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Abstract. HyperLTL is an extension of linear-time temporal logic
for the specification of hyperproperties, i.e., temporal properties that
relate multiple computation traces. HyperLTL can express information
flow policies as well as properties like symmetry in mutual exclusion
algorithms or Hamming distances in error-resistant transmission pro-
tocols. Previous work on HyperLTL model checking has focussed on
the alternation-free fragment of HyperLTL, where verification reduces to
checking a standard trace property over an appropriate self-composition
of the system. The alternation-free fragment does, however, not cover
general hyperliveness properties. Universal formulas, for example, can-
not express the secrecy requirement that for every possible value of a
secret variable there exists a computation where the value is different
while the observations made by the external observer are the same. In
this paper, we study the more difficult case of hyperliveness properties
expressed as HyperLTL formulas with quantifier alternation. We reduce
existential quantification to strategic choice and show that synthesis algo-
rithms can be used to eliminate the existential quantifiers automatically.
We furthermore show that this approach can be extended to reactive
system synthesis, i.e., to automatically construct a reactive system that
is guaranteed to satisfy a given HyperLTL formula.

1 Introduction

HyperLTL [6] is a temporal logic for hyperproperties [7], i.e., for properties that
relate multiple computation traces. Hyperproperties cannot be expressed in stan-
dard linear-time temporal logic (LTL), because LTL can only express trace prop-
erties, i.e., properties that characterize the correctness of individual computa-
tions. Even branching-time temporal logics like CTL and CTL∗, which quantify
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over computation paths, cannot express hyperproperties, because quantifying
over a second path automatically means that the subformula can no longer refer
to the previously quantified path. HyperLTL addresses this limitation with quan-
tifiers over trace variables, which allow the subformula to refer to all previously
chosen traces. For example, noninterference [21] between a secret input h and
a public output o can be specified in HyperLTL by requiring that all pairs of
traces π and π′ that always have the same inputs except for h (i.e., all inputs in
I \ {h} are equal on π and π′) also have the same output o at all times:

∀π.∀π′.
( ∧

i∈I\{h}
iπ = iπ′

) ⇒ (oπ = oπ′)

This formula states that a change in the secret input h alone cannot cause any
difference in the output o.

For certain properties of interest, the additional expressiveness of HyperLTL
comes at no extra cost when considering the model checking problem. To check
a property like noninterference, which only has universal trace quantifiers, one
simply builds the self-composition of the system, which provides a separate copy
of the state variables for each trace. Instead of quantifying over all pairs of traces,
it then suffices to quantify over individual traces of the self-composed system,
which can be done with standard LTL. Model checking universal formulas is
NLOGSPACE-complete in the size of the system and PSPACE-complete in the
size of the formula, which is precisely the same complexity as for LTL.

Universal HyperLTL formulas suffice to express hypersafety properties like
noninterference, but not hyperliveness properties that require, in general, quanti-
fier alternation. A prominent example is generalized noninterference (GNI) [27],
which can be expressed as the following HyperLTL formula:

∀π.∀π′.∃π′′. (hπ = hπ′′) ∧ (oπ′ = oπ′′)

This formula requires that for every pair of traces π and π′, there is a third trace
π′′ in the system that agrees with π on h and with π′ on o. The existence of an
appropriate trace π′′ ensures that in π and π′, the value of o is not determined by
the value of h. Generalized noninterference stipulates that low-security outputs
may not be altered by the injection of high-security inputs, while permitting non-
determinism in the low-observable behavior. The existential quantifier is needed
to allow this nondeterminism. GNI is a hyperliveness property [7] even though
the underlying LTL formula is a safety property. The reason for that is that we
can extend any set of traces that violates GNI into a set of traces that satisfies
GNI, by adding, for each offending pair of traces π, π′, an appropriate trace π′′.

Hyperliveness properties also play an important role in applications beyond
security. For example, robust cleanness [9] specifies that significant differences in
the output behavior are only permitted after significant differences in the input:

∀π.∀π′.∃π′′.
(
iπ′ = iπ′′

) ∧ (
d̂(oπ, oπ′′) ≤ κo W d̂(iπ, iπ′′) > κi

)

The differences are measured by a distance function d̂ and compared to con-
stant thresholds κi for the input and κo for the output. The formula specifies
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the existence of a trace π′′ that globally agrees with π′ on the input and where
the difference in the output o between π and π′′ is bounded by κo, unless the
difference in the input i between π and π′′ was greater than κi. Robust cleanness,
thus, forbids unexpected jumps in the system behavior that are, for example,
due to software doping, while allowing for behavioral differences due to nonde-
terminism.

With quantifier alternation, the model checking problem becomes much more
difficult. Model checking HyperLTL formulas of the form ∀∗∃∗ϕ, where ϕ is
a quantifier-free formula, is PSPACE-complete in the size of the system and
EXPSPACE-complete in the formula. The only known model checking algorithm
replaces the existential quantifier with the negation of a universal quantifier
over the negated subformula; but this requires a complementation of the system
behavior, which is completely impractical for realistic systems.

In this paper, we present an alternative approach to the verification of hyper-
liveness properties. We view the model checking problem of a formula of the form
∀π.∃π′. ϕ as a game between the ∀-player and the ∃-player. While the ∀-player
moves through the state space of the system building trace π, the ∃-player must
match each move in a separate traversal of the state space resulting in a trace π′

such that the pair π, π′ satisfies ϕ. Clearly, the existence of a winning strategy
for the ∃-player implies that ∀π.∃π′. ϕ is satisfied. The converse is not necessar-
ily true: Even if there always is a trace π′ that matches the universally chosen
trace π, the ∃-player may not be able to construct this trace, because she only
knows about the choices made by the ∀-player in the finite prefix of π that has
occurred so far, and not the choices that will be made by the ∀-player in the
infinite future. We address this problem by introducing prophecy variables into
the system. Without changing the behavior of the system, the prophecy vari-
ables give the ∃-player the information about the future that is needed to make
the right choice after seeing only the finite prefix. Such prophecy variables can
be provided manually by the user of the model checker to provide a lookahead
on future moves of the ∀-player.

This game-theoretic approach provides an opportunity for the user to reduce
the complexity of the model checking problem: If the user provides a strategy for
the ∃-player, then the problem reduces to the cheaper model checking problem for
universal properties. We show that such strategies can also be constructed auto-
matically using synthesis. Beyond model checking, the game-theoretic approach
also provides a method for the synthesis of systems that satisfy a conjunction
of hypersafety and hyperliveness properties. Here, we do not only synthesize the
strategy, but also construct the system itself, i.e., the game graph on which the
model checking game is played. While the synthesis from ∀∗∃∗ hyperproperties
is known to be undecidable in general, we show that the game-theoretic app-
roach can naturally be integrated into bounded synthesis, which checks for the
existence of a correct system up to a bound on the number of states.

Related Work. While the verification of general HyperLTL formulas has been
studied before [6,17,18], there has been, so far, no practical model checking
algorithm for HyperLTL formulas with quantifier alternation. The existing algo-
rithm involves a complementation of the system automaton, which results in an
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exponential blow-up of the state space [18]. The only existing model checker for
HyperLTL, MCHyper [18], was therefore, so far, limited to the alternation-
free fragment. Although some hyperliveness properties lie in this fragment,
quantifier alternation is needed to express general hyperliveness properties like
GNI. In this paper, we present a technique to model check these hyperliveness
properties and extend MCHyper to formulas with quantifier alternation.

The situation is similar in the area of reactive synthesis. There is a syn-
thesis algorithm that automatically constructs implementations from HyperLTL
specifications [13] using the bounded synthesis approach [20]. This algorithm is,
however, also only applicable to the alternation-free fragment of HyperLTL. In
this paper, we extend the bounded synthesis approach to HyperLTL formulas
with quantifier alternation. Beyond the model checking and synthesis problems,
the satisfiability [11,12,14] and monitoring [15,16,22] problems of HyperLTL
have also been studied in the past.

For certain information-flow security policies, there are verification tech-
niques that use methods related to our model checking and synthesis algorithms.
Specifically, the self-composition technique [2,3], a construction based on the
product of copies of a system, has been tailored for various trace-based security
definitions [10,23,28]. Unlike our algorithms, these techniques focus on specific
information-flow policies, not on a general logic like HyperLTL.

The use of prophecy variables [1] to make information about the future acces-
sible is a known technique in the verification of trace properties. It is, for example,
used to establish simulation relations between automata [26] or in the verification
of CTL∗ properties [8].

In our game-theoretic view on the model checking problem for ∀∗∃∗ hyper-
properties the ∃-player has an infinite lookahead. There is some work on finite
lookahead on trace languages [24]. We use the idea of finite lookahead as an
approximation to construct existential strategies and give a novel synthesis con-
struction for strategies with delay based on bounded synthesis [20].

2 Preliminaries

For tuples x ∈ Xn and y ∈ Xm over set X, we use x · y ∈ Xn+m to denote
the concatenation of x and y. Given a function f : X → Y and a tuple x ∈ Xn,
we define by f ◦ x ∈ Y n the tuple (f(x[1]), . . . , f(x[n])). Let AP be a finite set
of atomic propositions and let Σ = 2AP be the corresponding alphabet. A trace
t ∈ Σω is an infinite sequence of elements of Σ. We denote a set of traces by
Tr ⊆ Σω. We define t[i,∞] to be the suffix of t starting at position i ≥ 0.

HyperLTL. HyperLTL [6] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables π and a method to link
atomic propositions to specific traces. Let V be an infinite set of trace variables.
Formulas in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,
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where a ∈ AP and π ∈ V. We allow the standard boolean connectives ∧, →, ↔
as well as the derived LTL operators release ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), eventually

ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ, and weak until ϕW ψ ≡ ϕ∨ (ϕ U ψ).
We call a Q+Q′+ϕ HyperLTL formula (for Q,Q′ ∈ {∀,∃} and quantifier-free

formula ϕ) alternation-free iff Q = Q′. Further, we say that Q+Q′+ϕ has one
quantifier alternation (or lies in the one-alternation fragment) iff Q �= Q′.

The semantics of HyperLTL is given by the satisfaction relation �Tr over a
set of traces Tr ⊆ Σω. We define an assignment Π : V → Σω that maps trace
variables to traces. Π[π �→ t] updates Π by assigning variable π to trace t.

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∨ ψ iff Π, i �Tr ϕ or Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕ U ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π �→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π �→ t], i �Tr ϕ

We write Tr � ϕ for {}, 0 �Tr ϕ where {} denotes the empty assignment.
Every hyperproperty is an intersection of a hypersafety and a hyperliveness

property [7]. A hypersafety property is one where there is a finite set of finite
traces that is a bad prefix, i.e., that cannot be extended into a set of traces that
satisfies the hypersafety property. A hyperliveness property is a property where
every finite set of finite traces can be extended to a possibly infinite set of infinite
traces such that the resulting trace set satisfies the hyperliveness property.

Transition Systems. We use transition systems as a model of computation for
reactive systems. Transition systems consume sequences over an input alphabet
by transforming their internal state in every step. Let I and O be a finite set
of input and output propositions, respectively, and let Υ = 2I and Γ = 2O be
the corresponding finite alphabets. A Γ -labeled Υ -transition system S is a tuple
〈S, s0, τ, l〉, where S is a finite set of states, s0 ∈ S is the designated initial state,
τ : S ×Υ → S is the transition function, and l : S → Γ is the state-labeling func-
tion. We write s

υ−→ s′ or (s, υ, s′) ∈ τ if τ(s, υ) = s′. We generalize the transition
function to sequences over Υ by defining τ∗ : Υ ∗ → S recursively as τ∗(ε) = s0
and τ∗(υ0 · · · υn−1υn) = τ(τ∗(υ0 · · · υn−1), υn) for υ0 · · · υn−1υn ∈ Υ+. Given
an infinite word υ = υ0υ1 . . . ∈ Υω, the transition system produces an infinite
sequence of outputs γ = γ0γ1γ2 . . . ∈ Γω, such that γi = l(τ∗(υ0 . . . υi−1)) for
every i ≥ 0. The resulting trace ρ is (υ0 ∪ γ0)(υ1 ∪ γ1) . . . ∈ Σω where we have
AP = I ∪ O. The set of traces generated by S is denoted by traces(S). Fur-
thermore, we define ε = 〈{s}, s, τε, lε〉 as the transition system over I = O = ∅
that has only a single trace, that is traces(ε) = {∅ω}. For this transition sys-
tem, τε(s, ∅) = s and lε(s) = ∅. Given two transition systems S = 〈S, s0, τ, l〉
and S ′ = 〈S′, s′

0, τ
′, l′〉, we define S × S ′ = 〈S × S′, (s0, s′

0), τ
′′, l′′〉 as the Γ 2-

labeled Υ 2-transition system where τ ′′((s, s′), (υ, υ′)) = (τ(s, υ), τ ′(s′, υ′)) and
l′′((s, s′)) = (l(s), l′(s′)). A transition system S satisfies a general HyperLTL
formula ϕ, if, and only if, traces(S) � ϕ.
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Automata. An alternating parity automaton A over a finite alphabet Σ is a tuple
〈Q, q0, δ, α〉, where Q is a finite set of states, q0 ∈ Q is the designated initial state,
δ : Q × Σ → B

+(Q) is the transition function, and α : Q → C is a function that
maps states of A to a finite set of colors C ⊂ N. For C = {0, 1} and C = {1, 2},
we call A a co-Büchi and Büchi automaton, respectively, and we use the sets
F ⊆ Q and B ⊆ Q to represent the rejecting (C = 1) and accepting (C = 2)
states in the respective automaton (as a replacement of the coloring function α).
A safety automaton is a Büchi automaton where every state is accepting. The
transition function δ maps a state q ∈ Q and some a ∈ Σ to a positive Boolean
combination of successor states δ(q, a). An automaton is non-deterministic or
universal if δ is purely disjunctive or conjunctive, respectively.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N

∗
>0 such that for every node n ∈ N

∗
>0 and every positive integer i ∈ N>0, if

n · i ∈ T then (i) n ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < j < i,
n · j ∈ T . The root of T is the empty sequence ε and for a node n ∈ T , |n|
is the length of the sequence n, in other words, its distance from the root.
A run of A on an infinite word ρ ∈ Σω is a Q-labeled tree (T, r) such that
r(ε) = q0 and for every node n ∈ T with children n1, . . . , nk the following holds:
1 ≤ k ≤ |Q| and {r(n1), . . . , r(nk)} � δ(q, ρ[i]), where q = r(n) and i = |n|. A
path is accepting if the highest color appearing infinitely often is even. A run is
accepting if all its paths are accepting. The language of A, written L(A), is the
set {ρ ∈ Σω | A accepts ρ}. A transition system S is accepted by an automaton
A, written S � A, if traces(S) ⊆ L(A).

Strategies. Given two disjoint finite alphabets Υ and Γ , a strategy σ : Υ ∗ → Γ
is a mapping from finite histories of Υ to Γ . A transition system S = 〈S, s0, τ, l〉
generates the strategy σ if σ(υ) = l(τ∗(υ)) for every υ ∈ Υ ∗. A strategy σ is
called finite-state if there exists a transition system that generates σ.

In the following, we use finite-state strategies to modify the inputs of tran-
sition systems. Let S = 〈S, s0, τ, l〉 be a transition system over input and out-
put alphabets Υ and Γ and let σ : (Υ ′)∗ → Υ be a finite-state strategy. Let
S ′ = 〈S′, s′

0, τ
′, l′〉 be the transition system implementing σ, then S || σ = S || S ′

is the transition system 〈S×S′, (s0, s′
0), τ

||, l||〉 where τ || : (S×S′)×Υ ′ → (S×S′)
is defined as τ ||((s, s′), υ′) = (τ(s, l′(s′)), τ ′(s′, υ′)) and l|| : (S × S′) → Γ is
defined as l||(s, s′) = l(s) for every s ∈ S, s′ ∈ S′, and υ′ ∈ Υ ′.

Model Checking HyperLTL. We recap the model checking of universal Hyper-
LTL formulas. This case, as well as the dual case of only existential quantifiers,
is well-understood and, in fact, efficiently implemented in the model checker
MCHyper [18]. The principle behind the model checking approach is self-
composition, where we check a standard trace property on a composition of
an appropriate number of copies of the given system.

Let zip denote the function that maps an n-tuple of sequences to a single
sequence of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)], and
let unzip denote its inverse. Given S = 〈S, s0, τ, l〉, the n-fold self-composition of
S is the transition system Sn = 〈Sn, s′

0, τn, ln〉, where s′
0 := (s0, . . . , s0) ∈ Sn,

τn(s,υ) := τ◦zip(s,υ) and ln(s) := l◦s for every s ∈ Sn and υ ∈ Υn. If traces(S)
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is the set of traces generated by S, then {zip(ρ1, . . . , ρn) | ρ1, . . . , ρn ∈ traces(S)}
is the set of traces generated by Sn. We use the notation zip(ϕ, π1, π2, . . . , πn) for
some HyperLTL formula ϕ to combine the trace variables π1, π2, . . . , πn (occur-
ring free in ϕ) into a fresh trace variable π∗.

Theorem 1 (Self-composition for universal HyperLTL formulas [18]).
For a transition system S and a HyperLTL formula of the form ∀π1.
∀π2. . . . ∀πn. ϕ it holds that S � ∀π1.∀π2. . . . ∀πn. ϕ iff Sn � ∀π∗.
zip(ϕ, π1, π2, . . . , πn).

Theorem 2 (Complexity of model checking universal formulas [18]).
The model checking problem for universal HyperLTL formulas is PSPACE-
complete in the size of the formula and NLOGSPACE-complete in the size of
the transition system.

The complexity of verifying universal HyperLTL formulas is exactly the same
as the complexity of verifying LTL formulas. For HyperLTL formulas with quan-
tifier alternations, the model checking problem is significantly more difficult.

Theorem 3 (Complexity of model checking formulas with one quan-
tifier alternation [18]). The model checking problem for HyperLTL formulas
with one quantifier alternation is in EXPSPACE in the size of the formula and
in PSPACE in the size of the transition system.

One way to circumvent this complexity is to fix the existential choice and
strengthen the formula to the universal fragment [9,13,18]. While avoiding the
complexity problem, this transformation requires deep knowledge of the system,
is prone to errors, and cannot be verified automatically as the problem of check-
ing implications becomes undecidable [11]. In the following section, we present a
technique that circumvents the complexity problem while still inheriting strong
correctness guarantees. Further, we provide a method that can, under certain
restrictions, derive a strategy for the existential choice automatically.

3 Model Checking with Quantifier Alternations

3.1 Model Checking with Given Strategies

Our first goal is the verification of HyperLTL formulas with one quantifier alter-
nation, i.e., formulas of the form ∀∗∃∗ϕ or ∃∗∀∗ϕ, where ϕ is a quantifier-free
formula. Note that the presented techniques can, similar to skolemization, be
extended to more than one quantifier alternation. Quantifier alternation intro-
duces dependencies between the quantified traces. In a ∀∗∃∗ϕ formula, the
choices of the existential quantifiers depend on the choices of the universal quan-
tifiers preceding them. In a formula of the form ∃∗∀∗ϕ, however, there has to
be a single choice for the existential quantifiers that works for all choices of
the universal quantifiers. In this case, the existentially quantified variables do
not depend on the universally quantified variables. Hence, the witnesses for the
existential quantifiers are traces rather than functions that map tuples of traces
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to traces. As established above, the model checking problem for HyperLTL for-
mulas with quantifier alternation is known to be significantly more difficult than
the model checking problem for universal formulas.

Our verification technique for formulas with quantifier alternation is to sub-
stitute strategic choice for existential choice. As discussed in the introduction,
the existence of a strategy implies the existence of a trace.

Theorem 4 (Substituting Strategic Choice for Existential Choice). Let
S be a transition system over input alphabet Υ .
It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if there is a strategy σ :
(Υn)∗ → Υm such that Sn × (Sm || σ) � ∀π∗.zip(ϕ, π1, π2, . . . πn, π′

1, π
′
2, . . . , π

′
m).

It holds that S � ∃π1∃π2 . . . ∃πm. ∀π′
1∀π′

2 . . . ∀π′
n. ϕ if there is a strategy σ :

(Υ 0)∗ → Υm such that (Sm || σ)×Sn � ∀π∗.zip(ϕ, π1, π2, . . . πm, π′
1, π

′
2, . . . , π

′
n).

Proof. Let σ be such a strategy, then we define a witness for the existential
trace quantifiers ∃π′

1∃π′
2 . . . ∃π′

m as the sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω

such that υi = σ(υ′
0υ

′
1 . . . υ′

i−1) for every i ≥ 0 and every υ′
i ∈ Υn; analogously,

we define a witness for the existential trace quantifiers ∃π1∃π2 . . . ∃πm as the
sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω such that υi = σ(υ′

0υ
′
1 . . . υ′

i−1) for
every i ≥ 0 and every υ′

i ∈ Υ 0. ��
An application of the theorem reduces the verification problem of a HyperLTL
formula with one quantifier alternation to the verification problem of a universal
HyperLTL formula. If a sufficiently small strategy can be found, the reduction
in complexity is substantial:

Corollary 1 (Model checking with Given Strategies). The model check-
ing problem for HyperLTL formulas with one quantifier alternation and given
strategies for the existential quantifiers is in PSPACE in the size of the formula
and NLOGSPACE in the size of the product of the strategy and the system.

Note that the converse of Theorem 4 is not in general true. The satisfaction
of a ∀∗∃∗ HyperLTL formula does not imply the existence of a strategy, because
at any given point in time the strategy only knows about a finite prefix of the
universally quantified traces. Consider the formula ∀π∃π′. aπ ↔ aπ′ and a
system that can produce arbitrary sequences of a and ¬a. Although the system
satisfies the formula, it is not possible to give a strategy that allows us to prove
this fact. Whatever choice our strategy makes, the next move of the ∀-player can
make sure that the strategy’s choice was wrong. In the following, we present a
method that addresses this problem.

Prophecy Variables. A classic technique for resolving future dependencies
is the introduction of prophecy variables [1]. Prophecy variables are auxiliary
variables that are added to the system without affecting the behavior of the
system. Such variables can be used to make predictions about the future.

We use prophecy variables to define strategies that depend on the future. In
the example discussed above, ∀π∃π′. aπ ↔ aπ′ , the choice of the value of aπ′ in
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the first position depends on the value of aπ in the second position. We introduce
a prophecy variable p that predicts in the first position whether aπ is true in
the second position. With the prophecy variable, there exists a strategy that
correctly assigns the value of p whenever the prediction is correct: The strategy
chooses to set aπ′ if, and only if, p holds.

Technically, the proof technique introduces a set of fresh input variables P
into the system. For a Γ -labeled Υ -transition system S = 〈S, s0, τ, l〉, we define
the Γ -labeled (Υ ∪ P )-transition system SP = 〈S, s0, τ

P , l〉 including the inputs
P where τP : S×(Υ ∪P ) → S. For all s ∈ S and υP ∈ Υ ∪P , τP (s, υP ) = τ(s, υ)
for υ ∈ Υ obtained by removing the variables in P from υP (i.e., υ =\P υP ).
Moreover, the proof technique modifies the specification so that the original
property only needs to be satisfied if the prediction is actually correct. We obtain
the modified specification ∀π∃π′.(pπ ↔ aπ) → ( aπ ↔ aπ′) in our example.
The following theorem describes the general technique for one prophecy variable.

Theorem 5 (Model checking with Prophecy Variables). For a transition
system S and a quantifier-free formula ϕ, let ψ be a quantifier-free formula over
the universally quantified trace variables π1, π2 . . . πn and let p be a fresh atomic
proposition. It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if, and only if,
S{p} � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. (pπ1 ↔ ψ) → ϕ.

Note that ψ is restricted to refer only to universally quantified trace variables.
Without this restriction, the method would not be sound. In our example, ψ =
aπ′ would lead to the modified formula ∀π∃π′.(pπ ↔ aπ′) → ( aπ ↔ aπ′),
which could be satisfied with the strategy that assigns aπ′ to true iff pπ is false,
and thus falsifies the assumption that the prediction is correct, rather than
ensuring that the original formula is true.

Proof. It is easy to see that the original specification implies the modified spec-
ification, since the original formula is the conclusion of the implication. Assume
that the modified specification holds. Since the prophecy variable p is a fresh
atomic proposition, and ψ does not refer to the existentially chosen traces, we
can, for every choice of the universally quantified traces, always choose the value
of p such that it guesses correctly, i.e., that p is true whenever ψ holds. In this
case, the conclusion and therefore the original specification must be true. ��

Unfortunately, prophecy variables do not provide a complete proof technique.
Consider a system allowing arbitrary sequences of a and b and this specification:

∀π∃π′.bπ′ ∧ (bπ′ ↔ ¬bπ′)
∧ (aπ′ → (aπ W (bπ′ ∧ ¬aπ)))
∧ (¬aπ′ → (aπ W (¬bπ′ ∧ ¬aπ)))

Intuitively, π′ has to be able to predict whether π will stop outputting a at
an even or odd position of the trace. There is no HyperLTL formula to be
used as ψ in Theorem 5, because, like LTL, HyperLTL can only express non-
counting properties. It is worth noting that in our practical experiments, the
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incompleteness was never a problem. In many cases, it is not even necessary to
add prophecy variables at all. The presented proof technique is, thus, practically
useful despite this incompleteness result.

3.2 Model Checking with Synthesized Strategies

We now extend the model checking approach with the automatic synthesis of
the strategies for the existential quantifiers. For a given HyperLTL formula of
the form ∀n∃mϕ and a transition system S, we search for a transition system
S∃ = 〈X,x0, μ, l∃〉, where X is a set of states, x0 ∈ X is the designated initial
state, μ : X ×Υn → X is the transition function, and l∃ : X → Υm is the labeling
function, such that Sn × (Sm || S∃) � zip(ϕ). (Since for formulas of the form
∃m∀nϕ the problem only differs in the input of S∃, we focus on ∀∃HyperLTL.)

Theorem 6. The strategy realizability problem for ∀∗∃∗ formulas is 2ExpTime-
complete.

Proof (Sketch). We reduce the strategy synthesis problem to the problem of
synthesizing a distributed reactive system with a single black-box process. This
problem is decidable [19] and can be solved in 2ExpTime. The lower bound
follows from the LTL realizability problem [30]. ��

The decidability result implies that there is an upper bound on the size of
S∃ that is doubly exponential in ϕ. Thus, the bounded synthesis approach [20]
can be used to search for increasingly larger implementations, until a solution is
found or the maximal bound is reached, yielding an efficient decision procedure
for the strategy synthesis problem. In the following, we describe this approach
in detail.

Bounded Synthesis of Strategies. We transform the synthesis problem into
an SMT constraint satisfaction problem, where we leave the representation of
strategies uninterpreted and challenge the solver to provide an interpretation.
Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free, the model checking
is based on the product of the n-fold self composition of the transition system
S, the m-fold self-composition of S where the strategy S∃ controls the inputs,
and the universal co-Büchi automaton Aϕ representing the language L(ϕ) of ϕ.

For a quantifier-free HyperLTL formula ϕ, we construct the universal co-
Büchi automaton Aϕ such that L(Aϕ) is the set of words w such that unzip(w) �
ϕ, i.e., the tuple of traces satisfies ϕ. We get this automaton by dualizing the
non-deterministic Büchi automaton for ¬ψ [6], i.e., changing the branching from
non-deterministic to universal and the acceptance condition from Büchi to co-
Büchi. Hence, S satisfies a universal HyperLTL formula ∀π1 . . . ∀πn. ϕ if the
traces generated by the self-composition Sn are a subset of L(Aϕ).

In more detail, the algorithm searches for a transition system S∃ =
〈X,x0, μ, l∃〉 such that the run graph of Sn, Sm || S∃, and Aϕ, written
Sn × (Sm || S∃) × Aϕ, is accepting. Formally, given a Γ -labeled Υ -transition
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system S = 〈S, s0, τ, l〉 and a universal co-Büchi automaton Aϕ = 〈Q, q0, δ, F 〉,
where δ : Q × Υn+m × Γn+m → 2Q, the run graph Sn × (Sm || S∃) × Aϕ is the
directed graph (V,E), with the set of vertices V = Sn × Sm × X × Q, initial
vertex vinit = ((s0, . . . , s0), (s0, . . . , s0), x0, q0) and the edge relation E ⊆ V × V
satisfying ((sn , sm , x, q), (s′

n , s′
m , x′, q′)) ∈ E if, and only if

∃υ ∈ Υn.

(
sn

υ−→
τn

s′
n

)
∧

(
sm

l∃(x)−−−→
τm

s′
m

)
∧

(
x

υ−→
μ

x′
)

∧ q′ ∈ δ(q,υ · l∃(x), ln(sn ) · lm(sm )).

Theorem 7. Given S, S∃, and a HyperLTL formula ∀n∃mϕ where ϕ is
quantifier-free. Let Aϕ be the universal co-Büchi automaton for ϕ. If the run
graph Sn × (Sm || S∃) × Aϕ is accepting, then S � ∀n∃mϕ.

Proof. Follows from Theorem 4 and the fact that Aϕ represents L(ϕ). ��
The acceptance of a run graph is witnessed by an annotation λ : V → N∪{⊥}

which is a function mapping every reachable vertex v ∈ V in the run graph to
a natural number λ(v), i.e., λ(v) �= ⊥. Intuitively, λ(v) returns the number of
visits to rejecting states on any path from the initial vertex vinit to v. If we can
bound this number for every reachable vertex, the annotation is valid and the
run graph is accepting. Formally, an annotation λ is valid, if (1) the initial state
is reachable (λ(vinit) �= ⊥) and (2) for every (v, v′) ∈ E with λ(v) �= ⊥ it holds
that λ(v′) �= ⊥ and λ(v) � λ(v′) where � is > if v′ is rejecting and ≥ otherwise.
Such an annotation exists if, and only if, the run graph is accepting [20].

We encode the search for S∃ and the annotation λ as an SMT constraint
system. Therefore, we use uninterpreted function symbols to encode S∃ and λ.
A transition system S is represented in the constraint system by two functions,
the transition function τ : S × Υ → S and the labeling function l : S → Γ . The
annotation is split into two parts, a reachability constraint λB : V → B indicating
whether a state in the run graph is reachable and a counter λ# : V → N that
maps every reachable vertex v to the maximal number of rejecting states λ#(v)
visited by any path from the initial vertex to v. The resulting constraint asserts
that there is a transition system S∃ with an accepting run graph. Note, that the
functions representing the system S (τ : S × Υ → S and l : S → Γ ) are given,
that is, they are interpreted.

∃λB : Sn × Sm × X × Q → B.∃λN : Sn × Sm × X × Q → N.

∃μ : X × Υn → X.∃l∃ : X → Υm

∀υ ∈ Υn.∀sn , s′
n ∈ Sn.∀sm , s′

m ∈ Sm.∀q, q′ ∈ Q.∀x, x′ ∈ X.

λB((s0, . . . , s0), (s0, . . . , s0), x0, q0) ∧
(
λB(sn , sm , x, q) ∧ q′ ∈ δ(q, (υ · l∃(x)), (l ◦ (sn · sm ))) ∧ x′ = μ(x,υ)

∧ s′
n = τn(sn ,υ) ∧ s′

m = τm(sm , l∃(x))
)

⇒ λB(s′
n , s′

m , x′, q′) ∧ λN(sn , sm , x, q) � λN(s′
n , s′

m , x′, q′)
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where � is > if q′ ∈ F and ≥ otherwise. The bounded synthesis algorithm
increases the bound of the strategy S∃ until either the constraints system
becomes satisfiable, or a given upper bound is reached. In the case the constraint
system is satisfiable, we can extract interpretations for the functions μ and l∃
using a solver that is able to produce models. These functions then represent
the synthesized transition system S∃.

Corollary 2. Given S and a HyperLTL formula ∀∗∃∗ϕ where ϕ is quantifier-
free. If the constraint system is satisfiable for some bound on the size of S∃ then
S � ∀∗∃∗ϕ.

Proof. Follows immediately by Theorem 7. ��
As the decision problem is decidable, we know that there is an upper bound on
the size of a realizing S∃ and, thus, the bounded synthesis approach is a decision
procedure for the strategy realizability problem.

Corollary 3. The bounded synthesis algorithm decides the strategy realizability
problem for ∀∗∃∗ HyperLTL.

Proof. The existence of such an upper bound follows from Theorem 6. ��

Approximating Prophecy. We introduce a new parameter to the strategy
synthesis problem to approximate the information about the future that can be
captured using prophecy variables. This bound represents a constant lookahead
into future choices made by the environment. In other words, for a given k ≥ 0,
the strategy S∃ is allowed to depend on choices of the ∀-player in the next k steps.
While constant lookahead is only an approximation of infinite clairvoyance, it
suffices for many practical situations as shown by prior case studies [9,18].

We present a solution to synthesizing transition systems with constant looka-
head for k ≥ 0 using bounded synthesis. To simplify the presentation, we
present the stand-alone problem with respect to a specification given as a uni-
versal co-Büchi automaton. The integration into the constraint system for the
∀∗∃∗ HyperLTL synthesis as presented in the previous section is then straight-
forward. First, we present an extension to the transition system model that
incorporates the notion of constant lookahead. The idea of this extension is to
replace the initial state s0 by a function init : Υ k → S that maps input sequences
of length k to some state. Thus, the transition system observes the first k inputs,
chooses some initial state based on those inputs, and then progresses with the
same pace as the input sequence. Next, we define the run graph of such a system
Sk = 〈S, init , τ, l〉 and an automaton A = 〈Q, q0, δ, F 〉, where δ : Q×Υ ×Γ → Q,
as the directed graph (V,E) with the set of vertices V = S × Q × Υ k, the initial
vertices (s, q0,υ) ∈ V such that s = init(υ) for every υ ∈ Υ k, and the edge
relation E ⊆ V × V satisfying ((s, q, υ1υ2 · · · υk), (s′, q′, υ′

1υ
′
2 · · · υ′

k)) ∈ E if, and
only if

∃υk+1 ∈ Υ. s
υk+1−−−→ s′ ∧ q′ ∈ δ(q, υ1, l(s)) ∧

∧

1≤i≤k

υ′
i = υi+1.
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Lemma 1. Given a universal co-Büchi automaton A and a k-lookahead transi-
tion system Sk. Sk � A if, and only if, the run graph Sk × A is accepting.

Finally, synthesis amounts to solving the following constraint system:

∃λB : S × Q × Υ k → B.∃λN : S × Q × Υ k → N.

∃init : Υ k → S.∃τ : S × Υ → S.∃l : S → Γ.

(∀υ ∈ Υ k. λB(init(υ), q0,υ)) ∧
∀υ1υ2 · · · υk+1 ∈ Υ k+1.∀s, s′ ∈ S.∀q, q′ ∈ Q.
(
λB(s, q, υ1 · · · υk) ∧ s′ = τ(s, υk+1) ∧ q′ ∈ δ(q, υ1, l(s))

)

⇒ λB(s′, q′, υ2 · · · υk+1) ∧ λN(s, q, υ1 · · · υk) � λN(s′, q′, υ2 · · · υk+1)

Corollary 4. Given some k ≥ 0, if the constraint system is satisfiable for some
bound on the size of Sk then Sk � A.

4 Synthesis with Quantifier Alternations

We now build on the introduced techniques to solve the synthesis problem for
HyperLTL with quantifier alternation, that is, we search for implementations
that satisfy the given properties. In previous work [13], the synthesis problem for
∃∗∀∗ HyperLTL was solved by a reduction to the distributed synthesis problem.
We present an alternative synthesis procedure that (1) introduces the necessary
concepts for the synthesis of the ∀∗∃∗ fragment and that (2) strictly decomposes
the choice of the existential trace quantifier from the implementation.

Fix a formula of the form ∃m∀nϕ. We again reduce the verification problem to
the problem of determining whether a run graph is accepting. As the existential
quantifiers do not depend on the universal ones, there is no future dependency
and thus no need for prophecy variables or bounded lookahead. Formally, S∃ is
a tuple 〈X,x0, μ, l∃〉 such that X is a set of states, x0 ∈ X is the designated
initial state, μ : X → X is the transition function, and l∃ : X → Υm is the
labeling function. S∃ produces infinite sequences of (Υm)ω, without having any
knowledge about the behavior of the universally quantified traces. The run graph
is then (Sm || S∃) × Sn × Aϕ. The constraint system is built analogously to
Sect. 3.2, with the difference that the representation of the system S is now also
uninterpreted. In the resulting SMT constraint system, we have two bounds, one
for the size of the implementation S and one for the size of S∃.

Corollary 5. The bounded synthesis algorithm decides the realizability problem
for ∃∗∀1 HyperLTL and is a semi-decision procedure for ∃∗∀>1 HyperLTL.

The synthesis problem for formulas in the ∀∗∃∗ HyperLTL fragment uses the
same reduction to a constraint system as the strategy synthesis in Sect. 3.2,
with the only difference that the transition system S itself is uninterpreted. In
the resulting SMT constraint systems, we have three bounds, the size of the
implementation S, the size of the strategy S∃, and the lookahead k.
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Fig. 1. HyperLTL model checking with MCHyper

Corollary 6. Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free.
∀n∃mϕ is realizable if the SMT constraint system corresponding to the run graph
Sn × (Sm || S∃) × Aϕ is satisfiable for some bounds on S, S∃, and lookahead k.

5 Implementations and Experimental Evaluation

We have integrated the model checking technique with a manually provided
strategy into the HyperLTL hardware model checker MCHyper1. For the syn-
thesis of strategies and reactive systems from hyperproperties, we have developed
a separate bounded synthesis tool based on SMT-solving. In the following, we
describe these implementations and report on experimental results. All experi-
ments ran on a machine with dual-core Core i7, 3.3 GHz, and 16 GB memory.

Hardware Model Checking with Given Strategies. We have extended the
model checker MCHyper [18] from the alternation-free fragment to formulas
with one quantifier alternation. The input to MCHyper is a circuit description
as an And-Inverter-Graph in the Aiger format and a HyperLTL formula. Fig-
ures 1a and 1 show the model checking process in MCHyper without and with
quantifier alternation, respectively. For formulas with quantifier alternation, the
model checker now also accepts a strategy as an additional Aiger circuit Cσ.
Based on this strategy, MCHyper creates a new circuit where only the inputs of
the universal system copies are exposed and the inputs of the existential system

1 Try the online tool interface with the latest version of MCHyper: https://www.
react.uni-saarland.de/tools/online/MCHyper/.

https://www.react.uni-saarland.de/tools/online/MCHyper/
https://www.react.uni-saarland.de/tools/online/MCHyper/
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Table 1. Experimental results for MCHyper on the software doping and mutual exclu-
sion benchmarks. All experiments used the IC3 option for abc. Model and property
names correspond to the ones used in [9] and [18].

Model #Latches Property Time[s]

EC 0.05 17 (10.a) + (10.b) 1.8

EC 0.00625 23 (10.a) + (10.b) 53.4

AEC 0.05 19 (¬10.a) + (¬10.b) 2.8

AEC 0.00625 25 (¬10.a) + (¬10.b) 160.1

Bakery.a.n.s 47 Sym5 50.6

Sym6 27.5

Bakery.a.n.s.5proc 90 Sym7 461.3

Sym8 472.3

copies are determined by the strategy. The new circuit is then model checked as
described in [18] with abc [4].

We evaluate our extension of MCHyper on formulas with quantifier alter-
nation based on benchmarks from software doping [9] and symmetry in mutual
exclusion algorithms [18]. Both considered problems have previously been ana-
lyzed with MCHyper; however, since the properties in both problems require
quantifier alternation, we were previously limited to a (manually obtained)
approximation of the properties as universal formulas. The correctness of manual
approximations is not given but has to be shown separately. By directly model
checking the formula with quantifier alternation we know that we are checking
the correct formula without needing any additional proof of correctness.

Software Doping. D’Argenio et al. [9] examined a clean and a doped version
of an emission control program of a car and used the previous version of
MCHyper to formally verify approximations of these properties. Robust clean-
ness is expressed in the one-alternation fragment using two ∀2∃1 HyperLTL for-
mulas (given in Prop. 19 in [9], cf. Sect. 1). In [9], the formulas were strength-
ened into alternation-free formulas that imply the original properties. Despite
the quantifier alternation, Table 1 shows that the new version of MCHyper
verifies the precise formulas in roughly the same time as the alternation-free
approximations [9] while giving stronger correctness guarantees.

Symmetry in Mutual Exclusion Protocols. ∀∗∃∗ HyperLTL allows us to specify
symmetry for mutual exclusion protocols. In such protocols, we wish to guar-
antee that every request is eventually answered, and the grants are mutually
exclusive. In our experiments, we used an implementation of the Bakery pro-
tocol [25]. Table 1 shows the verification results for the precise ∀1∃1 properties.
Comparing these results to the performance on the approximations of the sym-
metry properties [18], we, again, observe that the verification times are similar.
However, we gain the additional correctness guarantees as described above.
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Strategy and System Synthesis. For the synthesis of strategies for existen-
tial quantifiers and for the synthesis of reactive systems from hyperproperties,
we have developed a separate bounded synthesis tool based on SMT-solving with
z3 [29]. Our evaluation is based on two benchmark families, the dining cryptog-
raphers problem [5] and a simplified version of the symmetry problem in mutual
exclusion protocols discussed previously. The results are shown in Table 2. Obvi-
ously, synthesis operates at a vastly smaller scale than model checking with
given strategies. In the dining cryptographers example, z3 was unable to find an
implementation for the full synthesis problem, but could easily synthesize strate-
gies for the existential trace quantifiers when provided with an implementation.
With the progress of constraint solver that employ quantification over Boolean
functions [31] we expect scalability improvements of our synthesis approach.

Table 2. Summary of the experimental results on the benchmarks sets described in
Sect. 5. When no hyperproperty is given, only the LTL part is used.

Instance Hyperproperty |S| |S∃| Time [s]

Dining cryptographers distributed + deniability TO

distributed + deniability with given S (1) 1 1.2

Mutex — 2 – <1

symmetry 3 1 3.4

Mutex w/o spurious grants— 3 – <1

symmetry 3 1 3.9

wait-free 3 3 46

symmetry + wait-free 3 1 + 3840

6 Conclusions

We have presented model checking and synthesis techniques for hyperliveness
properties expressed as HyperLTL formulas with quantifier alternation. The
alternation makes it possible to specify hyperproperties such as generalized non-
interference, symmetry, and deniability. Our approach is the first method for the
synthesis of reactive systems from HyperLTL formulas with quantifier alterna-
tion and the first practical method for the verification of such specifications.

The approach is based on a game-theoretic view of existential quantifiers,
where the ∃-player reacts to decisions of the ∀-player. The key advantage is that
the complementation of the system automaton is avoided (cf. [18]). Instead, a
strategy must be found for the ∃-player. Since this can be done either manually or
through automatic synthesis, the user of the model checking or synthesis tool has
the opportunity to trade some automation for a significant gain in performance.

Acknowledgements. We would like to thank Sebastian Biewer for providing the
software doping models and formulas, Marvin Stenger for his advice on our synthesis
experiments, and Jana Hofmann for her helpful comments on a draft of this paper.
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vol. 9206, pp. 13–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 2

9. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? - formal analysis of surreptitiously “enhanced” programs. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 4

10. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. J. Comput. Secur. 19(1), 101–138 (2011). https://doi.
org/10.3233/JCS-2010-0400

11. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR.
LIPIcs, vol. 59, pp. 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.13

12. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

13. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16


138 N. Coenen et al.

14. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

15. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

16. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

17. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
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