(�) = �, and force(�) = ∗, for � ∈ {�, ∗, �, ∗}.

We briefly describe the operational semantics given in Table 1, for a more
detailed discussion, see [4]. The rule (null) says that the null process never
fails. The rules (atom-s), (atom-f), and (atom-a) deal with atomic action
execution. If action a succeeds, rule (atom-s) installs the compensation b on the
compensation stack. If a fails (rules (atom-f) and (atom-a)) when the currently
installed compensation is β, then β should be executed. If all compensating
actions of β execute successfully (as in (atom-f)), then the outcome for the
term a ÷ b is �; if some compensating action of β fails (as in (atom-a)), then
the outcome for the term a ÷ b is ∗.

The rules (seq-s) and (seq-fa) execute the sequential composition of two
terms. The rule (par-s) declares the order in which compensations from parallel
branches are executed. When the terms P and Q result in the compensations
β′ and β′′, then the term P‖Q results in the compensation β′‖β′′; β, where β
is the compensation for actions before P‖Q. The associated rules (par-f) and
(par-a) deal with failure on parallel branches and failed compensation after
failure on parallel branches respectively. Rule (var) executes the term bound to
a variable by T , rule (nondet) executes one branch of a nondeterministic choice,
and (forced) allows a thread to fail due to the failed execution of another. The
remaining rules specify the semantics of nested sagas.

Example 2. Consider the saga 〈{a, b, c, d, e, 0}, {s0}, s0, T 〉 with T (s0) =
{[a ÷ b; c ÷ d‖e ÷ 0]}. That is, the action a occurs before c, while e occurs in
parallel. If the action c were to fail, then the completed actions a, and possibly
e, are to execute their compensations. Since e has a null compensation, only b
would be executed. Figure 1 shows an execution of the saga, where c fails after
a and e have both executed, and a’s compensation b is run successfully.

34 M. Emmi and R. Majumdar

〈b ÷ 0, 0〉 b−→〈�, 0〉1 〈0, 0〉 0−→〈�, 0〉6
〈a ÷ b, 0〉 a−→〈�, b〉1 〈c ÷ d, b〉 b−→〈�, 0〉2 〈e ÷ 0, 0〉 e−→〈�, 0〉1 〈0, 0〉 0−→〈�, 0〉5

〈a ÷ b; c ÷ d, 0〉 a;b−−→〈�, 0〉3 〈e ÷ 0, 0〉 e−→〈�, 0〉3
〈a ÷ b; c ÷ d‖e ÷ 0, 0〉 a;b‖e−−−→ 〈�, 0〉4,∗

{[a ÷ b; c ÷ d‖e ÷ 0]} a;b‖e−−−→ �7

Fig. 1. An execution of saga s0 from example 2. The corresponding rules from table 1
are (1) atom-s, (2) atom-f, (3) seq-s, (4) par-f, (5) forced, (6) null, and (7) saga.
An additional application of (null) is omitted in (∗).

3 Trace Semantics

From the operational semantics of a saga and a fixed environment, we define a
trace language, containing all sequences of observations that may be generated
from an execution. The function trace defines this language by induction over
the structure of observations, as generated by the execution of a saga, as

trace(a) = {a}
trace(t1; t2) = trace(t1) ◦ trace(t2)
trace(t1‖t2) = trace(t1) ⊗ trace(t2)

where ◦ and ⊗ denote the concatenation and interleaving composition
of languages: L1 ◦ L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2} and L1 ⊗ L2 =
{x1y1 . . . xkyk | x1 . . . xk ∈ L1, y1 . . . yk ∈ L2}.

Let S = (Σ, X, s0, T) be a saga. The trace language LW (s) of a variable s ∈ X

is defined as {trace(α) | ∃�.{[T (s)]} α−→ �}. The trace language LW (S) of a saga
S is the language LW (s0). Clearly, the language LW (S) may not be regular.

Unfortunately, the trace language of sagas is unsuitable for verification since,
as Theorem 1 shows, language inclusion in a regular set is undecidable. While we
state the theorem for sagas, a similar theorem also holds for other compensable
flow composition languages such as cCSP [6].

Theorem 1. The language inclusion problem LW (S) ⊆ LR, for an input saga
S = 〈Σ, X, s0, T 〉 and regular language LR ⊆ Σ∗, is undecidable.

Proof. We proceed by reduction from the halting problem of 2-counter machines,
similarly to the proof for process algebras in [15]. Let M be a 2-counter machine
with n numbered instructions: 〈1 : ins1〉 . . . 〈n − 1 : insn−1〉〈n : halt〉 where each
insk for k ∈ {1, . . . , n − 1} is either cj = cj + 1; goto �, or cj = cj − 1; goto �,
or if cj = 0 then goto � else goto �′, for j ∈ {1, 2}. Furthermore, let Σ =
{zerok, inck, deck | k ∈ {1, 2}}∪{0}, where zerok, inck, and deck stand for zero-
assertion, increment, and decrement actions, respectively, where we associate
(in the obvious way) traces of M with Σ-sequences. We construct a saga S,
whose language is the Σ-sequences corresponding to traces of M, irrespective
of M’s control location, and a finite state automaton A, whose language is the

Verifying Compensating Transactions 35

Σ-sequences corresponding to traces of M, irrespective of M’s counter values.
With these constructions, the intersection LW (A) ∩ L(S) is the language of Σ-
sequences corresponding to traces of M.

We define S to be the saga 〈Σ, X, s0, T 〉, where X = {Ck, Zk | k ∈ {1, 2}} ∪
{s0} are the variables of S, s0 is the top-level transaction, and T , mapping
variables to transaction terms, is given by

Zk �→ {[(zerok; Zk) ⊕ (inck; Ck; Zk)]}
Ck �→ {[(inck ÷ deck; Ck; Ck)]}

}
for k ∈ {1, 2}

and s0 �→ {[(Cm1
1 ; Z1)||(Cm2

2 ; Z2)]}. Intuitively, the transaction term T (Ck) de-
fines a state of M which attempts to decrease the value of counter k by one,
the transaction term T (Zk) defines a state which holds the value of counter k
at 0, and the term T (s0) defines a state in which the counter values start at m1
and m2 respectively. Finite traces of S exist, since any action may fail, and if Ck

ever fails its compensating action of deck, then the entire transaction s0 aborts.
Notice that traces of S correspond to runs of a “stateless” M, where every step
could execute any instruction.

The finite state machine A over alphabet Σ has states {1, 2, . . . , n + 1}, one
for each instruction, and a sink state n + 1. The transitions are given by the
instructions of M as follows. If instruction i is an increment (resp., decrement)
of counter cj followed by a move to �, then A has a transition 〈i, incj , �〉 (resp.,
〈i, decj , �〉). If i moves to � when cj = 0, and �′ otherwise, then A has the
transitions 〈i, zeroj , �〉 and 〈i, 0, �′〉. Each state also has a self loop on the action
0. The automaton is completed by adding a transition 〈k, σ, n + 1〉 for each state
k in which σ is otherwise not enabled (note that this construction induces a self
loop 〈n + 1, σ, n + 1〉 for all σ ∈ Σ). Every state of A is accepting, however since
n has no enabled actions, the language of A is not universal. In particular, A’s
language does not include Σ-sequences whose (proper) prefixes correspond to
halting computations of M. Notice that the traces of S correspond to runs of a
“memoryless” M, where every step ignores the values of the counters.

It only remains to check that LW (S) � L(A) if and only if M has a halting
computation. First suppose that LW (S) � L(A), and let w ∈ �LW (S) \ L(A).
Since w is not accepted by A, a prefix of w corresponds to a halting trace of M
(recall that A must have moved to state n) consistent with M’s control. Since
w is accepted by S, w also corresponds to a trace of M consistent with M’s
counter values. Thus M has a halting computation. On the other hand, if M has
a halting computation then A rejects a Σ-sequence with a prefix corresponding to
a halting trace of M, which is a trace of S since the counter values are necessarily
consistent; thus LW (S) � L(A). Thus, the language inclusion problem LW (S) ⊆
L(A) is undecidable. ��

4 Tree Semantics

In this section we give an alternative interpretation to the set of observations
given by a saga. Instead of interpreting executions as flattened sequences of

36 M. Emmi and R. Majumdar

actions, we interpret them as trees where the actions become leaves, and the com-
position operators become internal nodes. We then give an automata-theoretic
classification of a sagas by building tree automata which recognize the set of
trees representing valid executions.

4.1 Yield Language of a Saga

Trees. A (ranked) alphabet is a tuple 〈F , ar〉 where F is a finite alphabet, and
ar is a map, called arity, from F to N. The set of symbols from F of arity k
(i.e., {f ∈ F | ar(f) = k}) is denoted Fk. The set of symbols of arity zero are
called constants; arity one symbols (resp. two, k) are called unary (resp. binary,
k-ary) symbols. In what follows, we assume F has at least one constant, i.e.,
F0 �= ∅. For ease of notation we write F , omitting ar, by assuming that the arity
information is encoded into each symbol in F .

A finite ordered tree t over a ranked alphabet F is a mapping from a prefix-
closed set dom(t) ⊆ N

∗ to F , such that (1) each leaf is mapped to a constant: for
all p ∈ dom(t), we have t(p) ∈ F0 iff {j | p · j ∈ dom(t)} = ∅; and (2) each inter-
nal node mapped to symbol f ∈ Fk has exactly k children numbered 1, . . . , k:
for all p ∈ dom(t), if t(p) ∈ Fk and k ≥ 1, then {j | p · j ∈ dom(t)} = {1, . . . , k}.
The set of all trees over alphabet F is denoted Trees(F). A set of trees is a tree
language.

Yield Language. Fix the saga S = 〈Σ, X, s0, T 〉, and let F be a ranked alpha-
bet consisting of a constant symbol for each atomic action of Σ, as well as the
binary symbols σ; and σ‖.

Given an observation α from an execution of S, the set yield(α) of yield trees
over the tree alphabet F is defined inductively as

yield(a) = {a}
yield(t1; t2) = {σ;(t′1, t

′
2) | t′1 ∈ yield(t1), t′2 ∈ yield(t2)}

yield(t1‖t2) = {σ‖(t′1, t
′
2) | t′1 ∈ yield(t1), t′2 ∈ yield(t2)}

where σ(t1, t2) denotes the tree with a σ-labeled root whose left and right chil-
dren are the roots of the trees t1 and t2 respectively, and a is an atomic action of
Σ. Informally, a yield tree considers the term α as a finite ordered tree over the
alphabet of atomic actions and the sequential and parallel compositions. The
yield language of S, denoted L(S), is the set

L(S) =
⋃

{[T (s0)]} α−→�

yield(α).

Example 3. The yield language of the saga s0 = {[a ÷ b; c ÷ d‖e ÷ 0]} from
example 2, consisting of six trees, is shown in Figure 2.

Verifying Compensating Transactions 37

e

σ‖

σ;

a c

σ;

σ; σ;

a c bd

σ‖

a e

b

σ; σ;

a b

eΛ

Fig. 2. The yield language of {[a ÷ b; c ÷ d‖e ÷ 0]}

4.2 Tree Automata with One Memory

Tree Automata. A finite tree automaton over F is a tuple A = 〈Q, F , Qf , Δ〉
where Q is a finite set of states, F is a finite alphabet, Qf ⊆ Q is a set of final
states, and Δ is a set of transitions (i.e., a relation) of the form f(q1, . . . , qk) → q
for q, q1, . . . , qk ∈ Q, f ∈ Fk.

A run of A on a tree t is a labeling r : dom(t) → Q such that t(�) → r(�) ∈ Δ
for each leaf �, and t(n)(r(n · 1), . . . , r(n · k)) → r(n) ∈ Δ for each internal node
n. A run r is accepting if r(Λ) ∈ Qf , and we say that a tree t is accepted by A if
there exists an accepting run of A on t. The language of A, denoted L(A) is the
set of trees which are accepted by A. A tree language L is regular if there exists
a finite tree automaton A such that L = L(A).

Example 4. Regular tree languages can specify many interesting properties of
sagas. For example, the property “all b-actions occur (sequentially) after all
a-actions,” over the actions {a, b, c}, is specified by the tree automaton A =
〈{qa, qb, qc, qf}, {a, b, c, σ;, σ‖}, {qa, qb, qc, qf}, Δ〉, where Δ contains the transi-
tions:

a → qa b → qb c → qc

σ;(qa, qb) → qf σ;(qa, qf) → qf σ;(qf , qb) → qf

σ‖(qc, q) → q σ‖(q, qc) → q σ‖(qa, qa) → qa σ‖(qb, qb) → qb

σ;(qc, q) → q σ;(q, qc) → q σ;(qa, qa) → qa σ;(qb, qb) → qb

for q ∈ {qa, qb, qc, qf}. Given a tree t ∈ L(A) where both a and b occur (as leaves)
in t, let r be an accepting run of A on t. The transitions of A ensure that there
is some internal node n such that every ancestor of n is labeled with qf , and no
descendant of n is labeled with qf . This path of qf -labeled nodes in r divides t:
no a’s (b’s, resp.) can occur in a right-subtree (left-subtree, resp.) of a qf -labeled
node. On the other hand, every such tree is accepted by A.

Unfortunately, as Example 5 shows, the yield language of a saga may be non-
regular, and hence we must expand the expressive power of finite tree automata
to model the yield language of sagas. The extended model we consider allows a
tree automaton to use an arbitrarily large memory.

Example 5. Consider the simple saga S = 〈{a, b}, {s}, s, s �→ {[s‖a ÷ b]}〉 for
which any finite run must reach a failure, resulting in an observation of a’s
followed sequentially by b’s. The yield language L(S) consists of the set of bi-
nary trees where the root node is a sequential composition, and each subtree’s

38 M. Emmi and R. Majumdar

internal nodes are parallel compositions. Every leaf of the left subtree is labeled
with a, while every leaf of the right subtree is labeled with b, and there are at
least as many a’s as b’s. This tree language is not regular.

Tree Automata with One Memory. A more powerful family of tree automata
can be obtained by extending the finite tree automata with a tree-structured
memory for which equality of the memory built from subtrees can be enforced.
Given a ranked memory alphabet Γ , define ΦΓ as the smallest set of composition-
closed functions over Trees(Γ) where (1) if f ∈ Γn then the constructor function
λx1, . . . , xn.f(x1, . . . , xn) is in ΦΓ ; (2) if n ∈ N and 0 < i ≤ n, then the pro-
jection function λx1, . . . , xn.xi is in ΦΓ ; (3) if f ∈ Γn and 0 < i ≤ n, then
the pattern matching (partial) function that associates each term f(t1, . . . , tn)
with ti, written λf(x1, . . . , xn).xi, is in ΦΓ . A tree automaton with one memory
(TAWOM) [7] A = 〈F , Γ, Q, Qf , Δ〉 consists of an input alphabet F , an alpha-
bet Γ of memory symbols, a set Q of states, a set Qf ⊆ Q of final states, and
a transition relation Δ. The transition relation Δ is given as a set of transitions
of the form

f(q1, . . . , qn) c−→
F

q

where q1, . . . , qn, q ∈ Q, f ∈ Fn, c ⊆ {1, . . . , n}2 defines an equivalence relation
of index m on {1, . . . , n}, and λx1, . . . , xm.F (x1, . . . , xm) is a function from ΦΓ .
We often denote the function λx.F (x) ∈ ΦΓ simply as F , and the composition
of functions F, G ∈ ΦΓ (when F and G are naturally composable) as F · G.

A configuration of A is a pair 〈q, γ〉 of a state q ∈ Q and memory term
γ ∈ Trees(Γ). Intuitively, a TAWOM constructs a configuration in a bottom-
up manner, computing the new memory state from the memory states of each
child. The transitions also check for equality between the children’s memory
states, based on the given equivalence relation.

A run of A is a labeling r : dom(t) → Q × Trees(Γ) such that for each leaf �,

t(�) −−−→
r(�)2

r(�)1 ∈ Δ

(where we use subscripts for tuple indexing), and for each internal node n with
t(n) of arity k, there exists F ∈ ΦΓ such that

t(n)(r(n · 1)1, . . . , r(n · k)1)
c−→
F

r(n)1 ∈ Δ

and F (r(n · 1)2, . . . , r(n · m)2) = r(n)2,

where c is of index m, and r(n · i)2 = r(n · j)2 when i ≡c j, for i, j ∈ {1, . . . , k}.
A run r is accepting if r(Λ) ∈ Qf , and the language of A, denoted L(A), is the
set of trees on which there exist accepting runs of A.

Example 6. TAWOM can encode pushdown automata [7]: a transition (q, α ·
γ) a−→ (q′, β ·γ) from the state q and stack α·γ on letter a to the state q′ and stack
β · γ can be written (considering letters as unary symbols) as a(q) −−−−−−→

λx.βα−1x
q′.

Verifying Compensating Transactions 39

Example 7. The yield language of the saga {[s‖a ÷ b]} from Example 5 is ac-
cepted by the automaton A = 〈{a, b, σ‖, σ;}, {γ0, γ}, {qa, qb, qf}, {qa, qf}, Δ〉
where Δ contains the following transitions:

σ‖(qa, qa) �−−−−−−−−−−→
λx1,x2.γ(x1,x2)

qa σ‖(qb, qb)
�−−−−−−−−−−→

λx1,x2.γ(x1,x2)
qb

σ‖(qa, qa) �−−−−−−→
λx1,x2.x1

qa σ‖(qa, qa) �−−−−−−→
λx1,x2.x2

qa

σ;(qa, qb)
1=2−−→ qf a

�−→
γ0

qa b
�−→
γ0

qb

Note that the equivalence relation {〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉} is here denoted by
1 = 2, and � denotes the identity relation. An accepting run of A can successfully
match the right subtree’s memory state with the left subtree’s memory state,
as σ; is consumed, only when there are least as many a’s as b’s. The frequency
of the memory symbol γ0 is the exact number of b’s, and a lower-bound of the
number of a’s.

Lemma 1. 1. The class TAWOM is closed under intersection with finite tree
automata.

2. The emptiness problem for TAWOM is decidable in time exponential in the
size of the automaton.

3. For a TAWOM A and a finite tree automaton B, L(A) ⊆ L(B) is decidable
in time exponential in the size of A and doubly exponential in the size of B.

Proof. The first result is by a product construction. The second result is from
[7], and the third is immediate from the complementation of finite tree automata
[8], the product construction, and part (2). ��

4.3 Verification in the Tree Semantics

We now give an algorithm for the automata-theoretic verification of regular tree
specifications. Our main technical construction is a TAWOM that accepts the
yield language of a saga.

For a saga S = 〈Σ, X, s0, T 〉, define the reachable terms of T
Σ,X from s0,

denoted Reach(TΣ,X , s0), to be the smallest set which includes s0 and is closed
under T (·), and the inverses of {[·]}, ;, ‖, and ⊕.

Theorem 2. For every saga S there exists a tree automaton with one memory
A such that L(S) = L(A).

In our construction, the transitions of A encode the semantics of sagas as given
in section 2. For clarity, we deal only with the transitions generating yield-
trees of successfully compensated computations (including computations that
need not compensate). The transitions for failed compensations, which finish
with the abort outcome, are similar; the main technical difference is that the
TAWOM projection functions become necessary. Because of this, and the hand-
coded nature of the previous example, the automaton of example 7 does not
match up exactly with the one constructed by our theorem, which is a much
larger automaton.

40 M. Emmi and R. Majumdar

Proof. Fix the saga S = (Σ, X, s0, T). We define the tree automaton with one
memory A = (F , Γ, Q, Qf , Δ) in what follows. The states of A are the reachable
terms of S combined with outcomes:

Q =
{

〈t, �〉, 〈t, �〉c

∣∣∣∣ t ∈ Reach(TΣ,X , s0)
� ∈ {�, �, ∗}

}
,

while the final states are Qf = {s0} × {�, �, ∗}, the input alphabet is F =
Σ ∪{σ;, σ‖}, and the memory alphabet is Γ = {γt | t ∈ Reach(TΣ,X , s0)}, where
the arity of γt is the arity of the top level operator in t (e.g., γt1;t2 ∈ Γ2). The
states of A encode the outcomes for executions of particular terms, and the
superscript c of a state 〈t, �〉c is used for the outcome of a compensation for
the term t. The trees Trees(F) encode execution observations of S, which can
be decoded by in-order traversal, and the trees Trees(Γ) encode compensation
stacks.

In what follows we present a definition schema for the transition relation, and
define Δ to be the smallest relation satisfying our schema. By convention we de-
note an arbitrary equivalence relation with e, a state of A with q, and a function
from ΦΓ with ϕ. The function flip is defined as λx1, x2.x2, x1. Throughout our
schema, we enforce the following properties:

(P1) For every closest 〈{[t]}, �〉-labeled ancestor n of a 〈t, �〉-state in an accepting
run t, t(n · 1) is a compensation tree of t(n · 0). This property ensures that
when a subtransaction {[t]} fails with the observation tree t(n·0), the proper
compensating actions are observed in t(n · 1).

(P2) A term which does not complete any action does not appear in an accepting
run. This property is a technical convenience; without this, the automaton
we defined would necessarily accept trees with 0-labeled leaves.

The definition schema is as follows.

Atomic actions. The atomic actions generate the leaves of memory and obser-
vation trees. For reachable atomic terms a ÷ b,

a
�−−−→

γa÷b

〈a ÷ b, �〉 and b
�−−−→

γa÷b

〈a ÷ b, �〉c

handle the execution of a, and allow for the compensation b to execute. This
takes care of the rule (atom-s) from table 1, while the rule (atom-f) is taken
care of by (P1).

Sequential composition. The memory trees at σ;-labeled nodes must be re-
versed when constructing the compensation’s memory tree; thus we apply the
flip function. For reachable sequential terms t1; t2 and outcomes � ∈ {�, �},

σ;(〈t1, �〉, 〈t2, �〉) �−−−→
γt1;t2

〈t1; t2, �〉

and σ;(〈t1, �〉c, 〈t2, �〉c) �−−−−−−→
γt1;t2 ·flip

〈t1; t2, �〉c

Verifying Compensating Transactions 41

partially handle rule (seq-s), where t1 completes successfully but t2 may fail
after performing at least one action, whereas the transitions generated by

if q
e−→
ϕ

〈t1, �〉 then q
e−→
ϕ

〈t1; t2, �〉 and if q
e−→
ϕ

〈t1, �〉c then q
e−→
ϕ

〈t1; t2, �〉c

handle the cases where t1 completes but t2 fails before completing any action,
or t1 fails after completing at least one action, as in rule (seq-fa). Note that
the case where t1 fails before completing any action corresponds to an empty
F -subtree for t1; t2, and is taken care of by (P2).

Parallel composition. With parallel threads, we get away without needing the
� outcome by the invoking property (P2). For reachable parallel terms t1‖t2 and
outcomes �1, �2 ∈ {�, �},

σ‖(〈t1, �1〉, 〈t2, �2〉) �−−−−→
γt1‖t2

〈t1‖t2, �1 ∧ �2〉

and σ‖(〈t1, �〉c, 〈t2, �〉c) �−−−−→
γt1‖t2

〈t1‖t2, �〉c

handle rule (par-s) where t1 and t2 may complete successfully, and partially
rule (par-f) where t1 or t2 fail after completing at least one action, whereas the
transitions generated by

if q
e−→
ϕ

〈ti, �i〉 then q
e−→
ϕ

〈t1‖t2, �〉 and if q
e−→
ϕ

〈ti, �〉c then q
e−→
ϕ

〈t1‖t2, �〉c,

for i ∈ {1, 2}, handle the other cases of (par-f) where one parallel branch fails
before completing any action. Again the case where both branches fail before
completing any action is taken care of by (P2).

Nondeterministic choice. The rule (nondet) of table 1 is taken care of by
closing our transitions over nondeterministic terms. For the reachable terms
t1 ⊕ t2, i ∈ {1, 2}, and outcomes � ∈ {�, �}, the transitions generated by

if q
e−→
ϕ

〈ti, �〉 then q
e−→
ϕ

〈t1 ⊕ t2, �〉

and if q
e−→
ϕ

〈ti, �〉c then q
e−→
ϕ

〈t1 ⊕ t2, �〉c

coincide exactly with (nondet).

Subtransactions. For the reachable subtransaction terms {[t]}, the transitions
generated by

if q
e−→
ϕ

〈t, �〉 then q
e−→
ϕ

〈{[t]}, �〉 and if q
e−→
ϕ

〈t, �〉c then q
e−→
ϕ

〈{[t]}, �〉c

take care of successful completion, as in rules (sub-s) and (saga), while com-
pensated completions of (sub-f) and (saga) are handled by

σ;(〈t, �〉, 〈t, �〉c) 1=2−−−→
γ{[t]}

〈{[t]}, �〉 and 0 �−−−→
γ{[t]}

〈{[t]}, �〉c.

42 M. Emmi and R. Majumdar

The first group of transitions here helps ensure (P1) by enforcing identical
memory-trees between a partially-completed subtransaction and its compensa-
tion. The second group is used to match a completed (but locally failed, and
thus already compensated for) subtransaction with a null compensation. Note
that while technically we do not want to consider leaves labeled with 0, it is
possible to replace the previous set of transitions with a more complicated set
which introduces the memory symbol γ{[t]} arbitrarily at any place in the tree.

For the reachable variables x ∈ X and outcomes � ∈ {�, �}, the transitions
generated by

if q
e−→
ϕ

〈T (x), �〉 then q
e−→
ϕ

〈x, �〉 and if q
e−→
ϕ

〈T (x), �〉c then q
e−→
ϕ

〈x, �〉c

allow named subtransactions, as in (var).

It is not difficult to check that properties (P1) and (P2) are preserved in our
schema, and that the language of A is the yield language of S. ��

From this construction, and Lemma 1, we get the main result.

Corollary 1. [Saga Verification] For every saga S and regular tree language
specification (given as a nondeterministic finite tree automaton B), the verifica-
tion problem L(S) ⊆ L(B) can be decided in time exponential in the size of S
and doubly exponential in the size of B.

This provides an exponential time algorithm in the size of the structure. On
the other side, the problem is PSPACE-hard in both the structure and the
specification, by reduction from term reachability of process algebras [16] and
universality of word automata respectively.

5 Conclusions and Future Work

We have presented a first step towards automatic verification of business pro-
cesses with compensations. While this paper provides a complexity-theoretic
upper bound on the complexity of model checking, engineering effort is needed
before we can obtain a practical tool for business process verification. Among
other things, this means that our algorithms must be extended to model dataflow
as well as deal with programming language features that are absent in the ab-
stract formulation.

References

1. bpel Specification v 1.1.http://www.ibm.com/developerworks/library/ws-bpel.
2. Business Process Modeling Language bpml. http://www.bpmi.org/.
3. R. Bruni, M.J. Butler, C. Ferreira, C.A.R. Hoare, H.C. Melgratti, and U. Monta-

nari. Comparing two approaches to compensable flow composition. In CONCUR
05, LNCS 3653, pages 383–397. Springer, 2005.

http://www.ibm.com/developerworks/library/ws-bpel
http://www.bpmi.org/

Verifying Compensating Transactions 43

4. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensa-
tions in flow composition languages. In POPL 05, pages 209–220, 2005. ACM.

5. M. Butler and C. Ferreira. An operational semantics for StAC, a language for
modeling business transactions. In Proc. Co-ordination 04, LNCS 2429, pages
87–104. Springer, 2004.

6. M. Butler, C.A.R. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In Proc. 25 years of CSP, LNCS 3525, pages 133–150. Springer,
2005.

7. H. Comon, V. Cortier, and J. Mitchell. Tree automata with one memory, set
constraints, and ping-pong protocols. In ICALP 01, pages 682–693, 2001. Springer.

8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

9. A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web
services. In PODS 04, pages 71–82. ACM, 2004.

10. X. Fu, T. Bultan, and J. Su. Conversation protocols: A formalism for specification
and verification of reactive electronic services. In CIAA 03, LNCS 2759, pages
188–200. Springer, 2003.

11. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In WWW
04, pages 621–630. ACM, 2004.

12. H. Garcia-Molina and K. Salem. Sagas. In SIGMOD 87, pages 249–259. ACM,
1987.

13. J. Gray and A. Reuter. Transaction processing: Concepts and techniques. Morgan
Kaufmann, 1993.

14. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind the
curtain. In PODS 03, pages 1–14. ACM, 2003.

15. A. Kučera and R. Mayr. Simulation preorder over simple process algebras. Info.
and Comp., 173:184–198, 2002.

16. R. Mayr. Decidability of model checking with the temporal logic EF. TCS, 256,
31–62, 2001.

17. Web Services Conversation Language wscl 1.0. http://www.w3.org/TR/wscl10/.
18. wsfl Specification v 1.0. http://www-306.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf.

http://www.w3.org/TR/wscl10/
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

	Introduction
	Sagas with Compensation
	Trace Semantics
	Tree Semantics
	Yield Language of a Saga
	Tree Automata with One Memory
	Verification in the Tree Semantics

	Conclusions and Future Work

