
This paper is included in the Proceedings of the

25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the

25th USENIX Security Symposium

is sponsored by USENIX

Verifying Constant-Time Implementations
José Bacelar Almeida, HASLab/INESC TEC and University of Minho;

Manuel Barbosa, HASLab/INESC TEC and DCC FCUP; Gilles Barthe and François Dupressoir,

IMDEA Software Institute; Michael Emmi, Bell Labs and Nokia

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida

USENIX Association 25th USENIX Security Symposium 53

Verifying Constant-Time Implementations

José Bacelar Almeida

HASLab - INESC TEC & Univ. Minho

Manuel Barbosa

HASLab - INESC TEC & DCC FCUP

Gilles Barthe

IMDEA Software Institute

François Dupressoir

IMDEA Software Institute

Michael Emmi

Bell Labs, Nokia

Abstract
The constant-time programming discipline is an effective

countermeasure against timing attacks, which can lead to

complete breaks of otherwise secure systems. However,

adhering to constant-time programming is hard on its

own, and extremely hard under additional efficiency and

legacy constraints. This makes automated verification of

constant-time code an essential component for building

secure software.

We propose a novel approach for verifying constant-

time security of real-world code. Our approach is able

to validate implementations that locally and intentionally

violate the constant-time policy, when such violations

are benign and leak no more information than the pub-

lic outputs of the computation. Such implementations,

which are used in cryptographic libraries to obtain impor-

tant speedups or to comply with legacy APIs, would be

declared insecure by all prior solutions.

We implement our approach in a publicly available,

cross-platform, and fully automated prototype, ct-verif,

that leverages the SMACK and Boogie tools and verifies

optimized LLVM implementations. We present verifica-

tion results obtained over a wide range of constant-time

components from the NaCl, OpenSSL, FourQ and other

off-the-shelf libraries. The diversity and scale of our ex-

amples, as well as the fact that we deal with top-level

APIs rather than being limited to low-level leaf functions,

distinguishes ct-verif from prior tools.

Our approach is based on a simple reduction of

constant-time security of a program P to safety of a prod-

uct program Q that simulates two executions of P. We

formalize and verify the reduction for a core high-level

language using the Coq proof assistant.

1 Introduction

Timing attacks pose a serious threat to otherwise secure

software systems. Such attacks can be mounted by mea-

suring the execution time of an implementation directly

in the execution platform [23] or by interacting remotely

with the implementation through a network. Notable ex-

amples of the latter include Brumley and Boneh’s key

recovery attacks against OpenSSL’s implementation of

the RSA decryption operation [15]; and the Canvel et

al. [16] and Lucky 13 [4] timing-based padding-oracle

attacks, that recover application data from SSL/TLS con-

nections [38]. A different class of timing attacks exploit

side-effects of cache-collisions; here the attacker infers

memory-access patterns of the target program — which

may depend on secret data — from the memory latency

correlation created by cache sharing between processes

hosted on the same machine [11, 31]. It has been demon-

strated in practice that these attacks allow the recovery of

secret key material, such as complete AES keys [21].

As a countermeasure, many security practitioners mit-

igate vulnerability by adopting so-called constant-time

programming disciplines. A common principle of such

disciplines governs programs’ control-flow paths in order

to protect against attacks based on measuring execution

time and branch-prediction attacks, requiring that paths

do not depend on program secrets. On its own, this charac-

terization is roughly equivalent to security in the program

counter model [29] in which program counter values do

not depend on program secrets. Stronger constant-time

policies also govern programs’ memory-access patterns

in order to protect against cache-timing attacks, requiring

that accessed memory addresses do not depend on pro-

gram secrets. Further refinements govern the operands of

program operations, e.g., requiring that inputs to certain

operations do not depend on program secrets, as the exe-

cution time of some machine instructions, notably integer

division and floating point operations, may depend on the

values of their operands.

Although constant-time security policies are the most

effective and widely-used software-based countermea-

sures against timing attacks [11, 25, 20], writing constant-

time implementations can be difficult. Indeed, doing so

requires the use of low-level programming languages or

54 25th USENIX Security Symposium USENIX Association

compiler knowledge, and forces developers to deviate

from conventional programming practices. For instance,

the program if b then x := v1 else x := v2 may be re-

placed with the less conventional x := b∗v1+(1−b)∗v2.

Furthermore, the observable properties of a program ex-

ecution are generally not evident from its source code,

e.g., due to optimizations made by compilers or due to

platform-specific behaviours.

This raises the question of how to validate constant-

time implementations. A recently disclosed timing leak

in OpenSSL’s DSA signing [19] procedure demonstrates

that writing constant-time code is complex and requires

some form of validation. The recent case of Amazon’s

s2n library also demonstrates that the deployment of less

rigid timing countermeasures is extremely hard to val-

idate: soon after its release, two patches1 were issued

for protection against timing attacks [3, 5], the second of

which exploits a timing-related vulnerability introduced

when fixing the first. These vulnerabilities eluded both ex-

tensive code review and testing, suggesting that standard

software validation processes are an inadequate defense

against timing vulnerabilities, and that more rigorous anal-

ysis techniques are necessary.

In this work, we develop a unifying formal foundation

for constant-time programming policies, along with a for-

mal and fully automated verification technique. Our for-

malism is parameterized by a flexible leakage model that

captures the various constant-time policies used in prac-

tice, including path-based, address-based, and operand-

based characterizations, wherein program paths, accessed

memory addresses, and operand sizes, respectively, are

independent of program secrets. Importantly, our for-

malism is precise with respect to the characterization of

program secrets, distinguishing not only between public

and private input values, but also between private and

publicly observable output values. While this distinction

poses technical and theoretical challenges, constant-time

implementations in cryptographic libraries like OpenSSL

include optimizations for which paths, addresses, and

operands are contingent not only on public input values,

but also on publicly observable output values. Consid-

ering only input values as non-secret information would

thus incorrectly characterize those implementations as

non-constant-time.

We demonstrate the practicality of our verification tech-

nique by developing a prototype, ct-verif, and evaluat-

ing it on a comprehensive set of case studies collected

from various off-the-shelf libraries such as OpenSSL [25],

NaCl [13], FourQlib [17] and curve25519-donna.2 These

examples include a diverse set of constant-time algorithms

for fixed-point arithmetic, elliptic curve operations, and

symmetric and public-key cryptography. Apart from in-

1See pull requests #147 and #179 at github.com/awslabs/s2n.
2https://code.google.com/p/curve25519-donna/

dicating which inputs and outputs should be considered

public, the verification of our examples does not require

user intervention, can handle existing (complete and non-

modified) implementations, and is fully automated.

One strength of our verification technique is that it is

agnostic as to the representation of programs and could be

performed on source code, intermediate representations,

or machine code. From a theoretical point of view, our

approach to verifying constant-time policies is a sound

and complete reduction of the security of a program P

to the assertion-safety of a program Q, meaning that P

is constant-time (w.r.t. the chosen policy) if and only if

Q is assertion-safe. We formalize and verify the method

for a core high-level language using the Coq proof as-

sistant. Our reduction is inspired from prior work on

self-composition [10, 37] and product programs [40, 9],

and constructs Q as a product of P with itself—each exe-

cution of Q encodes two executions of P. However, our

approach is unique in that it exploits the key feature of

constant-time policies: program paths must be indepen-

dent of program secrets. This allows a succinct construc-

tion for Q since each path of Q need only correspond to

a single control path3 of P — path divergence of the two

executions of P would violate constant-time. Our method

is practical precisely because of this optimization: the

product program Q has only as many paths as P itself,

and its verification can be fully automated.

Making use of this reduction in practice raises the is-

sue of choosing the programming language over which

verification is carried out. On the one hand, to obtain

a faithful correspondence with the executable program

under attacker scrutiny, one wants to be as close as pos-

sible to the machine-executed assembly code. On the

other hand, building robust and sustainable tools is made

easier by existing robust and sustainable frameworks and

infrastructure. Our ct-verif prototype performs verifica-

tion of constant-time properties at the level of optimized

LLVM assembly code, which represents a sweet spot in

the design space outlined by the above requirements.

Indeed, performing verification after most optimization

passes ensures that the program, which may have been

written in a higher-level such as C, preserves the constant-

time policy even after compiler optimizations. Further,

stepping back from machine-specific assembly code to

LLVM assembly essentially supports generic reasoning

over all machine architectures—with the obvious caveat

that the leakage model adopted at the LLVM level captures

the leakage considered in all the practical lower-level

languages and adversary models under study. This is a

reasonable assumption, given the small abstraction gap

between the two languages. (We further discuss the issues

that may arise between LLVM and lower-level assembly

3This is more subtle for programs with publicly observable outputs;

see Section 4.

USENIX Association 25th USENIX Security Symposium 55

code when describing our prototype implementation.)

Finally, our prototype and case studies justify that existing

tools for LLVM are in fact sufficient for our purposes. They

may also help inform the development of architecture-

specific verification tools.

In summary, this work makes the following fundamen-

tal contributions, each described above:

i. a unifying formal foundation for constant-time pro-

gramming policies used in practice,

ii. a sound and complete reduction-based approach to

verifying constant-time programming policies, veri-

fied in Coq, and

iii. a publicly available, cross-platform, and fully au-

tomated prototype implementing this technique on

LLVM code, ct-verif, based on SMACK,

iv. extensive case studies demonstrating the practical

effectiveness of our approach on LLVM code, and

supporting discussions on the wider applicability of

the technique.

We begin in Section 2 by surveying constant-time pro-

gramming policies. Then in Section 3 we develop a no-

tion of constant-time security parameterized over leak-

age models, and in Section 4 we describe our reduction

from constant-time security to assertion safety on product

programs. Section 5 describes our implementation of a

verifier for constant-time leveraging this reduction, and in

Section 6 we study the verification of actual cryptographic

implementations using our method. We discuss related

work in Section 7, and conclude in Section 8.

2 Constant-Time Implementations

We now explain the different flavors of constant-time se-

curity policies and programming disciplines that enforce

them, using small examples of problematic code that arise

repeatedly in cryptographic implementations. Consider

first the C function of Figure 1, that copies a sub-array of

length sub_len, starting at index l_idx, from array in

to array out. Here, len represents the length of array in.

1 void copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

2 uint32 i, j;
3 for(i=0;j=0;i<len;i++) {
4 if (i >= l_idx) && (i < l_idx + sub_len) {
5 out[j] = in[i]; j++;
6 }
7 }
8 }

Figure 1: Sub-array copy: l_idx is leaked by PC.

Suppose now that the starting addresses and lengths of

both arrays are public. What we mean by this is that, the

user/caller of this function is willing to accept a contract

expressed over the calling interface, whereby the starting

addresses and lengths of both arrays may be leaked to an

attacker, whereas the value of the l_idx variable and the

array contents must not. Then, although the overall exe-

cution time of this function may seem roughly constant

because the loop is executed a number of times that can

be inferred from a public input, it might still leak sensi-

tive information via the control flow. Indeed, due to the

if condition in line 4, an attacker that is able to obtain a

program-counter trace would be able to infer the value of

l_idx. This could open the way to timing attacks based

on execution time measurements, such as the Canvel et

al. [16] and Lucky 13 [4] attacks, or to branch-prediction

attacks in which a co-located spy process measures the

latency introduced by the branch-prediction unit in order

to infer the control flow of the target program [1]. An al-

ternative implementation that fixes this problem is shown

in Figure 2.

1 uint32 ct_lt(uint32 a, uint32 b) {
2 uint32 c = a ^ ((a ^ b) | ((a - b) ^ b));
3 return (0 - (c >> (sizeof(c) * 8 - 1)));
4 }
5

6 void cp_copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

7 uint32 i, j, in_range;
8 for(i=0;i<sub_len;i++) out[i]=0;
9 for(i=0,j=0;i<len;i++) {

10 in_range = 0;
11 in_range |= ~ct_lt(i,l_idx);
12 in_range &= ct_lt(i,l_idx+sub_len);
13 out[j] |= in[i] & in_range;
14 j = j + (in_range % 2);
15 }
16 }

Figure 2: Sub-array copy: constant control flow but

l_idx is leaked by memory access address trace.

Observe that the control flow of this function is now

totally independent of l_idx, which means that it is con-

stant for fixed values of all public parameters. However,

this implementation allows a different type of leakage

that could reveal l_idx to a stronger class of timing ad-

versaries. Indeed, the memory accesses in line 13 would

allow an attacker with access to the full trace of memory

addresses accessed by the program to infer the value of

l_idx—note that the sequence of j values will repeat at

0 until l_idx is reached, and then increase. This leakage

could be exploited via cache-timing attacks [11, 31], in

which an attacker controlling a spy process co-located

with this program (and hence sharing the same cache)

would measure its own memory access times and try to

infer sensitive data leaked to accessed addresses from

cache hit/miss patterns.

Finally, the program above also includes an additional

potential leakage source in line 14. Here, the value of j is

updated as a result of a DIV operation whose execution

time, in some processors,4 may vary depending on the

4This is a quotation from the Intel 64 and IA-32 architectures ref-

56 25th USENIX Security Symposium USENIX Association

values of its operands. This line of code might therefore

allow an attacker that can take fine-grained measurements

of the execution time to infer the value of l_idx [25].

There are two possible solutions for this problem: ei-

ther ensure that the ranges of operands passed to such

instructions are consistently within the same range, or

use different algorithms or instructions (potentially less

efficient) whose execution time does not depend on their

operands. We note that, for this class of timing attackers,

identifying leakage sources and defining programming

disciplines that guarantee adequate mitigation becomes

highly platform-specific.

An implementation of the same function that elimi-

nates all the leakage sources we have identified above—

assuming that the used native operations have operand-

independent execution times—is given in Figure 3.

1 uint32 ct_eq(uint32 a, uint32 b) {
2 uint32 c = a ^ b;
3 uint32 d = ~c & (c - 1);
4 return (0 - (d >> (sizeof(d) * 8 - 1)));
5 }
6

7 void ct_copy_subarray(uint8 *out , const uint8 *in,
uint32 len , uint32 l_idx , uint32 sub_len) {

8 uint32 i, j;
9 for(i=0;i<sub_len;i++) out[i]=0;

10 for(i=0;i<len;i++) {
11 for(j=0;j<sub_len;j++) {
12 out[j] |= in[i] & ct_eq(l_idx+j,i);
13 }
14 }
15 }

Figure 3: Constant-time sub-array copy.

It is clear that the trade-off here is one between ef-

ficiency and security and, indeed, constant-time imple-

mentations often bring with them a performance penalty.

It is therefore important to allow for relaxations of the

constant-time programming disciplines when these are

guaranteed not to compromise security. The example of

Figure 4, taken from the NaCl cryptographic library [13]

illustrates an important class of optimizations that arises

from allowing leakage which is known to be benign.

This code corresponds to a common sequence of op-

erations in secure communications: first verify that an

incoming ciphertext is authentic (line 11) and, if so, re-

cover the enclosed message (line 12) cleaning up some

spurious data afterwards (line 13). The typical contract

drawn at the function’s interface states that the secret in-

puts to the function include only the contents of the secret

erence manual: The throughput of “DIV/IDIV r32” varies with the

number of significant digits in the input EDX:EAX and/or of the quotient

of the division for a given size of significant bits in the divisor r32. The

throughput decreases (increasing numerical value in cycles) with in-

creasing number of significant bits in the input EDX:EAX or the output

quotient. The latency of “DIV/IDIV r32” also varies with the significant

bits of the input values. For a given set of input values, the latency is

about the same as the throughput in cycles.

1 int crypto_secretbox_open(unsigned char *m,
2 const unsigned char *c,unsigned long long clen ,
3 const unsigned char *n,
4 const unsigned char *k)
5 {
6 int i;
7 unsigned char subkey [32];
8 if (clen < 32) return -1;
9 crypto_stream_salsa20(subkey ,32,n,k);

10 if (crypto_auth_hmacsha512_verify(c,c+32,clen
-32, subkey)!=0) return -1;

11 crypto_stream_salsa20_xor(m,c,clen ,n,k);
12 for (i = 0;i < 32;++i) m[i] = 0;
13 return 0;
14 }

Figure 4: Verify-then-decrypt: verification result is

publicly observable and can be leaked by control-flow.

key array. Now suppose we ensure that the functions

called by this code are constant-time. Even so, this func-

tion is not constant-time: the result of the verification in

line 11 obviously depends on the secret key value, and it

is used for a conditional return statement.

The goal of this return statement is to reduce the exe-

cution time by preventing a useless decryption operation

when the ciphertext is found to be invalid. Indeed, an

authenticated decryption failure is typically publicly sig-

naled by cryptographic protocols, in which case this bla-

tant violation of the constant-time security policy would

actually not constitute an additional security risk. Put

differently, the potentially sensitive bit of information

revealed by the conditional return is actually benign leak-

age: it is safe to leak it because it will be revealed anyway

when the return value of the function is later made public.

Such optimization opportunities arise whenever the target

application accepts a contract at the function interface that

is enriched with information about publicly observable

outputs, and this information is sufficient to classify the

extra leakage as benign.

The above examples motivate the remainder of the

work in this paper. It is clear that checking the correct

enforcement of constant-time policies is difficult. Indeed,

the programming styles that need to be adopted are very

particular to this domain, and degrade the readability of

the code. Furthermore, these are non-functional proper-

ties that standard software development processes are not

prepared to address. These facts are usually a source of

criticism towards constant-time implementations. How-

ever, our results show that such criticism is largely un-

justified. Indeed, our verification framework stands as

proof that the strictness of constant-time policies makes

them suitable for automatic verification. This is not the

case for more lenient policies that are less intrusive but

offer less protection (e.g., guaranteeing that the total exe-

cution time varies within a very small interval, or that the

same number of calls is guaranteed to be made to a hash

compression function).

USENIX Association 25th USENIX Security Symposium 57

In the next section we formalize constant-time security

following the intuition above, as well as the foundations

for a new formal verification tool that is able to automat-

ically verify their correct enforcement over real-world

cryptographic code.

3 A Formalization of Constant-Time

In order to reason about the security of the code actually

executed after compilation, we develop our constant-time

theory and verification approach on a generic unstructured

assembly language, in Appendix A. In the present section

we mirror that development on a simple high-level struc-

tured programming language for presentational clarity.

We consider the language of while programs, enriched

with arrays and assert/assume statements. Its syntax is

listed in Figure 5. The metavariables x and e range over

program variables and expressions, respectively. We leave

the syntax of expressions unspecified, though assume they

are deterministic, side-effect free, and that array expres-

sions are non-nested.

p ::= skip | x[e1] := e2 | assert e | assume e | p1; p2

| if e then p1 else p2 | while e do p

Figure 5: The syntax of while programs.

Although this language is quite simple, it is sufficient

to fully illustrate our theory and verification technique.

We include arrays rather than scalar program variables

to model constant-time policies which govern indexed

memory accesses. We include the assert and assume

statements to simplify our reduction from the security of a

given program to the assertion-safety of another. Figure 6

lists the semantics of while programs, which is standard.

s′ = s[⟨x,s(e1)⟩ $→ s(e2)]

⟨s, x[e1] := e2⟩ → ⟨s′,skip⟩

s′ = s if s(e) else ⊥

⟨s, assert e⟩ → ⟨s′,skip⟩

s(e) = true

⟨s, assume e⟩ → ⟨s,skip⟩

⟨s, p1⟩ → ⟨s′, p′1⟩

⟨s, p1; p2⟩ → ⟨s′, p′1; p2⟩

⟨s, skip; p⟩ → ⟨s, p⟩

i = 1 if s(e) else 2

⟨s, if e then p1 else p2⟩ → ⟨s, pi⟩

p′ = (p; while e do p) if s(e) else skip

⟨s, while e do p⟩ → ⟨s, p′⟩

Figure 6: The operational semantics of while programs.

All rules are guarded implicitly by the predicate s ̸= ⊥,

and we abbreviate the predicate s(e) = true by s(e).

A state s maps variables x and indices i ∈ N to values

s(x, i), and we write s(e) to denote the value of expression

e in state s. The distinguished error state ⊥ represents

a state from which no transition is enabled. A configu-

ration c = ⟨s, p⟩ is a state s along with a program p to

be executed, and an execution is a sequence c1c2 . . .cn

of configurations such that ci → ci+1 for 0 < i < n. The

execution is safe unless cn = ⟨⊥,_⟩; it is complete if

cn = ⟨_,skip⟩; and it is an execution of program p if

c1 = ⟨_, p⟩. A program p is safe if all of its executions

are safe.

A leakage model L maps program configurations c

to observations L(c), and extends to executions, map-

ping c1c2 . . .cn to the observation L(c1c2 . . .cn) = L(c1) ·
L(c2) · · ·L(cn), where ε is the identity observation, and

L(c) · ε = ε ·L(c) = L(c). Two executions α and β are

indistinguishable when L(α) = L(β).

Example 1. The baseline path-based characterization of

constant-time is captured by leakage models which expose

the valuations of branch conditions:

⟨s, if e then p1 else p2⟩ $→ s(e)

⟨s, while e do p⟩ $→ s(e)

In this work we assume that all leakage models include

the mappings above.

Example 2. Notions of constant-time which further in-

clude memory access patterns are captured by leakage

models which expose addresses accessed in load and store

instructions. In our simple language of while programs,

this amounts to exposing the indexes to program variables

read and written at each statement. For instance, the as-

signment statement exposes indexes read and written (the

base variables need not be leaked as they can be inferred

from the control flow):

⟨s, x0[e0] := e⟩ $→ s(e0)s(e1) · · · s(en)

where x1[e1], . . . , xn[en] are the indexed variable reads

in expression e (if any exist).

Example 3. Notions of constant-time which are sensitive

to the size of instruction operands, e.g., the operands

of division instructions, are captured by leakage models

which expose the relevant leakage:

⟨s, x[e1] := e2 / e3⟩ $→ S(e2,e3)

where S is some function over the operands of the division

operation, e.g., the maximum size of the two operands.

In Section 2 we have intuitively described the notion

of a contract drawn at a function’s interface; the constant-

time security policies are defined relatively to this con-

tract, which somehow defines the acceptable level of (be-

nign) leakage that can be tolerated. Formally, we capture

these contracts using a notion of equivalence between ini-

tial states (for a set Xi of inputs declared to be public) and

58 25th USENIX Security Symposium USENIX Association

final states (for a set Xo of outputs declared to be publicly

observable), as follows.

Given a set X of program variables, two configurations

⟨s1,_⟩ and ⟨s2,_⟩ are X-equivalent when s1(x, i) = s2(x, i)
for all x ∈ X and i ∈ N. Executions c1 . . .cn and c′1 . . .c

′
n′

are initially X-equivalent when c1 and c′1 are X-equivalent,

and finally X-equivalent when cn and c′
n′

are X-equivalent.

Definition 1 (Constant-Time Security). A program is se-

cure when all of its initially Xi-equivalent and finally

Xo-equivalent executions are indistinguishable.

Intuitively, constant-time security means that any two

executions whose input and output values differ only with

respect to secret information must leak exactly the same

observations. Contrasting our definition with other in-

formation flow policies, we observe that constant-time

security asks that every two complete executions starting

with Xi-equivalent states and ending with Xo-equivalent

final states must be indistinguishable, while termination-

insensitive non-interference asks that every two complete

executions starting with Xi-equivalent states must end

with Xo-equivalent final states. This makes the constant-

time policies we consider distinct from the baseline no-

tions of non-interference studied in language-based se-

curity. However, our policies can be understood as a

specialized form of delimited release [34], whereby es-

cape hatches are used to specify an upper bound on the

information that is allowed to be declassified. Our no-

tion of security is indeed a restriction of delimited release

where escape hatches–our public output annotations–may

occur only in the final state.

4 Reducing Security to Safety

The construction of the output-insensitive product of a

program (with itself) is shown in Figure 7. It begins by

assuming the equality of each public input x ∈ Xi with

its renamed copy x̂, then recursively applies a guard and

instrumentation to each subprogram. Guards assert the

equality of leakage functions for each subprogram p and

its variable-renaming p̂.

product(p) assume x=x̂ for x ∈ Xi;

together(p)

together(p) guard(p);
instrument[λ p.(p;p̂),together](p)

guard(p) assert L(p)=L(p̂)

Figure 7: Output-insensitive product construction.

Instrumentation preserves the control structure of the

original program. Our construction uses the program

instrumentation given in Figure 8, which is parameter-

ized by functions α and β transforming assignments and

subprograms, respectively. In our constructions, α is ei-

ther the identity function or else duplicates assignments

over renamed variables, and β applies instrumentation

recursively with various additional logics.

_ instrument[α,β](_)
skip skip

x[e1] := e2 α(x[e1] := e2)
assert e assert e

assume e assume e

p1; p2 β (p1); β (p2)
if e then p1 else p2 if e then β (p1) else β (p2)
while e do p while e do β (p)

Figure 8: Instrumentation for product construction.

Our first result states that this construction provides

a reduction from constant-time security to safety that is

sound for all safe input programs (i.e., a security ver-

dict is always correct) and complete for programs where

information about public outputs is not taken into consid-

eration in the security analysis (i.e., an insecurity verdict

is always correct).

Theorem 1. A safe program with (respectively, without)

public outputs is secure if (respectively, iff) its output-

insensitive product is safe.

Proof. First, note that program semantics is determinis-

tic, i.e., for any two complete executions of a program

p from the same state s0 to states s1 and s2 emitting ob-

servations L(⃗c1) and L(⃗c2), respectively, we have s1 = s2

and L(⃗c1) = L(⃗c2). The product construction dictates that

an execution of product(p) from state s⊎ ŝ reaches state

s′⊎ ŝ′ if and only if the two corresponding executions of

p leak the same observation sequence, from s to s′ and

from ŝ to ŝ′, where ŝ is the variable-renaming of s.

In order to deal with program paths which depend

on public outputs, we modify the product construction,

as shown in Figure 9, to record the observations along

output-dependent paths in history variables and assert

their equality when paths merge. The output-sensitive

product begins and ends by assuming the equality of pub-

lic inputs and outputs, respectively, with their renamed

copies, and finally asserts that the observations made

across both simulated executions are identical. Besides

delaying the assertion of observational indistinguishabil-

ity until the end of execution, when outputs are known

to be publicly observable, this construction allows paths

to diverge at branches which depend on these outputs,

checking whether both executions alone leak the same

recorded observations.

Technically, this construction therefore relies on iden-

tifying the branches, i.e., the if and while statements,

whose conditions can only be declared benign when pub-

lic outputs are considered. This has two key implications.

USENIX Association 25th USENIX Security Symposium 59

product(p) same_observations := true;

assume x=x̂ for x ∈ Xi;

together(p);
assume x=x̂ for x ∈ Xo;

assert same_observations

together(p) if benign(p) then

h := ε; ĥ := ε;

aloneh(p);
alone

ĥ
(p̂);

same_observations &&:= h=ĥ

otherwise

guard(p);
instrument[λ p.(p;p̂),together](p)

guard(p) same_observations &&:= L(p)=L(p̂)

aloneh(p) recordh(p);
instrument[λ p.p,aloneh](p)

recordh(p) h +:= L(p)

Figure 9: Output-sensitive product construction

First, it either requires a programmer to annotate which

branches are benign in a public-sensitive sense, or ad-

ditional automation in the verifier, e.g., to search over

the space of possible annotations; in practice the burden

appears quite low since very few branches will need to

be annotated as being benign. Second, it requires the

verifier to consider separate paths for the two simulated

executions, rather than a single synchronized path. While

this deteriorates to an expensive full product construc-

tion in the worst case, in practice these output-dependent

branches are localized to small non-nested regions, and

thus asymptotically insignificant.

Theorem 2. A safe program is secure iff its output-

sensitive product is safe with some benign-leakage an-

notation.

Proof. Completeness follows from completeness of self-

composition, so only soundness is interesting. Soundness

follows from the fact that we record history in the vari-

ables h and ĥ whenever we do not assert the equality of

observations on both sides.

Coq formalization The formal framework presented

in this and the previous section has been formalized in

Coq. Our formalization currently includes the output-

insensitive reduction from constant-time security to safety

of the product program as described in Figures 7 and 8, for

the while language in Figure 5. We prove the soundness

and completeness of this reduction (Theorem 1) follow-

ing the intuition described in the sketch presented above.

Formalization of the output-sensitive construction and the

proof of Theorem 2 should not present any additional

difficulty, other than a more intricate case analysis when

control flow may diverge. Our Coq formalization serves

two purposes: i. it rigorously captures the theoretical

foundations of our approach and complements the intu-

itive description we gave above; and ii. it could serve

as a template for a future formalization of the machine-

level version of these same results, which underlies the

implementation of our prototype and is presented in Ap-

pendices A and B. A Coq formalization of this low-level

transformation could be integrated with CompCert, pro-

viding more formal guarantees on the final compiled code.

5 Implementation of a Security Verifier

Using the reduction of Section 4 we have implemented

a prototype, ct-verif, which is capable of automatically

verifying the compiled and optimized LLVM code result-

ing from compiling actual C-code implementations of

several constant-time algorithms. Before discussing the

verification of these codes in Section 6, here we describe

our implementation and outline key issues. Our imple-

mentation and case studies are publicly available5 and

cross-platform. ct-verif leverages the SMACK verification

tool [32] to compile the annotated C source via Clang6

and to optimize the generated assembly code via LLVM
7

before translating to Boogie8 code. We perform our re-

duction on the Boogie code, and apply the Boogie verifier

(which performs verification using an underlying SMT
9

logic solver) to the resulting program.

5.1 Security Annotations

We provide a simple annotation interface via the following

C function declarations:

void public_in(smack_value_t);
void public_out(smack_value_t);
void benign_branching ();

where smack_value_t values are handles to program

values obtained according to the following interface

smack_value_t __SMACK_value ();
smack_value_t __SMACK_values(void* ary ,

unsigned count);
smack_value_t __SMACK_return_value(void);

and __SMACK_value(x) returns a handle to the value

stored in program variable x, __SMACK_values(ary,n)

returns a handle to an n-length array ary, and

__SMACK_return_value() provides a handle to the pro-

cedure’s return value. While our current interface does

not provide handles to entire structures, non-recursive

structures can still be annotated by annotating the handles

to each of their (nested) fields. Figure 10 demonstrates the

annotation of a decryption function for the Tiny Encryp-

tion Algorithm (TEA). The first argument v is a pointer to

5https://github.com/imdea-software/

verifying-constant-time
6C language family frontend for LLVM: http://clang.llvm.org
7The LLVM Compiler Infrastructure: http://llvm.org
8Boogie: http://github.com/boogie-org/boogie
9Satisfiability Modulo Theories: http://smtlib.cs.uiowa.edu

60 25th USENIX Security Symposium USENIX Association

a public ciphertext block of two 32-bit words, while the

second argument k is a pointer to a secret key.

1 void decrypt_cpa_wrapper(uint32 _t* v,uint32 _t* k){
2 public_in(__SMACK_value(v));
3 public_in(__SMACK_value(k));
4 public_in(__SMACK_values(v, 2));
5 decrypt(v, k);
6 }

Figure 10: Annotations for the TEA decryption function.

5.2 Reasoning about Memory Separation

In some cases, verification relies on establishing separa-

tion of memory objects. For instance, if the first of two

adjacent objects in memory is annotated as public input,

while the second is not, then a program whose branch

conditions rely on memory accesses from the first object

is only secure if we know that those accesses stay within

the bounds of the first object. Otherwise, if those accesses

might occur within the second object, then the program is

insecure since the branch conditions may rely on private

information.

Luckily SMACK has builtin support for reasoning about

the separation of memory objects, internally leveraging an

LLVM-level data-structure analysis [26] (DSA) to partition

memory objects into disjoint regions. Accordingly, the

generated Boogie code encodes memory as several dis-

joint map-type global variables rather than a single mono-

lithic map-type global variable, which facilitates scalable

verification. This usually provides sufficient separation

for verifying security as well. In a few cases, DSA may

lack sufficient precision. In those settings, it would be pos-

sible to annotate the source code with additional assump-

tions using SMACK ’s __VERIFIER_assume() function.

This limitation is not fundamental to our approach, but

instead an artifact of design choices10 and code rot11 in

DSA itself.

5.3 Product Construction for Boogie Code

The Boogie intermediate verification language (IVL) is a

simple imperative language with well-defined, clean, and

mathematically-focused semantics which is a convenient

representation for performing our reduction. Concep-

tually there is little difference between performing our

shadow product reduction at the Boogie level as opposed

to the LLVM or machine-code level since the Boogie code

produced by SMACK corresponds closely to the LLVM

code, which is itself similar to machine code. Indeed our

machine model of Appendix A is representative. Practi-

cally however, Boogie’s minimal syntax greatly facilitates

10
DSA is designed to be extremely scalable at the expense of precision,

yet such extreme scalability is not necessary for our use.
11See the discussion thread at https://groups.google.com/

forum/#!topic/llvm-dev/pnU5ecuvr6c.

our code-to-code translation. In particular, shadowing the

machine state amounts to making duplicate copies of pro-

gram variables. Since memory accesses are represented

by accesses to map-type global variables, accessing a

shadowed address space amounts to accessing the dupli-

cate of a given map-type variable.

Our prototype models observations as in Examples 1

and 2 of Section 3, exposing the addresses used in mem-

ory accesses and the values used as branch conditions as

observations. According to our construction of Section 4,

we thus prefix each memory access by an assertion that

the address and its shadow are equal, and prefix each

branch by an assertion that the condition and its shadow

are equal. Finally, for procedures with annotations, our

prototype inserts assume statements on the equality of

public inputs with their shadows at entry blocks.

When dealing with public outputs, we perform the

output-sensitive product construction described in Sec-

tion 4 adapted to an unstructured assembly language. Intu-

itively, our prototype delays assertions (simply by keeping

track of their conjunction in a special variable) but oth-

erwise produces the standard output-insensitive product

program. It then replaces the blocks corresponding to the

potentially desynchronized conditional with blocks cor-

responding to the output-sensitive product construction

that mixes control and data product. Finally, it inserts

code that saves the current assertions before the region

where the control flow may diverge, and restores them

afterwards, making sure to also take into account the as-

sertions collected in between.

5.4 Scalability of the Boogie Verifier

Since secure implementations, and cryptographic primi-

tives in particular, do not typically call recursive proce-

dures, we instruct Boogie to inline all procedures during

verification. This avoids the need for manually written

procedure contracts, or for sophisticated procedure speci-

fication inference tools.

Program loops are handled by automatically computing

loop invariants. This is fairly direct in our setting, since

invariants are simply conjunctions of equalities between

some program variables and their shadowed copies. We

compute the relevant set of variables by taking the inter-

section of variables live at loop heads with those on which

assertions inserted by our reduction depend.

5.5 Discussion

ct-verif is based on a theoretically sound and complete

methodology; however, practical interpretations of its

results must be analyzed with care. First, leakage models

are constructed, and in our case are based on LLVM

rather than machine code. Second, verification tools can

USENIX Association 25th USENIX Security Symposium 61

be incomplete, notably because of approximations made

by sub-tasks performed during verification (for instance,

data-structure analysis or invariant inference).

Therefore, it is important to evaluate ct-verif empiri-

cally, both on positive and negative examples. Our posi-

tive experimental results in the next section demonstrate

that the class of constant-time programs that is validated

automatically by ct-verif is significantly larger than those

tackled by existing techniques and tools. Our negative

examples, available from the public repository,12 are

taken from known buggy libraries (capturing the recent

CacheBleed attack,13 in particular), and others taken to il-

lustrate particularly tricky patterns. Again, some of these

examples illustrate the value of a low-level verification

tool by exhibiting compilation-related behaviours. Unsur-

prisingly, we found that there is little value in running our

tool on code that was not written to be constant-time. Con-

versely, we found that our tool can be helpful in detecting

subtle breaches in code that was written with constant-

time in mind, but was still insecure, either due to subtle

programming errors, or to compilation-related issues.

It remains to discuss possible sources of unsoundness

that may arise from our choice of LLVM as the target

for verification (rather than actual machine code). As

highlighted in Section 1, this choice brings us many ad-

vantages, but it implies that our prototype does not strictly

know what machine instructions will be activated and on

which arguments, when the final code is actually executed.

For example, our assumptions on the timing of a particu-

lar LLVM operation may not hold for the actual processor

instruction that is selected to implement this operation in

executable code. Nevertheless we argue that the LLVM

assembly code produced just before code generation suf-

ficiently similar to any target-machine’s assembly code to

provide a high level of confidence. Indeed, the majority

of compiler optimizations are made prior to code genera-

tion. At the point of code generation, the key difference

between representations is that in LLVM assembly:

i. some instruction/operand types may not be available

on a given target machine,

ii. there are arbitrarily-many registers, whereas any

given machine would have a limited number, and

iii. the order of instructions within basic blocks is only

partially determined.

First we note that neither of these differences affects pro-

grams’ control-flow paths, and the basic-block structure

of programs during code generation is generally preserved.

Second, while register allocation does generally change

memory-access patterns, spilled memory accesses are gen-

erally limited to the addresses of scalar stack variables,

which are fully determined by control-flow paths. Thus

12https://github.com/imdea-software/

verifying-constant-time
13https://ssrg.nicta.com.au/projects/TS/cachebleed

both path-based and address-based constant-time prop-

erties are generally preserved. Operand-based constant-

time properties, however, are generally not preserved: it is

quite possible that instruction selection changes the types

of some instruction’s operands, implying a gap between

LLVM and machine assembly regarding whether operand

sizes may depend on secrets. Dealing with such sources

of leakage requires architecture-specific modeling and

tools, which are out of the scope of a research prototype.

6 Experimental Results

We evaluate ct-verif on a large set of examples, mostly

taken from off-the-shelf cryptographic libraries, in-

cluding the pervasively used OpenSSL [25] library,

the NaCl [13] library, the FourQlib library [17], and

curve25519-donna.14 The variety and number of cryp-

tographic examples we have considered is unprecedented

in the literature. Furthermore, our examples serve to

demonstrate that ct-verif outperforms previous solutions

in terms of scale (the sizes of some of our examples are

orders of magnitude larger than what could be handled

before), coverage (we can handle top-level public APIs,

rather than low-level or leaf functions) and robustness

(ct-verif is based on a technique which is not only sound,

but also complete).

All execution times reported in this section were ob-

tained on a 2.7GHz Intel i7 with 16GB of RAM. Size

statistics measure the size in lines of code (loc) of the

analyzed Boogie code (similar in size to the analyzed

LLVM bitcode) before inlining. When presenting time

measurements, all in seconds, we separate the time taken

to produce the product program (annotating it with the ×

symbol) from that taken to verify it: in particular, given a

library, the product program can be constructed once and

for all before verifying each of its entry points. ct-verif as-

sumes that the leakage trace produced by standard library

functions memcpy and memset depends only on their ar-

guments (that is, the address and length of the objects

they work on, rather than their contents). This is a mild

assumption that can be easily checked for each platform.

For examples that use dynamic memory allocation, such

as the OpenSSL implementation of PKCS#1 padding,

ct-verif enforces that malloc and free are called with

secret-independent parameters and assumes that the re-

sult of malloc is always secret-independent in this case.

In other words, we assume that the address returned by

malloc depends only on the trace of calls to malloc and

free, or that the memory allocator observes only the

memory layout to make allocation decisions.15

14https://code.google.com/p/curve25519-donna/
15It may be possible to extend this to an allocator that also has access

to the trace of memory accesses, since they are made public.

62 25th USENIX Security Symposium USENIX Association

Example Size Time (×) Time

tea 200 2.33 0.47

rlwe_sample 400 5.78 0.65

nacl_salsa20 700 5.60 1.11

nacl_chacha20 10000 8.30 1.92

nacl_sha256_block 20000 27.7 4.17

nacl_sha512_block 20000 39.49 4.29

Table 1: Verification of crypto primitives.

6.1 Cryptographic Primitives

For our first set of examples, we consider a representative

set of cryptographic primitives: a standard implemen-

tation of TEA [39] (tea), an implementation of sam-

pling in a discrete Gaussian distribution by Bos et al. [14]

(rlwe_sample) and several parts of the NaCl library [13]

library.

Table 1 gives the details (we include only a subset of the

NaCl verification results listed as nacl_xxxx). The ver-

ification result for rlwe_sample only excludes its core

random byte generator, essentially proving that this core

primitive is the only possible source of leakage. In partic-

ular, if its leakage and output bytes are independent, then

the implementation of the sampling operation is constant-

time. Verification of the SHA-256 implementation in

NaCl above refers to the compression funcion; the full

implementation of the hash function, which simply iter-

ates this compression function, poses a challenge to our

prototype due to the action of DSA: the internal state of

the function is initialized as a single memory block, that

later stores both secret and public values that are accessed

separately. This issue was discussed in Section 5.2, where

we outlined a solution using assume statements.

6.2 TLS Record Layer

To further illustrate scalability to large code bases, we now

consider problems related to the MAC-then-Encode-then-

CBC-Encrypt (MEE-CBC) construction used in the TLS

record layer to obtain an authenticated encryption scheme.

This construction is well-understood from the perspective

of provable security [24, 30], but implementations have

been the source of several practical attacks on TLS via

timing side-channels [16, 4].

We apply our prototype to two C implementations of

the MEE-CBC decryption procedure, treating only the

input ciphertext as public information. Table 2 shows

the corresponding verification results. We extract the

first implementation from the OpenSSL sources (ver-

sion 0.9.8zg). It includes all the countermeasures against

timing attacks currently implemented in the MEE-CBC

component in OpenSSL as documented in [25]. We ver-

ify the parts of the code that handle MEE-CBC decryp-

tion (1K loc of C, or 10K loc in Boogie): i. decryp-

tion of the encrypted message using AES128 in CBC

Example Time (×) Time

mee-cbc-openssl 10.6 18.73

mee-cbc-nacl 24.64 92.56

Table 2: Verification of MEE-CBC TLS record layer.

mode; ii. removing the padding and checking its well-

formedness; iii. computing the HMAC of the unpadded

message, even for bad padding, and using the same num-

ber of calls to the underlying hash compression function

(in this case SHA-1); and iv. comparing the transmit-

ted MAC to the computed MAC in constant-time. Our

verification does not include the SHA1 compression func-

tion and AES-128 encryption—these are implemened

in assembly—and hence our result proves that the only

possible leakage comes from these leaf functions. (In

OpenSSL the SHA1 implementation is constant-time but

AES-128 makes secret-dependent memory accesses.)

As our second example, we consider a full 800 loc (in

C, 20K loc in Boogie) implementation of MEE-CBC [5],

which includes the implementation of the low level primi-

tives (taken from the NaCl library).

Our prototype is able to verify the constant-time prop-

erty of both implementations–with only the initial cipher-

text and memory layout marked as public. Perhaps surpris-

ingly, our simple heuristic for loop invariants is sufficient

to handle complex control-flow structures such as the one

shown in Figure 11, taken from OpenSSL.

1 k = 0;
2 if (/* low cond */) { k = /* low exp */ }
3 if (k > 0)
4 { for (i = 1; i < k / /* low var */; i++)
5 { /* i-dependent memory access */ }
6 }
7 for (i = /* low var */; i <= /* low var */; i++)
8 { /* i-dependent memory access */
9 for (j = 0; j < /* low var */; j++)

10 { if (k < /* low var */)
11 /* k-dependent memory access */
12 else if (k < /* low exp */)
13 /* k-dependent memory access */
14 k++;
15 }
16 for (j = 0; j < /* low var */; j++)
17 { /* j-dependent memory access */ }
18 }

Figure 11: Complex control-flow from OpenSSL.

6.3 Fixed-Point Arithmetic

Our third set of examples is taken from the

libfixedtimefixedpoint library, developed by

Andrysco et al. [7] to mitigate several attacks due to

operand-dependent leakage in the timing of floating point

operations. In the conclusion of the paper we discuss

how our prototype can be extended to deal with the

vulnerable code that was attacked in [7]. Here we present

USENIX Association 25th USENIX Security Symposium 63

Function Size Time

fix_eq 100 1.45

fix_cmp 500 1.44

fix_mul 2300 1.50

fix_div 1000 1.53

fix_ln 11500 2.66

fix_convert_from_int64 100 1.43

fix_sin 800 1.64

fix_exp 2200 1.62

fix_sqrt 1400 1.55

fix_pow 18000 1.4216

Table 3: Verification of libfixedtimefixedpoint.

our verification results over the library that provides an

alternative secure constant-time solution

The libfixedtimefixedpoint library (ca. 4K loc

of C or 40K loc in Boogie) implements a large number

of fixed-point arithmetic operations, from comparisons

and equality tests to exponentials and trigonometric func-

tions. Core primitives are automatically generated para-

metrically in the size of the integer part: we verify code

generated with the default parameters. As far as we know,

this is the first application of verification to this floating

point library.

Table 3 shows verification statistics for part of the li-

brary. We verify all arithmetic functions without any

inputs marked as public, but display only some interest-

ing data points here. We discuss the fix_pow function,

during whose execution the code shown in Figure 12 is

executed on a frac array that is initialized as a “0” string

literal. The function in which this snippet appears is not

generally constant-time, but it is always used in contexts

where all indices of frac that are visited up to and includ-

ing the particular index that might trigger a sudden loop

exit at line 6 contains public (or constant) data. Thanks

to our semantic characterization of constant-time policies,

ct-verif successfully identifies that the leakage produced

by this code is indeed benign, whereas existing type-based

or taint-propagation based would mark this program as

insecure.

1 uint64_t result = 0;
2 uint64_t extra = 0;
3

4 for(int i = 0; i < 20; i++) {
5 uint8 _t digit = (frac[i] - (uint8 _t) ’0’);
6 if (frac[i] == ’\0’) { break; }
7 result += ((uint64_t)digit) * pow10[i];
8 extra += ((uint64_t)digit) * pow10_extra[i];
9 }

Figure 12: fix_pow code.

16We manually provide an invariant of the form ∃imax. 0 ≤ i < imax ≤

20∧ frac[imax] == 0∧∀ j. 0 ≤ j ≤ imax ⇒ public(frac[j]) for the

loop shown in Figure 12. Loop unrolling could also be used, since the

loop is statically bounded.

Example Size Time (×) Time

curve25519-donna 10000 10.18 456.97

FourQLib - 7.87 -

eccmadd 2500 - 133.72

eccdouble 3000 - 70.67

eccnorm 3500 - 156.48

point_setup 600 - 0.99

R1_to_R2 2500 - 7.92

R5_to_R1 2000 - 1.26

R1_to_R3 2500 - 2.42

R2_to_R4 1000 - 0.93

Table 4: Verification of elliptic curve arithmetic.

6.4 Elliptic Curve Arithmetic

As a final illustrative example of the capabilities of ct-verif

in handling existing source code from different sources,

we consider two constant-time implementations of elliptic

curve arithmetic: the curve25519-donna implementa-

tion by Langley,17 and the FourQlib library [17]. The

former library provides functions for computing essen-

tial elliptic curve operations over the increasingly pop-

ular Curve25519 initially proposed by Bernstein [12],

whereas the latter uses a recently proposed alternative

high-performance curve. Table 4 shows the results.

For curve25519-donna, we verify the functional en-

try point, used to generate public points and shared secrets,

assuming only that the initial memory layout is public.

For FourQLib, we verify all the core functions for point

addition, doubling and normalization, as well as coordi-

nate conversions, all under the only assumption that the

addresses of the function parameters are public. ct-verif

successfully detects expected dependencies of the execu-

tion time on public inputs in the point validation function

ecc_point_validate.

6.5 Publicly Observable Outputs

We wrap up this experimental section by illustrating the

flexibility of the output-sensitive product construction,

and how it permits expanding the coverage of real-world

crypto implementations in comparison with previous ap-

proaches. As a first example we consider an optimized

version of the mee-cbc-nacl example. Instead of using

a constant-time select and zeroing loop to return its re-

sult (as shown in Figure 13, where the return code res

is secret-dependent and marked as public and in_len is

a public input), the code branches on the return code as

shown in Figure 14. (The rest of the code is unmodified,

and therefore constant-time.)

This is similar to the motivating example that we pre-

sented in Section 2, but here the goal is to avoid the

unnecessary cleanup loop at the end of the function in

executions where it is not needed. Again, because the re-

turn code is made public when it is returned to the caller,

17https://code.google.com/p/curve25519-donna/

64 25th USENIX Security Symposium USENIX Association

1 good = ~((res == RC_SUCCESS) - 1);
2 for(i = 0;i < in_len;i++) { out[i] &= good; }
3 *out_len &= good;

Figure 13: MEE-CBC decryption: constant-time.

1 if (res != RC_SUCCESS) {
2 for(i = 0;i < in_len;i++) { out[i] = 0; }
3 *out_len = 0;
4 }

Figure 14: MEE-CBC decryption: constant-time.

this control-flow dependency on secret information can

be classified as benign leakage. The output-sensitive prod-

uct constructed by our prototype for this example, when

the displayed conditional is annotated as benign leakage,

verifies in slightly less than 2 minutes. The additional

computation cost of verifying this version of the program

may be acceptable when compared to the performance

gains in the program itself—however minor: verification

costs are one off, whereas performance issues in the cryp-

tographic library are paid per execution.

1 int RSA_padding_check_PKCS1_type_2(uchar *to , int
tlen , const uchar *from , int flen , int num)

2 {
3 int i, zero_index = 0, msg_index , mlen = -1;
4 uchar *em = NULL;
5 uint good , found_zero_byte;
6

7 if (tlen < 0 || flen < 0) return -1;
8 if (flen > num) goto err;
9 if (num < 11) goto err;

10

11 em = OPENSSL_zalloc(num);
12 if (em == NULL) return -1;
13 memcpy(em + num - flen , from , flen);
14

15 good = ct_is_zero(em[0]);
16 good &= ct_eq(em[1], 2);
17

18 found_zero_byte = 0;
19 for (i = 2; i < num; i++) {
20 uint equals0 = ct_is_zero(em[i]);
21 zero_index = ct_select_int (~ found_zero_byte &

equals0 , i, zero_index);
22 found_zero_byte |= equals0;
23 }
24

25 good &= ct_ge((uint)(zero_index), 2 + 8);
26 msg_index = zero_index + 1;
27 mlen = num - msg_index;
28 good &= ct_ge((uint)(tlen), (uint)(mlen));
29

30 /* We can’t continue in constant -time because we
need to copy the result and we cannot fake

its length. This unavoidably leaks timing
information at the API boundary. */

31 if (!good) { mlen = -1; goto err; }
32 memcpy(to, em + msg_index , mlen);
33

34 err:
35 OPENSSL_free(em);
36 return mlen;
37 }

Figure 15: RSA PKCS1 padding check from OpenSSL

Finally, we present in Figure 15 an RSA PKCS1.5

padding check routine extracted from OpenSSL (simi-

lar code exists in other cryptographic libraries, such as

boringssl18). The developers note the most interesting fea-

ture of this code in the comment on line 30: although this

function is written in the constant-time style, the higher-

level application (here referred to as an API boundary)

does not give this implementation enough information

to continue without branching on data dependent from

secret inputs (here, the contents of from). One way in

which this could be achieved would be for the function

to accept an additional argument indicating some public

bound on the expected message length. The constant-time

techniques described previously in this paper could then

be used to ensure that the leakage depends only on this ad-

ditional public parameter. However, given the constraint

forced upon the implementer by the existing API, the final

statements in the function must be as they are, leading

to (unavoidable and hence) benign leakage. Using our

techniques, this choice can be justified by declaring the

message length returned by the function as being (the

only) public output that is safe to leak. Note that flen,

tlen and num are public, and hence declaring mlen as

a public output provides sufficient information to verify

the control-flow leakage in line 31, and also the accessed

addresses in line 32 as being benign. Verifying the output-

sensitive product program when mlen is marked as a

public output takes under a second.19

This example shows that dealing with relaxations of

the constant-time policies enabled by output-sensitive

API contracts is important when considering functions

that are directly accessible by the adversary, rather than

internal functions meant to be wrapped. Dealing with

these use cases is an important asset of our approach, and

is a problem not considered by previous solutions.

7 Related Work

Product programs Product constructions are a stan-

dard tool in the algorithmic analysis of systems. Prod-

uct programs can be viewed as their syntactic counter-

part. Systematic approaches for defining and building

product programs are considered in [9]. Three instances

of product programs are most relevant to our approach:

self-composition [10] and selective self-composition [37],

which have been used for proving information flow se-

curity of programs, and cross-products [40], which have

been used for validating the correctness of compiler op-

timizations. We review the three constructions below,

obliviating their original purpose, and presenting them

from the perspective of our work.

18https://boringssl.googlesource.com/
19With simple implementations of OPENSSL_zalloc and

OPENSSL_free that wrap standard memory functions.

USENIX Association 25th USENIX Security Symposium 65

The self-composition of a program P is a program Q

which executes P twice, sequentially, over disjoint copies

of the state of P. Self-composition is sound and complete,

in the sense that the set of executions of program Q is in

1-1 bijection with the set of pairs of executions of program

P. However, reasoning about self-composed programs

may be very difficult, as one must be able to correlate the

actions of two parts of program Q which correspond to

the same point of execution of the original program P.

The cross-product Q of a program P coerces the two

copies of P to execute in lockstep, by inserting assert

statements at each branching instruction. Cross-product

is not complete for all programs, because pairs of exe-

cutions of program P whose control-flow diverge result

in an unsafe execution of program Q. As a consequence,

one must prove that Q is safe in order to transfer ver-

ification results from Q to P. However, cross-product

has a major advantage over self-composition: reasoning

about cross-products is generally easier, because the two

parts of program Q which correspond to the same point

of execution of the original program P are adjacent.

Selective self-composition is an approach which alter-

nates between cross-product and self-composition, ac-

cording to user-provided (or inferred for some applica-

tions) annotations. Selective self-composition retains the

soundness and completeness of self-composition whilst

achieving the practicality of cross-product.

Our output-insensitive product construction (Figure 7)

is closely related to cross-product. In particular, Theo-

rem 1 implies that cross-products characterize constant-

path programs. We emphasize that, for this purpose, the

incompleteness of cross-products is not a limitation but a

desirable property. On the other hand, our output-sensitive

product construction (Figure 9) is closely related to selec-

tive self-composition.

Language-based analysis/mitigation of side-channels

Figure 16 summarizes the main characteristics of several

tools for verifying constant-time security, according to the

level at which they carry out the analysis, the technique

they use, their support for public inputs and outputs, their

soundness and completeness, and their usability. ct-verif

is the only one to support publicly observable outputs,

and the only one to be sound, theoretically complete and

practical. Moreover, we argue that extending any of these

tools to publicly observable outputs is hard; in particular,

several of these tools exploit the fact that cryptographic

programs exhibit “abnormally straight line code behav-

ior”, and publicly observable outputs are precisely used to

relax this behavior. We elaborate on these points below.

FlowTracker [33] implements a precise, flow sensitive,

constant-time (static) analysis for LLVM programs. This

tool takes as input C or C++ programs with security anno-

tations and returns a positive answer or a counterexample.

Tool Target Analysis Inputs/ Sound/ Usability

method Outputs Complete

tis-ct C static / / (a)

ABPV [6] C logical / / (b)

VirtualCert x86 static / / (c)

FlowTracker LLVM static / /

ctgrind binary dynamic / /

CacheAudit binary static / / (d)

This work LLVM logical / /

Figure 16: Comparison of different tools. Target indicates

the level at which the analysis is performed. Input/Out-

puts classifies whether the tool supports public inputs and

publicly observable outputs. Usability includes coverage

and automation. (a): requires manual interpretation of

dependency analysis. (b): requires interactive proofs. (c):

requires code rewriting. (d): supports restricted instruc-

tion set.

FlowTracker is incomplete (i.e. rejects secure programs),

and it does not consider publicly observable outputs.

VirtualCert [8] instruments the CompCert certified

compiler [27] with a formally verified, flow insensitive

type system for constant-time security. It takes as input a

C program with security annotations and compiles it to

(an abstraction of) x86 assembly, on which the analysis is

performed. VirtualCert imposes a number of restrictions

on input programs (so off-the-shelf programs must often

be adapted before analysis), is incomplete, and does not

support publicly observable outputs.

ctgrind20 is an extension of Valgrind that verifies

constant-address security. It takes an input a program

with taint annotations and returns a yes or no answer. ct-

grind is neither sound nor complete and does not support

publicly obervable outputs.

tis-ct is an extension of the FramaC platform for ana-

lyzing dependencies in C programs and helping towards

proving constant-time security.21 tis-ct has been used to

analyze OpenSSL. Rather than a verification result, tis-ct

outputs a list of all input regions that may flow into the

leakage trace, as well as the code locations where that

flow may occur. Although this does not directly allow the

verification of adherence to a particular security policy,

we note that checking that the result list is a subset of

public inputs could provide, given an appropriate anno-

tation language, a verification method for public input

policies. Since it relies on a dependency analysis rather

than semantic criteria, tis-ct is incomplete.

Almeida, Barbosa, Pinto and Vieira [6] propose a

methodology based on deductive verification and self-

composition for verifying constant-address security of C

20https://github.com/agl/ctgrind/.
21http://trust-in-soft.com/tis-ct/

66 25th USENIX Security Symposium USENIX Association

implementations. Their approach extends to constant-

address security earlier work by Svenningsson and

Sands [36] for constant-path security. This approach does

not consider publicly observable outputs and it does not

offer a comparable degree of automation to the one we

demonstrate in this paper.

CacheAudit [18] is a static analyzer for quantify-

ing cache leakage in a single run of a binary program.

CacheAudit takes as input a binary program (in a lim-

ited subset of 32-bit x86, e.g. no dynamic jump) and a

leakage model, but no security annotation (there is no

notion of public or private, neither for input, nor output).

CacheAudit is sound with respect to a simplified machine

code semantics, rather than to a security policy. However,

it is incomplete.

There are many other works that develop language-

based methods for side-channel security (not necessarily

in the computational model of this paper). Agat [2] pro-

poses a type-based analysis for detecting timing leaks

and a type-directed transformation for closing leaks in an

important class of programs. Molnar, Piotrowski, Schultz

and Wagner [29] define the program counter security

model and a program transformation for making programs

secure in this model. Other works include [28, 35, 41].

8 Conclusion

This paper leaves interesting directions for future work.

We intend to improve ct-verif in two directions. First, we

shall enhance enforcement of more expressive policies,

such as those taking into consideration input-dependent

instruction execution times. The work of Andrysco et

al. [7] shows that variations in the timing of floating point

processor operations may lead to serious vulnerabilities

in non-cryptographic systems. Dealing with such timing

leaks requires reasoning in depth about the semantics of a

program, and is beyond the reach of techniques typically

used for non-interference analysis. Our theoretical frame-

work inherits this ability from self-composition, and this

extension of ct-verif hinges solely on the effort required

to embed platform-specific policy specifications into the

program instrumentation logics of the prototype. As a

second improvement to ct-verif, we will add support for

SSE instructions, which are key to reconciling high-speed

and security, for example in implementing AES [22].

Acknowledgements The first two authors were funded

by Project “TEC4Growth - Pervasive Intelligence,

Enhancers and Proofs of Concept with Industrial

Impact/NORTE-01-0145-FEDER-000020”, which is fi-

nanced by the North Portugal Regional Operational

Programme (NORTE 2020), under the PORTUGAL

2020 Partnership Agreement, and through the European

Regional Development Fund (ERDF). The third and

fourth authors were supported by projects S2013/ICE-

2731 N-GREENS Software-CM and ONR Grants

N000141210914 (AutoCrypt) and N000141512750 (Syn-

Crypt). The fourth author was also supported by FP7

Marie Cure Actions-COFUND 291803 (Amarout II).

We thank Peter Schwabe for providing us with a col-

lection of negative examples. We thank Hovav Shacham,

Craig Costello and Patrick Longa for helpful observations

on our verification results.

References

[1] Onur Aciicmez, Cetin Kaya Koc, and Jean-Pierre

Seifert. On the power of simple branch prediction

analysis. In 2007 ACM Symposium on Informa-

tion, Computer and Communications security (ASI-

ACCS’07), pages 312–320. ACM Press, 2007.

[2] Johan Agat. Transforming out Timing Leaks. In

Proceedings POPL’00, pages 40–53. ACM, 2000.

[3] Martin R. Albrecht and Kenneth G. Paterson. Lucky

microseconds: A timing attack on Amazon’s s2n

implementation of TLS. Cryptology ePrint Archive,

Report 2015/1129, 2015. Available at http://

eprint.iacr.org/. To appear in proceedings of

EuroCrypt, 2016.

[4] Nadhem J. AlFardan and Kenneth G. Paterson.

Lucky thirteen: Breaking the TLS and DTLS record

protocols. In IEEE Symposium on Security and

Privacy, SP 2013, pages 526–540. IEEE Computer

Society, 2013.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles

Barthe, and Francois Dupressoir. Verifiable side-

channel security of cryptographic implementations:

constant-time mee-cbc. Cryptology ePrint Archive,

Report 2015/1241, 2015. Available at http://

eprint.iacr.org/. To appear in proceedings of

Fast Software Encryption, 2016.

[6] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa

Pinto, and Bárbara Vieira. Formal verifica-

tion of side-channel countermeasures using self-

composition. Sci. Comput. Program., 78(7):796–

812, 2013.

[7] Marc Andrysco, David Kohlbrenner, Keaton Mow-

ery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.

On subnormal floating point and abnormal timing.

In 2015 IEEE Symposium on Security and Privacy,

SP 2015, San Jose, CA, USA, May 17-21, 2015,

pages 623–639. IEEE Computer Society, 2015.

USENIX Association 25th USENIX Security Symposium 67

[8] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,

Carlos Daniel Luna, and David Pichardie. System-

level non-interference for constant-time cryptogra-

phy. In Gail-Joon Ahn, Moti Yung, and Ninghui

Li, editors, ACM CCS 14, pages 1267–1279. ACM

Press, November 2014.

[9] Gilles Barthe, Juan Manuel Crespo, and Cesar Kunz.

Relational verification using product programs. In

Michael Butler and Wolfram Schulte, editors, For-

mal Methods, volume 6664 of LNCS. Springer-

Verlag, 2011.

[10] Gilles Barthe, Pedro R. D’Argenio, and Tamara

Rezk. Secure Information Flow by Self-

Composition. In R. Foccardi, editor, Computer

Security Foundations, pages 100–114. IEEE Press,

2004.

[11] Daniel J. Bernstein. Cache-timing attacks on

aes, 2005. http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf.

[12] Daniel J. Bernstein. Curve25519: New Diffie-

Hellman speed records. In Moti Yung, Yevgeniy

Dodis, Aggelos Kiayias, and Tal Malkin, editors,

PKC 2006, volume 3958 of LNCS, pages 207–228.

Springer, Heidelberg, April 2006.

[13] Daniel J. Bernstein. Cryptography in NaCl, 2011.

http://nacl.cr.yp.to.

[14] Joppe W. Bos, Craig Costello, Michael Naehrig, and

Douglas Stebila. Post-quantum key exchange for

the TLS protocol from the ring learning with errors

problem. In 2015 IEEE Symposium on Security

and Privacy, SP 2015, San Jose, CA, USA, May 17-

21, 2015, pages 553–570. IEEE Computer Society,

2015.

[15] David Brumley and Dan Boneh. Remote timing at-

tacks are practical. Computer Networks, 48(5):701–

716, 2005.

[16] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay,

and Martin Vuagnoux. Password interception

in a SSL/TLS channel. In Dan Boneh, editor,

CRYPTO 2003, volume 2729 of LNCS, pages 583–

599. Springer, Heidelberg, August 2003.

[17] Craig Costello and Patrick Longa. FourQ: Four-

dimensional decompositions on a Q-curve over the

mersenne prime. In Tetsu Iwata and Jung Hee

Cheon, editors, Advances in Cryptology - ASI-

ACRYPT 2015 - 21st International Conference on

the Theory and Application of Cryptology and Infor-

mation Security, Auckland, New Zealand, November

29 - December 3, 2015, Proceedings, Part I, volume

9452 of Lecture Notes in Computer Science, pages

214–235. Springer, 2015.

[18] Goran Doychev, Dominik Feld, Boris Köpf, Laurent

Mauborgne, and Jan Reineke. Cacheaudit: A tool

for the static analysis of cache side channels. In

Usenix Security 2013, 2013.

[19] Cesar Pereida García, Billy Bob Brumley, and Yuval

Yarom. “Make sure DSA signing exponentiations re-

ally are constant-time”. Cryptology ePrint Archive,

Report 2016/594, 2016.

[20] Cesar Pereida García, Billy Bob Brumley, and Yuval

Yarom. "make sure dsa signing exponentiations re-

ally are constant-time”. Cryptology ePrint Archive,

Report 2016/594, 2016. http://eprint.iacr.

org/2016/594.

[21] David Gullasch, Endre Bangerter, and Stephan

Krenn. Cache games - bringing access-based cache

attacks on AES to practice. In 32nd IEEE Sympo-

sium on Security and Privacy, S&P 2011, 22-25

May 2011, Berkeley, California, USA, pages 490–

505. IEEE Computer Society, 2011.

[22] Mike Hamburg. Accelerating AES with vector per-

mute instructions. In Cryptographic Hardware and

Embedded Systems - CHES 2009, 11th International

Workshop, Lausanne, Switzerland, September 6-9,

2009, Proceedings, pages 18–32, 2009.

[23] Paul C. Kocher. Timing attacks on implementations

of Diffie-Hellman, RSA, DSS, and other systems.

In Neal Koblitz, editor, CRYPTO’96, volume 1109

of LNCS, pages 104–113. Springer, Heidelberg, Au-

gust 1996.

[24] Hugo Krawczyk. The order of encryption and

authentication for protecting communications (or:

How secure is SSL?). In Joe Kilian, editor,

CRYPTO 2001, volume 2139 of LNCS, pages 310–

331. Springer, Heidelberg, August 2001.

[25] Adam Langley. Lucky thirteen attack on

TLS CBC. Imperial Violet, February 2013.

https://www.imperialviolet.org/2013/02/

04/luckythirteen.html, Accessed October

25th, 2015.

[26] Chris Lattner, Andrew Lenharth, and Vikram S.

Adve. Making context-sensitive points-to analy-

sis with heap cloning practical for the real world. In

Proceedings of the ACM SIGPLAN 2007 Conference

on Programming Language Design and Implementa-

tion, San Diego, California, USA, June 10-13, 2007,

pages 278–289. ACM, 2007.

68 25th USENIX Security Symposium USENIX Association

[27] Xavier Leroy. Formal certification of a compiler

back-end, or: programming a compiler with a proof

assistant. In 33rd ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages,

POPL 2006, pages 42–54. ACM, 2006.

[28] Chang Liu, Michael Hicks, and Elaine Shi. Memory

trace oblivious program execution. In CSF 2013,

pages 51–65, 2013.

[29] David Molnar, Matt Piotrowski, David Schultz, and

David Wagner. The program counter security model:

Automatic detection and removal of control-flow

side channel attacks. In Dongho Won and Seungjoo

Kim, editors, ICISC 05, volume 3935 of LNCS,

pages 156–168. Springer, Heidelberg, December

2006.

[30] Kenneth G. Paterson, Thomas Ristenpart, and

Thomas Shrimpton. Tag size does matter: At-

tacks and proofs for the TLS record protocol. In

Dong Hoon Lee and Xiaoyun Wang, editors, ASI-

ACRYPT 2011, volume 7073 of LNCS, pages 372–

389. Springer, Heidelberg, December 2011.

[31] Colin Percival. Cache missing for fun and profit. In

Proc. of BSDCan 2005, 2005.

[32] Zvonimir Rakamaric and Michael Emmi. SMACK:

decoupling source language details from verifier

implementations. In Computer Aided Verification

- 26th International Conference, CAV 2014, Held

as Part of the Vienna Summer of Logic, VSL 2014,

Vienna, Austria, July 18-22, 2014. Proceedings, vol-

ume 8559 of Lecture Notes in Computer Science,

pages 106–113. Springer, 2014.

[33] Bruno Rodrigues, Fernando Pereira, and Diego

Aranha. Sparse representation of implicit flows with

applications to side-channel detection. In Proceed-

ings of Compiler Construction, 2016. To appear.

[34] Andrei Sabelfeld and Andrew C. Myers. A model

for delimited information release. In Software Secu-

rity - Theories and Systems, Second Mext-NSF-JSPS

International Symposium, ISSS 2003, Tokyo, Japan,

November 4-6, 2003, Revised Papers, pages 174–

191, 2003.

[35] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit

Levy, David Terei, Alejandro Russo, and David Maz-

ières. Eliminating cache-based timing attacks with

instruction-based scheduling. In Jason Crampton,

Sushil Jajodia, and Keith Mayes, editors, Computer

Security - ESORICS 2013 - 18th European Sympo-

sium on Research in Computer Security, Egham, UK,

September 9-13, 2013. Proceedings, volume 8134 of

Lecture Notes in Computer Science, pages 718–735.

Springer, 2013.

[36] Josef Svenningsson and David Sands. Specification

and verification of side channel declassification. In

FAST’09, volume 5983 of LNCS, pages 111–125.

Springer, 2009.

[37] Tachio Terauchi and Alexander Aiken. Secure in-

formation flow as a safety problem. In SAS’2005,

volume 3672 of LNCS, pages 352–367. Springer,

2005.

[38] Serge Vaudenay. Security flaws induced by CBC

padding - applications to SSL, IPSEC, WTLS ...

In Lars R. Knudsen, editor, EUROCRYPT 2002,

volume 2332 of LNCS, pages 534–546. Springer,

Heidelberg, April / May 2002.

[39] David J. Wheeler and Roger M. Needham. TEA,

a tiny encryption algorithm. In Bart Preneel, edi-

tor, FSE’94, volume 1008 of LNCS, pages 363–366.

Springer, Heidelberg, December 1995.

[40] Anna Zaks and Amir Pnueli. CoVaC: Compiler val-

idation by program analysis of the cross-product. In

J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors,

FM 2008: Formal Methods, 15th International Sym-

posium on Formal Methods, volume 5014 of Lecture

Notes in Computer Science, pages 35–51. Springer,

2008.

[41] Danfeng Zhang, Yao Wang, G. Edward Suh, and

Andrew C. Myers. A hardware design language

for timing-sensitive information-flow security. In

Proceedings of the Twentieth International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’15,

Istanbul, Turkey, March 14-18, 2015, pages 503–

516, 2015.

A Machine-Level Constant-Time Security

In this section we formalize constant-time security poli-

cies at the instruction set architecture (ISA) level. Model-

ing and verification at this low-level captures security of

the actual executable code targeted by attacker scrutiny,

which can differ significantly from the original source

code prior to compilation and optimization. In order to

describe our verification approach in a generic setting,

independently of the computing platform and the nature

of the exploits, we introduce abstract notions of machines

and observations.

USENIX Association 25th USENIX Security Symposium 69

A.1 An Abstract Computing Platform

Formally, a machine M = ⟨A,B,V, I,O,F,T ⟩ consists of

• a set A of address-space names,

• a set B of control-block names, determining the set

K = {fail,halt,spin,next,jump(b) : b ∈ B} of

control codes,

• a set V of values — each address space a ∈ A cor-

responds to a subset Va ⊂ V of values; together,

the address spaces and values determine the set

S = A → (Va→V) of states, each s ∈ S mapping

a ∈ A to value store sa : Va → V ; we write a:v to

denote a reference to sa(v),

• a set I of instructions — operands are references a:v,

block names b ∈ B, and literal values,

• a set O of observations, including the null observa-

tion ε ,

• a leakage function F : S× I → O determining the

observation at each state-instruction pair, and

• a transition function T : S× I → S×K from states

and instructions to states and control codes.

We assume that the value set V includes the integer value

0 ∈ N, that the control-block names include entry, and

that the instruction set I includes the following:

T (s,assume a:v) =

{

⟨s,spin⟩ if sa(v) = 0

⟨s,next⟩ otherwise

T (s,assert a:v) =

{

⟨s,fail⟩ if sa(v) = 0

⟨s,next⟩ otherwise

T (s,goto b) = ⟨s,jump(b)⟩

T (s,halt) = ⟨s,halt⟩

We write s[a:v1 '→ v2] to denote the state s′ identical to s

except that s′a(v1) = v2.

Programs are essentially blocks containing instructions.

Formally, a location ℓ = ⟨b,n⟩ is a block name b ∈ B

and index n ∈ N; the location ⟨entry,0⟩ is called the

entry location, and L denotes the set of all locations. The

location ⟨b,n⟩ is the next successor of ⟨b,n−1⟩ when

n > 0, and is the start of block b when n = 0. A program

for machine M is a function P : L → I labeling locations

with instructions.

A.2 Semantics of Abstract Machines

A configuration c = ⟨s,ℓ⟩ of machine M consists of a state

s ∈ S along with a location ℓ ∈ L, and is called

• initial when ℓ is the entry location,

• failing when T (s,P(ℓ)) = ⟨_,fail⟩,

• halting when T (s,P(ℓ)) = ⟨_,halt⟩, and

• spinning when T (s,P(ℓ)) = ⟨_,spin⟩.

The observation at c is F(s,P(ℓ)), and configuration

⟨s2,ℓ2⟩ is the successor of ⟨s1,ℓ1⟩ when T (s1,P(ℓ1)) =
⟨s2,k⟩ and

• k = next and ℓ2 is the next successor of ℓ1,

• k = jump(b2) and ℓ2 is the start of block b2, or

• k = spin and ℓ2 = ℓ1.

We write c1 → c2 when c2 is the successor of c1, and C

denotes the set of configurations.

An execution of program P for machine M is a con-

figuration sequence e = c0c1 . . . ∈ (C∗ ∪Cω) such that

ci−1 → ci for each 0 < i < |e|, and c|e|−1 is failing or halt-

ing if |e| is finite, in which case we say that e is failing

or halting, respectively. The trace of e is the sequence

o0o1 . . . of observations of at c0c1 . . . concatenated, where

o · ε = ε ·o = o. Executions with the same trace are indis-

tinguishable.

Definition 2 (Safety). A program P on machine M is safe

when no executions fail. Otherwise, P is unsafe.

A.3 Constant-Time Security

To define our security property we must relate program

traces to input and output values, since, generally speak-

ing, the observations made along executions should very

well depend on, e.g., publicly-known input values. Se-

curity thus relies on distinguishing program inputs and

outputs as public or private. We make this distinction

formally using address spaces, supposing that machines

include

• a public input address space i ∈ A, and

• a publicly observable output address space o ∈ A,

in addition to, e.g., register and memory address spaces.

Intuitively, the observations made on a machine run-

ning a secure program should depend on the initial ma-

chine state only in the public input address space; when

observations depend on non-public inputs, leakage oc-

curs. More subtly, observations which are independent of

public inputs can still be made, so long as each differing

observation is eventually justified by differing publicly ob-

servable output values. Otherwise we consider that leak-

age occurs. Formally, we say that that two states s1,s2 ∈ S

are a-equivalent for a ∈ A when s1(a)(v) = s2(a)(v) for

all v ∈Va. Executions e1 from state s1 and e2 from state s2

are initially a-equivalent when s1 and s2 are a-equivalent,

and finite executions to s′1 and s′2 are finally a-equivalent

when s′1 and s′2 are a-equivalent.

Definition 3 (Constant-Time Security). A program is se-

cure when:

70 25th USENIX Security Symposium USENIX Association

1. Initially i-equivalent and finally o-equivalent execu-

tions are indistinguishable.

2. Initially i-equivalent infinite executions are indistin-

guishable.

Otherwise, P is insecure.

The absence of publicly observable outputs simplifies

this definition, since the executions of public-output-free

programs are finally o-equivalent, trivially.

B Reducing Security to Safety

According to standard notions, security is a property over

pairs of executions: a program is secure so long as exe-

cutions with the same public inputs and public outputs

are indistinguishable. In this section we demonstrate a

reduction from security to safety, which is a property over

single executions. The reduction works by instrumenting

the original program with additional instructions which

simulate two executions of the same program side-by-

side, along the same control locations, over two separate

address spaces: the original, along with a shadow of the

machine state. In order for our reduction to be sound,

i.e., to witness all security violations as safety violations,

the control paths of the simulated executions must not di-

verge unless they yield distinct observations — in which

case our reduction yields a safety violation. This sound-

ness requirement can be stated via the following machine

property, which amounts to saying that control paths can

be leaked to an attacker.

Definition 4 (Control Leaking). A machine M is control

leaking if for all states s ∈ S and instructions i1, i2 ∈ I the

transitions T (s, i1) = ⟨_,k1⟩ and T (s, i2) = ⟨_,k2⟩ yield

the same control codes k1 = k2 whenever the observations

F(s, i1) = F(s, i2) are identical.

For the remainder of this presentation, we suppose that

machines are control leaking. This assumption coincides

with that of Section 4: all considered leakage models

expose the valuations of branch conditions. Besides con-

trol leaking, our construction also makes the following

modest assumptions:

• address spaces can be separated and renamed, and

• observations are accessible via instructions.

We capture the first requirement by assuming that pro-

grams use a limited set A1 ⊂ A of the possible address-

space names, and fixing a function α : A1 → A2 whose

range A2 ⊂A is disjoint from A1. We then lift this function

from address-space names to instructions, i.e., α : I → I,

by replacing each reference a:v with α(a):v. We capture

the second requirement by assuming the existence of a

function β : I ×A×V → I such that

T (s,β (i,a,v)) = ⟨s[a:v '→ F(s, i)],next⟩.

For a given instruction i ∈ I, address space a ∈ A, and

value v ∈ V , the instruction β (i,a,v) stores the observa-

tion F(s, i) in state s ∈ S at a:v.

Following the development of Section 4, we develop an

output-insensitive reduction which is always sound, but

complete only for programs without publicly-annotated

outputs. The extension to an output-sensitive reduction

which is both sound and complete for all programs mir-

rors that developed in Section 4. This extension is a

straightforward adaptation of Section 4’s from high-level

structured programs to low-level unstructured programs,

thus we omit it here.

Assume machines include a vector-equality instruction

T (s,eq ax :⃗x ay :⃗y a:z) = ⟨s[a:z '→ v],next⟩

where x⃗ and y⃗ are equal-length vectors of values, and

v = 0 iff s(ax)(xn) ̸= s(ay)(yn) for some 0 ≤ n < |⃗x|. This

requirement is for convenience only; technically only a

simple scalar-equality instruction is necessary.

To facilitate the checking of initial/final range equiv-

alences for security annotations we assume that a given

program P has only a single halt instruction, and

P(entry,0) = goto b0

P(exit,0) = halt.

This is without loss of generality since any program can

easily be rewritten in this form. Given the above functions

α and β , and a fresh address space a, the shadow product

of a program P is the program P× defined by an entry

block which spins unless the public input values in both i

and α(i) address spaces are equal,

P×(entry,n) =







eq i:Vi α(i):Vi a:x n = 0

assume a:x n = 1

goto b0 n > 1

an exit block identical to the original program,

P×(exit,n) = P(exit,n)

and finally a rewriting of every other block b ̸∈
{entry,exit} of P to run each instruction on two sepa-

rate address spaces,

P×(b,n) =































β (i,a,x) n = 0 (mod 6)
β (α(i),a,y) n = 1 (mod 6)
eq a:x a:y a:z n = 2 (mod 6)
assert a:z n = 3 (mod 6)
i n = 4 (mod 6)
α(i) n = 5 (mod 6)

where i = P(b,n/6)

while asserting that the observations of each instruction

are the same along both simulations.

Theorem 3. A safe program P with (respectively, without)

public outputs is secure if (respectively, iff) P× is safe.

