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Abstract

The atomic block, a synchronization primitive provided to
programmers in transactional memory systems, has the po-
tential to greatly ease the development of concurrent soft-
ware. However, atomic blocks can still be used incorrectly,
and race conditions can still occur at the level of application
logic. In this paper, we present a static analysis, formalized
as a programming language and proven sound, that helps
programmers use atomic blocks correctly. Using access per-
missions that describe how objects are aliased and modified,
our system statically prevents race conditions up to the be-
havior specified using typestate annotations. We have im-
plemented a prototype static analysis for the Java language
based on our system and have used it to verify several real-
istic examples.

Categories and Subject Descriptors D.3.2 [PROGRAM-
MING LANGUAGES]: Concurrent, distributed, and paral-
lel languages; F.3.1 [LOGICS AND MEANINGS OF PRO-
GRAMS]: Specifying and Verifying and Reasoning about
Programs

General Terms Languages, Verification

Keywords Transactional memory, Typestate, Permissions

1. Introduction

It is now taken for granted in the field of computer science
that the age of parallelism is upon us, and with good reason;
with more and more of the transistors given to us by Moore’s
law going into an ever-increasing number of on-chip cores,
we can no longer expect predictable increases in single-
threaded performance. With this in mind, many researchers
from the fields of computer science have begun investigating
new techniques for the development of software which can
actually take advantage of more cores.
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Among the large number of recent proposals, transac-
tional memory seems to have gained the greatest amount
of traction. Transactional memory attempts to simplify the
construction of concurrent applications that make use of
shared memory. The phrase “Software Transactional Mem-
ory” (STM) describes an implementation of this concept
in software [23]. STM is a subtle and complex topic, but
at its core it provides programmers with a simple concur-
rency primitive, the atomic block. Code that is executed
within an atomic block will execute sequentially, and as if no
other threads were executing at the same time. The system
is “transactional,” because atomic blocks are usually imple-
mented as transactions which provide atomicity, consistency
and isolation to concurrent memory accesses.

However, as some of STM’s greatest proponents will tell
you, while atomic sections are a vast improvement over lock-
based synchronization, they are far from perfect [14]. Syn-
chronization needs beyond critical sections, such as those
traditionally provided by wait and notify, are not handled
cleanly by atomic sections, and as of yet it is unclear how
I/O within transactions should be handled. Most importantly
for the scope of this work, atomic sections by themselves do
not provide correct synchronization, even when critical sec-
tions are the only form of concurrency needed, because they
can still be used incorrectly.

As motivation, consider a hypothetical network chat ap-
plication, used as a running example throughout this paper
and partially shown in Figures 1 and 2. In this application,
two threads, a GUI event thread and a network-monitoring
thread, each modify one shared object of the Connection
class. This class abstractly represents a connection between
two hosts remote hosts. The GUI thread sends messages, and
opens and closes the connection in response to user events,
while the network-monitoring thread closes the connection
in response to a remote closing.

The first example, Figure 1, shows that even if every
access to thread-shared memory is performed inside of an
atomic block, race-conditions at the level of program logic
can still occur. In this example the trySendMsg method,
fired in response to a GUI event, checks to see if the connec-
tion is active, and if so sends a message by calling the send
method of the Connection class. Both the isConnected and
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class Connection {
void disconnect() { /* see fig. 2 */ }

boolean isConnected() {
atomic: {
return (this.socket != null);
}
}

void send(String msg) {
atomic: {
this.socket.write(msg) ;
this.counter.increment () ;
}
}

class GUI {

boolean trySendMsg(String msg) {
if( this.myConnection.isConnected() ) {
this.myConnection.send(msg) ;
return true;
}
else {
return false;

}

Figure 1. An example where a race condition could occur.

send methods of the Connection class are properly syn-
chronized, reading and modifying thread-shared fields inside
of atomic blocks. A race condition exists because the GUI
thread relies on the connection remaining in the open state in
between the call to isConnected and the call to send. If the
network thread were to close the connection at this time, a
null-pointer exception would occur once the GUI thread be-
gan executing the send method. Note that this type of thread
interference is sometimes referred to as “external” interfer-
ence [28], as it occurs external to the code that is executed
by multiple threads.

While static race detectors and race-free type systems
have been developed [6, 27] to ensure shared-memory ac-
cess occurs inside regions of mutual exclusion, they are still
vulnerable to the same problem. We will refer to this type of
race condition as an “application-level” one, since the logic
of the application expects a certain condition that could be
violated by another thread.

The second example, shown in Figure 2, shows how im-
proper use of atomic blocks can lead to violations of ob-
ject invariants. The Connection class also privately keeps a
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class Connection {
final Counter counter;

Connection {
this.socket = null;
this.counter = new Counter();

}

void disconnect() {
atomic: {
this.socket.close();
this.socket = null;
}
this.counter.reset();

}

Figure 2. An example where object invariants might be
violated.

counter to track the number of messages that have been sent
during the lifetime of a connection. At the time of class cre-
ation this counter is initialized to zero, and each time a con-
nection is disconnected, this counter is reset using the reset
method. In fact, the Connection class has an invariant that its
methods rely on: whenever a Connection object is not con-
nected, the socket field will be null and the message counter
will be reset. This helps to ensure that our message count
will be accurate. We will assume that the reset method is
implemented in such a way that all access to its member vari-
ables are done within atomic blocks.

Once again, even though access to shared variables is per-
formed inside atomic blocks, race conditions can have ad-
verse effects on the behavior of our program, this time inval-
idating our object invariant. Assume that the disconnect
method is being executed by the network thread. If the GUI
thread were call the connect method and begin sending
messages using the send method precisely at a point in time
where the network thread had exited the atomic block but
had not yet reset the counter, we would lose count of each of
those sent packets when the network thread eventually resets
the counter. This type of interference from threads is some-
times referred to as “internal” interference [28], as it occurs
internal to the thread-shared object.

This example is necessarily simplistic, and therefore it
may seem strange that the developer of the disconnect
method did not merely enclose the entire method body in
an atomic block. In a more realistic example, there could be
a large amount of other, thread-local computation occurring
inside the body of this method. As with locks, developers
often attempt to shrink the size of atomic regions in order
to minimize performance overhead. The question then be-
comes, what is the minimum amount of code that must be
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executed inside of an atomic block in order to avoid race
conditions and preserve the object’s invariants. Answering
this question correctly can be tricky.

In this paper, we describe a Java-like programming lan-
guage whose type system statically prevents errors of these
kinds. Up to the invariants that are specified by the program-
mer, this type system prevents race conditions and guaran-
tees that invariants are reestablished at the end of method
bodies, even in the face of concurrent access to an object
and its fields. Our system uses typestate [8] specifications
as the language of invariants, and object permissions [7] to
approximate whether or not an object can be thread-shared.
Our work builds upon recent work for verifying typestate of
aliased objects [4].

The contributions of this paper are as follows:

e We have developed a programming language that be-
gins to address the problem of improper atomic block
usage. The type system of this language guarantees
that no application-level race conditions can occur, and
that specified invariants are preserved in concurrent pro-
grams.

e In this paper, we reinterpret access permissions, which
we previously used as an alias-control mechanism, as an
approximation of the thread-sharedness of a location in
memory.

e We have proved soundness for a core subset of this lan-
guage in the accompanying technical report [3].

e To our knowledge this is the first work that attempts to
statically verify the proper placement of atomic blocks in
object-oriented code.

e We have developed a prototype analysis for the Java
language based on this type system and have used it to
verify several realistic examples.

This paper proceeds as follows. In Section 2 we describe
our technique at an informal level, using our chat program as
arunning example. By the end of this section, readers should
understand the intuition behind our approach. Section 3 de-
scribes the formal language in greater detail. Section 4 de-
scribes our prototype implementation, as well as its use in
verifying several real or realistic Java programs. In Section 5
we discuss the wealth of existing work in verification of con-
current software. In Section 6 we discuss how we would like
to improve our technique, and in Section 7 we conclude.

2. Overview

At a high level, our approach is as follows:

® We use typestate specifications on methods and classes
to say which abstract state an object must be in before
calling a method on it, and which states an object’s fields
must be in at the end of a method call. (In principle, other
behavioral specifications would work as well.)

Please do not redistribute

® Object references are annotated with access permissions
which describe how an object pointed to by a reference is
shared. Permissions were originally proposed as a means
for guaranteeing the non-interference of threads. In pre-
vious work, we used interfering permissions to control
aliasing. Now we reinterpret the same interfering permis-
sions to describe how threads share objects.

¢ Finally, we track the state of objects as they flow through
code, forgetting (or creating “havoc” on) anything that we
know about the state of an object when we cannot deter-
mine statically that we are within an atomic section and
the reference to that object indicates it may be modified
by other threads.

In the next several sub-sections, we describe each part of
the process in greater detail.

2.1 Typestate Specifications

Our approach uses typestate [8] as the language of behav-
ioral specification. Specification is how the system knows
which application-specific logic must be upheld in the face
of concurrent access.

Typestate specifications allow programmers to develop
abstract protocols describing a method or class’ behavior.
The abstractions take the form of state-machines, an abstrac-
tion with which most programmers are familiar. As an exam-
ple, the developer of a file class might specify that a file can
be in either the open or closed states, and that data can only
be read from that file when it is in the open state. For a more
relevant example, consider the following specification of the
Connection class:

disconnect()
isConnected T -
istrue 0 |s(iisopgggted()
QGONNECH@ CIDLE
w’]d() ConneCt()

This indicates that a connection can abstractly be idle or
connected. Calling the connect method will take an object
from the idle state to the connected state, while the reverse
holds for the disconnect method. The sending of messages
can only occur while the object is in the connected state,
but sending a message does not affect the object’s state.
Finally, we can dynamically test whether or not we are in
the connected state by calling isConnected.

Existing work has been done in statically verifying that an
object’s behavior will conform to its typestate specification
at run-time [8]. Our work, in particular, adapts the approach
of Bierhoff and Aldrich for use in concurrent settings [4].
In the approach proposed by Bierhoff and Aldrich, object
states are tracked statically using linear logic predicates [12]
which treat object state information as a resource that can be
consumed and transformed. Methods that transform the state
of an object will consume its old state, and return a new state,
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and the type of the reference to that object will reflect its new
state in subsequent lines of code.

Usually state names are defined by an application, how-
ever, this paper mentions two special states, 7 and alive,
which are known ahead of time. 7 represents a lack of knowl-
edge about the state of an object. alive, on the other hand, is
the default state given to an object whose class defines no
abstract states.

One of the main limitations of so-called “data race” anal-
yses and type systems [6, 27] is that their definition of race
condition is relatively restricted; the unsychronized read-
ing and writing of a shared location in memory. It is pre-
cisely because these race detectors do not know what a
given application intends to accomplish that they cannot de-
tect “application-level” race conditions. Behavioral specifi-
cations, of which typestate is just one form, give analysis
tools exactly this information.

2.2 Access Permissions

Access permissions [4] are a means of associating object ref-
erences with (a) the state of the object referenced and (b) the
ways in which that object can be aliased. This is important
because statically tracking the state of an object in the face of
unrestricted aliasing is undecidable. In this section we will
show how access permissions can approximate information
on whether or not an object is thread-shared, and why this is
a sound approximation.

The access permissions system that we use has five dif-
ferent permission types, each one describing whether or not
the object is aliased, whether the given reference is allowed
to modify the object, and whether other references to the ob-
ject, if they exist, are allowed to modify the object. These
permissions are named as follows:

® unique permission to an object indicates that this refer-
ence is the sole reference to an object in the program.
This is the same as a linear reference in other type-
systems [32].

e full permissions are exclusive read/write references that
can coexist with any number of read-only references.

e immutable permissions are associated with references
that point to immutable objects. Any number of these
references can point to the same object, but no reference
may have modifying access.

® pure permissions are read-only permissions to objects
that may be modified through other references.

® share permissions are associated with references that can
read and write objects that can also be read and modified
by any number of other references in the system. This
is the least restrictive permission, and is effectively the
default in languages like Java.

The access permissions are arranged in a partial order and
can be split in order to create other permissions to the same
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object. This is necessary because when an object constructor
is called, a single unique reference is returned, but we may
want to then create multiple references to distribute to differ-
ent parts of the program. These splitting rules are described
in Figure 3. In the formal language, it is the responsibility of
the linear logic proof judgment to automatically determine
when and how permissions should be split into other per-
missions. If several expressions in a method require differ-
ent permissions to the same reference, the implementation
of this judgment must solve these constraints by splitting
the permission in an appropriate way. In our implementation
(§ 4), this is done with a constraint solver.
An example access permission is shown below:

unique(counter, RESET)

This permission tells us that the counter field points to an
object that can only be reached via this field, and therefore
this reference has exclusive read/write access. Furthermore,
it is known at this point that the counter is in the “RESET”
abstract state.

k = share|pure|/immutable

k(r,s) = k(r,s) @ k(r, s) -SYM
k = full|share|pure|immutable
" S-UNIQUE
unique(r, s) = k(r, s)
k = share|pure|immutable S.F
full(r, s) = k(r, s) “HULL
immutable(r, s) = pure(r, s) S-IMM
k = full|share S.AS
k(r,s) = k(r,s) ® pure(r,s) = ™
I'A-P P =P
SUBST

IARP

Figure 3. Permission splitting rules

2.2.1 Method Specifications

Now that we have seen access permissions, we can string
them together with linear logic connectives to create speci-
fications. The —o connective is used to specify method pre
and post-conditions. Predicates on left-hand side form the
method pre-condition, and those on the right-hand side form
the post-condition. Predicates in the pre-condition are con-
sumed and cannot be reused unless explicitly returned by
the post-condition. Linear conjunction (®) is used when we
wish to say that multiple objects must be in specific states at
the same time, and linear disjunction () is used when one
of several state predicates may be true. We have annotated
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the methods of the Connection class with behavioral anno-
tations in Figure 4. For example, the isConnected method
is described in the following manner: If the method is called
when the receiver is a shared object in an unknown state, af-
ter the method completes the receiver object will either be in
the CONNECTED state, signified by a return value of true,
or the receiver will be in the IDLE state, signified by a return
value of false. Other methods are annotated similarly.

class Connection {
boolean isConnected()
share(this, ?) —
(result == true ® share(this, CONNECTED)) &

(result == false ® share(this, IDLE))
{
atomic: {
return (this.socket != null);
}
}

void connect(String addr)
immutable(addr, alive) ® share(this, IDLE) —o
share(this, CONNECTED)

atomic: {
this.socket = new Socket(addr);
this.counter.startCounting() ;

void send(String msg)
immutable(msg, alive) ® share(this, CONNECTED) —
share(this, CONNECTED)

atomic: {
this.socket.write(msg) ;
this.counter.increment();

void disconnect()
share(this, CONNECTED) —o share(this, IDLE)
{
atomic: {
this.socket.close();
this.socket = null;

}

this.counter.reset();

}

// ... continued

Figure 4. Method specifications and implementations for
the Connection class. The class definition is continued in
Figure 5.

Please do not redistribute

class Connection {
// ... from above

states IDLE, CONNECTED;

IDLE := unique(counter, RESET) ®
socket == null

CONNECTED := unique(counter, COUNTING) ®
unique(socket, alive)

private final Counter counter;
private Socket socket;

Connection()
1 —o unique(this, IDLE)

{
this.socket = null;
this.counter = new Counter();

}
}

Figure 5. State, invariant and constructor specifications for
the Connection class.

2.2.2 State Invariants and Packing

The same access permissions can be used to annotate classes
with invariant predicates. In our system, an object’s invari-
ants are tied to the state the object is in. When designing a
class, a programmer has the ability to declare abstract states
for a class, and he can also decide that certain predicates de-
scribing the condition of an object’s fields must hold true
whenever the object is in one of those states. These predi-
cates are called state invariants. In Figure 5, we have anno-
tated the Connection class with state invariants, predicates
that should hold true when that connection is either open or
closed. For example, when a connection is in CONNECTED
state, its counter field must be in the COUNTING state, and
its socket must be in the alive state.

In order for methods to modify the fields of an object and
still modularly verify that these invariants hold, we employ
a packing/unpacking methodology [8].

Unpacking is a means of statically delineating the por-
tions of code during which object invariants are not ex-
pected to hold. Normally, objects are “packed,” meaning
that their state invariants hold. However, in order to read
or modify the fields of an object, that object must first be
unpacked. At the point of unpacking, we are allowed to as-
sume the information about the fields of the unpacked ob-
ject that is implied by the state invariant of the object that
is being unpacked. For example, in the send method in of
the Connection class seen in Figure 4, we cannot assume
that field counter is in the COUNTING state until the re-
ceiver object (this) is unpacked. While the receiver is un-
packed, it cannot be treated as being in the CONNECTED
state, since the invariants may not hold. Our formal system
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tracks this information using a separate access permission,
unpacked(share, CONNECTED), which tells us what state
the receiver was in before unpacking.

When it comes time to pack an object, either to the same
state or to a different state, it is at the point of packing that
we must be able to prove the state invariant implied by that
state. Because the state invariants of an object should hold
at all times when a method is not currently being called, our
system requires that an object is packed before the method
returns. Additionally, packing must occur before a method
call, so that the receiver will be consistent in case of re-
entrant calls. While in general any object can be packed or
unpacked, our formal system allows only the receiver object
to be unpacked. This means that access to fields of objects
is restricted to methods of that object’s class. Finally, note
that our formal system requires packing and unpacking to
be made explicit in the source code. This is necessary for the
purposes of the type-safety proof. Our checker (§ 4) does not
have this requirement and instead infers when and to/from
what state an object must be packed/unpacked.

2.2.3 Access Permissions as Thread-Sharing

In order to determine when the state of an object could po-
tentially be changed by another thread, we need to know
which objects are shared across threads. In our system, we
use access permissions as an approximation of this informa-
tion. If a reference is annotated with a permission that indi-
cates the referred object can be reached via other references,
we assume that those references are held by other threads,
and all consequences that this might imply.

This is a sound, if potentially imprecise, approximation
because in order for a new thread to be spawned, a new
thread object must be created, with the relevant object refer-
ences passed to that thread’s constructor. Alternatively, as in
our formalization (see Section 3), if threads can be spawned
by calling a method on an object, objects that must be used
by both spawning thread and the spawnee must be passed
to this method. In our system, the only means by which an
object can be passed to a method or constructor and still be
held by the caller is by splitting that permission to one of
the potentially-shared permissions. We now reexamine our
access permissions in the context of thread sharing:

® unique permissions are permissions to objects that only
one thread has access to at a given time. These objects can
be passed from one thread to another in a linear manner.

e full permissions are permissions to objects that only one
thread can modify, but many threads can read. The thread
with full permission can rely on the fact that no other
threads can change the state of the object.

e immutable permissions are permissions to objects that
will only ever be read. All threads can rely on this object
never changing state.
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® pure permissions are reading permissions to objects that
another thread could potentially modify. Unless inside an
atomic block, a thread with a pure permission must as-
sume that the object’s state could change at any moment.

¢ share permissions are modifying permissions to objects
that could potentially be modified by a number of other
threads. Again, unless inside an atomic block, we must
assume that the object’s state could change at any mo-
ment.

Given access permissions in this light, our analysis will
work by forgetting state information whenever we are not
inside a transaction and an object might be modified by
another thread. For local variables our analysis can retain
state information when the variable’s permission is not pure
or share. Fields of an object, however, are a slightly different
story.

Unpacking an object may give us access to the fields of
that object, and those fields often may have permissions that
we have said cannot be modified by other threads. But if
the object that is being unpacked has pure or share permis-
sions, then multiple threads could read these “safe” objects
by traversing through the thread-shared reference. There-
fore, in order to reestablish the condition that all unique and
full fields of an object could not be modified concurrently
by another thread, we require that the unpacking of a pure,
share, or full object be done within a transaction. Now, re-
gardless of whether a variable is a field or local variable, our
analysis only needs to forget state information if the permis-
sion on the variable is pure or share.

The soundness of this technique boils down to this intu-
ition. If a method has access to a unique (or full) permission,
one of the following two cases must be true:

e The object referred to is a new object that exists only on
the stack of the current thread, and therefore could not be
accessed by any other threads.

e The object is referred to by the field of another object.
Since thread-shared objects cannot be unpacked outside
of an atomic block, if the referring object is thread-shared
we must already be inside of one. This situation is shown
pictorially in Figure 6.

Finally, we require that all static member variables are
read or written to inside of atomic blocks. Our formal system
(§ 3) has no notion of static member variables and therefore
does not enforce this requirement. Our implementation, on
the other hand, does.

In summary, the following additions are required to make
access permissions function as a sound approximation of
thread-sharing:

e We immediately forget state information about refer-
ences whose access permission indicates that the re-
ferred object could be modified by other threads (pure
and share).
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Threads

Shared Object

Unique
Objects

Figure 6. Unique and full fields within a thread-shared ob-
ject have necessarily been unpacked within a transaction.
The single thread inside is free to modify at will.

e We require that share, pure, and full references are only
unpacked inside of atomic blocks. This ensures that we
have exclusive access to the fields of that object. This
is required for full permissions only because our system
uses weak transactional semantics, and is done for the
benefit of the other, pure references to the same object.

e All static fields must be read from and written to inside
of atomic blocks.

One of the nice aspects of this methodology is that there
is no additional annotation burden over and above the per-
mission annotations. If you are already using them to track
typestate in a single-threaded application, no additional an-
notations, with the exception of atomic blocks, are necessary
if you decide to make that application concurrent.

2.3 Tracking Transactions

In order to track whether or not a given line of code must
be executing within an atomic block, we use a simple type
and effect system recently formalized [25]. Atomic blocks
are dynamically scoped. At run-time, a statement within a
method body could very well be executing within a trans-
action, even if the method itself never explicitly opened an
atomic block. This is because any methods called within an
atomic block will execute within the same transaction. This
also means that if we use a modular analysis, it may be im-
possible to tell if a method body is inside of an atomic block.

This intuition corresponds to three effect values in our
system: Expressions type-checked with the wt effect are
known to definitely be executing within a transaction. State-
ments inside of an atomic block are type-checked in this
manner. Expressions type-checked with the ot effect are
known to be executing outside of a transaction. Because of
the dynamic nature of an atomic block only the single, top-
level expression is type-checked with this effect. You might
also imagine type-checking the main method of a Java pro-
gram in this way. Finally, the emp effect indicates that the
type-system cannot be sure one way or the other. Method
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bodies are type-checked with this effect since they could po-
tentially be called within an atomic block. The tracking of
transactions is treated more formally in Section 3.

2.4 Examples Revisited

Now that we have seen typestate specifications, access per-
missions and we can statically track whether or not code is
executing inside of a transaction, we can revisit our original
examples and see where these examples would fail to check.
In Figure 7 we have taken the original trySendMsg method
from Figure 1 and annotated it with the typestate and permis-
sion information that is known statically at each line of the
method, as well as the “in-transaction” effect that the line is
currently being checked under. The transaction effect is al-
ways emp in this example, since no atomic blocks are ever
entered. It may also be helpful to refer to Figure 4 which
shows the method specifications.

boolean trySendMsg(String msg) {

emp : unique(this, alive) ‘

emp : unpacked(unique, alive), share(myConnection, ?) ‘

if ( this.myConnection.isConnected() )

’ emp : unpacked(...), ‘

(result==true ® share(myConnection, CONNECTED)) & ‘

(result==false ® share(myConnection, IDLE))) ‘

’ emp : unpacked(. . .), ‘

(result==true ® share(this,?)) ® ‘

(result==false ® share(myConnection,?))) ‘

{

emp : unpacked(. . .), share(myConnection, 7) ‘

Error! Precondition not met. ‘
this.myConnection.send(msg) ;

’emp : unique(this, alive) ‘

return true;

}

else {

emp : unpacked(. . .), share(myConnection, 7) ‘

emp : unique(this, alive) ‘

return false;

}
}

Figure 7. Verification of the trySendMsg method of the
GUI class from Figure 1

At the onset of the method, we have a unique permis-
sion to the receiver, and this receiver is in the alive state, as
no states were defined for the GUI class. In order to access
fields of the receiver, the receiver is immediately unpacked,
introducing an unpacked predicate which prevents double-
unpacking. Unpacking also gives us a share permission to
the myConnection field, which is in some unknown state.
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void discomnect() {
atomic: {

wt : share(this, CONNECTED) |

wt : unpacked(share, CONNECTED),
(unique(socket, alive)) ‘
unique(counter, COUNTING)) ‘

this.socket.close();
this.socket = null;

’ wt : unpacked(...), (socket==null), ‘
’ unique(counter, COUNTING) ‘

this.counter.reset();

’ wt : unpacked(...), (socket==null),
’ unique(counter, RESET) ‘
lwt : share(this, IDLE) ‘

}
}

Figure 8. Verification of the corrected disconnect
method.

This is enough to satisfy the pre-condition for the dynamic
state test isConnected, which consumes the original per-
mission to the field, and returns a predicate indicating that
if the return value is true we will know that the connec-
tion is open, and the reverse if the return value is false. It
is at this point that the analysis “plays havoc,” or forgets all
known state information about pure and share permissions.
When the analysis arrives at the true branch of the condi-
tional, it knows that the result of the method call must have
been true, and therefore can reduce the predicate describing
myConnection. Unfortunately, because of the havoc that
was played on our knowledge, we now cannot fulfill the pre-
condition of the send method, and and error is signaled. Be-
fore each method return the receiver is packed to the post-
condition.

The object invariant example from Figure 2 proceeds
in a similar manner. In Figure 8 we successfully verify a
version of the disconnect method that we have corrected
by pulling the call to reset into the atomic block. Initially
we begin with the method pre-condition, which we unpack.
Unpacking gives us the knowledge that we have a unique
permission to both the socket and the counter fields of
the receiver, and that the counter is in the counting state.

One may wonder why we are not forced to forget that
the receiver is in the connected state in between the pre-
condition and the entry into the atomic block. Actually, we
know here that this method can only be called from inside a
atomic block. The only way to ever satisfy its precondition is
to establish the fact inside of a transaction (or in turn to get
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that information from the calling method’s pre-condition).
For this reason, forgetting actually only occurs inside of
method bodies. This point is discussed in more detail when
the P-METH rule is discussed in Section 3.

From this point forward, we are checking inside the wt
effect, and therefore are not required to forget the state of
share or pure permissions. The socket field is assigned
null, and this fact is recorded in our resource context. Then
the reset method is called on the counter field. While
we have not given the full specification for this method,
the specification can be paraphrased as, “given a unique
pointer to a counting counter, the method will return a unique
pointer to a reset counter.” Finally we have enough facts to
pack the receiver to the post-condition. A similar reasoning,
again discussed in Section 3, applies to why we do not have
to forget share and pure permissions in between the last
statement and establishment of the post-condition.

Both Figure 7 and Figure 8 elide certain details. In re-
ality, and in order to ensure that recursive method calls see
objects in consistent states, we are required to pack before
method calls. This can be done for both examples, but was
not shown for presentation reasons. Also, some permissions
were shortened or ignored (e.g., the immutable permission
to the msg parameter in trySendMsg) for space reasons.

In the introduction we say that race conditions are pre-
vented up to the program behavior that is specified, and now
hopefully it is clear why. Only those method behaviors and
class invariants that can be expressed in terms of typestate,
and that are actually annotated by the programmer will be
guaranteed in the face of concurrency.

3. Language

We have formalized our proposed analysis as a core, Java-
like language. We chose a language-based approach so that
our proof could model threads and their non-determinism
at run-time. In this section we will present this formal lan-
guage. The syntax of this language is given in Figure 9.

Our formal language builds heavily upon two existing
systems in the literature. We will point out the major dif-
ferences. Our system of access permissions reuses many of
the pieces developed by Bierhoff and Aldrich [4], but leave
out some of the more advanced features, like state dimen-
sions and sub-typing in order to focus on concurrency. Our
implementation does inherit these features.

Much of the formalism regarding transactional memory,
threads and their operational semantics was adapted from
Moore and Grossman [25]. In particular we use their Weak
language, a language that provides weak atomicity and does
not explicitly model transaction roll-back, as a starting point.

Expressions are type-checked using the following judg-
ment: I'; A; € F¢ e : 3z : T.P. This judgment says, “given
a list of variable types that can be used many times, I', and a
list of consumable predicates that can be used only once, A,
and an effect describing whether or not we are known stat-
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program PG = (CL,e)
class decls. CL := classC{FIN M}
field decls. F o= f:T
methods M == Tm(Tz): MS=c¢
terms t o= =my,z]|o
| true|false|t; ort2
| ¢ andts|nott
expressions e = t|t.f|f:=t
| new C(t) | to.m(t)
‘ if(t, e1, 62)
| letz=e1ines
| spawn (to.m(t)) | atomic e
| unpack(k,s)ine|pack to(s)ine
values v == o|true|false
references r = z|o|of
types T == C|bool
atomic £ = wt|ot|emp
valid contexts I' == - | T,z:T | TI,q
linear contexts A == - | AP

classes C fields f  variables x
objects o methods m states s

Figure 9. Language Syntax. Permission syntax (P, MS, N,
and I) defined in Figure 10.

ically to be within a transaction, &, the expression e being
executed within receiver class C has type 7' and produces
a new permission P. This permission may contain existen-
tially bound variables. Note that for clarity of presentation
the receiver class annotation is left off unless it is needed in
a typing rule.

The existential type of an expression is somewhat unusual
and therefore deserves further mention. The reason a per-
mission can contain existentially bound variables is because
there are times when our system tracks the permissions of
an object to which no reference points. For instance after the
first expression in a let binding is evaluated, its result (if of
a class type) represents an object even before it is bound to
a variable. Similarly, after a field has been reassigned, the
permission to the object it used to point to still exists and
can be assigned to another reference. Giving expressions ex-
istential types allows us to later assign the object and make
its permission consistent with the new reference.

We use a decidable fragment of linear logic, the multi-
plicative additive fragment (MALL), as our language of be-
havioral specification [24]. Throughout the typing rules, we
will use the standard linear logic proof judgment, I'; A -+ P,
extensively. This judgment can be read as, “in the context of
some typing information and a list of consumable resources,
the predicate P can be proven true.” The syntax for the per-
missions themselves are given in Figure 10.

The declarative nature of the linear logic judgment can
make the reading of typing rules somewhat confusing. Of-
ten, this judgment appears to synthesize permissions “out
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permissions p == k(r,$)|unpacked(k,$)
$§ = s|?
facts g = t=true|t=false
predicates P = plq|PAiQP|Pio®P:
| 1]0|T
method specs MS = P —oF
expr types = dz:T.P
state inv. = s=P

initial state m= initially (s)
= full | pure | share

| immutable | unique

>~ 2
|

Figure 10. Permission syntax

of the blue,” for example, in the P-TERM rule. Similarly,
several typing rules divide the linear context in a seemingly
arbitrary manner, written as (A, A’). In reality, the linear
logic judgment is working like a constraint solver. In a typ-
ing derivation, different rules restrict the permissions or the
context in various ways, and it is the job of the implementa-
tion to find a rearrangement of permissions that satisfies all
of these constraints. The same judgment is also allowed to
split permission types (Figure 3), and can therefore legally
try even more possible rearrangements.

The most important new additions to our type system are
the judgments shown in Figure 11. Rather than dispatch di-
rectly to the linear logic proof-judgment, the typing rules
first dispatch to the “atomic-aware” version of this judgment,
I'; A F¢ P.Itis the job of this judgment to ensure that pred-
icates that must be proven do not depend on a share or pure
reference being in a particular state, unless we know stati-
cally that we are inside an atomic block. In order to maintain
this invariant, it is occasionally necessary to actively “for-
get” the state of an object pointed to by a share or pure per-
mission. For example, in the typing rule for a method call,
P-CALL, we sometimes must forget state information for po-
tentially thread-shared permissions in the post-condition. It
is acceptable for a method’s post-condition to include share
and pure permissions since that method may be called within
an atomic block, but if that is not the case, these permissions
must not be relied upon. The forget judgment, whose action
is predicated upon &, performs this work.

The typing rules themselves are given in Figure 12. Here
we discuss each rule in turn.

e P-ATOMIC: The rule for typing atomic blocks types the
sub-expression under the wt effect, since it is trivially
known that this expression must be inside an atomic
block. Because the atomic block itself may or may not
be used inside of another atomic block (nesting atomic
blocks is legal) we must use the forget, judgment on the
resulting permission.

e P-LET: In order to prove that a let expression is well-
typed, we rely on e; being well-typed. Like the standard
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E #wt forget(P) =P’
forgeto (P) = P’

forget,,(P) = P

k = immutable|unique|full k = pure|share
forget(k(r,$)) = k(r,$) forget(k(r,$)) = k(r,?)

forget(P1) = P{ forget(P;) = P; op = ®|®
forget(P1 op P2) = P op P

P=gq[1[0]T  T;AFP
forget(P) =P T;Abw P

& =otlemp I';AEP
k(r,$) ¢ A, where k = pure|share and $ = s
T:AFe P

k(r,s) ¢ P k(r,s) ¢ A
k(r,s) ¢ A, P

(k#K|r#r'|s #8)
k(r,s) ¢ K'(r',$")

k(r,s) ¢ -

k(r,s) & k(r,?)

k(r,s) ¢ Pr k(r,s) ¢ P, op=Q|®& P =q|1|0|T
k(r,s) ¢ P1op P2 k(r,s) ¢ P

Figure 11. Forgetting and atomic-aware linear judgment

let rule, we then type es assuming z has e;’s type. The
somewhat unusual premise I'; A’, P ¢ P’ does not ac-
tively forget state information, which is done in other
rules, rather it reestablishes for the purposes of the sound-
ness proof that we do not know anything we should not
about the state of pure and share permissions.

e P-CALL: This rule describes method calls. We retain the
original restriction of Bierhoff and Aldrich’s system that
the receiver object must be in a packed state by noting
that we could always pack to some intermediate state
in the event of recursive calls. Since the post-condition
could potentially contain state information about shared
objects, we again use the forget; judgment. The notation
[t/x] P signifies capture-avoiding substitution and is used
throughout. It means, “replace = with ¢ in P, alpha-
converting if necessary.”

e P-SPAWN: In our language thread spawns are very simi-
lar to method calls. We require that threads be spawned at
the outermost program expression, enforced by requiring
the ot effect. This restriction can be relaxed by using one
of the more permissive languages proposed by Moore and
Grossman [25]. In some ways this rule is the most inter-
esting because it formalizes our notion of aliased objects
as an approximation of thread-shared objects. This rule
returns no permissions to the calling context (signified
by the 1 permission). Unlike synchronous method calls
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that can temporarily “borrow” an unshared writing per-
mission and then return it to the calling context, this re-
striction requires the calling context to either give up its
own writing permission permanently, or use permission
splitting rules to create two shared permissions, one for
the caller and one for the new thread.

e P-METH: Method bodies are actually type-checked twice.

Because we do no know statically whether or not a
method will be executing within a transaction, we type-
check method once with the emp effect, which estab-
lishes that the method is legal outside of a transaction.
Then the method is type-checked a second time with the
wt effect in order to verify that it meets its specification.
This behavior is essential to typing examples such as the
trySendMsg method in Figure 1, where state informa-
tion about share or pure references is used in subsequent
lines of code. It is the responsibility of the P-CALL rule,
to not allow these sorts of methods to be called, nor their
post-conditions to be relied upon outside of transactions.
Note also that the post-condition that is actually proved
is P, ® T. The linear logic we use does not allow for
unused linear resources. Therefore, if there are extra per-
missions created during the course of the method body,
those permissions can legally be ignored by using them
to prove T.

e P-UNPACK-WT: The unpack expression is broken into

two rules. As discussed in Section 2, our system requires
that share, pure and full permissions be unpacked within
an atomic block. Therefore, if the unpack expression is
type-checked under the wt effect, k is allowed to be a per-
mission of any type. This is in contrast to the P-UNPACK
rule which requires k¥ = immutable|unique. First off, in
order to unpack an object we must prove that the receiver
object is in the state that we claim. This is done using the
linear proof judgment, I'; A k. k(this, s). Since we di-
vided the linear context into two, this will also prevent
the sub-expression from relying on this fact, since the
state invariant will be in flux. Then, the sub-expression
can be typed with information about the object’s fields
implied by the state invariant, inve (s, k). This judgment,
shown in Figure 13, has two roles. It will look up state
invariant predicate for state s from the class definition,
and it will also “down-grade” writing permissions if nec-
essary. Down-grading is necessary when a read-only per-
mission (immutable or pure) is being unpacked. During
this process, we temporarily change writing permissions
on that object’s fields to read-only permissions. This is
performed by the dg predicate, also seen in Figure 13.
The sub-expression is also given unpacked(k, s), which
implies that the receiver is temporarily unpacked.

e P_-UNPACK: This rule is similar, but occurs when not

inside a transaction. We are limited to unpacking unique
and immutable permissions.
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® P-ASSIGN: When we assign a value to a field, the only
sort of effect allowed in the calculus, we must first prove
that the value has some permission and that it is the same
type as the ith field of class C' to which we are assigning.
The next premise says that we can prove the field cur-
rently has some permission and that the receiver is un-
packed. The unpacked permission must be a modifying
permission. The resulting permission of the entire expres-
sion is the permission to the field’s old value, suitable for
assignment to another field, as well as permission to the
field’s new value and the unpack predicate.

e P-NEW: In order to instantiate a new object, we must
be able to prove the state invariant for the initial state of
that object. This is done by looking up the state invariant
P for the initial state, and proving it when treating the
permissions to the constructor arguments as fields of the
object. These permissions are consumed, and the result is
a unique permission to the object in the initial state.

P-TERM: Individual terms are given a permission and a
type by type-checking the term, proving some permission
P from the linear context and then pulling the term itself
out of the permission, resulting in an existentially bound
one.

e P-IF: The conditional expression binds a boolean term
in both the branch expressions. Each branch is type-
checked with the knowledge that the term is either true or
false. The resulting permission for the entire expression
is a disjunction, since the permission from either branch
could be produced.

e P-FIELD: A field read proves some permission P which
contains permissions for f; and existentially binds it so
that it can be assigned to another reference.

P-PROG: A program type-checks if all of its classes are
well-formed and the single, top-level expression type-
checks outside of a transaction.

e P-CLASS: A class declaration is well-formed if its parts
are well-formed.

P-FDECL: The well-formedness rule for field declara-
tions is somewhat informal, as are the remaining well-
formedness rules. This rule states that a field declaration
is well-formed if its name is unique inside the current
class, and if it type is either a boolean or one of the de-
clared class types.

P-CTR: A declaration of the initial state is well-formed if
the state is mentions is actually one defined in the current
class.

P-SINV: A state invariant declaration is well-formed if
three conditions hold. The state name must be unique
within the current class. Any references mentioned in ac-
cess permissions inside P must be fields of the current
class. Finally, invariants describing share and pure per-
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missions to fields cannot mention specific state informa-
tion.

Dynamic semantics for our language are given in the ac-
companying technical report [3]. These rules are extremely
similar to those of the Weak language [25]. They differ pri-
marily in that there are additional technical requirements for
the firing of rules, necessary for our proof of soundness.
While the formal operational semantics of this language
must actively maintain information regarding the states and
permissions of each object, the language itself does not ac-
tually change the run-time behavior of a Java-like language
with weak atomicity, and requires none of our typing infor-
mation to be present at run-time.

In the technical report, we state that this core language is
sound. Informally soundness means the following:

1. Well-typed thread pools either consist exclusively of
evaluated threads, or can take an evaluation step. There
are two sub-cases for individual threads:

(a) No single thread in the thread pool is executing inside
of an atomic region, and therefore any arbitrary thread
in the thread pool must be able to take a step.

(b) Exactly one thread in the thread pool is executing
inside of an atomic region, and therefore that thread
must be able to take a step.

2. Any thread pool that is well-typed and can take an evalu-
ation step must step to a well-typed thread pool. The bur-
den of proof for this fact is delegated to individual threads
which must in turn step to a well-typed expression.

The most important part of maintaining a well-typed thread
pool is maintaining a well-typed heap and per-thread stacks.
This well-typedness restricts how many threads can know
the definite state of objects in the system. For instance, in a
well-typed thread pool, at most one thread can have definite
knowledge about the state of a share or pure object at any
given time. Since we must reestablish well-typedness after
each step, we know that this invariant holds.

Because well-typed threads can always step, it is never
the case that the running system arrives at a evaluation step
where an object should be in one state but instead is in
another.

4. Implementation and Examples

We have begun investigating the applicability of our ap-
proach by annotating several real and realistic programs and
verifying them with a prototype checker. In this section we
briefly describe the checker as well as the examples that we
have verified thus far.

4.1 Prototype Checker

We have extended a static typestate checker [5] to check
the rules described in this paper in Java language programs.
This checker is a modular, branch-sensitive data-flow analy-
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initially(s) okin C'
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Figure 12. Typing Rules. Helper judgments (localFields, init, mtype, inv, and writes) defined in Figure 13.

sis that uses specialized Java annotations as behavioral and
access specifications. For example, the disconnect method
of the Connection class from Figure 2 is annotated with the
following specification:
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@Share(requires="CONNECTED", ensures="IDLE")
This indicates the method requires a share permission to

the receiver which must be in the connected state, and will
return that same permission but with the receiver in the idle
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class C' {...

P..}eCL inve(s)=P dg(Pk)=PF

S =
invg(s) =P

inve(s, k) = P’

op = ®|®

inve(?,k) =1

(k, k/) o k"

dg(Py op P2, k) = P{ op P}

dg(k(r,$),k") = E"(r,$)

k' # purelimmutable k& = uniquelfulllimmutable &’ = pure|/immutable

(k, k') O k

(k, k") © immutable

k = share|pure k' = pure|immutable class C{...F...} € CL

(k, k") O pure

localFields(C) = F

classC{...M ...} € CL T, m(Tx): P —o Jresult : T,,.P' € M

mtype(m,C) =V : T.P — Jresult : T,.. P’

class C{...initially(s)...} inve(s)=P

init(C) = (3F : T.P, s)

writes(unique)  writes(full)  writes(share)

readonly(pure) readonly(immutable)

Figure 13. Helper judgments

state. Similar annotations exist for state invariants. Because
of our desire to use existing, Java-based tools, we use Java’s
labeled statement with the label value “atomic” to delineate
atomic blocks. For example:

atomic: { /* code that will
execute atomically */ }

This legal Java code allows us to get around our inability
to annotate arbitrary blocks using Java’s annotation facility.
We have modified AtomJava [19], a tool which provides
atomicity via source-to-source translation, to use labeled
statements as atomic blocks so that our examples can be run.

While the formal language presented in this paper re-
quires the programmer to explicitly pack and unpack the
receiver, our checker does not. Before method calls and
method returns, the checker automatically attempts to pack
the receiver to some reasonable state. If one state does not
permit permission constraints to be satisfied, other states are
tried until a good one can be found or no more states are
available. Unpacking is also done automatically before field
reads and writes.

Our checker does allow some of the more advanced fea-
tures of Bierhoff and Aldrich’s system [4] that were not dis-
cussed in this work. For instance, it supports fractional per-
missions which allow shared permissions to be joined back
together to produce unique ones. It also allows a developer
to create more complex state hierarchies.

As this time our checker does not recognize full linear
logic specifications, and accepts only a limited sub-set, al-
though enough to specify all of the examples in this paper.
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Finally, reading from or writing to static fields requires being
within an atomic block, since in general, even if a static field
is the only field to point to a particular object many threads
can access it simultaneously.

4.2 Verified Examples

In addition to a corrected version of the running example
from Figures 5 and 4, we have used our implementation to
verify several other examples.

JGroups Application In this example, we annotated the
JChannel class of the JGroups open source library and
verified that a demo application was using it correctly.
JGroups [21] is an open-source library for use by developers
of multi-cast network applications. The JChannel class is a
thread-safe channel abstraction that allows a host to connect
and send messages to a group of other hosts. This partic-
ular class seemed to be a good candidate for specification
because its original developers actually provided the same
specification in the form of source-code comments:

The FSM for a channel is roughly as follows: a channel is
created (unconnected). The channel is connected to a group
(connected). Messages can now be sent and received. The
channel is disconnected from the group (unconnected). The
channel could now be connected to a different group again.
The channel is closed (closed).

Therefore formally specifying and statically checking
that this class is used in accordance with its informal speci-
fication seemed appropriate. After specifying this class, we
ran our analysis on the CausalDemo class. This demo, pro-

13 2008/6/10



vided with JGroups, creates multiple threads, one of which
is responsible for closing the channel. This client was suc-
cessfully verified.

Reservation Manager Reservation Manager is a multi-
threaded application of our own design. It is meant to be
similar in architecture to a vacation reservation system. In
it, various threads acting on behalf of clients attempt to re-
serve bus or plane tickets. This application requires client
threads to atomically check for seat availability and make a
reservation. This application has some interesting object in-
variants. For example, once an bus itinerary has been issued
to a passenger, he can upgrade to a plane flight, as long as
the demand for bus tickets is high enough. Once an itinerary
has been issued, it must at all times represent either a valid
bus or plane trip. At the same time, a daemon thread will oc-
casionally send a (simulated) email describing an itinerary
to each itinerary holder, therefore it is important that any
upgrades happen atomically. We have successfully verified
this entire application.

Request Processor Request Processor is another multi-
threaded application of our own design, partially shown in
Figure 14. This program is meant to be similar in spirit to a
server application where processes are received and farmed
off to other threads for handling. Upon initialization, the Re-
questProcessor creates a request pipe object which acts as
an intermediary between the request processor, which re-
ceives the requests, and the request handlers which handle
them. This program is notable because each side of the pro-
ducer/consumer architecture has a different permission to
the shared object. The RequestProcessor has a full permis-
sion while the handlers themselves have only pure permis-
sions.

Full source for all of the examples in this paper can be
found at: www.cs.cmu.edu/"nbeckman/research/atomicver/.

In the future we hope to improve the quality of our
checker, and verify larger and more realistic examples. Our
experiences with these smaller examples, however, lead us
to believe that this is a feasible goal.

5. Related Work
5.1 Verifying Behavior of Concurrent Programs.

The work that most closely resembles our own was devel-
oped as part of the Spec” Project. Jacobs et al. [20] have
also created a system that will preserve object invariants
even in the face of concurrency. Moreover, our system uses
a very similar unpacking methodology which comes from a
shared heritage in research methodology [2]. Nonetheless,
we believe our work to be different in several important
ways. First, they use ownership as their underlying method-
ology, which imposes some hierarchical restrictions on the
architecture of an application. On the other hand, their sys-
tem allows more expressive specifications, as behaviors can
be specified in first-order predicate logic, rather than type-
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class RequestProcessor {

states IDLE, RUNNING;

IDLE := full(requestPipe, closed)
RUNNING := full(requestPipe, opened)

RequestPipe requestPipe = new RequestPipe();

void start()
unique(this, IDLE) —o unique(this, RUNNING)
{

this.requestPipe.open();
// Handler(rp) : pure(rp,?) —o1
(new Thread(new

Handler (this.requestPipe))).start();
(new Thread(new

Handler (this.requestPipe))) .start();
return;

}

void send(String str)
unique(this, RUNNING) ® immutable(str, alive) —o
unique(this, RUNNING)
{
this.requestPipe.send(str);
return;

}

void stop()
unique(this, RUNNING) —o unique(this, IDLE)
{

this.requestPipe.close();
return;

}
}

Figure 14. RequestProcessor, an example of a server-like
program where class invariants depend on thread-shared ob-
jects.

state. While we believe our approach would neatly accom-
modate more expressive specifications which we plan to in-
vestigate as part of future work, typestate provides a sim-
ple, programmer-understandable abstraction of application
behavior. This system does have a proof of soundness but
provides neither formal typing rules nor a formal semantics.

Their system also is restrictive in the types of objects
that can be mentioned in object invariants. Once an object
becomes thread-shared, a process which must be signified
by the “share” annotation, it can no longer be mentioned in
another object’s invariant. Therefore, examples like the one
shown in Figure 14 where the invariant of the RequestPro-
cessor class depends on the thread-shared RequestPipe ob-
ject, cannot be verified.

Finally, our system uses atomic blocks while the Ja-
cobs approach is based on locks. While this may seem like
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a minor detail, it actually provides our system with nice
benefits. In their approach, in order to determine whether
it is the responsibility of the client or provider to en-
sure proper synchronization, there is a notion of client-
side locking versus provider-side locking. Methods using
client-side locking can provide more information-laden
post-conditions, while provider-side locking methods can-
not. Because atomic blocks are a composable primitive, it is
sufficient in our system to create one method with a full post-
condition. This method can then be type-checked correctly
in atomic and non-atomic contexts.

Some related work has also been done within the context
of the JML project [28]. This work is mainly focused on in-
troducing new specifications useful for those who would like
to verify lock-based, concurrent object-oriented programs.
Some of the specifications can be automatically verified,
however due to the fact that this verification is done with
a model-checker, verification fails to terminate about half of
the time.

Calvin-R [11] allows the specification and verification of
method annotations in concurrent software and also has a
more expressive specification language. This work differs in
three significant ways. First, the programmer is required to
specify a locking discipline (e.g., variable x is protected by
lock y). Incorrect specification could lead to the technique’s
false verification of a program. Second, this system does not
allow for the specification of object invariants. Finally, this
system does not offer a solution to the problem of tracking
aliased objects.

Harris and Peyton Jones [16] introduce a mechanism for
STM Haskell that ensures a given invariant will not be vio-
lated during a given execution of a program. However, this
is a dynamic technique that cannot guarantee conformance
for all executions.

Our reasoning for permissions is somewhat similar to as-
sume/guarantee reasoning [22]. Our full permissions assume
that other references in the program will not modify an ob-
ject in memory. pure permissions, on the other hand, assume
nothing, but guarantee that they will not modify the location.

5.2 Race Detection.

There has been much work in the automated prevention of
race conditions.

Dynamic race detection tools have been explored [30,
33], but they cannot guarantee absence of race conditions
across all program runs.

Model-checking approaches have also been explored [17,
31]. These work by abstractly exploring possible thread in-
terleavings in order to find ones where a there is no ordering
on a read and write to the same memory location. These ap-
proaches must deal with a very large state space since there
is a large number of potential thread interleavings. They are
also not modular.

Closer in style to our approach is the large number of
static, flow-based race detection tools and race-free type sys-

Please do not redistribute

tems [6, 13, 15, 27, 9]. These approaches work by statically
correlating an object (or any piece of memory) with the lock
that protects it. Each varies in the level of expressiveness (for
type-systems) and numbers of false-positives (for static anal-
yses) it provides. Some works use ownership types [6, 13]
while others use regions [15], both means of controlling
aliasing so that modular analysis can be performed. Lock-
smith [27] and RacerX [9], on the other hand, each must
perform some form of inter-procedural analysis, unlike our
approach.

The fundamental difference between all of these static
race detectors and our approach is that our approach at-
tempts to prevent “application-level” race conditions, that
is race conditions that could lead to a violation in program
invariants, which these approaches attempt to prevent data
races. Data race freedom, that is the absence of unordered
reads and writes to the same piece of memory, is absolutely
a hard and important problem. The Java memory model, for
instance, provides sequential consistency only in the absence
of data races. However, we believe that from a program-
mer’s perspective, the absence of data races is just the tip
of the iceberg. Once a program is data-race free, a program-
mer must ensure that atomicity is provided when it is nec-
essary to ensure program correctness. It is the introduction
of behavioral annotations that distinguish our approach from
these approaches. Finally, we focus our approach on atomic
blocks and STM, while these techniques attack lock-based
synchronization.

Atomicity checkers [10, 29, 18], on the other hand, do
attempt to provide a programmer with atomicity. Given a
method that has been annotated by the programmer as need-
ing to be atomic, these approaches will guarantee that the
method body uses locks in such a way that it will execute
atomically, as if no other threads had been interleaved. Our
approach actually helps a programmer determine what code
needs to be atomic, and we delegate the task of ensuring
atomicity to the underlying STM system. One could imag-
ine using these techniques in a complementary manner. In-
terestingly, the type system proposed by Sasturkar et al. [29]
also includes a read-only type, which is similar in spirit to
our immutable permission.

6. Future Work

We are currently pursuing a number of future courses of re-
search. While our work is an attempt to advance the work of
Bierhoff and Aldrich [4] to the world of concurrent software,
we first wanted to study the problems of concurrency in rel-
ative isolation. Therefore, we have not included many of the
more advanced features of that system into the work pre-
sented here. These features, like fractional permissions and
support for sub-typing and inheritance, would make our sys-
tem even more expressive, and we plan to reintroduce them
into our system. This should be relatively straightforward.

15 2008/6/10



Additionally, we are attempting to determine what sorts
of access permissions might be more useful in a thread-
shared context. At the moment, permissions that are thread-
shared, and permissions that are merely aliased locally are
not distinguishable, and we would like to tease them apart.
For instance, we would like to have a thread-local version of
the share permission that would not require synchronization.

We have also begun developing an implementation of
software transactional memory that uses these same permis-
sion annotations as a means of improving run-time perfor-
mance by eliminating unnecessary synchronization and log-
ging. While the implementation is complete, we have only
performed preliminary experiments and have not yet estab-
lished the efficacy of our technique.

Finally, we would like to see a greater usage of STM
for the purposes of static verification by those in the object-
oriented language community. Currently, most existing flow
analyses and verification tools are unsound in the face of
concurrency, and those that are not impose a great anno-
tation burden on the programmer, in addition to any bur-
den imposed by the single-threaded version of the analy-
sis. In this work we were able to prove our concurrent lan-
guage sound, thanks in part to the clean dynamic seman-
tics of atomic blocks. If we were to extend Dan Grossman’s
Garbage Collection/STM analogy [14], we would say the
following: In the same way garbage collection allows proofs
of type safety that would difficult or impossible in a language
with explicit memory allocation and reclamation, transac-
tional memory will allow proofs of type safety for multi-
threaded languages, when doing the same with lock-based
synchronization would be difficult or impossible. The per-
formance of STM implementations continues to improve [1],
and we believe this will also help to encourage the adapta-
tion of static analyses for use in concurrent programs.

7. Conclusion

In this paper we described a static analysis, formalized as
a programming language, that can help to ensure the proper
usage of atomic blocks. The atomic block, provided by trans-
actional memory implementations, is a simple concurrency
primitive, when compared with locks, but can still be used
incorrectly. Our type system ensures that, up to the method
and object behavioral specifications, race conditions will not
occur and object invariants will be preserved. We believe
this is the first work to attempt to statically ensure the cor-
rect usage of transactional memory in object-oriented lan-
guages. This language uses access permissions, a means of
denoting the manner in which objects may be aliased, as an
approximation for whether or not objects are thread-shared,
which in turn helps determine whether or not code must be
inside of an atomic block. We use typestate as our language
of specification, and track transactions using a simple type-
and-effect system. We have proved this language sound in
our accompanying technical report [3]. Finally, we have cre-
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ated a prototype static analysis for the Java programming
language based on the system described in this paper. We
have used it to verify several realistic concurrent programs.
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