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Abstract

Electronic voting promises the possibility of a convenjegfticient and secure facility
for recording and tallying votes in an election. Recentlghtighted inadequacies of im-
plemented systems have demonstrated the importance oéligraerifying the underly-
ing voting protocols. We study three privacy-type propesrtof electronic voting proto-
cols: in increasing order of strength, they are vote-psiveeceipt-freeness, and coercion-
resistance.

We use the applied pi calculus, a formalism well adapted tdetimg such protocols,
which has the advantages of being based on well-understmozkpts. The privacy-type
properties are expressed using observational equivalerdtae show in accordance with
intuition that coercion-resistance implies receipt-fregs, which implies vote-privacy.

We illustrate our definitions on three electronic votingtpomls from the literature. Ide-
ally, these three properties should hold even if the elaatiticials are corrupt. However,
protocols that were designed to satisfy receipt-freenessercion-resistance may not do
so in the presence of corrupt officials. Our model and defingiallow us to specify and
easily change which authorities are supposed to be trugtyor
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1 Introduction

Electronic voting protocols. Electronic voting promises the possibility of a con-
venient, efficient and secure facility for recording andlyialy votes. It can be used
for a variety of types of elections, from small committeentline communities
through to full-scale national elections. Electronic magtprotocols are formal pro-
tocols that specify the messages sent between the votedamdistrators. Such
protocols have been studied for several decades. Theytb#goossibility of ab-
stract analysis of the voting system against formallyestgiroperties.

In this paper, we recall some existing protocols which hasenbdeveloped over
the last decades, and some of the security properties teeyt@nded to satisfy.
We focus on privacy-type properties. We present a frameviarinalysing those
protocols and determining whether they satisfy the progert

From the protocol point of view, the main challenge in desigran election system
is to guarante&ote-privacy We may distinguish three main kinds of protocols in
the literature, classified according to the mechanism thgyl@y to guarantee pri-
vacy. Inblind signature schem¢$6,25,31,36], the voter first obtains a token, which
is a message blindly signed by the administrator and knoviymtorthe voter her-
self. The signature of the administrator confirms the vsteligibility to vote. She
later sends her vote anonymously, with this token as proehigibility. In schemes
usinghomomorphic encryptiofv,28], the voter cooperates with the administrator
in order to construct an encryption of her vote. The admiaist then exploits ho-
momorphic properties of the encryption algorithm to conepibie encrypted tally
directly from the encrypted votes. A third kind of schemesussndomisation (for
example by mixnets) to mix up the votes so that the link betwexter and vote is
lost [17,18]. Our focus in this paper is on protocols of thstftype, although our
methods can probably be used for protocols of the second Bgmause it involves
mixes, which are probabilistic, the third type is hard to r@dd with our methods
that are purely non-deterministic.

Properties of electronic voting protocols. Some properties commonly sought
for voting protocols are the following:

¢ Eligibility: only legitimate voters can vote, and only once

e Fairness: no early results can be obtained which could infei¢he remaining
voters.

¢ Individual verifiability: a voter can verify that her vote waeally counted.

e Universal verifiability: the published outcome really igthum of all the votes.

e \ote-privacy: the fact that a particular voter voted in atigatar way is not re-
vealed to anyone.



e Receipt-freeness: a voter does not gain any informatiosadgip) which can be
used to prove to a coercer that she voted in a certain way.

e Coercion-resistance: a voter cannot cooperate with a eor@rove to him that
she voted in a certain way.

The last three of these are broagiyvacy-typeproperties since they guarantee that
the link between the voter and her vote is not revealed by thgol.

The weakest of the three, calledte-privacyroughly states that the fact that a voter
voted in a particular way is not revealed to anyone. Whelegtaitthis simple way,
however, the property is in general false, because if alithers vote unanimously
then everyone will get to know how everyone else voted. Thaddisation we give

in this paper in fact says that no party receives informatrbich would allow them
to distinguish one situation from another one in which twteve swap their votes.

Receipt-freenessays that the voter does not obtain any artefact (a “reqengtich
can be used later to prove to another party how she voted. &ueteipt may be
intentional or unintentional on the part of the designehefsystem. Unintentional
receipts might include nonces or keys which the voter isrgoering the protocol.
Receipt-freeness is a stronger property than privacyitivily, privacy says that
an attacker cannot discern how a voter votes from any infoomahat the voter
necessarily reveals during the course of the election.iRefreeness says the same
thing even if the voter voluntarily reveals additional infaation.

Coercion-resistancis the third and strongest of the three privacy propertigmia

it says that the link between a voter and her vote cannot lablegied by an at-
tacker, this time even if the voter cooperates with the k&aduring the election
process. Such cooperation can include giving to the atteankg data which she
gets during the voting process, and using data which thekattgrovides in return.
When analysing coercion-resistance, we assume that teead the attacker can
communicate and exchange data at any time during the elqutizess. Coercion-
resistance is intuitively stronger than receipt-freenssxe the attacker has more
capabilities.

Of course, the voter can simply tell an attacker how she vdbetl unless she
provides convincing evidence the attacker has no reasoerltevb her. Receipt-
freeness and coercion-resistance assert that she cammwidepiconvincing evi-
dence.

Coercion-resistance cannot possibly hold if the coercemptygsically vote on be-
half of the voter. Some mechanism is necessary for isolatiegvoter from the
coercer at the moment she casts her vote. This can be rebiisedoting booth,
which we model here as a private and anonymous channel betiveesoter and
the election administrators.



Note that in literature the distinction between receipefiess and coercion-resistance
is not very clear. The definitions are usually given in ndtiar@guage and are insuf-
ficiently precise to allow comparison. The notion of recdipeness first appeared
in the work of Benaloh and Tuinstra [8]. Since then, sevethkses [8,40] were
proposed in order to meet the condition of receipt-fregnasislater shown not to
satisfy it. One of the reasons for such flaws is that no forneéihdion of receipt-
freeness has been given. The situation for coercion-aggistis similar. Systems
have been proposed aiming to satisfy it; for example, Okarfii] presents a sys-
tem resistant to interactive coercers, thus aiming tofyatrtkat we call coercion-
resistance, but this property is stated only in naturalyaigg. Recently, a rigorous
definition in a computational model has been proposed by &tiel. for coercion-
resistance [32]. We present in this paper what we believeetthb first “formal
methods” definition of receipt-freeness and coercionstasce. It is difficult to
compare our definition and the one proposed by Jeiets. [32] due to the inher-
ently different models.

Verifying electronic voting protocols. Because security protocols in general are
notoriously difficult to design and analyse, formal verifioa techniques are par-
ticularly important. In several cases, protocols whichevidtought to be correct
for several years have, by means of formal verification teghes, been discovered
to have major flaws. Our aim in this paper is to use and devedoification tech-
niques, focusing on the three privacy-type properties rmaeatl above. We choose
the applied pi calculugl] as our basic modelling formalism, which has the ad-
vantages of being based on well-understood concepts. Toedpi calculus has

a family of proof techniques which we can use, and it is pastlpported by the
ProVerif tool [9]. Moreover, the applied pi calculus allows to reason about equa-
tional theories in order to model the wide variety of cryptgghic primitives often
used in voting protocols.

As it is often done in protocol analysis, we assume the Dykwy-abstraction:
cryptographic primitives are assumed to work perfectly] dre attacker controls
the public channels. The attacker can see, intercept aed imessages on public
channels, but can only encrypt, decrypt, sign messagesrformpeother crypto-
graphic operations if he has the relevant key. In generahssame that the attacker
also controls the election officials, since the protocoldnvestigate are supposed
to be resistant even if the officials are corrupt. Some of tiséogols explicitly re-
quire a trusted device, such as a smart card; we do not assiinthé attacker
controls those devices.

How the properties are formalised. As already mentioned, the vote-privacy
property is formalised as the assertion that the attackes dot receive informa-
tion which enables him to distinguish a situation from aeotbne in which two
voters swap their votes. In other words, the attacker cadistihguish a situation



in which Alice votesa and Bob vote$, from another one in which they vote the
other way around. This is formalised as an observationalvalgnce property in
applied pi.

Receipt-freeness is also formalised as an observationalagnce. Intuitively, a
protocol is receipt-free if the attacker cannot detect &éedbhce between Alice
voting in the way he instructed, and her voting in some othay,wrovided Bob
votes in the complementary way each time. As in the case wiqyj Bob’s vote is
required to prevent the observer seeing a different numibastes for each candi-
date. Alice cooperates with the attacker by sharing sedratdhe attacker cannot
interact with Alice to give her some prepared messages.

Coercion-resistance is formalised as an observationavaguce too. In the case
of coercion-resistance, the attacker (which we may aldaleatoercer) is assumed
to communicate with Alice during the protocol, and can prepaessages which
she should send during the election process. This givesdbeer much more
power.

Ideally, these three properties should hold even if thetieleofficials are corrupt.
However, protocols that were designed to satisfy voteagsiyreceipt-freeness or
coercion-resistance do not necessarily do so in the preseincorrupt officials.
Our model and definitions allow us to specify and easily cleanbich authorities
are supposed to be trustworthy.

Related properties and formalisations. The idea of formalising privacy-type
properties as some kind of observational equivalence imegss algebra or calcu-
lus goes back to the work of Schneider and Sidiropoulos [8Bhilar ideas have
been used among others by Fournet and Abadi [24], Maual. [37] as well as
Kremer and Ryan [35]. Other formalizations of anonymity laased on epistemic
logics, e.g. [27]. All of these definitions are mainly corued with possibilistic
definitions of anonymity. It is also possible to defpr@babilisticanonymity, such
asin [42,45,27,12], which gives a more fine-grained charesation of the level of
anonymity which has been achieved. In [21,44,13], inforamatheoretic measures
have been proposed to quantify the degree of anonymityisrptiper we only fo-
cus onpossibilisticflavours of privacy-type properties and assume that channel
are anonymous (without studying exactly how these chararelanplemented).

Receipt-freeness and coercion-resistance are more sdatisimple privacy. They
involve the idea that the voter canrmbve how she voted to the attacker. This is
a special case of incoercible multi-party computation,chihas been explored
in the computational security setting [11]. Similarly teethdefinition, we define
incoercibility as the ability to present the coercer witkdalata which matches the
public transcript as well as the real data. Our definitionceises the setting to
electronic voting, and is designed for a Dolev-Yao-like ralod



Independently of our work, Jonker and de Vink [29] give a tadicharacterisa-
tion of the notion of receipt in electronic voting processkmker and Pieters [30]
also define receipt-freeness in epistemic logic. Howevailenthese formalisms
may be appealing to reason about the property, they seersuisd for modelling
the protocol and attacker capabilities. These logics aaeegkto expressing prop-
erties rather than operational steps of a protocol. Thusletfing protocols using
epistemic-logic-based approaches is tedious and reqaihégh degree of exper-
tise. Baskaet al. [5] present a promising approach defining an epistemic lfmyic
a protocol language.

The “inability to prove” character of coercion-resistarened receipt-freeness is
also shared by the property callabuse-freeness contract-signing protocols. A
contract-signing protocol is abuse-free if signer Alicamat prove to an observer
that she is in a position to determine the outcome of the aohtAbuse-freeness
has been formalised in a Dolev-Yao-like setting [33] as thiitg to provide a
message that allows the observer to test whether Alice iggh a position. This
notion of test is inspired by static equivalence of the agppi calculus. However,
this notion of test is purelpffline which is suitable for abuse-freeness. In our for-
malization the voter may provide data that allows an actilesesary to distinguish
two processes which yields a more general notion of recpipb@bly too general
for abuse-freeness).

To the best of our knowledge, our definitions constitute tihgt bbservational
equivalence formalisations of the notion dt being able to provén the formal
methods approach to security.

Electronic voting in the real world. Governments the world over are trialling
and adopting electronic voting systems, and the securpigcas have been con-
troversial. For example, the electronic voting machinesdug® recent US elec-
tions have been fraught with security problems. ReseasdBét have analysed the
source code of the Diebold machines used in 37 US statesamhlgsis has pro-
duced a catalogue of vulnerabilities and possible attadkse recent work [22]
has produced a security study of the Diebold AccuVote-T3ngomachine, in-
cluding both hardware and software. The results showsttigavulnerable to very
serious attacks. For example, an attacker who gets physicaks to a machine or
its removable memory card for as little as one minute coudthihmalicious code,
which could steal votes undetectably, modifying all respiidgs, and counters to
be consistent with the fraudulent vote count it createsyTigo showed how an
attacker could create malicious code that spreads autoatigtirom machine to
machine during normal election activities. In another gtwdDutch voting ma-
chine was reprogrammed to play chess, rather than courg,wetech resulted in
the machine being removed from use [26].

These real-world deployments do not rely on the kind of fdrpmatocols studied



in this paper, and therefore our work has no direct bearinthem. The protocols
studied here are designed to ensure that vote stealingpsognaphically impos-
sible, and the properties of individual and universal vabifity provide guaran-
tee that voters can verify the outcome of the election théraselt is hoped that
work such as ours in proving the security properties of suotogols will promote

their take-up by makers of electronic voting equipment.dpldyed, these proto-
cols would—at least to some extent—remove the requirenognii$t the hardware
and software used by election officials, and even to trusbtti@als themselves.

This paper. We recall the basic ideas and concepts of the applied pi lcalcu
in Section 2. Next, in Section 3, we present the frameworkdamalising voting
protocols from the literature, and in Section 4 we show hoev ttiree privacy-
like properties are formalised. Also in Section 4, we iniggge the relationships
between the properties and we show that the expected iriphisahold between
them. In Sections 5, 6 and 7 we recall three voting protoaamfthe literature,
and show how they can be formalised in our framework. We aealyhich of the
properties they satisfy.

Some of the results have been published in two previous p4p&/19]. This pa-
per extends and clarifies our results, provides more exanpétter explanations,
additional case studies and includes proofs. In particalardefinition of coercion-
resistance in this paper is much simpler than our previofisitien [19], where we
relied on a notion we calleddaptive simulationThat notion turned out to have
some counter-intuitive properties, and we have removed it.

2 The applied pi calculus

The applied pi calculus [1] is a language for describing coremt processes and
their interactions. It is based on the pi calculus, but ienied to be less pure and
therefore more convenient to use. The applied pi calculus 8ome sense, similar
to the spi calculus [2]. The key difference between the twonedisms concerns
the way that cryptographic primitives are handled. The afiudus has a fixed set
of primitives built-in (symmetric and public-key encrypii), while the applied pi
calculus allows one to define less usual primitives (oftesdus electronic vot-
ing protocols) by means of an equational theory. The apgielculus has been
used to study a variety of security protocols, such as atersathentication proto-
col [24] or a key establishment protocol [3].



2.1 Syntax and informal semantics

To describe processes in the applied pi calculus, one stattisa set ofnames
(which are used to name communication channels or otheriatdata), a set of
variables and asignatureX which consists of théunction symbolsvhich will be
used to defingerms In the case of security protocols, typical function synsbol
will include enc for encryption, which takes plaintext and a key and retuhes t
corresponding ciphertext, anidc for decryption, taking ciphertext and a key and
returning the plaintext. Terms are defined as names, vasgabhd function sym-
bols applied to other terms. Terms and function symbols ared, and of course
function symbol application must respect sorts and aritiysthe means of an
equational theor§ we describe the equations which hold on terms built from the
signature. We denoteg the equivalence relation induced ByA typical example
of an equational theory useful for cryptographic proto@®tec(enc(x, k), k) = z.

In this theory, the term%; = dec(enc(enc(n, k1), k2), k2) andT, = enc(n, k;) are
equal, we havd; =g T, (while obviously the syntactic equali; = 75> does not
hold). Two terms are related byg only if that fact can be derived from the equa-
tions inE. When the set of variables occurring in a tefims empty, we say thaf

is ground

In the applied pi calculus, one hatain processesindextended processeBlain
processes are built up in a similar way to processes in thalpilltis, except that
messages can contain terms (rather than just names). Inrdhengr described
below, M and N are terms;: is a name,r a variable and: is a metavariable,
standing either for a name or a variable.

PQ,R:= plain processes
0 null process
PlQ parallel composition
P replication
vn.P name restriction
if M = N thenP else) conditional
in(u,x).P message input
out(u, N).P message output

We use the notatiom(u, =) to test whether the input on is equal (modulo
E) to the term)/ (if it doesn't, the process blocks). Moreover, we sometimgs
tuples of terms, denoted by parentheses, while keepinggbatienal theory for
these tuples implicit.

Extended processes addtive substitutionand restriction on variables:

A B, C:= extended processes
P plain process



Al|B parallel composition

vn.A name restriction
ve. A variable restriction
{M/.} active substitution

{M/.} is the substitution that replaces the variabMith the term)/. Active sub-
stitutions generalise “let”. The process.({/,} | P) corresponds exactly to the
process “lett = M in P”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We wrjtg( A), bv(A), fn(A) andbn(A)

for the sets of free and bound variables and free and boundsafr, respectively.

We also assume that, in an extended process, there is at nmeosubstitution for
each variable, and there is exactly one when the variabkstsicted. We say that

an extended processatosedif all its variables are either bound or defined by an
active substitution.

Active substitutions are useful because they allow us to amegxtended process

to its frame ¢(A) by replacing every plain process i with 0. A frame is an
extended process built up frotnand active substitutions by parallel composition
and restriction. The frame(A) can be viewed as an approximationfhat ac-
counts for the static knowledgé exposes to its environment, but nés dynamic
behaviour.

Example 1 Forinstance, consider the extended processes {M'/,,} | {*2/.,} | P
and A, = {M/, V| {M2/,} | P,. Even if these two processes are different from
the point of view of their dynamic behaviour, the frameéd, ) and¢(A,) are equal.
This witnesses the fact thdt and A, have the same static knowledge.

The domain of a frame, denoted bylom(y), is the set of variables for which
defines a substitution (those variablefor which ¢ contains a substitutiof /.. }
not under a restriction omn).

An evaluation context[_] is an extended process with a hole instead of an ex-
tended process. Structural equivalence, netgid the smallest equivalence relation
on extended processes that is closed uadeonversion on names and variables,
by application of evaluation contexts, and such that

PAR-0 Al0=A REPL 'lP=P|P

PAR-A A|(B|C)=(A]|B)|C Rewrite {M/.} ={"/.}

PAR-C A|B=B|A if M =g N
NEW-0 vn.0 =0 Auias vz {M/,} =0

NEW-C  vu.wv.A =rvvvuA Susst  {M/. 3| A={M/}]| A{M/,}

NEW-PAR A |vu.B = vu.(A| B) ifudg fm(A)Ufu(A)



Example 2 Consider the following process:
vs.vk.(out(cy,enc(s, k)) | in(cy,y).out(cs, dec(y, k))).

The first component publishes the messagés, k) by sending it or; . The second
receives a message on, uses the secret kdy to decrypt it, and forwards the
resulting plaintext ore,. The procesg is structurally equivalent to the following
extended process:

A =vs k1. (0ut(es, z1) | in(c1, y).0Ut(cy, dec(y, k)) | {0/, })

We havep(A) = vs, k,x,.{"=F /. } = 0 (sincex, is under a restriction).
The following lemma will be useful in the remainder of the pap

Lemma3 LetC, = viuy.(- | By) andCy = vius.(- | By) be two evaluation
contexts such that; N (fv(Bz2) U fn(Bs)) = @ andas N (fo(By) U fn(By)) = 0.
We have tha€’;[C,[A]] = C[C4[A]] for any extended process

PROOF. Let A be an extended process. We have that
C1[Co[A]] = viy.(vag.(A | Be) | By)
= vip.viy.((A| By) | B2)  sinceuy & fu(B1) U fn(B1)
= vis.(viuy.(A | By) | By)  sinced; € fu(Bs) U fn(Bs)
= Co[C4[A]] O

2.2 Semantics

The operational semantics of processes in the applied pulcal is defined by
structural rules defining two relationstructural equivalencébriefly described in
Section 2.1) andhternal reduction noted—. Internal reduction— is the smallest
relation on extended processes closed under structuraddepce and application
of evaluation contexts such that

(Comm) out(a,z).P |in(a,z).Q — P | Q

(THEN) if M = M thenP else) — P

(ELSE) if M = N thenP else — @

for any ground termd/ and N such thatV #g N.
The operational semantics is extended tgteelledoperational semantics enabling
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us to reason about processes that interact with their envieot. Labelled opera-
tional semantics defines the relati8nwhereq is either an input, or the output of
a channel name or a variable of base type.

(IN) in(a, z).p @My prary A
(OuT-ATOM) out(a, u).P 24“Y, p
A out(a,u) A u 7£ a

(OPEN-ATOM)

Ju A vu.out(a,u) A

A A u does not occur i

Scop

( g vu.A S vu A

(PAR) AS A bo(a)Nfo(B) = bn(a)N f(B) =10
A|B3 A | B

(STRUCT) A=B B> B A=B

AS A

Note that the labelled transition is not closed under appba of evaluation con-
texts. Moreover the output of a terf needs to be made “by reference” using a
restricted variable and an active substitution.

Example 4 Consider the procesB defined in Example 2. We have
P = vs, k,z1.(0ut(cr, 21) | in(er, y).out(ca, dec(y, k)) | {"CH /. })
vay.out(c1,r1) vs, k.(in(cq,y).out(cy, dec(y, k)) | {enc(&k) Jx1})
SO, ys, k(out(cy, dec(as, ) | {1/, })

= vs k22 (0Ut(cy, mo) | {0 [o, } [ {2l /)
vxa.out(ci,x2) Vs, k~({enc(8’k)/a:1} | {dec(xl,k)/xz})

Let A be the extended process obtained after this sequence dftiedsteps. We
have thatp(A) = vs.vk.{emeR) /s / Y,
2.3 Equivalences

We can now define what it means for two frames tstagically equivalenfl].

11



Definition 5 (Static equivalence £,)) Two termsV/ and N areequal in the frame
o, written (M =g N)¢, if, and only if there existg8 and a substitutior such that
¢ =vn.o, Mo =g No,andn N (fn(M) U fn(N)) = 0.

Two framesp,; and ¢, are statically equivalenty; ~g ¢, when:

° dom(gzﬁl) = dOHl(sz), and
o for all termsM, N we have thatM =g N)¢, if and only if (M =g N)¢,.

Two extended processe$ and B are said to be statically equivalent, denoted
by A ~; B, if we have thatp(A) ~; ¢(B).

Example 6 Let g = vk.oyp and p; = vk.o; whereg, = {ectok)/ */ 1
op = {encbuk)/ k) and s, s; and k are names. LeE be the theory de-
fined by the axiomdec(enc(zx, k), k) = x. We havedec(xy, z2)00 =g so but not
dec(zy,x9)01 =g so. Therefore we have, %, ;. However, note that we have
yk‘{enc(so,k)/xl} <3 Vk.‘{enc(sl,k)/xl}.

Definition 7 (Labelled bisimilarity ( ~,)) Labelled bisimilarityis the largest sym-
metric relationR on closed extended processes, such th@& B implies

(1) A=, B,

(2) if A— A’ thenB —* B"and A’ R B’ for someB’,

(3) if A3 A'andfv(a) C dom(A) andbn(a)Nfn(B) = 0, thenB —*%—* B’
and A’ R B’ for someB’.

The definition of labelled bisimilarity is like the usual defion of bisimilarity,
except that at each step one additionally requires that ribeepses are statically
equivalent. It has been shown that labelled bisimilarityncmles with observa-
tional equivalence [1]. We prefer to work with labelled bidarity, rather than
observational equivalence, because proofs for labellsonbarity are generally
easier. Labelled bisimilarity can be used to formalise msagurity properties, in
particular anonymity properties, such as those studiedisnp@aper.

When we model protocols in applied pi calculus, we model theelst parties as
processes. The dishonest parties are considered to be tinedeontrol of the at-

tacker, and are not modelled explicitly. The attacker (tbgewith any parties it

controls) form the environment in which the honest processa. This arrange-

ment implies that we consider only one attacker; to put irtla@ronay, we consider
that all dishonest parties and attackers share informatioitrust each other, thus
forming a single coalition. This arrangement does not allswo consider attackers
that do not share information with each other.

12



3 Formalising voting protocols

Before formalising security properties, we need to definatidan electronic vot-

ing protocol in applied pi calculus. Different voting protis often have substantial
differences. However, we believe that a large class of gqgpirotocols can be rep-
resented by processes corresponding to the followingtsiieic

Definition 8 (Voting process) A voting process is a closed plain process
VP =va.(Voy |- | Vo, | AL |- | Am).

TheV g, are the voter processes, thgs the election authorities which are required
to be honest and the are channel names. We also suppose that dom(o;) is

a variable which refers to the value of the vote. We define atuation contexts
which is asV P, but has a hole instead of two of ther;.

In order to prove a given property, we may require some of titbaities to be
honest, while other authorities may be assumed to be cediuptthe attacker. The
processes\,,..., A,, represent the authorities which are required to be honhst. T
authorities under control of the attacker need not be mede#lince we consider
any possible behaviour for the attacker (and therefore asgiple behaviour for
corrupt authorities). In this case the communications obbnare available to the
environment.

We have chosen to illustrate our definition with three clzalselectronic voting
protocols of the literature: a protocol due to Fujiadaal. [25], a protocol due to
Okamoto [40] and one due to Lext al. [36]. After a brief and informal descrip-
tion of those protocols, we formalise them in the appliedgbtialus framework in
Sections 5, 6 and 7.

4 Formalising privacy-type properties

In this section, we show how the anonymity properties, imf@lty described in the
introduction, can be formalised in our setting and we shovadcordance with in-
tuition, that coercion-resistance implies receipt-fiee3) which implies privacy. It
is rather classical to formalise anonymity properties aseskind of observational
equivalence in a process algebra or calculus, going bachketavbrk of Schnei-
der and Sidiropoulos [43]. However, the definition of anortymproperties in the
context of voting protocols is rather subtle.

13



4.1 \ote-privacy

The privacy property aims to guarantee that the link betveegimen voted” and his
vote v remains hidden. Anonymity and privacy properties have lsemtessfully
studied using equivalences. However, the definition ofgmyvin the context of
voting protocols is rather subtle. While generally mostusiég properties should
hold against an arbitrary number of dishonest participaartsitrary coalitions do
not make sense here. Consider for instance the case whdyetalhe voter are
dishonest: as the results of the vote are published at thelendishonest voter can
collude and determine the vote of the honest voter. A claksick for modelling
anonymity is to ask whether two processes, one in whighvotes and one in
which Vp votes, are equivalent. However, such an equivalence dddsithere
as the voters’ identities are revealed (and they need tousaled at least to the
administrator to verify eligibility). In a similar way, amgaivalence of two processes
where only the vote is changed does not hold, because thea@@ublished at the
end of the protocol. To ensure privacy we need to hiddithkebetween the voter
and the vote and not the voter or the vote itself.

In order to give a reasonable definition of privacy, we needuppose that at
least two voters are honest. We denote the votgrand Vz and their votes:,
respectivelyb. We say that a voting protocol respects privacy whenevepbegss
whereV/, votesa andVz votesh is observationally equivalent to a process whére
votesh andVz votesa. Formally, privacy is defined as follows.

Definition 9 (Vote-privacy) A voting protocol respectgote-privacy(or just pri-
vacy) if

SWal®/o} 1 Va{" )} e SVa{"/} | VB{"/}]

for all possible votes andb.

The intuition is that if an intruder cannot detect if arbiyrhonest votery’, andVz
swap their votes, then in general he cannot know anythingtatamwv V4 (or V)
voted. Note that this definition is robust even in situatiagere the result of the
election is such that the votes Bf andV; are necessarily revealed. For example,
if the vote is unanimous, or if all other voters reveal howytheted and thus allow
the votes ofl’, andV to be deduced.

A protocol satisfying privacy also allows arbitrary perm@itithns of votes between
voters. For example, we may prove that

SWVal®/o} [ VB{"/} | Vel/ Y] e SVal®/u} | VB{/u} | Ve{/u}]
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as follows:

SWVal®/o} [ VB{"/o} | Ve{*/u}]
~e SVal®/u} | VB{?/u} | Ve{®/,}] using privacy, withS” = S[- | V{*/.}]
~e SIVa{’/o} | VB{¢/o} | Ve{?/u}] using privacy, withS” = S[Vo{"/.} | ]

As already noted, in some protocols the vote-privacy pitypery hold even if au-

thorities are corrupt, while other protocols may requiredhthorities to be honest.
When proving privacy, we choose which authorities we wanhtalel as honest,
by including them in Definition 8 of/P (and hence).

4.2 Receipt-Freeness

Similarly to privacy, receipt-freeness may be formaliseda observational equiv-
alence. We also formalise receipt-freeness using obsenzhtequivalence. How-
ever, we need to model the fact thét is willing to provide secret information, i.e.,
the receipt, to the coercer. We assume that the coercerastithie attacker who, as
usual in the Dolev-Yao model, controls the public chanriEdsnodell’,’s commu-
nication with the coercer, we consider that executes a voting process which has
been modified: any input of base type and any freshly gerceratees of base type
are forwarded to the coercer. We do not forward restricteshobl names, as these
are used for modelling purposes, such as physically sebareels, e.g. the voting
booth, or the existence of a PKI which securely distribugsk(the keys themself
are forwarded but not the secret channel name on which treddeyreceived).

Definition 10 (ProcessP") Let P be a plain process aneh a channel name. We
defineP" as follows:

>
I
(==

0° ,
(P | Q)Ch = pch | QCh,

(vn.P)" = vn.out(ch,n). P whenn is name of base type,

(vn.P)" = vn.P<" otherwise,

( ).P)" = in(u, z).out(ch, x). P" whenz is a variable of base type,
(in(u, x).P)*" = in(u, z). P*" otherwise,

(out(u, M).P)*h = out(u, M).P",

(!P)ch = !PCh,

(if M = N thenP elseQ)** = if M = N thenP° elseQ“".

In the remainder, we assume théat ¢ fn(P) U bn(P) before applying the trans-
formation.
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Given an extended procegsand a channel namé:, we need to define the ex-
tended procesd \°(°»-) Intuitively, such a process is as the procdssut hiding
the outputs on the channgl.

Definition 11 (ProcessA\**(<")) Let A be an extended process. We define the
processA\*“* ") asych.(A |lin(ch, ).

We are now ready to define receipt-freeness. Intuitivelypgogol is receipt-free if,
for all votersV/,, the process in whicl’, votes according to the intruder’s wishes
is indistinguishable from the one in which she votes sometlalse. As in the
case of privacy, we express this as an observational equivalto a process in
which V4 swaps her vote wityz, in order to avoid the case in which the intruder
can distinguish the situations merely by counting the vatdbe end. Suppose the
coercer’s desired vote is Then we define receipt-freeness as follows.

Definition 12 (Receipt-freeness)A voting protocol igeceipt-freef there exists a
closed plain procesg” such that

° V/\aut(chc,-) ~y VA{a/y},
o SIVa{e/u}" | Ve{®/u}] e SIV' | VB{“/.}],

for all possible votes andc.

As before, the context in the second equivalence includes those authorities that
are assumed to be honegt.is a process in which votér, votesa but communi-
cates with the coercer' in order to feign cooperation with him. Thus, the second
equivalence says that the coercer cannot tell the differéetween a situation in
which V4 genuinely cooperates with him in order to cast the vond one in
which she pretends to cooperate but actually casts theayqteovided there is
some counterbalancing voter that votes the other way arduredfirst equivalence

of the definition says that if one ignores the outplitsnakes on the coercer chan-
nel che, thenV’ looks like a voter process, voting a.

The first equivalence of the definition may be considered tamng; informally,
one might consider that the equivalence should be requinddin a particular
S context rather than requiring it in any context (with accessll the private
channels of the protocol). This would result in a weaker dk&im, although one
which is more difficult to work with. In fact, the variant detion would be only
slightly weaker; it is hard to construct a natural examplechidistinguishes the
two possibilities, and in particular it makes no differena¢he case studies of later
sections. Therefore, we prefer to stick to Definition 12.

According to intuition, if a protocol is receipt-free (foigaven set of honest author-
ities), then it also respects privacy (for the same set):

Proposition 13 If a voting protocol is receipt-free then it also respects/pcy.

16



Before we prove this proposition we need to introduce a lemma

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Pe?)\out(ch-) ~, P,

PROOF. (sketch, see Appendix A for details)

We show by induction on the size @t that for any channel name&: such that
ch & fn(P)Ubn(P), the equivalencé"\°u(<) ~, P holds. The base case where
P = 0Ois trivial. Then, we consider the different possibilities building P. O

PROOF. (of Proposition 13)
By hypothesis, there exists a closed plain prodéssuch that

° V/\out(chc,-) R~y VA{a/v}, and
o SIVa{e/u} | VB{®/u} = SIV' | VB{¢/u}]-

By applying the evaluation contexthc.( _ |lin(che, z)) on both sides we obtain
S[VA{c/v}chc ‘ VB{a/v}]\out(chc,-) ~y S[V/ ‘ VB{C/UH\out(chc,.).
By using Lemma 3, we obtain that:

° S[VA{C/U}ChC ’ VB{Q/U}]\Out(ChC,-) = S[(VA{C/U}chc)\out(chc,~) ’ VB{a/u}],
° S[V’ ’ VB{c/v}]\out(chc,~) = S[V/\aut(chc,-) | VB{C/U}]'

Lastly, thanks to Lemma 14 and the fact that labelled bisirityt is closed under
structural equivalence, we deduce that

SIVa{*/o} | Va{"/}] me SV | Vi {fu}].

Since we havé/\outcher) ~, v, {e/ 1 we easily conclude. O
4.3 Coercion-Resistance

Coercion-resistance is a stronger property as we give tbeceo the ability to
communicatenteractivelywith the voter and not only receive information. In this
model, the coercer can prepare the messages he wants tih¢ovetnd. As for
receipt-freeness, we modify the voter process. In the chseeaycion-resistance,
we give the coercer the possibility to provide the messdgesater should send.
The coercer can also decide how the voter branchéfs-statements.

Definition 15 (ProcessP:?) Let P be a plain process and;, ¢, be channel
names. We definé“°2 inductively as follows:
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02 =0,

(P ‘ Q)Cl €2 = P12 | ch €2

(vn.P)“ = pn.out(cy, n). P whenn is a name of base type,

(vn.P)“2 = pn. P2 otherwise,

(in(u, x).P)"° = in(u, x).out(cy, ). P whenx is a variable of base type,

(in(u, ). P)** = in(u, z). P2 otherwise,

(out(u M).P)“° =in(cq, z).0ut(u, z). P> whenM is a term of base type
andz is a fresh variable,

(out(u, M).P)“-2 = out(u, M). P otherwise,

o (IP)e2 = |pec2

(if M = N thenP elseQ)“"*> = in(cy, x). if x = true then P2 else)* 2
wherez is a fresh variable and true is a constant.

As a first approximation, we could try to define coercions&sice in the following
way: a protocol is coercion-resistant if there i asuch that

SWVal'foyre | Ve{®/u}] = SIV' | Vs{/u}]. (1)

On the left, we have the coerced voiér{’/,}"**; no matter what she intends to
vote (the “?”), the idea is that the coercer will force her twex. On the right, the
processl/’ resists coercion, and manages to vetéJnfortunately, this character-
isation has the problem that the coercer could obligé’/,}2 to votec # c.

In that case, the proce$s{“/,} would not counterbalance the outcome to avoid a
trivial way of distinguishing the two sides.

To enable us to reason about the coercer’s choice of vote, agelnthe coercer’s
behaviour as a contekt that defines the interface, ¢, for the voting process. The
contextC' coerces a voter to vote Thus, we can characterise coercion-resistance
as follows: a protocol is coercion-resistant if there ig’asuch that

SIOWa{' /o3 | Ve{* )} = SICIV'] | VB{*/.}], )

where C is a context ensuring that the coerced votgf’/,}¢2 votesc. The
contextC' models the coercer’s behaviour, while the environment risottie co-
ercer’s powers to observe whether the coerced voter belaaviestructed. We ad-
ditionally require that the context’ does not directly use the channel names
restricted byS. Formally one can ensure thit {*/, }¢*2 votesc by requiring that
C[Va{" [ }ere2] ~p Va{¢/,}"*. We actually require a slightly weaker condition,
S[CIVA{" /35 | VB{/u}] ~¢ S[Va{¢/,}" | VB{*/,}], which results in a
stronger property.

Putting these ideas together, we arrive at the followingnitedn:

Definition 16 (Coercion-resistance)A voting protocol icoercion-resistantthere
exists a closed plain proce$8 such that for anyC' = vey.ves. (- | P) satisfying
n N fn(C) =0andS[C[Va{"/.}?] | Ve{®/o}] e SVa{/u}" | Va{®/.}], we
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have

o V) 0 Vafe), )
o SICWVAL /)] | Va{* /o] 0 SICV] | Vo{e/, )]

Note thatV4{*/,}"** does not depend on what we put for “?”.

The condition thatS[C[Va{*/,}* | VB{%/,}] = S[Va{¢/.}" | VB{%/.}]
means that the contekt outputs the secrets generated during its computation; this
is required so that the environment can make distinctionherasis of those se-
crets, as in receipt-freeness. The first bullet point exg@g$hal’’ is a voting pro-
cess forA which fakes the inputs/outputs with and succeeds in votingin spite

of the coercer. The second bullet point says that the coeerarot distinguish be-
tweenl”’ and the really coerced voter, provided another vbigcounterbalances.

As in the case of receipt-freeness, the first equivalencleofiefinition could be
made weaker by requiring it only in a particuldrcontext. But we chose not to
adopt this extra complication, for the same reasons as givére case of receipt-
freeness.

Remark 17 The contextC' models the coercer’'s behaviour; we can see its role
in equivalence (2) as imposing a restriction on the distisging power of the
environment in equivalence (1). Since the coercer's behevs modelled by
while its distinguishing powers are modelled by the envirent, it would be useful
to write (2) as

CISWVal' /3] | Va{®/u}]] = CISIV" | Vis{*/,}]. ©)
Equivalences (2) and (3) are the same (Lemma 3).

According to intuition, if a protocol is coercion-resistahen it respects receipt-
freeness too (as before, we keep constant the set of horibetiéias):

Proposition 18 If a voting protocol is coercion-resistant then it also resfs receipt-
freeness.

PROOF. Let C be an evaluation context such th@t= vc,.vce.( - | P) for some
plain process” and S[C[Va{"/,}"?] | Va{*/u}] =¢ S[Va{¢/s}" | VB{?/,}]-
Note that such &' can be constructed directly from the vote procés8y hypoth-
esis, we know that there exists a closed plain prot8ssich that

° C[v/]\out(chc,.) ~y VA{a/v},
o SICVa{*/u} ] | VB{*/u}] = SICIV'] | VB{/u}].

We need to show that there exi$t€ such that
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° V//\out(chc,.) ~ VA{a/v}a
o SVa{e/u}" | VB{*/u} = SIV" | VB{/u}].

Let V" = C[V']. We directly obtain the first requirement. For the second aree
take the hypotheses

o S[CIVa{'/u}2] | VB{*/u}] = SICIV'] | VB{°/.}], and
o S[CWVA{" o} | VB{*/u}] me SVa{/u} | VB{*/u}]-

By transitivity of ~,, we obtainS[Va{¢/,}"* | Vs{®/,}] =¢ S[CIV'] | V{°/.}].
Lastly, we replace’[V’] on the right byV”. O

Using the definition of coercion-resistance. To show that a voting protocol sat-
isfies coercion-resistance, it is necessary to give a psdcesand it is necessary
to show the two bullet points in the definition for all contekt which satisfy the
requirement stated in the definition. In case studies, iffi€dlt to reason about all
possible context§’, and our analysis is rather informal. In future work, we htpe
provide better methods for doing that.

To show that a voting protocol does not satisfy coerciofstasce, it is necessary
to show that for allV’, there exists a context’ for which the bullet points fail.
In practice, one may try to give a single which works for allV’. Since this is a
stronger condition, it is sufficient.

5 Protocol due to Fujioka, Okamoto and Ohta

In this section we study a protocol due to Fujioka, Okamotb@hta [25]. We first
give an informal description of the protocol (see Sectiah).5Then, we show in
Section 5.2 how this protocol can be modelled in the appliegiculus. Lastly, in
Section 5.3, we show that the protocol respects privacy. d¥ew the protocol is
not receipt-free [40]. The Fujioka, Okamoto and Ohta protezas also analysed
by Nielseret al.[39], but their focus is on properties such as verifiabiktgibility,
and fairness, rather than the privacy-type propertiesisftaper.

5.1 Description

The protocol involves voters, an administrator, verifythgt only eligible voters
can cast votes, and a collector, collecting and publishiegvbtes. In comparison
with authentication protocols, the protocol also uses samesual cryptographic
primitives such as secure bit-commitment and blind sigeatuMoreover, it relies
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on anonymous channels. We deliberately do not specify tlyghese channels are
handled as any anonymiser mechanism could be suitable diegemm the precise
context the protocol is used in. One can use MIX-nets intceduoy Chaum [14]
whose main idea is to permute and modify (by using decryptiore-encryption)
some sequence of objects in order to hide the correspondetaeen elements
of the original and the final sequences. Some other impleatiens may also be
possible, e.g. onion routing [46].

A bit-commitment scheme allows an ageaAtto commit a valuev to another
agentB without revealing it immediately. MoreoveR is ensured thatl cannot
change her mind afterwards and that the value she laterlsawédbbe the same as
she thinks at the beginning. For thié encrypts the value in some way and sends
the encryption taB. The ageni3 is not able to recover until A sends him the key.

A blind signature scheme allows a requester to obtain a signaf a message:
without revealing the messageto anyone, including the signer. Hence, the signer
is requested to sign a message blindly without knowing whaigns. This mech-
anism is very useful in electronic voting protocol. It allhe voter to obtain a
signature of her vote by an authority who checks that sheiphsto vote without
revealing it to the authority.

In a first phase, the voter gets a signature on a commitmers imte from the ad-
ministrator. To ensure privacy, blind signatures [15] ased) i.e. the administrator
does not learn the commitment of the vote.

e \oter V selects a vote and computes the commitment= £(v ) using the
commitment schemgand a random key;

e IV computes the message= x(z,b) using a blinding functiory and a random
blinding factorb;

o V/ digitally signse and sends her signature (e) to the administrator together
with her identity;

e A verifies thatl” has the right to vote, has not voted yet and that the signature
is valid; if all these tests hold4 digitally signse and sends his signatuee, (e)
toV;

e VV nowunblindsc4(e) and obtaing; = o4(z), i.e. a signed commitment 3's
vote.

The second phase of the protocol is the actual voting phase.

e I/ sendg, A’s signature on the commitment tds vote, to the collecto€' using
an anonymous channel,

e (' checks correctness of the signatyrand, if the test succeeds, entéfsz, y)
into a list as arf-th item.
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The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.g. after a fixed deadline. In this phasgadlters reveal the random
key r which allowsC' to open the votes and publish them.

e (' publishes the list/;, x;, y;) of commitments he obtained;

e V verifies that her commitment is in the list and sehdsto C via an anonymous
channel,

e (' opens thé-th ballot using the randomand publishes the vote

Note that we need to separate the voting phase into a comntijphase and an
opening phase to avoid releasing partial results of theieteand to ensure privacy.
This is ensured by requiring synchronisation between tfierdnt agents involved
in the election.

5.2 The model in applied pi

Cryptographic primitives as an equational theory. We model cryptography in
a Dolev-Yao style as being perfect. The equations are gietwb

open(commit(m,r),r) = m
checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m,r),r) = m
unblind(sign(blind(m, r), sk), r) = sign(m, sk)

In this model we can note that bit commitment (modelled byftimetionscommit
and open) is identical to classical symmetric-key encryption. Fongicity, we
identify host names and public keys. Our model of cryptogi@aprimitives is an
abstraction; for example, bit commitment gives us perfedding and hiding. Digi-
tal signatures are modeled as being signatures with messameery, i.e. the signa-
ture itself contains the signed message which can be extltasing thehecksign
function. To model blind signatures we add a pair of functibiind andunblind.
These functions are again similar to perfect symmetric keyygption and bit com-
mitment. However, we add a second equation which permite egttact a signa-
ture out of a blind signature, when the blinding factor iswnoNote that the equa-
tion modelling commitment cannot be applied on the tepan(commit(m,ry), r2)
Whenl’l 7£ ra.

Process synchronisation. As mentioned, the protocol is divided into three phases,
and it is important that every voter has completed the firasphbefore going onto
the second one (and then has completed the second one beiftireucg to the

22



(* private channels x)

v privCh.r pkaChlvr pkaCh2 v skaCh v skvaChv skvbCh.
(* administrators =*)

(processK | processA| processA| processC| processC |
(* voters x)

(let skvCh = skvaChin let v = a in processV) |
(let skvCh = skvbChin let v = b in processV) )
Process 1. Main process
processK=

(* private keys *)

v ska. v skva. v skvb.

(* correspondi ng public keys =)

let (pka, pkva, pkvb)=(pk(ska), pk(skva), pk(skvb)n
(* public keys disclosure *)

out(ch,pka). out(ch,pkva). out(ch, pkvb).

(* register legitimate voters *)

(out(privCh ,pkva) out(privCh, pkvb) |

(* keys disclosure on private channels *)
out(pkaChl,pka) | out(pkaChl,pka)| out(pkaCh2,pka) |
out(pkaCh2,pka)| out(skaCh,ska) | out(skaCh, ska) |
out(skvaCh,hskva)| out(skvbCh, skvb))

Process 2. Administrator for keying material

third). We enforce this in our model by the keywasghch. When a process en-
counterssynch n, it waits until all the other process that could encoust@kch n
arrive at that point too. Then all the processes are allowetntinue.

If there arek processes that can encounderich n, we can implement the syn-
chronisation as follows. The commasghch n is replaced byut(n,0);in(n, =1)
wheren is a globally declared private channel. Moreover we assumaditional
procesgin(n, =0);...;in(n,=0);out(n,1);...;out(n, 1) that has: ins andk outs.
This simple encoding is fine for our purpose since the valueazin be inferred by
inspecting the code; it would not work if new processes wesated, e.g. with “!1”.

Main (Process 1). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the priviatmgels are for key
distribution. We only model the protocol for two voters aadch two copies of

the administrator and collector process, one for each voter

Keying material (Process 2). Our model includes a dedicated process for gener-
ating and distributing keying material modelling a PKI. Atitwhally, this process
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processV = (* paranmeters: skvCh, v =)
(* her private key *)
in(skvCh,skv).
(* public keys of the adm nistrator =)
in(pkaChl, pubka) .
v blinder. v r.
let committedvote = commit(v,r)in
let blindedcommittedvote=blind (committedvote , blindeiln
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)) .
synch 2.
in(ch4,(l,=committedvote ,=sighnedcommittedvote)).
out(ch5,(1,r))

Process 3. Voter process

processA =
(» administrator’s private key =)
in(skaCh,skadm) .
(* register legintate voters )
in(privCh , pubkv).
in(chl,ml).
let (pubkeyv,sig) = mlin
if pubkeyv = pubkvthen
out(ch2,sign(checksign(sig,pubkeyv),skadm))

Process 4. Administrator process

registers legitimate voters and also distributes the puddys of the election au-
thorities to legitimate voters: this is modelled using negtd channels so that the
attacker cannot provide false public keys.

Voter (Process 3). First, each voter obtains her secret key from the PKI as well
as the public keys of the administrator. The remainder okprexification follows
directly the informal description given in Section 5.1.

Administrator (Process 4). The administrator first receives through a private
channel his own public key as well as the public key of a letate voter. Le-
gitimate voters have been registered on this private chamieocess 2 described
above. The received public key has to match the voter whgiisgito get a signed
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processC =
(» admnistrator’s public key *)
in(pkaCh2, pkadmin).
synch 1.in(ch3,(m3,m4)).
if checksign(m4,pkadmin) = m3hen
synch 2.
v .
out(ch4 ,(I,m3,m4)).
in (ch5,(=1,rand)).
let voteV=open(m4,rand)in
out(ch,voteV)

Process 5. Collector process

ballot from the administrator. If the public key indeed nies, then the adminis-
trator signs the received message which he supposes to meladballot.

Collector (Process 5). When the collector receives a committed vote, he asso-
ciates a fresh labél with this vote. Publishing the list of votes and labels is mod
elled by sending those values on a public channel. Then tiee @an send back the
random number which served as a key in the commitment screge#ier with the
label. The collector receives the key matching the label@rehs the vote which

he then publishes.

5.3 Analysis

Vote-privacy. According to our definition, to show that the protocol redpgxi-
vacy, we need to show that

SWVa{*/o} 1 VB{"/u}] e SVa{"/} | Vi{*/o}]- (4)

whereV, = processV{***Ch /. cn}, Vi = processV{***Ch /. cn} andS is de-
fined as the parallel composition of the voter processeswlthta hole instead of
the two voter processes. We do not require that any of theoatids are honest,
so they are not modelled ifi, but rather left as part of the attacker context. To
establish this equivalence, we show that

vpkaChl.(V4{?/,} | V5{®/,}| processK)
~y )
vpkaChl.(V4{®/,} | V{?/,}| processK)
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Note that this implies privacy (equivalence 4) only in theeaf precisely two vot-
ers (i.e.,S doesn’t contain any additional voters). To deduce equicdet for an
arbitrary contexts, one would like to use the fact that labelled bisimilaritglissed
under application of evaluation contexts. Unfortunatesg, context/pkaChl._ pre-
vents us from easily making this inference (recall thietCh1 is the channel on
which the voters receive the public key of the administia©ur proof is formally
valid only for two voters, although a similar proof can eadie made for other
numbers.

Note that to ensure privacy we do not need to require any okefye to be secret.
However, we need to ensure that both voters use the same [xellifor the ad-
ministrator. Therefore, we send this public key on a privdtannel, although the
secret key itself is a free name. Werename the bounded variables and names
the two voter processes in a straightforward way. AlthougiVerif is not able to
prove this observational equivalence directly, we were &bktheck all of the static
equivalences on the frames below using ProVerif (see Leni®amnd 20).

We denote the left-hand processfaand the right-hand process@sWe have that
bothprocessK start with the output of all the keys. None of these transgidepend
on the value of the vote, and so they commute in the same waly ford (). For
the sake of readability, we do not detail this part. The onipartant point is that
the output of the administrator’s public key is sent on agievchannel yielding an
internal reduction. We have that

in(skvaCh,skva) in(skvbCh,skvb)

P P > Py —*

vzy.out(ch,r1) VbA-VTA-VbB-VTB~<P3 | {(pk(skva),sign(blind(commit(a,r;,),bA),skva))/xl}

VbA.V’f’A.I/bB.I/TB.(P4 | {(pk(skva),sign(blind(commit(a,rA),bA),skva)/Il}

| {(pk:(slwb),sign(blind(commit(b,TB),bB),skvb)/m2})

vzg.out(ch,z2)
_—

Similarly,

m(skvaC’h,skva)\ in(skvbCh,skvb
7

1 L Q, -
l/bA.l/T’A.VbB.VTB.(Qg | {(pk(skva),sign(blind(commit(b,rA),bA),skva))/xl}

l/bA.l/TA.I/bB.I/TB.(Q4 | {(pk(skva),sign(blind(commit(b,rA),bA),skva)/Il}

’ {(pk(skvb),sign(blind(commit(a,rg),bB),skvb)/m2})

Q

vry.out(ch,x1)

va.out(ch,x2)

We could have considered any permutation of these transitdhich respects the
partial order dictated by the processes. Note that for theemputs we may con-

sider any public term, i.e. term that does not use boundeckgaaithe processes.

For the next input of both voters, we need to consider twoasher the input
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of both voters corresponds to the expected messages froadthmistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing coresst of the message
fails and hence they cannot synchronise. In the first cagh,Jmers synchronise
at phasel. Until that point any move of votev,{*/,} on the left-hand side has
been imitated by votev,{®/, } on the right-hand side and equally for the second
voter. However, from now on, any move of votgi{*/,} on the left-hand side
will be matched with the corresponding movelgf{*/,} on the right-hand side
and similarly for the second voter. The voters will now outine committed votes
signed by the administrator. The corresponding framesesertbed below and are
statically equivalent.

¢P’ = I/bA.l/TA.VbB.VTB- {(pk(skva),sign(blind(commit(a,rA),bA)7sk:va))/xl} |
{(pk(skvb),sign(blind(commit(b,rg),bB),skvb))/x2} |

{(commit(a,'rA),sign(commit(a,'rA),ska))/xs} ‘

{ (commit(b,rp),sign(commit(b,rg),ska)) /z4 }

QSQ' = l/bA.l/T’A.VbB.VT’B. {(pk(skva),sign(blind(commit(b,rA),bA),skva))/ml} |
{(pk(skvb),sign(blind(commit(a,rg),bB),skvb))/xz} |

{(commit(a,rB),sign(commit(a,rB),ska))/mg} |

{ (commit(b,r4),sign(commit(b,r4),ska)) /x4 }

The following result can be establish using ProVerif.
Lemma 19 The framesp and ¢ are statically equivalent.

For the following input, we again consider two cases: eitherinput of both voters
corresponds to the expected messages or at least one iggihdbsucceed the
tests. In the second case, one of the voters will block, @s¢esorrectness of the
message fails and hence they cannot synchronise. In thedast we obtain at the
end the two frames below which are again statically equntale

¢P” = l/bA.l/TA.l/bB.l/’l"B. {(pk(skva),sign(blind(commit(a,rA),bA),skva))/xl}
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/IQ} ’

{(commit(a,rA),sign(commit(a,rA),sk:a))/mg} |

{(commit(b,rB),sign(commit(b,rg),ska))/z4} ‘

(O [} {0 )
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CbQ” — VbA.VTA.VbB-VTB- {(pk(skva),sign(blind(commit(b,r‘A),bA),skva))/xl} ‘

{(pk(sk:vb),sign(blind(commit(a,rg),bB),skvb))/x2} ‘
{(commit(a,rB),sign(commit(aﬂ“g),ska))/xS} ‘

{(commit(b,r,q),sign(commit(b,rA),ska))/m4} |

{tar) o | {07 [0}

Again, ProVerif is able to establish the following result.
Lemma 20 The framespp» and ¢~ are statically equivalent.

Note that it is sufficient to prove static equivalences férehchable final states.
Thus, Lemma 19 is actually a consequence of Lemma 20.

Note that the use of phases is crucial for privacy to be rasge®hen we omit
the synchronisation after the registration phase with thaiaistrator, privacy is
violated. Indeed, consider the following scenario. Vdtgrcontacts the adminis-
trator. As no synchronisation is considered, vatgrcan send his committed vote
to the collector before votdry contacts the administrator. As voteég could not
have submitted the committed vote, the attacker can lirdkk¢dbimmitment to the
first voter’s identity. This problem was found during a firsteanpt to prove the
protocol where the phase instructions were omitted. Trggrai paper divides the
protocol into three phases but does not explain the cruzipbrtance of the syn-
chronisation after the first phase. Our analysis emphasigeseed and we believe
that it increases the understanding of some subtle defdife @rivacy property in
this protocol. We may also note that we do not make any assongpabout the
correctness of the administrator or the collector, who nmeagdrrupt, However, we
need to assume that both voters use the same value for theiattaior’s public
key. Otherwise, privacy does not hold.

Receipt-freeness. This scheme is not receipt-free and was in fact not designed
with receipt-freeness in mind. Indeed, if the voter givesyathe random numbers
for blinding and commitment, i.&., andr 4, the coercer can verify that the com-
mitted vote corresponds to the coercer’s wish and by unioighthe first message,
the coercer can trace which vote corresponds to this phaticater. Moreover,

the voter cannot lie about these values as this will immedidie detected by the
coercetr.

In our framework, this corresponds to the fact that therstexiol/’ such that:
° V/\out(chc,-) ~ VA{a/v}a
o SVa{e/u}" | Va{®/u}] e SIV' | VB{*/u}].
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We show that there is nB’ by proving that the requirements &ff are not satis-
fiable. We have that,{¢/,}"* outputs the values, andb, on the channethc.
This will generate entries in the frame. Hent@,needs to generate similar entries
in the frame. The coercer can now verify that the valugsandb, are used to
encode the vote in the message sent to the administrator. THuss not able to
commit to a value different from, in order to satisfy the second equivalence. But
thenV’ will not satisfy the first equivalence, since he will be ureatd change his
vote afterwards as the commitmenttbas been signed by the administrator. Thus,
the requirements o’ are not satisfiable.

The failure of receipt-freeness is not due to the possildbahesty of the admin-
istrator or collector; even if we include them as honestigsyithe protocol still
doesn't guarantee receipt-freeness. It follows that ¢oefesistance doesn’t hold
either.

6 Protocol due to Okamoto

In this section we study a protocol due to Okamoto [40] whicswlesigned to
be incoercible. However, Okamoto himself shows a flaw [41dcdxding to him,
one of the reasons why the voting scheme he proposed had dlash ia that no
formal definition and proof of receipt-freeness and coergigsistance have been
given when the concept of receipt-freeness has been irdeadby Benaloh and
Tuinstra [8].

6.1 Description

The authorities managing the election are an administfateegistration, a collec-
tor for collecting the tokens and a timeliness member (d=hbyT’) for publishing
the final tally. The main difference with the protocol due tgiékaet al. is the use
of a trap-door bit commitment scheme [23] in order to rewiegceipt-freeness.
Such a commitment scheme allows the agent who has perfolmambtmmitment
to open it in many ways. Hence, trap-door bit commitment daedind the voter
to the votev. Now, to be sure that the voter does not change her mind atnithe e
(during the opening stage) she has to say how she wants toh@pe@ommitment
during the voting stage. This is done by sending the requiméamation to7T’
through an untappable anonymous channel, i.e. a physipatajus by which only
voter V' can send a message to a party, and the message is perfectiteeall
other parties.

The first phase is similar to the one of the protocol due todkajet al.. The only
change is thaf is a trap-door bit commitment scheme.
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The second phase of the protocol is the actual voting phase, tde voter has to
say how she wants to open her commitment to the timelinessoeei

e V sendsy, A’s signature on the trap-door commitmentfés vote, to the collec-
tor C' using an anonymous channel;

e (' checks correctness of the signatyrand, if the test succeeds, ent¢isy)
into a list.

e IV sendquv,r, ) to the timeliness membé@r through an untappable anonymous
channel.

The last phase of the voting protocol starts, once the dolletecides that he re-
ceived all votes, e.qg. after a fixed deadline.

e (' publishes the listz;, y;) of trap-door commitments he obtained:;

e V verifies that her commitment is in the list;

e T publishes the list of the vote in random order and also proves that he knows
the permutationr and ther;’s such thatc, ;) = £(v;, ;) without revealingr or
ther;’s.

We have chosen to not entirely model this last phase. Inquéati, we do not
model the zero-knowledge proof performed by the timelimassnberT, as it is
not relevant for illustrating our definitions of privacyceapt-freeness and coercion-
resistance. This proof of zero-knowledge is very usefuhsuee thafl” outputs the
correct vote chosen by the voter. This is important in ordegrisure correctness,
even in the case thdt is dishonest. However, the proof of knowledge is unimpor-
tant for anonymity properties. In particular,ifis the coercer himself, then he can
enforce the voter to vote as he wants as in the protocol duejtoka et al. Indeed,
the timeliness memb@r can force the voter to give him the trap-door she has used
to forge her commitment and then he can not only check if thentmas vote as he
wanted, but he can also open her vote as he wants.

6.2 The model in applied pi

Cryptographic primitives as an equational theory. The equations modelling
public keys and blind signatures are the same as in Secoif®@model trap-door
bit commitment, we consider the two following equations:

open(tdcommit(m,r,td),r) = m

tdcommit(my, r, td) = tdcommit(my, f(my,r, td, m;), td)

Firstly, the termtdcommit(m, r, td) models the commitment of the messagen-
der the keyr by using the trap-dootd. The second equation is used to model
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(* private channels x)

v privCh. v pkaChl. r» pkaCh2.

v skaCh. v skvaCh. v skvbCh.wv chT.

(*» adm nistrators =)

(processK | processA| processA| processC | processC |
processT | processT |

(* voters x)

(let skvCh=skvaChin let v=a in processV) |

(let skvCh=skvbChin let v=b in processV) )

Process 6. Main process

processV = (* paranmeters: skvCh, v =)
(* her private key *)
in(skvCh,skv).
(* public keys of the adm nistrator =)
in(pkaChl, pubka) .
v blinder. v r. v td.
let committedvote = tdcommit(v,r,td)n
let blindedcommittedvote=blind (committedvote , blindeih
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkaj)n
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chT,(v,r,committedvote))

Process 7. Voter process

the fact that a commitmenticommit(ms, r, td) can be viewed as a commitment
of any valuem,. However, to open this commitment as one has to know the
key f(my, r,td, m;). Note that this is possible only if one knows the keysed to
forge the commitmenidcommit(my, r, td) and the trap-dootd.

Main (Process 6). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the priaderels are for key dis-
tribution. The channethT is the untappable anonymous channel on which voters
send tol" how they want to open their commitment.

We have also a dedicated process for generating and distgbkeying material

modelling a PKI. This process is the same as the one we hage fpvthe protocol
due to Fujiokeet al. (see Section 5).
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processC =
(» admnistrator’s public key *)
in(pkaCh2, pkadmin).
synch 1.
in(ch3,(m3,m4)) .
if checksign(m4,pkadmin) = m3hen
synch 2.
out(chBB,(m3,m4))

Process 8. Collector process

processT =
synch 1.
(* reception du commtment =)
in(chT,(vt,rt,xt)).
synch 2.
if open(xt,rt) = vt then
out(board, vt)

Process 9. Timeliness process

Voter (Process 7). This process is very similar to the one given in the previous
section. We use the primitivelcommit instead okommit and at the end, the voter
sends, through the chanrelT, how she wants to open her commitment.

Administrator.  The administrator process is exactly the same as the one igive
Section 5 to model the protocol due to Fujiciiaal.

Collector (Process 8). WhenC' receives a commitment, he checks the correct-
ness of the signature and if he succeeds, he enters thimpai list. This list is
published in a second phase by sending the values contaitieel list on the public
channekhBB.

Timeliness Member (Process 9). The timeliness member receives, througf,
messages of the forrivt, rt, xt) wherevt is the value of the votext the trap-door

bit commitment andt the key he has to use to open the commitment. In a second
phase, he checks that he can obtaiby opening the commitmest with rt. Then,

he publishes the votet on the board. This is modelled by senditgon a public
channel.

32



6.3 Analysis

Unfortunately, the equational theory which is required todel this protocol is
beyond the scope of ProVerif and we cannot rely on automateifioation, even
for the static equivalence parts.

Vote-privacy. Privacy can be established as in the protocol due to Fugbld.
Note that the equivalence proved there does not hold herehale to hide the
outputs on the channehT. Hence, we establish the following equivalence

vpkaChl.vchT.(Va{%/,} | VB{®/,}| processK | processT | processT)
~y

vpkaChl.vchT.(Va{?/,} | VB{%/.,}| processK | processT | processT)

Below we show that the protocol respects receipt-freenedhance privacy also
holds.

Receipt-freeness. To show receipt-freeness one needs to construct a prétess
which successfully fakes all secrets to a coercer. The léaril’”’ to votea, but
when outputting secrets to the coerdéflies and gives him fake secrets to pretend
to cast the vote. The crucial part is that, using trap-door commitment arzhkis

to the fact that the key used to open the commitment is semaigiiran untappable
anonymous channel, the value given by the voter to the tiraséi memb€r’ can

be different from the one she provides to the coercer. Heheeyoter who forged
the commitment, provides to the coercer the one allowingctiexcer to retrieve
the votec, whereas she sends’tothe one allowing her to cast the vate

We describe such a procegsin Process 10. To prove receipt-freeness, we need to
show that

° V/\out(chc,-) ~y VA{a/v}a and
o SVa{e/u} e | Ve{*/u} me SIV' | Va{*/u}].

The contextS we consider here is the same we have used to establish privacy
i.e. vpkaChl.vchT.( _ | processK | processT | processT); thus, as for Fujiokaet

al., the proof is valid for two voters. The first equivalence mayseen informally

by considering/’ without the instructionsdut(chc, . . .)", and comparing it visu-

ally with V4{*/,,}. The two processes are the same.

To see the second labelled bisimulation, one can inforncalhsider all the execu-
tions of each side. We denote the left-hand procesB asd the right-hand ag.

33



processV =
(* her private key *)
in(skvCh,skv).out(chc,skv).
(* public keys of the adm nistrator =)
in(pkaChl, pubka). out(chc,pubka).
v blinder. v r. v td.
out(chc, blinder). out(chc,f(a,r,td,c)). out(chc,td).
let committedvote = tdcommit(a,r,td)n
let blindedcommittedvote=blind(committedvote , blindein
out(chl,(pk(skv),sign(blindedcommittedvote ,skv))).
out(chc,(pk(skv),sign(blindedcommittedvote ,skv))).
in(ch2,m2).
let result = checksign(m2, pubkajn
if result = blindedcommittedvotethen
let signedcommittedvote=unblind (m2, blinderin
synch 1.
out(ch3,(committedvote ,signedcommittedvote)).
out(chc,(committedvote ,signedcommittedvote)).
out(chT,(a,r,committedvote)).
out(chc,(c,f(a,r,td,c),committedvote))

Process 10. V'- Receipt-freeness

Both processK start with the output of all the keys. For sake of readabiity ignore
these outputs which are not really important for what we wwsshow. We denote
by n the sequence of nameés, r4,td 4, bg, rp, tdg. After distribution of keying
material which can be done in the same way on both sides, wenabshat the
instructions oft/4{¢/, }<"* can be matched with those &f. Similarly, execution
steps performed bys{*/,} on the left are matched withz{¢/,} on the right.
We need, of course, to consider all the possible executibtizectwo processes.
However, to argue that the processes are bisimilar, we denbelow a particular
execution and we describe the interesting part of the twodsawe obtained after
execution of the first phase by the two processes.
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p in(skvaCh,skva) vzi.out(che,z1) P1 | {Skva/ml} in(skvbCh,skvb) s Pg ‘ {Skva/xl}

) .out(chc,xg)\ ves.out(che,x3) vy .out(chc,:&;)\
7

(P [ o} PO [ b [0 o} T} 1 {4 0 })
viv (Py [ {770/} [P o} 10 Lo} L ik 1 {4 0}

|{(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/ })
z6

(P [ {0 L} RO oy b 1P b L i 1 {4 0}

| {(pk(skva),sign(blind(tdcommit(c,TA,tdA),bA),skva))/16} ’ {$6/$7})

(Po [ {70 L} RO oy 1 L} LA i 1 {4 0}

| {(pk(skva),sign(blind(tdcommit(c,r‘A,tdA),bA),skva))/IG} ’ {xG/aw})

ves.out(che,xs)

<
il

vze.out(ch,ze)

=il

ver.out(che,xr)

<
N

vzg.out(ch,rg)
e

<
!

|{(pk(skvb),sign(blind(tdcommit(a,7‘3,tdB),bB),skvb))/ })
zgf )

Similarly,

Q in(skvaCh,skva) zx:pl.out(chc,xl)> Ql | {Sk”a/xl} in(skvbCh,skvb

) ¥ QQ | {skva/xl}

sz.out(chc,azg)\ ng.out(chc,a:g)\ vzg.out(che,xyq)

ves.out(che,zs)

v (Qa | {500 /o, } [ {PHORD [, | {00 /4 } | {F@ratdae) /oy | {19/, )

PO, s (Qu | Ly } | {PHORD [y} [ {24 [y} | O atda0) Y | ),
| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva)) /oD

Ty it Qs | £y} | (PR [} | (0 g} | (@ atdan Y| (e, )
| {(pk(skva),sz’gn(blmd(tdcommit(a,rA,tdA),bA),skva)) Lo} 1 {28 /0 )

PO, it Qs | L} PR [} | {0 g} | (@ atda0) Y | {1,

| {(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/$6} | {xb/aw}

| {(pk:(skvb),sign(blind(tdcommit(c,rB,tdB),bB),skvb))/ })
s

We argue informally that the frames obtained at the end sffitst phase are stati-
cally equivalent. In particular, note that the test

open(unblind(checksign(proj»(xs), pk(x1)),X3),X4) = C

is true in both frames. Indeed, if we denadt the process obtained on the left
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hand-side after this first phase, we have that

open(unblind(checksign(proja(xg), pk(x1)),%3),X4)0
= open(tdcommit(a, ra,tda), f(a, ra, tda,c))
= open(tdcommit(c, f(a, ra, tda, c),tda),f(a, ra, tda,c))

=C
where¢(B’) = vn.o.

For the “first input”, of both voters, we need to consider tvases: either the input
of both voters corresponds to the expected messages froadthmistrator or at
least one input does not correspond to the correct adnatoss signature. In the
second case, one of the voters will block, as testing coresstof the message fails
and hence the voters cannot synchronise. In the first casebtae at the end the
two frames below.

dpr = vin {0 o b [ {PEERD [} T o b T wad 1{ a} |

{(pk(skva),sign(blind(tdcommit(c,r‘A,tdA),bA),skva))/ } | {:1:6/ } |
x6 x7
{(pk(skvb),sign(blind(tdcommit(a,rg,tdB),bB),skvb))/z } ’
8
{(tdcommit(c,rA,tdA),sign(tdcommit(cmA,tdA),ska))/x } | {:(:g/x } |
9 10

{(tdcommit(a,rg tdp),sign(tdcommit(a,rp,tdg),ska)) / } |
z11

{leratdeommitteratdad [ 3 1 { o} 1 { o}

b = Vit {7 o b [ {PEERD oy} [ {04 o} [ {T 000 [ 3 | {1040} |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/ } | {16/ } |
z6 x7
{(pk(skvb),sign(blmd(tdcommit(c,rB,tdB),bB),skvb))/ } ‘
73
{(tdcommit(a,rA,tdA),sign(tdcommit(a,rA,tdA),ska))/m } | {zg/m } ‘
9 10

{ (tdcommit(c,r g,tdp),sign(tdcommit(c,rg,tdp),ska)) / } |
z11

{(c,f(a,rA,tdA,c),tdcommit(a,TA,tdA))/xu} ‘ {a/113} ‘ {C/x14}

We observe that the frames are statically equivalent. Itiquéar, note that the
testtdcommit(c, x4, x5) = proji(xo) IS true in both frames and the attacker cannot
distinguish the termsdcommit(a, rg, tdg) andtdcommit(c, rg, tdg) Since he is not
able to open this commitment. As the goal of this section ilustrate our defini-
tions and as tool support is not provided for this equatitmabry we do not give a
formal proof of this static equivalence.
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processC|[] =
vecl.ve2. (.|
(* private key of V x)
in(cl,xl). out(chc,x1).
(* public keys of the administrator =*)
in(cl,x2). out(chc,x2).
v blinder. v r. v td.
(* nonces of V - blinder, r, td *)
in(cl,x3). out(chc,blinder).
in(cl,x4). out(chc,r).
in(cl,x5). out(chc,td).

let committedvote = tdcommit(c,r,td)n
let blindedcommittedvote=blind (committedvote , blindein
out(c2,(pk(x1),sign(blindedcommittedvote ,x1))) .

(* signature of the adm nistrator =)

in(cl,x6). out(chc,x6).

let result = checksign(x6,x2)in

if result = blindedcommittedvotethen
out(c2,true).

let signedcommittedvote=unblind (x6, blinderin
synch 1.

out(c2,(committedvote ,signedcommittedvote)).
out(c2,(c,r,committedvote))

Process 11. Context - coercion-resistance

Coercion-resistance. This scheme is not coercion-resistant [41]. If the coercer
provides the coerced voter with the commitment that he haseédut without re-
vealing the trap-door, the voter cannot cast her own uagece the voter cannot
produce fake outputs as she did for receipt-freeness. imstef our definition, we
need to show that there is ®#@ such that for all coercet' satisfyingn N fn(C) = ()
and S[C[Va{"/,}v2] | Va{%/o} =¢ S[Va{¢/,}" | VB{%/,}], we have the two
bullet points of the definition of coercion-resistance. (Sogel’ was such a pro-
cess. LeC be the context given as Process 11 (note that it is, in fadggandent
of V’). In order to satisfy the second bullet poift;, has to use the commitment
provided by the coercer, for otherwise this would yield asaable. But then it
cannot give to the timeliness member the key to open the comenti to obtain
the voter’s desired vote, in order to satisfy the first bukaicel”” does not know
the trap-door. Hence, for the giver, the requirements ol are not satisfiable
simultaneously.
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7 Protocol due to Leeet al.

In this section we study a protocol based on the &fed. protocol [36]. One of the
main advantages of this protocol is that iviste and govoters need to participate
in the election only once, in contrast with [25] and [40] (s&ections 5 and 6),
where all voters have to finish a first phase before any of themparticipate in
the second phase. We simplified the protocol in order to gurate on the aspects
that are important with respect to privacy, receipt-fressrend coercion-resistance.
In particular we do not consider distributed authorities.

7.1 Description

The protocol relies on re-encryption and on a less usualtagypphic primitive:
designated verifier proofs (DVP) of re-encryption. We startexplaining these
primitives.

A re-encryption of a ciphertext (obtained using a randothisecryption scheme)
changes the random coins, without changing or revealingltietext. In the ElGa-
mal scheme for instance, (i, y) is the ciphertext, this is simply done by comput-
ing (zg", yh"), wherer is arandom number, andandh are the subgroup generator
and the public key respectively. Note that neither the orealtthe original cipher-
text nor the person re-encrypting knows the random coing imsthe re-encrypted
ciphertext, for they are a function of the coins chosen by lpairties. In particular,
a voter cannot reveal the coins to a potential coercer whinleme this information
to verify the value of the vote, by ciphering his expecteceweith these coins.

A DVP of the re-encryption proves that the two ciphertextstam indeed the same
plaintext. However, a designated verifier proof only cooesone intended person,
e.g., the voter, that the re-encrypted ciphertext conttiasoriginal plaintext. In
particular this proof cannot be used to convince the coefi@ahnically, this is
achieved by giving the designated verifier the ability to dete the transcripts
of the proof. A more abstract description is the followingDXP for a designated
verifier A of a statemenp is a proof of the statemeng*Vv | know A’s private key”.
As A is the only one to know his own private key a proof that has eetigenerated
by himself must be a proof of the statementhile A himself can generate a proof
of the second part of the disjunction.

Our simplified protocol can be described in three steps.

e Firstly, the voter encrypts his vote with the collector'sopa key (using the EI-
Gamal scheme), signs the encrypted vote and sends it to aimiattator on a
private channel. The administrator checks whether ther v®gelegitimate voter
and has not voted yet. Then the administragencryptsthe given ciphertext,
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signs it and sends it back to the voter. The administrator@isvides a DVP that
the two ciphertexts contain indeed the same plaintext. dctpe, this first stage
of the protocol can be done using a voting booth where elityilof the voter
Is tested at the entrance of the booth. The booth containsgetaproof device
which performs re-encryptions, signatures and DVP proofs.

e Then, the voter sends (via an anonymous channel) the rgqgadrvote, which
has been signed by the administrator to the public board.

e Finally, the collector checks the administrator’'s sigmatan each of the votes
and, if valid, decrypts the votes and publishes the finalltesu

7.2 The model in applied pi

Cryptographic primitives as an equational theory. The functions and equa-
tions that handle public keys and digital signature are aslusee Section 5 for
instance). To model re-encryption we add a functiemcrypt, that permits us to
obtain a different encryption of the same message with &noémdom coin which

is a function of the original one and the one used during thenyption. We also
add a pair of functiongvp andcheckdvp: dvp permits us to build a@esignated ver-
ifier proof of the fact that a message is a re-encryption of another ashehankdvp
allows the designated verifier to check that the proof isdvaliote thatcheckdvp
also succeeds forfake dvpcreated using the designated verifier's private key. We
have the following equations:

decrypt(penc(m, pk(sk), r),sk) = m
rencrypt(penc(m, pk(sk), rl),r2) = penc(m, pk(sk), f(rl,r2))
checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok
checkdvp(dvp(x,y, z,skv), x, y, pk(skv)) = ok

Main (Process 12). The main process sets up private channels and specifies how
the processes are combined in parallel. Most of the priviasmels are for key
distribution. The private channehA; (resp.chA,) is a private channel between
the voter and her administrator. This is motivated by thetfaat the administrator
corresponds to a tamper-proof hardware device in this pobtdVe only model the
protocol for two voters and launch two copies of the admiatst and collector
process, one for each voter.

Keying material (Process 13). Our model includes a dedicated process for gen-
erating and distributing keying material modelling a PKtditionally, this process
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(* private channels x)

v privCh. v pkaChl. v pkaCh2. v pkcCh. v skaCh. v skcCh.
v skvaCh.v skvbCh.v chAl. v chA2.

(*» adm nistrators =)

(processK | processC | processC |

(* voters )

(let chA = chAl in processA |

(let skvCh = skvaChin let v = a in processV)) |

(let chA = chA2 in processA |

(let skvCh = skvbChin let v = b in processV)))

Process 12. Main process

processK =
(* private key *)
v ska. v skc. v skva. v skvb.
(* correspondi ng public keys =)
let (pka, pkc) = (pk(ska), pk(skc))in
let (pkva, pkvb) = (pk(skva), pk(skvb))n
(* publik keys disclosure =)
out(ch,pka). out(ch, pkc). out(ch, pkva). out(ch, pkvb).
(* register legitimate voters x)
(out(privCh ,pkva) out(privCh , pkvb) |
(* keys disclosure on private channels x)
out(pkaCh,pka) | out(pkaCh,pka) | out(pkaCh, pka) |
out(pkaCh,pka) | out(skaCh,ska)| out(skaCh, ska) |
out(pkcCh,pkc) | out(pkcCh,pkc) | out(skcCh,skc) |
out(skcCh,skc)| out(skvaCh,skva)| out(skvbCh, skvb))

Process 13. Administrator for keying material

registers legitimate voters and also distributes the puddys of the election au-
thorities to legitimate voters: this is modelled using regtd channels so that the
attacker cannot provide false public keys.

Voter (Process 14). First, each voter obtains her secret key from the PKI as well
as the public keys of the election authorities. Then, a frasdom number is gen-
erated to encrypt her vote with the public key of the collediext, she signs the
result and sends it on a private channel to the administriittire voter has been
correctly registered, she obtains from the administratog-encryption of her vote
signed by the administrator together with a designatedigegroof of the fact that
this re-encryption has been done correctly. If this proafdsrect, then the voter
sends her re-encrypted vote signed by the administrattietodllector.

Note that we used the synchronisation command to model thieps. This com-
mand is crucial for privacy to hold in presence of a corruigltector. This ensures
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processV = (* paranmeters: skvCh, v =)
(* her private key *)
in(skvCh,skv).
(* public keys of the admi nistrators )
in(pkaChl, pubka).in(pkcCh, pubkc).
synch 1.v r.
let e = penc(v,pubkc,r)in
out(chA,(pk(skv),e,sign(e,skv))).
in(chA,m2).
let (re,sa,dvpV) = m2in
if checkdvp(dvpV,e,re,pk(skv)) = ok
then if checksign(sa,pubka) = re
then out(ch,(re,sa))

Process 14. Voter process

processA =
(» admnistrator’s private key =)
in(skaCh ,skadm) .
(» register a legimtate voter =)
in(privCh, pubkv).
synch 1.
in(chA,ml).
let (pubv,enc, sig)=mlin
if pubv=pubkv then
if checksign(sig,pubv)= enc
then v rl.
let reAd=rencrypt(enc,rl)in
let signAd=sign(reAd, skadm)in
let dvpAd=dvp(enc,reAd,rl,pubv)n
out(chA,(reAd, signAd ,dvpAd))

Process 15. Administrator process

that key distribution is finished before any of the two votevgeeds. Otherwise an
attack on privacy can be mounted since the attacker canmgreve of the vot-
ers from obtaining her keys. One may also note that this pobte vote and go
even if synchronisation is used the voters participate@lgtonly during one of the
synchronised phases.

Administrator (Process 15). The administrator first receives through a private
channel his own private key as well as the public key of a ilegite voter. The
received public key has to match the voter who is trying toageg-encryption of
her vote signed by the administrator. The administratordiss to prove to the
voter that he has done the re-encryption properly. For Hasuilds a designated
verifier proof which will be only convincing for the voter.
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processC =
(* collector’s private key *)
in(skcCh, privc) .
(» admnistrator’s public key *)
in(pkaCh2, pkadmin).
synch 1.
in(ch,m3).
let (ev,sev) = m3in
if checksign(sev,pkadmin) = ev
then let voteV = decrypt(ev, privc)in
synch 2.
out(ch,voteV)

Process 16. Collector process

Collector (Process 16). First, the collector receives all the signed ballots. He
checks the signature and decrypts the result with his grivay to obtain the value
of the vote in order to publish the results. Although it is nntioned in the de-
scription of the protocol [36], it seems reasonable to ttivdt the collector does
not accept the same ballot twice. For sake of readabilityddaveot model this fea-
ture in Process 16; however, we will model it when we come teip-freeness,
since it is crucial there. Finally, when all votes have beebnsitted to the col-
lector (synchronisation is achieved using the synchrdioisanstruction), they are
published.

7.3 Analysis

Let VA — V{SIwaCh/skah}{ChAl/chA} and VB — V{SkvbCh/skUCh}{ChAQ/ChA}'
Note that again we have to establish all the static equicalemanually: ProVerif

is not able to deal with equational theories such as this one.

Vote privacy. We show that the protocol respects privacy. For this, webésta
the following equivalence

SWVa{"/o} | V" /o] 20 SIVa{"/u} | VB{"/u}]

whereS = vpkaChl, pkcCh, skaCh, chAl, chA2.( _ | processK
| processA{"1/ a}

| processA{"2/ A })

As for the other case studies, we prove privacy only for thsecd two voters.
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Privacy does not require any of the keys to be secret. Howexeneed to ensure
that both voters use the same public key for the administeatd for the collector.

Therefore, we send public keys on a private channel, althalig corresponding
private keys can be considered as free names. We assumethatdministrators

have the same private key and that both voters have the agioté. If any of these
conditions is not satisfied, privacy does not hold.

We denote the left-hand processfaand the right-hand process@sTheprocessK
starts with the output of all the keys. For the sake of reditgbwe ignore some of
these outputs which are not important for our analysis anaewite 7 instead of
the sequencer,.vrg.vry.vrs.

] kvaCh,sk ) kvbCh,skvb
p in(skvaCh,skva) « in(skv skvb) iy Pl
vzi.out(ch,x1) (P | {(penc (a,pke,f(ra,r)),sign(penc(a,pke,f(ra,ri)),ska) / }

vr2oulehez), g (P | { penelapke(rar)) sign(penc(apke.f(ra;r))sha) /

| { penc(b,pke, f(rp,r2)),sign(penc(b,pke, f (rp,r2) ska)/ })

Similarly,
Q in(skvaCh,skva) Ly in(skvbCh,skvb) s Ql

vy .out(ch,z1) Ui ( | {penc a,pke, f(rg,r2)),sign(penc(a,pke, f(rp,r2)),ska) / }
opout(chas) (0, | {(penelaphef(rp.r2) sign(pencla.phef(rp.r).ska) /)

| { penc(b,pke, f(ra,ri)),sign(penc(b,pke, f(ra,ri1)),ska) / })

The resulting frames are statically equivalent. Note tthating key distribution, the
processV4{%/,} is matched withl’4{*/,}, while afterwards/,{*/,} is matched
with Vz{?/,}. Therefore, we require a phase after the keying distributio

Receipt-freeness. To show receipt-freeness one needs to construct a prétess
which can successfully fake all secrets to a coercer. Treeiglthatl”’ votesa, but
when outputting secrets to the coert@iprepares all outputs as if she was voting
The crucial part is that, using her private key, she proval&se DVP stating that
the actual re-encryption of the encryption of vats a re-encryption of the encryp-
tion of votec. Given our equational theory, the two resulting frames &agcally
equivalent because for both the real and the fake RWdkdvp returnsok.

To establish receipt-freeness, we have to assume that Heetoo is trusted. In-
deed, it is important to be sure that its private key remagtset. Otherwise, an
attack against receipt-freeness can be mounted: if theeoknows the collector’s
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processV'=
(* her private key *)
in(skvaCh,skv).out(chc, skv).
(* public keys of administrators =)
in(pkaCh,pubka).out(chc, pubka).
in(pkcCh, pubkc).out(chc, pubkc).
synch 1.
v r. out(chc,r).
let e = penc(a,pubkc,r)in
out(chAl,(pk(skv),e,sign(e,skv))).

(* message fromthe admnistrator =*)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv))=okhen

v r.

let fk=dvp(penc(c,pubkc,r), re,r’,skv)in
out(chc,(re,sa,fk)).

if checksign(sa,pubka) = rethen
out(ch,(re,sa))

Process 17. ProcesB’ - Receipt-Freeness

private key he can directly decrypt the re-encryption aneckhwhether the vote
is ¢ rather than relying on the designated verifier proof. No&, tim reality [36], a
threshold encryption scheme is used and decryption has petbermed by mul-
tiple collectors. Hence, their scheme can deal with someaupbrcollectors. It is
also important that the private key of the administratoragrs secret. Otherwise
an attacker can forge any vote and submit it to the collector.

Process 17 shows a possilié To prove receipt-freeness, we need to show

° V/\out(chc,-) R~y VA{a/v}1 and
o S[Va{¢/o}" I Ve{*/u}] e SIV' | VB{*/0}].

whereS represents all of the remaining process.

The first labelled bisimulation may be seen informally by sideringV” with the
“out(che, ...)" commands removed, and comparing it visually with. To see the
second labelled bisimulation, one can informally considiérthe executions of
each sideS consists of the Main process, and therefore inclugtesessK, the
two processA’s, and the twoprocessC’s, but it has a hole for the two voter pro-
cesses. As shown above, the hole is filledihy ¢/, }* | Vz{*/,} on the left and
by V' | Vz{¢/,} on the right. Executions of4{¢/,}" are matched with those
of V’; similarly, Vz{*/,} on the left is matched withVz{¢/,} on the right. To
illustrate this, we consider a particular execution on #it hnd we give the corre-
sponding execution on the right. Here the procBsss the one obtained after key
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distribution. The sequence of nameslenotes: 4, r1,rg, ro, ' and alsaskuvb, skc
andska but notskva (coerced voter). We writpkva instead ofpk(skva) and as-
sume that public keys are in the frame. We denote by penc(c, pke, f(ra, 1))
and bypg = penc(a, pke, f(rp,r2)).

vz .out(ch,x - r
Py L), g (B | {4 )

M vir.(Ps | {TA/“} ’ {(pA,sign(pA7ska),dvp(pem(capkc,m),m,rhpkva))/m})

ves.out(ch,zs) Vf-(le | {rA/xl} | {(pA,sign(pA,ska),dvp(penc(c,pkc,r;,),pA,r1,pkva))/xQ}

’ {(pA,sign(pAaska) /I3 })

M) I/ﬁ.(P5 | {TA/Il} ’ {(pmsign(pA7sk’a),dvp(penC(@pkc,rA),pA7r17pkva))/m2}

| {(PA7Si9n(PA7Ska)/x3} | {(PB#Z'QH(PB,SM))/M})

Similarly, we have that

vxy.out(ch,r1) ~ r
Q1 ————= vi.(Qz | {"*/u1})

vza.out(ch,z2) Vﬁ.(Qg, | {TA/J:1} | {(qA,sign(qA,ska),dvp(penc(qpkc,rA),qA,r’,skva))/I2})

L 0TS, (Qa | {74 4, } | {(aassion(aassha) duppencie.phera)aar’ skva)) /

’ {(QA7Si9n(QA75ka)/w3 })

vzy.out(ch,z4) V’TNL.(Q5 | {TA/LE1} | {(qA,sign(qA,ska),dvp(penc(c,pkc,r,q),qA,r’,skva))/12}

| {(qAﬁign(qA,Ska)/m} | {(QBﬁign(qB,Ska))/m})

whereqs = penc(a,pke, f(ra,r1)) andgs = penc(c, pke, f(rp,r2)).

Note that, the testheckdvp(projs(xz), penc(c, pke, x1), proji (x2), pk(skva)) = ok is
true in both frames. Now, for the input of the collector, wevdndo consider any
public terms. There are essentially two cases. Either thetiof both collectors
corresponds to the votes submitted by both voters or at tw@estof the inputs
does not. In the last case, since the attacker is not ablewderfake inputs of the
expected form, i.e. the input needs to be signed by the adtrator, this means that
either the collector will block or that both inputs are eXathe same. To prevent
the last case, we have to ensure that the collector does cejtteer same vote twice.
This can be modelled by adding a process in charge of chedkinigle votes and by
slightly modifying theprocessC. The additional process is described in Process 18.
In the collector process we add the following instructionst jpefore “synch 2"
out(privDbIChk, ballot).in(privDbIChk, x). if x = ok then]. . .| whereprivDbIChk is

a restricted channel.
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doubleCheck =
in(privDblIChk , ballotl). out(privDbIChk, ok).
in(privDbIChk, ballot2).
if ballotl=ballot2 then 0 else out(privDbIChk ,h ok)

Process 18. Process to prevent double ballot

We know that if the tests succeeded, both collectors symiteat phase 2. Up to
that point any move of the collector that received the votgdf°/, } <" on the left-
hand side has been imitated on the right-hand side by theatotlthat received the
vote of the voted/z{°/,}, and similarly for the second collector. The interesting
part of the frames obtained after a complete execution isribesl below.

ppr =vi. ({"4/,} | {(pAysign(pA,ska),dvp(pem(&pkam)7pAJ1,pkva))/m}

| {{passtonlpasha) /) | {@astontesshal [ 1 {0 fo} [ {)a})

ng/ = un. ({TA/xl} | {(qA,sign(qA,ska),dvp(penc(c,pkc,rA),qA,r’,skva))/xQ}

| {(ansmtanso) ) | {Comsiamtamstal [, 3| (2], } | {/})

Coercion-resistance. We prove coercion resistance by constructifigwhich is
similar to the one for receipt-freeness. However, for cioercesistance the coercer
also provides the inputs for the messages to send out. Thatiks fact that

SICWal' /o321 VB{"/u}] me SIVa{* [} | VE{"/u}],

we know that the coercer prepares messages correspondihg tpven votec.
Hence,

e /' fakes the outputs as in the case of receipt-freeness; theaensed voter will
counter-balance the outcome, by choosing the wpte
e V' simply ignores the inputs provided by the coercer.

Such a procesE’ is shown in Process 19. Similar reasoning to the one usecdeabov
(for receipt freeness) can be used here, to establish thabtiditions

° C«[V/]\out(chc,-) ~ VA{a/v}
o S[CIVa{"/u}ere [ VB{*/u}] = SICIV'] | VB{/u}],

hold, thus establishing coercion resistance. It is a bitethifficult to perform this
reasoning since we have to consider any conféxt vc;.vc,.( - | P) such that
a0 fn(C) =0 andS[C[Va{*/u}2] | Ve{*/u}] = SVa{/u} | VB{*/.}].
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For the first condition, we can see that if the proc@$k’]\*(<"*) does not block
then it has the same behaviourlag{®/,} sincel’’ completely ignores the inputs
provided byC. The only point is to ensure th&t' can fake the outputs t0' as in
the case of receipt-freeness. This is indeed possible t@ dinse the voter does
not have to know any private data used by the coercer to prépamessages. (For
instance, the voter does not have to know the nonce used lp#dreer when he
encrypts the vote.)

To obtain the second condition, it is sufficient to show thatéquivalence
SV Ve{“/u}] me SICV'T | VB{/u}]

holds, wherel’” is the process provided for receipt-freeness (ProcessNoig
that the processeS[V'] and V" are not bisimilar by themselves, because some
tests involving messages outputted drAl allows us to distinguish them. In-
deed, it may be possible that the coercer (i.e. the coritgxthooses to gener-
ate his own nonce. to encrypt his votec and does not use the one provided
by the voter. In such a case, the coercer has to outpwin the channethc,
and does not forward the nonce provided by the voter, in otde¥nsure that
S[CIVa{?/o}v2] | VB{%/o}] = S[Va{¢/u}" | VB{%/,}]. This means that the
outputs performed omhc by V" on the left hand-side and by the coeré¢épn the
right hand-side are not quite the same. However, those ¢astsot be performed
when these processes are put inside the costelxécausehAl is restricted.

8 Conclusion

We have defined a framework for modelling cryptographicngtrotocols in the
applied pi calculus, and shown how to express in it the ptagseof vote-privacy,
receipt-freeness and coercion-resistance. Within thadveork, we can stipulate
which parties are assumed to be trustworthy in order to olbte desired property.
We investigated three protocols from the literature. Ogults are summarised in
Figure 1.

We have proved the intuitive relationships between theetpreperties: for a fixed
set of trusted authorities, coercion-resistance impkegipt-freeness, and receipt-
freeness implies vote-privacy.

Our definition of coercion-resistance does not attempt twllea‘fault attacks”, in
which the coercer supplies material which forces the vaierate randomly, or
to vote incorrectly resulting in an abstention (these &gare respectively called
randomisatiorandforced abstentioattacks in the work of Juekt al.[32]). A pro-
tocol which succumbs to such attacks could still be consillepercion-resistant
according to our definition. In our model, the coercer camtaloe votes for each
candidate, so it seems to be in fact impossible to resist &ialcks fully.
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processV'=
(* her private key *)
in(skvaCh,skv).out(cl, skv).
(* public keys of administrators =)
in(pkaCh, pubka).out(cl, pubka).
in(pkcCh, pubkc).out(cl, pubkc).
synch 1.
v r. out(cl,r).
let e = penc(a,pubkc,r)in
(* instruction fromthe coercer x)
in(c2,x1).
let (pi,ei,si) = x1in
out(chAl,(pk(skv),e,sign(e,skv))).

(* message fromthe administrator =*)
in(chAl,m2).

let (re,sa,dvpV) = m2in

if checkdvp(dvpV,e,re,pk(skv)) = okhen
v r.

let fk = dvp(ei,re,r’,skv)in
out(cl,(re,sa,fk)).

if checksign(sa,pubka) = rethen
in(c2,x2). out(ch,(re,sa))

Process 19. Procesg’ - coercion-resistance

Property Fujioka etal. Okamoto et al. Lee etal.
Vote-privacy v v v
trusted authorities none timeliness mbr. administrator
Receipt-freeness X v v
trusted authorities n/a timeliness mbr. admin. & collector
Coercion-resistance X X N
trusted authorities n/a n/a admin. & collector

Fig. 1. Summary of protocols and properties

Our reasoning about bisimulation in applied pi is ratheoinfal. In the future, we
hope to develop better techniques for formalising and aatmg this reasoning.
The ProVerif tool goes some way in this direction, but théntegue it uses is fo-
cused on process which have the same structure and differirotthe choice of
terms [10]. The sort of reasoning we need in this paper ofteolves a bisimula-

tion relation which does not follow the structure of the msses.

For example, in

proving vote-privacy for Fujiokat al., early on we matctv,{*/,} on the left-hand
side withV4{®/, } on the right-hand side, while later we mat¢h{/,} on the left
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with Vz{?/, } on the right. It would be useful to automate this kind of reasg, or
to investigate more general and more powerful methods tabkshing bisimula-
tion. Symbolic reasoning has proved successful for realityaroperties [38,6],
in which terms input from the environment are representeslagolic variables,
together with some constraints. One direction we are inyetatg is the develop-
ment of symbolic bisimulation and corresponding decisimtpdures for the finite
applied pi calculus. This work has been initiated in [20].

Our definition of coercion-resistance involves quantifmabver all possible con-
texts which satisfy a certain condition, and this makesiitilt@ work with in prac-
tice. Coercion-resistance may thus be seen as a kind ofvaliseral equivalence
but with a restriction on the powers of the observer. Ouiegplaper [19] included
a notion which we calleéddaptive simulationa variant of bisimulation which at-
tempts to model the coerced voter’s ability to adapt her aotording to the in-
structions of the coercer. Unfortunately, we have found tiotion to have some
undesirable properties, and we have not used it in this paptre future, we hope
to find a corresponding restriction of labelled bisimikgrivhich will help us to
reason with coercion-resistance more effectively. In Heis, some new work has
appeared [4] that builds on our definitions and avoids thearsal quantification
over contexts.
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Appendix A Proof of Lemma 14

Lemma 14 Let P be a closed plain process and a channel name such that
ch & fn(P) U bn(P). We have Peh)\outlch-) ~, P,

PROOF. Let P be a closed plain process. We show by induction on the siZe of
that for any channel nam such thath ¢ fn(P)Ubn(P) we haveP\outch:) ~, p,
The size of the null process is defined totbé&refixing the procesB by a restric-
tion, an input or an output or putting it under a replicatiadgal to its size. The
size of the proces® | @ (resp. if M = N then P elseQ) is the sum of the size
of P and@ plus1.

The base case where = 0 is trivial. Let ch be a channel name such thét ¢
fn(P) U bn(P). The possibilities for building” are the following:

e P =P, | P,.Insuch a case, we have:

peh\out(ch,) = (Plch | P2ch)\out(ch,.)
= ych. (P | P, |lin(ch, z))
~ veh. (P |lin(ch, ) | veh.((Py) lin(ch, x))
sincein(ch, .) occurs neither ifP" nor in Pg"
rop PEMNOut(chs) | peh\out(ch.)
~yp P | Py by induction hypothesis
= P

e P =un.P;. We have:

peiout(chs) = (yp Pp)\out(ch,)
= ych.(vn.out(ch,n).P," |lin(ch, z))
~ vch.(vn. Py |lin(ch, z))
= vn.vch.(P" |lin(ch, z)) sincen # ch
= yp.peiout(ch,)
~y, vn.Py by induction hypothesis

= P
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e P =in(c,y).P. Note thatc # ch. We have:

pch\out(ch,.) — (n(C y) P )ch\out(ch,.)
= wch.(in(c,y).out(ch, y). P |lin(ch, x))
.vch.(out(ch,y). Pt |lin(ch, z))

)
).veh.(PE |lin(ch, z))
).Plch\out(ch,.)

)

To establish the last step, we can see that for any ground€ythe processes
in(c,M)

Q: andQ, such thain(c, ). P{™\ ") e o, andin(c,y).P, /2= Q,
are such tha@), = P {/, }Ch\out (h) and @, = P {/,}. By induction hy-
pothesis, we have thgl; and@, are bisimilar. Note that for this step we assume
thatw.l.o.gch & fu(M). This can always be obtained byrenaming-h. Lastly,
we conclude thanks to the fact thatc, y).P, = P.

e P =out(c, M).P;. Note thatc # ch. We have:

Pch\out(ch,.) — (Out( ) )ch\out(ch,.)
= yeh.(out(c, M). P [lin(ch, z))
~, out(c, M).vch.(P" |lin(ch, x))
- (C M) Pch\aut(ch J)
~, out(c, M).P by induction hypothesis
—p

e P =1P,.Insuch a case, we have:

Pch\out(ch,.) = (!Pl)ch\out(ch,.)
= vch.(\Pf lin(ch, x))
~y veh (P lin(ch, x))

~y !(veh.(PP |lin(ch, ))) sincein(ch,.) does not occur iP"
= !Plch\out(ch,.)

~, P, by induction hypothesis
= P

o P =if M = N thenP,; elseP,. Hence, we have:
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peieut(ch) — (i M = N thenP; elseP,)™\ (")

veh.(if M = N thenP{" elsePs" |lin(ch, x))

~y vch.(if M = N then (P |lin(ch, z) else Ps" |lin(ch, x)))

~, vch.(if M = N then Pf" |lin(ch, z) else @™ |lin(ch, z)))

~y if M = N thenvch.(P" |lin(ch, x)) elsevch.(Ps" |lin(ch, z))

II>

sincein(ch, .) occurs neither ilPe" nor in Pg"

I

if M = N thenp\*! ") g|gg pg\out(h-)
~, if M = N thenP, elseP,
= P

This last case conludes the proof.
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