
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 18th Int. Conf. on Formal Engineering Methods
(ICFEM 2016).

Citation for the original published paper:

Gadia, S., Artho, C., Bloom, G. (2016)
Verifying Nested Lock Priority Inheritance in RTEMS with Java Pathfinder.
In: Proc. 18th Int. Conf. on Formal Engineering Methods (ICFEM 2016) (pp. 417-432).
Springer
Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-319-47846-3_26

N.B. When citing this work, cite the original published paper.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-47846-3_26

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199091

Verifying Nested Lock Priority Inheritance in
RTEMS with Java Pathfinder

Saurabh Gadia1, Cyrille Artho2,3, and Gedare Bloom4

1 University of Southern California, Los Angeles CA, USA
2 National Institute of Advanced Industrial Science and Technology, Osaka, Japan

3 KTH Royal Institute of Technology, Stockholm, Sweden
4 Howard University, Washington DC, USA

Abstract. Scheduling and synchronization algorithms for uniprocessor
real-time systems benefit from the rich theory of schedulability analy-
sis, and yet translating these algorithms to practical implementations
can be challenging. This paper presents a Java model of the priority in-
heritance protocol for mutual exclusion, as implemented in the RTEMS
open-source real-time operating system. We verified this model using
Java Pathfinder to detect potential data races, deadlocks, and priority
inversions. JPF detected a known bug in the RTEMS implementation,
which we modified along with the Java model. Verification of the modi-
fied model showed the absence of data races, deadlocks, and established
nine protocol-specific correctness properties.

Keywords: Java Pathfinder, RTEMS, priority inheritance

1 Introduction

Real-time application correctness depends on a bound on the amount of inter-
ference that high-priority tasks can cause to lower-priority tasks. When a high-
priority task preempts the low-priority task and executes, the response time of
the low-priority task is delayed by the preemption. Schedulability analysis con-
siders the interference caused by such preemption: given a set of tasks, their
execution times, job releases and deadlines, and priorities, one may calculate
whether the tasks will be schedulable under a given scheduling algorithm. Two
key assumptions made during schedulability analysis is that tasks are preempt-
able and do not share resources.

In case tasks share resources (e. g., shared memory) that require synchroniza-
tion, the inclusion of critical sections complicates the schedulability analysis. The
usual approach to create a critical section is with a semaphore or mutex lock,
which leads to a priority inversion problem in which a low-priority task holding
a lock interferes with any higher-priority tasks waiting on the lock, until the
low-priority task eventually releases the lock. The usual assumption in real-time
systems is that a lock holder can hold the lock no longer than its worst-case
execution time, and therefore the lock is released eventually. However, if middle-
priority tasks preempt and starve the low-priority task, the high-priority task

may be blocked indefinitely since the low-priority task continues to hold the lock
while the middle-priority tasks execute. Priority inversions are solved by using
the priority inheritance protocol (PIP) or priority ceiling protocol (PCP) [15].

PIP works by promoting the priority of a lock holder to that of the highest-
priority task waiting for the lock. Hence, when a task fails to acquire a lock, the
lock holder will inherit the task’s priority until the lock is released. PIP ensures
that a middle-priority task cannot indefinitely block higher-priority tasks by
starving low-priority lock holders. The lock holder’s priority is restored to the
previous value when releasing the lock. Although PIP works well for single lock
acquire and release, some real-time applications require mutual exclusion for
multiple resources at a time. Hence, multiple locks are acquired, one for each
resource. We say these locks are nested. The proper implementation of PIP with
nested resources requires that each time a lock is released, the lock holder’s
priority should be changed to that of the highest priority task still blocked on
any lock held by the releasing task, or to the lock holder’s normal priority, i. e.,
the priority it held when entering the outermost lock.

RTEMS is an open-source real-time operating system with an implementa-
tion of PIP. However, RTEMS implementation of the PIP for nested locks is
incorrect. When a nested lock is obtained and priority is inherited, the task’s
current priority is saved. When the nested lock is released, the current prior-
ity is restored without checking what the highest priority is on the outer lock.
Therefore, a task could be blocked on the outer lock with a higher-priority than
the task that just released the inner lock, thus creating a priority inversion.
Currently, this inversion is avoided by retaining the highest inherited priority
until all locks are released, which has a different problem in that schedulability
analysis needs to account for interference caused by all critical sections of any
lower-priority tasks that may outer-nest a lock shared with a high priority task.

In this paper, we present our experience creating and model-checking a Java
model of the locking and scheduling algorithms from the implementations in
RTEMS relevant to PIP with nested resources. Our model detects priority in-
version conditions via exhaustively searching through the lock and scheduler data
structures. We passed the Java model through the Java Pathfinder (JPF) model
checker [16] to detect potential deadlocks, data races, and priority inversions.
After confirming the priority inversion in the existing RTEMS nested resource
locking, we model-checked an alternative algorithm, which we then implemented
in RTEMS. In our model analysis, we use intelligent pre-processing to reduce
the size of the state space by a factor of 158, which made it possible to check
the model repeatedly for different versions of our algorithm.

This paper is organized as follows: Section 2 provides the necessary back-
ground and shows related work. Section 3 shows how we modeled the relevant
parts of the RTEMS kernel for verification with JPF. Section 4 shows the flaw
we found in the adaption of PIP in RTEMS, and our fix. The final results of the
verification with JPF are shown in Section 5, and Section 6 concludes.

2 Background

2.1 RTEMS

The Real-Time Executive for Multiprocessor Systems (RTEMS) [1] is an open-
source real-time operating system (RTOS) that provides essential RTOS services
with support for POSIX interfaces. RTEMS is used in particle accelerators, satel-
lite instruments, medical devices, military systems, robotics, and other data ac-
quisition and real-time control applications. RTEMS has been an open-source
project since 1988 and is widely used in academic, government, and private sec-
tors around the world.

2.2 Model checking

Model checking is a technique to analyze a formal description of a system (the
model) against all possible outcomes, starting from a given initial state. The
system to be analyzed is usually represented by a transition system [4].

A model checker is a tool that verifies the model against given properties [4].
Traditionally, model checking has been used to verify hardware or protocols.
Models are usually described in a domain-specific language, and properties are
often expressed in temporal logics such as linear temporal logics [14]. Model
checkers may explicitly construct the entire state space in memory [7] or use a
symbolic representation of multiple states as a set of states [11].

2.3 Java Pathfinder

In contrast to traditional model checkers, software model checkers analyze an
actual application (as source code or executable) code instead of a model [6, 16].

Java Pathfinder (JPF) is such a software model checker. It implements a Java
Virtual Machine (JVM) that is capable of executing the full bytecode instruc-
tion set [16], and is designed to explore the full state space of a Java bytecode
application. Unlike in a traditional model checker, the state space is not known
a priori. Instead, the state space is derived from the execution of the system
under test (SUT). The SUT is executed by JPF until an action occurs in which
the outcome under different thread schedules may vary. At that point, JPF
stores a copy of the full program state comprising memory and thread states,
and explores the next available choice. When a given choice leads to the end of
program execution, it backtracks to an earlier program states by restoring that
state from the saved copy. (JPF uses depth-first search by default; other search
strategies are supported as well.) A state in JPF therefore corresponds to a full
program state—with the heap and the states of each thread—and a transition
corresponds to a sequence of instruction executions by a thread [16].

By default, JPF checks an execution against uncaught exceptions, assertion
failures, and deadlocks. It also has a built-in data race detector, which allows a
user to find problematic data accesses even if no property checking the output
of the program has been written. This is useful because it is difficult to write

properties checking the outcome of each operation that may be affected by shared
memory access.

For our work, we chose Java Pathfinder because the input language (Java)
is much closer to C than the input languages of other model checkers, such
as Promela used by SPIN [7]. Furthermore, many locking features used by the
RTEMS kernel have close equivalents in Java or JPF, which makes it easier to
model RTEMS in JPF than on other platforms (see Section 3).

2.4 Related Work

Klein et al. verified a general-purpose operating system microkernel [8] that
includes thread management and many other features. The kernel has been im-
plemented in 10,000 lines of C code; properties were verified using a theorem
prover with about 480,000 lines of Isabelle [13] proofs that were developed over
ten years [8]. In contrast to that, the core of RTEMS is about 34,000 lines of
C code, with the part implementing mutual exclusion weighing in at about 730
lines. Our model is about the size same as that part of the C code (600 lines
of code for the model, 130 lines of code for the helper program that generates
all test settings), and verification is fully automatic after we apply symmetry
reduction to our environment model.

The idea of symmetry-based state space reduction is common [3]. Compared
to previous work, we take a staged approach, where we first pre-process the pa-
rameters of the model to reduce the state space, and then use these parameters
to generate different settings at run-time. Compared to “classical” model check-
ing [4], where a model is expressed in a domain-specific language, we express
our model in Java, which is richer than other modeling languages. Verification is
performed using Java Pathfinder, which executes the model as program code and
generates the state space by exploring different outcomes of non-determinism at
run-time [16]. This is different from most other tools, where the state space is
generated as a graph structure a priori [4].

Java Pathfinder is typically used to explore different interleavings in con-
current software, to analyze whether functional properties hold for all possible
interleavings [16]. For applications written in Java, Java Pathfinder can deter-
mine the worst-case execution time (WCET) of a program by assigning a cost to
each instruction, and calculating the maximal total cost [10]. This previous work
was not applicable to estimate the worst-case execution time in the RTEMS ker-
nel, as it would have required a complete model of the kernel in Java, together
with accurate execution cost weights that reflect the true execution cost of the
original RTEMS code on different platforms. Our work checks the correctness,
but not WCET, of the priority inheritance protocol in RTEMS.

Lui Sha et al. discusses that synchronization primitives can lead to uncon-
trolled priority inversion problem [15]. They showed that two priority inheritance
class protocols called basic priority inheritance protocol and priority ceiling pro-
tocol solved this priority inversion problem. This original publication does not
explicitly mention the priority inversion problem caused in basic priority inheri-
tance protocol if a task inheriting priority is owner of more than one mutex that

we found in RTEMS. As a result, we cannot rule out that a direct application
of that algorithm may have the same issue.

Linux makes use of data structure called plist—‘priority sorted linked list’—
for implementation of real time mutex design. Every task in Linux has pi list
data structure that stores all top waiters of the mutexes that are owned by the
task. Whenever a task releases any mutex, it always ensures that its priority
is set to the top priority waiting task in its pi list. This way it rules out the
problem of priority inversion in case of task owning multiple mutexes.

3 Modeling RTEMS Locks and Scheduling in Java

This section describes the Java model of locking in RTEMS [5].

3.1 Mapping RTEMS kernel constructs to JPF

The POSIX threads (Pthreads) standard is a widely used standardized interface
that provides concurrency primitives, in particular locking, thread creation and
control, and the use of condition variables and signaling [12]. Java has been
designed to allow a virtual machine to implement the thread constructs in Java
readily using Pthreads; each basic Java concurrency feature can be mapped to
Pthreads [2].

Table 1. RTEMS kernel data structures and constructs in Java and JPF.

RTEMS resource Java/JPF equivalent

Lock usage synchronized block usage
Thread signaling wait and notify

Priority queue java.util.PriorityQueue

Global scheduler lock gov.nasa.jpf.vm.Verify.beginAtomic and endAtomic

The RTEMS kernel also exhibits similarities to the Pthreads interface, and
by extension Java concurrency features: see Table 1 for a high-level mapping. We
employ nested locking and unlocking implemented in a straightforward way using
synchronized blocks in Java; non-nested locking could be supported using extra
libraries [9]. Thread signaling and condition variables use the same semantics as
in POSIX. Furthermore, priority queues in the RTEMS kernel are modeled using
priority queues from the Java base library.

For uniprocessor systems, RTEMS has a mechanism that temporarily disables
the scheduler making a block of code behave atomically. Java has no direct
construct for such scheduler disabling, and while a global lock can be used, it only
guarantees mutual exclusion with respect to other global locks. Fortunately, Java

Pathfinder has a construct that provides atomic sections: Verify.beginAtomic
and endAtomic. These two functions are not available in standard Java.

Another modeling problem is that the Java scheduler does not obey thread
priorities strictly, but thread priorities in RTEMS are strict, and a higher-
priority thread is always scheduled before lower-priority threads. Although Java
Pathfinder allows a user to provide a custom scheduler, which we could have
used to model the RTEMS scheduler in addition to its locking implementation,
we chose not to do so for two reasons. First, writing a custom scheduler in JPF
is more difficult than writing a model in Java. Second, we wanted our lock model
to be correct under any scheduler, not just under the current scheduler used by
RTEMS.

3.2 Design of the lock model

We designed and implemented a Java model of the locking and scheduling al-
gorithms of RTEMS so that JPF could be used to model check the current and
alternative solutions for PIP. Our scheduler model uses a task control block
(TCB) that inherits from the Java Thread Class and adds two priority fields, for
the initial and current priority, and a linked list to track the mutex locks held
by the thread.

To model mutex locks in Java we created a Lock class that uses Java’s
synchronized and JPF’s Verify.beginAtomic and Verify.endAtomic to con-
struct critical sections. The Lock class also adds a validator routine that exe-
cutes on every mutex release to check whether there exists any priority inversion
by iterating through all the remaining mutex locks held by the releasing thread
checking that it has a higher priority than all threads waiting on any remaining
mutexes it holds.

In the course of our work, we experimented with several variants of possible
implementations of PIP:

1. A model using a global lock. Using a global lock facilitates a correct imple-
mentation at the expense of performance. We used this model to focus on
correct thread priorities in an initial version of the model.

2. A uniprocessor model using a global scheduler lock (see above), which is
derived from the first model.

3. A model using multiple fine-grained locks, allowing for more parallelism and
thus better performance on a real system.

3.3 Test harness

Java Pathfinder explores the state space of a program by starting from its main
method, as in a normal execution under the Java VM. To analyze the implemen-
tation of a multi-threaded program, and our lock implementation in particular,
we need a test harness.

Our test harness creates three threads with a given thread priority, each
of which locks and unlocks two locks. Each lock is chosen from three distinct

candidate locks.5 We test reentrant locking by assigning the same candidate
lock to multiple slots in the same test thread. Each thread is also assigned a
priority chosen from three values, representing high, medium, and low priority.
We currently do not test non-nested locking and unlocking, which could however
be achieved by permuting the order of unlock operations.

public class TestThread extends RTEMSThread {

 Lock availableLocks[] = {createLock(0), createLock(1), createLock(2)};

 public TestThread(int idx[], int priority) {

 super(priority); // initialize thread with given priority

 locks = new Lock[idx.length];

 for (int i = 0; i < idx.length; i++) {

 locks[i] = availableLocks[idx[i]]; // use given locks permutation

 }

 }

 public void run() {

 for (int i = 0; i < idx.length; i++) {

 locks[i].lock();

 }

 for (int i = idx.length-1; i>= 0; i--) {

 locks[i].unlock();

 }

 assert currentPriority==realPriority;

 }

}

Fig. 1. Test thread using a given priority and nested locks.

The test harness includes a main method that parses arguments from the
command line, which indicate the lock indices and thread priorities. Because
some types of cyclic deadlocks require three threads, we wanted to simulate at
least as many threads in our model. In doing, so, we ran into the state space
explosion problem: If each thread non-deterministically uses two locks (out of
three candidate locks), and a non-deterministic priority setting taken from three
possible values, we have a total of (32)3(2 locks per thread) ∗ 33(priorities) =
39 = 19683 combinations.

Encoding all these options as non-deterministic choices would be extremely
inefficient for the following reasons:

1. A lot of symmetries exist in the state space, some of which would not be
recognized by JPF and explored redundantly.

2. Exploring the entire state space at once increases memory usage and may
cause JPF to run out of memory or trigger garbage collection excessively
often.

5 This design guarantees a certain degree of overlapping lock usage between threads,
without which there would be no need for mutual exclusion.

3. Debugging a failed test (from a faulty model) is more difficult because the
error trace by JPF does not show the lock indices or thread priorities as such.
They could be made visible in other ways, through listeners or printing them
on the screen, but the latter option would print a lot of clutter during the
state space exploration.

3.4 State space preprocessing

The full state space is too large to be explored by JPF if equivalent configurations
are not taken into account. We present an algorithm to remove redundant lock
set configurations, and show how the number of thread priority configurations
can be minimized.

Lock sets. We define A to be the alphabet of lock indices; in our case A = 0, 1, 2.
A lock set configuration is a list of n elements, each being a sequence of m lock
indices.

To reason about lock indices, we observe the following properties:

1. Locks are symbolic objects. Any configuration l′ where all lock indices in l are
replaced with a permutations of the indexes in A, yields a heap structure that
is isomorphic to l. For example, (00, 00, 01) and (11, 11, 10) are isomorphic.

2. Between threads, permutations of lock index sequences are also isomorphic;
e. g., (00, 00, 01), (00, 01, 00), and (01, 00, 00) are isomorphic.

Algorithm 1 computes the set of all relevant lock permutations, based on
these two observations. It starts by initializing the output sets F and B and gen-
erating all possible isomorphic mappings I. For three indices, six isomorphisms
exist: I = {{0 → 0, 1 → 1, 2 → 2}, {0 → 1, 1 → 2, 2 → 0}, . . .} The algorithm
reduces the set of all possible permutations C of lock indices, to topologically
distinct ones.

Based on property 1, the algorithm then proceeds to generate all morphisms
M from C (step 4a). Property 2 allows us to ignore different permutations of
lock index sequences between threads (step 4b); the sequences are filtered by
sorting. For example, the sorted list of subsequences in (12, 01, 00) is (00, 01, 12).
These two steps are sufficient to reduce the set of 729 lock permutations to only
31 truly distinct settings.

However, some lock set configurations contain a cyclic dependency between
locks. For example, if thread t1 owns lock a and tries to obtain lock b, and
thread t2 owns lock b and tries to obtain lock a, a deadlock occurs. The deadlock
is due to the cyclic lock dependency between the threads. A test using such a
configuration may deadlock, and if JPF is used, it will always find and report
such a possibility. We can either ignore such cases or ensure that JPF actually
detects a deadlock. To distinguish between “good” (deadlock-free) and “bad”
(deadlocking) cases, we check the lock configuration for such cyclic dependencies
(step 5 in Algorithm 1). This splits the set of 31 configurations into 25 deadlock-
free and 6 deadlocking configurations (see Table 2).

1. Let F be the set of final candidates, and B be the set of “bad” lock permutations
that result in a deadlock.

2. Generate the set I of all isomorphic mapping functions (permutations of symbols
identifying locks) pi ∈ I with ik = A 7→ A for all lock indices in A.

3. Generate all lock permutations, called the candidates C.
4. For each candidate c ∈ C:

(a) Generate all isomorphic variants M of c, for each permutation in I:
∀iso ∈ I,M = M ∪ iso(c).

(b) For each isomorphic candidate m ∈ M , sort the lock index sequences of all
threads: S = sorted(M).

(c) We add all items in S to F : F = F ∪ S.
5. For each unique permutation f ∈ F , check if the lock indices form a cycle between

all threads; if so, add that permutation to B: ∀f ∈ F,B = B ∪ f if cyclic(f).
6. Output the set of “good” candidates, F \B, and “bad” candidates B.

Algorithm 1. Algorithm to compute all relevant lock permutations.

Thread priorities. We also consider the impact of different thread priorities
on the outcome. As only the relative priority between all three threads matters,
we consider only these four cases:

1. All threads have the same priority.
2. Two threads have the same priority, one has a lower priority than the others.
3. Two threads have the same priority, one has a higher priority than the others.
4. All threads have a different priority.

We implement this as a non-deterministic choice between four settings that re-
flect these cases, as opposed to a non-deterministic priority choice for each thread
in isolation. This reduces the thread priority state space from 33 = 27 settings
to just four.

The combined state space reduction from both optimizations is from 19863
to 31 ∗ 4 = 124 configurations, a reduction of almost 160 times. The fact that
configurations for Java Pathfinder can be parameterized on the command line
makes it easy to generate the parameter state space with a preprocessor, and
supply it to Java Pathfinder in a second phase.

3.5 Properties

By default, JPF reports a deadlock where the program cannot proceed with
execution, such as when multiple threads have a cyclic lock dependency. It can
also be configured to report data races. A data race exists if at least two threads
access the same memory location without mutual exclusion, and at least one of
these accesses is a write access. We used deadlock and data race detection along
with model-specific properties in our verification.

Specific properties are encoded as assertions (safety properties) in our model [5],
and cover the following:

Property 1. The priority of a thread waiting for a lock corresponds to its actual
(original) priority.

Property 2. A thread is in the correct state when acquiring a new mutex.

Property 3. A newly acquired mutex is not held by another thread, and its lock
count is zero.

Property 4. The lock count of a lock being released is greater than zero. After a
lock is released, there is no holder registered anymore for it.

Property 5. If there is another thread waiting on a just-released lock, that thread
must be in the waiting state.

Property 6. The thread releasing a lock must contain a matching lock entry at
the head of the list maintained in that thread’s TCB.

Property 7. The thread releasing a lock must not contain any higher-priority
threads linked from the list of lock entries in the thread’s TCB.

Property 8. The promotion of a thread’s priority is caused by a different thread.

Property 9. The priority of a thread is correctly reverted to the original priority
after all locks have been released.

4 Fixing PIP in RTEMS

Priority inversion occurs if a higher-priority task is blocked by a lower-priority
task. Ideally, a higher-priority task should be blocked no longer than the time
for the lower-priority task to complete its critical section. Lui Sha et al. demon-
strated that practically this blocking period of higher-priority task can be arbi-
trarily long and unpredictable [15]. They showed that two priority inheritance
class protocols, basic PIP and priority ceiling protocol, can rectify uncontrolled
priority inversion. We extend basic PIP for the case when a task inheriting pri-
ority is the owner of more than one mutex, which we found in RTEMS, and
we propose an algorithm to solve uncontrolled priority inversion problem in this
case.

4.1 RTEMS data structures involved in PIP

In RTEMS, associated with each mutex is a linked list CORE mutex order list,
which contains priority before, a field to store the priority of the acquiring task.
This field is used to restore the task’s priority to what it was before acquiring
that mutex, in case the priority of the task is temporarily increased due to the
PIP. Each task control block (TCB) stores a last-in first-out (LIFO) linked list
of acquired mutexes, which is the expected order of lock release. This is a doubly
linked list, Chain Control, consisting of nodes of type Chain Node (see Fig. 2).

Fig. 2. Data structures linking the mutexes with the lock queues.

4.2 Uncontrolled priority inversion problem for PIP in RTEMS

The following example demonstrates the uncontrolled priority inversion problem:

1. Consider three tasks T0, T1, and T2 in descending order of priority with T0

having highest priorities of 0 and T2 having lowest priority of 2.
2. Initially, we only have task T2 executing in our system. T2 acquires mutex

m0 followed by m1 to access some shared data structure. The linked list of
mutexes in T2’s TCB contains m0 and m1 with associated priority 2.

Fig. 3. Initial system state

3. Task T0 is created and being a higher-priority task it preempts task T2. T0

attempts to acquire m0 and hence the PIP will promote the priority of T2

to be that of T0, i. e., 0. This is the classic example of basic PIP rectifying
priority inversion problem. This system state is free from priority inversion
and deterministic as we are certain that task T0 will be waiting till task T2

releases m0.
4. Another task T1 is created, with medium priority. It will be in waiting state as

task T2 has the highest priority. When T2 releases m1, the priority stored in
the mutex data structure for m1 is written into the TCB of T2, restoring T2’s
priority to 2. Task T1 preempts task T2. We are now uncertain of blocking

1: function UpdatePriority(holder, queue, priority)
2: // holder is the TCB for the owner of the mutex being acquired
3: // queue is the CORE mutex order list of the mutex
4: // priority is the priority of the thread trying to acquire the mutex
5:
6: head node ← (&holder→lock mutex)→Head
7: next node ← (&queue→lock queue)→next
8: change priority ← True
9: while next node 6= head node do

10: queue ← next node→CORE mutex order list
11: if queue→priority before ≤ priority then
12: change priority ← False
13: Break
14: end if
15: queue→priority before ← priority
16: next node = next node→next
17: end while
18: return change priority . if True, then holder thread priority is checked
19: end function

Algorithm 2. Algorithm for updating priority

period of task T0 (see Fig. 4) and thus the system is in uncontrolled priority
inversion state.

Fig. 4. Uncontrolled priority inversion

4.3 Solution to uncontrolled priority inversion

Avoiding uncontrolled priority inversion calls for more intelligence when restor-
ing the priority of a task. Algorithm 2 imparts this intelligence when a task
attempts to acquire a busy mutex. Whenever a task attempts to acquire a busy
mutex, this task may update the holder task’s priority and the priorities of mu-
texes held by that holder. Updating the priority of holder is done as usual for
PIP. The updates of the held mutexes occur by traversing the linked list of mu-
texes stored in the holder’s TCB. If the recorded priority of a mutex is lower
than the priority of the acquiring task, then the recorded priority is updated.
The traversal stops at an equal or higher priority, or at the head of the list.

Applied to the above example, Algorithm 2 works as follows:

1. When task T0 attempts to acquire mutex m0, it traverses the acquired mutex
list of holder task T2. Traversal moves to the mutex next in the list from m0,
which is m1, towards the head of the list. The recorded priority of m1 is 2,
lower than T0’s priority 0, so is changed to 0 before going to the next mutex
in the list. The head of the list is reached, therefore the priority of T2 is
compared with that of T0 and is boosted to 0, and the algorithm is finished.
T2 will resume executing at its new, higher priority (see Fig. 5).

Fig. 5. Priority update as per proposed algorithm

2. When T2 releases m1, the priority stored in the mutex data structure for m1

is written into the TCB of T2, restoring T2’s priority to 0. At this point, task
T1 is waiting as T2 still has the highest priority in the system. This way our
algorithm ensures there is no priority inversion in the system (see Fig. 6).

Fig. 6. Deterministic system with no priority inversion

3. Note that if T2 was blocking on another mutex (see Fig. 7), it would be
re-blocked after potentially boosting priority of that mutex’s owner through
a transitive call to Algorithm 2. Hence, we always have a system which is
free from priority inversion and in deterministic state.

5 Model-Checking Results using JPF

We used Java PathFinder version 8.0, rev. 28, to analyze the Java models of
RTEMS locking, after eliminating redundant configurations in the parameter
state space by preprocessing it (see Section 3). We ran the experiments on a
Mac Pro with two 3.7 GHz quad-core Intel Xeon E5 CPUs. This allowed us to
use multiple cores at once, speeding up the verification of 31 different lock set

Table 2. Model checking time, number of states, and number of instructions for all
distinct scenarios. Lock usage is shown as a triple of sequences (of length two) of lock
IDs. These IDs correspond to the two locks used by the test harness of each thread.
Each lock configuration was tested for all relevant priority settings.

Deadlock-free configurations

Lock configuration Time Number of states Number of instructions

(00,00,00) 00:05:51 3,597,839 39,134,614
(00,00,01) 00:08:31 5,359,776 53,499,140
(00,00,10) 00:29:50 20,530,383 158,243,065
(00,00,11) 00:22:19 15,321,110 117,084,710
(00,00,12) 00:31:16 21,614,670 159,649,787
(00,01,01) 00:10:26 7,277,751 71,695,034
(00,01,02) 00:10:21 7,277,751 71,695,034
(00,01,11) 00:25:07 17,704,921 137,981,768
(00,01,12) 00:37:20 26,655,214 198,517,948
(00,01,20) 00:46:39 32,883,641 249,273,627
(00,01,21) 00:49:55 35,524,795 262,654,448
(00,01,22) 00:34:44 23,805,000 181,621,827
(00,10,10) 00:27:31 19,231,201 164,864,689
(00,10,12) 00:38:42 27,290,669 221,112,177
(00,10,20) 02:06:17 93,616,077 713,877,172
(00,10,21) 01:41:56 72,693,793 556,663,234
(00,10,22) 01:33:02 66,929,870 529,446,674
(00,11,22) 01:27:25 61,758,697 504,124,972
(00,12,12) 00:45:33 32,800,449 266,311,244
(01,01,01) 00:11:18 9,172,281 90,384,827
(01,01,02) 00:13:13 9,327,571 91,742,294
(01,01,12) 00:41:50 29,339,526 222,928,606
(01,01,20) 00:52:03 45,084,155 339,817,731
(01,01,21) 01:04:19 50,192,733 371,521,061
(01,02,12) 00:40:47 38,795,617 290,831,840

Deadlock-prone configurations

Lock configuration Time Number of states Number of instructions

(00,01,10) 00:00:01 8,486 270,677
(00,12,21) 00:00:01 8,486 270,677
(01,01,10) 00:00:01 8,486 271,022
(01,02,10) 00:01:37 940,738 7,995,738
(01,10,20) 00:02:21 1,402,381 11,219,277
(01,12,20) 00:03:22 2,062,672 16,476,034

Fig. 7. Nested priority inversion

configurations. Table 2 shows the results of the experiments on the final, correct
version of the model.

In configurations that do not cause deadlocks, JPF has to explore the entire
state space of the model. Configurations with few locks preclude much possible
parallelism, and lock priority changes, in the behaviors. Their state space is
therefore much smaller than the state space of more complex settings. Because
of this, verification runs for a given lock set configuration ranges between barely
six minutes and over two hours; the number of explored program states, and
executed bytecode instructions, is proportional to the analysis time (see Table 2,
top). Deadlock-prone configurations have at least one possible interleaving that
leads to a deadlock due to a cyclic lock dependency. JPF sometimes finds such
a deadlock immediately and aborts the search after one second; in other cases
the search takes a few minutes, but still finds the bug after only a small fraction
of the state space has been searched (see Table 2, bottom).

The results of our experiments confirm that our revised implementation of
PIP in the RTEMS kernel is free of data races, deadlocks, and incorrect priority
assignments. Deadlock-prone lock usage of application-level tasks is also detected
as expected. In total, verification of the improved PIP implementation took 11
hours and 43 minutes of CPU time, which translated to about three hours of
real time when running 5–6 instances in parallel on eight cores.

6 Conclusion

Despite the rich, robust theoretical frameworks that have been built around
real-time scheduling, the correctness of scheduler design and implementation—
especially with synchronization—is challenged by system complexity. In this pa-
per, we have presented a Java model of a real-time operating system’s PIP imple-
mentation that we model-checked in JPF to look for deadlocks, race conditions,
and priority inversions, the latter by way of nine correctness properties that were
encoded as assertions in the Java model. Key to the efficient model checking is
the state space preprocessing of Algorithm 1, which reduces JPF’s search space.
JPF found a potential priority inversion, a correctness error, that was known to
exist in the C language implementation. We further proposed a fix to the PIP
implementation and validated it to be free of potential deadlocks, race condi-
tions, and priority inversions. Future work may consider validating multi-core

scheduling algorithms, which are even more complex and less well-understood
than the established uniprocessor algorithms.

Acknowledgments This material is based upon work supported by the Google
Summer of Code program, the National Science Foundation under Grant No.
CNS 0934725, and the Office of Naval Research under ONR Award No. N00014-
14-1-0386. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views
of Google, NSF, or ONR.

References

1. RTEMS real time operating system (RTOS), 2016. https://www.rtems.org/.
2. C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Yamamoto. Model

checking of concurrent algorithms: From Java to C. In Proc. Conf. on Distributed
and Parallel Embedded Systems (DIPES 2010), volume 329 of IFIP AICT, pages
90–101, Brisbane, Australia, 2010. Springer.

3. E. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1):77–104, 1996.

4. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
5. S. Gadhia, C. Artho, and D. Ramirez. Model locks with thread priority from

RTEMS, 2015. https://github.com/saurabhgadia4/lock-model.
6. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with

BLAST. In Proc. 10th Int. SPIN Workshop (SPIN 2003), volume 2648 of LNCS,
pages 235–239. Springer, 2003.

7. G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.
8. G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and

G. Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems, 32(1):2:1–2:70, 2014.

9. D. Lea. Concurrent Programming in Java, Second Edition. Addison-Wesley, 1999.
10. Gary Lindstrom, Peter C. Mehlitz, and Willem Visser. Model checking real time

Java using Java PathFinder. In Doron A. Peled and Yih-Kuen Tsay, editors,
Proc. 3rd Int. Symposium on Automated Technology for Verification and Analysis
(ATVA 2005), volume 3707, pages 444–456. Springer, 2005.

11. K. McMillan. Symbolic Model Checking. Springer, 1993.
12. B. Nichols, D. Buttlar, and J. Farrell. Pthreads Programming. O’Reilly, 1998.
13. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
14. A. Pnueli. The temporal logic of programs. In Proc. 17th Annual Symposium on

Foundations of Computer Science (FOCS 1977), pages 46–57, Rhode Island, USA,
1977. IEEE, IEEE Computer Society Press.

15. L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185,
September 1990.

16. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203–232, 2003.

