
Verifying Concurrent Message-Passing C Programs
with Recursive Calls�

S. Chaki1, E. Clarke1, N. Kidd2, T. Reps2, and T. Touili3

1 Carnegie Mellon University, Pittsburgh, USA
2 University of Wisconsin, Madison, USA

3 LIAFA, CNRS & University of Paris 7, Paris, France

Abstract. We consider the model-checking problem for C programs with (1)
data ranging over very large domains, (2) (recursive) procedure calls, and (3)
concurrent parallel components that communicate via synchronizing actions. We
model such programs using communicating pushdown systems, and reduce the
reachability problem for this model to deciding the emptiness of the intersection
of two context-free languages L1 and L2. We tackle this undecidable problem
using a CounterExample Guided Abstraction Refinement (CEGAR) scheme. We
implemented our technique in the model checker MAGIC and found a previously
unknown bug in a version of a Windows NT Bluetooth driver.

1 Introduction

Analysis of concurrent software represents a major challenge in the model-checking
community. Concurrent programs include various complex features such as: (1) the
manipulation of data ranging over unbounded domains, e.g., integers and reals (or very
large domains like 32-bit ints and floats), (2) the presence of recursive procedure calls,
which can lead to an unbounded number of calls, (3) concurrency and the existence of
synchronization statements. Unfortunately, checking whether a given control point is
reachable is undecidable, even if the program includes only recursive procedures and
synchronization statements [1]. Consequently, any method for solving the reachability
problem for these systems is incomplete, and all we can hope for is either an approxi-
mate technique, or a semi-decision procedure for which termination is not guaranteed.
This work uses the latter approach to sidestep the undecidability issue. Though not guar-
anteed to terminate, such an approach can still be useful; for instance, our tool found a
previously unknown bug in a version of a Windows NT Bluetooth driver.

During the last few years, several authors have addressed related issues. Pushown
systems have been proposed as an adequate formalism to describe pure sequential re-
cursive programs [2, 3]. They are able to represent the potentially infinite configurations
of recursive programs in a symbolic manner using regular languages [4, 5]. Recently,
compositions of pushown systems, called communicating pushown systems, have been
used to model concurrent recursive programs [6, 7]. However, in these cases, all data
were assumed to have a small finite domain.

On the other hand, abstract-interpretation techniques [8] have been used to deal
with data ranging over unbounded (or very large) domains. More recently, automated

� Supported by ONR under contracts N00014-01-1-{0796,0708}.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 334–349, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verifying Concurrent Message-Passing C Programs with Recursive Calls 335

predicate-abstraction techniques [9] have been proposed to deal with this issue. The
idea of predicate abstraction is to abstract the infinite data domain into a finite one
defined by a given set of predicates. The precision of the abstraction and the model-
checking algorithm depend on the number and the form of the predicates. The size of
the model increases with the number of predicates, which increases the cost of model
checking. Hence, a central problem in predicate abstraction is the discovery of a small
set of predicates sufficient to prove the desired property. CounterExample Guided Ab-
staction Refinement (CEGAR) techniques [10, 11] have been used to find such a small
set. The idea is: (1) Start with an empty set of predicates. (2) Perform the verification
procedure on the obtained model; if the property is satisfied by the model, we conclude
that it is also satisfied by the real program because the program has fewer behaviors
than the model; otherwise, we obtain a counterexample. (3) If the counterexample cor-
responds to an execution of the program, we conclude that the program does not satisfy
the property. (4) Otherwise, we compute a new set of predicates that eliminate future
exploration of the spurious trace, and go back to step (2).

This schema has been successfully applied to handle both pure non-concurrent (se-
quential) recursive programs in the tool SLAM [12], and concurrent non-recursive pro-
grams in the tools BLAST [13] and MAGIC [14].

In this work, we go one step further, and combine CEGAR predicate-abstraction
techniques with pushdown-system modeling to handle concurrency, recursion, and very
large data domains at the same time. Our approach consists of using communicating
pushdown systems (CPDSs) to model concurrent programs. To do this, we (1) define
CEGAR predicate-abstraction techniques to obtain successively more precise CPDSs
from the C source code of a parallel program, and (2) define model-checking algorithms
for CPDSs. The main contributions of this paper are:

1. Defining new automatic CEGAR predicate-abstraction techniques that can create a
CPDS from the source code of a concurrent (recursive) C program that manipulates
variables that range over very large domains, and that can refine CPDS abstractions
to eliminate a given counterexample. Our techniques are defined componentwise,
which makes them compositional and scalable to large programs (e.g., one exper-
iment on an 18 KLOC program ran in less than 2.2 seconds).

2. Defining new model-checking techniques for CPDSs. We restrict ourselves in this
work to solving reachability queries. We reduce the reachability problem for CPDSs
to the undecidable problem of checking the emptiness of the intersection of two
context-free languages (CFLs) L1 and L2. To tackle this problem, we apply a sec-
ond CEGAR scheme that consists of (1) computing over-approximations A1 and A2

of L1 and L2. (2) If A1 ∩ A2 = /0, we conclude that L1 ∩ L2 = /0. (3) Otherwise, we
check whether the intersection A1 ∩A2 is spurious. In this case, we refine the over-
approximations A1 and A2, and return to step (2). This semi-decision procedure is
guaranteed to terminate if the intersection L1 ∩L2 is not empty.

3. Implementing our technique in the model-checker MAGIC, and carrying out a num-
ber of non-trivial experiments. Our implementation was able to handle two non-
trivial examples (a Windows NT Bluetooth driver and an algorithm for concurrent
insertions in a binary search tree) that could not be handled with the previous ver-
sion of MAGIC. In addition, it discovered a previously unknown bug in a second

336 S. Chaki et al.

version of the Windows NT Bluetooth driver. Moreover, the implementation pro-
vides improved performance for non-recursive examples that the previous version
of MAGIC was able to handle only via in-lining. This shows that our technique
represents an advance for non-recursive as well as recursive concurrent programs.

One of the novel features of this work is that it applies the CEGAR scheme at two
levels: (1) at the model-checking level to solve reachability queries in CPDSs: the CPDS
model checker uses a CEGAR scheme in its semi-decision procedure for testing empti-
ness of the intersection of two CFLs (see §4), and (2) at the predicate-abstraction level
to deal with unbounded domain variables (see §5). As far as we know, this is the first
time that CEGAR is used in the model-checker itself.

The remainder of the paper is organized as follows: §2 defines the CPDS model;
§3 describes how to generate a CPDS from a C program using predicate abstraction;
§4 presents the semi-decision procedure for model-checking a CPDS; §5 presents our
predicate-abstraction-refinement techniques; §6 reports experimental results; §7 dis-
cusses related work.

2 Preliminary Definitions

A pushdown system (PDS) is a four-tuple P = (Q,Act,Γ,∆) where Q is a finite set of
states, Act is a finite set of actions, Γ is a finite stack alphabet, and ∆ is a finite set

of transition rules of the form 〈q,γ〉 a
↪−→ 〈q′,w〉, where q,q′ ∈ Q,a ∈ Act, γ ∈ Γ, and

w ∈ Γ∗. Without loss of generality, we assume that for all rules of ∆, |w| ≤ 2. This is not
restrictive because any PDS can be transformed into a PDS of this form [15]; moreover,
the transition rules obtained from a program have this form. A configuration of P is a
pair 〈q,w〉, where q ∈ Q and w ∈ Γ∗ is the contents of the stack. A set of configurations
C is regular if for each q ∈ Q the language {w ∈ Γ∗ | 〈q,w〉 ∈ C} is regular.

For every a ∈ Act, we define a transition relation a−→ between the configurations

of P as follows: if 〈q,γ〉 a
↪−→ 〈q′,w〉 ∈ ∆, then 〈q,γv〉 a−→〈q′,wv〉 for every v ∈ Γ∗. For

a1 · · ·an ∈ Act∗, the relation a1···an−−−−→ is defined in the obvious way. Let C be a set of
configurations. Post∗(C) is the set of successors of C, defined as follows:

Post∗(C) = {c′ | ∃c ∈ C,a1 · · ·an ∈ Act∗,c
a1···an−−−−→c′}.

A communicating pushdown system (CPDS) [7] is a tuple CP = (P1, . . . ,Pn) of PDSs
over the same set of actions Act such that Act = Lab ∪ {τ}, where Lab is the set of
synchronization actions, and τ represents internal actions: τ has the property that for
every a ∈ Lab, τa = aτ = a. As we will see later, we need this to reduce the reachability
problem for CPDSs to checking the emptiness of the intersection of two CFLs.

A global configuration of CP is a tuple g = (c1, . . . ,cn) of configurations of P1, . . .Pn.
The relation a−→ is extended to global configurations as follows:

– (c1, . . . ,cn)
τ−→(c′

1, . . . ,c
′
n) if there is an index 1 ≤ i ≤ n such that ci

τ−→c′
i and, for

every j �= i, c′
j = c j.

– (c1, . . . ,cn)
a−→(c′

1, . . . ,c
′
n) if there are two distinct indices i �= j such that ci

a−→c′
i

and c j
a−→c′

j, and, for every k such that i �= k �= j, c′
k = ck.

Given a set of global configurations G, the successors of G (denoted by Post∗(G)) are
defined as before.

Verifying Concurrent Message-Passing C Programs with Recursive Calls 337

3 Componentwise Predicate Abstraction

We model concurrent recursive programs using CPDSs. This section describes how to
extract a CPDS from a parallel program. (A more in-depth discussion is given in [16].)

Suppose that we are given n concurrent recursive C components. For each compo-
nent i, we extract a PDS Pi. The parallel composition of the C components is represented
by the CPDS corresponding to the tuple (P1,...,Pn). To extract each Pi, we extend the
approach originally used in MAGIC [14], which automatically extracts a finite-state
automaton from C code, to extract a PDS. Without loss of generality, we assume there
are only six kinds of statements in programs: assignments, procedure calls, if-then-else
branches, gotos, synchronization statements, and returns. We use CIL [17] to transform
arbitrary C programs into this form.

Each PDS is defined in terms of a current set of seed predicates (which is initially
empty). Each predicate represents a set of assignments over the variables of the pro-
gram. Let p be a predicate over the sets of variables X and Y , where X (resp. Y) is a set
of local (resp. global) variables. Then ploc (resp. pglob) is the “projection” of p over the
local variables X (resp. global variables Y). For example, let p = (x > 0 & y < 8) be a
predicate that represents the set of values {x > 0,y < 8}. If x is a local variable, and y
is a global one; ploc denotes the predicate (x > 0); and pglob the predicate (y < 8). We
extend these notations to sets of predicates in the obvious manner.

3.1 Predicate Inference

The weakest precondition of a set of predicates p is defined as follows. Let s be an
assignment of the form v = e. Then, the weakest precondition of p with respect to s
(denoted by Ws(p)) is obtained from p by replacing every occurrence of v in p by e.
Assignments through pointers, i.e., statements of the form ∗p = e, are handled by the
approach of Morris [18].

Let C be a set of seed predicates. To create a PDS that is an abstraction of a sequential
component relative to the predicates in seed set C , we repeatedly compute weakest
preconditions. That is, for every control point n, we compute a set of predicates P[C]n
as follows:

Initially, P[C]n = /0 for every point n. We repeat the following until for every n, P[C]n
is no longer modified. Let sn be the statement that corresponds to control point n:

1. if sn is an assignment that has n′ as successor, then add Wsn

(
P[C]n′

)
to P[C]n.

2. if sn is an if statement and n′ is its then or else successor, then add P[C]n′ to P[C]n.
Moreover, if c is the corresponding condition of sn such that c ∈ C , then add c to
P[C]n.

3. if sn is a goto or a synchronisation statement that has n′ as successor, then add
P[C]n′ to P[C]n.

4. if sn is a call to a procedure π, where sn has n′ as successor, and if eπ is the initial
control point of procedure π, then add P[C]loc

n′ and P[C]glob
eπ to P[C]n.

(This method might not terminate in the presence of loops and recursive procedure calls.
In this case, we impose termination by bounding the number of predicates in P [C]n, for
every control point n.)

338 S. Chaki et al.

Let us explain the intuition behind item 1. Predicate set P[C]n is only capable of mak-
ing a certain set of distinctions among the concrete states that can arise at execution time
at point n. Let sn be an assignment that has n′ as successor. Item 1 adds Wsn

(
P[C]n′

)

to P[C]n because if Wsn(ϕ) is true at n, then ϕ must be true at n′. We wish to minimize
the loss of precision in characterizing the states at n′: to be able to determine whether ϕ
holds at n′, we need to know whether Wsn(ϕ) holds at n.

Finally, let P[C] = ∪P[C]n, where the union is taken over all the control points n of
the sequential component, be the set of all the generated predicates.

3.2 PDS Extraction

Using C , we assign to a sequential (possibly recursive) component the PDS P =
(Q,Act,Γ,∆), defined as follows: Q is the set of valuations on P[C]glob; Act contains
the action τ, as well as the other synchronization actions of the program; Γ is the set of
all pairs (n, loc), where n is a control point of the sequential component, and loc is a val-
uation of P[C]loc

n ; ∆ is defined using the sequential component’s control flow graph. For
example, if s is a non-synchronizing assignment statement at control location n1 with

successor n2, then ∆ contains all the PDS rules 〈glob,(n1, loc)〉 τ
↪−→ 〈glob′,(n2, loc′)〉,

where glob ∈ P[C]glob
n1 , glob′ ∈ P[C]glob′

n2 (resp. loc ∈ P[C]loc
n1

, loc′ ∈ P[C]loc′
n2

), such that
they potentially satisfy (Ws(glob′) ∧ glob) (resp. (Ws(loc′) ∧ loc)).1 These formulas
ensure that the generated PDS has more behaviors than the concrete program.

If instead s is a synchronizing statement with action a, then ∆ contains all the PDS

rules 〈glob,(n1, loc)〉 a
↪−→ 〈glob′,(n2, loc′)〉, where again glob and glob′ (resp. loc and

loc′) potentially satisfy the conditions stated above. Further details about converting the
various types of C statements to their corresponding PDS rules are given in [16].

3.3 Comparision with the Predicate-Abstraction Technique of SLAM

The SLAM tool [12] uses predicate-abstraction techniques to extract a Boolean program
from C source code. One can then use Schwoon’s translation [15] to obtain a PDS
from a Boolean program. Compared with the techniques used in SLAM, the approach
sketched in §3.2 has two main differences:

1. Our translation is more efficient because it produces directly, in one step, a PDS
from C code without going through an intermediate Boolean program.

2. We close a given set of seed predicates C by computing weakest preconditions
along the different possible paths of the program. In contrast, SLAM uses the seed
set of predicates C as is, without computing its closure by weakest precondition.
Instead, it computes largest disjunctions of predicates in C that imply the weakest
preconditions. Consequently, the abstract model we obtain is more precise than
SLAM’s because it uses more predicates.

1 Determining whether (p1 ∧p2) is satisfiable is in general undecidable when p1 and p2 are first-
order formulas over the integers. To sidestep this problem, we use a sound validity checker [19]
that always terminates and answers TRUE, FALSE, or UNKNOWN to the question whether
a given formula ¬(p1 ∧ p2) is valid. If the validity checker returns FALSE or UNKNOWN to
the question “Is ¬(p1 ∧p2) valid?”, then (p1 ∧p2) is potentially satisfiable.

Verifying Concurrent Message-Passing C Programs with Recursive Calls 339

4 Reachability Analysis of CPDSs

Given a program that consists of n sequential components, we usually ask the following
query: “Suppose that the system starts from a configuration where each component i,
for i = 1, . . . ,n, is at its initial control point ni

0. Can one of the components reach an
error point?” Our technique answers this kind of question by modeling the program
as the CPDS (P1, . . . ,Pn) with initial configurations C1 × . . .×Cn and error configura-
tions C′

1 × . . . ×C′
n (where the states of configurations in some C′

i correspond to error
points and the states of configurations in C′

1, . . . ,C
′
i−1,C

′
i+1, . . . ,C

′
n are unconstrained).

If the error configurations are reachable from the initial configurations, our algorithm
returns a sequence of synchronization actions that yield a failing program run. We show
in this section how to tackle the reachability analysis of these systems. In the remain-
der of the paper, we restrict ourselves to systems that consist of two components. The
technique can be extended in a straightforward manner to the general case (see [7]
for more details); the implementation discussed in §6 supports an arbitrary number of
components.

We reduce the reachability problem for CPDSs to deciding the emptiness question
for the intersection of two CFLs as follows: Let (P1,P2) be a CPDS, and let C1 ×
C2 and C′

1 × C′
2 be two sets of global configurations of the system. Because all the

internal actions are represented by τ (which is a neutral element for concatenation),
C′

1 ×C′
2 is reachable from C1 ×C2 if and only if there exists at least one sequence of

synchronization actions that simultaneously leads P1 from a configuration in C1 to a
configuration in C′

1 and P2 from a configuration in C2 to a configuration in C′
2. This

holds iff L(C1,C′
1) ∩ L(C2,C′

2) �= /0, where L(Ci,C′
i) is the CFL consisting of all the

sequences of actions (or, equivalently, of synchronization actions because the internal
actions are represented by τ) that lead Pi from Ci to C′

i .
Because deciding the emptiness of the intersection of two CFLs is undecidable,

we propose a semi-decision procedure that, in case of termination, answers exactly
whether the intersection is empty or not. Moreover, if L(C1,C′

1) ∩ L(C2,C′
2) �= /0, the

semi-decision procedure is guaranteed to terminate and return a witness sequence in
the intersection.

The semi-decision procedure is based on a CounterExample Guided Abstraction Re-
finement (CEGAR) scheme as follows:

1. Abstraction: We compute an over-approximation Ai of each path language
L(Ci,C′

i).
2. Verification: We check if A1 ∩ A2 = /0, and, if so, we conclude that L(C1,C′

1) ∩
L(C2,C′

2) = /0, i.e., that C′
1 ×C′

2 is unreachable from C1 ×C2. Otherwise, we com-
pute the “counterexample” I = A1 ∩A2.

3. Counterexample Validation: We check whether I contains a sequence x that is in
L(C1,C′

1) ∩ L(C2,C′
2). In this case I is not spurious, and we conclude that

L(C1,C′
1)∩ L(C2,C′

2) �= /0, i.e., that C′
1 ×C′

2 is reachable from C1 ×C2. Otherwise,
we proceed to the next step.

4. Refinement: If I is spurious, we refine the over-approximations A1 and A2, i.e., we
compute other over-approximations A′

1 and A′
2 such that L(Ci,C′

i) ⊆ A′
i ⊆ Ai. We

then continue from step 2.

340 S. Chaki et al.

In the remainder of this section, we discuss these steps in detail. We fix two sets of
global configurations C1 ×C2 and C′

1 ×C′
2. For brevity, we denote L(C1,C′

1) by L1, and
L(C2,C′

2) by L2.

4.1 Computing Over-Approximations of Path Languages

To compute over-approximations of PDS path languages, our technique is based on the
approach presented by Bouajjani et al. [7], which is summarized below.

Consider an abstract lattice (D,≤,�,�,⊥,�) associated with an idempotent semir-
ing (D,⊕,�, 0̄, 1̄) such that ⊕ = � is an associative, commutative, and idempotent
(a ⊕ a = a) operation; � is an associative operation; 0̄ = ⊥; 0̄ and 1̄ are neutral ele-
ments for ⊕ and �, respectively; 0̄ is an annihilator for � (a � 0̄ = 0̄ � a = 0̄); and �
distributes over ⊕. Finally, ∀a,b ∈ D,a ≤ b ⇐⇒ a ⊕ b = a.

Let D be related to the concrete domain 2Lab∗
as follows:

– D contains an element va for every letter a ∈ Lab,
– There is an abstraction function α : 2Lab∗ → D and a concretization function γ : D →

2Lab∗
defined as follows:

α(L) =
⊕

a1···an∈L
va1 �·· ·� van and γ(x) = {a1 · · ·an ∈ Lab∗ | va1 �·· ·� van ≤ x},

such that γ(⊥) = /0.

It is easy to see that for every language L ⊆ Lab∗; α(L) ∈ D, and γ
(
α(L)

)
⊇ L. In

other words, γ
(
α(L)

)
is an over-approximation of L that is represented in the abstract

domain D by the element α(L). Intuitively, the abstract operations � and ⊕ correspond
to concatenation and union, respectively; ≤ and � correspond to inclusion and intersec-
tion, respectively; and the abstract elements 0̄ and 1̄ correspond to the empty language
and {ε}, respectively.

Therefore, to compute the over-approximation γ
(
α(Li)

)
, we need to compute its rep-

resentative α(Li) in the abstract domain D. Let a finite-chain abstraction be an abstrac-
tion such that D does not contain an infinite ascending chain, and let h be the maximal
height of a chain in D. Then we have:

Theorem 1. [7, 20] Let P = (Q,Act,Γ,∆) be a PDS; let C,C′ be two regular sets of
configurations of P ; and let α be a finite-chain abstraction defined on the abstract
domain D. Then α

(
L(C,C′)

)
can be effectively computed in time O(h|∆||Q|2).

Two different algorithms provide the basis of this theorem, one due to Bouajjani et
al. [6, 7], the other to Reps et al. [20, 21]. The latter has been implemented in a tool
called WPDS++ [22]. We use this tool to compute abstractions of path languages.

To check the emptiness of the intersection of the over-approximations γ
(
α(L1)

)
and

γ
(
α(L2)

)
, it suffices to check whether α(L1)� α(L2) = ⊥. Indeed, using the fact that

γ(⊥) = /0, we can show that
∀L1,L2 ∈ Lab∗,α(L1)�α(L2) = ⊥ ⇔ γ

(
α(L1)

)
∩ γ

(
α(L2)

)
= /0.

4.2 Defining Refinable Finite-Chain Abstractions

To be able to apply our CEGAR scheme, we need to define refinable finite-chain ab-
stractions, i.e., a series (αi)i≥1 such that αi is at least as precise as α j if i > j; i.e., for
every language L ⊆ Lab∗, if i > j then L ⊆ γi

(
αi(L)

)
⊆ γ j

(
α j(L)

)
.

Verifying Concurrent Message-Passing C Programs with Recursive Calls 341

For this we define the ith-prefix abstraction as follows: Let Wi be the set of words of
Lab∗ of length less than or equal to i. The abstract lattice Di is equal to 2Wi ; for every
a ∈ Lab, va = a; ⊕ = ∪; � = ∩; U �V = {(uv)i | u ∈ U,v ∈ V}, where (w)i is the prefix
of w of length i; 0̄ = /0; 1̄ = {ε}; ≤=⊆.

Let αi and γi be the abstraction and concretization functions associated with this
domain. It is easy to see that αi(L) is the set of words of L of length less than i, union the
set of prefixes of length i of L, i.e., αi(L) = {w | |w| < i and w ∈ L, or |w| = i and ∃v ∈
Lab∗ s.t. wv ∈ L}. Therefore, γi

(
αi(L)

)
= {w ∈ αi(L) | |w| < i}∪{wv | w ∈ αi(L), |w| =

i,v ∈ Lab∗}.
Note that it is possible to decide whether αi(L1) ∩ αi(L2) = /0 because, for every

L ⊆ Lab∗, αi(L) is a finite set of words.
It is also easy to see that if i > j, then αi is at least as precise as α j . Indeed, we

have L ⊆ γi
(
αi(L)

)
⊆ γ j

(
α j(L)

)
. We have thus defined a refinable series of finite-chain

abstractions α1,α2,α3,

Remark 1. The ith-prefix abstraction is only one abstraction that can be used to instanti-
ate the framework. Others are possible, such as the ith-suffix or the ith-subword abstrac-
tions (defined in an analogous way).

4.3 Checking Whether the Counterexample Is Spurious

It remains to check whether I = γi
(
αi

(
L1)

)
∩γi

(
αi(L2)

)
contains an element x such that

x ∈ L1 ∩L2. This amounts to deciding whether I ∩L1 ∩L2 = /0. Unfortunately, this prob-
lem is undecidable because I is a regular language (because for L ⊆ Lab∗, γi

(
αi(L)

)
is

regular). To sidestep this problem, we check instead whether L1 and L2 have a common
word of length at most i. This amounts to checking whether

(
αi(L1)∩L1

)
∩

(
αi(L2)∩

L2
)

= /0. This is decidable because αi(L) is a finite set.

4.4 The Semi-decision Procedure

Summarizing the previous discussion, we obtain the following semi-decision procedure
(based on the ith-prefix abstraction) for the reachability problem for CPDSs:

1. Initially, i = 1;
2. Compute the common words of length less than i, and the common prefixes of

length i of L(C1,C′
1) and L(C2,C′

2): I′ = αi
(
L(C1,C′

1)
)
∩αi

(
L(C2,C′

2)
)
.

3. If I′ = /0, conclude that L(C1,C′
1)∩ L(C2,C′

2) = /0, and that C′
1 ×C′

2 is unreachable
from C1 ×C2. Otherwise, determine whether or not I′ is spurious: Check whether
I′ ∩ L(C1,C′

1)∩ L(C2,C′
2) �= /0. If this holds, conclude that L(C1,C′

1) and L(C2,C′
2)

have a common word of length less than or equal to i, and therefore, that L(C1,C′
1)∩

L(C2,C′
2) �= /0, and C′

1 ×C′
2 is reachable from C1 ×C2.

4. Otherwise, increment i and continue from step 2.

Theorem 2. If L(C1,C′
1)∩ L(C2,C′

2) �= /0, then the above semi-decision procedure ter-
minates with the exact solution.

Proof. Let x ∈ L(C1,C′
1)∩L(C2,C′

2), and let k be the length of x. Then
x ∈ αk

(
L(C1,C′

1)
)
∩αk

(
L(C2,C′

2)
)
.

342 S. Chaki et al.

Remark 2. It follows from Theorem 1 that at each step i, computing αi(L) necessitates
O(2|Lab|i |∆||Q|2) time since there are at most |Lab|i words of length i, and therefore at
most 2|Lab|i elements in Di. This is the worst-case complexity of the algorithm. How-
ever, in practice, our implementation behaves well, as discussed in §6.

4.5 Example

Let P1 be the PDS that has the following rules:

r1 : 〈p,n0〉
a

↪−→ 〈p,n1〉; r2 : 〈p,n1〉
τ

↪−→ 〈p,n0n2〉; r3 : 〈p,n2〉
b

↪−→ 〈p,ε〉; r4 : 〈p,n0〉
b

↪−→ 〈p,ε〉.
Let P2 be the PDS that has the following rules:

r′
1 : 〈q,m0〉

a
↪−→ 〈q,m1〉; r′

2 : 〈q,m1〉
b

↪−→ 〈q,m2〉; r′
3 : 〈q,m2〉

τ
↪−→ 〈q,m0m3〉;

r′
4 : 〈q,m3〉

b
↪−→ 〈q,ε〉; and r′

5 : 〈q,m0〉
d

↪−→ 〈q,ε〉.
For P1, let L1 be L

(
〈p,n0〉,〈p,ε〉

)
= {akbbk | k ≥ 0}. For P2, let L2 be L

(
〈q,m0〉,

〈q,ε〉
)
= {(ab)kdbk | k ≥ 0}. Note that L1 ∩L2 = /0. We use this straightforward example

to illustrate our approach:

– α1(L1)∩α1(L2) = {a} �= /0;
– a /∈ L1, therefore, we refine the abstraction and go to α2;
– α2(L1)∩α2(L2) = {ab} �= /0;
– ab /∈ L2, therefore, we refine the abstraction and go to α3;
– α3(L1)∩α3(L2) = /0. Therefore, we conclude that L1 ∩L2 = /0.

5 Componentwise Refinement

The construction of the CPDS model from the C program involves predicate abstrac-
tion. It is parametrized by a set of predicates. A central issue in predicate abstraction
is how to find a small set of predicates that allows a property of interest to be estab-
lished. In our case, the property in question is whether the system can reach an error
configuration from the initial configuration, where component i (where, e.g., i = 1,2)
starts in configuration 〈globi

0,(n
i
0, loci

0)〉, ni
0 is the initial control point of component

i, and globi
0, loci

0 are initial valuations of the global and local variables, respectively.
Similarly, an error configuration is a configuration where at least one component i is in
a configuration of the form 〈glob,(ni

e, loc)〉, where ni
e correponds to an error point, and

glob and loc are arbitrary valuations of the variables. MAGIC finds an appropriate set
of predicates by applying a CEGAR approach, as described below.

We start with a model involving an empty set of seed predicates, and perform the
model-checking step described in §4. If the model checker answers that the error state
is unreachable in the CPDS model, we are sure that this is also the case for the con-
crete program, because the program has fewer behaviors than the model. Otherwise,
if the model checker finds that the CPDS can reach an error state by performing a se-
quence of synchronization actions a1 · · ·an (a1 · · ·an ∈ I′ ∩ L(C1,C′

1) ∩ L(C2,C′
2)), we

need to verify whether this behavior corresponds to a real execution of the program (in
which case, we have shown that the program is not correct), or whether the apparently-
erroneous behavior has been introduced by abstraction. If the latter is the case, we need

Verifying Concurrent Message-Passing C Programs with Recursive Calls 343

to refine the CPDS model. More precisely, the model checker returns two sequences of
rules r1

1, . . . ,r
1
m1

and r2
1, . . . ,r

2
m2

such that the CPDS (P1,P2) reaches the error state if
Pi performs the sequence ri

1, . . . ,r
i
mi

(in this case, a1 · · ·an is the sequence of synchro-
nization actions corresponding to these sequences of rules). We say that the sequence
ri

1, . . . ,r
i
mi

is a counterexample for component i. To check whether this counterexam-
ple is spurious, we need to check whether component i can perform the sequence of
statements that correspond to the rule sequence ri

1, . . . ,r
i
mi

. If either component fails
to perform its corresponding sequence, we refine its corresponding PDS to eliminate
the spurious rule sequence. Note that all of these steps are done componentwise, which
makes the technique compositional and scalable to large programs.

5.1 Counterexample Validation

We present in this subsection an algorithm that takes as input a counterexample given by
a sequence of rules r1, . . . ,rn of a PDS that models a sequential component, and answers
whether it is spurious. Let s1, . . . ,sn be the sequence of statements that corresponds to
r1, . . . ,rn. Intuitively, the algorithm simulates the different steps to determine whether
the concrete component could possibly perform them. The algorithm starts from the
initial point n0, and the valuations glob0 and loc0 of the variables. Then, it applies suc-
cessively the different statements si, i = 1, . . . ,n, updates the values of the variables, and
checks whether the if-then-else conditions are satisfied in this sequence of instructions.
More precisely, the algorithm works as follows:

– Initially ϕ = glob0 ∧ loc0,
– For i = 1 to n do

• if si is an assignment, compute the strongest postcondition of ϕ with respect
to si. For example, if si is the assignment x := x + 5, and ϕ is the valuation
(1 < x < 4) = true; the updated valuation ϕ is (6 < x < 9) = true.

• if si is an if statement with condition c, then if si+1 corresponds to its then
successor, ϕ := ϕ∧c. Otherwise, if si+1 corresponds to its else successor, ϕ :=
ϕ∧¬c.

– If ϕ is satisfiable, then the program can execute the sequence of statements, and the
counterexample is valid; otherwise, the counterexample is spurious.

5.2 Eliminating the Counterexample

If the counterexample is spurious for component i, we need to refine the PDS model
Pi corresponding to this component by adding new seed predicates. The predicates that
we add are subsets of the set of conditions of the if-then-else branches of the program.
Intuitively, it works as follows: In most cases, the counterexample is spurious because in
the abstract model we have not modeled an if condition with sufficient precision, and we
have allowed both of its branches to be followed (at some “moment” during an abstract
execution), whereas in any concrete execution run only one branch can be followed; the
counterexample corresponds to a trace that takes the “wrong” branch. So, to eliminate
this trace, we need to add the condition c of this if statement as a seed predicate. More
precisely, let X = {c1, . . . ,ck} be the set of conditions of the if statements of the program,
and let C be the current set of seed predicates, i.e., such that Pi is computed as described
in §3 using the set of predicates P[C]. We proceed as follows:

344 S. Chaki et al.

1. i := 1,
2. if ci ∈ C , then increment i and go to step 2,
3. C ′ := C ∪{ci},
4. Create the PDS P ′

i that corresponds to the predicates P[C ′] as described in §3.2. If
the new model eliminates the counterexample, then let the new seed set be C := C ′.
Otherwise increment i and go to step 2.

If none of the predicates c1, . . . ,ck succeeds in eliminating the counterexample, we try
to add two predicates at each step. If we try all the possibilities, and the counterexample
is still not eliminated, we try to add three predicates at each step, etc.

5.3 An Example Illustrating the CEGAR Predicate-Abstraction Technique

Consider the following two sequential components D1 and D2 running in parallel, where
a is a synchronization action:

D1: D2:
main() { void proc() { main() {

n0: int x=10; n3: if (x < 10) m0: a;
n1: proc(); n4: a; m1: return;
n2: return; n5: else proc(); }

} n6: return;
}

The CPDS Model

Case #1: The set of seed predicates C is empty: Let us model first the component D1

by a PDS P1. There are no local variables, so the stack alphabet is the set of the control
points. Moreover, because the set of seed predicates C is empty, let p be the unique state
of P1 (p corresponds to the valuation empty). P1 contains the following rules:

r1 : 〈p,n0〉
τ

↪−→ 〈p,n1〉; r2 : 〈p,n1〉
τ

↪−→ 〈p,n3n2〉; r3 : 〈p,n2〉
τ

↪−→ 〈p,ε〉; r4 : 〈p,n3〉
τ

↪−→ 〈p,n4〉;
r5 : 〈p,n3〉

τ
↪−→ 〈p,n5〉; r6 : 〈p,n4〉

a
↪−→ 〈p,n6〉; r7 : 〈p,n5〉

τ
↪−→ 〈p,n3n6〉; r8 : 〈p,n6〉

τ
↪−→ 〈p,ε〉.

Similarly, we represent the second component by a PDS P2 that has a unique state q,
and the following rules:

r′
1 : 〈q,m0〉

a
↪−→ 〈q,m1〉; and r′

2 : 〈q,m1〉
τ

↪−→ 〈q,ε〉.

Case #2: We have C = {(x < 10)}: We model the component D1 by the following
PDS P ′

1. We have: P[C]n1 = P[C]n3 = P[C]n5 = {x < 10}, and P[C]n = /0 for the other
points (while computing P[C]n0 , we find the predicate 10 < 10. Because we ignore
predicates that are trivially true or false, we keep P[C]n0 = /0). The states of P ′

1 are:
p1 : (x < 10) = f alse, p2 : (x < 10) = true, and p3 : empty. P ′

1 contains the following
rules:

〈p3,n0〉
τ

↪−→ 〈p1,n1〉; 〈p1,n1〉
τ

↪−→ 〈p1,n3n2〉; 〈p3,n2〉
τ

↪−→ 〈p3,ε〉; 〈p2,n3〉
τ

↪−→ 〈p3,n4〉;
〈p1,n3〉

τ
↪−→ 〈p1,n5〉; 〈p3,n4〉

a
↪−→ 〈p3,n6〉; 〈p1,n5〉

τ
↪−→ 〈p1,n3n6〉; 〈p3,n6〉

τ
↪−→ 〈p3,ε〉.

Verifying Concurrent Message-Passing C Programs with Recursive Calls 345

Refinement. Consider the query “Can D2 reach the point m1 if the system starts from
(n0,m0)?” Obviously, this is not the case, because the second component can go to m1

only if it synchronizes with D1 using the action a, whereas the first component can never
perform a, because at n3 we do not have x < 10. If we model the concurrent program
using no seed predicates, i.e., if we consider the model (P1,P2), the model checker
answers that (n6n2,m1) is reachable with the following sequences: r1r2r4r6 for P1, and
r′

1 for P2. Using our method, we can check that r1r2r4r6 is spurious because ϕ = (x =
10)∧ (x < 10) is not satisfiable. Therefore, we refine PDS P1 using C = {(x < 10)} to
obtain the PDS P ′

1. Then it is easy to see that in the CPDS (P ′
1,P2), P2 cannot reach m1.

6 Experimental Results

We implemented our method in ComFoRT [23], a model checker built on top of MAGIC
[14], and experimented with a set of non-trivial benchmarks. The implementation sup-
ports two kinds of abstractions described in §4.2: the ith-prefix and the ith-suffix
abstractions.

6.1 Application to Concurrent Recursive Programs

We applied the technique to two nontrivial recursive concurrent programs that could
not be handled with the original (non-recursive) version of MAGIC: a Windows NT
Bluetooth driver, and an algorithm for concurrent insertions in a binary search tree. The
experiments were performed on a 3.0 GHz P4 SMP with 2 GB memory, running Linux
2.4.21-27.0.1.

A New Bug in a Windows NT Bluetooth Driver. The tool found bugs in two ver-
sions of this program (BT1 and BT2) and verified the correctness for a two-process
instantiation of a third version (BT3). BT1 was the version for which KISS had pre-
viously found a bug [24], and our tool identified the same bug. In contrast to KISS

Table 1. Performance for the Bluetooth driver (len. = coun-
terexample length, except for BT3, where it indicates the ab-
straction length;mem. = memory usage (MB))

version # procs. abstraction len. time(secs.) mem.

BT1 1 ith-prefix 8 8 358
BT1 1 ith-suffix 8 5 334
BT2 2 ith-prefix 14 67 490
BT2 2 ith-suffix 14 20 391
BT3 1 ith-suffix 6 2 304
BT3 2 ith-suffix 7 25 441

(as well as the work reported
in [25]), our approach can
also verify correctness by de-
termining that all error con-
figurations are unreachable.
The authors of [24] sent us
BT2 to see if correctness
could be verified. Instead,
we found a bug in BT2 that
can arise when two concur-
rent processes are running.
Both bugs could be detected
with the ith-prefix abstrac-
tion as well as the ith-suffix
abstraction. Using the coun-
terexample found by our tool, we modified BT2 to create BT3, and analyzed BT3 for a
two-process configuration. The tool reported that the error state is unreachable in BT3.

346 S. Chaki et al.

Tab. 1 shows the running times and memory consumption for these experiments. The
ith-suffix abstraction is more efficient because we use it to compute Pre∗ from the error
states. Therefore, the language will stop growing once Pre∗ has traversed i actions from
the error state.

Note that the Bluetooth driver is not recursive; however, we use a recursive process
to model a counter. In the real program, the counter is an integer (which is a global
variable). Because we needed to represent global variables by means of synchronization
actions, we had to represent the counter as a process. We modeled the counter process
as a PDS with stack alphabet {1}. The number of 1’s on the stack corresponds to the
value of the counter. Then, incrementing the counter amounts to pushing a 1 onto the
stack, and decrementing it amounts to popping a 1 off the stack.

Table 2. Times needed to detect the bug in the
concurrent-insertions algorithm

procs. len. time (secs.)

2 1 0.8
3 1 0.8
4 1 0.8
5 1 1.1
6 1 2.7
7 1 12.9

An Algorithm for Concurrent Inser-
tions in a Binary Search Tree. We
also considered an algorithm that han-
dles a finite number of concurrent inser-
tions in a binary search tree [26]. The
algorithm can be applied to handle si-
multaneous insertions into a database
(by several users), or to reduce the time
necessary for a single insertion. The
algorithm was modified so that one pro-
cess does not adhere to the required
lock and unlock semantics, and we then
applied our tool (using the ith-prefix abstraction) to the modified version. The times
needed to detect the bug (as a function of number of processes) are shown in Tab. 2.

6.2 Application to Non-recursive Examples

We applied our implementation to several examples without recursion to which MAGIC
had already been applied. The previous version of MAGIC handles non-recursive pro-
cedure calls by in-line expansion. The purpose of the non-recursive experiments was to
test whether our technique was better than inlining.

We tested sequential programs to determine whether the implementations were of
comparable speed (without the complication of concurrency). They were not: the times
for the srvr-i and clnt-i examples show that the overhead introduced by our technique is
substantial (cf. the times in the two columns of Tab. 3 labeled “Verif”). The reason for
this difference is that MAGIC performs a reachability query over an FSM, whereas we
use the full CPDS machinery (which includes the inner CEGAR loop).

Despite this handicap, when model checking concurrent programs, our technique
was almost always better than the in-lining technique of the base MAGIC system (see
the bold entries in the right-hand table of Tab. 3). The new technique outperforms
MAGIC in these cases because it avoids the state-space explosion that can occur be-
cause of in-lining. The cost of the technique depends heavily on the length of the syn-
chronization sequences examined by the model checker. This can be seen by comparing
the times for the non-recursive examples and for the Bluetooth example. Each of the

Verifying Concurrent Message-Passing C Programs with Recursive Calls 347

Table 3. Abs = predicate-abstraction time (sec); Verif = model-checking time (sec); Mem = mem-
ory usage (MB); * = exceeded 2 GB memory limit; Len = abstraction length

Sequential Experiments Concurrent Experiments

Program MAGIC CPDS
Abs Verif Mem Abs Verif Mem Len

srvr-1 25.5 0.001 24.3 25.5 1.2 31.3 2
srvr-2 25.8 0.001 22.2 25.7 1.3 31.3 2
srvr-3 25.7 0.003 23.3 25.6 1.2 31.3 2
srvr-4 25.5 0.025 24.3 25.6 1.2 31.3 2
srvr-5 25.4 0.034 25.4 25.7 2.2 34.4 2
srvr-6 25.7 0.038 22.3 25.7 2.3 34.1 2
srvr-7 25.5 0.024 24.3 25.9 2.1 34.0 2
srvr-8 25.4 0.035 25.4 25.8 2.1 34.0 2

clnt-1 18.9 0.001 16.1 19.3 0.881 22.1 2
clnt-2 19.2 0.001 14.1 19.0 0.950 24.9 2
clnt-3 18.9 0.002 16.1 19.2 0.856 23.2 2
clnt-4 19.1 0.001 14.6 18.9 0.880 24.9 2
clnt-5 18.7 0.026 18.7 19.1 1.65 27.2 2
clnt-6 18.9 0.027 16.1 19.3 1.78 27.2 2
clnt-7 19.2 0.027 14.1 19.1 1.71 27.2 2
clnt-8 19.2 0.027 14.1 19.3 1.68 27.2 2

Program MAGIC CPDS
Abs Verif Mem Abs Verif Mem Len

ssl-1 46.2 16.2 56.3 46.8 2.82 58.0 2
ssl-2 46.2 16.1 56.3 46.4 3.83 68.7 2
ssl-3 46.8 14.0 56.2 46.8 19.2 450 4
ssl-4 46.7 14.2 56.2 46.2 2.76 57.1 2
ssl-5 46.7 14.0 56.2 46.8 3.02 58.3 2
ssl-6 46.1 14.0 53.5 46.8 2.93 58.3 2
ssl-7 46.3 15.0 56.3 46.2 3.34 58.3 2

ucos 29.1 0.044 293 6.8 0.702 110 2
ucos-2 84.8 578 639 16.5 1.324 161 2
ucos-3 168 * * 29.2 2.144 213 2

casting 45.7 0.257 196.1 40.3 38.2 2145 3

non-recursive examples are verifed using strings of only 2–4 synchronization actions.
However, BT1, BT2, and BT3 need 8, 14, and 7 actions, respectively, which causes
the running times to be much larger. This is an interesting aspect of our technique,
namely, the limiting factor is the length of the synchronization sequences considered,
not program size. Indeed, the analysis times are encouraging for the programs ucos-2
and ucos-3, which are 12K LOC and 18K LOC, respectively (see Tab. 3).

7 Related Work

Bouajjani et al. also reduced the reachability problem for CPDSs to computing over-
approximations of CFLs; however, no CEGAR techniques were presented there [6, 7].
More precisely, their work computes over-approximations A1 and A2 of two given CFLs
L1 and L2, and if A1 ∩A2 = /0, one concludes that L1 ∩L2 = /0. However, no conclusion
can be made automatically if A1 ∩ A2 �= /0. In particular, one can never conclude that
L1 ∩ L2 �= /0. In contrast, our CEGAR-based semi-decision procedure is guaranteed to
terminate in this case, with the correct answer.

CEGAR-based predicate-abstraction techniques are used in several C-program
model-checking tools, such as SLAM [12], BLAST [13], ZING [27], and KISS [24].
However, as mentioned previously, SLAM cannot deal with concurrency, BLAST can-
not handle recursion, and KISS cannot discover errors that appear after a number of in-
terleavings between the parallel components greater than three. ZING is an extension of
SLAM to concurrent programs. SLAM and ZING are based on procedure summariza-
tion; hence, ZING might not terminate in cases where our technique will. Indeed, in the

348 S. Chaki et al.

concurrent case, one needs to keep track of the calling stack, which can be unbounded
in the presence of recursive calls. The contents of the stack are explicitly represented in
ZING. In contrast, in our PDS modeling framework, they are symbolically represented
with regular languages. On the other hand, SLAM and ZING use predicate-abstraction
techniques to extract a Boolean program from a C program with recursion. Schwoon
has implemented a translation from Boolean programs to PDSs in the MOPED tool
[15]. However, MOPED cannot handle concurrent programs. Our CPDS predicate-
abstraction-refinement techniques are performed componentwise, and amount to per-
forming successive sequential PDS predicate-abstractions and refinements. These suc-
cessive steps could be performed using SLAM and then MOPED; however, in this pa-
per, we present predicate-abstraction techniques that create a PDS from C source code
of a sequential component directly and more efficently (i.e., without going through an
intermediate Boolean program).

Finally, the techniques presented in [28, 25] also use multiple PDSs to model concur-
rent recursive programs. However, [28] is restricted to programs that communicate via
a finite number of locks, and assumes a certain nesting condition on the locks. As for
[25], it uses shared-variables for communication between threads, whereas we use syn-
chronizing actions (these two models can simulate each other). The technique presented
in [25] sidesteps the undecidability of the reachability problem for multiple PDSs by
putting a bound k on the number of interleavings between different threads, whereas
we sidestep undecidability by computing abstractions of CFLs (without bounding the
number of interleavings). In certain cases, our technique can be more powerful than the
one presented in [25]. Namely, when we find A1 ∩ A2 = /0, we can infer that the target
configurations are not reachable, whereas the technique of [25] can never establish such
a property because it computes an underapproximation. Indeed, after correcting BT2 to
create BT3, our tool verified that BT3 is correct for two processes. Finally, the technique
of [25] has not been implemented, and no automatic techniques to translate C code to
PDS are presented there.

Acknowledgments. We thank M. Sighireanu for helpful discussions about the Blue-
tooth driver program, S. Qadeer for providing us with BT2, and A. Lal for his helpful
insights.

References

1. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable.
TOPLAS 22 (2000) 416–430

2. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis.
In: FOSSACS. (1999)

3. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In: CAV.
(2001)

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model checking. In: CONCUR. (1997)

5. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown
systems. In: Infinity. (1997)

6. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent
programs with procedures. In: POPL. (2003)

Verifying Concurrent Message-Passing C Programs with Recursive Calls 349

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent
programs with procedures. Int. J. Found. of Comp. Sci. (2003)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL. (1977)

9. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV. (1997)
10. Kurshan, R.P.: Computer-aided verification of coordinating processes: The automata-

theoretic approach. In: Princeton University Press. (1994)
11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction

refinement. In: CAV. (2000)
12. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of interfaces. In:

SPIN. (2001)
13. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL. (2002)
14. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software compo-

nents in C. In: ICSE. (2003)
15. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
16. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing C

programs with recursive calls. Tech. Rep. 1532, Univ. of Wisconsin (2005)
17. Necula, G., McPeak, S., Weimer, W., Liblit, B., To, R., Bhargava, A.: C intermediate lang.

(2001) http://manju.cs.berkeley.edu/cil.
18. Morris, J.: Assignment and linked data structures. In: Theoretical Foundations of Program-

ming Methodology. D. Reidel Publishing Co. (1982)
19. Nelson, G.: Techniques for Program Verification. PhD thesis, Stanford University (1980)
20. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-

procedural dataflow analysis. In: SAS. (2003)
21. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application

to interprocedural dataflow analysis. SCP 58 (2005)
22. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown

systems (2004) http://www.cs.wisc.edu/wpis/wpds++/.
23. Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT reasoning framework. In:

CAV. (2005)
24. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI. (2004)
25. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: TACAS.

(2005)
26. Kung, H., Lehman, P.: Concurrent manipulation of binary search trees. TODS 5 (1980)
27. Qadeer, S., Rajamani, S., Rehof, J.: Summarizing procedures in concurrent programs. In:

POPL. (2004)
28. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via locks. In:

CAV. (2005)

	Introduction
	Preliminary Definitions
	Componentwise Predicate Abstraction
	Predicate Inference
	PDS Extraction
	Comparision with the Predicate-Abstraction Technique of SLAM

	Reachability Analysis of CPDSs
	Computing Over-Approximations of Path Languages
	Defining Refinable Finite-Chain Abstractions
	Checking Whether the Counterexample Is Spurious
	The Semi-decision Procedure
	Example

	Componentwise Refinement
	Counterexample Validation
	Eliminating the Counterexample
	An Example Illustrating the CEGAR Predicate-Abstraction Technique

	Experimental Results
	Application to Concurrent Recursive Programs
	Application to Non-recursive Examples

	Related Work

