
Journal of Computer Security 13 (2005) 115–134 115
IOS Press

Verifying information flow goals in Security-Enhanced
Linux

Joshua D. Guttman, Amy L. Herzog, John D. Ramsdell
and Clement W. Skorupka
The MITRE Corporation, USA
E-mail: {guttman,aherzog,ramsdell,ragnor}@mitre.org

In this paper, we present a systematic way to determine the information flow security goals achieved
by systems running a secure O/S, specifically systems running Security-Enhanced Linux. A formaliza-
tion of the access control mechanism of the SELinux security server, together with a labeled transition
system representing an SELinux configuration, provides our framework. Information flow security goal
statements expressed in linear temporal logic provide a clear description of the objectives that SELinux
is intended to achieve. We use model checking to determine whether security goals hold in a given sys-
tem. These formal models combined with appropriate algorithms have led to automated tools for the
verification of security properties in an SELinux system. Our approach has been used in other security
management contexts over the past decade, under the name rigorous automated security management.

Keywords: Operating system security, information flow, Security-Enhanced Linux, temporal logic, model
checking

1. Introduction

In the 1980s, most of the rigorous work in information security was focused on
operating systems, but the 1990s saw a strong trend toward network and distributed
system security. The difficulty of having an impact in securing operating systems
was part of the motivation for this trend.

There were two major obstacles. First, the only operating systems with signifi-
cant deployment were large proprietary systems. Superimposing a security model
and gaining assurance that the implementation enforced the model seemed in-
tractable [10]. Second, the prime security model [1] was oriented toward preventing
disclosure in multi-level secure systems [2], and this required ensuring that even Tro-
jan horse software exploiting covert channels in the system’s implementation could
compromise information only at a negligible rate. This was ultimately found to be
unachievable [15].

These obstacles seem more tractable now. Open-source secure operating systems
are now available, which are compatible with existing applications software, and
hence attractive for organizations wanting more secure platforms for publicly acces-
sible servers. Security-Enhanced Linux (SELinux) in particular offers well thought
out security services [8,9,11].

0926-227X/05/$17.00  2005 – IOS Press and the authors. All rights reserved

116 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

Moreover, a less stringent model of security, not focused on covert channels, is
now relevant. The Orange Book’s [2] focus on covert channels followed from a par-
ticular choice of threat model. It assumed that evaluated products would be used as
general purpose computing systems, in which new software would be compiled and
installed, so that the trusted computing base would include the operating system but
no application software. In the long run, application software would belong to the ad-
versary. Therefore, security goals such as confidentiality had to be achieved even if
application software contained Trojan horses and attempted to signal secrets through
covert channels.

In the bulk of cases today, by contrast, this is an inappropriate threat model. In-
stead, the system’s security goals will be achieved by a combination of the oper-
ating system and its configuration data, together with specific pieces of application
software interacting with critical system resources. Commonly, a network server for
instance must service unauthenticated clients (as in retail electronic commerce), or
must provide its own authentication and access control for its clients (as in a data-
base server). Sensitive resources must reside on the same server so that transactions
can complete. In this situation, only a small number of programs should be allowed
to manipulate the sensitive resources. These special programs must be trustworthy,
since there is no hope of acceptable system behavior otherwise. Access control can
prevent these executables from being replaced or altered.

A security analysis in this context involves two different ingredients. One is under-
standing the operating system and how its policy is configured. The other is under-
standing the security critical aspects of the application software. While substantial
work has been accomplished in developing techniques for determining the security
relevant behavior of code (see [14] for a survey), many aspects of the problem remain
to be studied. In this paper, however, we focus exclusively on the former ingredient.
In particular, to make progress we must remove the issue of covert channels, which
were unpreventable at the operating system level. Instead, we focus our attention
on a context where programs interacting directly with the resources have a degree
of trust, and the system owner aims to protect the confidentiality and integrity of
sensitive resources manipulated by the programs.

Protection of sensitive resources may involve both integrity and confidentiality,
which we represent as information flow security goals. These multi-step security
goals say that information flowing between particular endpoints must traverse spe-
cific trustworthy programs along its path. To preserve integrity, each causal chain of
interactions leading from untrusted sources to sensitive destinations must traverse
a program considered trusted to engage only in legitimate transactions with that
destination. Dually, to preserve confidentiality, causal chains leading from sensitive
sources to untrusted destinations must traverse a program trusted to filter outbound
data. The trustworthy program determines what data can be released to the untrusted
destination.

As an example focused on integrity, consider the e-commerce processing system
described in Fig. 1. In this scenario, orders are submitted by customers through an

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 117

Fig. 1. An e-commerce processing system.

SSL-protected network socket at the left. An e-sales program ensures that a customer
order is properly formatted, and if so, that the purchase prices for the different items
are correct. For simplicity, we let the program write accepted orders to a file in a
directory meant for new orders. Files in this directory will be read by an accounts
receivable program, which after some on-line interaction with a credit card clearing
house, causes the company’s account to be credited. The order may now be writ-
ten to the directory for paid orders. The shipping department program then checks
inventory and causes the order to be shipped as soon as the goods are available.

The company wants to ensure that orders with erroneously low prices cannot ar-
rive at accounts receivable, and that unpaid orders cannot arrive at the shipping de-
partment. The list of new orders (with prices) and the list of paid orders (used by the
shipping process) are the sensitive resources in this example; the e-sales and accounts
receivable processes must carefully control access to them.

In this paper, we aim at three goals. First, we develop a highly abstract model of
the SELinux operating system access control mechanism. In this model, the system
configuration determines a labeled transition system representing possible informa-
tion flows (Section 2). Second, we propose a diagram-like way to state security goals,
and give meaning to diagrams like Fig. 1 using temporal logic (Section 3). Third, we
describe briefly how to determine, using model checking, whether a goal is enforced
by a particular configuration (Section 4). We regard this as a kind of rigorous, auto-
mated security management (Section 5, cf. [5]).

2. An SELinux model

In this section, we will introduce the core ideas SELinux uses for access con-
trol (Section 2.1), after which we will introduce five relations that will summarize
the contents of an SELinux system access control configuration file (Section 2.2).
Section 2.2 describes how these relations are defined from the contents of a config-
uration file. The authorization relation (Section 2.3) synthesizes information from
the five relations to determine which actions are allowed and which are prohibited.
The flow relation then expresses what entities are affected by permissible actions
(Section 2.4).

By a resource, we mean an entity such as a process, a file, a file descriptor, a socket,
and so on, which is one of the entities considered when an action is adjudicated. We
call the process making the system call the source resource, and the other resource at
issue is the target resource. The target resource could also be a process, for instance
in the case of an inter-process communication.

118 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

If an action is permitted, does the state of the process requesting the action change
to reflect the state of a resource accessed, as is the case with a file read; or does the
state of the resource change to reflect that state of the process, as is the case with
a file write? In the former case, information flows from target resource to source
resource. In the latter case, it flows the opposite direction, from source to target.

2.1. Underlying ideas of SELinux access control

The SELinux security server makes decisions about system calls. For instance,
when a process makes a write system call to write data to a particular file, the
security server adjudicates this to see whether it should be permitted. Depending on
the system call, it may need to check that several separate requirements are satisfied.
In this case of writing to a file, the process must be permitted to modify that file. It
must also be permitted to modify the file attributes of the file descriptor, which is a
data structure containing a modification time that must be updated. If either of these
checks fails, then the system call will not complete normally. We will call each of
these checks a control requirement. In determining whether a control requirement is
satisfied, the security server always considers the process requesting the system call
and a resource on which the process is operating. In the case of a write, the relevant
target resource for one control requirement is the file itself, while the other is the file
descriptor.

In making its decision, the security server considers only a summary of the secu-
rity relevant status of these resources; this summary is a data structure called a se-
curity context. Thus, for each system call, the security server evaluates one or more
control requirements on the security context of a source and a target, and different
targets may be relevant for different control requirements of the same system call.

Each control requirement is labeled by a pair. The first component is called the
class of the control requirement. This is a value such as file for the file write
control requirement, or fd for the file descriptor modification control requirement.
It indicates what kind of an entity the target resource is. Other possibilities include
process, filesystem, and socket. The second component of a control re-
quirement is called a permission, and it indicates what sort of an action is being
adjudicated. In the case of writing data to a file, the two control requirements under
consideration are

file, write and fd, setattr

checking whether the calling process is permitted to write the data to the file and
whether it is permitted to set an attribute in the file descriptor (namely the modifica-
tion time).

Each resource has its security context, which is the summary of its security rel-
evant status delivered to the security server to use in adjudicating control require-

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 119

ments. A security context is a tuple consisting of three components,1 called a type, a
role, and a user. The user is similar in intent to the normal Unix notion of user, and
represents the person on behalf of whom the system is executing a process or main-
taining a resource. The role, derived from the literature on role-based access control,
is an intermediate notion intended to connect a collection of users with a correspond-
ing collection of programs that they should be permitted to execute. Associated with
the user component is a specification of the roles that user is permitted; the role then
in turn specifies what types of processes those users are permitted to execute.

The most important component is the type, accounting for at least 22 000 out of
the 22 500 access control statements in the sample policy file contained in the dis-
tribution. The type is used to specify the detailed interactions permitted between
processes and other resources. For each system call, zero or more control require-
ments must be authorized; for each of these control requirements, the SELinux sys-
tem will check that the type of the process is allowed to engage in this action against
the type of the target. If any of these checks fails, then the system call will terminate
before the kernel causes the corresponding change in system state.

For instance, in order to read a file, a process must be permitted to engage in the
file read action against it. However, the read system call also causes an update to
the attributes associated with the file descriptor, indicating the current time as the last
time of file access. Thus, it must also be permitted to engage in the fd setattr
action.

The exec system call has the most complex control requirements; they are sum-
marized in Table 1. In the first three lines, the source type is the type of the process
when it initiates the exec system call. In the fourth and fifth line, the source type is
the type the resulting process will have in case the exec call succeeds, which may be
different since part of the functionality of an exec call may be a change in security
context. In the last line, the type of the parent process is considered, because the type
of the new process must be one the parent is permitted to trace, in case the parent has
been tracing this process. The targets of the control requirements are other objects
involved in the exec call: the directories that must be searched to follow the path to
the file; the file containing the binary image with which to overwrite memory; and
the new process itself, which the old process must be permitted to launch. SELinux
thus allows very tight control over which processes can execute which files, with
which types of process resulting.

It will be convenient to refer to the set of all types as T , the set of all roles as R,
the set of all users (i.e., user names) as U , the set of all classes as C, and the set of all
permissions as P . Because not all permissions make sense with all classes, we write
Γ ⊂ C × P for the set of class-permission pairs that are used in SELinux.

A type t ∈ T is called a domain if t is the type of any process; we write D ⊂ T
for the set of domains. All roles but one are used to constrain the association of users

1or four components, if the system is compiled with support for multi-level security as it can be, but
normally is not. For definiteness, we will assume MLS support is not compiled into the kernel in the
remainder of this paper, although the approach we describe is equally applicable if it is.

120 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

Table 1

Actions in an exec system call

Call Action Source Target

Class Permission (Process) (Resource)

execve dir search Current Path

file execute Current File

process transition Current New

process entrypoint New File

fd inherit New FD

process ptrace Parent New

with the types of processes. The dummy role ro (object_r) is used in security
contexts where the type is not a domain.

2.2. Syntax and semantics for the configuration file

The configuration file defines several relations, five of which are of interest to
us. The others concern auditing and other issues that not related to information-
flow security goals. Each relation is built up by statements contained in the same
configuration file. We will describe the syntax of these statements, and the relations
that they are determining. The relations are gathered in Table 2.

Types are declared with statements such as

type esales_sock_t;
type esales_t, domain;
type esales_exec_t, file_type, exec_type;
type new_orders_dir_t, file_type;

Any names after the first comma are attribute declarations, which declare that the
new type belongs to a set named by the attributes. For instance, the domain attribute
of esales_t stipulates that it belongs to the set of domains D. Attributes may be
used in other configuration statements to refer to the set of all types having that
attribute.

For each type, some actions are specified that processes executing with that type
are allowed to perform. In the SELinux configuration file they are introduced by the
keyword allow. For a request to succeed, some allow statement in the configura-
tion file must authorize it. Each allow statement

allow Ts Tt : Ca Pa;

specifies a set of process (source) types Ts, a set of resource (target) types Tt, a set
of classes Ca, and a set of permissions Pa. We will not be specific about the syntax
with which the sets of symbols such as Ts, Tt etc. are presented. If a process whose

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 121

allow esales_t esales_sock_t: tcp_socket
{ ioctl read getattr write setattr append bind connect
getopt setopt shutdown listen accept };

allow esales_t new_orders_dir_t: file { create write };
allow acct_rcv_t new_orders_dir_t: file { read };
allow acct_rcv_t paid_orders_dir_t: file { create write };
allow shipping_t paid_orders_dir_t: file { read };

allow sysadm_t esales_t : process transition;
allow sysadm_t esales_exec_t: file entrypoint;

Fig. 2. Electronic commerce example allow statements.

Table 2

Access control relations

α(t1, t2, c, p) is the type permission relation. It holds if t1 ∈ D, t2 ∈ T , and (c, p) ∈ Γ for some allow
statement in the configuration.

αρ(r1, r2) is the role transition relation. When a process changes security context, the role may change,
but the old and new roles must satisfy αρ .

ρ(r, t) is the role-type relation. Each process in the system must have a security context such that ρ(r, t)
holds.

µ(u, r) is the user-role relation. Each process in the system must have a security context such that µ(u, r)
holds.

χc,p(t1, r1, u1; t2, r2, u2) is the constraint relation. Whenever c, p is requested, the system checks that
the constraint χc,p(t1, r1, u1; t2, r2, u2) holds between the process security context and the re-
source security context. Constraints may be used to ensure that only privileged types of process
change the user or role of existing resources, for instance.

type is in Ts requests an action with a class-permission pair in Ca × Pa against a
resource with type in Tt, then that request is authorized.

The allow statements for the electronic commerce example are gathered in Fig. 2.
The last two lines in the figure allow a process executing with type sysadm_t to
initiate the esales program, transitioning to the new type esales_t, assuming
that the esales executable is a binary image contained in some disk file of type
esales_exec_t.

If the keyword self occurs as a target type, then it is treated specially. It indicates
that each source type is allowed to engage in the specified actions with itself. For
instance, a process of a particular type may be permitted to continue with the same
type after executing a file of a some particular type.

When the keyword self is present, the statement implies that the tuple
(t, t, c, p) ∈ α for each t ∈ Ts, c ∈ Ca, p ∈ Pa. Letting T ′

t = Tt \ {self}, then
the statement always implies Ts × T ′

t × Ca, Pa ⊂ α. The relation α is the smallest
relation compatible with the allow statements and these two rules.

The role allow statement takes the form

allow Rc Rn;

122 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

role ecomm_r types esales_t;
role ecomm_r types acct_rcv_t;
role ecomm_r types shipping_t;

allow sysadm_r ecomm_r;
allow system_r ecomm_r;

Fig. 3. Electronic commerce example role and role allow statements.

It controls change of role when a process has a transition from one security context
to another; if the current role is in Rc and the new role is in Rn, then this change of
role will be permitted. More precisely, the statement specifies that Rc × Rn ⊂ αρ.
The relation αρ is the smallest relation compatible with the role allow statements and
this rule.

A role r is declared with the following syntax.

role r types Tr;

In addition to declaring the role name r, the statement stipulates a set of types with
which r is permitted to be associated. The same role may be declared repeatedly
to allow a large set of types to be declared conveniently. The statement specifies
that {r} × Tr ⊂ ρ. The relation ρ is the smallest relation compatible with the role
declarations, the convention about ro mentioned at the end of Section 2.2, and this
rule. The role declarations and role allow statements for the electronic commerce
example are contained in Fig. 3.

A user u is declared with the following syntax.

user u types Ru;

In addition to declaring the user name u, the statement stipulates a set of roles with
which u is permitted to be associated. The same user may be declared repeatedly
to allow a large set of roles to be declared conveniently. The statement specifies
that {u} × Ru ⊂ µ. The relation µ is the smallest relation compatible with the
role declarations and this rule. No users need be added in the electronic commerce
example.

We express the special status of the dummy object role by stipulating that ρ(ro, t)
holds whenever t is not a domain, and µ(u, ro) holds for all u.

Constraint definitions specify additional limits on transitions with the following
syntax.

constraint Cc Pc δ;

The constraint expression δ has a natural translation as a set of pairs of security
contexts δ. Since a security context is a triple consisting of a type, a role, and a user,

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 123

δ ⊂ T × R × U × T × R × U , where T , R, U are the sets of all types, roles, and
users respectively. The value χc,p is the intersection of all δ where δ is declared as a
constraint on Cc, Pc where c ∈ Cc and p ∈ Pc. In effect, this means that all relevant
constraints must hold true for an action to occur. No constraints need be added in the
electronic commerce example.

We assume χc,p is empty when (c, p) �∈ Γ.

2.3. The authorization relation

Our formal model of the SELinux authorization mechanism puts these five rela-
tions together in a specific way. The class-permission pair c, p is authorized for a
process with security context t1, r1, u1 against a resource t2, r2, u2 if:

α(t1, t2, c, p)

∧ ρ(r1, t1) ∧ ρ(r2, t2)

∧ µ(u1, r1) ∧ µ(u2, r2)

∧ χc,p(t1, r1, u1; t2, r2, u2)

∧ if c = process ∧ p = transition then αρ(r1, r2).

This relation ∆c,p(t1, r1, u1; t2, r2, u2) is the SELinux authorization predicate. The
role allow relation αρ is relevant only in a single special case, namely when a process
is making a transition to a new security context.

2.4. The information flow relation

Some events (file write, for instance) transfer information from process
to resource, while others (file read, for instance) transfer it from resource to
process. SELinux has a file that describes how each c, p transfers information,
whether like a read, like a write, in both directions, or in neither. Information flows
from an entity with security context t, r, u to an entity with security context t′, r′, u′

if for some event c, p either

c, p has write-like flow and ∆c,p(t, r, u; t′, r′, u′)

or else

c, p has read-like flow and ∆c,p(t′, r′, u′; t, r, u).

Φc,p(t, r, u; t′, r′, u′) means that at least one of these conditions holds, hence that
there is flow from context t, r, u to context t′, r′, u′ through event c, p.

124 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

The file defining the direction of flow for each class-permission pair contains only
a simple approximation. It does not take into account indirect flows caused by error
conditions or variations in timing, and it does not consider flow into other system
resources besides the process requesting the event and the resource against which the
event is requested. This is why our analysis avoids the subtleties of covert channels.

Having defined the information flow relation Φc,p(t, r, u; t′, r′, u′), we regard it as
a transition relation and consider what can be expressed in standard temporal logic
in terms of this transition relation.

Because we want to work in linear temporal logic, where there are states and
transitions but the transitions have no labels, we digest the label c, p into the state
before the transition. Thus, we regard a state as a sextuple 〈t, r, u, c, p, k〉 consisting
of a type, user, and role, as well as a class and permission signifying the transition
about to occur.

The last component k is a Boolean flag used to make the transition relation total.
In linear temporal logic, there is always a next state in the sense that e.g., � true is
valid. Since there may not be any t′, r′, u′ such that Φc,p(t, r, u; t′, r′, u′), we need
the flag k to indicate when the transition relation is diverging from Φ.

When k is true, it indicates that all transitions so far have been legitimate. When
k is false, some bogus transition has occurred, and the states no longer bear any
meaningful relation to Φ.

If k is false, then in the next state k must remain false, although the remaining
components can take any value. If k is true, then k′ is true in the next state only
when the type, user, and role are values t′, r′, u′ such that Φc,p(t, r, u; t′, r′, u′); the
next c′, p′ is unconstrained. Otherwise, k′ is false. Thus, the transition relation is
highly non-deterministic.

The initial states 〈t, r, u, c, p, k〉 for this model are the ones that are compatible
with ρ and µ in that

ρ(r, t) ∧ µ(u, r).

Φ says that there is a causal effect of one state on the next, and iterated applications
of the relation say that there is some sequence of events (possibly involving many
different processes and resources) creating a causal chain from the first state of the
sequence to the last.

Suppose then that there is a sequence of events

(t0, r0, u0)
c0,p0−→ (t1, r1, u1)

c1,p1−→ · · · cn−1,pn−1−→ (tn, rn, un)

in which Φcj ,pj (tj , rj , uj; tj+1, rj+1, uj+1) for each j from 0 to n − 1. Then equiv-
alently, we have an execution history in which the transition relation holds between
(tj , rj , uj , cj , pj , true) and (tj+1, rj+1, uj+1, cj+1, pj+1, true) for each j from 0 to
n − 1. Here cn, pn is unconstrained. In this case, we say that there is an informa-
tion flow from (t0, r0, u0) to (tn, rn, un) via the sequence of control requirements
〈(c0, p0), . . . , (cn−1, pn−1)〉.

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 125

For instance, suppose n = 2 and 〈(c0, p0), (c1, p1)〉 is 〈(file,write), (file,
read)〉. In this case, the flow consists of the fact that a process with type t0 can
write to files with type t1, while processes with type t2 can read from them. Thus,
information flows from t0 to t2 via file write and read. Alternatively, suppose that n =
2 and 〈(c0, p0), (c1, p1)〉 is 〈(fd,setattr), (fd,getattr)〉. Then, information
flows through manipulating the attributes of a file descriptor, which the first process
can set while the second process gets them; modification time may be the attribute
in question. Thus, a path through the relation Φ or through the transition relation
defines a sequence of events through which some causal effects are transmitted from
the first security context to the last.

The model we have just developed, and encoded in the information flow predicate
Φc,p, is an enormous simplification of the SELinux system. It concentrates on the
information flow consequences of individual events, and abstracts from all aspects
of system resources apart from their security contexts. The benefit of this approach
is to provide a minimal representation still allowing us to analyze core security goals
achieved by an SELinux configuration.

It is the purpose of a security policy to say which of these causal paths are permis-
sible. All others are prohibited. The policy may classify flow according to the initial
and final security contexts; according to the intermediate contexts, and according to
the control requirements lying on the path.

3. Security goals

The SELinux access control mechanism allows the policy writer to protect the
confidentiality and integrity of sensitive resources. As described above, protecting
these resources entails ensuring that information flowing from one place to another
must traverse specific points along its path. Security goals of this sort are examples of
intransitive noninterference: information flow from one security context to another
is only acceptable if it happens through another, trustworthy, program [13]. These
intransitive noninterference chains cover realistic security desires, ranging from the
simple to the complex.

Consider the case of raw disk access. Since directly accessing the disk bypasses
traditional access controls, it is likely that a system administrator would want only
specific administrative programs to have the ability. In the sample SELinux policy,
raw disk data has the type fixed_disk_device_t, and the type fsadm_t is
used for administrative programs requiring direct disk access. The system adminis-
trator aims to ensure that all one-step paths ending in fixed_disk_device_t
begin with fsadm_t. This is the simplest form of causal chain.

Web servers provide slightly more complex security needs. When running a web
server, it is very important to keep user capabilities separate from server adminis-
trator capabilities. Since frequently the administrator is also a user on the system,
the core desire is to prevent users from performing sensitive operations without first

126 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

supplying (for example) the administrator password. A concrete example from the
sample SELinux policy involves the modification and execution of web server sys-
tem scripts. A special domain, httpd_admin_t, is defined for web server admin-
istration functions. Thus in this case, an administrator wishes to ensure that any path
of information flow starting at user_t and ending in a write to scripts of the type
httpd_sys_script_t passes through httpd_admin_t.

A still more complex security goal is pictured in the e-commerce example in
Fig. 1. This pictures an integrity goal: although untrusted users may connect to
the server, only paid orders should be shipped. A process with SELinux type
esales_t checks new orders read from a resource with type esales_sock_t;
after being checked they are written to a file with type new_orders_dir_type.
The accounts receivable program has type acct_rcv_t, and writes out paid orders
to files with type paid_orders_dir_t, which are readable by a process having
type shipping_t.

3.1. Visualizing causal chains: diagrams

We will now formalize a particular way to express information flow goals. We
wish to ensure that all paths through a system from a starting security context to a
final security context go through a series of intermediate steps. These intermediate
steps can be viewed, as in Fig. 1, as security contexts or sets of them. We may also
sometimes wish to specify the means by which one security context can affect an-
other: in other words, we may wish to label the arrows in Fig. 1 with class-permission
pairs such as socket read, file create, file write, etc. Information
flow security goals are expressed in this alternating chain of security contexts and
actions.

When constructing a chain, one has four degrees of freedom. First, one can de-
fine what security contexts appear at a stage in the process; formulas defining these
sets use symbols such as σi. We adopt the convention of writing “σi is φ” where
φ involves only the variables t, r, u free, to mean that σi is defined to be the set
{(t, r, u) | φ}. For instance, for the web server integrity goal described above,

σ0 is t = user_t
σ1 is t = httpd_admin_t
σ2 is t = httpd_sys_script_t.

Second, one may characterize what actions or events may transfer information from
one context to the next; formulas defining these sets use symbols such as γi. Again,
we adopt the convention of writing “γi is φ” where φ involves the variables c, p,
to mean that γi is defined to be the set {(c, p) | φ}. Members of γi are SELinux
class-permission pairs. Following our web server example goal,

γ0 is true
γ1 is c = file ∧ p ∈ {write,append}.

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 127

The third kind of freedom captures the intuitive notion of the length of the ar-
rows. Between two security contexts in our causal path, we may be interested in
constraining the paths to a single event. (Our raw disk access example concerns
only direct disk accesses, rather than longer chains.) Longer paths between contexts
may also be of interest, however. The e-commerce example could provide a con-
crete case: Perhaps some customers receive a special discount on their order, which
may need to be checked between the e-sales program and the new orders file. Thus,
flow from esales_t to new_order_type may go by way of a process with a
different type that validates the discount, and possibly other intermediate types.

Our web server security goal is also concerned with longer paths, since it would
be wise to consider all information flows from a user ending in the writing of HTTP

system scripts.
We distinguish such iterated events by surrounding them with square brackets and

a superscript +. Let λi be a label of one of the forms γi or [γi]+. The final action
formulas for our web server example are the following:

λ0 is [true]+

λ1 is [c = file ∧ p ∈ {write,append}]+.

The fourth degree of freedom is that of exceptions, although we will return later to
fill in this detail (see Section 3.2.3). Ignoring exceptions, we can write an information
flow policy goal in the following visual form:

σ0
λ0−→ σ1

λ1−→ · · · λn−2−→ σn−1
λn−1−→ σn. (1)

Note the similarity between this form and our e-commerce example in Fig. 1. Trans-
lating the picture in Fig. 1 to our information flow formulas, we obtain the diagram
shown in Fig. 4. The σi correspond directly to the boxes pictured in Fig. 1. The labels
λi correspond to the arrows pictured there.

To see the relevance of the + here, consider that when a process reads from a
socket, information flows forward from the socket to the process. When it sets socket
options, information also flows backward to the socket. For this reason, there are
also longer, cyclic paths between esales_sock_t and esales_t. The + sign
permits longer paths in this case.

3.2. Formalizing diagrams in linear temporal logic

We interpret an information flow policy as an assertion about all sequences of state
transitions leading from a state in σ0 to a state in σn. It asserts that this path must
encounter the σi in the order given, executing events from λi in each stage.

To formalize these assertions, we first represent the fact that they concern only
state transitions leading from states in σ0 to states in σn. We may express this as the
hypothesis H = σ0∧�(σn∧k), stating that σ0 currently holds and σn will eventually
hold, and where k is true because all transitions so far have satisfied Φ. We interpret
an information flow diagram (1) by two formulas of Linear Temporal Logic (LTL).

128 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

σ0
λ0−→ σ1

λ1−→ σ2
λ2−→ σ3

λ3−→ σ4
λ4−→ σ5 where

σ0 is t = esales_sock_t
λ0 is c = tcp_socket
σ1 is t = esales_t
λ1 is [c = tcp_socket ∨ (c = file ∧ p ∈ {create,write})]+

σ2 is t = new_orders_dir_t
λ2 is c = file ∧ p = read
σ3 is t = acct_rcv_t
λ3 is c = file ∧ p ∈ {create,write}
σ4 is t = paid_orders_dir_t
λ4 is c = file ∧ p = read
σ5 is t = shipping_t

Fig. 4. Security diagram for the electronic commerce example.

3.2.1. Order assertions
The first formula asserts that states are encountered in the right order, subject to

the hypothesis H that we are passing from σ0 to σn:

H ⇒
∧

0<i<n

σi R¬σi+1. (2)

The operator R (“releases”) asserts that its right hand operand is true and remains
true until its left hand operator has been true at least once. Thus, this formula asserts
that each set σi+1 is not encountered until after σi has been encountered, along paths
from σ0 to σn.

3.2.2. Event assertions
The other formula asserts that the transitions along a path from σ0 to σn proceed

using the right class-permission pairs. From the time that σi has been encountered
but σi+1 has not yet been reached, all of the transitions should be in the set γi. In the
case where none of the γi are decorated with a +, this leads to the formula

H ⇒ γ0 ∧ X (σ1 ∧ γ1 ∧ X (· · ·)).

X φ asserts of a state that φ is true in the next state immediately after it. Thus, we
start with a γ0 which brings us to σ1 and then continue with a γ1 which brings us to
σ2 and so on. If all the γi are surrounded by square brackets with a +, then we want
to say that a γi occurs, and then γis continue until a σi+1 is reached, and so on:

H ⇒ γ0 ∧ X (γ0 U (σ1 ∧ γ1 ∧ X (γ1 U · · ·))).

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 129

φU ψ is true in a state if ψ eventually becomes true, and φ remains true until the first
such occasion. We combine the two forms into a formula

H ⇒ γ0 O0 (σ1 ∧ (γ1 O1 (σ2 . . .))). (3)

When the label λi is of the form γi, then φ Oi ψ is defined to be φ ∧ X ψ. When the
label λi is of the form [γi]+, then φ Oi ψ is defined to be φ ∧ X (φ U ψ).

Formulas (2) and (3) do not need a leading “always” �, because, for states such
that k is true, all accessible states are also initial states.

3.2.3. Exceptions
We now return to the fourth degree of freedom when constructing causal chains,

that of exceptions. An example from our e-commerce case can provide motivation.
Suppose there is a directory for status queries, with type query_t, such that flow
from a network socket to the shipping department program is permitted if it comes by
way of query_t. The e-commerce system designers intended for this to be accept-
able, yet it provides a counterexample to the goals mentioned in Section 1. (There
is then a corresponding security requirement on the shipping department program,
stating that input from the status query files never cause products to be shipped, but
verifying that requirement is a matter for programming language security analysis
(see e.g., [14]) rather than operating system security analysis.)

The type query_t and class network socket are exceptions to the more general
rule. In cases such as this, we want to make our assertions subject to these exceptions.
If the exception occurs, we do not care what the information flow is; if the exception
does not occur, then we want the information flow diagram to hold true as before. The
exceptional condition may be either a state or a transition, that is, a class-permission
pair. For instance, perhaps the accounts receivable program can send a signal to the
shipping program to tell it when to stat the shared directory. This signal is a flow of
information to shipping that does not traverse the type paid_orders_t. However,
it is merely advisory, and we know it causes nothing to be shipped unless the program
succeeds in reading a new paid order. Thus, there is no need to prohibit this flow.

We incorporate exceptions without changing the form of equations (2) and (3).
Instead, let σe be the set of exceptional states, and let γe be the set of exceptional
transitions; we redefine H to take the form:

σ0 ∧ ((¬σe ∧ ¬γe) U (σn ∧ k)).

Thus, we concern ourselves with a path only if it started at σ0 and avoided σe and
γe until reaching a state in which σn ∧ k. If a path is of this form, then we require
that the bodies of equations (2) and (3) hold. Taking into account exceptions, we can
now write information flow policy goals in the following visible form:

σ0
λ0−→ σ1

λ1−→ · · · λn−2−→ σn−1
λn−1−→ σn [σe; γe]. (4)

130 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

As we will see in Section 4, exceptions become important very quickly when analyz-
ing complex policies such as the policy included in the sample SELinux distribution.

4. Goal enforcement and implementation

We have written software that reads and analyzes SELinux configuration files. It
constructs a labeled transition system with security contexts as states, and actions
as transition labels. The transition relation represents the information flow relation
Φc,p, and the initial states are the security contexts that satisfy ρ(r, t) ∧ µ(u, r). The
labeled transition system is written to disk in an easily read format.

We have tools that use the labeled transition system to construct a Binary Decision
Diagram (BDD) for specialized processing, but the tool most often used takes the
labeled transition system along with a set of diagrams, and produces input for the
model checker NuSMV [12].

Consider the web server diagram introduced in Section 3.1 and the policy config-
uration files in the NSA SELinux release.2 In this case, we use the diagram

σ0
λ0−→ σ1

λ1−→ σ2 [σe; λe] where

σ0 is t = user_t
λ0 is [true]+

σ1 is t = httpd_admin_t
λ1 is [c = file ∧ p ∈ {write,append}]+

σ2 is t = httpd_sys_script_t
σe is false
λe is false

(5)

To see if the default policy meets the security goal expressed by the diagram, we
created the labeled transition system from the policy configuration files. We then
encoded the diagram in a textual syntax, and used it and the labeled transition system
to create input for NuSMV.

Figure 5 contains an excerpt of the output from NuSMV. It shows that the security
goal is not met by the policy files. The model checker found an illegal path of in-
formation flow between four security contexts. Recall that a state used by the model
checker includes the class and permission labeling the transition about to occur. Thus
the first step in the path makes use of an allowed information flow that starts with
security context (user_t,system_r,system_u), and goes to security context
(netif_ipsec2_t,object_r),jdoe_u) via the netif_c rawip_send_p
action.

2We have used release 2 003 040 709 of April 2003 throughout this section.

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 131

-- specification
!(t = user_t
& E[t != httpd_admin_t U t = httpd_sys_script_t

& EF (k = TRUE & t = httpd_sys_script_t)])
is false

-- as demonstrated by the following execution sequence
-> State 1.1 <-
t = user_t
r = system_r
u = system_u
c = netif_c
p = rawip_send_p
k = 1
-> State 1.2 <-
t = netif_ipsec2_t
r = object_r
u = jdoe_u
p = udp_recv_p
-> State 1.3 <-
t = dpkg_t
r = system_r
u = system_u
c = fifo_file_c
p = append_p
-> State 1.4 <-
t = httpd_sys_script_t
r = object_r
u = jdoe_u
c = netif_c
p = accept_p

Fig. 5. HTTPD security goal failure.

The security goal is met by the sample policy files in the SELinux release if the
diagram in equation (5) above has the following exception for security contexts σe:

r = sysadm_r ∨ r = system_r

The exception σe means that any path that contains a type associated with the roles
sysadm_r or system_r is ignored, and not considered a violation of the secu-
rity goal. These roles are associated with system processes manipulating low-level
resources. Such processes can alter many aspects of the system, but are run only by
purportedly trustworthy system administrators.

132 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

The diagram in Fig. 4 can be used to specify a security goal for the e-commerce
processing system in Fig. 1, however, once again, the security context exception
above must be added. The modified diagram expresses a security goal that is satisfied
by policy files modified to include the additional types and permissions described in
Section 2.2.

For policy files based on the ones in the release, NuSMV execution typically re-
quires about 150 Mb of store, and about 10 minutes of CPU time on a 1 GHz Intel
GNU/Linux laptop. The resources required to construct the input for NuSMV are
negligible.

The programs that transform SELinux configuration files and diagrams into
NuSMV input are written in the OCaml dialect of ML [7]. The use of a functional
language allowed an implementation that closely matches its mathematical specifi-
cation.

5. Rigorous automated security management

In this paper, we have presented a systematic way to analyze the information flow
goals achieved by an SELinux system. A formalization of the access control mecha-
nism of the SELinux security server together with a labeled transition system repre-
senting an SELinux configuration provides our framework. Security goal statements
in linear temporal logic provide a clear description of the objectives that SELinux
is intended to achieve. We use model checking to determine whether security goals
hold in a given system.

The approach used in developing these formalizations and analysis methods has
been used in other security management contexts over the past decade, most recently
under the name rigorous automated security management [3–6]. This method front-
loads the contribution of formal methods to problem-solving. The focus is on mod-
eling devices, their behavior as a function of configurations, and the consequences
of their interactions. A class of practically important security goals must also be
expressible in terms of these models.

These models suggest algorithms taking as input information about system con-
figuration, and returning the security goals satisfied in that system. In some cases,
although not as yet in the case of SELinux, we can also derive algorithms to gen-
erate configurations to satisfy given security goals. The formal models provide a
rigorous justification of soundness. By contrast, algorithms are implemented as or-
dinary computer programs requiring no logical expertise to use. Resolving practical
problems then requires little time, and no formal methods specialists. Rigorous au-
tomated security management consists of four steps.

Modeling. Construct a simple formal model of the problem domain. In this pa-
per, we have seen the formalization of the access control mechanism of the
SELinux security server, and the transition relation of an SELinux security
policy.

J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux 133

Security Goals. SELinux is intended to achieve information flow security goals.
These take the forms given in equations (2) and (3).

Goal Enforcement. The security goals and underlying model must be chosen so
that there is an algorithm that, given a system as represented in the model, and
a particular goal statement of one of the selected logical forms, determines
whether the system satisfies that goal. In the SELinux system, model checking
provides our assurance.

Implementation. Having defined and verified one or several goal enforcement al-
gorithms, one writes a program to check goal enforcement. The inputs to this
program consist of goal statements that should be enforced, and system config-
uration information. In this paper, we have discussed an implementation based
on NuSMV and mentioned our own specially adapted BDD software.

For systems such as SELinux, formal models of access control configuration and
checking reasonable security goals are tractable. A combination of this formal model
and an appropriate algorithm has led to automatic tools for the verification of security
properties in an SELinux system. While much future work remains, we believe this
approach to be an important step toward increasing the usefulness of secure operating
systems.

Acknowledgement

This work was funded by the United States National Security Agency.

References

[1] D.E. Bell and L.J. LaPadula, Computer security model: Unified exposition and Multics interpreta-
tion, Technical Report 75-306, ESD, June 1975.

[2] Department of Defense trusted computer system evaluation criteria, DOD 5200.28-STD, December
1985.

[3] J.D. Guttman, Filtering postures: Local enforcement for global policies, in: Proceedings, 1997 IEEE
Symposium on Security and Privacy, IEEE Computer Society, 1997, pp. 120–29.

[4] J.D. Guttman, Security goals: Packet trajectories and strand spaces, in: Foundations of Security
Analysis and Design, R. Gorrieri and R. Focardi, eds, Volume 2171 of LNCS, Springer, 2001, pp.
197–261.

[5] J.D. Guttman and A.L. Herzog, Rigorous automated network security management, International
Journal for Information Security, 2004. Forthcoming.

[6] J.D. Guttman, A.L. Herzog and F.J. Thayer, Authentication and confidentiality via IPsec, in:
ESORICS 2000: European Symposium on Research in Computer Security, D. Gollman, ed., Number
1895 in LNCS, Springer, 2000.

[7] X. Leroy, D. Doligez, J. Garrigue, D. Rémy and J. Vouillon, The Objective Caml System, INRIA,
http://caml.inria.fr/, 2000, Version 3.00.

134 J.D. Guttman et al. / Verifying information flow goals in Security-Enhanced Linux

[8] P. Loscocco and S. Smalley, Integrating flexible support for security policies into the Linux operating
system, in: Proceedings of the FREENIX Track of the 2001 USENIX Annual Technical Conference,
2001.

[9] P. Loscocco and S. Smalley, Meeting critical security objectives with security-enhanced Linux, in:
Proceedings of the 2001 Ottawa Linux Symposium, 2001.

[10] P.A. Loscocco, S.D. Smalley, P.A. Muckelbauer, R.C. Taylor, S.J. Turner and J.F. Farrell, The in-
evitability of failure: The flawed assumption of security in modern computing environments, in:
Proceedings of the 21st National Information Systems Security Conference, 1998, pp. 303–314.

[11] National Security Agency, Security-enhanced Linux, At URL http://www.nsa.gov/selinux/index.
html, April 2003.

[12] NuSMV: a new symbolic model checker, URL http://sra.itc.it/tools/nusmv, 2001.

[13] A.W. Roscoe and M.H. Goldsmith, What is intransitive noninterference? in: 12th IEEE Computer
Security Foundations Workshop, IEEE Computer Society, 1999, pp. 228–238.

[14] A. Sabelfeld and A.C. Myers, Language-based information-flow security, IEEE Journal on Selected
Areas in Communication 21(1) (2003), 5–19.

[15] J.C. Wray, An analysis of covert timing channels, in: Proceedings, 1991 IEEE Symposium on Re-
search in Security and Privacy, IEEE Computer Society, 1991, pp. 2–7.

