
Verifying Multicast-Based Security Protocols
Using the Inductive Method

Jean E. Martina ? and Lawrence C. Paulson

Computer Laboratory
University of Cambridge
William Gates Building
15 JJ Thomson Avenue

Cambridge - United Kingdom
CB30FD

Jean.Martina@cl.cam.ac.uk, lp15@cam.ac.uk

Abstract. Multicast, originally designed as an efficient way of broad-
casting content, is increasingly used in security protocols. Multicast se-
curity protocols are difficult to verify using model checking because they
typically involve a large number of participants and because of the ex-
ponentially growth of knowledge distribution. Multicast is a general way
of representing message casting in protocol verification, with Unicast,
Anycast and Broadcast as special cases. Using the inductive method of
protocol verification and Isabelle/HOL, we have devised techniques for
specifying multicast protocols and proving many of their essential prop-
erties. We show secrecy proofs for a mixed environment protocol.

1 Introduction

Multicast was initially advertised as a scheme for better network resources usage
[24] and for maximising user experience when receiving content that could be
replicated. Although Multicast is a reality today, its application remains limited
by these initial assumptions. Multicast has seen increasing interest from the
security community, initially with protocols for secure content delivery [10, 23]
trying to address specific multicast problems and later in protocols that involve
Byzantine Agreement [19] taking advantage of the message casting framework.

Multicast is versatile and can be seen as the basic building block of other
common message casting frameworks. Once the complexity of specifying proper-
ties such as reliability can be addressed for a multicast framework, its application
for other message casting frameworks is generally straightforward.

New security protocols are based on unicast, multicast, broadcast and a mix-
ture of the modes. We can cite examples: protocols to assure secrecy on one-to-
many communications [15], to guarantee authenticity in one-to-many communi-
cations [13, 26], and for key distribution in one-to-many communications [8, 16].
Some protocols deal with novel security goals such as Byzantine agreement [17,
27], multi-party computation [9] and digital-rights management [23].
? Supported by CAPES Foundation/Brazil on grant #4226-05-4

The verification process for such protocols must match the development done
by designers. Some efforts were seen in the literature, but they generally struggle
to cope: one-to-many message casting models inherently increase the size and
complexity of the knowledge sets of peers as well as the size of the representation
of the execution. Efforts are being made using model checking with sequential
calculus approaches [1, 14] and theorem proving, in particular using the NPA
approach from the Naval Research Laboratory in America [2] and using Graham
Steel’s CORAL [25].

The verification of security protocols using theorem provers in higher-order
logic is due to Paulson [21]. He introduced the Inductive Method, where protocols
are formalised in typed higher-order logic as being an inductively defined set of
all possible execution traces. An execution trace is a list of all possible events in
a given protocol. Events include the sending or receiving of messages. There is a
Dolev-Yao intruder, or Spy, who processes messages using two operators called
analz and synth. Operator analz represents all the terms that the attacker can
learn by cumulatively decrypting messages, and synth represents all the messages
he can compose with the knowledge he possesses.

Protocols are defined as inductive sets constructed over abstract definitions of
the network and cryptographic primitives. Theorems about protocol properties
are formalised as statements about the set of all possible traces, and are typically
proven inductively. The computational model is an operational semantics, giving
it great flexibility and admitting unlimited numbers of concurrent executions.
This approach has been used to prove a series of classical protocols [20, 21] as
well as some well-known industrial-grade ones, such as the SET online payment
protocol, Kerberos and SSL/TLS [6, 7, 22].

The implementation aspects of what Steel did with Coral in the verification
of multicast based security protocols confirms the great potential of the inductive
method. Our aim, then, is to extend the inductive method to enable reasoning
about the multicast-based events. Our main goals are to create a versatile event
model that can encompass multicast and all the other variations of message
casting that multicast can yield.

Our idea in this paper is to briefly review general multicast protocols (§2),
and to motivate our augmentation of the inductive method with a Multicast-
capable event theory. Then we will see our contributions in the extension of the
inductive method towards having a fully capable multicast event theory (§3). We
will also show an example of protocol verification in a mixed environment using
the proposed message casting framework. We will conclude with an analysis of
the new verification capabilities the inductive method has after these extensions.

2 General Multicast Protocols

Multicast aims to use the network layer efficiently by requiring the source to issue
the packet only once even if it needs to be delivered to a large agent population.
The network is in charge of doing the necessary replication and enabling the
delivery of the payload to all the agents within the multicast group.

Normally, due to implementation constraints, multicast is unreliable. The
usual application of transmitting data streams for content delivery [18] makes
efficiency the sole objective. Other applications require multicast to behave as
a network layer where lossless transmission, non-duplication of content and or-
dering need to be enforced. Security protocols are generally among these appli-
cations. To address that, we see the inception of a classification for multicast,
dividing them in three categories.

1. Unreliable multicast : messages can be lost, permuted and multiply delivered.
Some security protocols can cope with these properties.

2. Reliable Multicast : all honest members of the multicast group will receive
the same message. The loss of messages is prevented, thanks to the usage of
novel transport layers. Reliable Multicast schemes are the basis for Byzantine
Agreement [19].

3. Atomic Multicast schemes furthermore enable honest members to have mes-
sages delivered in the order that they were sent, and each message only once.
This category of multicast is very difficult to achieve and normally yields a
security protocol in itself, since it requires the existence of some basic secu-
rity properties, such as uniqueness and reliability.

3 Inductive Method extensions for Multicast

The inductive method previously allowed only three formal events, which for-
malise the act of sending, receiving and noting a message. A Says event formalises
the act of an agent sending a message to another agent. A Gets event, introduced
by Bella [5], formalises the act of receiving a message. And finally, a Notes event
formalises the act of an agent locally storing information for future use.

We explored different choices to the specification of Multicast events. In
our first attempt, we tried specifying the Multicast communication as a series
of Unicast communications from the sender to all recipients in the multicast
group. This idea allowed us to use the existing datatype and associated formal
theory, but it proved difficult to use, and it didn’t properly distinguish between
a multicast event and a series of unicast events. This approach didn’t appear to
be able to model the different types of Multicasts mentioned in Section 2.

Therefore we decided to extend datatype event, creating a primitive to rep-
resent a Multicast communication. This created the possibility of expressing
Unicast, Broadcast and other casting frameworks using the Multicast primitive.

Definition 1 Multicast event datatype definition

datatype
event = Says agent agens msg

| Multicast agent "(agent list)" "(agent => msg)"

| Gets agent msg

| Notes agent msg

The new datatype of events retains the primitives of the original event
datatype for the sake of compatibility. Our theory can replace the standard
Events theory distributed with Isabelle/HOL. If Multicast is not used, the veri-
fication remains unchanged for the protocols in Isabelle/HOL’s library.

We add to the datatype event a new primitive Multicast, where an agent
sends a message to a multicast group. We represent the group by a list, which
implies an ordering of the group members. The idea of representing the message
as a function over agents comes from direct inspiration from the real Multicast
communication and the necessity of implementing Anycast, as most security
protocols require that. In a real scenario, a peer sends the same message to a
group of receivers, and each receiver is capable of interpreting the message in
different ways, sometimes depending on the knowledge he/she already has.

Another reason for letting each peer apply a function with his own parameters
is that this creates their own view of the message. This is necessary for protocols
where the message delivered to an agent is encrypted using that agent’s key: the
messages received by the agents in the multicast group are not identical. This
will become clear below (3.1 and 3.2), where we extend the knowledge of peers
based on their point of view inside or outside of the multicast group.

Although it seems contradictory to reject a formalisation based on Unicast to
represent Multicast and implement a Multicast datatype capable of representing
Unicast and Broadcast, this formalisation does not suffer the setbacks of the
previous ideas. We also wanted to create a generic formalisation to corroborate
our motivational idea that Unicast and Broadcast are extremes for Multicast,
setting Multicast as the base primitive for verifying Security Protocols in the
future.

In the next sections we will show the extensions made in how peers acquire
knowledge (§3.1) and how we can have access to all derivations coming from the
application of the function to each peer’s point of view through the function used
(§3.2).

3.1 Extending Peers’ Knowledge set for Multicast Communications

Peer knowledge, formalised by the set knows, enables us to reason about key
distribution as well as confidentiality. The original work by Paulson [21] did not
take into account the knowledge each peer acquired. Its main concern was what
the Spy was able to learn. The knows function represents how the knowledge
of each peer — the Spy included — is expanded during the execution of the
protocol, in accordance with Bella’s goal availability principle [5]. Definition 2
shows our new specification for the knows function.

Definition 2 Extended function representing Peer’s knowledge under Multicast

consts
knows :: "agent => event list => msg set"

primrec
knows Nil: "knows A [] = initState A"

knows Cons: "knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A’ B X => insert X (knows Spy evs)

| Multicast A’ B XF => (XF ‘ set B) ∪ (knows Spy evs)

| Gets A’ X => knows Spy evs

| Notes A’ X => if A’ ∈ bad then insert X (knows Spy evs)

else knows Spy evs)

else (case ev of

Says A’ B X => if A’=A then insert X (knows A evs)

else knows A evs

| Multicast A’ B XF=> if A’=A then (XF ‘ set B) ∪ (knows A evs)

else knows A evs

| Gets A’ X => if A’=A then insert X (knows A evs)

else knows A evs

| Notes A’ X => if A’=A then insert X (knows A evs)

else knows A evs))"

The function knows is now specified in four cases in two steps. In the base
case, knows Nil, the trace of events is empty and the knowledge of a peer is equal
to its initial knowledge prior to the execution of the protocol. When we move to
the case of a non-empty trace, we have two classes of peers (compromised and
non-compromised) and four cases each.

The Spy is able to learn differently than other peers. When he sees an event
Says sending X as a message, we extend his knowledge by inserting X to his
knowledge set. When he sees an event Multicast from a peer to a multicast group
casting XF we add to the knowledge of the Spy the image of the function XF
over the set of peers in the multicast group. When he sees a Gets event he learns
nothing, because he already learnt it at the sending event. When a peer learns
a message X through the predicate Notes, the Spy will learn the message X if
the peer is compromised.

When a peer sends a message X via a Says event, we extend his knowledge by
inserting X. When the peer issues event Multicast to a multicast group casting
XF, we add to his knowledge the image of the function XF over the set of peers
in the multicast group. When he Gets a message X through the predicate Gets
we insert X to his knows set. When he learns a message X through the predicate
Notes, we insert X to his knows set.

During the specification of the event datatype and the extension of the func-
tion knows, we noticed some subtleties regarding the Multicast constructor and
its reception, especially regarding knowledge gathering. Our initial design in-
cluded an event GetsMC to deal with the reception of multicast messages. This
seemed attractive since a Multicast message conveys information regarding the
knowledge other peers in the multicast group may have acquired. Side-channel
information leaking is inherent to Multicast. When we receive a Multicast mes-
sage addressed to us and two others, we don’t just learn the contents of the
message, but also that the other two users may also have received their view of
the message contents. This idea can be extended even further, since the other
two peers know that we may know the information conveyed by the message.

This refinement of the function knows would add new possibilities of inferring
other peers’ knowledge. The extension of the function knows to deal with other
peer’s knowledge is very attractive to use with novel threat models. Examples of
such new threat models are the Rational Attacker [3] where different attackers
collude on the basis of cost/benefit decisions whether to follow or not to follow
the protocol. The General Attacker [3], which drops the cost/benefit decision
from the Rational Attacker. The General Attacker’s differentiation from a Dolev-
Yao is that each peer acts for his own sake. And the Multi-Attacker [4], where
each principal behaves as a Dolev-Yao attacker, but they will never reveal their
long-term secrets to other peers.

We dropped the idea: gathering this information is difficult in practice be-
cause multicast is supposed to hide group composition. This is even more prob-
lematic in an environment where message reception can not be guaranteed.
Another issue was that we did not want to break backward compatibility by
changing the shape of the function knows and re-implement all the other af-
fected definitions to accommodate this change. Ultimately, making changes to
accommodate these properties from Multicast communication would require a
complete rethinking of the Dolev-Yao threat model. We formalise receiving a
Multicast message via the usual Gets primitive.

3.2 Extending the Used Set for Multicast

The function used enables us to reason about freshness. Freshness is essential for
reasoning about the unicity of certain messages. It is also a key compositional
property for reasoning about key distribution. The used function forms the set
of all message components that have already appeared in the event trace plus all
the information all peers initiated the protocol run with. Definition 3 show the
extended version of the function used, now encompassing the Multicast primitive.

Definition 3 The used parts of messages, with Multicast

consts
used :: "event list => msg set"

primrec
used Nil: "used [] = (UN B. parts (initState B))"

used Cons: "used (ev # evs) =

(case ev of

Says A B X => parts {X} ∪ used evs

| Multicast A B XF => parts (XF ‘ set B) ∪ used evs

| Gets A X => used evs

| Notes A X => parts {X} ∪ used evs)"

The used function is specified recursively. The base case, used Nil, is when
our event trace is empty. It is defined by the union of the application of the
function parts to the initial state of all peers.

The recursive case concerns the components used during trace construction.
There are four cases, one for each event constructor. The first case concerns the

primitive Says, where the application of the function parts on the message X
is joined with the used set of the remaining events. The second case concerns
Multicast : we apply the function parts to the image of function XF over the set
of peer in the multicast group B and join the result with the set of remaining
events. The third case concerns the Gets primitive, where no action is taken
since the parts are already considered used when sent. Finally the fourth case
concerns the primitive Notes, which is similar to Says.

This extension of the used function is key for adding Multicast support to the
inductive method. It has been kept stable since the first versions of the inductive
method [21], since the additions made for encompassing message reception were
only technical and did not change the set construction. Adding the Multicast
primitive makes the set potentially bigger and more complex to reason about.

4 The Franklin-Reiter Sealed-Bid Auction Protocol

Franklin and Reiter [12] proposed in 1996 a protocol to enable the construction
of a distributed trusted service capable of executing sealed-bid auctions by using
threshold cryptography primitives and extended multicast properties. Their ob-
jective was to provide a sealed-bid auction service that is guaranteed to declare
a winner, and also to collect payment from only that bidder, while guaranteeing
that no bid was revealed before the agreed bid opening time. Moreover, that the
system should be resilient to malfeasance of any auction house insider.

This protocol relies on secret sharing. A secret is divided into shares, which
are distributed to a set of trustees. The secret is not intended to be known by any
of the trustees. Let n be the number of trustees and let t be the threshold, the
minimum number of shares required for the secret to be recovered. We call this
n, t-sharing of the secret. Given at least t shares, the secret can be reconstructed.
Collusion by fewer than t trustees does not yield any information about the
secret.

The protocol also requires verifiable signature sharing [11], or simply V ΣS.
This enables the holder of a digitally signed message to share the signature
among a group of peers so that they can reconstruct the signature later, as
with verifiable secret sharing. At the end of the sharing phase, the members can
verify that they possess a valid share and that the signature can be reconstructed
even if the original signer or some trustees are faulty. Faulty trustees gain no
information regarding the original signature.

4.1 Protocol Description

The protocol proposed by Franklin and Reiter is constructed using n auction
servers, of which t are assumed to operate faithfully. In its conception, the pro-
tocol is claimed to be Byzantine-failure secure.

A bidder submits a bid with the amount he wants to pay for the item by
sharing a digital coin (v$, {|v$|}KrBank

, w$) with this value among all servers
hosting the auction. To prevent the auction servers from cheating, the coin values

are split in different ways. The values of v$ and w$ are split using a standard
secret sharing mechanism using our fault tolerance value of t as threshold. The
signature of the face value for the coin {|v$|}KrBank

is shared using a V ΣS
signature sharing algorithm also using t as threshold.

Once the bidding phase finishes, the servers in agreement will reconstruct
the values for v$ and w$ for all bids cast during the bidding phase and will
independently determine the winner. For the winning bid, the auction servers
will perform a V ΣS verification to see if the bid is valid and the money can
be collected by reconstructing {|v$|}KrBank

. After this verification, the auction
servers can award a token to the winning bidder to collect the item.

We found Franklin and Reiter’s protocol description [11] unclear. The speci-
fication seemed to assume a lot of implicit calculations, in violation of protocol
design principles, which could introduce some vulnerabilities. We summarise the
Franklin-Reiter sealed-bid auction protocol in Figure 1.

1. B
A
 SG : λX.{|aid, {|S(B, v$, w$)X , aid|}KrX ,

V ΣS pub({|v$|}KrBnk),
{|V ΣS priv({|v$|}KrBnk)X |}KrX |}

2. Si
A
 SG : aid, close

3. Si
U
 SG : λXY.{|aid, S(Y, v$, w$)X |}

4. Si
R
 SG : λX.aid, V ΣS stat({|v$|}KrBnk)X

5. Si → B : aid,B, {|aid,B|}KrSi

Fig. 1. Franklin-Reiter Sealed-Bid Auction Protocol

The bidder B, holding a digital coin (v$, {|v$|}KrBank
, w$), will issue an

atomic multicast to the multicast group SG comprised of all participating auc-
tion servers. This multicast message starts with the auction identification token
aid, followed by the n, t-sharing of the concatenation of his identity, the face
value of the coin, and the freshness value for the coin. Each share is encrypted
with the public key of each corresponding server in the multicast group SG .
It is followed by the public V ΣS of the Bank’s signature to the coin’s face
V ΣS pub({|v$|}KrBnk

), and the private V ΣS n, t-shared to all members of SG .
The V ΣS-private shares will be encrypted with the public key of each corre-
sponding server in the multicast group SG .

Each auction server Si in the multicast group SG will multicast the second
message to the group. This message simply states the auction identification and
the closing statement. After each auction server Si has received at least t atomic
multicasts stating the bidding phase is closed, no more bids are accepted. The
inclusion of this message in the protocol is controversial for having no security
intent, but the authors argue that due the implementation characteristics of
atomic multicast, communication is authenticated within the multicast group.

Then, each auction server Si will multicast to SG the auction identification
aid and his shares S(Y, v$, w$)X composed of the concatenation of the bidder’s
identity, the face value of the coin and the freshness function of the coin. After
the reception of t multicasts, a server can locally reconstruct each bid Y, v$, w$
and deterministically compute the winner.

With the winner locally determined, each auction server Si will reliably mul-
ticast (again to SG) message four, which is composed of aid and the result of
the V ΣS verification of his share for the winning bid for the bank’s signature to
the coin’s face value v$. After the reception of t multicast messages, an auction
server can locally decide whether the winning bid is valid.

Finally, each auction server Si sends a unicast message to B, the winning
bidder. The message is composed of aid, the bidder’s identity and the signature
of the concatenation of these values by the auction server Si. A bidder can collect
the won item if he possesses t tokens signed by different auction servers.

Although the protocol takes care of checking the bank’s signature on the coin,
coin reconstruction and deposit is out of scope for the protocol. By using an off-
line digital cash scheme, the protocol provides a degree of anonymity against
the detection of the spending by the Bank. The authors propose an anonymity
scheme to protect the bidder’s anonymity against the auction house.

4.2 Protocol Specification

The specification of the Franklin-Reiter Sealed-bid auction protocol starts, as
usual, with the inductive definition of a constant naming the specification called
fr. It is a set of possible traces (lists of events), representing the formal protocol
model. The Isabelle/HOL specification is shown in Definition 4. We define the
empty trace by the rule Nil, which sets the base of the induction. The next two
rules represent the possibility of fake messages being sent by the Spy.

Definition 4 Inductive definition of Franklin-Reiter Protocol - Basic Steps

inductive set fr :: "event list set"

where

Nil: "[] ∈ fr"

| Fake: "[| evsf ∈ fr;

X ∈ synth (analz (knows Spy evsf)) |]

==> Says Spy B X # evsf ∈ fr"

| Fakemc: "[| evsfmc ∈ fr;

XF ∈ synth (analz (knows Spy evsfmc)) |]

==> Multicast Spy multicast group (λC. XF) # evsfmc ∈ fr"

| Reception: "[| evsr ∈ fr; Says A B X ∈ set evsr |]

==> Gets B X # evsr ∈ fr"

| ReceptionMC: "[| evsrmc ∈ fr;

Multicast A multicast group (λC. XF) ∈ set evsrmc;

B ∈ set multicast group |]

==> Gets B XF # evsrmc ∈ fr"

Although our initial specification took into account the reception of messages,
it turned out to be inappropriate for the protocol’s communication structure and
objectives. The protocol provides little information to the bidder. Although our
proofs do not use the message reception framework, we model reception events
above for the sake of completeness.

The first message of the bid casting phase is specified below. Some of its
preconditions are merely technical.

Definition 5 Inductive definition of Franklin-Reiter Protocol : Bid Casting

| FR1: "[| evs1 ∈ fr; Nonce w /∈ used evs1; w 6= close;

w /∈ sessionIDs; w /∈ shares;

aid ∈ sessionIDs; v 6= close; v /∈ sessionIDs;

v /∈ shares; Nonce v /∈ used evs1;

Multicast S multicast group (λC. {|
Nonce aid, Number close|}) /∈ set evs1 |]

==> Multicast B multicast group (λC. {|Nonce aid,

Crypt (pubK C) ({|Nonce (share (nat t, multicast group, C) {|
Agent B, Nonce v, Nonce w|}), Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce (priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|})
Notes B {|Nonce aid, Nonce w, Nonce v|} # evs1 ∈ fr"

Definition 5 starts with inductive rule FR1, stating that the trace evs1 be-
longs to the inductive set fr, the nonce w and the nonce v were not used in this
trace before, are not equal to the constant close, does not belong to sessionIDs
and does not belong to shares. We also require that the auction identifier aid
belongs to sessionIDs and that message two (closing the auction) has not ap-
peared in the trace. If these preconditions are met, we extend the trace of events
evs1 belonging to fr with message one.

Message one is a Multicast event from the bidder B to the multicast group of
auction servers. Its payload has the nonce aid as the session identifier, followed
by the bidder B ’s identity concatenated with the digital coin v and nonce w.
The bidder’s identity, coin description and coin function are shared to the multi-
cast’s destinations with a threshold t. Each share is encrypted with the intended
destination’s key creating the sharing token

share (nat t, multicast group, C) {|Agent B, Nonce v, Nonce w|},

which is encrypted. Then the coin’s digital signature’s public share is included
using a verifiable secret sharing scheme to the same group and threshold param-
eters as the initial sharing scheme. The public part

pub share (nat t, multicast group, C)(signOnly (priSK Bank)(Nonce v))

is directly included in the message. The private share

priv share (nat t, multicast group, C)(signOnly (priSK Bank) (Nonce v))

is encrypted with the intended destination’s key. Formally, a share is modelled
as a nonce, because it is a large integer that is infeasible to guess.

To finish the FR1 specification, we formalise B ’s knowledge of his bid through
a Notes event. This is needed because parts and used do not know about share.
B ’s knowledge of the unique identifiers aid, w and v is necessary for some proofs.

Message two is specified as rule FR2 in our specification of the Franklin-
Reiter protocol. The preconditions are that evs2 is a valid trace of events for the
protocol, that aid belongs to the set of sessionIDs, the auction server S belongs
to the multicast group and that we have a bid (an instance of message one in the
trace). If these preconditions are met, we extend the trace evs2 with a multicast
from the S to the multicast group containing aid and the command close as
shown in Definition 6.

Definition 6 Inductive definition of Franklin-Reiter Protocol : Bid Closure

| FR2: "[|evs2 ∈ fr; S ∈ set multicast group; aid ∈ sessionIDs;

Multicast B multicast group (λC. {|Nonce aid,

Crypt (pubK C) (

{|Nonce (share (nat t, multicast group, C) {|
Agent B, Nonce v, Nonce w|}), Nonce aid|}),

Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(

Nonce (priv share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))))|})
∈ set evs2 |]

==> Multicast S multicast group (λC.{|Nonce aid, Number close|})
evs2 ∈ fr"

Again in message two we had to take some decisions regarding our specifica-
tion. Similarly to message one, we did not implement any trigger and assumed
the multicast as being atomic. But here the authors impose a very strong re-
quirement, atomic multicast where multicasts from within the group are authen-
ticated. Our concept of atomic multicast is weaker. We took this specification
decision although it could allow attacks that the authors would reject on the
basis of their assumptions.

Once no more bids can be cast in the auction and the servers agree that the
auction is closed, we proceed to a phase where we verify which bidder cast the
best bid. In the Franklin-Reiter protocol this is done by message three, which is
specified by our inductive rule FR3 as shown in Definition 7.

Definition 7 Inductive definition of Franklin-Reiter Protocol : Bid Opening

| FR3: "[| evs3 ∈ fr ; S ∈ set multicast group ; S /∈ bad;

aid ∈ sessionIDs; (B, v, w): bids aid evs3;

Multicast S multicast group (λC.
{| Nonce aid, Number close|}) ∈ set evs3 |]

==> Notes S {|Nonce aid, Nonce w, Nonce v|} #

Multicast S multicast group (λC. {| Nonce aid,

Nonce (share (nat t, multicast group, S)

{|Agent B, Nonce v, Nonce w|})|}) # evs3 ∈ fr"

The preconditions for rule FR3 are that the trace of events evs3 is part
of our inductive specification for the protocol, that the auction server S is not
compromised, that the auction identifier aid is a session identification, that the
triple (B, v, w) represents a valid bid for the auction aid in the events trace evs3
and that the auction was closed by the existence of message two in the trace. If
these preconditions are met we extend the trace evs3 with two events. A first
event Notes to the auction server S the values for aid, v and w followed by a
Multicast event from the auction server S to the multicast group running the
auction service. The payload of this message is composed of aid, plus the share
the server holds for the bid being broadcasted.

Once again, we have made some specification decisions. In rule FR3 we ex-
tend the trace by a Multicast event and then we extend it again with a Notes
events. The latter is done for the sake of giving the servers following the protocol
the knowledge regarding the values of the bids they opened.

Message four is represented in our specification by rule FR4, as shown on
Definition 8. Its preconditions are that the trace of events evs4 is valid, that aid
is in the set of sessionIDs, that the triple (B, v, w) is a valid bid within the
auction aid in the trace evs4 and that the nonces w and v are in the knowledge
of the auction server S. If these preconditions are met, we extend the trace of
events evs4 by adding an event Notes to the auction server S for the bank’s
digital signature for the coin’s face value. Then we add a Multicast event from
server S to the multicast group of servers running the auction containing aid
and his share of the digital signature for the coin of the winning bid.

Definition 8 Inductive definition of Franklin-Reiter Protocol : Bid Collection

| FR4: "[| evs4 ∈ fr; S ∈ set multicast group ;

aid ∈ sessionIDs; (B, v, w): bids aid evs4; S /∈ bad;

Nonce w ∈ knows S evs4; Nonce v ∈ knows S evs4; |]

==> Notes S (signOnly (priSK Bank) (Nonce v)) #

Multicast S multicast group (λC. {| Nonce aid,

Nonce (priv share (nat t, multicast group, S)

(signOnly (priSK Bank) (Nonce v)))|}) # evs4 ∈ fr"

As with FR3, we have a double extension of the trace: a multicast and a note
that they were able to validate the coin. Here we again simplified the original
protocol. Instead of implementing the verifiable signature sharing proposed by
the authors, we decided to implement a reconstruction using the casting of the
private shares to the multicast group members.

This specification choice clearly weakened the protocol, since at this point
one server can collude with the attacker and deposit the coin for himself. But
our choice is justified beyond the plain simplification of the verification process,
since the guarantees the original protocol yields are just that the coin may be
reconstructable at a later time, and not that it is indeed reconstructable, since
more than n− t server can be corrupted after the protocol run.

Our focus here is the demonstration of the suitability of the multicast theory,
not of the full verification of the Franklin-Reiter protocol. We sought only to
verify the secrecy of the bids before closure time. This was enough to validate
the multicast events theory. For this modest objective, we can make do with a
simple version of rule FR4 .

With the winning bid known and with its digital coin payable, we can now
deliver to the winner the tokens he needs to collect the item. Message five is a
unicast from each one of the servers that concluded the protocol execution to
the winning bidder with the winner declaration token. We specify message five
from the Franklin-Reiter protocol as our inductive rule FR5 . It starts with the
precondition that evs5 is a valid trace, that aid is in the set of sessionIDs, that
the triple (B, v, w) is a valid bid within the auction aid and that the nonces
w, v and the digital signature for the coin’s face value (signOnly (priSK Bank)
(Nonce v)) are known by the auction server, S . If these preconditions are met,
the auction server sends the winning bidder a message consisting of aid, the
winner’s identifier B, and the same items signed using the server’s private key.

Definition 9 Inductive definition of Franklin-Reiter Protocol : Winner Declaration

| FR5: "[|evs5 ∈ fr; S ∈ set multicast group; aid ∈ sessionIDs;

S /∈ bad; w /∈ sessionIDs;

w /∈ shares; (B, v, w): bids aid evs5;

Nonce w ∈ knows S evs5; Nonce v ∈ knows S evs5;

(signOnly (priSK Bank) (Nonce v)) ∈ knows S evs5|]

==> Says S B {| Nonce aid, Agent B,

sign (priSK S) {| Nonce aid, Agent B |}|} # evs5 ∈ fr"

With the specification of message five we complete the protocol description.
Note that the specification of rule FR5 deliberately takes some steps to test our
multicast specification and the distribution of knowledge within the protocol.
First, the pre-conditions to the firing of FR5 are based on the knowledge of the
auction server S acquired during the previous phases and the contents of the
bid set. Second, we deliberately did not represent the unicast method using the
Multicast event to be able to test the integration of our specification with the
original one in the inductive method.

Here we took similar specification decisions as we did in the previous mes-
sages. But note that the trigger required for collecting the item in this message
is left off-protocol by the authors, which makes it difficult to verify the ability
of collecting the item by the winner.

4.3 General Validity Proofs

We stress that the proofs we show here are not the complete set we verified.
They are shown to exemplify the suitability of the multicast event theory in
dealing with knowledge distribution and with mixed environments. We focused
on verifying the secrecy of the bids as a way of showing that our multicast
specification is capable of representing real problems.

We will start by looking to Lemma 1 (bid secrecy), which concerns the secrecy
of v, the coin’s face value. Concomitantly we have two similar lemmas for w and
{|v|}KrBank

. This lemma states that if an event with syntax of the one yielded
by rule FR1 is in the trace of events, and the bidder B is not colluding with
the Spy and the Spy is not in the multicast group of auction servers, then coin’s
face value v is not in the knowledge of the Spy.

Lemma 1. bid secrecy

[| Multicast B multicast group (λC. {| Nonce aid,

Crypt (pubK C)({|Nonce (share (nat t, multicast group, C)

{|Agent B, Nonce v, Nonce w|}), Nonce aid|}),
Nonce (pub share (nat t, multicast group, C)

(signOnly (priSK Bank) (Nonce v))),

Crypt (pubK C)(Nonce(priv share (nat t, multicast group, C)

(signOnly (priSK Bank)(Nonce v))))|}))∈ set evs)

B /∈ bad; Spy /∈ set multicast group; evs ∈ fr |]

==> Nonce v /∈ analz (knows Spy evs)

Proving Lemma 1 (bid secrecy) is difficult, as usual for secrecy properties.
We start by using the usual proof method for secrecy lemmas. We are left with
seven subgoals, representing the two Fake rules and the five protocol steps. The
Fake rule can be proven appealing to fact Fake analz eq, which states that X
∈ synth(analz H) ⇒ synth (analz (insert X H)) = synth (analz H). The sub-
goals regarding messages two to five are proven appealing to the fact that v /∈
sessionIDs and to the function congruence rule to eliminate the λ expression in
the multicast events. Proving the subgoal for message one involves applying the
tactic auto augmented with the destruction rule for function congruence as usual
for multicast messages. This yields seven new subgoals. The first one is proven
resorting to the fact that v /∈ sessionIDs. Another two of these subgoals are
proven appealing to analz into parts and shares shares, which are simple facts.
The next two subgoals are proven by appealing to Multicast imp in parts spies
and the fact that if v is inside a share it belongs to the set used. The final
two subgoals are proven appealing to analz keyfree into Un which isolate key
material in the analz set and the fact that v is not in sessionIDs.

4.4 General Re-Interpretation of Security Goals under Multicast

Extending the Inductive method to accommodate a Multicast communication
primitive requires a re-interpretation of how the method works and how some
security goals should be understood. The first change is the modification of the
idea of trace of events. Prior to the introduction of the Multicast primitive, we
had the idea of a linear trace and a linear expansion of the knows and used set.

Interpreting now the relation between trace expansion and the knows and
used set expansions, we see the linearity in both. The knows set for peer A is
initialised with his a priori knowledge: his own shared key and private keys as
well as all the public keys. After the sending of the first message onto the trace,
by the definition of knows, the knowledge of peer A will be extended by the

message’s payload. And the same will happen for any Notes event. After the
extensions proposed by Bella [5], the knowledge set of a peer is also extended by
a message reception event Gets. The recipient of a message from the network will
insert its payload onto his knowledge set. A similar procedure happens to the
extension of the used set. To conclude, for every message event in the trace we
expect a linear expansion of the sets knows and used by the size of the payload
of the Says event.

If we look closer to the relation happening in a one-to-many communication
style we see that this linearity is lost. When we cast a Multicast event in the
trace we are not extending the knows and used sets by exactly the payload of the
message, but by the application of the payload function over the list of agents in
the multicast group. This inherently changes the shape of the trace construction
since the we also do not have this conveying of knowledge between two peers
only. The inductive method is capable of coping with this exponential growth in
the size of the trace information, which clearly corroborates our choice in using
it as the testbed for our verification efforts.

Another important re-interpretation concerns the goal of Secrecy, due to
the leakage of information to peers by the usage of side-channels inherent to
multicast. As mentioned earlier, with the exception of Multicast being used in
an Anycast mode of operation, we can argue that there is a side channel leaking
information that could be formalised within the method. Although the method
is not prepared today to make use of this information, with the expansion of it to
encompass newer threat models, this can be important to represent knowledge
that could help us to protect or prepare better retaliation attacks.

5 Final Remarks

We have extended the inductive method to enable it to reason about non-Unicast
message casting frameworks. Based on the assumption that other message cast-
ing methods are special cases for multicast, we built a theory for representing
multicast communication. The point of building such a theory was to create a
more flexible infrastructure for the inductive method to represent new classes of
protocols. We also experiments with our proposed design to show its backwards
compatibility and its novel verification capabilities, which are not shown here.

We expect to see more demand for protocol verification methods capable of
being extended, capable of representing the interesting subtleties of ever new
designs. Extensibility becomes a key issue to this field because of the stability it
has already assumed. No major theoretical breakthrough happened in the last
decade. The community must work to broaden the scope of verification methods
to cover an ever growing set of security protocol types.

On the aspects of our direct contributions to protocol verification, we envisage
the verification of election protocols as being the next big step. With the setup
for supporting Multicast, Anycast and Broadcast it is possible for a whole new
family of such protocols to be verified by the Inductive Method. This will include

the investigation of new security goals such as Anonymity, which such voting
protocols require.

References

1. Anastasi, G., Bartoli, A., Francesco, N.D., Santone, A.: Efficient verification of a
multicast protocol for mobile computing. Comput. J 44(1), 21–30 (2001)

2. Archer, M.: Proving correctness of the basic TESLA multicast stream authenti-
cation protocol with TAME*. In: Workshop on Issues in the Theory of Security.
Portland, OR (2002)

3. Arsac, W., Bella, G., Chantry, X., Compagna, L.: Validating security proto-
cols under the general attacker. In: Degano, P., Viganò, L. (eds.) ARSPA-
WITS. Lecture Notes in Computer Science, vol. 5511, pp. 34–51. Springer (2009),
http://dx.doi.org/10.1007/978-3-642-03459-6

4. Arsac, W., Bella, G., Chantry, X., Compagna, L.: Multi-attacker protocol valida-
tion. Journal of Automated Reasoning 45, 1–36 (2010)

5. Bella, G.: Formal Correctness of Security Protocols. Information Security and
Cryptography, Springer (2007)

6. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy
goals. Lecture Notes in Computer Science 1485 (1998)

7. Bella, G., Paulson, L.C., Massacci, F.: The verification of an industrial payment
protocol: the set purchase phase. In: 9th ACM conference on Computer and com-
munications security. pp. 12–20. ACM Press, New York, NY, USA (2002)

8. Blundo, C., De Santis, A., Vaccaro, U., Herzberg, A., Kutten, S., Yong, M.: Per-
fectly secure key distribution for dynamic conferences. Inf. Comput. 146(1), 1–23
(1998)

9. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T.P.,
Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach,
M.I., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle,
P. (eds.) Financial Cryptography. Lecture Notes in Computer Science, vol. 5628,
pp. 325–343. Springer (2009), http://dx.doi.org/10.1007/978-3-642-03549-4

10. Brown, I., Perkins, C., Crowcroft, J.: Watercasting: Distributed watermarking of
multicast media. In: Rizzo, L., Fdida, S. (eds.) Networked Group Communication.
Lecture Notes in Computer Science, vol. 1736, pp. 286–300. Springer (1999)

11. Franklin, M.K., Reiter, M.K.: Verifiable signature sharing. In: Advances in Cryp-
tology (1995)

12. Franklin, M.K., Reiter, M.K.: The design and implementation of a secure auction
service. IEEE Transactions on Software Engineering 22(5), 302–312 (1996)

13. Gennaro, R., Rohatgi, P.: How to sign digital streams. Inf. Comput. 165(1), 100–
116 (2001)

14. Gorrieri, R., Martinelli, F., Petrocchi, M.: Formal models and analysis of secure
multicast in wired and wireless networks. J. Autom. Reasoning 41(3-4), 325–364
(2008), http://dx.doi.org/10.1007/s10817-008-9112-7

15. Hardjono, T., Weis, B.: The Multicast Group Security Architecture. RFC 3740
(Informational) (March 2004), http://www.ietf.org/rfc/rfc3740.txt

16. Harney, H., Muckenhirn, C.: RFC 2094: Group key management pro-
tocol (GKMP) architecture (Jul 1997), ftp://ftp.internic.net/rfc/rfc2094.txt,
ftp://ftp.math.utah.edu/pub/rfc/rfc2094.txt, status: EXPERIMENTAL.

17. Huang, D., Medhi, D.: A byzantine resilient multi-path key establishment scheme
and its robustness analysis for sensor networks. In: 19th International Parallel and
Distributed Processing Symposium. Denver, CO, USA (Apr 2005)

18. Kreibich, J.A.: The mbone: the internet’s other backbone. Crossroads 2(1), 5–7
(1995)

19. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4 (1982)

20. Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In: Pro-
ceedings of The 10th Computer Security Foundations Workshop. IEEE Computer
Society Press (1997)

21. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6, 85–128 (1998)

22. Paulson, L.C.: Inductive analysis of the internet protocol tls. ACM Trans. Inf. Syst.
Secur. 2(3), 332–351 (1999)

23. Pinto, A., Ricardo, M.: Smiz - secure multicast iptv with efficient support for video
channel zapping. In: Proceedings of the NAEC 2008, Networking and Electronic
Commerce Research Conference 2008. Lake Garda, Italy (September 2008)

24. Quinn, B., Almeroth, K.: IP Multicast Applications: Challenges and Solutions.
RFC 3170 (Informational) (Sep 2001), http://www.ietf.org/rfc/rfc3170.txt

25. Steel, G., Bundy, A.: Attacking group multicast key management proto-
cols using coral. Electr. Notes Theor. Comput. Sci 125(1), 125–144 (2005),
http://dx.doi.org/10.1016/j.entcs.2004.05.023

26. Wong, C.K., Lam, S.S.: Digital signatures for flows and multicasts. In: IEEE/ACM
Transactions on Networking. pp. 502–513 (1998)

27. Zhou, L., Schneider, F.B., Van Renesse, R.: Coca: A secure distributed online
certification authority. ACM Trans. Comput. Syst. 20(4), 329–368 (2002)

