
Newcastle University e-prints  

Date deposited:  4th
 April 2011 

Version of file:  Author final 

Peer Review Status: Peer reviewed 

Citation for item: 

Iliasov A, Troubitsyna E, Laibinis L, Romanovsky A, Varpaaniemi K, Vaisanen P, Ilic D, Latvala T. 

Verifying Mode Consistency for On-Board Satellite Software. In: E. Schoitsch (Ed.): SAFECOMP 2010, 

LNCS 6351, pp. 126–141, 2010 

Further information on publisher website: 

http://www.springerlink.com 

Publisher’s copyright statement: 

The original publication is available at www.springerlink.com at the following link: 

http://dx.doi.org/10.1007/978-3-642-15651-9_10 

Always use the definitive version when citing.   

Use Policy: 

The full-text may be used and/or reproduced and given to third parties in any format or medium, 

without prior permission or charge, for personal research or study, educational, or not for profit 

purposes provided that: 

• A full bibliographic reference is made to the original source 

• A link is made to the metadata record in Newcastle E-prints 

• The full text is not changed in any way. 

The full-text must not be sold in any format or medium without the formal permission of the 

copyright holders. 

 

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.  

NE1 7RU.  Tel. 0191 222 6000 



Verifying Mode Consistency for On-Board

Satellite Software

Alexei Iliasov1, Elena Troubitsyna2, Linas Laibinis2, Alexander Romanovsky1,
Kimmo Varpaaniemi3, Pauli Väisänen3, Dubravka Ilic3, and Timo Latvala3

1 Newcastle University, UK
2 Åbo Akademi University, Finland

3 Space Systems Finland
{alexei.iliasov, alexander.romanovsky}@ncl.ac.uk

{linas.laibinis, elena.troubitsyna}@abo.fi
{Dubravka.Ilic, Timo.Latvala, Kimmo.Varpaaniemi, Pauli.Vaisanen}@ssf.fi

Abstract. Space satellites are examples of complex embedded systems.
Dynamic behaviour of such systems is typically described in terms of op-
erational modes that correspond to the different stages of a mission and
states of the components. Components are susceptible to various faults
that complicate the mode transition scheme. Yet the success of a mission
depends on the correct implementation of mode changes. In this paper
we propose a formal approach that ensures consistency of mode changes
while developing a system architecture by refinement. The approach re-
lies on recursive application of modelling and refinement patterns that
enforce correctness while implementing the mode transition scheme. The
proposed approach is exemplified by the development of an Attitude and
Orbit Control System undertaken within the ICT DEPLOY project.

1 Introduction

Operational modes – mutually exclusive sets of the system behaviour [13] – form
a useful structuring concept that facilitates the design of complex systems in
different industrial sectors, including avionic, transportation and space. There
are several well-known problems associated with mode-rich systems, e.g., cor-
rectness of complex mode transitions, mode consistency in distributed systems,
mode confusion etc. However, there is still a lack of generic architectural-level
approaches that would facilitate solving these difficult problems.

In this paper we propose a formal approach to developing complex mode-rich
systems that allows us to ensure mode consistency. The approach generalizes the
results of a large pilot development carried out by Space Systems Finland within
the FP7 ICT project DEPLOY [11]. In collaboration with the academic partners
the company has undertaken formal development and verification of (a part of)
a satellite Attitude and Orbit Control System (AOCS) [6].

AOCS is a typical representative of mode-rich component-based control sys-
tems. It consists of several instruments that control the attitude and the orbit of
a satellite as well as perform different scientific measurements. The distinctive
features of the system are long-running mode transitions and strong impact of
component failures on the mode transition scheme.



!"#$%&'(')$*%

+!!,

-./&"#$%

&'(')$*%

+-!!01,

-./&"#$%

&'(')$*%

+-!!02,

-./&"#$%

&'(')$*%

+-!!0(,

!"#$%& !"#$%' !"#$%(

)))

)))

)))

*#+,$-./01+

2134"5-./01+

6471,$-./01+

))) )))))))))

Fig. 1. Architecture of mode-rich layered systems

In this paper we formalize the reasoning about mode consistency in lay-
ered mode-rich systems. As a result, we propose a generic pattern for specifying
components of such systems. This pattern defines a generic module interface that
can be instantiated by component-specific data and behaviour. We demonstrate
that such systems can be developed by recursive instantiation of the proposed
pattern. Our approach can be also seen as stepwise unfolding of architectural
layers. The approach is illustrated by briefly describing the AOCS development.

2 Layered Mode-Rich Systems

It is recognized that a layered architecture is advantageous in designing complex
component-based systems [16]. It provides the designers with a convenient mech-
anism for structuring system behaviour according to the identified abstraction
levels. The lowest layer usually consists of the components that work directly
with hardware devices. The layer above contains the components encapsulat-
ing the lowest components by providing abstract interfaces to them. Depending
on system complexity and design decisions, there might be several intermediate
layers. Finally, the top component provides an interface to the overall system.

In this paper we study the issues in designing and verifying layered mode-
rich control systems. Leveson et al. [13] define mode as a mutually exclusive set
of system behaviours. There is a large variety of mode-rich systems, including
control systems that cyclically monitor the controlled environment. Here we focus
on one particular aspect of the control system behaviour – mode management.

2.1 Mode Logic in Layered Architectures

In the core of mode management is the mode logic that consists of all the avail-
able modes and rules for transitioning between them [13]. The typical problem
associated with mode-rich systems is to ensure mode consistency of the com-
ponents residing at different layers, i.e., to correctly define the mode logic and
guarantee that the system faithfully implements it. The (somewhat simplified)
architecture of mode-rich layered systems is shown in Figure 1.

On the top layer is Mode Manager (MM) – the component implementing the
mode logic on the system level. We assume that during its mission the system
should execute a certain scenario defined in terms of its (global) modes. On
the one hand, the MM mode logic is defined by this scenario. On the other
hand, component failures can prevent the system from implementing the mode
scenario and force it to redo certain steps. Hence, to fully define the mode logic,
we should take into account both the component states and their possible errors.



The coarse-grained global modes allow us to represent the system-level mode
logic as a process of instantaneous change from one mode to another. In reality,
a mode transition may involve certain physical processes and hence have a du-
ration. Indeed, to make a transition from the current to a new target mode, the
system should bring all the involved components into the consistent states for
entering the target mode. Therefore, while nominally being in one global mode,
the system can be in two different states – stable and transitional.

WhenMM chooses a new target mode, it initiates (sequentially or in parallel)
the corresponding mode transitions in lower layer components. As a result, the
Submode Managers (SMMs) start to execute their own predefined scenarios to
enable the global mode transition. Essentially, the behaviour of SMMs is similar
to the behaviour of MM, i.e., while executing these scenarios they monitor the
state of lower layer components to detect when the submode change is completed
or an error has occurred. This allows us to define mode managers at different
layers by instantiating the same generic specification pattern, as we show later.

If an error is detected, the responsible mode manager assesses the error and
either initiates error recovery by itself or propagates the error to a higher layer.
In mode-rich systems, error recovery is often implemented as a rollback to some
preceding (and usually more degraded) mode in the predefined scenario.

The dynamic behaviour of the overall system is cyclic. At each cycle, MM
assesses the SMM states and, based on these observations, it either

– initiates a forward transition according to the predefined scenario;
– initiates a backward transition (if error(s) has occurred). The actual target

mode depends on severity of the occurred error(s);
– completes a transition to the target mode and becomes stable (if the condi-

tions for entering the target mode are satisfied);
– maintains the current mode (if neither the conditions for entering the next

global mode are satisfied nor an error has occurred).

While the system is recovering from one error, another error requiring a different
mode transition might occur. Due to a large number of components and their
failure modes, ensuring mode consistency becomes especially difficult. Next we
define the mode consistency criteria for layered control systems more formally.

2.2 Formal Reasoning about Modes and Mode Transitions

Essentially, a mode can be understood as an abstraction of the system state, i.e.,
the class of states associated with a certain system functionality. The mode logic
is usually defined as a set of all the modes and mode transition rules [13]. Thus
we can consider it as a special kind of a state transition system or, formally, as
a triple (Modes,Next, InitMode), where Modes is a set of all possible modes of
the system, Next is a relation on Modes, containing all allowed mode transitions,
and InitMode is the initial mode. Since Next is a relation, it can contain several
predefined scenarios that can be executed by a mode manager.

Sometimes Next can be defined more precisely as an ordering relation. Indeed,
some predefined scenarios define how to take a system from a non-operational
mode (e.g., Off ) to a fully operational one. The predefined scenario of the AOCS
system presented in Section 5 is a typical example of this. This scenario describes



the sequence of modes from powering-on the instruments to bringing them into
the mode that enables collection of valuable scientific data.

While Next is based on the predefined scenario(s), the mode transitions exe-
cuted as error recovery are governed by the function Mode error handling:

Mode error handling : MState× (LocalErrors1 × ...× LocalErrorsk) → Modes

where MState is the component state and LocalErrors1...LocalErrorsk are all the
errors detected by lower layer components in the previous cycle. The function
defines the mode to which the system should rollback to execute error recovery.
The current and new modes should belong to the transitive closure of Next .

However, Next represents only a possibility of mode transitions. For a mode
transition to be completed, certain mode entry conditions should be satisfied.
We can formally define this by introducing a function Mode ent cond of the type:

Mode ent cond : Modes → P(MState×LocalModes1 × · · · ×LocalModesk) (1)

where LocalModes1, .., LocalModesk are modes of the monitored components. For
each (global) mode, the function returns a set of the allowed combinations of
the component state and the monitored local modes. Here we assume that the
local modes belong to the externally visible state of those components.

The mode entry conditions can be recursively constructed throughout the
entire architecture for each pair of a mode manager component and a mode.
We also use Mode ent cond to determine which components are affected when
a mode manager initiates a new mode transition, i.e., to which components it
should send the corresponding (local mode) transition requests.

To guarantee that the mode logic is unambiguous, we have to ensure that a
component can be only in one mode at a time, i.e., the mode entry conditions
for different modes cannot overlap:

∀i, j • Mi ∈ Modes ∧ Mj ∈ Modes ∧ i 6= j ⇒

Mode ent cond(Mi) ∩Mode ent cond(Mj) = ∅ (2)

Overall, the definition (1) and the property (2) define mode consistency condi-
tions that should be guaranteed for each mode manager of a system.

Let us now address another important issue in designing mode-rich systems
– ensuring mode invariants. These are system properties that are required to be
preserved in each particular mode. However, in the systems where mode transi-
tions take time and can be interrupted by errors, this is not a straightforward
task. To tackle it, let us define the following attributes of a mode manager:

– last mode – signifies the last successfully reached mode;
– next target – signifies the target mode that a component is currently in

transition to;
– previous target – signifies the previous mode that a component was in tran-

sition to (though it has not necessarily reached it).

Collectively, these three attributes unambiguously describe the actual mode of
a mode manager. Based on them, we define the notion of component status that
might be either Stable, Decreasing or Increasing as follows:

– Stable , last mode = previous target ∧ next target = previous target

a component is maintaining the last successfully reached mode



– Increasing , last mode = previous target ∧ previous target < next target

a component is in transition to a next, more advanced mode;
– Decreasing , next target < previous target

component stability or a mode transition to previous target was interrupted
(e.g., by error handling) by a new mode request to a more degraded mode.

A graphical diagram showing mode status changes is given in Figure 2.

!"#$%&

'()*

+&)*

',-.

)/0123.34

*35637.

*35637.

*35637.

Fig. 2. Component mode status

We assume that, when a mode transition is completed, the component status
is changed to Stable. The mode manager MM will maintain this status only if
the final mode(s) of the scenario (defined by Next) is reached. On the lower
layers, mode managers (SMMs) will maintain their stability until receiving a
request for a new mode transition. In its stable state, MM would change its
status to Increasing to execute the next step of the mode scenario, which in turn
would trigger the corresponding mode transitions of the lower layer components.
Irrespectively of the component status, an occurrence of an error would result in
changing it to Decreasing that designates a rollback in the predefined scenario.

Now we can formally connect the mode status and a mode invariant. When
a mode manager is stable, the mode entry condition is a mode invariant, i.e.,

∀i• mi ∈ Modes ∧ last mode = Mi ∧ Stable ⇒ (s, l1, ..., lk) ∈ Mode ent cond(Mi)

where s : MState is the current state, and l1, ..., lk are the visible local modes.
The other mode invariants are also preserved when a component is stable:

∀i • mi ∈ Modes ∧ last mode = Mi ∧ Stable ⇒ Mode Inv(Mi)

Hence, in general, mode invariant properties are not preserved while a mode
manager is engaged in a mode transition.

The discussion above sets the general guidelines for defining mode man-
agers in layered mode-rich systems. While specifying a particular mode man-
ager, we instantiate the abstract data structures Modes, Next, Mode ent cond,
and Mode error handling and ensure that

R1 In a stable state, the mode manager makes its decision to initiate a new mode
transition to some more advanced mode according to the relation Next;

R2 In a transitional state, the mode manager monitors the state of lower layer
components. When Mode ent cond(next target) becomes satisfied for the lo-
cal state and the submodes of monitored components, the mode manager
completes the mode transition and becomes stable;

R3 In both stable and transitional states, the mode manager monitors the lower
layer components for the detected errors. If such errors occurred in the last
cycle, the mode manager makes its decisions based on Mode error handling,
which is applied to the mode manager state and all the detected errors.

In Section 4 we will show how these guidelines can be implemented in the pro-
posed formal specification and development patterns.



3 Event B

Our chosen formal specification framework – Event B – allows us to model and
verify state transition systems. Since it relies on theorem proving rather than
model checking, it scales well to reasoning about systems with large state space.

3.1 Modelling and Refinement in Event B

The Event B framework [2] is an extension of the B Method [1]. The framework
enables modelling of event-based (reactive) systems by incorporating the ideas
of the Action Systems formalism [3]. Event B is actively used within FP7 ICT
project DEPLOY to develop dependable systems from various domains.

The Event B development starts from creating a formal system specification.
A simple Event B specification has the following general form:

Such a specification encapsulates a local state (model variables) and provides
operations on the state. The operations (called events) can be defined as

ANY vl WHERE g THEN S END

where vl is a list of new local variables, the guard g is a state predicate, and the
action S is an assignment on model variables. In case when vl is empty, the event
syntax becomes WHEN g THEN S END. Both ordinary and non-deterministic as-
signments can be used to specify state change. The non-deterministic assign-
ments are of the form v : | Post(v, v′), where Post is the postcondition relating
the variable values before and after the assignment.

The events describe system reactions when the given WHEN or WHERE condi-
tions are satisfied. The INVARIANT clause contains the properties of the system
(state predicates) that should be preserved during system execution. The model
data types and constants are defined in a separate component called Context.

To check consistency of an Event B machine, we should verify two types of
properties: event feasibility and invariant preservation. Formally,

Inv(v) ∧ ge(v) ⇒ ∃v′. Poste(v, v
′)

Inv(v) ∧ ge(v) ∧ Poste(v, v
′) ⇒ Inv(v′)

The main development methodology of Event B is refinement – the process
of transforming an abstract specification to gradually introduce implementation
details while preserving its correctness. Refinement allows us to reduce non-
determinism present in an abstract model as well as introduce new concrete
variables and events. The connection between the newly introduced variables
and the abstract variables that they replace is formally defined in the invariant
of the refined model. For a refinement step to be valid, every possible execution of
the refined machine must correspond to some execution of the abstract machine.

The consistency of Event B models as well as correctness of refinement steps
should be formally demonstrated by discharging proof obligations. The Rodin



platform[19], a tool supporting Event B, automatically generates the required
proof obligations and attempts to automatically prove them. Sometimes it re-
quires user assistance by invoking its interactive prover. However, in general the
tool achieves high level of automation (usually over 90%) in proving.

3.2 Modelling modular systems in Event B

Recently the Event B language and tool support have been extended with a
possibility to define modules [10, 15] – components containing groups of callable
operations. Modules can have their own (external and internal) state and the
invariant properties. The important characteristic of modules is that they can
be developed separately and, when needed, composed with the main system.

A module description consists of two parts – module interface and module
body. Let M be a module. A module interface MI is a separate Event B compo-
nent. It allows the user of module M to invoke its operations and observe the
external variables of M without having to inspect the module implementation
details. MI consists of external module variables w, constants c, and sets s, the
external module invariant M Inv(c, s, w), and a collection of module operations,
characterised by their pre- and postconditions, as shown below.

A module development always starts with the design of an interface. Once
an interface is defined, it cannot be altered in any manner. This ensures correct
relationships between a module interface and its body. A module body is an
Event B machine, which implements each interface operation by a separate group
of Event B events. Additional proof obligations guarantee that each event group
faithfully implement the corresponding pre- and postconditions.

When the module M is ”included” into another Event B machine, the in-
cluding Event B machine can invoke the operations of M as well as read all
the external variables of M. Several instances of the same module operating on
disjoint state spaces can be created. Moreover, module abstract types and con-
stants, defined in the interface context, can be instantiated with concrete data.

The modularisation extension of Event B was motivated by the pilot deploy-
ment of a satellite system within the DEPLOY project [11]. The extension was
needed not only to enable architectural level reasoning but also to significantly
improve scalability of Event B. As we show next, the modularisation extension
also facilitates modelling and verification of layered mode-rich systems.

4 Development pattern

In this section we propose a formal development pattern for layered mode-rich
systems in the Event B framework. This pattern is based on formal reasoning
about modes and mode transitions presented in Section 2.



INTERFACE Mode Manager

SEES Mode Manager Context (* introduces abstract Modes, Errors, and Next *)
VARIABLES last mode, next target, (* list of external variables of a module *)

previous target, error

INVARIANTS

types of external variables
other invariant properties

OPERATIONS RunStable =
PRE

SetTargetMode = Component is stable and not failed
ANY m POST

PRE Component either remains stable
Component has not failed or changes its mode according to the scenario
m is a new target mode or raises the error flag

POST

new target mode is set RunNotStable =
PRE

ResetError = Component is in a mode transition
PRE POST

the error flag is raised A mode transition is completed
POST or a mode transition continues

the error flag is cleared or the error flag is raised

Fig. 3. Interface of a generic mode manager

4.1 Generic interface

As discussed earlier, the structure and behaviour of mode managers at different
layers are very similar. This suggests the idea of modelling such a component
as a generic module that can be adapted to different contexts by instantiating
its generic parameters. In Event B, we can formalise this by first creating a
generic module interface that can be later implemented in different ways, thus
creating implementations of specific mode managers. The proposed interface
contains four operations that can be called from a higher layer. It also defines
the external module variables that are visible from a calling component. An
informal description of the interface pattern is given in Figure 3.

The external state of a component is formed by four variables – last mode,

next target, previous target and error. The first three variables define the compo-
nent mode status, while the last one models the currently detected errors. More-
over, the interface context introduces the abstract sets Modes and Errors, and
the abstract functions Next and Mode error handling. These structures should
be instantiated with concrete data when a module instance is created. If Next

is a partial order, its required properties are also checked during instantiation.

The operation SetTargetMode is called to set a new target mode, while
ResetError is called after the detected errors are handled by an upper layer
component (e.g., by initiating the appropriate error recovery).

Since the behaviour of the overall system is cyclic, we assume that within the
cycle the control is passed from layer to layer to each component. The operations
RunStable and RunNotStable model component behaviour when it receives the
control while being correspondingly in a stable or a transitional state. The actual
state is unambiguously determined by the external mode status variables.

Let us now show that our interface pattern follows the guidelines of Section
2. The requirement (R1) stipulates the use of the predefined scenario Next in
a stable state. In the presented interface, this requirement is incorporated into
the postcondition of RunStable. The requirement (R2) prescribes the use of
Mode ent cond to monitor whether the current mode transition has succesfully
completed. The requirement is a part of the postcondition of RunNotStable.



!"#$%&"'(")*+*

,*-&")%&.*.&&/*-,..$"0*11*&"-(*/(%*-2-.(

!"#$%!&'&($)

*($'$)+,%+'-$).&,$/
!"'+-")012&330

!"#$%!&'&($)

*4"#5/
6783$7$'-0

!"#$%!&'&($)

*)$9'$7$'-/

:$9'$0

!"#$%!&'&($)

*)$9'$7$'-/

:$9'$0

;<47"#$%

!&'&($)=>

*($'$)+,%+'-$).&,$/

;<47"#$%

!&'&($)=?

*($'$)+,%+'-$).&,$/

!"'+-")012&330

;<47"#$%

!&'&($)=?

*4"#5/6783$7$'-0

;<47"#$%

!&'&($)=?

*4"#5/ 6783$7$'-0

:$9'$0 :$9'$0

Fig. 4. Development hierarchy

Finally, the requirement (R3) calls for Mode error handling to be used when,
upon detection of error(s), a new mode request has to be sent to lower layers.
This requirement is defined in terms of the component state and the modes of
lower layer components, i.e., in terms of two adjacent layers. This requirement
can only be demonstrated during refinement, i.e., when lower layer components
are introduced. Nevertheless, even in the generic pattern we require that imple-
mentations of RunStable and RunNotStable have to use this function to assess
the errors flagged by the lower layer components.

All the operations update the variables last mode, next target, previous target

to reflect the changing mode status. Due to a lack of space, we postpone pre-
senting all formal details of the interface specification pattern until Section 5,
where we discuss modelling of AOCS.

4.2 Refinement strategy

In general, refinement process aims at introducing implementation details into
an abstract system specification. However, in this paper we demonstrate that
refinement can also be used to incrementally build the system architecture. This
is especially well-suited for layered control systems, where refinement can be
used to gradually unfold system layers by using the predefined specification and
refinement patterns [12]. Indeed, the generic interfaceMMC I that we described
above can be seen as an abstract representation of the top level interface of a
mode-rich system. Yet it can also be seen as an interface of any mode manager at
a lower layer. Therefore, by instantiating MMC I with the mode logic specific
for a particular mode manager, we can obtain a mode manager of any layer.
Hence our development strategy can be seen as a process of introducing specific
module types into an Event-B development, as shown in Figure 4.

We assume that the system executes cyclically, with the environment peri-
odically invoking the top mode manager. In its turn, it calls lower layer mode
managers. This behaviour is recursively repeated throughout the hierarchy.

The refinement process starts by instantiating the top level mode manager
interface with the global mode logic. The body of the obtained mode manager
can be further developed by refinement. This is similar to building a normal
refinement chain although the starting point is an interface rather than an ab-
stract machine. At some point of our development, a number of lower layer
mode managing components that the mode manager controls are introduced.
This refinement step essentially introduces calls to the corresponding interface



operations of these submode managers. At the same time, the submodes and
errors of the lower layer become visible for the mode manager. Hence we can
define the mode consistency conditions as additional invariants that are verified
in this refinement step. In a similar way we handle errors of new components.

On the architectural level, such a refinement step corresponds to unfolding
one more layer of the system hierarchy. From this point, we can focus on refining
bodies of the introduced submode managers. These bodies would implement
their own mode logics and also, if needed, call operations of the mode managers
residing on the layer below. Hence we follow the same refinement pattern as
before, unfolding the architectural layers until the entire hierarchy is built.

The main strength of our development is that we ensure global mode con-
sistency by simply conjuncting the mode linking conditions introduced at each
level. Hence, despite a strict hierarchical structure, there is a simple procedure
for enforcing conformance of mode changes for any two or more components
of a system. We avoid reasoning about the entire global mode consistency and
instead enforce by refinement mode consistency between any two adjacent layers.

Our approach allows us to design a layered mode-rich system in a disciplined
structured way. It makes a smooth transition from architectural modelling to
component implementation, yet ensuring the overall mode consistency. This ap-
proach generalizes our experience in developing AOCS [6], presented next.

5 Case study – Attitude and Orbit Control System

The Attitude and Orbit Control System (AOCS) is a generic component of satel-
lite onboard software, the main function of which is to control the attitude and
the orbit of a satellite. Due to a tendency of a satellite to change its orientation
because of disturbance from the environment, the attitude needs to be contin-
uously monitored and adjusted. An array of sensors provide the information
required to compute corrective commands and issue them to the actuators. An
optimal attitude is needed to support the needs of payload instruments.

The AOCS architecture is an instance of a layered architecture shown in
Figure 1. On the highest layer is Mode Manager (MM). It controls Unit Man-
ager (UM), which, in its turn, is responsible for a number of hardware units.
The AOCS system has seven units – four sensors (Star tracker, Sun Sensor,
Earth Sensor and Global Positioning system), two actuators (Reaction Wheel
and Thruster), and one payload instrument producing mission measurements.
UM provides a generic interface to units. It hides from MM the number and
types of units, while monitoring their states, modes and error flags. MM is re-
sponsible for implementing the AOCS mode logic. The predefined mode scenario
defines the sequence of steps needed to reach the state where the payload instru-
ment is ready to perform its tasks. This sequence includes the following modes:

– Off – The satellite is typically in this mode right after system (re)booting;
– Standby – This mode is maintained until separation from the launcher;
– Safe – A stable attitude is aquired, which allows the coarse pointing control;
– Nominal – The satellite is trying to reach the fine pointing control which is

needed to use the payload instrument;
– Preparation – The payload instrument is getting ready;
– Science – The payload instrument is ready to perform its tasks. The mission

goal is to reach this mode and stay in it as long as needed.



Mode Manager While modelling AOCS, we assume that there is a cyclic
scheduler that invokes MM at each execution cycle. Our generic specification
template for defining the interface of a mode manager is shown in Figure 5.

INTERFACE Mode Manager

. . .

INVARIANT

. . .

next target = previous target =⇒ next target = last mode

next target 6= previous target =⇒
next target 7→ previous target ∈ Next ∧ previous target 7→ next target ∈ Next

last mode 7→ previous target ∈ Next ∪ Next−1

last mode 7→ next target ∈ Next ∪ Next−1

OPERATIONS

SetTargetMode(r) = ANY m

PRE

error = NoError ∧ m ∈ MODES ∧ m 6= next target ∧ m 7→ next target ∈ Next ∪ Next−1

POST

r′ = last mode ∧ previous target′ = next target ∧ next target′ = m

ResetError(r) = PRE error 6= NoError POST r′ = last mode ∧ error′ = NoError

RunStable(r) = PRE next target 6= previous target ∧ error = NoError

POST

r′ = last mode ∧ error′ ∈ ERROR ∧ previous target 7→ next target′ ∈ Next ∪ Next−1

RunNotStable(r) = PRE next target = previous target ∧ error = NoError

POST

r′ = last mode ∧ error′ ∈ ERROR∧

(last mode′ 7→ next target ∈ Next ∪ Next−1 ∧ next target′ = next target∧

previous target′ = previous target) ∨ (next target′ = next target∧

previous target′ = next target ∧ last mode′ = previous target′)

Fig. 5. Specification of the Mode Manager Interface (an excerpt)

The first refinement step of MM is an abstract implementation of the interface
operations. At this stage, the operations ResetError and SetTargetMode are
each refined by single events. RunStable and RunNotStable have more complex
postconditions and thus have to be represented by several events. The operation
RunStable is realised by three events: an event for successful cycle (run success),
an event for mode advance (run mode scenario), and an event modelling error
handling (run failure).

run success = WHERE

next target = previous target

error = NoError

THEN

WorkCycle r := last mode

run failure = WHERE

next target = previous target

error = NoError

THEN

WorkCycle r := last mode

error : | error′ 6= NoError

run mode scenario = ANY m

WHERE

next target = previous target

error = NoError ∧m ∈ MODES

previous target 7→ m ∈ Next ∪Next−1

THEN

WorkCycle r := last mode

next target := m

Likewise, RunNotStable is implemented by the events modelling situations when
no mode advance happens, when the mode advances but the target mode has
not been reached and, finally, when the target has been successfully reached.

In addition to some preparatory steps towards integration with UM, the
next refinement step also specifies the predefined mode scenario enforced by
MM. The scenario is defined as a constant relation on modes such that the Next

relation a transitive closure of it. The constant function Scenario defines a linear
progression of modes from Off to Science. The axioms connecting Scenario with
the relation Next are necessary to demonstrate correctness of the refinement
step. The event run mode scenario uses Scenario to select the next mode.



Integration with the Unit Manager is the most complex refinement step in our
development. Since we want to build a model adaptable to various hardware
configurations, the UM interface comes in a parameterised form: some of its sets
and constants may be instantiated at the point of composition. Instantiation ex-
amples for the correspondence relation between MM and UM modes (um mode)
and the UM mode scenario (um Scenario) are given below:

Here and further, um is a module instantiation prefix, i.e., all the constants,
sets and variable starting with um are a part of this particular module.

The UM linking invariant presented below specifies that the modes of UM
andMM are in the correspondence relation defined during the UM instantiation.
The last condition also states that there may be periods when the UM error flag
is set but MM has not yet decided about its recovery actions. This allows the
Mode Manager to mask errors by recovering locally rather than propagating an
error. The module instantiation data and the correspondence relation together
define the mode consistency conditions.

Further refinement steps of the MM module introduce the control loop that
queries the sensors and sends commands to the actuators.

Unit Manager UM is a generic module that can be configured during instanti-
ation to any required hardware set-up. Having a parameterised interface allows a
modeller to prove stronger properties by providing additional information during
composition. In the case of UM, the parameters are Modes and Next.

Since we are applying the same development template once again, the general
development strategy is similar to the one of MM, e.g., the initial refinement
steps are done to prepare for integration with unit modules. The instantiation
and linking invariants of the units modules have a similar structure as well.

In our AOCS development generic specification and refinement patterns (pro-
posed in Section 4) were applied several times to construct each major part of
the system. The modelling was carried out in the Rodin Platform [19], extended
by the modularisation plug-in [15]. The respective proof obligations were dis-
charged using a collection of the provided automated theorem provers with a
small number of interactive proofs. Full Event B models can be found in [9].

6 Related Work

Formal validation of the mode logic and, in particular, fault tolerance mecha-
nisms of satellite software has been undertaken by Rugina et al [17]. They have
investigated different combinations of simulation and model checking. In gen-
eral, simulation does not allow the designers to check all execution paths, while



model checking often runs into the state explosion problem. To cope with these
problems, the authors had to experiment with combination of these techniques
as well as heavily rely on abstractions. Our approach is free from these problems.
First, it allows the developers to systematically design the system and formally
check mode consistency within the same framework. Second, it enables exhaus-
tive check of the system behaviour, yet avoiding the state explosion problem.

The mode-rich systems have been studied to investigate the problem of mode
confusion and automation surprises [4, 18]. These studies conducted retrospec-
tive analysis of mode-rich systems to spot the discrepancies between the actual
system mode logic and the user mental picture of the mode logic. Most of the
approaches relied on model-checking [4, 8, 18], while [5] relied on theorem prov-
ing in PVS. Our approach focuses on designing fully automatic systems and
ensuring their mode consistency. Unlike [8], in our approach we also emphasize
the complex relationships between system fault tolerance and the mode logic.

In our previous work [7], we have studied a problem of specifying mode-rich
systems from the contract-based rely-guarantee perspective. These ideas have
been further applied for fault tolerance modes [14]. According to this approach,
a mode-centric specification of the system neither defines how the system oper-
ates in some specific mode nor how mode transitions occur. It rather imposes
restrictions on concrete implementations. In this paper we have demonstrated
how to combine reasoning about the system mode logic and its functioning.

7 Conclusions

In this paper we have proposed a formal approach to development of mode-rich
layered systems. It is based on instantiation and refinement of a generic speci-
fication pattern for a mode manager. The pattern defined as a generic module
interface captures the essential structure and behaviour of a component and
can be instantiated by component specific data to model a mode manager at
any layer of the system hierarchy. The overall process can be seen as a stepwise
unfolding of architectural layers. Each such unfolding is accompanied by prov-
ing its correctness, while also verifying mode consistency between two adjacent
layers. Such an incremental verification allows us to guarantee the global mode
consistency, yet avoid checking the property for the whole architecture at once.

The generic specification pattern relies on our formalisation of reasoning
about systems with non-instantaneous mode transitions, the mode logic of which
is also integrated with error recovery. The formalisation of what constitutes mode
consistency and mode invariance properties together with establishing precise
relationships between error recovery and the mode logic allowed us to derive
design guidelines and logical constraints for components of mode-rich systems.

Our approach has been used in the development of AOCS. The approach
has demonstrated good potential for facilitating design of complex mode-rich
systems. Moreover, its support for formulating and verifying mode invariants
has been especially appreciated in the industrial settings, since these invariants
can be directly translated into assertions on the code level.

We are planning to further develop the proposed approach to enable reason-
ing about mode consistency in the presence of dynamic reconfiguration. More-
over, it would be also interesting to investigate how the mode ordering properties
(when applicable) are inter-related with mode consistency.



Acknowledgments

This work is supported by the FP7 ICT DEPLOY Project and the EPSRC/UK
TrAmS platform grant.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial. Modelling in Event-B. Cambridge University Press, 2010.
3. R. Back and K. Sere. Superposition refinement of reactive systems. Formal Aspects

of Computing, 8(3), pp.1-23, 1996.
4. B. Buth. Analysing mode confusion: An approach using fdr2. In Proceedings of

SAFECOMP, pages 101–114. Springer, LNCS, Vol. 3219, 2004.
5. R. W. Butler. An introduction to requirements capture using PVS: Specification

of a simple autopilot. Technical report, NASA TM-110255, May 1996.
6. DEPLOY Deliverable D20 – Report on Pilot Deployment in the Space Sector. FP7

ICT DEPLOY Project. January 2010. Online at http://www.deploy-project.eu/.
7. F. Dotti, A. Iliasov, L. Ribeiro, and A. Romanovsky. Modal Systems: Specification,

Refinement and Realisation. Conference on Formal Engineering Methods - ICFEM
09, Rio de Janeiro, Brazil. Springer, LNCS, Vol. 5885, December 2009.

8. M. Heimdahl and N. Leveson. Completeness and Consistency in Hierarchical State-
Based Requirements. IEEE Transactions on Software Engineering, Vol.22, No.6,
pp. 363-377, June 1996.

9. A. Iliasov, L. Laibinis, and E. Troubitsyna. An Event-B model of the Attitude and
Orbit Control System. http://deploy-eprints.ecs.soton.ac.uk/.

10. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic,
and T. Latvala. Supporting Reuse in Event B Development: Modularisation Ap-
proach. In Proceedings of Abstract State Machines, Alloy, B, and Z (ABZ 2010),
Lecture Notes in Computer Science, Vol.5977, pp. 174-188, Springer, 2010.

11. Industrial deployment of system engineering methods providing high dependability
and productivity (DEPLOY). IST FP7 project, http://www.deploy-project.eu/.

12. L. Laibinis and E. Troubitsyna. Fault tolerance in a layered architecture: a gen-
eral specification pattern in B. In Proc. of the 2nd Int. Conference on Software
Engineering and Formal Methods (SEFM), Beijing, pp. 346-355, IEEE Press, 2004.

13. N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese. Analyzing
Software Specifications for Mode Confusion Potential. In Proc. of Workshop on
Human Error and System Development, pg. 132-146, Glasgow, Scotland, 1997.

14. I. Lopatkin, A. Iliasov, and A. Romanovsky. On fault tolerance reuse during re-
finement. In Proc. of 2nd International Workshop on Software Engineering for
Resilient Systems, April 2010.

15. RODIN modularisation plug-in. Documentation at http://wiki.event-
b.org/index.php/Modularisation Plug-in.

16. B. Rubel. Patterns for Generating a Layered Architecture. In J.O. Coplien, D.C.
Schmidt (Eds.), Pattern Languages of Program Design, Addison-Wesley, 1995.

17. A. E. Rugina, J. P. Blanquart, and R. Soumagne. Validating failure detection
isolation and recovery strategies using timed automata. In Proc. of 12th European
Workshop on Dependable Computing, EWDC 2009, Toulouse, 2009.

18. J. Rushby. Using model checking to help discover mode confusion and other au-
tomation suprises. In Reliability Engineering and System Safety, Vol.75, pages
167–177, 2002.

19. The RODIN platform. Online at http://rodin-b-sharp.sourceforge.net/.


