
Verifying Computations with Streaming Interactive Proofs

Graham Cormode
AT&T Labs—Research

graham@research.att.com

Justin Thaler ∗

SEAS, Harvard University
jthaler@seas.harvard.edu

Ke Yi†

HKUST, Hong Kong
yike@cse.ust.hk

ABSTRACT
When computation is outsourced, the data owner would like to be
assured that the desired computation has been performed correctly
by the service provider. In theory, proof systems can give the nec-
essary assurance, but prior work is not sufficiently scalable or prac-
tical. In this paper, we develop new proof protocols for verify-
ing computations which are streaming in nature: the verifier (data
owner) needs only logarithmic space and a single pass over the in-
put, and after observing the input follows a simple protocol with
a prover (service provider) that takes logarithmic communication
spread over a logarithmic number of rounds. These ensure that the
computation is performed correctly: that the service provider has
not made any errors or missed out some data. The guarantee is
very strong: even if the service provider deliberately tries to cheat,
there is only vanishingly small probability of doing so undetected,
while a correct computation is always accepted.

We first observe that some theoretical results can be modified
to work with streaming verifiers, showing that there are efficient
protocols for problems in the complexity classes NP and NC. Our
main results then seek to bridge the gap between theory and prac-
tice by developing usable protocols for a variety of problems of
central importance in streaming and database processing. All these
problems require linear space in the traditional streaming model,
and therefore our protocols demonstrate that adding a prover can
exponentially reduce the effort needed by the verifier. Our experi-
mental results show that our protocols are practical and scalable.

1. INTRODUCTION
Efficient verification of computations has long played a central

role in computer science. For example, the class of problems NP
can be defined as the set of languages with certificates of member-
ship that can be verified in polynomial time [2]. The most general
verification model is the interactive proof system where there is a
resource-limited verifier V and a more powerful proverP [2, Chap-
ter 8]. To solve a problem, the verifier initiates a conversation with
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the prover, who solves the problem and proves the validity of his
answer, following an established (randomized) protocol.

This model can be applied to the setting of outsourcing compu-
tations to a service provider. A wide variety of scenarios fit this
template: in one extreme, a large business outsources its data to
another company to store and process; at the other end of the scale,
a hardware co-processor performs some computations within an
embedded system. Over large data, the possibility for error in-
creases: events like disk failure and memory read errors, which
are usually thought unlikely, actually become quite common. A
service provider who is paid for computation also has an economic
incentive to take shortcuts, by returning an approximate result or
only processing a sample of the data rather than the full amount.
Hence, in these situations the data owner (the verifier in our model)
wants to be assured that the computations performed by the ser-
vice provider (the prover) are correct and complete, without having
to take the effort to perform the computation himself. A natural
approach is to use a proof protocol to prove the correctness of the
answer. However, existing protocols for reliable delegation in com-
plexity theory have so far been of theoretical interest: to our knowl-
edge there have been no efforts to implement and use them. In part,
this is because they require a lot of time and space for both parties.
Historically, protocols have required the verifier to retain the full
input, whereas in many practical situations the verifier cannot af-
ford to do this, and instead outsources the storage of the data, often
incrementally as updates are seen.

In this paper we introduce a proof system over data streams. That
is, the verifier sees a data stream and tries to solve a (potentially
difficult) problem with the help of a more powerful prover who
sees the same stream. At the end of the stream, they conduct a
conversation following an established protocol, through which an
honest prover will always convince the verifier to accept its results,
whereas any dishonest prover will not be able to fool the verifier
into accepting a wrong answer with more than tiny probability.

Our work is motivated by developing applications in data out-
sourcing and trustworthy computing in general. In the increasingly
popular model of “cloud computing”, individuals or small busi-
nesses delegate the storage and processing of their data to a more
powerful third party, the “cloud”. This results in cost-savings, since
the data owner no longer has to maintain expensive data storage and
processing infrastructure. However, it is important that the data
owner is fully assured that their data is processed accurately and
completely by the cloud. In this paper, we provide protocols which
allow the cloud to demonstrate that the results of queries are correct
while keeping the data owner’s computational effort minimal.

Our protocols only need the data owner (taking the role of veri-
fier V) to make a single streaming pass over the original data. This
fits the cloud setting well: the pass over the input can take place



incrementally as the verifier uploads data to the cloud. So the ver-
ifier never needs to hold the entirety of the data, since it can be
shipped up to the cloud to store as it is collected. Without these
new protocols, the verifier would either need to store the data in
full, or retrieve the whole data from the cloud for each query: either
way negates the benefits of the cloud model. Instead, our methods
require the verifier to track only a logarithmic amount of informa-
tion and follow a simple protocol with logarithmic communication
to verify each query. Moreover, our results are of interest even
when the verifier is able to store the entire input: they offer very
lightweight and powerful techniques to verify computation, which
happen to work in a streaming setting.
Motivating Example. For concreteness, consider the motivating ex-
ample of a cloud computing service which implements a key-value
store. That is, the data owner sends (key, value) pairs to the cloud
to be stored, intermingled with queries to retrieve the value asso-
ciated with a particular key. For example, Dynamo supports two
basic operations: get and put on key, value pairs [9]. In this sce-
nario, the data owner never actually stores all the data at the same
time (this is delegated to the cloud), but does see each piece as it is
uploaded, one at a time: so we can think of this as giving a stream
of (key, value) pairs. Our protocols allow the cloud to demonstrate
that it has correctly retrieved the value of a key, as well as more
complex operations, such as finding the next/previous key, finding
the keys with large associated values, and computing aggregates
over the key-value pairs (see Section 1.1 for definitions).

Initial study in this area has identified the two critical parameters
as the space used (by the verifier) and the total amount of commu-
nication between the two parties [6]. There are lower bounds which
show that for many problems, the product of these two quantities
must be at least linear in the size of the input when the verifier is
not allowed to reply to the prover [6]. We use the notation of [6]
and define an (s, t)-protocol to be one where the space usage of V
is O(s) and the total communication cost of the conversation be-
tween P and V is O(t). We will measure both s and t in terms of
words, where each word can represent quantities polynomial in u,
the size of the universe over which the stream is defined. We addi-
tionally seek to minimize other quantities, such as the time costs of
the prover and verifier, and the number of rounds of interaction.

Note that if t = 0 the model degenerates to the standard streaming
model. We show that it is possible to drastically increase the com-
puting power of the standard streaming model by allowing commu-
nication with a third party, verifiably solving many problems that
are known to be hard in the standard streaming model.

We begin by observing that a key concept in proof systems, the
low-degree extension of the input can be evaluated in a stream-
ing fashion. Via prior results, this implies that (1) all problems
in the complexity class NP have computationally sound protocols,
so a dishonest prover cannot fool the verifier under standard crypto-
graphic assumptions; and (2) all problems in NC have statistically
sound protocols, meaning that the security guarantee holds even
against computationally unbounded adversaries. These protocols
have space and communication that is polynomial in the logarithm
of the size of the input domain, u. These results can be contrasted
with most results in the streaming literature, which normally apply
only to one or a few problems at a time [21]. They demonstrate in
principle the power of the streaming interactive proof model, but
do not yield practical verification protocols.

Our main contributions in this paper are to provide protocols
that are easy to implement and highly practical, for the following
problems: self join size, inner product, frequency moments, range
query, range-sum query, dictionary, predecessor, and index. These
problems are all of considerable importance and all have been stud-

ied extensively in the standard streaming model and shown to re-
quire linear space [21]. As a result, approximations have to be
allowed if sub-linear space is desired (for the first 3 problems);
some of the problems do not have even approximate streaming al-
gorithms (the last 5 problems). On the other hand, we solve them
all exactly in our model. Our results are also asymptotically more
efficient than those which would follow from the above theoretical
results for NC problems. Formal definitions are in Section 1.1.

As well as requiring minimal space and communication for the
verification, these new protocols are also very efficient in terms
of both parties’ running time. In particular, when processing the
stream, the verifier spends O(logu) time per element. During veri-
fication the verifier spends O(logu) time while the (honest) prover
runs in near-linear time. Thus, while our protocols are secure against
a prover with unlimited power, an honest prover can execute our
protocols efficiently. This makes our protocols simple enough to
be deployed in real computation-outsourcing situations.

Prior Work. Cloud computing applications have also motivated
a lengthy line of prior work in the cryptography community on
“proofs of retrievability”, which allow to verify that data is stored
correctly by the cloud (see [16] and the references therein). In this
paper, we provide “proofs of queries” which allow the cloud to
demonstrate that the results of queries are correct while keeping
the data owner’s computational effort minimal.

Query verification/authentication for data outsourcing has been
a popular topic recently in the database community. The majority
of the work still requires the data owner to keep a full copy of the
original data, e.g., [27]. More recently, there have been a few works
which adopt a streaming-like model for the verifier, although they
still require linear memory resources. For example, maintaining a
Merkle tree [20] (a binary tree where each internal node is a cryp-
tographic hash of its children) takes space linear in the size of the
tree. Li et al. [19] considered verifying queries on a data stream
with sliding windows via Merkle trees, hence the verifier’s space
is proportional to the window size. The protocol of Papadopoulos
et al. [22] verifies a continuous query over streaming data, again
requiring linear space on the verifier’s side in the worst case.

Although interactive proof systems and other notions of verifica-
tion have been extensively studied, they are mainly used to establish
complexity results and hardness of approximation. Because they
are usually concerned with answering “hard” problems, the (hon-
est) prover’s time cost is usually super-polynomial. Hence they
have had little practical impact [26]. Recently, [14] reduced the
cost of the prover to polynomial. Although of striking generality,
the protocols that result are still complex, and require (polyloga-
rithmically) many words of space and rounds of interaction. In
contrast, our protocols for the problems defined in Section 1.1 re-
quire only logarithmic space and communication (and nearly linear
running time for both prover and verifier). Thus we claim that they
are practical for use in verifying outsourced query processing.

Our work is most directly motivated by prior work [28, 6] on ver-
ification of streaming computations that had stronger constraints.
In the first model [28], the prover may send only the answer to
the computation, which must be verified by V using a small sketch
computed from the input stream of size n. Protocols were defined
to verify identity and near-identity, and so because of the size of
the answer, had small space (s = 1) and but large communica-
tion (t = n). Subsequent work showed that problems of showing a
matching and connectedness in a graph could be solved in the same
bounds, in a model where the prover’s message was restricted to be
a permutation of the input alone [23].

[6] introduced the notion of a streaming verifier, who must read
first the input and then the proof under space constraints. They



allowed the prover to send a single message to the verifier, with
no communication in the reverse direction. However, this does
not dramatically improve the computational power. In this model,
INDEX (see the definition in Section 1.1) can be solved using a
(
√

n,
√

n)-protocol and there is also a matching lower bound of
s · t = Ω(n) [6]; note that both (n,1)- and (1,n)-protocols are easy,
so the contribution of [6] is achieving a tradeoff between s and t.
In this paper, we show that allowing more interaction between the
prover and the verifier exponentially reduces s · t for this and other
problems that are hard in the standard streaming model.

1.1 Definitions and Problems
We first formally define a valid protocol:

DEFINITION 1. Consider a prover P and verifier V who both
observe a stream A and wish to compute a function β (A). We
assume V has access to a private random string R, and one-way
access to the input A. After the stream is observed, P and V ex-
change a sequence of messages. Denote the output of V on input
A, given prover P and random string R, by out(V,A,R,P). We
allow V to output ⊥ if V is not convinced that P’s claim is valid.

Call P a valid prover with respect to V if for all streams A,
PrR[out(V,A,R,P) = β (A)] = 1. Call V a valid verifier for β if

1. There exists at least one valid prover P with respect to V .
2. For all provers P ′ and all streams A,

PrR[out(V,A,R,P ′) 6∈ {β (A),⊥}]≤ 1/3.

Property 2 of Definition 1 defines statistical soundness. No-
tice the constant 1

3 is arbitrary, and is chosen for consistency with
standard definitions in complexity theory [2]. This should not be
viewed as a limitation: note that as soon as we have such a prover,
we can reduce probability of error to p, by repeating the protocol
O(log1/p) times in parallel, and rejecting if any rejects. In fact, our
protocols let this probability be set arbitrarily small by appropriate
choice of a parameter (the size of the finite field used), without
needing to repeat the protocol.

DEFINITION 2. We say the function β possesses an r-round
(s, t) protocol, if there exists a valid verifier V for β such that:

1. V has access to only O(s) words of working memory.
2. There is a valid prover P for V such that P and V exchange

at most 2r messages (r messages in each direction), and the sum of
the lengths of all messages is O(t) words.

We define some canonical problems to represent common queries
on outsourced data, such as in a key-value store. Denote the uni-
verse from which data elements are drawn. as [u] = {0, . . . ,u−1}.

INDEX: Given a stream of u bits b1, . . . ,bu, followed by an index
q, the answer is bq.

DICTIONARY: The input is a stream of n ≤ u (key, value) pairs,
where both the key and the value are drawn from the universe [u],
and all keys are distinct. The stream is followed by a query q ∈ [u].
If q is one of the keys, then the answer is the corresponding value;
otherwise the answer is “not found”. This exactly captures the case
of key-value stores such as Dynamo [9].

PREDECESSOR Given a stream of n elements in [u], followed by
a query q ∈ [u], the answer is the largest p in the stream such that
p≤ q. We assume that 0 always appears in the stream. SUCCESSOR
is defined symmetrically. In a key-value store, this corresponds to
finding the previous (next) key present relative to a query key.

RANGE QUERY: Given a stream of n elements in [u], followed by
a range query [qL,qR], the answer is the set of all elements in the
stream between qL and qR inclusive.

RANGE-SUM: The input is a stream of n (key, value) pairs, where
both the key and the value are drawn from the universe [u], and all
keys are distinct. The stream is followed by a range query [qL,qR].
The answer is the sum of all the values with keys between qL and
qR inclusive.
SELF-JOIN SIZE: Given a stream of n elements from [u], compute
∑i∈[u] a2

i where ai is the number of occurrences of i in the stream.
This is also known as the second frequency moment.
FREQUENCY MOMENTS: In general, for any integer k≥ 1, ∑i∈[u] ak

i
is called the k-th frequency moment of the vector a, written Fk(a).
INNER PRODUCT (or JOIN SIZE): Given two streams A and B with
frequency vectors (a1, . . . ,au) and (b1, . . . ,bu), compute ∑i∈[u] aibi.

These queries are broken into two groups. The first four are re-
porting queries, which ask for elements from the input to be re-
turned. INDEX is a classical problem that in the streaming model
requires Ω(u) space [18]. It is clear that PREDECESSOR, DICTIO-
NARY, RANGE QUERY, RANGE-SUM are all more general than IN-
DEX and hence, also require linear space. These problems would be
easy if the query were fixed before the data is seen. But in most ap-
plications, the user (the verifier) forms queries in response to other
information that is only known after the data has arrived. For ex-
ample, in database processing a typical range query may ask for
all people in a given age range, where the range of interest is not
known until after the database is instantiated.

The remaining queries are aggregation queries, computations
that combine multiple elements from the input. SELF-JOIN SIZE
requires linear space in the streaming model [1] to solve exactly (al-
though there are space-efficient approximation algorithms). Since
FREQUENCY MOMENTS and INNER PRODUCT are more general
than SELF-JOIN SIZE, they also require linear space. In Section 6,
we consider more general functions, such as heavy hitters, distinct
elements (F0), and frequency-based functions. These functions also
require linear space to solve exactly, and certain functions like Fmax
require polynomial space even to approximate [21]. These are ad-
ditional functionalities that an advanced key-value store might sup-
port. For example, F0 returns the number of distinct keys which
are currently active, and the heavy hitters are the keys which have
the largest values associated with them. These functions are also
important in other contexts, e.g., tracking the heavy hitters over
network data corresponds to the heaviest users or destinations [21].

Outline. In Section 2, we describe how existing proof systems
can be modified to work with streaming verifiers, thereby provid-
ing space- and communication-efficient streaming protocols for all
of NP and NC respectively. Subsequently, we improve upon these
protocols for many problems of central importance in streaming
and database processing. In Section 3 we give more efficient proto-
cols to solve the aggregation queries (exactly), and in Section 4 we
provide protocols for the reporting queries. In both cases, our pro-
tocols require only O(logu) space for the verifier V , and O(logu)
words of communication spread over logu rounds. An experimen-
tal study in Section 5 shows that these protocols are practical. In
Section 6 we extend this approach to a class of frequency-based
functions, providing protocols requiring O(logu) space and logu
rounds, at the cost of more communication.

2. PROOFS AND STREAMS
We make use of a central concept from complexity theory, the

low-degree extension (LDE) of the input, which is used in our pro-
tocols in the final step of checking. We explain how an LDE com-
putation can be made over a stream of updates, and describe the
immediate consequences for prior work which used the LDE.



Input Model. Each of the problems described in Section 1.1 above
operates over an input stream. More generally, in all cases we can
treat the input as defining an implicit vector a, such that the value
associated with key i is the ith entry, ai. The vector a has length u,
which is typically too large to store (e.g. u = 2128 if we consider
the space of all possible IPv6 addresses). At the start of the stream,
the vector a = (a0, . . . ,au−1) is initialized to 0. Each element in the
stream is a pair of values, (i,δ ) for integer δ . A pair (i,δ ) in the
stream updates ai← ai +δ . This is a very general scenario: we can
interpret pairs as adding to a value associated with each key (we
allow negative values of δ to capture decrements or deletions). Or,
if each i occurs at most once in the stream, we can treat (i,δ ) as
associating the value δ with the key i.

Low-Degree Extensions. Given an input stream which defines a
vector a, we define a function fa which is used in our protocols to
check the prover’s claims. Conceptually, we think of the vector a
in terms of a function fa, so that fa(i) = ai. By interpolation, fa(i)
can be represented as a polynomial, which is called the low-degree
extension (LDE) of a [2]. LDEs are a standard tool in complexity
theory. They give V surprising power to detect deviations by P
from the prescribed protocol.

Given the LDE polynomial fa, we can also evaluate it at a loca-
tion r > u. In our protocols, the verifier picks a secret location r
and computes fa(r). In what follows, we formalize this notion, and
explain how it is possible to compute fa(r) in small space, incre-
mentally as stream updates are seen.

First, we conceptually rearrange the data from a one-dimensional
vector to a d dimensional array. We let integer ` be a parameter,
and assume for simplicity that u = `d is a power of `. Let a =
(a1, . . . ,au) be a vector in [u]u. We first interpret a as a function f ′a :
[`]d → [u] as follows: letting (i)`k denote the k-th least significant
digit of i in base-` representation, we associate each i ∈ [u] with a
vector ((i)`1,(i)

`
2, . . . ,(i)

`
d) ∈ [`]d , and define f ′a(i) = ai.

Pick a prime p such that u≤ p. The low-degree extension (LDE)
of a is a d-variate polynomial fa over the field Zp so that fa(x) =
f ′a(x) for all x ∈ [`]d . Notice since fa is a polynomial over the
field Zp, fa(x) is defined for all x ∈ [p]d ; fa essentially extends the
domain of f ′a from [`]d to [p]d . Let x = (x1, . . . ,xd)∈ [p]d be a point
in this d dimensional space. The polynomial fa : [p]d → Zp can be
defined in terms of an indicator function χv which is 1 at location
v = (v1, . . . ,vd) ∈ [`]d and zero elsewhere in [`]d via

χv(x) = ∏
d
j=1 χv j (x j) (1)

where χk(x j) is the Lagrange basis polynomial given by

(x j−0) · · ·(x j− (k−1))(x j− (k +1)) · · ·(x j− (`−1))
(k−0) · · ·(k− (k−1))(k− (k +1)) · · ·(k− (`−1))

, (2)

which has the property that χk(x j) = 1 if x j = k and 0 for all x j 6= k,
x j ∈ [`]. We then define fa(x) = ∑v∈[`]d avχv(x), which meets the
requirement that fa(x) = f ′a(x) when x ∈ [`]d

Streaming Computation of LDE. We observe that while the poly-
nomial fa is defined over the very large domain [p]d , it is actually
very efficient to evaluate fa(r) for some r ∈ [p]d even when the in-
put a is defined incrementally by a stream as in our input model.
This follows from substituting r into (1): we obtain

fa(r) = ∑v∈[`]d avχv(r). (3)

Now observe that for fixed r this is a linear function of a: a sum
of multiples of the entries av. So to compute fa(r) in a streaming
fashion, we can initialize f0(r) = 0, and process each update (i,δ ):

fa(r)← fa(r)+δ χv(i)(r) (4)

where v(i) denotes the (canonical) remapping of i into [`]d . Note
that χv(r) can be computed in (at most) O(d`) field operations, via
(2); and V only needs to keep fa(r) and r, which takes d +1 words
in [p]. Hence, we conclude

THEOREM 1. The LDE fa(r) can be computed over a stream
of updates using space O(d) and time per update O(`d).

Initial Results. We now describe results which follow by com-
bining the streaming computation of LDE with prior results. De-
tailed analysis is in Appendix A. The constructions of [14] (respec-
tively, [17]) yield small-space non-streaming verifiers and polylog-
arithmic communication for all problems in log-space uniform NC
(respectively, NP), and achieve statistical (respectively, computa-
tional) soundness. The following theorems imply that both con-
structions can be implemented with a streaming verifier.

THEOREM 2. There are computationally sound (poly logu, logu)
protocols for any problem in NP.

Although Theorem 2 provides protocols with small space and
communication, this does not yield a practical proof system. Even
ignoring the complexity of constructing a PCP, the prover in a Uni-
versal Argument may need to solve an NP-hard problem just to
determine the correct answer. However, Theorem 2 does demon-
strate that in principle it is possible to have extremely efficient veri-
fication systems with streaming verifiers even for problems that are
computationally difficult in a non-streaming setting.

THEOREM 3 (EXTENDING THEOREM 3 IN [14]). There are
statistically sound (poly logu, poly logu) protocols for any problem
in log-space uniform NC.

Here, NC is the class of all problems decidable by circuits of poly-
nomial size and polylogarithmic depth; equivalently, the class of
problems decidable in polylogarithmic time on a parallel computer
with a polynomial number of processors. This class includes, for
example, many fundamental matrix problems (e.g. determinant,
product, inverse), and graph problems (e.g. minimum spanning
tree, shortest paths) (see [2, Chapter 6]). Despite its powerful gen-
erality, the protocol implied by Theorem 3 is not optimal for many
important functions in streaming and database applications. The
remainder of this paper obtains improved, practical protocols for
the fundamental problems listed in Section 1.1.

3. INTERACTIVE PROOFS FOR
AGGREGATION QUERIES

We describe a protocol for the aggregation queries with a quadratic
improvement over that obtained from Theorem 3.

3.1 SELF-JOIN SIZE Queries
We first explain the case of SELF-JOIN SIZE, which is F2 =

∑i∈[u] a2
i . In the SELF-JOIN SIZE problem we are promised δ = 1

for all updates (i,δ ), but our protocol works even if we allow any
integer δ , positive or negative. This generality is useful for other
queries considered later.

As in Section 2, let integer ` ≥ 2 be a parameter to be deter-
mined. We assume that u is a power of ` for ease of presentation.
Pick prime p so u ≤ p ≤ 2u (by Bertrand’s Postulate, such a p al-
ways exists). We also assume that p is chosen so that F2 = O(p),
to keep the analysis simple. The protocol we propose is similar
to sum-check protocols in interactive proofs (see [2, Chapter 8]);
given any d-variate polynomial g over Zp, a sum-check protocol
allows a polynomial-time verifier V to compute ∑z∈Hd g(z) for any



H ⊆ Zp, as long as V can evaluate g at a randomly-chosen location
in polynomial time. A sum-check protocol requires d rounds of in-
teraction, and the length of the i’th message from P to V is equal
to degi(g), the degree of g in the i’th variable.

Let a2 denote the entry-wise square of a. A natural first attempt
at a protocol for F2 is to apply a sum-check protocol to the LDE fa2

of a2 i.e. fa2 = ∑v∈[l]d a2
vχv. However, a streaming verifier cannot

evaluate fa2 at a random location because a2 is not a linear trans-
form of the input. The key observation we need is that a streaming
verifier can work with a different polynomial of slightly higher de-
gree that also agrees with a2 on [`]d . Specifically, the polynomial
f 2
a = (∑v∈[l]d avχv)2. That is, V can evaluate the polynomial f 2

a at
a random location r: V computes fa(r) as in Section 2, and uses the
identity f 2

a (r) = fa(r)2. We can then apply a sum-check protocol
to f 2

a in our model; details follow.

The protocol. Before observing the stream, the verifier picks a
random location r = (r1, . . . ,rd) ∈ [p]d . Both prover and verifier
observe the stream which defines a. The verifier V evaluates the
LDE fa(r) in incremental fashion, as described in Section 2.

After observing the stream, the verification protocol proceeds in
d rounds as follows. In the first round, the prover sends a polyno-
mial g1(x1), and claims that

g1(x1) = ∑x2,...,xd∈[`]d−1 f 2
a (x1,x2, . . . ,xd). (5)

Observe that if g1 is as claimed, then F2(a) = ∑x1∈[`] g1(x1).
Since the polynomial g1(x1) has degree 2(`− 1), it can be de-

scribed in 2(`−1)+1 words.
Then, in round j > 1, the verifier sends r j−1 to the prover. In

return, the prover sends a polynomial g j(x j), and claims that

g j(x j) = ∑
x j+1,...,xd∈[`]d− j

f 2
a (r1, . . . ,r j−1,x j,x j+1, . . . ,xd). (6)

The verifier compares the two most recent polynomials by checking

g j−1(r j−1) = ∑x j∈[`] g j(x j)

and rejecting otherwise. The verifier also rejects if the degree of g
is too high: each g should have degree 2(`−1).
In the final round, the prover has sent gd which is claimed to be

gd(xd) = f 2
a (r1, . . . ,rd−1,xd)

The verifier can now check that gd(rd) = f 2
a (r) (recall that the

verifier tracked fa(r) incrementally in the stream). If this test suc-
ceeds (and so do all previous tests), then the verifier accepts, and is
convinced that F2(a) = ∑x1∈[`] g1(x1). We defer the detailed proof
of correctness and the analysis of the prover’s cost to Appendix B.1.

Analysis of space and communication. The communication cost
of the protocol is dominated by the polynomials being sent by the
prover. Each polynomial can be sent in O(`) words, so over the d
rounds, the total cost is O(d`) communication. The space required
by the verifier is bounded by having to remember r, fa(r) and a
constant number of polynomials (the verifier can “forget” interme-
diate polynomials once they have been checked). The total cost of
this is O(d + `) words. Probably the most economical tradeoff is
reached by picking ` = 2 and d = logu, yielding both communi-
cation and space cost for V of O(logu) words.1 Combining these
settings with Lemma 1 and the analysis in Appendix B.1, we have:
1It is possible to tradeoff smaller space for more communication
by, say, setting ` = logε u and d = logu

ε log logu for any small con-

stant ε > 0, which yields a protocol with O( logu
log logu ) space and

O(log1+ε u) communication.

THEOREM 4. There is a (logu, logu)-protocol for SELF-JOIN

SIZE with probability of failure O( logu
p ). The prover’s total time is

O(min(u,n logu/n)); the verifier takes time O(logu) per update.

Remarks. Lemma 1 in Appendix B.1 shows that the failure proba-
bility is 2`d/p = 4logu/p. It can be made as low as O( logu

uc ) for
any constant c, by choosing p larger than uc, without changing the
asymptotic bounds. Notice that the smallest-depth circuit comput-
ing F2 has depth Θ(logu), as any function that depends on all bits of
the input requires at least logarithmic depth. Therefore, Theorem 3
yields a (log2 u, log2 u)-protocol for F2, and our protocol represents
a quadratic improvement in both parameters.

3.2 Other Problems
Our protocol for F2 can be easily modified to support the other

aggregation queries listed in Section 1.1.

Higher frequency moments. The protocol outlined above natu-
rally extends to higher frequency moments, or the sum of any poly-
nomial function of ai. For example, we can simply replace f 2

a with
f k
a in (5) and (6) to compute the k-th frequency moment Fk (again,

assuming u is chosen large enough so Fk < u). The communication
cost increases to O(k logu), since each g j now has degree O(k) and
so requires correspondingly more words to describe. However, the
verifier’s space bound remains at O(logu) words.

Inner product. Given two streams defining two vectors a and b,
their inner product is defined by a · b = ∑i∈[u] aibi. Observe that
F2(a + b) = F2(a)+ F2(b)+ 2a ·b. Hence, the inner product can
be verified by verifying three F2 computations.

More directly, the above protocol for F2 can be adapted to ver-
ify the inner product: instead of providing polynomials which are
claimed to be sums of f 2

a , we now have two LDEs fa and fb which
encode a and b respectively. The verifier again picks a random
r, and evaluates LDEs fa(r) and fb(r) over the stream. The prover
now provides polynomials that are claimed to be sums of fa fb. This
observation is useful for the RANGE-SUM problem.

Range-sum. It is easy to see that RANGE-SUM is a special case
of INNER PRODUCT. Here, every (key, value) pair in the input
stream can considered as updating i =key with δ =value to gener-
ate a. When the query [qL,qR] is given, the verifier defines bqL =
· · · = bqR = 1 and bi = 0 for all other i. One technical issue is that
computing fb(r) directly from the definition requires O(u logu)
time. However, the verifier can compute it much faster for such
b. Again fix ` = 2. Decompose the range [qL,qR] into O(logu)
canonical intervals where each interval consists of all locations v
where v j+1, . . . ,vd are fixed while all possible (v1, . . . ,v j) ∈ [2] j

for some j occur. The value of fb(r) in each such interval is

fb(r) =∑ (v1,...,v j)∈[2] j χ(v1,...,vd)(r)

= ∑
(v1,...,v j)∈[2] j

j

∏
k=1

χvk (rk) ·
d

∏
k= j+1

χvk (rk)

=
d

∏
k= j+1

χvk (rk) ·
(

∑
(v1,...,v j)∈[2] j

j

∏
k=1

χv j (r j)
)

=
d

∏
k= j+1

χvk (rk) ·
( j

∏
k=1

(
χ0(r j)+ χ1(r j)

))
=

d

∏
k= j+1

χvk (rk),

which can be computed in O(logu) time. The final evaluation is
found by summing over the O(logu) canonical intervals, so the
time to compute fb(r) is O(log2 u). This is used to determine
whether gd(rd) = fa(r) fb(r). Hence, the verifier can continue the
rest of the verification process in O(logu) rounds as before.
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Figure 1: Example tree T over input vector [2,3,8,1,7,6,4,3]
and sub-vector query (1,5).

4. INTERACTIVE PROOFS FOR
REPORTING QUERIES

We first present an interactive proof protocol for a class of SUB-
VECTOR queries, which is powerful enough to incorporate INDEX,
DICTIONARY, PREDECESSOR, and RANGE QUERY as special cases.

4.1 SUB-VECTOR Queries
As before, the input is a stream of n pairs (i,δ ), which sets

ai ← ai + δ , defining a vector a = (a1, . . . ,au) in [u]u. The cor-
rect answer to a SUB-VECTOR query specified by a range [qL,qR]
is the k nonzero entries in the sub-vector (aqL , . . . ,aqR).

The protocol. Let p be a prime such that u < p≤ 2u. The verifier
V conceptually builds a tree T of constant degree ` on the vector a.
V first generates logu independent random numbers r1, . . . ,rlog` u
uniformly from [p]. For simplicity, we describe the case for ` = 2.
For each node v of the tree, we define a “hash” value as follows.
For the i-th leaf v, set v = ai. For an internal node v at level j (the
leaves are at level 0), define

v = vL + vRr j, (7)

where vL and vR are the left and right child of v, respectively. Addi-
tions and multiplications are done over the field Zp as in Section 3.
Denote the root of the tree by t. The verifier is only required to
keep r1, . . . ,rlogu and t. Later we show that V can compute t with-
out materializing the binary tree T , and that this is essentially an
LDE computation.

We first present the interactive verification protocol between P
and V after the input has been observed by both. The verifier only
needs r1, . . . ,rlogu, t, and the query range [qL,qR] to carry out the
protocol. First V sends qL and qR to P , and P returns the claimed
sub-vector, say, a′qL

, . . . ,a′qR
(P actually only needs to return the k

nonzero entries). In addition, if qL is even, P also returns a′qL−1;
if qR is odd, P also returns a′qR+1. Then V tries to verify whether
ai = a′i for all qL ≤ i≤ qR using the following protocol. The general
idea is to reconstruct T using information provided by P . If P
is behaving correctly, the (hash of the) reconstructed root, say t ′,
should be the same as t; otherwise with high probability t ′ 6= t and
V will reject. Define γ( j)(i) to be the ancestor of the i-th leaf of T
on level j. The protocol proceeds in logu−1 rounds, and maintains
the invariant that after the j-th round, V has reconstructed γ( j+1)(i)
for all qL ≤ i≤ qR. The invariant is easily established initially ( j =
0) since P provides a′qL

, . . . ,a′qR
and the siblings of a′qL

and a′qR
if needed. In the j-th round, V sends r j to P . Having r1, . . . ,r j
to hand, P can construct the j-th level of T . P then returns to
V the siblings of γ( j)(qL) and γ( j)(qR) if they are needed by V .
Then V reconstructs γ( j+1)(i) for all qL ≤ i≤ qR. At the end of the

(logu−1)-th round, V has reconstructed γ(logu)(i) = t ′, and checks
that t = t ′. If so, then the initial answer provided by P is accepted,
otherwise it is rejected.

Example. Figure 1 shows a small example on the vector a =
[2,3,8,1, 7,6,4,3]. We fix the hash function parameters r = [1,1,1]
to keep the example simple (ordinarily these parameters are cho-
sen randomly), and show the hash value inside each node. For
the range (2,6), in the first round the prover reports the sub-vector
[3,8,1,7,6] (shown highlighted). Since the left endpoint of this
range is even, P also reports a1 = 2. From this, V is able to com-
pute some hashes at the next level: 5, 9 and 13. After sending r1 to
P , V received the fact that the hash of the range (7,8) is 7. From
this, V can compute the final hash values and check that they agree
with the precomputed hash value of t, 34.

We prove the next theorem in Appendix B.2.

THEOREM 5. There is a (logu, logu+ k)-protocol for SUB-
VECTOR, with failure probability O( logu

p ). The prover’s total time
is O(min(u,n logu/n)), the verifier takes time O(logu) per update.

4.2 Answering Reporting Queries
We now show how to answer the reporting queries using the so-

lution to SUB-VECTOR.

• It is straightforward to solve RANGE QUERY using SUB-VECTOR:
each element i in the stream is interpreted as a vector update with
δ = 1, and vector entries with non-zero counts intersecting the
range give the required answer.

• INDEX can be interpreted as a special case of RANGE QUERY
with qL = qR = q.

• For DICTIONARY, we must distinguish between “not found” and
a value of 0. We do this by using a universe size of [u+1] for the
values: each value is incremented on insertion. At query time, if
the retrieved value is 0, the result is “not found”; otherwise the
value is decremented by 1 and returned.

• For PREDECESSOR, we interpret each key in the stream as an
update with δ = 1. In the protocol V first asks for the index of
the predecessor of q, say q′, and then verifies that the sub-vector
(aq′ , . . . ,aq) = (1,0, . . . ,0), with communication cost O(logu)
(since k = 0).

COROLLARY 1. There is a (logu, logu)-protocol for DICTIO-
NARY, INDEX and PREDECESSOR where the prover takes time
O(min(u,n logu/n)). There is a (logu, log(u) + k)-protocol for
RANGE QUERY where the prover’s time is O(k+min(u,n logu/n)).
For all protocols, the verifier takes time O(logu).

5. EXPERIMENTAL STUDY
We performed a brief experimental study to validate our claims

that the protocols described are practical. We compared protocols
for both the reporting queries and aggregates queries. Specifically,
we compared the multi-round protocols for F2 described in Section
3 to the single round protocol given in [6], which can be seen as
a protocol in our setting with d = 2 and ` =

√
u. For reporting

queries, we show the behavior of our SUB-VECTOR protocol, and
we present experimental results when the length qR−qL of the sub-
vector queried is 1000. Together, these determine the performance
of the 8 core queries: the three aggregate queries are based on the
F2 protocol, while the five reporting queries are based on the SUB-
VECTOR protocol.

Our implementation was made in C++: it performed the com-
putations of both parties, and measured the resources consumed by
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Figure 2: Experimental results for F2

the protocols. All programs were compiled with g++ using the -O3
optimization flag. For the data, we generated synthetic streams with
u = n where the number of occurrences of each item i was picked
uniformly in the range [0,1000]. Note that the choice of data does
not affect the behavior of the protocols: their guarantees do not de-
pend on the data, but rather on the random choices of the verifier.
The computations were made over the field of size p = 261−1, giv-
ing a probability of 4 ·61/p≈ 10−16 of the verifier being fooled by
a dishonest prover. These computations were executed using native
64-bit arithmetic, so increasing this probability is unlikely to af-
fect performance. This probability could be reduced further to, e.g.
4 ·127/(2127−1) < 10−35, at the cost of using 128 bit arithmetic.

We evaluated the protocols on a single core of a multi-core ma-
chine with 64-bit AMD Opteron processors and 32 GB of mem-
ory available. The large memory let us experiment with universes
of size several billion, with the prover able to store the entire fre-
quency vector in memory. We measured all relevant costs: the time
for V to compute the check information from the stream, for P to
generate the proof, and for V to verify this proof. We also measured
the space required by V , and the size of the proof provided by P .
Experimental Results. When the prover was honest, both proto-
cols always accepted. We also tried modifying the prover’s mes-
sages, by changing some pieces of the proof, or computing the
proof for a slightly modified stream. In all cases, the protocols
caught the error, and rejected the proof. We conclude that the pro-
tocols work as analyzed, and the focus of our experimental study is
to understand how they scale to large volumes of data.

Figure 2 shows the behavior of the F2 protocols as the data size
varies. First, Figure 2(a) shows the time for V to process the stream
to compute the necessary LDEs as the stream length increases.
Both show a linear trend (here, plotted on log scale). Moreover,
both take comparable time (within a constant factor), with the multi-
round verifier processing about 21 million updates per second, and
the single round V processing 35 million. The similarity is not sur-
prising: both methods are taking each element of the stream and
computing the product of the frequency with a function of the ele-
ment’s index i and the random parameter r. The effort in computing
this function is roughly similar in both cases. The single round V
has a slight advantage, since it can compute and use lookup tables
within the O(

√
u) space bound [6], while the multi-round verifier

limited to logarithmic space must recompute some values multiple
times. The time to check the proof is essentially negligible: less
than a millisecond across all data sizes. Hence, we do not consider
this a significant cost.

Figure 2(b) shows a clear separation between the two methods
in P’s effort in generating the proof. Here, we measure total time
across all rounds in the multi-round case, and the time to generate
the single round proof. The cost in the multi-round case is dramat-
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Figure 3: Experimental results for SUB-VECTOR

ically lower: it takes minutes to process inputs with u=222 in the
single round case, whereas the same data requires just 0.2 seconds
when using the multi-round approach. Worse, this cost grows with
u3/2, as seen with the steeper line: doubling the input size increases
the cost by a factor of 2.8. In contrast, the multi-round cost grew
linearly with u. Across all values of u, the multi-round prover pro-
cessed 20-21 million updates per second. Meanwhile, at u = 220,
the single-round P processed roughly 40,000 updates per second,
while at u=224, P processed only 10,000. Thus the chief bottle-
neck of these protocols seems to be P’s time to make the proof.

The trend is similar for the space resources required to execute
the protocol. In the single round case, both the verifier’s space and
size of the proof grow proportional to

√
u. This is not impossibly

large: Figure 2(c) shows that for u of the order of 1 billion, both
these quantities are comfortably under a megabyte. Nevertheless,
it is still orders of magnitude larger than the sizes seen in the multi-
round protocol: there, the space required and proof size are never
more than 1KB even when handling gigabytes of data.

The results for reporting (SUB-VECTOR) queries are quite sim-
ilar (Figure 3). Here, there are no comparable protocols for this
query. The verifier’s time is about the same as for the F2 query:
unsurprising, as in both protocols V evaluates the LDE of the input
at a point r. The prover’s time is similarly fast, since the amount of
work it has to do is about the same as the verifier (it has to compute
hash values of various substrings of the input). The space cost of
the verifier is minimal, primarily just to store r and some interme-
diate values. The communication cost is dominated by the cost of
reporting the answer (1000 values): the rest is less than 1KB.

Our experiments focus on the case u = n. We can extrapolate
the prover’s cost, which scales as O(min(u,n logu/n)), to larger
examples. Consider 1TB of IPv6 web addresses; this is approxi-
mately 6×1010 IPv6 addresses, each drawn over a logu = 128 bit
domain. Figure 2(b) shows that processing 1010 updates from a
domain of size 1010 takes approximately 500 seconds. In our IPv6



example, the input has 6 times more values, and the value of logu
is approximately 4 times larger, so extrapolating we would expect
our (uniprocessor) prover to take about 24 times longer to process
this input, i.e. about 12,000 seconds (200 minutes). Note that this
is comparable to the time to read this much data resident on disk
[13].

In summary, the methods we have developed are applicable to
genuinely large data sets, defined over a domain of size hundreds
of millions to billions. Our implementation is capable of processing
such datasets within a matter of seconds or minutes.

6. EXTENSIONS
We next consider how to treat other functions in the streaming

interactive proof setting. We first consider some functions which
are of interest in streaming, such as heavy hitters, and k-largest. We
then discuss extensions of the framework to handle a more general
class of “frequency-based functions”.

6.1 Other Specific Functions

Heavy Hitters. The heavy hitters (HHs) are those items whose
frequencies exceed a fraction φ of the total stream length n. In
verifying the claimed set of HHs, V must ensure that all claimed
HHs indeed have high enough frequency, and moreover no HHs
are omitted. To convince V of this, P will combine a succinct wit-
ness set with a generalization of the SUB-VECTOR protocol to give
a (1/φ logu, 1/φ logu) protocol for verifying the heavy hitters and
their frequencies. As in our SUB-VECTOR protocol, V conceptu-
ally builds a binary tree T with leaves corresponding to entries of
a, and a random hash function associated with each level of T . We
augment each internal node v with a third child cv. cv is a leaf
whose value is the sum of the frequencies of all descendents of v,
the subtree count of v. The hash function now takes three argu-
ments as input. It follows that V can still compute the hash t of the
root of this tree in logarithmic space, and O(logu) time per update.

In the lth round, the prover lists all leaves at level l whose sub-
tree count is at least φn, their siblings, as well as their hash value
and their subtree counts (so the hash of their parent can be com-
puted). In addition, P provides all leaves whose subtree count is
less than φn but whose parent has subtree count at least φn; these
nodes serve as witnesses to the fact that none of their descendants
are heavy hitters, enabling V to ensure that no heavy hitters are
omitted. This procedure is repeated for each level of T ; note that
for each node v whose value P provides, all ancestors of v and their
siblings (i.e. all nodes on v’s “authentication path”) are also pro-
vided, because the subtree count of any ancestor is at least as high
as the subtree count of v. Therefore, V can compare the hash of
the root (calculated while observing the stream) to the value pro-
vided by P , and the proof of soundness is analogous to that for the
SUB-VECTOR protocol.

In total, there are at most O(1/φ logu) nodes provided by P: for
each level l, the sum of the sub-tree counts of nodes at level l is
n, and therefore there are O(1/φ) nodes at each level which have
sub-tree count exceeding φn or whose parent has subtree count ex-
ceeding φn. Hence, the size of the proof is at most O(1/φ logu),
and the time costs are as for the SUB-VECTOR protocol.

The protocol cost can be improved to (logu, 1/φ logu), i.e. we
do not require V to store the heavy hitter nodes. This is accom-
plished by having the prover, at each level of T , “replay” the hash
values of all nodes listed in the previous round. V can keep a sim-
ple fingerprint of the identities and hash values of all nodes listed
in each round (computing their hash values internally), and com-
pare this to a fingerprint of the hash values and identities listed by

P . If these fingerprints match for each level, V is assured that the
correct information was presented. Note each node is repeated just
once, so this only doubles the communication cost. This reduced
cost protocol is used in Section 6.2.

k-largest. Given the same set up as the PREDECESSOR query, the
k-th largest problem is to find the largest p in the stream such that
there are at least k− 1 larger values p′ also present in the stream.
This can be solved by the prover claiming that the kth largest item
occurs at location j, and performing the range query protocol with
the range ( j,u), allowing V to check that there are exactly k distinct
items present in the range. This has a cost of (logu,k + logu). For
large values of k, alternative approaches via range sum (assuming
all keys are distinct) can reduce the cost to (logu, logu).

6.2 Frequency-based Functions
Given the approach described in Section 3, it is natural to ask

what other functions can be computed via sum-check protocols ap-
plied to carefully chosen polynomials. By extending the ideas from
the protocol of Section 3, we get protocols for any statistic F of the
form F(a) = ∑i∈[u] h(ai). Here, h : N0→N0 is a function over fre-
quencies. Any statistic F of this form is called a frequency-based
function. Such functions occupy an important place in the stream-
ing world. For example, setting h(x) = x2 gives the self-join size.
We will subsequently show that using functions of this form we can
obtain non-trivial protocols for problems including:

• F0, the number of distinct items in stream A.

• Fmax, the frequency of the most-frequent item in A.

• Point queries on the inverse distribution of A. That is, for any i,
we will obtain protocols for determining the number of tokens
with frequency exactly i.

The Protocol. A natural first attempt to extend the protocols of
Section 3 to this more general case is to have V compute fa(r) as
in Section 3, then have P send polynomials which are claimed to
match sums over h( fa(x)). In principal, this approach will work:
for the F2 protocol, this is essentially the outline with h(x) = x2.
However, recall that when this technique was generalized to Fk for
larger values of k, the cost increased with k. This is because the de-
gree of the polynomial h increased. In general, this approach yields
a solution with cost deg(h) logn. This does not yet yield interesting
results, since in general, the degree of h can grow arbitrarily high,
and the resulting protocol is worse than the trivial protocol which
simply sends the entire vector a at a cost of O(min(n,u)).

To overcome this obstacle, we modify this approach to use a
polynomial function h̃ with bounded degree that is sublinear in n
and u. At a high level, we “remove” any very heavy elements from
the stream A before running the protocol of Section 3.1, with f 2

a
replaced by h̃◦ fa for a suitably chosen polynomial h̃. By removing
all heavy elements from the stream, we keep the degree of h̃ (rel-
atively) low, thereby controlling the communication cost. We now
make this intuition precise.

Assume n = O(u) and let φ = u−1/2. The first step is to iden-
tify the set H of φ -heavy hitters (i.e. the set of elements with fre-
quency at least u1/2) and their frequencies. We accomplish this
via the (logu,1/φ logu) protocol described in Section 6.1. V runs
this protocol and, as the heavy hitters are reported, V incremen-
tally computes F ′ := ∑i∈H h(ai), which can be understood as the
contribution of the heaviest elements to F , the statistic of interest.

In parallel with the heavy hitters protocol, V also runs the first
part of the protocol of Section 3.1 with d = logu. That is, V chooses
a random location r = (r1, . . . ,rd)∈ [p]d (where p is a prime chosen
larger than the maximum possible value of F), and while observing



the stream V incrementally evaluates fa(r). As in Sections 2 and
3.1, this requires only O(d) additional words of memory.

As the heavy hitters are reported, V “removes” their contribution
to fa by subtracting avχv(r) from fa(r) for each v ∈H. That is, let
f̃a denote the polynomial implied by the derived stream obtained
by removing all occurrences of all φ -heavy hitters from A. Then
V may compute f̃a(r) via the identity f̃a(r) = fa(r)−∑v∈H χv(r).
Crucially, V need not store the items in H to compute this value;
instead, V subtracts χv(r) each time a heavy hitter v is reported,
and then immediately “forgets” the identity of v.

Now let h̃ be the unique polynomial of degree at most u1/2 such
that h̃(i) = h(i) for i = 0, . . . ,u1/2; V next computes h̃( f̃a(r)) in
small space. Note that this computation can be performed without
explicitly storing h̃, since we can compute

h̃(x) = ∑i=0,...u1/2 h(i)χi(x)

(assuming h() has a compact description as in the examples below).
The second part of the verification protocol can proceed in par-

allel with the first part. In the first round, the prover sends a poly-
nomial g1(x1) claimed to be

g1(x1) = ∑x2,...,xd∈[`]d−1 h̃◦ f̃a(x1,x2, . . . ,xd).

Observe that if g1 is as claimed, then

F(a) = ∑x1∈[`] g1(x1)+F ′−|H|h(0).

Since the polynomial g1(x1) has degree at most u1/2, it can be
described in u1/2 words.

Then, as in Section 3.1, V sends r j−1 to P in round j > 1. In
return, the prover sends a polynomial g j(x j), and claims

g j(x j) = ∑x j+1,...,xd∈[`]d− j h̃◦ f̃a(r1, . . . ,r j−1,x j,x j+1, . . . ,xd).

The verifier conducts tests for correctness that are completely
analogous to those in Section 3.1, which completes the description
of the protocol. The proof of completeness and soundness of this
protocol is analogous to those in Section 3.1 as well.

Analysis of space and communication. V requires logu words
to run the heavy hitters protocols, and O(d) = O(logu) space to
store r1, . . . ,rd , fa(r), f̃a(r), and to compute and store h̃( f̃a(r)).
The communication cost of the heavy hitters protocol is u1/2 logu,
while the communication cost of the rest of the protocol is bounded
by the du1/2 = u1/2 logu words used by P to send a polynomial of
degree at most u1/2 in each round. Thus, we have the following
theorem:

THEOREM 6. Assume n = Θ(u). There is a logu round,
(logu,u1/2 logu)-protocol for any statistic F of the form F(a) =
∑i∈[u] h(ai), with probability of failure O( logu

u ). The verifier takes
time O(logu) per update. The prover takes time O(u3/2).

Using this approach yields protocols for the following problems:

• F0, the number of items with non-zero count. This follows by ob-
serving that F0 is equivalent to computing ∑i∈[u] h(ai) for h(0) =
0 and h(i) = 1 for i > 0.

• More generally, we can compute functions on the inverse distri-
bution, i.e. queries of the form “how many items occur exactly
k times in the stream” by setting, for any fixed k, h(k) = 1 and
h(i) = 0 for i 6= j. One can build on this to compute, e.g. the
number of items which occurred between k and k′ times, the me-
dian of this distribution, etc.

• We obtain a protocol for Fmax = maxi ai, with a little more work.
P first claims a lower bound lb on Fmax by providing the index
of an item with frequency Fmax, which V verifies by running the
INDEX protocol from Section 4. Then V runs the above protocol
with h(i) = 0 for i≤ lb and h(i) = 1 for i > lb; if ∑i∈[u] h(ai) = 0,
then V is convinced no item has frequency higher than lb, and
concludes that Fmax = lb.

COROLLARY 2. There is a (logu,u1/2 logu)-protocol that re-
quires just logu rounds of interaction for F0, Fmax, and queries on
the inverse distribution.

Comparison. Compared to the previous protocols, the methods
above increase the amount of communication between the two par-
ties by a u

1
2 factor. The number of rounds of interaction remains

logu, equivalent to V’s space requirement. So arguably these bounds
are still good from the verifier’s perspective. In contrast, the con-
struction of [14] requires Ω(log2 u) rounds of interaction and com-
munication, which may be large enough to be offputting. To make
this concrete, for a terabyte-size input, logu rounds is of the order
of 40, while log2 u is of the order of thousands. Meanwhile, the
u

1
2 communication is of the order of a megabyte. So although the

total communication cost is higher, one can easily imagine scenar-
ios where the latency of network communications makes it more
desirable to have fewer rounds with more communication in each.

7. CONCLUDING REMARKS
We have presented interactive proof protocols for various prob-

lems that are known to be hard in the streaming model. By dele-
gating the hard computation task to a possibly dishonest prover, the
verifier’s space complexity is reduced to O(logu). We now outline
directions for future study.

Multiple Queries. Many of the problems considered are parame-
terized by values that are only specified at query time. The results
of these queries could cause the verifier to ask new queries with
different parameters. However, re-running the protocols for a new
query with the same choices of random numbers does not provide
the same security guarantees. The guarantees rely on P not know-
ing these values; with this knowledge a dishonest prover could po-
tentially find collisions under the polynomials, and fool the verifier.

Two simple solutions partially remedy this issue: firstly, it is safe
to run multiple queries in parallel round-by-round using the same
randomly chosen values, and obtain the same guarantees for each
query. This can be thought of as a ‘direct sum’ result, and holds
also for the Goldwasser et al. construction [14]. Secondly, V can
just carry out multiple independent copies of the protocol. Since
each copy requires only O(logu) space (more precisely logu + 1
integers), the cost per query is low. Nevertheless, it remains of
some practical interest to find protocols which can be used repeat-
edly to support an larger number of queries. Related work based
on strong cryptographic assumptions has recently appeared [7, 12]
but is currently impractical.

Distributed Computation. A motivation for studying this model
arises from the case of cloud computation, which outsources com-
putation to the more powerful “cloud”. In practice, the cloud may
in fact be a distributed cluster of machines, implementing a model
such as Map-Reduce. We have so far assumed that the prover op-
erates a traditional centralized computational entity. The next step
is to study how to create proofs over large data in the distributed
model. A first observation is that the proof protocols we give here
naturally lend themselves to this setting: observe that the prover’s



message in each round can be written as the inner product of the in-
put data with a function defined by the values of r j revealed so far.
Thus, these protocols easily parallelize, and fit into Map-Reduce
settings very naturally; it remains to demonstrate this empirically,
and to establish similar results for other protocols.

Other query types. From a complexity perspective, the main open
problem is to more precisely characterize the class of problems that
are solvable in this streaming interactive proof model. We have
shown how to modify the construction of [14] to obtain (poly logu,
poly logu) streaming protocols for all of NC, and we showed that a
wide class of reporting and aggregation queries possess (logu, logu)
protocols. It is of interest to establish what other natural queries
possess (logu, logu) protocols: F0 and Fmax are the prime candi-
dates to resolve; other targets include other common queries, such
as nearest neighbors. Determining whether problems outside NC
possess interactive proofs (streaming or otherwise) with poly logu
communication and a verifier that runs in nearly linear time is a
more challenging problem of considerable interest. This question
asks, in essence, whether parallelizable computation is more easily
verified than sequential computation.
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APPENDIX
A. RESULTS DUE TO PRIOR WORK
Streaming Universal Arguments. A probabilistically checkable
proof (PCP) is a proof in redundant form, such that the verifier need
access only a few (randomly chosen) bits of the proof before decid-
ing whether to accept or reject. A Universal Argument effectively
simulates a PCP while ensuring P need not send the entire proof to
V . We first describe this simulation, before describing a particular
PCP system that, when simulated by a Universal Argument, can be
executed by a streaming verifier.

For a language L on input a, a Universal Argument consists of
four messages: First, V sends P a collision-resistant hash function
h. Next, an honest P constructs a PCP π for a, and then constructs
a Merkle tree of π using h (the leaves of the tree are the bits of π)
[20]. P then sends the value of the root of the tree to V . This effec-
tively “commits” P to the proof π; P cannot subsequently alter it
without finding collisions for h. Third, V sends P a list of the loca-
tions of π he needs to query. Finally, for each bit bi that is queried,
P responds with the value of all nodes on bi’s authentication path
in the Merkle tree (note this path has only logarithmic length). V
checks, for each bit bi that the authentication path is correct relative
to the value of the root; if so, V is convinced P returned the correct
value for bi as long as P cannot find a collision for h. The theorem
follows by combining this construction with the fact that there exist
PCP systems in which V only needs access to a in order to evaluate
O(1) locations in the LDE fa. We now justify this last claim by
describing such a PCP system.

In [5], Ben-Sasson et al. describe for any language in NP a PCP
system in which V is not given explicit access to the input; instead,
V has oracle access to an encoding of the input a under an arbitrary
error-correcting code (to simplify a little). In their PCP system,
V runs in polylogarithmic time and queries only O(1) bits of the
encoded input, and O(1) bits of the proof π . Moreover, these bits
are determined non-adaptively (specifically, they do not depend on
a). We show this implies a PCP system that satisfies the claim for

any L ∈ NP. Indeed, let LDE(a) denote the truth-table of fa; i.e.
LDE(a) is a list of elements in the field Zp, one for each r ∈ Zd

p.
There are (two-stage) concatenated codes whose first stage applies
the LDE operation to the input a (and whose second stage applies
a code to turn the field elements in LDE(a) into bits) that suffice
as encodings of a [2]. Therefore, a streaming verifier with explicit
access to the input a may simulate the verifier V in the PCP system
of Ben-Sasson et al: each time V queries a bit bi of the encoded
input, there is a location r such that bi can be extracted from fa(r).

A Universal Argument based on the PCP of the previous para-
graph has two additional properties worth mentioning. First, since
V need only query O(1) bits of fa and otherwise runs in poly log
time, we obtain a streaming verifier that runs in near-linear time.
Second, since V need only query O(1) bits of the proof, and the au-
thentication path of each bit in the Merkle tree is of length O(logu),
the communication cost of the Universal Argument is O(logu)
words. Putting all these pieces together yields Theorem 2.

Streaming “Interactive Proofs for Muggles.”2 In [14], V and P
first agree on a circuit C of fan-in 2 that computes the function of
interest; C is assumed to be in layered form. P begins by claiming a
value for the output gate of the circuit. The protocol then proceeds
iteratively from the output layer of C to the input layer, with one
iteration for each layer. Let v(i) be the vector of values that the
gates in i-th layer of C take on input x, with layer 1 corresponding
to the output layer, and let fv(i) be the LDE of v(i).

At a high level, in iteration 1, V reduces verifying the claimed
value of the output gate to verifying fv(2)(r) for a random location
r. Likewise, in iteration i, V reduces verifying fv(i) to verifying
fv(i+1)(r′) for a random r′. Critically, the verifier’s final test requires
only fv(d)(r) = fa(r), the low-degree extension of the input at the
random location r, which can be chosen at random independent of
the data or the circuit, and hence computed by a streaming veri-
fier. Note that each iteration takes logarithmically many rounds,
with a constant number of words of communication in each round.
Therefore the protocol requires O(d logu) communication in total.
In particular, all problems that can be solved in log-space by non-
streaming algorithms (i.e. algorithms that can make multiple passes
over the input) possess polynomial size circuits of depth log2 u, and
hence there are (log3 u, log3 u) protocols for these problems.

B. DETAILED PROOFS

B.1 Analysis of SELF-JOIN SIZE

Proof of correctness. We now argue in detail that the verifier is
unlikely to be fooled by a dishonest prover.

LEMMA 1. If the prover follows the above protocol then the
verifier will accept with certainty. However, if the prover sends
any polynomial which does not meet the required property, then
the verifier will accept with probability at most 2dl/p, where this
probability is over the random coin tosses of V .

PROOF. The first part is immediate from the following discus-
sion: if each g j is as claimed, then the verifier can easily ensure
that each g j is consistent with g j−1.

For the second part, the proof proceeds from the dth round back
to the first round. In the final round, the prover has sent gd , of
degree 2`− 2, and the verifier checks that it agrees with a pre-
computed value at xd = rd . This is an instance of the Schwartz-
Zippel polynomial equality testing procedure [24]. If gd is in-
deed as claimed, then the test will always be passed, no matter
2This result was observed by Guy Rothblum; here, we present the
details of the construction for completeness.



what the value of rd . But if gd does not satisfy the equality, then
Pr[gd(rd) = f 2(r)] ≤ 2`−2

p . Therefore, if p was chosen so that
p� `, then the verifier is unlikely to be fooled.

The argument proceeds inductively. Suppose that the verifier is
convinced (with some small probability of error) that g j+1(x j+1)
is indeed as claimed, and wants to be sure that g j(x j) is also as
claimed. The prover has claimed that

g j(x j) = ∑
x j+1,...,xd∈[`]d− j

f 2
a (r1, . . . ,r j−1,x j,x j+1, . . . ,xd).

We again verify this by a Schwartz-Zippel polynomial test: we
evaluate g j(x j) at a randomly chosen point r j, and ensure that the
result is correct. Observe that

g j(r j) = ∑x j+1,...,xd∈[`]d− j f 2
a (r1, . . . ,r j,x j+1, . . .xd)

= ∑x j+1∈[`] ∑x j+2,...,xd∈[`]d− j−1 f 2
a (r1, . . . ,r j,x j+1,x j+2, . . . ,xd)

= ∑x j+1∈[`]g j+1(x j+1).

Therefore, if the verifier V believes that g j+1 is as claimed, then
(provided the test passes) V has enough confidence to believe that
g j is also as claimed. More formally,

Pr
[

g j 6≡ ∑
x j+1,...,xd∈[`]d− j

f 2
a (r1, . . .r j−1,x j, . . . ,xd)

∣∣∣∣ g j+1 ≡ ∑
x j+2,...,xd∈[`]d− j+1

f 2
a (r1, . . .r j,x j+1, . . . ,xd)

]
<

2`

p
.

In the final step, the verifier is satisfied that g1 is consistent with g2,
and so g1 is as claimed. The probability that g1 is not as claimed
can be bounded as the probability that the verifier was fooled in any
intervening step. This is at most 2d`/p, by a union bound.

Intuitively, the key reason for the prover’s inability to fool the
verifier is that the prover must commit to a particular g j before
r j is revealed to him. So while the prover could then choose a
g j+1 which causes the test on that pair to pass, g j+1 is also “dis-
honest”. But ultimately, the prover must provide gd , which V can
check based on information that is known to V alone. The prover
is very unlikely to have included a dishonest g j along the way and
passed all the subsequent tests to generate a gd which is consistent
with the final test using rd (which remains unknown to P).

Analysis of prover’s costs. Besides the verifier’s space and com-
munication, this protocol is also quite efficient in terms of the other
costs. Let us fix ` = 2. As the stream is being processed the verifier
has to update the LDE fa(r). The updates are very simple, since
χ0(x) = 1− x and χ1(x) = x, so

χv(r) =
d

∏
j=1

((1− v j)(1− r j)+ v jr j).

Thus processing each update in the stream O(d) = O(logu) time.
The prover has to retain the input vector a, which can be done ef-

ficiently in space O(min(u,n)). In the verification process it is clear
that the verifier spends O(1) time per round evaluating a degree-2
polynomial, so the total time is O(logu). On the prover side, it
might appear costly to compute each g j(x j) naively following the
definition. But observe that g j(x j) is a polynomial of degree 2, so it
is sufficient to evaluate g j(x j) at three locations, say at x j = 0,1,2,
to determine g j(x j). For a location x j = c, we rewrite

g j(c) = ∑
x j+1,...,xd∈[`]d− j

f 2
a (r1, . . . ,r j−1,c,x j+1, . . .xd)

= ∑
x j+1,...,xd∈[`]d− j

(
∑

v∈[`]d
avχv(r1, . . . ,r j−1,c,x j+1, . . .xd)

)2

= ∑
x j+1,...,xd∈[`]d− j

∑
v1,v2∈[`]d

av1 av2 χv1(r1, . . . ,r j−1,c,x j+1, . . .xd)

·χv2(r1, . . . ,r j−1,c,x j+1, . . .xd)

= ∑
v1,v2∈[`]d

(
av1 av2

j−1

∏
k=1

χv1,k (rk) ·χv1, j (c) ·
j−1

∏
k=1

χv2,k (rk) ·χv2, j (c)

· ∑
x j+1...xd∈[`]d− j

( d

∏
k= j+1

χv1,k (xk)χv2,k (xk)
))

.

Note that χvk (xk) = 1 iff xk = vk and 0 for any other value in [`],
for any pair of v1,v2, we have

∑
x j+1,...,xd∈[`]d− j

( d

∏
k= j+1

χv1,k (xk)χv2,k (xk)
)

= 1

if and only if ∀ j +1≤ k≤ d : v1,k = v2,k, and 0 otherwise. Thus,

g j(c) = ∑
v1,v2∈[`]d ,∀ j+1≤k≤d:v1,k=v2,k

(
av1 av2

j−1

∏
k=1

χv1,k (rk)

·χv1, j (c)
j−1

∏
k=1

χv2,k (rk)χv2, j (c)
)

= ∑
v j+1,...,vd∈[`]d− j

(
∑

v1,...,v j∈[`] j

(
avχv j (c)

j−1

∏
k=1

χvk (rk)
))2

.

P maintains av

j−1

∏
k=1

χvk (rk) for each nonzero av, updating with the

new rk in each round as it is revealed in constant time. Thus the
total time spent by the prover for the verification process can be
bounded via O(n logu), where n is the number of nonzero av’s.

We make one further simplification. At the heart of the compu-
tation is a summation over [`] j for each v j+1, . . . ,vd ∈ [`]d− j. As
we set ` = 2,

∑
v1,...,v j∈[`] j

(
avχv j (c)

j−1

∏
k=1

χvk (rk)
)

=
1

∑
v j=0

(
χv j (c) · ∑

v1,...,v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk (rk)
))

And for each v j, . . . ,vd ∈ [`]d− j+1, we can decompose

∑
v1,...,v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk (rk)
)

=
1

∑
v j−1=0

(
χv j−1(r j−1) ∑

v1,...,v j−2∈[`] j−2

(
av

j−2

∏
k=1

χvk (rk)
))

.

By storing A j[v j . . .vd ] = ∑
v1...v j−1∈[`] j−1

(
av

j−1

∏
k=1

χvk (rk)
)
,P computes

A j+1[v j+1 . . .vd ] = χ0(r j)A j[0,v j+1 . . .vd ]+χ1(r j)A j[1,v j+1 . . .vd ]
in time O(u/2 j). The total time is O(min(n log(u/n), u)), at most
linear in u. Note that computing the F2 alone takes Θ(min(n,u))
time, so there is at most a logarithmic factor more work than sim-
ply providing the answer.



B.2 Analysis of SUB-VECTOR Protocol
PROOF OF THEOREM 5. Correctness. It is clear that with an

honest P , V always accepts. Next, we argue that if P returns a
wrong value in any round, then t ′ 6= t with high probability. P
first sends back a′i for all qL ≤ i≤ qR and their siblings (if they are
outside of the range). Consider any pair of siblings, say a′i and a′i+1.
Consider the functions f (x) = ai +ai+1x and f ′(x) = a′i +a′i+1x in
the field Zp. If ai 6= a′i or ai+1 6= a′i+1, the two linear functions
will not be identical, and they will intersect at no more than one
point in [p]. Since we choose r1 uniformly randomly from [p], the
probability that f (r1) = f ′(r1) is at most 1/p. Thus, if P’s first
message is not correct, with probability at least 1−1/p, there will
be at least one error in the computed γ(1)(i), qL ≤ i ≤ qR. The
same argument applies to each of the following (logu−1) rounds:
if either of the siblings of γ( j)(qL) and γ( j)(qR) returned by V is
wrong or some γ( j)(i),qL ≤ i ≤ qR is already wrong previously,
then with probability at most 1/p, the reconstructed γ( j)(i) will be
all correct. By the union bound, the probability that an incorrect
response from V will lead to a correct t ′ is at most logu

p .

Analysis of costs. We first argue that V can compute t in small
space. Expanding t, we have

t = ∑
i

(
ai

logu

∏
j=1

r(i−1) j
j

)
, (8)

where (i− 1) j denotes the j-th least significant bit of the binary
representation of i−1. Initially when a = 0, we have t = 0; when
we have ai ← ai + δ , t is incremented (modulo p) by ∆t = δ ·
∏

logu
j=1 r(i−1) j

j , which is easily computed in O(logu) time. Thus V
can maintain t by just keeping t, r1, . . . ,rlogu.

The verifier’s space requirement for the protocol is also bounded
by O(logu) words. Given the query range, as the sub-vector result
arrives at V , the verifier can keep track of only O(logu) hash values
of internal nodes, corresponding to at most one child of γ j(qL) and
γ j(qR) for each j. Combining these with the hash values provided
by P will be sufficient to run the checking protocol. Each of these
can be maintained in small space in the same manner as the root t
via (8) above. Thus the space to carry out the protocol is O(logu).

The communication cost consists of the initial query result of
size k sent by the prover, plus O(1) nodes per level of the binary
tree T . So the total communication cost is O(logu+ k).

Now we analyze the prover’s cost. As the stream is received
the prover clearly needs linear space and O(1) time per element to
construct the vector a. At verification time the prover essentially
reconstructs the binary tree T . Note that T has at most n nonzero
leaves, so it has size O(min(u, n log(u/n))). Computing this tree
in a bottom-up fashion costs O(1) time per node, hence O(min(u,
n log(u/n))) time in total.

Remarks. As in Section 3 the failure probability can be driven down
to O( logu

uc ) for any constant c by picking p greater than uc, with-
out changing the asymptotic bounds. From the description above a
dishonest prover may cause excessive communication by sending
more than k nonzero entries in the initial answer. To guarantee the
O(logu+k) bound with any P , we could first verify the value of k,
i.e., a RANGE-COUNT query, with O(logu) communication using
the protocol in Section 3. Then if P sends more than k nonzero
entries V will reject immediately.

We note that by modifying the hash function to (1−r j)vL +r jvR,
it is possible to show that t is equivalent to the LDE f (r), while the
same analysis holds. This provides a connection between the two
approaches, although the proofs are quite different in nature.
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