
Aachen
Department of Computer Science

Technical Report

Verifying Probabilistic Systems:

New Algorithms and Complexity

Results

Hongfei Fu

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2014-16

RWTH Aachen · Department of Computer Science · December 2014

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Verifying Probabilistic Systems:
New Algorithms and Complexity Results

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften

der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Hongfei Fu, Master of Engineering

aus

Shanghai, Volksrepublik China

Berichter: Prof. Dr.Ir. Joost-Pieter Katoen

Prof. Dr. Antońın Kučera

Tag der mündlichen Prüfung: 21. November, 2014

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Hongfei Fu
Lehrstuhl für Informatik 2
hongfeifu@cs.rwth-aachen.de

Aachener Informatik Bericht AIB-2014-16

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Die Verifikation Probabilistischer Systeme:
Neue Algorithmen und Komplexitätsergebnisse

Hongfei Fu

iv

Abstract

The content of the dissertation falls in the area of formal verification of
probabilistic systems. It comprises four parts listed below:

1. the decision problem of (probabilistic) simulation preorder between
probabilistic pushdown automata (pPDAs) and finite probabilistic au-
tomata (fPAs);

2. the decision problem of a bisimilarity metric on finite probabilistic
automata (fPAs);

3. the approximation problem of acceptance probability of deterministic-
timed-automata (DTA) objectives on continuous-time Markov chains
(CTMCs);

4. the approximation problem of cost-bounded reachability probability
on continuous-time Markov decision processes (CTMDPs).

The first two parts are concerned with equivalence checking on probabilistic
automata, where probabilistic automata (PAs) are an analogue of discrete-
time Markov decision processes that involves both non-determinism and
discrete-time stochastic transitions. The last two parts are concerned with
numerical algorithms on Markov jump processes. In Part 1 and Part 2, we
mainly focus on complexity issues; as for Part 3 and Part 4, we mainly focus
on numerical approximation algorithms.

In Part 1, we prove that the decision problem of (probabilistic) sim-
ulation preorder between pPDAs and fPAs is in EXPTIME. A pPDA is
a pushdown automaton extended with probabilistic transitions, and gen-
erally it induces an infinite-state PA. The simulation preorder is a pre-
order that characterizes whether one probabilistic process (modelled as a
PA) can mimic the other; technically speaking, it is the one-sided ver-
sion of (probabilistic) bisimulation, which instead characterizes whether two
probabilistic processes are behaviourally equivalent. We demonstrate the
EXPTIME-membership of the decision problem through a tableaux sys-
tem and a partition-refinement algorithm. Combined with the EXPTIME-
hardness result by Kučera and Mayr (2010), we are able to show that the
decision problem is EXPTIME-complete. The complexity result coincides
with the one by Kučera and Mayr (2010) on non-probabilistic pushdown
automata. Moreover, we obtain a fixed-parameter-tractable result on this

v

vi ABSTRACT

problem, which again coincides with the counterpart by Kučera and Mayr
(2010) on non-probabilistic pushdown automata.

In Part 2, we prove that the decision problem of a bisimilarity metric on
fPAs lies in NP ∩ coNP (and even in UP ∩ coUP). The bisimilarity metric
considered here is an undiscounted one defined by van Breugel and Worrell
(2005), and is a quantitative extension of (probabilistic) bisimulation in the
sense that it measures the distance between states, for which zero distance
indicates (probabilistic) bisimilarity. It has a game logical characterization
when the underlying model is changed to stochastic game structures (instead
of fPAs) (cf. de Alfaro et al. (2008)). Our result significantly improves the
previous complexity results by van Breugel et al. (2008) and Chatterjee et
al. (2010) for the undiscounted case.

In Part 3, we develop a numerical approximation algorithm for accep-
tance probability by DTA on CTMCs, while correcting errors in the previous
work by Chen et al. (2011) with new proofs. DTAs are a deterministic sub-
class of timed automata (by Alur and Dill 1994) which can encode a large
class of linear real-time properties. In detail, we present an algorithm which
within a given error bound, approximates the probability mass of the set of
CTMC-trajectories that satisfy the linear property specified by a multi-clock
DTA. As far as we know, this is the first approximation algorithm for ac-
ceptance probability by DTA on CTMCs. Previous results such as the ones
by Amparore and Donatelli (2010) and Barbot et al. (2011) only consider
cases where the DTA has only one clock.

In Part 4, we study maximal cost-bounded reachability probability on
CTMDPs. In detail, we prove the existence of optimal cost-positional sched-
ulers, where the optimality is considered under all measurable schedulers for
CTMDPs. And we develop a numerical approximation algorithm that ap-
proximates (within a given error bound) the maximal probability to reach
a certain set of target states within a multidimensional cost-bound vector.
The time complexity of the algorithm is polynomial in the size of the CT-
MDP, the unary representation of the cost-bound vector and the reciprocal
of the given error bound, and exponential in the dimension of the cost-bound
vector. Due to its time complexity, the approximation algorithm is effective
for a wide range of applications where the dimension of the cost-bound vec-
tor is low. Our results extend the time-bounded case studied by Neuhäußer
and Zhang (2010). Meanwhile, we also point out a proof error in the work
on time-bounded case by Neuhäußer and Zhang (2010) and correct it with
new proofs.

Zusammenfassung

Der Inhalt dieser Dissertation fällt in das Gebiet formaler Verifikation von
probabilistischen Systemen. Die vier Bestandteile sind:

1. Das Entscheidungsproblem von (probabilistischer) Simulationsquasi-
ordnung zwischen probabilistischen Kellerautomaten (pPDAs) und en-
dlichen probabilistischen Automaten (fPAs);

2. Das Entscheidungsproblem einer Bisimulationsmetric auf endlichen
probabilistischen Automaten (fPAs);

3. Das Approximationsproblem einer Akzeptanzwahrscheinlichkeit von
deterministischen Zeitautomaten auf zeitkontinuierlichen Markow-Ketten
(CTMCs);

4. Das Approximationsproblem kostenbeschränkter Erreichbarkeitsprob-
leme auf zeitkontinuierlichen Markow-Entscheidungsprozessen (CT-
MDPs);

Die ersten zwei Teile behandeln die Äquivalenzüberprüfung von proba-
bilistischen Automaten, wobei probabilistische Automaten (PAs) analog zu
zeitdiskreten Markow-Prozessen sind, welche sowohl Nichtdeterminismus als
auch zeitdiskrete stochastische Transitionen besitzen. Die beiden letzten
Teile behandeln numerische Algorithmen auf Markow-Sprungprozessen. In
Teil 1 und 2 legen wir den Fokus auf Komplexitätsprobleme; in Teil 3 und
4 behandeln wir hauptsächlich numerische Approximationsalgorithmen.

In Teil 1 zeigen wir, dass das Entscheidungsproblem (probabilistischer)
Simulationsquasiordnung zwischen pPDAs und fPAs in EXPTIME liegt.
Ein pPDA ist ein Kellerautomat welcher um probabilistische Transitionen
erweitert ist. Dies induziert im Allgemeinen einen PA mit unendlichem Zu-
standsraum. Die Simulationsquasiordnung ist eine Quasiordnung, welche
charakterisiert, ob ein probabilistischer Prozess (modelliert als PA) einen
anderen nachahmen kann; genau genommen ist dies die einseitige Version
(probabilistischer) Bisimulation, welche charakterisiert ob zwei probabilis-
tische Prozesse verhaltensäquivalent sind. Wir illustrieren die EXPTIME-
Zugehörigkeit des Entscheidungsproblems durch ein Tableausystem und einen
Partitionsverfeinerungsalgorithmus. Zusammen mit dem Resultat über die
EXPTIME-Schwere von Kučera and Mayr (2010) können wir zeigen, dass

vii

viii ZUSAMMENFASSUNG

das Entscheidungsproblem EXPTIME-vollständig ist. Das Komplexitäts-
resultat fällt zusammen mit einem solchen von Kučera and Mayr (2010) für
nichtprobabilistische Kellerautomaten.

In Teil 2 zeigen wir, dass das Entscheidungsproblem einer Bisimula-
ritätsmetrik auf fPAs in NP ∩ coNP liegt (und sogar in UP ∩ coUP). Die
Bisimulationsmetrik, welche hier betrachtet wird, ist eine undiskontierte,
definiert von van Breugel and Worrell (2005). Sie ist eine quantitative Er-
weiterung (probabilistischer) Bisimulation derart, dass sie die Distanz zwis-
chen Zuständen misst, für welche die Distanz Null Bisimularität anzeigt.
Weiterhin hat sie eine spiellogische Charakterisierung, wenn man das das zu-
grundeliegende Modell zu stochastischen Spielstrukturen abändert (anstatt
von fPAs) (cf. de Alfaro et al. (2008)). Unser Resultat verbessert entschei-
dend das vorherige Komplexitätsresultat von van Breugel et al. (2008) und
Chatterjee et al. (2010) für den undiskontierten Fall.

In Teil 3 entwickeln wir einen numerischen Approximationsalgorithmus
für Akzeptanzwahrscheinlichkeiten von DTAs auf CTMCs, wobei zusätzlich
Fehler in einer früheren Arbeit von Chen et al. (2011) durch neue Beweise
korrigiert werden. DTAs sind eine deterministische Teilklasse von Zeitauto-
maten (von Alur und Dill 1994), welche eine große Klasse linearer Echzeit-
eigenschaften kodieren kann. Genauer gesagt, präsentieren wir einen Algo-
rithmus welcher innerhalb einer gegebenen Fehlerschranke die Wahrschein-
lichkeitsmasse einer Menge von CTMC-Trajektorien approximieren kann.
Diese erfüllen die lineare Eigenschaft spezifiert von einem DTA mit mehreren
Uhren. Soweit wir wissen, ist dies der erste Approximationsalgorithmus für
Akzeptanzwahrscheinlichkeiten von DTAs auf CTMCs. Vorherige Resultate
wie beispielsweise von Amparore und Donatelli (2010) und Barbot et al.
(2011) behandeln nur Fälle wo der DTA nur eine Uhr hat.

In Teil 4 untersuchen wir maximale kostenbeschränkte Erreichbarkeits-
wahrscheinlichkeiten von CTMDPs. Wir zeigen die Existenz optimaler kosten-
positionaler Strategien. Dabei wird Optimalität aller messbaren Strategien
für CTMDPs betrachtet. Zusätzlich entwickeln wir einen numerischen Ap-
proximationsalgorithmus welcher (innerhalb einer gegeben Fehlerschranke)
die maximale Wahrscheinlichkeit approximiert, eine bestimmte Menge von
Zielzuständen innerhalb eines mehrdimensionalen Kostenschrankenvektors
zu erreichen. Die Zeitkomplexität des Algorithmus ist polynomiell in der
Größe des CTMDP, der unären Darstellung der Kostenschrankenvektors und
des Kehrwertes der Fehlerschranke. Sie ist exponentiell in der Dimension
des Kostenschrankenvektors. Aufgrund der Zeitkomplexität ist der Approx-
imationsalgorithmus effektiv für ein breites Spektrum von Anwendungen
nutzbar, wo die Dimension des Kostenvektors klein ist. Unsere Resultate
erweitern den zeitbeschränkten Fall untersucht von Neuhäußer and Zhang
(2010). Weiterhin zeigen wir zudem einen Beweisfehler in dieser Arbeit auf
und korrigieren ihn mit neuen Beweisen.

Acknowledgements

I thank my supervisor, Prof. Joost-Pieter Katoen, for his doctoral guidance
and for the freedom endowed by him. I thank Nils Jansen for the German
translation of the abstract of this dissertation. I also thank my parents for
their support on my doctoral study.

ix

x ACKNOWLEDGEMENTS

Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

1 Introduction 1

1.1 Background: Formal Methods 1

1.2 Outline of the Dissertation . 4

1.3 Origins of the Chapters and Credits 4

1.4 Basic Notations . 5

2 Lattice Theory 7

3 Measure Theory 9

3.1 Measure Space . 9

3.2 Lebesgue Integral . 10

3.3 Product σ-Algebra . 13

3.4 Dynkin’s π-λ Theorem . 13

4 Probabilistic Automata 15

4.1 Probabilistic Automata . 16

4.2 Bisimulation and Simulation on PAs 17

5 Simulation Preorder between pPDAs and fPAs 19

5.1 Probabilistic Pushdown Automata 20

5.2 Extended Stack Symbols . 22

5.3 Tableaux Proof System . 25

5.4 EXPTIME-Hardness . 33

5.5 Conclusion . 35

6 Bisimilarity Metric on Probabilistic Automata 37

6.1 Bisimilarity Metric on PAs 38

6.2 Approximate Bisimilarity Metrics 44

xi

xii CONTENTS

6.3 Self-Closed Sets . 45
6.4 The Membership of UP ∩ coUP 51
6.5 Conclusion . 52

7 Continuous-Time Markov Decision Processes 53

7.1 The Model . 54
7.2 Paths and Histories . 55
7.3 Measurable Spaces on Paths and Histories 57
7.4 Schedulers and Their Probability Spaces 58
7.5 A General Integral Characterization 61
7.6 Conclusion . 62
7.7 Proofs . 63

8 Acceptance Probability of CTMC-Paths by DTA 73

8.1 Continuous-Time Markov Chains 75
8.2 Deterministic Timed Automata 76
8.3 Measurability and The Integral Equations 78
8.4 Mathematical Technicalities 82

8.4.1 Equivalence Relations on Clock Valuations 82
8.4.2 Product Region Graph 84
8.4.3 Lipschitz Continuity 86

8.5 A Differential Characterization 91
8.6 Approximation Algorithm . 93

8.6.1 Approximation Schemes 94
8.6.2 Error-Bound Analysis 99

8.7 Conclusion . 107

9 Cost-Bounded Reachability on CTMDPs 109

9.1 Cost-Bounded Reachability Probability 110
9.2 Optimal Measurable Schedulers 120
9.3 Differential Characterizations 125
9.4 Approximation Algorithm . 130
9.5 Conclusion . 137

10 Conclusion 139

Chapter 1

Introduction

1.1 Background: Formal Methods

This dissertation falls in the research area of formal methods. In general, for-
mal methods are mathematics-based techniques for modelling, verification
and synthesis of systems. The term ‘modelling’ refers to describing systems
through mathematical formalisms, the term ‘verification’ means to check
automatically whether a system satisfies a desired property, and the task of
synthesis is to generate automatically a system that satisfies a prescribed
property. Traditional systems targeted by formal methods are computer
systems such as software systems (e.g., programs, operating systems, pro-
tocols. . .) and hardware systems (e.g. CPU, routers, circuits. . .) (cf. the
textbook [7]). Recently, complex systems such as cyber-physical systems
(cf. eg., [54]) and biological systems (cf. eg., [10]) are also targeted by for-
mal methods. As systems become more and more complex in recent years,
it is more and more difficult to judge the functionality, reliability or per-
formance of a system. Formal methods are then incorporated to model,
verify or synthesize systems with complex behaviours (e.g., concurrency,
non-deterministic and stochastic features, etc.).

Two important concepts in formal methods are model and specification.
The concept of models describes in a mathematical sense how a system
evolves when time progresses. In other words, models are rigorous descrip-
tions for system evolutions. In general, a model of a system is composed
of a set of states and a set of transitions which defines how one state can
transit to another; then the behaviour of a system is described as a series
of transitions along the time axis. The concept of specifications describes
rigorously the desired behaviour of a system. For example, a specification
can be a property that a system should obey or optimize. In the following,
we describe different types of models and specifications.

1

2 CHAPTER 1. INTRODUCTION

Models

Due to different interpretations of time propagation, a model can either
be discrete-time or continuous-time. In a discrete-time model (e.g., la-
belled transition systems [7, 56], discrete-time Markov chains [36, 68]), time
progress is discretized into steps and transitions occur only at those steps; in
a continuous-time model (e.g., hybrid systems [44], continuous-time Markov
chains [36, 68]), transitions can occur at any time point on the dense time
axis. In general, discrete-time models are suitable for discrete-phase systems
(e.g., systems relying on a digital clock), whereas continuous-time models
are adequate for systems that interact with the real world, where an event
can happen at any time point.

Due to different interpretations of non-determinism, a model can also be
either probabilistic or non-probabilistic. A model is probabilistic if it allows
stochastic interpretation of non-determinism, while it is non-probabilistic if
no stochastic interpretation is allowed. Generally, an instance of a proba-
bilistic model need not to resolve all non-determinism as stochastic tran-
sitions, i.e., it can have both stochastic and non-deterministic features. A
probabilistic model that resolves all non-determinism (as stochastic transi-
tions) is typically called fully probabilistic.

Specifications

A specification can be either a property described by a rigorous linguistic
sentence or an instance of a model. When a specification is a rigorous lin-
guistic sentence, it usually specifies the logical property that the system
should satisfy or optimize; such specification can be in most cases encoded
by a temporal logical formula. Prominent temporal logics for specifications
are CTL [26] (Computation Tree Logic), LTL [62] (Linear-Time Temporal
Logic), CTL* [26] (the combination of CTL and LTL) and the most expres-
sive logic of µ-calculus [50], together with their probabilistic or continuous-
time extensions [45, 67, 11, 4]. Among them some are branching-time logics
(e.g., CTL) which focuses on state-based properties, some are linear-time
logics (e.g., LTL) which focuses on trajectory-based (or path-based) prop-
erties, and others are a combination of the two (e.g., CTL* and µ-calculus).
The research area to check whether an instance of a model satisfies a formula
of a temporal logic is known as model checking [7].

When a specification itself is an instance of a model, it usually describes
exactly the desired behaviour of the system. In general, the original instance
of the model (for the system) is compared with the specification to check
whether two instances are equivalent under some semantical setting. Typical
semantical equivalences are bisimulation equivalence [56, 61, 73], simulation
preorder [56, 73] and their probabilistic and continuous-time extensions [49,
67, 53, 8]. The research area to check whether two instances of a model are

1.1. BACKGROUND: FORMAL METHODS 3

equivalent is known as equivalence checking.

The Main Results of the Dissertation

This dissertation mainly focuses on the formal verification of probabilistic
systems. We consider both discrete-time and continuous-time probabilistic
systems. For discrete-time probabilistic systems, we study the computa-
tional complexity of two equivalence-checking problems on probabilistic au-
tomata (PAs) [67] (which is an analogue of discrete-time Markov decision
processes). In detail, we present the following two results.

• The decision problem of the (probabilistic) simulation preorder be-
tween a probabilistic pushdown automata (pPDA) and a finite proba-
bilistic automaton (fPA) is in EXPTIME, and is EXPTIME-complete
when the hardness result by Kučera and Mayr [52] is imported. The
complexity result coincides with the one by Kučera and Mayr [52] on
non-probabilistic pushdown automata. Moreover, we obtain a fixed-
parameter-tractable result on this problem, which again coincides with
the counterpart by Kučera and Mayr [52] on non-probabilistic push-
down automata.

• The bisimilarity metric defined by van Breugel and Worrell [72] on
fPA is decidable in NP ∩ coNP (and even UP ∩ coUP) for the undis-
counted case. This result significantly improves the previous one by
van Breugel et al. [71] (cf. also [22, 25]).

For continuous-time probabilistic systems, we study the model-checking
problem on continuous-time Markov chains (CTMCs) and continuous-time
Markov decision processes (CTMDPs). In detail, we present the following
two results.

• We develop a numerical approximation algorithm for acceptance prob-
ability by DTA on CTMCs, while correcting errors in the previous
work by Chen et al. [24] with new proofs. DTAs are a deterministic
subclass of timed automata (by Alur and Dill [1]) which can encode
a large class of linear real-time properties. In detail, we present an
algorithm which within a given error bound, approximates the prob-
ability mass of the set of CTMC-trajectories that satisfy the linear
property specified by a multi-clock DTA. The worst-case complexity
of the approximation algorithm for CTMC-DTA is double exponential
in the input size. As far as we know, this is the first approximation
algorithm for acceptance probability by DTA on CTMCs. Previous
results such as the ones by Amparore and Donatelli [31] and Barbot et
al. [9] only consider cases where the DTA has only one clock.

• We study maximal cost-bounded reachability probability on CTMDPs.
In detail, we prove the existence of optimal cost-positional schedulers,

4 CHAPTER 1. INTRODUCTION

where the optimality is considered under all measurable schedulers
for CTMDPs. And we develop a numerical approximation algorithm
that approximates (within a given error bound) the maximal proba-
bility to reach a certain set of target states within a multidimensional
cost-bound vector. The time complexity of the algorithm is poly-
nomial in the size of the CTMDP, the unary representation of the
cost-bound vector and the reciprocal of the given error bound, and ex-
ponential in the dimension of the cost-bound vector. Due to its time
complexity, the approximation algorithm is effective for a wide range
of applications where the dimension of the cost-bound vector is low.
Our results extend the time-bounded case studied by Neuhäußer and
Zhang [59]. Meanwhile, we also point out a proof error in the work on
time-bounded case by Neuhäußer and Zhang [59] and correct it with
new proofs.

1.2 Outline of the Dissertation

Chapter 2 and Chapter 3 introduces mathematical preliminaries needed for
this dissertation. Chapter 2 briefly introduce lattice theory and Knaster-
Tarski’s Fixed-Point Theorem. Chapter 3 briefly goes through measure the-
ory and abstract Lebesgue integral.

Chapter 4 and Chapter 7 introduces the formal mathematical models
concerned in this dissertation. Chapter 4 introduces PAs [67] and be-
havioural equivalences on PAs. Chapter 7 introduces the notion of CTMDPs
and the notions of related measurable spaces and measure spaces, following
the definitions in [74, 58].

Chapters 5, 6, 8 and 9 present the main contributions of this disser-
tation. Chapter 5 illustrates the complexity to decide (probabilistic) sim-
ulation preorder between pPDAs and fPAs. Chapter 6 demonstrates the
membership of UP ∩ coUP for the bisimilarity metric [72] on PAs. Chap-
ter 8 deals with the approximation algorithm for acceptance probability of
CTMC-paths (CTMC-trajectories) by DTAs. Chapter 9 handles the ap-
proximation algorithm for maximal cost-bounded reachability probability
on CTMDPs.

Finally, Chapter 10 concludes the dissertation.

1.3 Origins of the Chapters and Credits

Chapter 5 is based on the proceeding paper [42], whose detailed informa-
tion is “Hongfei Fu, Joost-Pieter Katoen: Deciding Probabilistic Simula-
tion between Probabilistic Pushdown Automata and Finite-State Systems.
FSTTCS 2011: 445-456”.

1.4. BASIC NOTATIONS 5

Chapter 6 is based on the technical report [37], for which an extension
is published as a proceeding paper [39] with detailed information “Hongfei
Fu: Computing Game Metrics on Markov Decision Processes. ICALP (2)
2012: 227-238”.

Chapter 8 is based on the proceeding paper [40] whose detail is “Hongfei
Fu: Approximating acceptance probabilities of CTMC-paths on multi-clock
deterministic timed automata. HSCC 2013: 323-332”.

Chapter 9 is based on the proceeding paper [41] with detail “Hongfei
Fu: Maximal Cost-Bounded Reachability Probability on Continuous-Time
Markov Decision Processes. FoSSaCS 2014: 73-87”.

Besides, there are several papers published during my PhD study but
are not included in this dissertation. They are listed as follows:

• Chaodong He, Yuxi Fu, Hongfei Fu: Decidability of Behavioral Equiv-
alences in Process Calculi with Name Scoping. FSEN 2011: 284-
298 [47];

• Hongfei Fu: Model Checking EGF on Basic Parallel Processes. ATVA
2011: 120-134 [38].

1.4 Basic Notations

In the whole dissertation, we use the following convention for notations. We
denote by N the set of natural numbers excluding zero, and by N0 the set of
non-negative integers. We denote by R the set of real numbers, by R≥0 the
set of non-negative real numbers and by R>0 the set of positive real numbers.
Given c ∈ Rk (k ∈ N), we denote by ci (1 ≤ i ≤ k) the i-th coordinate of c.
We extend {≤,≥} to real vectors and functions in a pointwise fashion: for
two real vectors c,d, c ≤ d (resp. c ≥ d) iff ci ≤ di (resp. ci ≥ di) for all i;
for two real-valued functions g, h, g ≤ h (resp. g ≥ h) iff g(y) ≤ h(y) (resp.
g(y) ≥ h(y)) for all y. Given a set Y , we let 1Y be the indicator function of
Y , i.e, 1Y (y) = 1 if y ∈ Y and 1Y (y) = 0 for y ∈ X − Y , where X ⊇ Y is
an implicitly known set.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Lattice Theory

In this chapter, we briefly introduce lattice theory and the Knaster-Tarski’s
Fixed-Point Theorem. For a detailed introduction, we refer to the text-
book [13] (cf. also [29]). The content of this chapter will be fundamental
for Chapter 6 and Chapter 9.

Below we fix a non-empty set X and a partial order �⊆ X ×X on X.

Definition 2.1. Let Y ⊆ X be a subset of X and y ∈ X be an element of
X. The following definitions are standard in lattice theory:

• y is an upper bound of Y if x � y for all x ∈ Y , and dually y is a
lower bound of Y if y � x for all x ∈ Y ;

• y is the largest element of Y if y is an upper bound of Y and y ∈ Y ,
and dually y is the least element of Y if y is a lower bound of Y and
y ∈ Y ;

• y is the supremum of Y if y is the least element of the set of upper
bounds of Y , i.e., the least element of the set

{x ∈ X | z � x for all z ∈ Y } ;

• y is the infimum of Y if y is the largest element of the set of lower
bounds of Y , i.e., the largest element of the set

{x ∈ X | x � z for all z ∈ Y } .

We denote by
⊔

Y (resp.
d
Y) the supremum (resp. infimum) of a

subset Y ⊆ X. Generally,
⊔

Y and
d
Y may not always exist. The pair

(X,�) such that
⊔

Y and
d
Y always exists is called a complete lattice.

Definition 2.2. The pair (X,�) is a complete lattice iff for all Y ⊆ X, both
⊔

Y and
d
Y exists. If (X,�) is a complete lattice, then the top element ⊤

of X is defined as
⊔

X and the bottom element ⊥ of X is defined as
d
X.

7

8 CHAPTER 2. LATTICE THEORY

Note that if (X,�) is a complete lattice, then ⊤ and ⊥ are resp. the
largest and the least element of X.

In this dissertation, we are interested in fixed-points of monotone func-
tions on a complete lattice, which is also a central part of lattice theory.

Definition 2.3. Let h : X → X be a function and x ∈ X.

• x is a fixed-point (resp. pre-fixed-point, post-fixed-point) of h if
h(x) = x (resp. h(x) � x, x � h(x)).

• h is monotone if h(x) � h(y) for all x, y ∈ X such that x � y.

The central theorem concerning fixed-points of monotone functions is
Knaster-Tarski’s Fixed-Point Theorem, which is illustrated as follows.

Theorem 2.1 (Knaster-Tarski’s Fixed-Point Theorem). Assume that (X,�
) is a complete lattice. Then every monotone function h : X → X has a
fixed-point. The least fixed-point lfp(h) of h (the least element of the set of
fixed-points of h) exists and satisfies that

lfp(h) =
l

{x ∈ X | h(x) � x} .

The greatest fixed-point gfp(h) of h (the largest element of the set of fixed-
points of h) exists and satisfies that

gfp(h) =
⊔

{x ∈ X | x � h(x)} .

Proof. We first prove the case for lfp(h). Let x∗ :=
d
{x ∈ X | h(x) � x}.

By definition, x∗ � x whenever x ∈ X and h(x) � x. Since h is monotone,
h(x∗) � h(x) � x whenever x ∈ X and h(x) � x. Thus, h(x∗) is a lower
bound of the set {x ∈ X | h(x) � x}, which implies that h(x∗) � x∗. Hence,
x∗ ∈ {x ∈ X | h(x) � x}. By h(x∗) � x∗ and the monotonicity of h, we have
h(h(x∗)) � h(x∗), which implies h(x∗) ∈ {x ∈ X | h(x) � x}. By definition,
x∗ � h(x∗). Thus, x∗ = h(x∗) and x∗ is the least fixed-point of h.

Now we consider the case for gfp(h). The proof is by dual to the one for
lfp(h). Let x∗ :=

⊔

{x ∈ X | x � h(x)}. By definition, x � x∗ whenever
x ∈ X and x � h(x). Since h is monotone, x � h(x) � h(x∗) whenever
x ∈ X and x � h(x). Thus, h(x∗) is an upper bound of the set {x ∈ X |
x � h(x)}, which implies that x∗ � h(x∗). Hence, x∗ ∈ {x ∈ X | x � h(x)}.
By x∗ � h(x∗) and the monotonicity of h, we have h(x∗) � h(h(x∗)), which
implies h(x∗) ∈ {x ∈ X | x � h(x)}. By definition, h(x∗) � x∗. Thus,
x∗ = h(x∗) and x∗ is the greatest fixed-point of h.

Intuitively, Knaster-Tarski’s Fixed-Point Theorem gives a infimum (resp.
supremum) characterization for the least (resp. greatest) fixed-point of h.

Chapter 3

Measure Theory

In this chapter, we briefly introduce basic concepts of measure theory. For
the details of measure theory, we refer to the textbooks [12, 32]. The content
of this chapter will be fundamental in Chapter 7.

In this chapter, we extend the set R of real numbers with two objects
−∞ (which indicates negative infinity) and +∞ (which indicates positive
infinity), with the following routine (cf. [32, Page 85]):

• for all x ∈ R, −∞ < x < +∞;

• for all x ∈ R, x+ (−∞) = −∞ and x+ (+∞) = +∞;

• for all x which is either a positive real number or +∞, x ·(−∞) = −∞
and x · (+∞) = +∞;

• for all x which is either a negative real number or −∞, x ·(−∞) = +∞
and x · (+∞) = −∞;

• 0 · (+∞) = 0 and 0 · (−∞) = 0.

In some cases, we abbreviate +∞ as ∞.

3.1 Measure Space

The notion of measure space deals with a non-negative real measure on
subsets of a certain set which mimics certain notion of “size” or ”length” on
sets. A first notion encountered to introduce measure space is the notion of
σ-algebra.

Definition 3.1. Let Ω be a set. A set S ⊆ 2Ω is a σ-algebra on Ω iff the
following conditions hold:

1. ∅ ∈ S;

2. for all X ∈ S, Ω\X ∈ S;

3. for all infinite sequences {Xn}n∈N such that Xn ∈ S for all n ∈ N,
⋃

n∈NXn ∈ S .

9

10 CHAPTER 3. MEASURE THEORY

If Ω is a set and S is a σ-algebra on Ω, then (Ω,S) is called a measurable
space on Ω.

Given any sets Ω and C ⊆ 2Ω, there is a (unique) smallest σ-algebra that
contains C. This smallest σ-algebra, denoted by σ(C) (with Ω implicitly
known), is given as follows:

σ(C) :=
⋂

{S | S is a σ-algebra on Ω and C ⊆ S} .

It is straightforward to verify by definition that σ(C) is a σ-algebra on Ω,
and σ(C) is the smallest σ-algebra that contains C. Often, the σ-algebra
σ(C) is said to be generated by C.

To define the notion of measure on a measurable space, we import the
auxiliary notion of countably-additive function.

Definition 3.2. Let Ω be a set and C ⊆ 2Ω. A function µ : C → [0,+∞] is
countably-additive on C if µ satisfies that for all sequences {Xn}n∈N in1 C,
if (i)

⋃

n∈NXn ∈ C and (ii) Xn ∩Xm = ∅ whenever n,m ∈ N and n 6= m,
then

∑

n∈N µ(Xn) = µ(
⋃

n∈NXn).

Then the notion of measure is given in the following definition.

Definition 3.3. Let (Ω,S) be a measurable space on Ω. A function µ : S →
[0,+∞] is called a measure for (Ω,S) iff µ is countably additive on S. If
µ : S → [0,+∞] is a measure for (Ω,S), then (Ω,S, µ) is called a measure
space. If (Ω,S, µ) is a measure space and µ(Ω) = 1, then (Ω,S, µ) is also
called a probability space and µ is called a probability measure.

If (Ω,S, µ) is a probability space, then normally elements X ∈ S are
called events and µ(X) is referred as the probability that event X happens
(i.e., a randomly chosen x ∈ Ω falls in X).

Below we illustrate the Borel σ-fields B(R),B(R≥0) and the Borel mea-
sure on B(R).

Definition 3.4. The σ-algebra B(R) (resp. B(R≥0)) is the σ-algebra gen-
erated by the set of all open intervals (a, b) ⊆ R (resp. (a, b) ⊆ R≥0). The
Borel measure µbrl for the measurable space (R,B(R)) is the unique measure
such that µbrl ((a, b)) = b− a for all non-empty open intervals (a, b) ⊆ R.

3.2 Lebesgue Integral

In this section, we briefly introduce (abstract) Lebesgue integral. Below we
fix a measure space (Ω,S, µ). The following definition illustrates the notion
of measurable functions.

1“in” here means Xn ∈ C for all n ∈ N.

3.2. LEBESGUE INTEGRAL 11

Definition 3.5. Let (Ω′,S ′) be a measurable space. A function h : Ω → Ω′

is measurable (w.r.t (Ω′,S ′)) if for all X ∈ S ′, h−1(X) ∈ S.

The following definition illustrates the notion of simple functions, which
is a central notion to define abstract Lebesgue integral.

Definition 3.6. A function h : Ω → [0,+∞) is a (non-negative) simple
function on Ω if there exists n ∈ N, a finite sequence {Xi}1≤i≤n of sets in2

S and a finite sequence {di}1≤i≤n of real numbers such that h =
∑n

i=1 di ·1Xi

.

Intuitively, simple functions are piecewise constant functions. By defini-
tion, it is not hard to verify that simple functions are measurable functions
w.r.t (R,B(R)). Here, we restrict simple functions to non-negative functions;
this restriction is not essential and does not affect the definition of Lebesgue
integral.

The following definition introduce Lebesgue integral on simple functions.

Definition 3.7. Let h : Ω → [0,+∞) be a (non-negative) simple function
on Ω such that h =

∑n
i=1 di · 1Xi

(cf. Definition 3.6 for notations). The
Lebesgue integral of h w.r.t µ, denoted by

∫

h dµ, is defined by:

∫

h dµ :=
n
∑

i=1

di · µ(Xi) .

The Lebesgue integral is well-defined on simple functions, regardless of
the representation of the simple function; see [32, Proposition 4.1.4] for more
details. The following definition introduces Lebesgue integral on general
non-negative functions.

Definition 3.8. Let h : Ω → [0,+∞] be a function. The (Lebesgue) integral
of h w.r.t µ, denoted by

∫

h dµ, is defined as follows:
∫

h dµ := sup

{∫

g dµ | g is a simple function on Ω and g ≤ h

}

,

where for arbitrary functions g1, g2 : Ω → [0,+∞], g1 ≤ g2 means that
g1(x) ≤ g2(x) for all x ∈ Ω.

Note that by definition, for non-negative function g1, g2 : Ω → [0,+∞],
∫

g1 dµ ≤
∫

g2 dµ whenever g1 ≤ g2. In this dissertation, we may also
write “

∫

h dµ” as “
∫

h(x)µ(dx)”, stressing the role of the variable x; we will
abbreviate “µbrl(dx)” in an integral as “dx”.

Remark 3.1. Note that a standard mathematical definition of Lebesgue
integral applies only to measurable functions, while Definition 3.8 works also
for non-measurable functions. This fact will be used in Chapter 9 to define
a monotone operator on a lattice of general functions.

2cf. Definition 3.2 for the meaning of “in”.

12 CHAPTER 3. MEASURE THEORY

For non-negative measurable functions, the next proposition is useful.
In the following, we write xn ↑ x if the sequence {xn}n∈N of real numbers
converges to x when n → +∞ and xn ≤ xn+1 for all n ∈ N (note that x
may be +∞).

Proposition 3.1. Let h : Ω → [0,+∞] be a function. If h is measurable
w.r.t (R,B(R)), then there exists a sequence {hn : Ω → [0,+∞)} of simple
functions on Ω such that hn(x) ↑ h(x) for all x ∈ Ω; moreover, for all such
sequences {hn : Ω → [0,+∞)},

∫

hn dµ ↑
∫

h dµ .

Proof. See [32, Proposition 4.1.5].

The following definition illustrates Lebesgue integral on all functions.

Definition 3.9. Let h : Ω → [−∞,+∞] be a function and define two func-
tions h+ and h− by: h+ := max{h, 0} and h− := −min{h, 0}. The integral
∫

h dµ is called defined if at most one of the two integrals, namely
∫

h+ dµ
and

∫

h− dµ, is equal to +∞. When
∫

h dµ is defined, it is given by:

∫

h dµ :=

∫

h+ dµ−

∫

h− dµ .

Moreover, h is called integratable if h is measurable w.r.t (R,B(R)) and
∫

|h| dµ < +∞ ; the set of all integratable functions is denoted by L1(Ω,S, µ).

For a function h : Ω → [−∞,+∞] and a set X ⊆ Ω, we denote the
integral

∫

X h dµ to be
∫

h · 1X dµ if
∫

h · 1X dµ is defined.
Below we state some mathematical facts in measure theory. The follow-

ing proposition states some basic properties of measurable functions.

Proposition 3.2. If c ∈ R and h1, h2 : Ω → R are two functions measurable
w.r.t (R,B(R)), then both h1 + h2 and c · h1 is a measurable function w.r.t
(R,B(R)).

If {hn : Ω → R}n∈N is a sequence of measurable functions w.r.t (R,B(R)),
h : Ω → R is a function and lim

n→∞
hn(x) = h(x) for all x ∈ Ω, then h is a

measurable function w.r.t (R,B(R)).

Proof. See [32, Chapter 4].

The following theorem states that Lebesgue integral has good linear
properties.

Theorem 3.1. For all g, h ∈ L1(Ω,S, µ) and c ∈ R,

∫

(g + h) dµ =

(∫

g dµ

)

+

(∫

h dµ

)

and

∫

(c · g) dµ = c ·

(∫

g dµ

)

.

Proof. See [32, Theorem 4.1.10].

3.3. PRODUCT σ-ALGEBRA 13

Below we introduce Monotone Convergence Theorem, which is an impor-
tant convergence theorem in measure theory. We would like to mention that
there is another important convergence theorem, called Dominated Conver-
gence Theorem, which is not included in this dissertation.

Theorem 3.2 (Monotone Convergence Theorem). Let {hn}n∈N be a se-
quence of measurable functions from Ω to [−∞,+∞], and h be a function
from Ω to [−∞,+∞]. If hn(x) ↑ h(x) for all x ∈ Ω and

∫

h1 dµ > −∞,
then

∫

hn dµ ↑
∫

h dµ .

Proof. See [32, Theorem 4.3.2].

3.3 Product σ-Algebra

In this section, we introduce the notion of product measure. Intuitively,
a product measure is a measure for certain “Cartesian product” of two
measure spaces, while the calculation of the produce measure mimics the
calculation of the area of rectangles on a two-dimensional plane.

Below we fix two measure spaces (Ω1,S1, µ1) and (Ω2,S2, µ2), where both
µ1 and µ2 is σ-finite. The definition of the notion of σ-finiteness is given as
follows.

Definition 3.10. Let Ω be a set and C ⊆ 2Ω. A function µ : C → [0,∞)
is said to be σ-finite if there exists {Xn}n∈N such that (i) Xn ∈ C for all
n ∈ N and (ii)

⋃

n∈N Xn = Ω and (iii) µ(Xn) < +∞ for all n ∈ N.

Now let C := {X × Y | X ∈ S1, Y ∈ S2} . The following definition
illustrates the notion of product σ-algebra.

Definition 3.11. The product σ-algebra S1 ⊗ S2 on Ω1 × Ω2 is defined to
be the σ-algebra generated by C.

3.4 Dynkin’s π-λ Theorem

In this section, we briefly introduce Dynkin’s π-λ Theorem. For a detailed
introduction, we refer to [12]. Below we fix a set Ω. Informally, Dynkin’s
π-λ Theorem deals with the relationship between π-systems and λ-systems.

The following definition illustrates the notion of π-system.

Definition 3.12 (π-System). A set C ⊆ 2Ω is a π-system on Ω iff it is
closed under finite intersection, i.e., X ∩Y ∈ C whenever X ∈ C and Y ∈ C.

The notion of λ-system is a weaker notion of σ-algebra, as follows.

Definition 3.13 (λ-System). A set C ⊆ 2Ω is a λ-system on Ω iff the
following conditions hold:

14 CHAPTER 3. MEASURE THEORY

• Ω ∈ C;

• for all X ∈ C, Ω\X ∈ C;

• for all sequences {Xn}n∈N in3 C such that Xn ∩ Xm = ∅ whenever
n 6= m,

⋃

n∈NXn ∈ C .

In this thesis, we will use an equivalent version of Definition 3.13 4, as
follows.

Definition 3.14. A set C ⊆ 2Ω is a λ-system on Ω iff the following condi-
tions hold:

• Ω ∈ C;

• for all X,Y ∈ C such that X ⊆ Y , Y \X ∈ C;

• for all sequences {Xn}n∈N in C such that Xn ⊆ Xm whenever n ≤ m,
⋃

n∈NXn ∈ C .

The following proposition shows that the two definitions are equivalent.

Proposition 3.3. Definition 3.13 and Definition 3.14 are equivalent.

Proof. Assume that C is a λ-system w.r.t Definition 3.13. We prove that C
satisfies the conditions in Definition 3.14. The analysis is as follows: given
any X,Y ∈ C with X ⊆ Y , Y \X ∈ C because Y \X = Ω\(X ∪ (Ω\Y));
given any sequences {Xn}n∈N in C such that Xn ⊆ Xm whenever n ≤ m,
⋃

n∈NXn ∈ C because
⋃

n∈NXn = X1 ∪ (
⋃

n∈NXn+1\Xn).
Assume now that C is a λ-system w.r.t Definition 3.14. We first prove

that for all X,Y ∈ C, if X ∩ Y = ∅ then X ∪ Y ∈ C. This follows directly
from the fact that X ∪ Y = Ω\((Ω\X)\Y). Then we prove that C satisfies
the conditions in Definition 3.13: for all X ∈ C, Ω\X ∈ C since Ω ∈ C and
X ⊆ Ω; for all sequences {Xn}n∈N in C such that Xn ∩ Xm = ∅ whenever
n 6= m,

⋃

n∈NXn ∈ C since
⋃k
n=1Xn ∈ C for all k ∈ N.

The following theorem, entitled Dynkin’s π-λ Theorem, is an important
theorem in measure theory.

Theorem 3.3 (Dynkin’s π-λ Theorem). Let E be a π-system on Ω and F
be a λ-system on Ω. If E ⊆ F , then σ(E) ⊆ F .

Proof. See [12, Theorem 3.2].

3cf. Definition 3.2 for the meaning of “in”.
4This is an excerpt from the website http://en.wikipedia.org/wiki/Dynkin_system.

http://en.wikipedia.org/wiki/Dynkin_system

Chapter 4

Probabilistic Automata

In this chapter, we consider the notion of probabilistic automata developed
by Segala and Lynch [67]. Probabilistic automata (PAs) are an analogue
of Markov decision processes [64] which, like Markov decision processes,
involves both stochastic and non-deterministic features. The difference be-
tween PAs and Markov decision processes is that in a PA, a sole action
can lead to different probability distributions, while an action uniquely de-
termines a probability distribution in a Markov decision process. In other
words, PAs focus more on reactive features than Markov decision processes
do. Probabilistic automata can also be viewed as an orthogonal extension
of labelled transition systems [7] with probabilities.

In [67], the semantics of probabilistic automata is defined through two
approaches: logical characterization and behavioural equivalences. Logical
characterization allows one to reason about probabilistic automata via log-
ical formulae, while behavioural equivalences enables one to check whether
two probabilistic automata are equivalent. Behavioural equivalences and
logical characterization are closely related as two behaviourally-equivalent
probabilistic automata are also logically-equivalent under certain logical
characterization [67].

The dissertation mainly focuses on behavioural equivalences of proba-
bilistic automata. A behavioural equivalence can be viewed as an equiva-
lence relation or a preorder on the set of states of the underlying proba-
bilistic automaton, which characterize whether two states are behaviourally
indistinguishable or one state can mimic the behaviour of another. Typi-
cal behavioural equivalences introduced in [67] are (probabilistic) bisimula-
tion equivalence and (probabilistic) simulation preorder (cf. also [49, 53]).
In [67], Segala and Lynch proved that (probabilistic) bisimulation equiva-
lence preserves logical properties encoded by probabilistic computation tree
logic (PCTL), and the equivalence relation induced by (probabilistic) simu-
lation preorder preserves a safety fragment of PCTL (see also [7]).

The chapter is organized as follows. In Section 4.1, we briefly introduce

15

16 CHAPTER 4. PROBABILISTIC AUTOMATA

the notion of probabilistic automata. In Section 4.2, we briefly introduce
two fundamental notions of behavioural equivalences on probabilistic au-
tomata, namely (probabilistic) bisimulation equivalence and (probabilistic)
simulation preorder.

4.1 Probabilistic Automata

To introduce the notion of probabilistic automata, we first introduce the
notion of (discrete) probability distributions.

Definition 4.1. Let X be a finite or countable set. A (discrete) probability
distribution on X is a function µ : X → [0, 1] such that

∑

x∈X µ(x) = 1; µ
is Dirac at x ∈ X iff µ(x) = 1. The Dirac distribution D[x] : X → [0, 1] for
an x ∈ X is defined by: Dx = 1 and D[x](y) = 0 for all y 6= x.

A probability distribution µ on X is finite if the support of µ, denoted
by ⌊µ⌋ and defined by ⌊µ⌋ := {x ∈ X | µ(x) > 0} , is finite. The set of
(discrete) probability distributions (resp. finite probability distributions) on
X is denoted by Dist(X) (resp. by Distf(X)).

Remark 4.1. Note that each probability distribution µ ∈ Dist(X) corre-
sponds to the probability space (cf. Chapter 3) (X, 2X , µ) where µ(Y) =
∑

x∈Y µ(x) for all Y ⊆ X.

The notion of probabilistic automata [67] is given as follows.

Definition 4.2. [67] A probabilistic automaton (PA) is a tuple (S,Act,→)
where

• S is a non-empty, finite or countable set of states;

• Act is a non-empty set of actions;

• →⊆ S ×Act×Dist(S) is a set of transitions.

A PA (S,Act,→) is locally finite if for all s ∈ S and a ∈ A, it holds that
{µ | (s, a, µ) ∈→} ⊆ Distf(S); it is finite if it is locally finite, and both
S,Act and → is finite.

Technically speaking, the class of probabilistic automata here refers to
the class of simple probabilistic automata in [67].

Let (S,Act,→) be a PA. For each s ∈ S, we define

• Act(s) := {a ∈ Act | ∃µ.(s, a, µ) ∈→} to be the set of actions enabled
at s, and

• Succ(s) := {s′ ∈ S | ∃(s, a, µ) ∈→ .µ(s′) > 0} to be the set of states
which can be reached from s within one step with non-zero probability.

4.2. BISIMULATION AND SIMULATION ON PAS 17

Intuitively, the set → specifies all possible stochastic transitions from states
to states. A transition (s, a, µ) specifies that when the current state is s and
the action to be taken is a, the state at the next step is chosen w.r.t the
probability distribution µ.

The following definition extends the notions of transitions to combined
transitions. In [67], combined transitions are introduces to model stochastic
strategies by, e.g., an adversary.

Definition 4.3. Let (S,A,→) be a PA. The set of combined transitions,
−→
c
⊆ S ×Act×Dist(S), is defined as follows: (s, a, µ) ∈−→

c
iff there exists a

finite or infinite sequence {(µn, dn)}n∈I (I ⊆ N), where µn ∈ Dist(S) and
dn ∈ R≥0 for all n ∈ I, such that

• (s, a, µn) ∈→ for all n ∈ I, and

•
∑

n∈Idn = 1, and

• µ(s) =
∑

n∈Idn · µn(s) for all s ∈ S.

By definition, →⊆−→
c
. We write “s

a
−→
nc

µ” for “(s, a, µ) ∈→” where

“nc” stands for “standard” or “non-combined”. And we write “s
a
−→
c
µ” for

“(s, a, µ) ∈−→
c
”. We will use “s

a
−→
op

µ” to refer to either “s
a
−→
nc

µ” or “s
a
−→
c
µ”,

depending on whether op = ‘nc′ or op = ‘c′.

4.2 Bisimulation and Simulation on PAs

In this section, we fix a PA (S,Act,→). To define (probabilistic) bisimula-
tion and (probabilistic) simulation preorder, we first introduce a notion of
lifting operation which lifts a binary relation on states to a binary relation
on probability distributions.

Definition 4.4. [49, 53] Let R ⊆ S × S be a binary relation on S. The
lifting relation R ⊆ Dist(S)×Dist(S) of R is defined as follows: (µ, ν) ∈ R
iff there exists a weight function w : S × S → [0, 1] such that

•
∑

v∈S w(u, v) = µ(u) for all u ∈ S, and

•
∑

u∈S w(u, v) = ν(v) for all v ∈ S, and

• for all u, v ∈ S, (u, v) ∈ R whenever w(u, v) > 0.

For the sake of convenience, we will simply write “µRν” instead of
“µRν”.

Now we define the notion of (probabilistic) bisimulation, following the
definition in [67].

Definition 4.5. An equivalence relation R on S is an op-bisimulation iff
for all (s, s′) ∈ R, the following conditions hold:

18 CHAPTER 4. PROBABILISTIC AUTOMATA

• for all s
a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µRµ′;

• for all s′
a
−→
nc

µ′, there exists s
a
−→
op

µ such that µRµ′.

Two states s, s′ ∈ S are op-bisimilar if there exists an op-bisimulation R
such that (s, s′) ∈ R. The op-bisimilarity, denoted by ∼op, is defined as the
set of all pairs (s, s′) ∈ S × S such that s and s′ are op-bisimilar.

Here, ∼nc refers to strong bisimulation [67] and ∼c refers to strong prob-
abilistic bisimulation [67]. The following definition illustrates the notion of
(probabilistic) simulation preorder, which is defined as a one-sided version
of (probabilistic) bisimulation.

Definition 4.6. A binary relation R on S is an op-simulation iff for all
(s, s′) ∈ R, the following conditions hold:

• Act(s) = Act(s′);

• for all s
a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µRµ′.

The op-simulation preorder, denoted by ⊑op, is defined by:

⊑op:=
⋃

{R ⊆ S × S | R is an op-simulation} .

The op-simulation equivalence is defined as ⊑op ∩ ⊑−1
op , where ⊑−1

op is the
reverse relation of ⊑op.

⊑nc corresponds to strong simulation and ⊑c corresponds to strong prob-
abilistic simulation in [67]. It can be easily verified that ⊑nc (resp. ⊑c) itself
is an nc-simulation (resp. c-simulation).

Up till now, the notions of bisimulation and simulation preorder are de-
fined on a single probabilistic automaton. They are extended to the coun-
terparts between two probabilistic automata by taking the disjoint union of
the two PAs, i.e., by making a PA which precisely comprises all the states,
actions and transitions of the original two PAs.

Chapter 5

Simulation Preorder between

pPDAs and fPAs

In this chapter, we consider the decision problem of (probabilistic) simu-
lation preorder between a probabilistic pushdown automata (pPDA) and a
finite probabilistic automata (fPA). Here, the notions of (finite) probabilis-
tic automata (PAs) and (probabilistic) simulation preorder ⊑op are defined
in Chapter 4. We recall that (i) the notion of probabilistic automata is an
analogue of Markov decision processes which models discrete-time stochastic
non-deterministic transitions between states, and (ii) the notion of (prob-
abilistic) simulation preorder captures the phenomenon whether one state
can mimic another.

The motivation of this problem is to treat pPDAs as implementation
and fPAs as specification. On one hand, we treat pPDAs as implemen-
tation since they are a natural extension of pushdown automata and can
model probabilistic procedural programs. They typically induces an infinite-
state probabilistic automaton and are equally expressive as recursive Markov
chains [34] or recursive Markov decision processes [33]. On the other hand,
we treat fPAs as specification since in many applications, a specification can
be described by a finite-state diagram. We use (probabilistic) simulation
preorder (or (probabilistic) simulation equivalence) as the comparison se-
mantics between a pPDA and a fPA. It is shown by Segala and Lynch [67]
that (probabilistic) simulation equivalence preserves a safety fragment of
PCTL* formulae on probabilistic automata.

Verification of (probabilistic) pushdown automata has been studied mainly
on the aspect of model checking. The major results in the model checking
of pPDAs are on the analysis of termination probabilities [51, 34]. As to
equivalence checking, Tomáš Brázdil et al. proved that probabilistic bisimi-
larity between pPDAs and fPAs can be decided in EXPTIME [19]. Besides,
we would like to mention several novel results on original non-probabilistic
pushdown automata [52, 69, 70, 48, 43].

19

20 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

In this chapter, we prove that the decision problem of probabilistic sim-
ulation preorder between a pPDA and a fPA is decidable in EXPTIME,
and in PTIME if both the number of control states of the pPDA and the
size of the finite-state system are fixed. All these results extend the coun-
terparts in the non-probabilistic setting by Kučera and Mayr [52]. We use
a different technique from the one adopted in [52]. The technique we use
is a tableaux system for probabilistic simulation preorder between pPDA
and fPA, which is based on the notion of “extended stack symbols” and
a tableaux system both developed by Coling Stirling [69, 70] to prove the
deciability of bisimulation equivalence on non-probabilistic pushdown au-
tomata. The reason to adopt a new technique is that the original result [52]
goes through a reduction to the model-checking problem of µ-calculus on
pushdown processes, for which a probabilistic extension is dubious [18]. By
applying a EXPTIME-hardness result by Kučera and Mayr [52], we prove
that the decision problem is EXPTIME-complete.

The result of this chapter, together with previous results concerning
bisimulation equivalence and simulation preorder between pushdown au-
tomata and finite-state systems, can be illustrated by Table 5.1.

non-probabilistic probabilistic

bisim. equiv. PSPACE-c. [48, 52] in EXPTIME [19]

sim. pre. EXPTIME-c. [52] EXPTIME-c. (this chapter)

Table 5.1: Related Complexity Results

The chapter is organized as follows. In Section 5.1, we introduce the no-
tion of probabilistic pushdown automata, following the definitions from [51,
19]. In Section 5.2, we introduce the notion of extended stack symbols. In
Section 5.3, we present the tableaux system and show its soundness and
completeness. In Section 5.4, we briefly describe how one can apply the
hardness result by Kučera and Mayr [52] to our case. Finally, Section 5.5
concludes the chapter.

In the whole chapter, we denote by ǫ the empty word.

5.1 Probabilistic Pushdown Automata

Definition 5.1. [51, 19] A probabilistic pushdown automaton (pPDA) is
a quadruple (Q,Γ, L,∆), where:

• Q is a finite non-empty set of control states;

• Γ is a finite non-empty set of stack symbols;

• L is a finite non-empty set of labels;

• ⊆ (Q× Γ)× L×Distf(Q× Γ∗) is a finite set of transition rules.

5.1. PROBABILISTIC PUSHDOWN AUTOMATA 21

In the whole chapter, we will use p, q to range over control states Q,
A,B,C to range over stack symbols Γ, α, β, γ to range over Γ∗, µ, ν to range
over Q×Γ∗ and a, b, c to range over labels L. Instead of “(pA, a, µ) ∈”, we

write “pA
a
 µ”. The following definition illustrates how a pPDA generates

a probabilistic automaton.

Definition 5.2. Let P = (Q,Γ, L,) be a pPDA. P induces a PA (S,Act,Ω)
as follows:

S := Q× Γ∗; Act := L; →:= {(pAγ, a, µγ) | pA
a
 µ, γ ∈ Γ∗} .

The probability distribution µγ ∈ Dist(Q × Γ∗) with µ ∈ Dist(Q × Γ∗) and
γ ∈ Γ∗ is defined by:

µγ(pα) =

{

µ(pβ) if α = βγ for some (unique) β ∈ Γ∗

0 otherwise
,

for all pα ∈ Q× Γ∗. Elements of Q× Γ∗ are also called configurations.

Note that every pPDA induces a locally-finite PA. Intuitively, a pPDA
generates a PA by just expanding suffixes to transition rules. Below we state
a simple property for such expansion of transition rules.

Lemma 5.1. Let (Q,Γ, L,) be a pPDA. Let pβγ ∈ Q× Γ∗ with β ∈ Γ+,
a ∈ L and µ ∈ Dist(Q×Γ∗). Then pβγ

a
−→
op

µ iff there exists µ′ ∈ Dist(Q×

Γ∗) such that pβ
a
−→
op

µ′ and µ = µ′γ .

Proof. We first consider the case when op = ‘nc′. Let β = Aβ′. By defini-
tion,

pAβ′γ
a
−→
nc

µ iff ∃µ′.
(

pA
a
 µ′ ∧ µ = µ′β′γ

)

.

Note that (νβ)γ = νβγ for all ν ∈ Dist(Q× Γ∗). Thus, one obtains

∃µ′.
(

pA
a
 µ′ ∧ µ = µ′β′γ

)

iff ∃µ′′.
(

pAβ′
a
−→
nc

µ′′ ∧ µ = µ′′γ

)

(by taking µ′′ = µ′β′).

Now we consider the case when op = ‘c′. By definition, pβγ
a
−→
c
µ iff (a)

there exists a finite or infinite sequence {(µn, dn)}n such that pβγ
a
−→
nc

µn

for all n,
∑

ndn = 1, and µ(s) =
∑

ndn · µn(s) for all s ∈ Q × Γ∗. By the
proof for the case op = ‘nc′, we have (a) holds iff (b) there exists a finite or
infinite sequence {(µ′n, dn)}n such that pβ

a
−→
nc

µ′n for all n,
∑

ndn = 1, and

µ(s) =
∑

ndn · (µ′n)γ(s) for all s ∈ Q × Γ∗. We can further obtain that (b)
holds iff (c) there exists a finite or infinite sequence {(µ′n, dn)}n such that
pβ

a
−→
nc

µ′n for all n,
∑

ndn = 1, and µ = µ′γ , where µ
′(s) :=

∑

ndn · µ
′
n(s) for

all s ∈ Q× Γ∗. Then (c) holds iff ∃µ′.(pβ
a
−→
c
µ′ ∧ µ = µ′γ) , from which the

result follows.

22 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

This chapter studies the complexity of the following decision problems:

• INPUT: a configuration pα of a pPDA and a state s of a fPA;

• OUTPUT: whether pα ⊑op s and whether s ⊑op pα between the fPA
and the PA induced by the pPDA, for op ∈ {‘nc′, ‘c′}.

We prove that both of these problems are EXPTIME-complete, and are in
PTIME if both the number of control states of the pPDA and the number
of states of the fPA is fixed.

5.2 Extended Stack Symbols

In this section, we extend the notion of “extended stack symbols” by Colin
Stirling [70, 69], which is originally used to establish a tableaux proof system
that is sound and complete for the bisimulation equivalence on pushdown
automata; we follow Colin Stirling’s method to establish extended stack
symbols for simulation preorder between (PA induced by) pPDA and fPA.
Later in Section 5.3, we present a tableaux proof system for simulation
preorder between pPDA and fPA and demonstrate our complexity results.

Below we fix a pPDA (Q,Γ, L,) and a fPA (S,A,→). For any two
sets X,Y , we define X⊙Y := (X×Y)∪ (Y ×X) . The following definition
illusstrates the notion of extended stack symbols.

Definition 5.3. An extended stack symbol U is a function U : Q → 2S.
The set E is defined as the set of all extended stack symbols.

W.l.o.g, we assume that E ∩ Γ = ∅. Intuitively, an extended stack
symbol represents some finite sequence γ ∈ Γ∗ of (original) stack symbols
in the following sense: U(q) tries to capture the set of all states u ∈ S that
either qγ ⊑op u or u ⊑op qγ (depending on the context). Thus, U acts
like a representative for the “fragment” γ under the context of simulation
preorder. Note that E (the set of extended stack symbols) is finite because
both Q and S is finite. We now extend the pPDA (Q,Γ, L,) with E.

Definition 5.4. The extended pPDA is defined as (Q,Γ ∪ E,L,) . The
set of extended configurations (resp. basically-extended configurations), de-
noted by E (resp. by Eb), is defined by E := Q × (Γ∗ · (E + ǫ)) (resp.
Eb := Q× E).

Instead of considering Q× (Γ + E)∗ as the extended configurations, we
only consider elements from E . This is because we only need elements in
E to complete the tableaux proof system to be established in Section 5.3.
Moreover, the elements from Eb will serve as certain terminal leaves in the
tableaux proof system. Note that E\Eb (= Q × (ǫ + Γ+ · (E + ǫ))) is the
set of all configurations where the extended stack symbol (if it occurs) is
preceded by a non-empty sequence of (original) stack symbols. Also note

5.2. EXTENDED STACK SYMBOLS 23

that we do not modify in the extension of the pPDA; thus an extended
configuration pU with U ∈ E has no outgoing transitions in the PA induced
by the extended pPDA.

In the remaining part of the chapter, if otherwise stated, we will refer
to the extended pPDA whenever the notion of pPDA is encountered (e.g.,
when the PA induced by the pPDA is of concern). We use U, V to range
over extended stack symbols, while using α, β, γ to range over Γ∗ · (E + ǫ).
We also override → to be the disjoint union of the transitions of both the
fPA and the PA induced by the pPDA.

The following definition extends simulation preorder to extended con-
figurations. Since we focus only on the simulation preorder between the
extended pPDA and the fPA, we only consider binary relations between
them.

Definition 5.5. Let

Rb := {(qU, s) ∈ Eb × S | s ∈ U(q)} ∪ {(s, qU) ∈ S × Eb | s ∈ U(q)} .

A binary relation R ⊆ E⊙S is an extended op-simulation iff for all (s, s′) ∈
R:

• if (s, s′) ∈ Eb ⊙ S then (s, s′) ∈ Rb;

• if (s, s′) ∈ (E\Eb) ⊙ S then (i) Act(s) = Act(s′) and (ii) whenever
s

a
−→
nc

µ there exists s′
a
−→
op

µ′ such that µRµ′.

The extended op-similarity, denoted by ⊑e,op, is the union of all extended
op-simulations.

By definition, ⊑e,op extends ⊑op by adding pairs in Rb. It can be easily
verified that ⊑e,op itself is an extended op-simulation. Intuitively, Rb con-
tains all pairs of the form (qU, s) or (s, qU) such that “qU ⊑ s” or “s ⊑ qU”.
The following fact shows that ⊑e,op is a legitimate extension of ⊑op.

Proposition 5.1. ⊑e,op ∩((Q × Γ∗) ⊙ S) =⊑op ∩((Q × Γ∗) ⊙ S) , where
⊑op refers to the simulation preorder on the disjoint union of the fPA and
the PA induced by the original pPDA.

Proof. The result follows from the facts that⊑op ∩(Q×Γ∗)⊙S is an extended
op-simulation, and ⊑e,op ∩ ((Q× Γ∗)⊙ S) is an op-simulation on the disjoint
union of the fPA and the original pPDA.

Below we define stepwise approximants of ⊑e,op. The purpose to intro-
duce such notion is to prove the soundness of the tableaux proof system for
⊑e,op.

Definition 5.6. The family {⊑n
e,op}n∈N0 is inductively defined as follows:

• ⊑0
e,op:= {(s, s′) ∈ (E\Eb)⊙ S | Act(s) = Act(s′)} ∪ Rb;

24 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

• ⊑n+1
e,op is defined as the following set:

⊑n+1
e,op :=Rb ∪

{

(s, s′) ∈ (E\Eb)⊙ S | Act(s) = Act(s′), and

for all s
a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µ ⊑n
e,op µ

′
}

.

By definition and an induction on n ∈ N, we can easily obtain the
following fact.

Lemma 5.2. For all n ∈ N, ⊑n+1
e,op⊆⊑n

e,op and ⊑e,op⊆⊑n
e,op.

Proof. We proceed by induction on n ∈ N. The base step n = 0 is straight-
forward. Below we consider the inductive step. Assume ⊑n+1

e,op⊆⊑n
e,op and

⊑e,op⊆⊑n
e,op, we prove that the arguments hold for n+ 1.

Let (s, s′) ∈⊑n+2
e,op . By definition, either (s, s′) ∈ Rb, or Act(s) = Act(s′)

and for all s
a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µ ⊑n+1
e,op µ

′ . If (s, s′) ∈ Rb,

then (s, s′) ∈⊑n+1
e,op ; otherwise, by ⊑n+1

e,op⊆⊑n
e,op we also have (s, s′) ∈⊑n+1

e,op

from definition. Since (s, s′) is arbitrarily chosen, we obtain ⊑n+2
e,op⊆⊑n+1

e,op .
Now let (s, s′) ∈⊑e,op. By definition, either (s, s′) ∈ Rb, or Act(s) =

Act(s′) and for all s
a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µ ⊑e,op µ′ .

If (s, s′) ∈ Rb, then (s, s′) ∈⊑n+1
e,op ; otherwise, by ⊑e,op⊆⊑n

e,op we also have
(s, s′) ∈⊑n+1

e,op from definition. Thus ⊑e,op⊆⊑n+1
e,op by the arbitrary choice of

(s, s′).
From the previous two paragraphs, the inductive step is completed.

Intuitively, s ⊑n
e,op s

′ holds iff s′ can mimic the behaviour of s up to n
steps. It is thus seemingly true that

⋂

n∈N ⊑n
e,op equals ⊑e,op . Below we

prove that they are indeed equal.

Proposition 5.2. For all (s, s′) ∈ E ⊙ S, s ⊑e,op s
′ iff s ⊑n

e,op s
′ for all

n ∈ N.

Proof. Define ⊑ω
e,op:=

⋂

n∈N ⊑n
e,op. We prove that ⊑ω

e,op=⊑e,op. One direc-
tion ⊑e,op⊆⊑ω

e,op follows directly from Lemma 5.2. As to the other direction
(⊑ω

e,op⊆⊑e,op), we prove that ⊑ω
e,op is an extended op-simulation.

Fix (s, s′)∈⊑ω
e,op and a ∈ L ∪ Act. If (s, s′) ∈ Eb ⊙ S, then by definition

(s, s′) ∈ Rb. Below we assume that (s, s′) ∈ (E\Eb) ⊙ S. Clearly Act(s) =
Act(s′). Define

R :=
{

(u, v) ∈ E ⊙ S | ∃µ, ν.
(

s
a
−→
nc

µ ∧ s′
a
−→
nc

ν ∧ (u, v) ∈ ⌊µ⌋ × ⌊ν⌋
)}

.

Then R is finite. Consider any (u, v) ∈ R. If (u, v) 6∈⊑ω
e,op, there is a minimal

N(u, v) ∈ N such that (u, v) 6∈⊑
N(u,v)
e,op . Define

N := max{N(u, v) | (u, v) ∈ R\ ⊑ω
e,op}

5.3. TABLEAUX PROOF SYSTEM 25

where max ∅ := 0 . By Lemma 5.2, we have R∩ ⊑N
e,op= R∩ ⊑ω

e,op. Since

s ⊑N+1
e,op s′, for all s

a
−→
nc

µ, there exists s′
a
−→
op

µ′ such that µ ⊑N
e,op µ

′. Then

µ(⊑N
e,op ∩R)µ′. Thus µ ⊑ω

e,op µ
′ by R∩ ⊑N

e,op= R∩ ⊑ω
e,op.

5.3 Tableaux Proof System

In this section, we present a tableaux proof system for the simulation pre-
order between pPDA and fPA, based on which we prove the EXPTIME-
membership of op-simulation preorder. Below we fix a pPDA (Q,Γ, L,)
and a fPA (S,Act,→). We extend (Q,Γ, L,) with extended stack sym-
bols as described in Section 5.2. As before, we override → to be the set of
transitions of both the fPA and the PA induced by the pPDA.

By Proposition 5.1, the decision problem for op-simulation preorder can
be reformulated as follows: given a pair (s, s′) ∈ (Q × Γ) ⊙ S, decide if
s ⊑e,op s

′. Note that we only consider elements in Q×Γ (instead of Q×Γ∗).
This is because for any pXα ∈ Q×Γ+, we can always (i) add a fresh control
state pinit and a new stack symbol Xinit, and (ii) augment with the set

{pinitXinit
a
 µα | pX

a
 µ}

of extra transition rules so that pinitXinit mimics the behaviour of pXα. For
the sake of simplicity, we abbreviate ⊑e,op (resp. ⊑n

e,op) as ⊑op (resp. ⊑n
op).

We follow Stirling’s tableaux proof system [70, 69] to develop the tableaux
system in our case. A tableaux is a goal-directed proof system that consists
of a set of goals Goals and a set RULE of rules which describes how a goal
can be expanded into sub-goals. Graphically, a rule can be viewed as a proof
step:

goal

goal1, . . . , goaln
,

where goal is what currently to be “proved” is and goal1, . . . , goaln are the
subgoals to which goal is reduced. Each rule is backward sound: in the
rule depicted above, if all goali (1 ≤ i ≤ n) are true then so is goal. An
application of a rule is to make all the sub-goals children of goal (in a tree).
Then a tableaux is a tree built from a specified goal (the root of the tree)
and repeated application of rules. The leaves of a tableaux are divided into
terminal and nonterminal leaves. Terminal leaves are further divided into
successful and unsuccessful leaves. A tableaux is successful iff it is finite and
all its leaves are successful.

Below we formulate our tableaux proof system. Firstly, we introduce
goals in our tableaux proof system.

Definition 5.7. Define Goals := E ⊙ S to be the set of goals. A goal
(s, s′) ∈ Goals is successful if either one of the following three conditions
hold:

26 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

• (s, s′) = (pU, s′) such that s′ ∈ U(p);

• (s, s′) = (s, pU) such that s ∈ U(p);

• (s, s′) ∈ (E\Eb)⊙ S and Act(s) = Act(s′) = ∅.

A goal (s, s′) ∈ Goals is unsuccessful if either one of the following three
conditions hold:

• (s, s′) = (pU, s′) such that s′ 6∈ U(p);

• (s, s′) = (s, pU) such that s 6∈ U(p);

• (s, s′) ∈ (E\Eb)⊙ S and Act(s) 6= Act(s′).

In this chapter, a goal (s, s′) ∈ Goals is rewritten as “s ⊑ s′”. Intuitively,
the goal s ⊑ s′ corresponds to a guess that the claim s ⊑op s

′ is correct.
Then, we introduce rules of our tableaux proof system. Formally, a rule

goal

goal1, . . . , goaln

can be viewed as a pair (goal, {goal1, . . . , goaln}), which is an element of
Goals × 2Goals. There are two kinds of rules: UNF (unfolding) and RED
(reduction). Intuitively, a rule of type UNF expands a goal s ⊑ s′ one-step
further (cf. Lemma 5.4) and a rule of RED reduces a goal pAα ⊑ u (resp.
u ⊑ pAα) to pAU ⊑ u (resp. u ⊑ pAU) together with all information at α
encoded in U . For the sake of clarity, we use subscript ‘a’ to indicate the
case s ⊑ s′ ∈ E ×S and subscript ‘b′ to indicate the case for s ⊑ s′ ∈ S ×E .

Definition 5.8. The set UNFop ⊆ Goals×2Goals of unfolding rules is defined
as follows: (s ⊑ s′,R) ∈ UNFop iff

• s ⊑ s′ ∈ (Q× (Γ · (E + ǫ))))⊙ S and Act(s) = Act(s′) 6= ∅, and

• R ⊆ Succ(s)× Succ(s′) and for all s
a
−→
nc

µ, there exists s′
a
−→
op

ν such

that µRν.

The set REDop ⊆ Goals × 2Goals of reduction rules is defined as REDa
op ∪

REDb
op, for which

• (s ⊑ s′,R) ∈ REDa
op iff s ⊑ s′ = pAα ⊑ u with u ∈ S such that

– Act(pA) = Act(u) 6= ∅ and α ∈ Γ+ · (E + ǫ), and

– R = {pAU ⊑ u} ∪ {qα ⊑ v | q ∈ Q, v ∈ U(q)} for some U ∈ E.

• (s ⊑ s′,R) ∈ REDb
op iff s ⊑ s′ = u ⊑ pAα with u ∈ S such that

– Act(u) = Act(pA) 6= ∅ and α ∈ Γ+ · (E + ǫ), and

– R = {u ⊑ pAU} ∪ {v ⊑ qα | q ∈ Q, v ∈ U(q)} for some U ∈ E.

The set RULEop of rules is defined by: RULEop := UNFop ∪ REDop .

With goals and rules defined, we present our tableaux proof system.
Firstly, we introduce the notion of vertex-labelled rooted tree.

5.3. TABLEAUX PROOF SYSTEM 27

Definition 5.9. A vertex-labelled rooted tree is a pair (T ,L) for which
T = (V (T), E(T)) is a rooted directed tree (with vertex set V (T) and edge
set E(T)) and L is a function which assigns to each vertex of T a goal.

Let (T ,L) be a vertex-labelled rooted tree. A leaf z of T is successful if
either L(z) is successful, or there is z′ ∈ V (T) such that (i) z′ 6= z, (ii) z′

lies on the path from the root of T to z and (iii) L(z′) = L(z). A leaf z of
T is unsuccessful if L(z) is unsuccessful. A leaf z of T is terminal if either
z is successful or unsuccessful; otherwise it is non-terminal.

Then the notion of tableaux tree (which is the core notion of our tableaux
proof system) is defined as a subclass of vertex-labelled rooted trees.

Definition 5.10. An op-tableaux tree is a vertex-labelled rooted tree induc-
tively defined as follows:

• a single vertex labelled with a goal is an op-tableaux tree (in this base
case the sole vertex is the root of the tree);

• if

1. (T ,L) is a op-tableaux tree, and

2. z ∈ V (T) is non-terminal in T and is either a leaf of T or the
sole vertex of T (which in this case is also the root of T), and

3. (L(z),R) is a rule in RULEop,

then ((V (T) ∪ V ′, E(T) ∪ {(z, z′) | z′ ∈ V ′}),L ∪ L′) is also an op-tableaux
tree, where V ′ is a fresh new set of vertices with |V ′| = |R| and L′ is
a bijection from V ′ to R.

An op-tableaux tree is successful if either it consists of a sole successful
vertex (which is the root) or all its leaves are successful.

Intuitively, a tableaux tree is constructed inductively from an initial goal
and (finitely) repeated application of rules. In the following, we show the
soundness and completeness of our tableaux proof system, i.e., s ⊑op s

′ iff
there exists an op-tableaux tree rooted at s ⊑ s′, for all goals s ⊑ s′.

We first show that the tableaux trees defined in Definition 5.10 have the
following finiteness property. In the following, we define a suffix predicate
suff(�, �) by: suff(β, α) holds iff α = γβ for some γ.

Lemma 5.3. Let Suff be the following set:

{

β ∈ Γ∗ | ∃α ∈ Γ∗.
((

∃q ∈ Q∃pA
a
 µ.(µ(qα) > 0)

)

∧ suff(β, α)
)}

.

Define

• Glasuff := {pβα ⊑ u | β ∈ Γ ∪ Suff, α ∈ E ∪ {ǫ}, p ∈ Q, u ∈ S} and

• Glbsuff := {u ⊑ pβα | β ∈ Γ ∪ Suff, α ∈ E ∪ {ǫ}, p ∈ Q, u ∈ S} .

28 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

If s ⊑ s′ ∈ Glasuff , then L(V (T)) ⊆ Glasuff for all op-tableaux trees (T ,L) with
root label s ⊑ s′. Analoguously, if s ⊑ s′ ∈ Glbsuff , then L(V (T)) ⊆ Glbsuff for
all op-tableaux trees (T,L) with root label s ⊑ s′.

Proof. The proof is a simple induction on the construction of tableaux trees
illustrated in Definition 5.10. The base step where (T ,L) is a single root is
straightforward. It is also clear that Glasuff and Glbsuff are closed under rule
application of UNFop and REDop (cf. Definition 5.8).

Then we show the soundness of our tableaux proof system, i.e., if there
exists a successful tableaux tree rooted at s ⊑ s′ then s ⊑op s

′. We first
show that rules of UNFop and REDop are backward sound, i.e., if all the
subgoals are correct then the goal ”to be proved” is correct.

Lemma 5.4. Let (s ⊑ s′,R) ∈ UNFop. If r ⊑n
op r

′ for all r ⊑ r′ ∈ R, then
s ⊑n+1

op s′.

Proof. The result follows directly from Definition 5.8 and Definition 5.6.

Lemma 5.5. Let (pAα ⊑ u, {pAU ⊑ u} ∪Glaα,U) ∈ REDa
op where

Glaα,U := {qα ⊑ v | q ∈ Q, v ∈ U(q)} .

For all n ∈ N0, if pAU ⊑n+1
op u and qα ⊑n

op v for all qα ⊑ v ∈ Glaα,U , then
pAα ⊑n+1

op u.

Proof. We prove by induction on n that for all pγα ⊑ u ∈ Goals with
γ ∈ Γ+, it holds that for all U ∈ E, if pγU ⊑n+1

op u and qα ⊑n
op v for all

qα ⊑ v ∈ Glaα,U , then pγα ⊑n+1
op u.

Base Step: n = 0. Assume that pγU ⊑1
op u and qα ⊑0

op v for all

qα ⊑ v ∈ Glaα,U . Since pγU ⊑1
op u, for all pγ

a
−→
nc

µ, there is u
a
−→
op

ν such that

µU ⊑0
op ν (cf. Lemma 5.1). Let w : ⌊µU⌋× ⌊ν⌋ → [0, 1] be a weight function

for µU ⊑0
op ν. (We can restrict the domain to ⌊µU⌋ × ⌊ν⌋ since all other

values are zero.) We define a weight function w′ : ⌊µα⌋ × ⌊ν⌋ → [0, 1] by:
w′(qβα, v) = w(qβU, v) for all qβ ∈ ⌊µ⌋ (note that β ∈ Γ∗) and v ∈ ⌊ν⌋. We
prove that w′ is a weight function for µα ⊑0

op ν. The first two conditions in
Definition 4.4 are straightforward to verify. For the third condition, suppose
w′(qβα, v) > 0 with qβ ∈ ⌊µ⌋. Then w(qβU, v) > 0 and hence qβU ⊑0

op v.
If β 6= ǫ, then by Definition 5.6 Act(qβ) = Act(v) and we have qβα ⊑0

op v; if
β = ǫ, then v ∈ U(q) and qα ⊑ v ∈ Glaα,U , which further implies qα ⊑0

op v. In
either case qβα ⊑0

op v. So w
′ is a weight function for the statement µα ⊑0

op ν.
Also from pγU ⊑1

op u we have Act(pγα) = Act(u). Thus pγα ⊑1
op u.

Inductive Step: Assume that pγU ⊑n+2
op u and qα ⊑n+1

op v for all qα ⊑

v ∈ Glaα,U . We prove that pγα ⊑n+2
op u. Since pγU ⊑n+2

op u, for any pγ
a
−→
nc

µ,

there exists u
a
−→
op

ν such that µU ⊑n+1
op ν. Consider any (qβU, v) ∈⊑n+1

op

5.3. TABLEAUX PROOF SYSTEM 29

with β ∈ Γ∗ and v ∈ S: if β = ǫ then qβα ⊑n+1
op v since qα ⊑ v ∈ Glaα,U ;

if β ∈ Γ+ then we have qβα ⊑n+1
op v by induction hypothesis; in any case,

we have qβα ⊑n+1
op v. Thus by the same construction of weight function in

the base step, we have µα ⊑n+1
op ν. Also we have Act(pγα) = Act(u). Thus

pγα ⊑n+2
op u.

We can prove a symmetrical case for REDb
op as follows.

Lemma 5.6. Let (u ⊑ pAα, {u ⊑ pAU} ∪Glbα,U) ∈ REDb
op where

Glbα,U := {v ⊑ qα | q ∈ Q, v ∈ U(q)} .

For all n ∈ N0, if u ⊑n+1
op pAU and v ⊑n

op qα for all v ⊑ qα ∈ Glbα,U , then
u ⊑n+1

op pAα.

Proof. The proof can be carried out in a completely symmetric fashion from
the one of Lemma 5.5.

Based on Lemma 5.4 through Lemma 5.6, we prove the soundness of our
tableaux system as follows.

Proposition 5.3. For all goals s ⊑ s′, if there exists a successful op-tableaux
tree rooted at a vertex labelled with s ⊑ s′, then s ⊑op s

′.

Proof. We only prove the case when s ⊑ s′ ∈ E × S, the other case is
completely symmetrical. Let p0α0 ⊑ u0 = s ⊑ s′. Suppose p0α0 6⊑opu0 and
(T ,L) is a successful op-tableaux tree rooted at p0α0 ⊑ u0. Let the root of
(T ,L) be z0. By Proposition 5.2, there exists n0 ∈ N0 such that p0α0 ⊑

n0
op u0

but p0α0 6⊑
n0+1
op u0. Note that we have (p0α0, u0) ∈⊑

0
op or otherwise the goal

p0α0 ⊑ u0 would be unsuccessful. By the backward soundness of UNFop

and REDop (cf. Lemma 5.4 and Lemma 5.5), we can obtain the following
statements (†):

• if the rule applied to p0α0 ⊑ u0 (in the inductive construction of
(T ,L)) belongs to UNFop, then there exists a child z1 of z0 labelled
with p′α′ ⊑ u′ such that p′α′ 6⊑n0

opu
′;

• if the rule applied to p0α0 ⊑ u0 lies in REDa
op, then there exists a

child z1 of z0 whose label is either p0AU ⊑ u0 with p0AU 6⊑n0+1
op u0, or

qα ⊑ v with qα 6⊑n0
opv for some qα ⊑ v ∈ Glaα,U , where A ∈ Γ, U ∈ E

and α ∈ Γ+ · (E + ǫ) are specified by the rule (cf. Definition 5.8).

In either case, there is a child z1 of z0 labelled with p1α1 ⊑ u1 such that
p1α1 6⊑

n0+1
op u1. Choose such z1 according to (†) arbitrarily. Let n1 ∈ N0 be

such that p1α1 6⊑
n1+1
op u1 and p1α1 ⊑

n1
op u1. Then n1 ≤ n0. By performing (†)

on z1 and p1α1 ⊑ u1 and so forth, we can recursively construct a finite se-
quence {(zi, piαi ⊑ ui, ni)}0≤i≤k of length k+1(k ≥ 1) such that piαi 6⊑

ni+1
op ui

30 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

and piαi ⊑
ni
op ui, {ni} is decreasing, and the last vertex zk is a successful

leaf. Since pkαk 6⊑
nk+1
op uk, the goal pkαk⊑uk cannot be successful. So the

only possibility is that there is j < k such that pkαk ⊑ uk = pjαj ⊑ uj . Con-
sider the rule application from (zk−1, pk−1αk−1 ⊑ uk−1) to (zk, pkαk ⊑ uk).
By (†):

• if the rule lies in UNFop, then nk < nk−1 ≤ nj ;

• if the rule lies in REDa
op and pkαk ⊑ uk ∈ Glaα,U where α ∈ Γ+ · (E+ǫ)

and U ∈ E are determined by the rule (cf. Definition 5.8), then
nk < nk−1 ≤ nj .

• If the rule lies in REDa
op and pkαk ⊑ uk = pkAU ⊑ uk where A ∈ Γ

and U ∈ E are determined by the rule (cf. Definition 5.8), then
pk−1αk−1 ⊑ uk−1 6= pkAU ⊑ uk and so j < k − 1. By pkαk ⊑ uk =
pjαj ⊑ uj , the rule application from zj to zj+1 belongs to UNFop,
which implies nj+1 < nj . Hence nk < nj .

In either case, we have nk < nj . But then we have pkαk 6⊑
nk+1
op uk and

pkαk ⊑
nj
op uk. Contradiction.

Finally, we prove the completeness of our tableaux proof system, i.e.,
if s ⊑op s

′ then there exists a successful op-tableaux tree with root label
s ⊑ s′. We first prove a useful lemma below.

Lemma 5.7. Let pAα ⊑op u and U be an extended stack symbol such that
U(q) := {v ∈ S | qα ⊑op v} for all q ∈ Q. Then pAU ⊑op u.

Proof. We prove that the binary relation

R := {(qβU, v) | q ∈ Q, β ∈ Γ∗, v ∈ S, qβα ⊑op v}

is an extended op-simulation. Consider any (qβU, v) ∈ R. If β = ǫ, then
qα ⊑op v and v ∈ U(q); it follows that (qU, v) ∈ Rb. On the other hand,
assume that β ∈ Γ+. Then Act(qβU) = Act(qβα) = Act(v). Furthermore,
for all qβ

a
−→
nc

µ, by qβα ⊑op v there is v
a
−→
op

ν such that µα ⊑op ν. We prove

that µURν. By µα ⊑op ν, there exists a weight function w : ⌊µα⌋ × ⌊ν⌋ →
[0, 1] for the statement µα ⊑op ν. (We can restrict the domain of the weight
function to ⌊µα⌋ × ⌊ν⌋ since values at other places are zero.) We construct
a weight function w′ : ⌊µU⌋ × ⌊ν⌋ → [0, 1] by: w′(q′γU, v′) = w(q′γα, v′) for
all q′γ ∈ ⌊µ⌋ and v′ ∈ ⌊ν⌋ (note that γ ∈ Γ∗). Then we show that w′ is a
weight function for µU and ν. The first two conditions in Definition 4.4 are
straightforward to verify. For the third condition, consider any q′γ ∈ ⌊µ⌋
and v′ ∈ ⌊ν⌋: assume that w′(q′γU, v′) > 0; then w(q′γα, v′) > 0 and
q′γα ⊑op v

′, which implies that (q′γU, v′) ∈ R by definition. Thus R is an
extended op-simulation.

By a symmetrical proof, we can obtain the following lemma.

5.3. TABLEAUX PROOF SYSTEM 31

Lemma 5.8. Let u ⊑op pAα and U be an extended stack symbol such that
U(q) := {v ∈ S | v ⊑op qα} for all q ∈ Q. Then u ⊑op pAU .

The completeness of our tableaux proof system is as follows.

Proposition 5.4. Let s ⊑ s′ ∈ Glasuff ∪ Glbsuff . If s ⊑op s
′ then there is a

successful op-tableaux tree with root label s ⊑ s′.

Proof. We only prove the case for s ⊑ s′ ∈ Glasuff , the other case is completely
symmetrical. Below we inductively construct a sequence {(Tn,Ln)}1≤n≤k
of op-tableaux trees, each with root label s ⊑ s′, such that (Tk,Lk) is a
successful op-tableaux tree.

Initially, (T1,L1) is the tableaux tree which contains only a root labelled
with s ⊑ s′. Then assume that (Tn,Ln) is constructed. If all leaves of
(Tn,Ln) are terminal, then the construction is ended. Otherwise, we choose
an arbitrary non-terminal leaf z of (Tn,Ln) and construct (Tn+1,Ln+1) as
follows:

1. if Ln(z) = pAα ⊑ u with α ∈ E ∪ {ǫ}, then we apply the UNFop rule

(pAα ⊑ u, {(qβ, v) ∈ Succ(pAα)× Succ(u) | qβ ⊑op v})

to the vertex z (to form (Tn+1,Ln+1)) ;

2. if Ln(z) = pAα ⊑ u with α ∈ Γ+ · (E + ǫ), then we apply the REDop

rule
(pAα ⊑ u, {pAU ⊑ u} ∪Glaα,U)

where U is defined by: U(q) := {v ∈ S | qα ⊑op v} for all q ∈ Q. Note
that from Lemma 5.7, we have pAU ⊑op u.

In the inductive construction above, one easily sees that we only ”ap-
pend” goals s ⊑ s′ such that s ⊑op s′. Thus if the inductive construc-
tion ends in a finite number of step, then the last tableaux tree (Tk,Lk)
should be successful, i.e., it won’t contain any unsuccessful leaves. Below
we show that the inductive construction above ends in a finite number of
steps. Suppose that we obtain an infinite sequence {(Tn,Ln)}n∈N of tableaux
trees with Tn = (V (Tn), E(Tn)) from the inductive construction above. Let
T :=

(
⋃

n∈N V (Tn),
⋃

n∈NE(Tn)
)

and L :=
⋃

n∈N Ln. Then (T ,L) is an in-
finite vertex-labelled tree. By the way of rule application, T is also finitely
branching. Thus by König’s Lemma, there is an infinite path in T . Then
by Lemma 5.3, on such infinite path there must be vertices z, z′ such that
z 6= z′ and L(z) = L(z′). It follows that either z or z′ is a successful leaf of
the tableaux tree Tn∗ , where n∗ is the smallest number such that z, z′ are
leaves of Tn∗ . Then the inductive construction should stop expanding at z
(or z′, depending on which one is a leaf), which leads to a contradiction.

Below we give an example.

32 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

pZ ⊑ s2

pAZ ⊑ s1

pZ ⊑ s2,
pAU ⊑ s1

to subtree l, pU ⊑ s2
UNF

RED

UNF

subtree l : pAAU ⊑ s1

pAV ⊑ s1

pV ⊑ s1,
pAAV ⊑ s1

pAV ⊑ s1
RED

UNF, pAU ⊑ s1

RED

Figure 5.1: A Tableaux Tree

Example 5.1. Let the pPDA (Q,L,Γ,) and the fPA (S,Act,→) be such
that

• Q = {p}, L = {a, b}, Γ = {A,Z};

• = {pA
a
−→ {pAA 7→ 0.5, p 7→ 0.5}, pZ

b
−→ {pAZ 7→ 1}};

• S = {s1, s2}, Act = {a, b};

• →= {s1
a
−→ {s1 7→ 1}, s1

a
−→ {s1 7→ 0.5, s2 7→ 0.5}, s2

b
−→ {s1 7→ 1}}.

Intuitively, the pPDA models a counter with random increase and decrease
operation. It can be verified that pZ ⊑nc s2 since the relation

{(pZ, s2)} ∪ {(pαZ, s1) | α ∈ A+}

is an nc-simulation. Below we use our tableaux proof system to “prove”
that pZ ⊑nc s2. A successful nc-tableaux tree is depicted in Fig. 5.1, where
U := {p 7→ {s2}} and V := {p 7→ {s1}}.

We have ended the demonstration of the soundness and completeness of
our tableaux proof system. Based on the tableaux proof system, we develop
an algorithm that decides ⊑op. The algorithm will use a partition-refinement
technique to achieve the EXPTIME-upperbound, which is the main result
of this chapter. Below we denote by M the integrated size of the pPDA and
the fPA, where the numerical values (probability values) are represented in
binary.

Theorem 5.1. The problem whether s ⊑op s
′ for a given (s, s′) ∈ (Q×Γ)⊙S

can be decided in O(h(M) · 8|S|·|Q|) time where h is a polynomial function.
Thus, if |Q| and |S| are fixed, then the problem can be decided in PTIME.

Proof. We assume that s ⊑ s′ ∈ (Q × Γ) × S and op = c, the other cases
are similar. We present a partition-refinement algorithm to decide whether

5.4. EXPTIME-HARDNESS 33

s ⊑c s
′. Formally, we construct a finite decreasing sequence of sets of goals

{Xn}1≤n≤k where the last element Xk contains all the correct goals in Glasuff .
The construction is as follows. Initially, X1 = Glasuff . ThenXn+1 ⊆ Glasuff

is constructed from Xn as follows: s ⊑ s′ ∈ Xn+1 iff (i) s ⊑ s′ ∈ Xn and (ii)
either s ⊑ s′ is successful or there exists Y ⊆ Xn such that (s ⊑ s′, Y) ∈
RULEc. Note that |Glasuff | = O(M4 · 2|S|·|Q|).

The computation from Xn to Xn+1 can be done in O(h′(M) · 4|S|·|Q|)
time by the following procedure, where h′ is a polynomial function. Let
s ⊑ s′ ∈ Xn. We check whether s ⊑ s′ ∈ Xn+1 as follows:

• if s ⊑ s′ = pAα ⊑ u with α ∈ Γ+ · (E + ǫ), we check whether {pAU ⊑
u} ∪Glaα,U ⊆ Xn for some U ∈ E;

• if s ⊑ s′ = pAα ⊑ u with α ∈ E ∪ {ǫ}, we check whether for all
pAα

a
−→
nc

µ, there exists u
a
−→
c
ν such that µXnν (treat Xn as a binary

relation such that s1 ⊑ s2 ∈ Xn iff (s1, s2) ∈ Xn); this can be checked
by examining whether the following linear inequality system (with
variables {xν}u

a
−→
nc

ν
and {y(s′′,v)}(s′′,v)∈⌊µ⌋×S) has a solution:

–
∑

u
a
−→
nc

ν
xν = 1;

– xν ≥ 0 for all u
a
−→
nc

ν;

–
∑

v∈S y(s′′,v) = µ(s′′) for all s′′ ∈ ⌊µ⌋;

–
∑

s′′∈⌊µ⌋ y(s′′,v) =
∑

u
a
−→
nc

ν
xν · ν(v) for all v ∈ S;

– y(s′′,v) ≥ 0 for all (s′′, v) ∈ ⌊µ⌋ × S;

– y(s′′,v) = 0 whenever (s′′, v) 6∈ Xn.

This can be solved in polynomial time in M (cf. [66]).

Since Xn+1 ⊆ Xn, there exists k ≤ |Glasuff | such that Xk+1 = Xk. We show
that for all s ⊑ s′ ∈ Glasuff , s ⊑c s

′ iff s ⊑ s′ ∈ Xk. On one hand, assume
that s ⊑c s

′. Let (T ,L) be the tableaux tree constructed in the proof of
Proposition 5.4 for the goal s ⊑ s′. An easy induction on n shows that
L(V (T)) ⊆ Xn for all n ∈ N. Thus s ⊑ s′ ∈ Xk. On the other hand,
assume that s ⊑ s′ ∈ Xk. Since for all goals s1 ⊑ s2 ∈ Xk which are not
successful, there is (s1 ⊑ s2, Y) ∈ RULEc such that Y ⊆ Xk. Thus we can
iteratively apply rules to the root s ⊑ s′ (and non-terminal leaves), which
results in a successful tableaux tree similar to the construction in the proof
of Proposition 5.4. Thus, s ⊑c s

′ by Proposition 5.3. Then the result follows
from the fact that k ≤ |Glasuff |.

5.4 EXPTIME-Hardness

In this section, we show that deciding ⊑op is EXPTIME-hard, whenever
op = nc or op = c. We prove this by providing a rather straightforward

34 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

reduction from the non-probabilistic EXTPIME-hardness result obtained
in [52]. Our main efforts lie in the treatment of the additional “Act(s) =
Act(s′)” condition in Definition 4.6 which is not involved in the definition of
non-probabilistic simulation preorder. Firstly, we define a variation of ⊑op.

Definition 5.11. Let M = (S,Act,→) be a PA. Define 4op to be the union
of all binary relations R ⊆ S × S such that for all (s, s′) ∈ R, whenever
s

a
−→
nc

µ there is s′
a
−→
op

µ′ with µRµ′.

In other words, 4op is defined in a similar way of ⊑op, however with-
out the “Act(s) = Act(s′)” requirement. Then we embed non-probabilistic
transition systems into PAs.

Definition 5.12. A PA (S,Act,→) is Dirac if µ is dirac for all (s, a, µ) ∈→.
A pPDA (Q,Γ, L,) is Dirac if µ is Dirac for all (pA, a, µ) ∈ .

Note that a Dirac pPDA induces a Dirac PA. Dirac PAs correspond
to transition systems without probability. It is not hard to verify that 4n

(over Dirac PAs) coincides with the (non-probabilistic) simulation preorder
(cf. [7]) over non-probabilistic transition systems. From [52], deciding 4n

is EXPTIME-complete between Dirac pPDAs and Dirac fPAs in both di-
rection. Below we reduce 4op to ⊑op under Dirac PAs. The following
proposition allows us to focus solely on the case op = nc.

Proposition 5.5. Let M = (S,Act,→) be a PA. If M is Dirac, then
4nc=4c and ⊑nc=⊑c.

Proof. It is clear that 4nc⊆4c and ⊑nc⊆⊑c. Below we prove the reverse
direction. We only prove the case ⊑c⊆⊑nc, since the proof for the other
is similar. Let s ⊑c s

′ and s
a
−→
nc

µ. From definition, there exists s′
a
−→
c
µ′

such that µ ⊑c µ
′. Since µ, µ′ are Dirac, there exists s′′ ∈ ⌊µ′⌋ such that

s′
a
−→
nc

D[s′′] and µ ⊑c D[s′′]. It follows from the arbitrary choice of s, s′ and

s
a
−→
nc

µ that ⊑c is an nc-simulation, which implies ⊑c⊆⊑nc.

Now we reduce 4nc between a Dirac pPDA P = (Q,Γ, L,) and a Dirac
fPA M = (S,Act,→), to ⊑nc between a Dirac pPDA (Q′,Γ′, L,′) and a
Dirac fPA (S′, Act′,→′). The reduction is as follows:

1. Q′ = Q∪ {p⊥} and S′ = S ∪ {s⊥} where p⊥ 6∈ Q and s⊥ 6∈ S are fresh
elements;

2. Γ′ = Γ ∪ {A⊥} where A⊥ 6∈ Γ is a fresh (bottom) stack symbol;

3. Act′ = Act;

4. ′= ∪{(pA, a,D[p⊥]) | p ∈ Q,A ∈ Γ′, a ∈ L ∪Act};

5. →′=→ ∪{(s, a,D[s⊥]) | s ∈ S, a ∈ L ∪Act}.

5.5. CONCLUSION 35

The basic idea is that we try to ”amend” P and M so that pairs in 4nc will
have same action sets. It is not hard to prove that for all pα ∈ Q× Γ∗ and
s ∈ S, pα 4nc s (resp. s 4nc pα) iff pαA⊥ ⊑nc s (resp. s ⊑nc pαA⊥). Thus
deciding ⊑nc between Dirac pPDA’s and Dirac finite fPA’s is EXPTIME-
hard. Then we have the following theorem.

Theorem 5.2. Deciding ⊑nc and ⊑c between probabilistic pushdown au-
tomata and finite probabilistic automata in both directions (of the simulation
preorder) is EXPTIME-complete.

5.5 Conclusion

In this chapter, we showed that (probabilistic) simulation preorder between
a probabilistic pushdown automaton (Q,Γ, L,) and a finite probabilistic
automaton (S,Act,→) is EXPTIME-complete. This result holds for both di-
rections. Furthermore, if |Q| and |S| are fixed, then the problem is decidable
in polynomial time. These results extend their non-probabilistic counter-
parts in [52], and are obtained by extending Colin Stirling’s method [69, 70]
which is originally used to demonstrate the decidability of bisimilarity on
non-probabilistic pushdown automata.

36 CHAPTER 5. SIMULATION BETWEEN PPDA AND FPA

Chapter 6

Bisimilarity Metric on

Probabilistic Automata

In this chapter, we consider quantitative variations of (probabilistic) bisim-
ulation equivalence (cf. Chapter 4). The motivation is that the notion
of (probabilistic) bisimulation equivalence is sensitive to exact probability
values in that a slight change to a probability value may cause two equiv-
alent states inequivalent [72]. To this end, several works [72, 30, 28, 60]
developed a notion of bisimilarity metric, which characterizes the distance
between two states; states with smaller distance are meant to have similar
behaviours. Bisimilarity metric can be viewed as a quantified extension of
(probabilistic) bisimulation equivalence in that (i) the distance between two
states is zero iff they are equivalent in the sense of probabilistic bisimulation
equivalence, and (ii) there are various quantitative logic characterization for
it [72, 30, 28]. Here, we will focus on the bisimilarity metric defined by van
Breugel and Worrell [72].

The contribution of this chapter is as follows. We show that the threshold
problem of the bisimilarity metric [72], which is to decide whether the pseu-
dometric between two states of a PA is under certain value, is in NP∩ coNP
and UP ∩ coUP. This complexity result significantly improves the previous
PSPACE upperbound by van Breugel et al [71] (cf. also [22, 25]). We obtain
this result through a core notion called “self-closed sets” to be introduced in
Section 6.3. In general, we show a way to check whether an arbitrary pseu-
dometric equals the bisimilarity metric. Then the membership of UP∩coUP
follows from the polynomial-size representability of the bisimilarity metric
to be proved in Section 6.4.

The chapter is organized as follows. Section 6.1 introduces the notion
of bisimilarity metric by van Breugel and Worrell [72]. Section 6.2 defines a
notion of approximants of the bisimilarity metric, in order to show that we
can focus on the more manageable notion of premetrics instead of pseudo-
metrics. Section 6.3 introduces the notion of self-closed sets and its relation

37

38 CHAPTER 6. BISIMILARITY METRIC ON PA

with the bisimilarity metric. Section 6.4 shows that the bisimilarity metric
is of polynomial size, which serves as the last step to the membership of
NP ∩ coNP and UP ∩ coUP.

6.1 Bisimilarity Metric on PAs

In this section, we introduce a quantified notion of probabilistic bisimulation
defined by van Breugel and Worrell [72]. This notion will be defined as a
pseudometric over states of a finite PA (fPA) for which pairs of states with
distance zero are probabilistic bisimilar.

Firstly, we introduce the notions of premetics and pseudometrics, which
assign to each pair of elements a non-negative value representing the distance
between the two elements.

Definition 6.1. Let X be a non-empty set. A function d : X ×X → [0, 1]
is a (1-bounded) premetric on X if d(x, x) = 0 for all x ∈ X. A premetric d
is further a (1-bounded) pseudometric on X if for all x, y, z ∈ X, d(x, y) =
d(y, x) (symmetry) and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). We
denote the set of premetrics (resp. pseudometrics) on X by Mpr(X) (resp.
Mps(X)).

Remark 6.1. In Definition 6.1, we use 1 to signal the largest distance
between pairs of elements.

In this chapter, we use ‘op’ to indicate either ‘pr’ or ‘ps’. In this way we
can use “Mop(X)” to make arguments shared by both Mpr(X) and Mps(X).
Below we define a partial order on Mop(X) in a pointwise fashion.

Definition 6.2. Let X be a non-empty set. The binary relation ≤X,op on
Mop(X) is defined as follows: given any d1, d2 ∈ Mop(X), d1 ≤X,op d2 iff
d1(x, y) ≤ d2(x, y) for all x, y ∈ X.

Clearly, ≤X,op is a partial order on Mop(X). The following proposition
shows that (Mop(X),≤X,op) is a complete lattice. Later on, the notion of
bisimilarity metric will be defined as the least fixed-point of certain mono-
tone function under the complete lattice of all pseudometrics on the state
space of a PA.

Proposition 6.1 ([60]). Let X be a non-empty set. Then (Mop(X),≤X,op)
is a complete lattice.

Proof. The top element⊤op is determined by: ⊤op(x, x) = 0 and⊤op(x, y) =
1 if x 6= y, for all x, y ∈ X. The bottom element ⊥op is defined by:
⊥op(x, y) = 0 for all x, y ∈ X. Given non-empty Y ⊆ Mop(X), the least
upper-bound

⊔

Y is given by: (
⊔

Y) (x, y) := sup{d(x, y) | d ∈ Y } for
arbitrary x, y ∈ X. Note that

⊔

Y ∈ Mop(X) when op = ps, i.e.,

sup{d(x, z) | d ∈ Y } ≤ sup{d(x, y) | d ∈ Y }+ sup{d(y, z) | d ∈ Y }

6.1. BISIMILARITY METRIC ON PAS 39

for all x, y, z ∈ X; this can be obtained by taking supremum over d ∈ Y
at the both sides of the inequality d(x, z) ≤ d(x, y) + d(y, z). The greatest
lower bound

d
Y (for non-empty Y ⊆ Mop(X)) is given by:

d
Y =

⊔

{d ∈
Mop(X) | ∀d′ ∈ Y.d ≤X,op d

′}.

Now we define the bisimilarity metric on fPAs. Below we fix an fPA
M = (S,Act,→). We focus on the complete lattice (Mop(S),≤S,op). We
will omit ‘S’ in “(Mop(S),≤S,op)” if the underlying context is clear.

To define the bisimilarity metric, we first lift an element d ∈ Mop to an
element d ∈ Mop(Dist(S)).

Definition 6.3. Let d ∈ Mop. The element d ∈ Mop(Dist(S)) is defined as
follows. Given any µ, ν ∈ Dist(S), d(µ, ν) is defined as the optimal value of
the following linear program LP[d](µ, ν).

min
∑

u,v∈S d(u, v) · zu,v subject to:

•
∑

v∈S zu,v = µ(u) for all u ∈ S;

•
∑

u∈S zu,v = ν(v) for all v ∈ S;

• zu,v ≥ 0 for all u, v ∈ S.

We denote by FeS[d](µ, ν) and resp. OpS[d](µ, ν) the set of feasible solutions
and resp. optimum solutions of the linear program LP[d](µ, ν).

Intuitively, d(µ, ν) equals the minimum cost of the following transship-
ment problem. The sources (origins) are elements of S and the destinations
are elements of an identical copy of S. The amount (probability mass) avail-
able at source u equals µ(u) and the amount needed at destination v equals
ν(v). Probability mass can be moved from any source to any destination.
The cost to move mass z from u to v equals d(u, v) · z, where d(u, v) is the
“unit” transshipment cost.

The feasible region of the linear program specified in Definition 6.3 is
not empty, as one can set zu,v = µ(u) · ν(v) for u, v ∈ S, which satisfies
the linear constraints. For d ∈ Mps, it is also clear from symmetry that
d(µ, ν) = d(ν, µ) for µ, ν ∈ Dist(S). An issue in Definition 6.3 is that d
may not satisfy the triangle inequality. The following proposition tackles
this problem.

Proposition 6.2. For all d ∈ Mps, d ∈ Mps(Dist(S)).

Proof. The proof follows the lines of [29, Proposition 3.5.6]. Let d ∈ Mps and
µ, µ′, ν ∈ Dist(S). It is clear that d(µ, µ) = 0 and d(µ, ν) = d(ν, µ) (from
symmetry). We prove that d(µ, ν) ≤ d(µ, µ′)+d(µ′, ν). Let {z1u,v}u,v∈S (resp.
{z2u,v}u,v∈S) be an optimum solution of LP[d](µ, µ′) (resp. LP[d](µ′, ν)).

Define zu,v :=
∑

s∈⌊µ′⌋
z1u,s·z

2
s,v

µ′(s) for u, v ∈ S. We show that {zu,v}u,v∈S is a

40 CHAPTER 6. BISIMILARITY METRIC ON PA

feasible solution of LP[d](µ, ν). For u ∈ S,
∑

v∈S

zu,v

=
∑

v∈S

∑

s∈⌊µ′⌋

z1u,s · z
2
s,v

µ′(s)

=
∑

s∈⌊µ′⌋

∑

v∈S

z1u,s · z
2
s,v

µ′(s)

=
∑

s∈S

z1u,s = µ(u) .

Similarly, for v ∈ S,
∑

u∈S

zu,v

=
∑

u∈S

∑

s∈⌊µ′⌋

z1u,s · z
2
s,v

µ′(s)

=
∑

s∈⌊µ′⌋

∑

u∈S

z1u,s · z
2
s,v

µ′(s)

=
∑

s∈S

z2s,v = ν(v) .

Thus, {zu,v}u,v∈S is a feasible solution of LP[d](µ, ν). It follows that

d(µ, ν) ≤
∑

u,v∈S

d(u, v) · zu,v

=
∑

u,v∈S

∑

s∈⌊µ′⌋

d(u, v) ·
z1u,s · z

2
s,v

µ′(s)

≤
∑

u,v∈S

∑

s∈⌊µ′⌋

(d(u, s) + d(s, v)) ·
z1u,s · z

2
s,v

µ′(s)

=

∑

u,v∈S

∑

s∈⌊µ′⌋

d(u, s) ·
z1u,s · z

2
s,v

µ′(s)

+

∑

u,v∈S

∑

s∈⌊µ′⌋

d(s, v) ·
z1u,s · z

2
s,v

µ′(s)

=

∑

u∈S

∑

s∈⌊µ′⌋

∑

v∈S

d(u, s) ·
z1u,s · z

2
s,v

µ′(s)

+

∑

v∈S

∑

s∈⌊µ′⌋

∑

u∈S

d(s, v) ·
z1u,s · z

2
s,v

µ′(s)

=

∑

u∈S

∑

s∈⌊µ′⌋

d(u, s) · z1u,s

+

∑

v∈S

∑

s∈⌊µ′⌋

d(s, v) · z2s,v

=d(µ, µ′) + d(µ′, ν)

6.1. BISIMILARITY METRIC ON PAS 41

which implies the result.

Proposition 6.2 makes sure that Definition 6.3 is well-defined.

Remark 6.2. The original version of Definition 6.3 goes through Kan-
torovich metric. In detail, for d ∈ Mps, d(µ, ν) is equivalently defined as
the optimal value of the following linear program

max
∑

s∈S(µ(s)− ν(s)) · xs subject to:

• |xu − xv| ≤ d(u, v) for all u, v ∈ S;

• xs ∈ [0, 1] for all s ∈ S.

It can be proved through dual linear programming that the two definitions
coincide (when op = ps) (cf. [72, 60]).

Now we define the bisimilarity metric as the least fixed-point of certain
metric transformer, as follows.

Definition 6.4. The metric transformer TM,op : Mop → Mop is defined as
a monotone function for the complete lattice (Mop,≤op), as follows:

• TM,op(d)(u, v) := 1 if Act(u) 6= Act(v);

• TM,op(d)(u, v) := 0 if Act(u) = Act(v) = ∅;

• otherwise,

TM,op(d)(u, v) :=

max
a∈Act(u)

max

max
u

a
−→
nc

µ

min
v

a
−→
nc

ν

d(µ, ν), max
v

a
−→
nc

ν

min
u

a
−→
nc

µ

d(µ, ν)

 ;

for all d ∈ Mop and u, v ∈ S. The bisimilarity metric dM,op is defined as
the least fixed-point of TM,op.

Intuitively, TM,op(d)(u, v) measures the distance between u and v in
terms of the distance caused by their next-step transitions. The distance
caused by next-step transitions is derived in a style similar to probabilistic
bisimulation. The well-defined-ness of Definition 6.4 is given by the following
proposition.

Proposition 6.3. TM,op is a monotone function for the complete lattice
(Mop,≤op).

Proof. The monotonicity of TM,op is straightforward from Definition 6.4 and
Definition 6.3. The nontrivial case is that TM,ps(d) ∈ Mps for all d ∈ Mps.
Let d ∈ Mps. The symmetry of TM,ps(d) follows directly from the symmetry
of d. Below we prove the triangle inequality of TM,ps(d).

42 CHAPTER 6. BISIMILARITY METRIC ON PA

Let u, u′, v ∈ S. If either Act(u) 6= Act(u′) or Act(u′) 6= Act(v) or
Act(u) = Act(u′) = Act(v) = ∅, then it is clear that

TM,ps(d)(u, v) ≤ TM,ps(d)(u, u
′) + TM,ps(d)(u

′, v) .

Otherwise, Act(u) = Act(u′) = Act(v) 6= ∅. By the definition of TM,ps, there

exists a ∈ Act such that either there exists u
a
−→
nc

µ such that TM,ps(d)(u, v) ≤

d(µ, ν) for all v
a
−→
nc

ν, or dually there exists v
a
−→
nc

ν such that TM,ps(d)(u, v) ≤

d(µ, ν) for all u
a
−→
nc

µ. Without loss of generality, we assume the for-

mer case, i.e., there exists u
a
−→
nc

µ such that TM,ps(d)(u, v) ≤ d(µ, ν) for

all v
a
−→
nc

ν. From the definition of TM,ps, there exists u′
a
−→
nc

µ′ such

that d(µ, µ′) ≤ TM,ps(d)(u, u
′). Again, there exists v

a
−→
nc

ν such that

d(µ′, ν) ≤ TM,ps(d)(u
′, v). By Proposition 6.2, d(µ, ν) ≤ d(µ, µ′) + d(µ′, ν) .

Thus TM,ps(d)(u, v) ≤ TM,ps(d)(u, u
′) + TM,ps(d)(u

′, v) .

The bisimilarity metric dM,op measures the distance between two states
of S. Below we show that pairs of states with distance zero are exactly
probabilistic bisimilar states.

Proposition 6.4. For all u, v ∈ S, dM,ps(u, v) = 0 iff u ∼nc v.

Proof. Assume that dM,ps(u, v) = 0. Define

R := {(u′, v′) ∈ S × S | dM,ps(u
′, v′) = 0} .

We prove that R is an nc-bisimulation. Let (u′, v′) ∈ R and u′
a
−→
nc

µ′. By

dM,ps(u
′, v′) = 0, there exists v′

a
−→
nc

ν ′ such that dM,ps(µ
′, ν ′) = 0. Let

{zu′′,v′′}u′′,v′′∈S be an optimum solution of LP[dM,ps](µ
′, ν ′). By

∑

u′′,v′′∈S

dM,ps(u
′′, v′′) · zu′′,v′′ = 0,

zu′′,v′′ = 0 whenever dM,ps(u
′′, v′′) > 0. Then w, which is defined such

that w(u′′, v′′) = zu′′,v′′ for all u′′, v′′ ∈ S, is a weight function for µ′Rν ′.
Symmetrically, we can obtain a similar reasoning for the other direction
v′

a
−→
nc

ν ′ of the bisimulation conditions. It follows that u ∼nc v.

Assume now that u ∼nc v. Define d by: d(u′, v′) = 0 if u′ ∼nc v
′, and

d(u′, v′) = 1 otherwise, for all u′, v′ ∈ S. Consider TM,ps(d). Fix arbitrarily
u′, v′ ∈ S. We clarity two cases.

1. u′ 6∼ncv
′. Then TM,ps(d)(u

′, v′) ≤ d(u′, v′) = 1.

6.1. BISIMILARITY METRIC ON PAS 43

s0

s2

s1

s3

b, 1 c, 1

a, 12

a, 12

a, 12 + ǫ

a, 12 − ǫ

Figure 6.1: An fPA

2. u′ ∼nc v
′. Then for all u′

a
−→
nc

µ′, there exists v′
a
−→
nc

ν ′ such that

µ′ ∼nc ν
′; also for all v′

a
−→
nc

ν ′, there exists u′
a
−→
nc

µ′ such that µ′ ∼nc ν
′.

Note that µ′′ ∼nc ν
′′ iff d(µ′′, ν ′′) = 0, since a weight function w that

witnesses µ′′ ∼nc ν
′′ is essentially an optimum solution {zu′′,v′′}u′′,v′′∈S

of the linear program LP[d](µ′′, ν ′′) (with w(u′′, v′′) = zu′′,v′′ for all
u′′, v′′ ∈ S) and vice versa. Thus by definition, TM,ps(d)(u

′, v′) =
d(u′, v′) = 0.

In either case, we have TM,ps(d)(u
′, v′) ≤ d(u′, v′). Hence, TM,ps(d) ≤M,ps d

by the arbitrary choice of u′, v′. Then by Theorem 2.1, we obtain dM,ps ≤ d.
It follows that dM,ps(u, v) = 0.

Example 6.1. Consider the fPA M = (S,Act,→) with S = {s0, s1, s2, s3},
Act = {a, b, c} (a, b, c are three different actions) and

→={(s0, b, {s0 7→ 1}), (s1, c, {s1 7→ 1})}∪

(s2, a, {s0 7→
1

2
, s1 7→

1

2
}), (s3, a, {s0 7→

1

2
+ ǫ, s1 7→

1

2
− ǫ})} .

The fPA is depicted in Fig. 6.1. By definition, dM,ps(s2, s3) = ǫ.

When extending the bisimilarity metric to stochastic games, one can also
have an equivalent logical characterization for the bisimilarity metric. We
refer to [28] for details.

In this chapter, we study the complexity of the following decision problem
BISIMMETRIC:

• INPUT: two states s, s′ of an fPA M and a rational number c ∈ [0, 1];

• OUTPUT: whether dM,ps(s, s
′) ≤ c.

44 CHAPTER 6. BISIMILARITY METRIC ON PA

6.2 Approximate Bisimilarity Metrics

In this section, we define approximants of the bisimilarity metric. The main
purpose to introduce such notion is to show that the bisimilarity metric can
be defined on the lattice of premetrics instead of that of pseudometrics. This
fact will be used in Theorem 6.2.

Below we fix an fPAM = (S,Act,→). To ease the notation, we will omit
the subscript ‘M’ whenever possible. The following definition illustrates the
approximants {dnop}n∈N0 of dop.

Definition 6.5. The family {dnop}n∈N0 of approximants of dop is inductively
defined as follows.

• d
0
op ∈ Mop is given by: d

0
op := ⊥op (i.e., d0op(u, v) = 0 for all u, v ∈ S).

• d
n+1
op ∈ Mop is given by: d

n+1
op = Top(d

n
op).

By Proposition 6.3, {dnop}n∈N0 is well-defined. Note that although the
definition of {dnop}n∈N0 depends on whether op = pr or op = ps, {dnpr}n∈N0 =
{dnps}n∈N0 since ⊥pr = ⊥ps and Top does not essentially differs apart between
{Tpr, Tps} (cf. Definition 6.4).

Since Top is a monotone function, the infinite sequence {dnop}n∈N0 is in-
creasing w.r.t ≤op since d

0
op ≤op d

1
op. Proposition 6.5 will show that dop is

the limit of this sequence. Before proving Proposition 6.5, we first prove an
auxiliary lemma.

Lemma 6.1. Let µ, ν ∈ Dist(S). Let d ∈ Mpr and {dn}n∈N0 be a sequence
with dn ∈ Mpr for all n. If lim

n→∞
dn = d, then lim

n→∞
dn(µ, ν) = d(µ, ν).

Proof. Let X be the (finite) set of vertices of the linear program LP[d](µ, ν)
(or LP[dn](µ, ν)), which is independent of d and {dn}n∈N0 . Then for all
d′ ∈ Mpr,

d′(µ, ν) = min
z∈X

∑

u,v∈S

d′(u, v) · zu,v ,

which is a continuous function w.r.t d′ (viewed as a vector on S × S). It
follows that lim

n→∞
dn(µ, ν) = d(µ, ν) if lim

n→∞
dn = d.

Proposition 6.5. For all u, v ∈ S, dop(u, v) = lim
n→∞

d
n
op(u, v).

Proof. Let d
∞
op be given by: d

∞
op(u, v) := lim

n→∞
d
n
op(u, v) for all u, v ∈ S. We

prove that d∞op = dop through the following two directions.
d
∞
op ≤op dop. By d

0
op ≤op dop and the monotonicity of Top, we can prove

by induction on n that dnop ≤op dop for all n ∈ N0. Thus d
∞
op ≤op dop.

dop ≤op d
∞
op. We prove that Top(d

∞
op) ≤op d

∞
op. Fix an arbitrary pair

(u, v) ∈ S × S. The situation is clear when Act(u) = Act(v) = ∅ (in
this case Top(d

∞
op)(u, v) = 0) or Act(u) 6= Act(v) (in this case d

∞
op(u, v) =

6.3. SELF-CLOSED SETS 45

Top(d
1
op)(u, v) = 1). Below we assume that Act(u) = Act(v) 6= ∅. Con-

sider any u
a
−→
nc

µ. By definition, for all n ∈ N, there exists v
a
−→
nc

νn

such that dnop(µ, νn) ≤ d
n+1
op (u, v) ≤ d

∞
op(u, v). Since the set → is finite,

there exists v
a
−→
nc

ν such that dnop(µ, ν) ≤ d
n+1
op (u, v) ≤ d

∞
op(u, v), for in-

finitely many n ∈ N. Then by the fact that {dnop}n∈N0 is increasing w.r.t
≤op, dnop(µ, ν) ≤ d

∞
op(u, v) for all n ∈ N0. Thus d∞op(µ, ν) ≤ d

∞
op(u, v) by

Lemma 6.1. Similar arguments can be applied to an arbitrary v
a
−→
nc

ν.

Thus Top(d
∞
op) ≤op d

∞
op, which implies dop ≤op d

∞
op from Tarski’s Fixed-Point

Theorem (Theorem 2.1).

Following Proposition 6.5 and the fact that d
0
pr = d

0
ps, we obtain the

main result of this section.

Corollary 6.1. dpr = dps =
d
{d ∈ Mpr | Tpr(d) ≤pr d}.

This corollary allows us to focus on the more manageable complete lattice
(Mpr,≤pr).

6.3 Self-Closed Sets

In this section, we introduce the notion of “self-closed” sets which is the key
to prove the membership of NP ∩ coNP and UP ∩ coUP for our problem.
Below we fix a PA M = (S,Act,→). We will omit the subscript ‘M’
whenever possible. By Corollary 6.1, we can solely focus on the complete
lattice (Mpr,≤pr).

The following definition illustrates the notion of “self-closed” sets.

Definition 6.6. Let d ∈ Mpr with d = Tpr(d). A subset X ⊆ S × S is
self-closed w.r.t d iff for all (u, v) ∈ X, the following three conditions hold:

1. d(u, v) > 0 (which implies that u 6= v) and Act(u) = Act(v);

2. for all u
a
−→
nc

µ such that d(u, v) = min{d(µ, ν) | v
a
−→
nc

ν}, there

exists v
a
−→
nc

ν ′ and z = {zu,v}u,v∈S ∈ OpS[d](µ, ν ′) such that d(u, v) =

d(µ, ν ′) and ⌊z⌋ ⊆ X.

3. for all v
a
−→
nc

ν such that d(u, v) = min{d(µ, ν) | u
a
−→
nc

µ}, there

exists u
a
−→
nc

µ′ and z = {zu,v}u,v∈S ∈ OpS[d](µ′, ν) such that d(u, v) =

d(µ′, ν) and ⌊z⌋ ⊆ X.

The set ⌊z⌋ is defined by: ⌊z⌋ := {(u, v) ∈ S × S | zu,v > 0} .

Intuitively, a self-closed setX w.r.t d is a set such that all values {d(u, v) |
(u, v) ∈ X} can be reached on X itself. Below we show that non-empty
self-closed sets characterize exactly the least fixed-point dpr of the metric
transformer Tpr.

46 CHAPTER 6. BISIMILARITY METRIC ON PA

Theorem 6.1. Let d ∈ Mpr such that d = Tpr(d). If d 6= dpr, then there
exists a non-empty self-closed set X ⊆ S × S w.r.t d.

Proof. Assume d 6= dpr. We construct a non-empty self-closed set X as
described below. Define δ(u, v) := d(u, v) − dpr(u, v) for all u, v ∈ S. It is
clear that δ(u, v) ≥ 0 for all u, v ∈ S, and there exists (u, v) ∈ S × S such
that δ(u, v) > 0 (by d 6= dpr). Define X to be the following set:

X := {(u, v) ∈ S × S | δ(u, v) = max{δ(u′, v′) | (u′, v′) ∈ S × S}}

We prove that X is a non-empty self-closed set. The non-emptiness of X is
obvious. We further prove that any (u, v) ∈ X satisfies the three conditions
specified in Definition 6.6. Fix an arbitrary (u, v) ∈ X.

1. It is clear that d(u, v) > 0 since δ(u, v) > 0. We prove that Act(u) =
Act(v). Suppose Act(u) 6= Act(v). Then by definition, d(u, v) =
dpr(u, v) = 1 which implies δ(u, v) = 0. Contradiction. So (u, v)
satisfies the first condition in Definition 6.6.

2. Assume that u
a
−→
nc

µ satisfy d(u, v) = min{d(µ, ν) | v
a
−→
nc

ν}, and

v
a
−→
nc

ν ′ be arbitrarily chosen which satisfies

dpr(µ, ν
′) = min{dpr(µ, ν) | v

a
−→
nc

ν} .

Choose an arbitrary optimum solution z∗ = {z∗u,v}u,v∈S which lies in

OpS[dpr](µ, ν
′). We prove that d(u, v) = d(µ, ν ′), z∗ ∈ OpS[d](µ, ν ′)

and ⌊z∗⌋ ⊆ X (cf. Definition 6.6). By the definition of X, we
have δ(u′, v′) ≤ δ(u, v) for all (u′, v′) ∈ S × S. Thus for all z ∈
FeS[d](µ, ν ′)(= FeS[dpr](µ, ν

′)), we have

∑

u′,v′∈S

dpr(u
′, v′) · zu′,v′ ≥

∑

u′,v′∈S

(d(u′, v′)− δ(u, v)) · zu′,v′ . (6.1)

Since
∑

u′,v′∈S zu′,v′ = 1, we can further simplify Inequality (6.1) as
follows:

∑

u′,v′∈S

dpr(u
′, v′) · zu′,v′ ≥

∑

u′,v′∈S

d(u′, v′) · zu′,v′

− δ(u, v) (6.2)

By taking the infimum at the both sides of Inequality 6.2, we obtain
that dpr(µ, ν

′) ≥ d(µ, ν ′)− δ(u, v). Further from definition, we obtain
dpr(u, v) ≥ dpr(µ, ν

′). Thus, we have:

dpr(u, v) ≥ dpr(µ, ν
′) ≥ d(µ, ν ′)−δ(u, v) ≥ d(u, v)−δ(u, v) = dpr(u, v) .

6.3. SELF-CLOSED SETS 47

This implies that dpr(u, v) = dpr(µ, ν
′) and d(u, v) = d(µ, ν ′). Then

we can form another inequality series as follows:

∑

u′,v′∈S d(u
′, v′) · z∗u′,v′

≥ d(u, v) (by d(u, v) = d(µ, ν ′))
= dpr(u, v) + δ(u, v)

=
(

∑

u′,v′∈S dpr(u
′, v′) · z∗u′,v′

)

+ δ(u, v) (by dpr(u, v) = dpr(µ, ν
′))

=
∑

u′,v′∈S(dpr(u
′, v′) + δ(u, v)) · z∗u′,v′

≥
∑

u′,v′∈S(dpr(u
′, v′) + δ(u′, v′)) · z∗u′,v′

=
∑

u′,v′∈S d(u
′, v′) · z∗u′,v′ .

Thus it must be the case that z∗ ∈ OpS[d](µ, ν ′) and δ(u′, v′) = δ(u, v)
whenever z∗u′,v′ > 0. Then we have ⌊z∗⌋ ⊆ X. So (u, v) satisfies the
second condition in Definition 6.6.

3. Symmetrically, we can prove that (u, v) satisfies the third condition in
Definition 6.6.

Hence in conclusion, X is a self-closed set w.r.t d.

Theorem 6.2. Let d ∈ Mpr such that d = Tpr(d). If there exists a non-
empty self-closed set X ⊆ S × S with respect to d, then d 6= dpr.

Proof. Assume X ⊆ S × S be a non-empty self-closed set w.r.t d. We
construct a premetric d′ 6= d such that Tpr(d

′) ≤pr d
′ and d′ ≤pr d. For all

pairs (u
a
−→
nc

µ, v) and (u, v
a
−→
nc

ν) with (u, v) ∈ X, we define the following

difference values: (note that Act(u) = Act(v) by Definition 6.6)

• δ[u
a
−→
nc

µ, v] := d(u, v)−min{d(µ, ν ′) | v
a
−→
nc

ν ′};

• δ[u, v
a
−→
nc

ν] := d(u, v)−min{d(µ′, ν) | u
a
−→
nc

µ′}.

All the values above are non-negative since d = Tpr(d). Furthermore, we
define the following two difference values: (where min ∅ := 0)

• δ1 := min{δ[u
a
−→
nc

µ, v] | (u, v) ∈ X,u
a
−→
nc

µ and δ[u
a
−→
nc

µ, v] > 0};

• δ2 := min{δ[u, v
a
−→
nc

ν] | (u, v) ∈ X, v
a
−→
nc

ν and δ[u, v
a
−→
nc

ν] > 0}.

Finally, we define δ as follows:

δ :=

min{δ1, δ2,min{d(u, v) | (u, v) ∈ X}} if δ1 6= 0 and δ2 6= 0

min{δ2,min{d(u, v) | (u, v) ∈ X}} if δ1 = 0 and δ2 6= 0

min{δ1,min{d(u, v) | (u, v) ∈ X}} if δ1 6= 0 and δ2 = 0

min{d(u, v) | (u, v) ∈ X} if δ1 = 0 and δ2 = 0

.

48 CHAPTER 6. BISIMILARITY METRIC ON PA

Note that δ > 0. Then we construct d′ ∈ Mpr by:

d′(u, v) :=

{

d(u, v)− 1
2δ if (u, v) ∈ X

d(u, v) if (u, v) 6∈ X

for all u, v ∈ S. It is clear that d′ 6= d since X is non-empty. We prove that
Tpr(d

′) ≤pr d
′. Fix an arbitrary (u, v) ∈ S × S. Assume that (u, v) 6∈ X.

From d′ ≤pr d, we have Tpr(d
′) ≤pr Tpr(d), which implies

d′(u, v) = d(u, v) = Tpr(d)(u, v) ≥ Tpr(d
′)(u, v) .

Thus d′(u, v) ≥ Tpr(d
′)(u, v). Assume now that (u, v) ∈ X. For each u

a
−→
nc

µ,

we clarify two cases below:
Case 1: δ[u

a
−→
nc

µ, v] > 0. Then δ1 > 0. By definition, we have:

d′(u, v) ≥ d(u, v)−
1

2
· δ > d(u, v)− δ[u

a
−→
nc

µ, v] = min{d(µ, ν ′) | v
a
−→
nc

ν ′} .

From d′ ≤pr d, we have

min{d(µ, ν ′) | v
a
−→
nc

ν ′} ≥ min{d′(µ, ν ′) | v
a
−→
nc

ν ′} .

Thus d′(u, v) ≥ min{d′(µ, ν ′) | v
a
−→
nc

ν ′}.

Case 2: δ[u
a
−→
nc

µ, v] = 0. SinceX is self-closed, there exists v
a
−→
nc

ν ′ and

z ∈ OpS[d](µ, ν ′) such that d(u, v) = d(µ, ν ′) and ⌊z⌋ ⊆ X. From ⌊z⌋ ⊆ X,
we obtain

∑

u′,v′∈S

d′(u′, v′) · zu′,v′

=

∑

u′,v′∈S

d(u′, v′) · zu′,v′

−
1

2
· δ

=d(µ, ν ′)−
1

2
· δ

=d′(u, v) .

Then we have

min{d′(µ, ν ′′) | v
a
−→
nc

ν ′′} ≤ d′(µ, ν ′) ≤
∑

u′,v′∈S

d′(u′, v′) · zu′,v′ = d′(u, v) .

It follows that min{d′(µ, ν ′′) | v
a
−→
nc

ν ′′} ≤ d′(u, v).

Thus d′(u, v) ≥ min{d′(µ, ν ′) | v
a
−→
nc

ν ′} for all u
a
−→
nc

µ. Similarly, we

can prove that d′(u, v) ≥ min{d′(µ′, ν) | u
a
−→
nc

µ′} for all v
a
−→
nc

ν. Thus

d′(u, v) ≥ Tpr(d
′)(u, v).

6.3. SELF-CLOSED SETS 49

Hence, Tpr(d
′) ≤pr d

′. By d′ ≤pr d and d′ 6= d, we have

d 6=
l

{d′′ ∈ Mpr | Tpr(d
′′) ≤pr d

′′} .

It follows that d 6= dpr.

Note that d′ in the proof of Theorem 6.2 may not be a pseudometric.
This is why Corollary 6.1 is needed.

Thus for all d ∈ Mpr with d = Tpr(d), d 6= dpr iff there exists a non-empty
self-closed set w.r.t d. This characterization means that to check whether
d 6= dpr or not, we can equivalently check whether there exists a non-empty
self-closed set w.r.t d or not. The intuition here is that for any self-closed
sets X,Y , X ∪ Y is still a self-closed set; thus there is a largest self-closed
set. This gives rise to a partition-refinement algorithm that computes the
largest self-closed set.

Theorem 6.3. Define

FP := {d ∈ Mpr | d = Tpr(d) and all coordinates of d are rational.}

to be the set of rational fixed-points of Tpr. The problem whether a given
d ∈ FP equals dpr is decidable in polynomial time in the size of d and M.

Proof. From Theorem 6.2 and Theorem 6.1, we can check whether d = dpr

or not by checking whether there exists a non-empty self-closed set w.r.t the
given d ∈ FP . For all self-closed sets X,Y w.r.t d, X ∪ Y is still self-closed
w.r.t d. So there exists a largest self-closed set w.r.t d, which we denote by
Z. Then there exists a non-empty self-closed set w.r.t d iff Z is non-empty.
Below we develop a partition-refinement algorithm to compute Z.

Firstly, we define a refining function ref : X → X , where the set X is
given as follows:

X := {X ⊆ S × S | Act(u) = Act(v) and d(u, v) > 0 for all (u, v) ∈ X} .

Note that X is non-empty since ∅ ∈ X . Given X ∈ X , we define δX :=
min{d(u, v) | (u, v) ∈ X} (where min ∅ := 0) and the premetric dX ∈ Mpr as
follows:

dX(u, v) =

{

d(u, v)− δX if (u, v) ∈ X

d(u, v) if (u, v) 6∈ X
.

Then the set ref(X) ∈ X for X ∈ X is defined as follows: (u, v) ∈ ref(X)
iff (u, v) ∈ X and furthermore (u, v) satisfies the following two conditions:

1. for all u
a
−→
nc

µ, if d(u, v) = min{d(µ, ν) | v
a
−→
nc

ν} then

dX(u, v) ≥ min{dX(µ, ν) | v
a
−→
nc

ν} ;

50 CHAPTER 6. BISIMILARITY METRIC ON PA

2. for all v
a
−→
nc

ν, if d(u, v) = min{d(µ, ν) | u
a
−→
nc

µ} then

dX(u, v) ≥ min{dX(µ, ν) | u
a
−→
nc

µ} .

Note that ref(X) ⊆ X for all X ∈ X .

Now we construct a sequence {Zi}i∈N0 as follows:

• Z0 := {(u, v) ∈ S × S | Act(u) = Act(v) and d(u, v) > 0} ;

• Zn+1 := ref(Zn) .

By Zn+1 ⊆ Zn, there exists k ≤ |Z0| such that Zk+1 = ref(Zk) = Zk. We
show that Zk = Z.

“Z ⊆ Zk”: We prove by induction that Z ⊆ Zn for all n ∈ N0. The base
step Z ⊆ Z0 is clear from the definition. For the inductive step, assume that
Z ⊆ Zn. We show that Z ⊆ Zn+1(= ref(Zn)). Fix an arbitrary (u, v) ∈ Z.
Consider any u

a
−→
nc

µ such that d(u, v) = min{d(µ, ν) | v
a
−→
nc

ν}. Since Z

is self-closed, there exists v
a
−→
nc

ν ′ and z ∈ OpS[d](µ, ν ′) such that d(u, v) =

d(µ, ν ′) and ⌊z⌋ ⊆ Z. Since Z ⊆ Zn, we have dZn(u, v) = d(u, v)− δZn and
dZn(u

′, v′) = d(u′, v′)− δZn for all (u′, v′) ∈ ⌊z⌋. Thus we obtain

∑

u′,v′∈S

dZn(u
′, v′) · zu′,v′

=
∑

u′,v′∈S

(d(u′, v′)− δZn) · zu′,v′

=d(u, v)− δZn

=dZn(u, v) .

Hence dZn(u, v) ≥ dZn(µ, ν
′) ≥ min{dZn(µ, ν) | v

a
−→
nc

ν}. By a similar

reasoning, we can prove that for all v
a
−→
nc

ν, if d(u, v) = min{d(µ, ν) | u
a
−→
nc

µ} then dZn(u, v) ≥ min{dZn(µ, ν) | u
a
−→
nc

µ}. So (u, v) ∈ Zn+1. Thus

Z ⊆ Zn+1.

“Zk ⊆ Z”: We prove that Zk is a self-closed set w.r.t d, i.e., Zk satisfies
the three conditions specified in Definition 6.6. Without loss of generality,
we can assume that Zk 6= ∅. The first condition in Definition 6.6 is directly
satisfied since Zk ⊆ Z0. As for the second condition, consider any (u, v) ∈ Zk
and u

a
−→
nc

µ which satisfies d(u, v) = min{d(µ, ν) | v
a
−→
nc

ν}. By Zk =

ref(Zk), dZk
(u, v) ≥ min{dZk

(µ, ν) | v
a
−→
nc

ν}. Choose v
a
−→
nc

ν ′ such that

dZk
(µ, ν ′) = min{dZk

(µ, ν) | v
a
−→
nc

ν} and an arbitrary z ∈ OpS[dZk
](µ, ν ′).

6.4. THE MEMBERSHIP OF UP ∩ COUP 51

Since dZk
(u, v) = d(u, v)− δZk

, we have

d(u, v) ≥ dZk
(µ, ν ′) + δZk

=
∑

u′,v′∈S(dZk
(u′, v′) + δZk

) · zu′,v′

≥
∑

u′,v′∈S d(u
′, v′) · zu′,v′

≥ d(µ, ν ′)
≥ d(u, v) .

Thus d(u, v) = d(µ, ν ′), z ∈ OpS[d](µ, ν ′) and dZk
(u′, v′) = d(u′, v′) − δZk

for all (u′, v′) ∈ ⌊z⌋. This implies that ⌊z⌋ ⊆ Zk since δZk
> 0. It follows

that the second condition of Definition 6.6 is satisfied. The reasoning for the
third condition can be carried out in the same way as for the second one.

Thus to compute Z, we need only to apply ref to Z0 at most |Z0| times.
Note that the computation of ref can be carried out in polynomial time
since the optimal value of a linear program can be computed in polynomial
time [66]. Hence Z is polynomial-time computable. It follows directly that
whether a given d ∈ FP equals dpr is decidable in polynomial time.

6.4 The Membership of UP ∩ coUP

In this section, we finish the proof for the membership of NP ∩ coNP and
UP ∩ coUP. Below we fix an fPA M = (S,Act,→).

By Theorem 6.3, we can decide if a given element d in FP equals dpr in
polynomial time in the size of d and M. This indicates a polynomial time
verifier as follows: firstly guess a d in FP and then check whether d equals
dpr in polynomial time. A missing part in the argument for the verifier is
to show that the size of d is polynomial in the size of M. The following
proposition tackles this point.

Proposition 6.6. dpr is a rational vector and the size of dpr is polynomial
in the size of M.

Proof. For each µ, ν ∈ Dist(S) and u, v ∈ S, we define ν[µ, v] ∈ Dist(S)
and µ[ν, v] ∈ Dist(S) as follows:

• ν[µ, v] := argmin
v

a
−→
nc

ν′

dpr(µ, ν
′) ;

• µ[ν, u] := argmin
u

a
−→
nc

µ′

dpr(µ
′, ν) ;

ν[µ, v] and µ[ν, u] are chosen to be an arbitrarily optimal one when ties
upon the argmin occur. We further define the vectors w[µ, v] : S × S →
[0, 1] and w[ν, u] : S × S → [0, 1] to be one of the optimum vertices of
the linear programs LP[dpr](µ, ν[µ, v]) and LP[dpr](µ[ν, u], ν), respectively.
Again, choices are made to be an arbitrarily optimal one when ties occur. By

52 CHAPTER 6. BISIMILARITY METRIC ON PA

the fundamental property of linear programming (cf. [66]), the sizes of w[µ, v]
and w[ν, u] is polynomial in the size of M. We prove that {dpr(u, v)}u,v∈S
is the unique optimum solution of the following linear program on vector z:

min
∑

u,v∈S zu,v, subject to:

• zu,u = 0 for all u ∈ S

• zu,v ∈ [0, 1] for all u, v ∈ S;

• zu,v = 1 if Act(u) 6= Act(v);

• zu,v = 0 if u 6= v and Act(u) = Act(v) = ∅;

• zu,v ≥
∑

u′,v′∈S zu′,v′ · w[µ, v](u
′, v′) for all (u, v) ∈ S × S and u

a
−→
nc

µ

such that u 6= v and Act(u) = Act(v) 6= ∅;

• zu,v ≥
∑

u′,v′∈S zu′,v′ · w[ν, u](u
′, v′) for all (u, v) ∈ S × S and v

a
−→
nc

ν

such that u 6= v and Act(u) = Act(v) 6= ∅.

Clearly, the feasible region of the linear program above is non-empty since
{dpr(u, v)}u,v∈S (with interpretation zu,v = dpr(u, v)) is a feasible solu-
tion. Also, for all feasible solutions z, z (viewed as a premetric such that
z(u, v) = zu,v) is a pre-fixed-point of Tpr by Definition 6.4. It follows that
{dpr(u, v)}u,v∈S is the unique optimum solution of the linear program above
since dpr ≤pr z for all feasible solutions z (Theorem 2.1). Thus dpr is of size
polynomial in the size of M from [66].

Following directly from Proposition 6.6, we obtain the main result of the
chapter.

Theorem 6.4. The problem BISIMMETRIC lies in UP ∩ coUP.

Proof. We describe a polynomial-time verifier simultaneously for the prob-
lem and the complement of the problem: the verifier simply guesses a d ∈ FP
using a polynomial number of bits and checks whether d = dpr or not through
the algorithm described in Theorem 6.3; if the checking passes, then the
verifier compares d(u, v) with ǫ and output the answer which depends on
whether we are focusing on the problem or the complement of the problem.
It follows that the problem lies in UP ∩ coUP.

6.5 Conclusion

In this chapter, we proved that the problem whether the bisimilarity met-
ric [72] between two given states of a finite probabilistic automata is under
a given threshold lies in UP ∩ coUP, which significantly improves previ-
ous PSPACE upperbound [71]. We prove this by establishing the notion of
“self-closed” sets, and then exploring the relationship between the bisimi-
larity metric and the notion of self-closed sets.

Chapter 7

Continuous-Time Markov

Decision Processes

The class of continuous-time Markov decision processes (CTMDPs) [64, 63]
is a stochastic model that incorporates both features from continuous-time
Markov chains (CTMCs) [36] and discrete-time Markov decision processes
(MDPs) [64]. Generally, continuous-time Markov processes are systems with
a countable set of states, whose timed transitions between states are gov-
erned by negative-exponential delays and non-deterministic choices. A CT-
MDP extends a CTMC in the sense that it allows non-deterministic choices,
and it extends an MDP in the sense that it incorporates negative exponen-
tial time-delays. Due to its modelling capability of real-time probabilistic
behaviour and non-determinism, CTMDPs are widely used in dependability
analysis and performance evaluation [6, 3].

In a CTMDP, non-determinism is resolved by schedulers [74, 58]. In-
formally, a scheduler resolves the non-deterministic choices depending on
the finite trajectory of the CTMDP accumulated so far and possibly the so-
journ time of the current state. A scheduler is assumed to be measurable so
that it induces a well-defined probability space over the infinite trajectories
of the underlying CTMDP. Measurable schedulers are further divided into
early schedulers and late schedulers [58, 74]. A scheduler that makes the
choice solely by the trajectory accumulated so far is called an early sched-
uler, while a scheduler that utilizes both the trajectory and the sojourn
time (at the current state) is called a late scheduler. With schedulers, one
can reason about quantitative information such as the maximal/minimal
probability/expectation of certain property.

In this chapter, we introduce continuous-time Markov decision processes
in a way that combines both early and late schedulers. The chapter is or-
ganized as follows. Section 7.1 introduce the basic definition of CTMDPs.
Section 7.2 introduces the notion of paths and histories. Section 7.3 intro-
duces measurable spaces on paths and histories. Section 7.4 introduces the

53

54 CHAPTER 7. CTMDP

notion of schedulers and probabilities measures under schedulers. Section 7.5
demonstrates a general integral characterization. Section 7.6 concludes this
chapter. Section 7.7 collects all the proofs for this chapter.

Given a positive real number λ > 0, let fλ be the probability density
function of the negative exponential distribution with rate λ, i.e.,

fλ(t) :=

{

λ · e−λ·t t ≥ 0

0 t < 0
.

7.1 The Model

Definition 7.1. A continuous-time Markov Decision Process (CTMDP) M
is a tuple (S, Ser, Sla, Act,Eer,Ela,P) where

• S is a finite non-empty set of states which is the disjoint union of Ser
and Sla ;

• Ser (resp. Sla) is a finite set of early-schedulable states (resp. late-
schedulable states);

• Act is a finite non-empty set of actions;

• Eer : Ser × Act → R≥0 (resp. Ela : Sla → R>0) is the early total
exit-rate function (resp. late total exit-rate function);

• P : S × Act × S → [0, 1] is the discrete probability matrix such that
for all s ∈ S and a ∈ Act,

∑

s′∈S P(s, a, s′) ∈ {0, 1}.

An action a ∈ Act is enabled at a state s ∈ S if (i)
∑

s′∈S P(s, a, s′) = 1,
and (ii) either s ∈ Ser and Eer(s, a) > 0, or s ∈ Sla; the set of enabled
actions at a state s ∈ S is denoted by En(s).

Let M = (S, Ser, Sla, Act,Eer,Ela,P) be a CTMDP. Intuitively, Eer(s, a)
is the total exit-rate of an early state s when an action a ∈ En(s) is taken,
while Ela(s) is the total exit-rate of a late-schedulable state s, regardless of
which a ∈ En(s) is taken.

By definition, we only consider finite-state CTMDPs in this dissertation.
The actions reflect the non-deterministic feature of CTMDPs: each action
represents a possible choice for the evolution of the CTMDP. When the
action set is a singleton (i.e., it has only one element) and all states are
late-schedulable, then the CTMDP is a continuous-time Markov chain (cf.
Definition 8.1).

Often, a CTMDP is accompanied with an initial probability distribution
which specifies the initial stochastic environment (for the CTMDP).

Definition 7.2. Let M = (S, Ser, Sla, Act,Eer,Ela,P) be a CTMDP. An
initial distribution (for M) is a function α : S → [0, 1] which satisfies that
∑

s∈S α(s) = 1 .

7.2. PATHS AND HISTORIES 55

In this chapter, we will use s, s′ (resp. a, b) to range over states (resp.
actions) of a CTMDP. In the whole thesis, we will assume that any CTMDP
M encountered will have the following non-deadlock property: for all states
s of M, En(s) is non-empty. In general, states that do not conform to
this property can be adjusted by leading them to a fresh new state s⊥ (a
“deadlock” state which can either be early-schedulable or late-schedulable),
whose exit-rate is an arbitrary positive real number and whose sole enabled
action a⊥ leads to a Dirac distribution on s⊥ (i.e., P(s⊥, a⊥, s⊥) = 1).

Intuitively, the evolution of a CTMDP (S, Ser, Sla, Act,Eer,Ela,P) under
a scheduler D (to be introduced in Section 7.4) and an initial distribution
α is as follows.

1 At the beginning, an initial state s is chosen (as the current state)
w.r.t the initial distribution α;

2.1 On one hand, if s ∈ Ser, then the next state s′ is determined as fol-
lows: (i) firstly an action a ∈ En(s) is chosen by D, and then (ii) a
sojourn-time (i.e., a non-negative real number) is triggered at s which
is governed by the negative exponential distribution with rateEer(s, a),
and finally (iii) s′ is chosen w.r.t the probability distribution P(s, a, ·).

2.2 On the other hand, if s ∈ Sla, then the next state s′ is determined as
follows: (i) firstly a sojourn-time is trigger at s which is governed by
the negative exponential distribution with rate Ela(s), and then (ii)
an action a ∈ En(s) is chosen by D, and finally (iii) s′ is chosen w.r.t
the probability distribution P(s, a, ·).

3 The next current state is changed to s′. Then back to Step 2.1/Step
2.2 .

The evolution continues infinitely, and the resultant is an infinite path (or
trajectory) (cf. Definition 7.3). The difference between early-schedulable
and late-schedulable states is that the action to each early-schedulable state
can only be chosen when the state is entered, while the action of each late-
schedulable state can be chosen when the sojourn-time at the current state
is over. As a result, a scheduler has more “choice” on a late-schedulable
state than on an early-schedulable state.

Example 7.1. A CTMDP with early-schedulable state s0, late-schedulable
state s1 is depicted in Fig. 7.1. a1, a2 are enabled actions at s0 and b is
the sole enabled action at s1. The numbers on the outgoing edges from each
action specifies the probability distribution under the action.

7.2 Paths and Histories

In this section, we introduce the notion of paths (or trajectories) and histo-
ries on a CTMDP. Intuitively, paths are resultants of an (infinite) evolution

56 CHAPTER 7. CTMDP

s0

a1

a2

b s1

Eer(s0, a1) = 2

Eer(s0, a2) = 1

2
3

1
3

1
2

1
2

Ela(s1) = 31

Figure 7.1: A CTMDP

of a CTMDP, whereas histories are finite prefixes of paths. Below we fix a
CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P) .

Definition 7.3 (Paths and Histories). A(n infinite) path (or trajectory) π
is an infinite sequence

π =
〈

s0
a0,t0
−−−→ s1

a1,t1
−−−→ s2 . . .

〉

such that si ∈ S, ti ∈ R≥0 and ai ∈ Act for all i ≥ 0; we denote si, ti and ai
by π[i], π〈i〉 and π(i), respectively. A (finite) history ξ is a finite sequence

ξ =
〈

s0
a0,t0
−−−→ s1

a1,t1
−−−→ s2 . . . sm

〉

(m ≥ 0)

such that si ∈ S, ti ∈ R≥0 and ai ∈ Act for all 0 ≤ i ≤ m− 1, and sm ∈ S;
we denote si, ti, ai and m by ξ[i], ξ〈i〉, ξ(i) and |ξ|, respectively; moreover,
we define ξ ↓:= ξ [|ξ|] to be the last state of the history ξ .

Below we introduce more notations on paths and histories. We denote
the set of paths and histories (of M) by Paths(M) and Hists(M), respec-
tively. We define Histsn(M) := {ξ ∈ Hists(M) | |ξ| = n} to be the set of
all histories of length n (n ≥ 0). For each n ∈ N0 and π ∈ Paths(M), we
define the history π[0..n] to be the finite prefix of π up to n; Formally,

π[0..n] :=

〈

π[0]
π(0),π〈0〉
−−−−−→ . . . π[n]

〉

.

Given π ∈ Paths(M) and (s, a, t) ∈ S × Act × R≥0, we denote by s
a,t
−→ π

the path obtained by “putting” the prefix “s
a,t
−→” before π; Formally,

s
a,t
−→ π :=

〈

s
a,t
−→ π[0]

π(0),π〈0〉
−−−−−→ π[1]

π(1),π〈1〉
−−−−−→ . . .

〉

.

7.3. MEASURABLE SPACES ON PATHS AND HISTORIES 57

Analogously, we define s
a,t
−→ ξ (for ξ ∈ Hists(M)) to be the history obtained

by “putting” “s
a,t
−→” before the history ξ.

Intuitively, a path π reflects a whole evolution of a CTMDP, where π[i]
is the current state at the i-th stage, π(i) is the action chosen at π[i] (by a
scheduler) and π〈i〉 is the sojourn-time on π[i]. On the other hand, a history
ξ is a finite prefix of a path which reflects the evolution up to |ξ| stages.

Below we extend sets of histories to sets of paths in a cylindrical fashion.

Definition 7.4. Let n ∈ N0 and Ξ ⊆ Histsn(M). The cylinder extension
of Ξ, denoted by Cyl(Ξ), is defined as follows:

Cyl(Ξ) := {π ∈ Paths(M) | π[0..n] ∈ Ξ} .

Intuitively, the cylinder extension of Ξ ⊆ Histsn(M) is the set of all
paths whose prefixes up to n steps are in Ξ.

7.3 Measurable Spaces on Paths and Histories

In this section, we define the measurable spaces for paths and histories
on CTMDPs by combining the definitions from [74, 58]. Below we fix a
CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P) .

Firstly, we introduce the notion of combined actions and its measurable
space.

Definition 7.5 (Combined Actions). A combined action is a tuple (a, t, s)
where a ∈ Act, t ∈ R≥0 and s ∈ S. The measurable space (ΓM,UM) over
combined actions is defined as follows:

• ΓM := Act× R≥0 × S is the set of combined actions;

• UM := 2Act⊗B(R≥0)⊗2S is the product σ-algebra (cf. Definition 3.11).

Then we introduce the notion of templates, which will be used to define
the measurable spaces.

Definition 7.6 (Templates). A template θ is a finite sequence

θ = 〈s, U1, . . . , Um〉(m ≥ 0)

such that s ∈ S and Ui ∈ UM for 1 ≤ i ≤ m; The length of θ, denoted by
|θ|, is defined to be m. The set of histories Hists(θ) spanned by a template
θ is defined by:

Hists (〈s, U1, . . . , Um〉) :=
{

ξ ∈ Histsm(M) |

ξ[0] = s and (ξ(i), ξ〈i〉, ξ[i+ 1]) ∈ Ui+1 for all 0 ≤ i < m
}

.

58 CHAPTER 7. CTMDP

Now we introduce the measurable spaces on paths and histories, as in
the following definition.

Definition 7.7 (Measurable Spaces). The measurable space (ΩnM,SnM) over
Histsn(M) (n ∈ N0) is defined as follows: ΩnM = Histsn(M) and SnM is
generated by the family

{Hists(θ) | θ is a template and |θ| = n}

of subsets of Histsn(M).
The measurable space (ΩM,SM) over Paths(M) is defined as follows:

ΩM = Paths(M) and SM is the smallest σ-algebra generated by the family

{Cyl(Ξ) | Ξ ∈ SnM for some n ≥ 0} (§)

of subsets of Paths(M).

Remark 7.1. An alternative way to define the measurable space on paths
can be done by changing (§) to the following set:

C := {Cyl(Hists(θ)) | θ is a template} .

This can be seen as follows. Let S ′ be the σ-algebra on paths generated by C.
Clearly, S ′ ⊆ SM. For each n ∈ N0, define S ′

n := {Ξ ⊆ ΩnM | Cyl(Ξ) ∈ S ′}
. One can verify that S ′

n is a σ-algebra on ΩnM by the following facts:

1. ΩnM ∈ S ′
n;

2. If Ξ ∈ S ′
n then ΩnM − Ξ ∈ S ′

n ;

3. If Ξ1,Ξ2, · · · ∈ S ′
n then

⋃

m≥0 Ξm ∈ S ′
n .

The second and third fact follows from Cyl(ΩnM − Ξ) = ΩM − Cyl(Ξ) and
Cyl(

⋃

m≥0 Ξm) =
⋃

m≥0Cyl(Ξm), respectively. Then one obtains SnM ⊆ S ′
n

for all n ≥ 0 since {Hists(θ) | θ is a template and |θ| = n} ⊆ S ′
n . This

implies that Cyl(Ξ) ∈ S ′ for all n ≥ 0 and Ξ ∈ SnM. It follows that SM ⊆ S ′.

7.4 Schedulers and Their Probability Spaces

In this section, we introduce the notion of schedulers. Informally, a scheduler
resolves the actions to be chosen (i.e., non-determinism) at each (current)
state of a CTMDP, so that a unique probability space on the set of trajec-
tories of the CTMDP can be established. As in the case of the previous
section, we combine the notions stemming from [74, 58].

Below we fix a CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P) . We dis-
tinguish histories through their last states by defining the following sets of
histories:

• Histser(M) := {ξ ∈ Hists(M) | ξ↓ ∈ Ser} ;

7.4. SCHEDULERS AND THEIR PROBABILITY SPACES 59

• Histsla(M) := {ξ ∈ Hists(M) | ξ↓ ∈ Sla} .

It is easy to see that Histser(M) ∪Histsla(M) = Hists(M).

Definition 7.8 (Schedulers). A scheduler D is a function

D : (Histser(M) ∪ (Histsla(M)× R≥0))×Act→ [0, 1]

such that for all ξ ∈ Hists(M) and t ∈ R≥0, the following conditions hold:

• either ξ ∈ Histser(M) and
∑

a∈ActD(ξ, a) = 1, or ξ ∈ Histsla(M)
and

∑

a∈ActD(ξ, t, a) = 1 ;

• for all a ∈ Act, if either (i) ξ ∈ Histser(M) and D(ξ, a) > 0 or (ii)
ξ ∈ Histsla(M) and D(ξ, t, a) > 0, then a ∈ En(ξ↓) .

D is called measurable if for all a ∈ Act and n ≥ 0, the following conditions
hold:

• the function D(�, a) is measurable w.r.t (ΩnM,SnM), provided that the
domain of D(�, a) is restricted to Histser(M) ∩Histsn(M);

• the function D(�, �, a) is measurable w.r.t (ΩnM ×R≥0, S
n
M ⊗B(R≥0)),

provided that the domain of D(�, �, a) is restricted to (Histsla(M) ∩
Histsn(M))× R≥0 .

From the definition, we can see that the difference between early- and
late-schedulable states. In early-schedulable states, a scheduler chooses a
probability distribution on actions immediately on entering a new current
state; in late-schedulable states, a scheduler has the option to choose such
a probability distribution after the sojourn-time at the new current state is
over (i.e., the state is about to be left). Intuitively, a scheduler generally
has more “free space” at late-schedulable states than at early-schedulable
states. This allows a scheduler to better optimize certain property, e.g.,
maximal time-bounded reachability probability (cf. [59]). The measurability
condition (in the definition) will be needed to define a probability measure
for the measurable space (ΩM,SM).

Each measurable scheduler directly induces a probability measure on
combined actions, when applied to a specific history. This probability mea-
sure serves as a basis for the definition of the probability measure on trajec-
tories of the CTMDP.

Definition 7.9. Let ξ ∈ Hists(M) be a history and D a measurable sched-
uler. The probability measure µDM(ξ, �) for the measurable space (ΓM,UM)
is defined as follows: if ξ ∈ Histser(M), then

µDM(ξ, U) :=

∑

a∈En(ξ↓)

D(ξ, a) ·

∫

R≥0

fEer(ξ↓,a)(t) ·

[

∑

s∈S

1U (a, t, s) ·P(ξ↓, a, s)

]

dt

60 CHAPTER 7. CTMDP

for each U ∈ UM; if ξ ∈ Histsla(M), then

µDM(ξ, U) :=

∫

R≥0

fEla(ξ↓)(t) ·

∑

a∈En(ξ↓)

D(ξ, t, a) ·

[

∑

s∈S

1U (a, t, s) ·P(ξ↓, a, s)

]

dt

for each U ∈ UM.

It can be shown that all integrand functions in Definition 7.9 are mea-
surable (cf. [57]).

Based on Definition 7.9, we define the probability spaces on histories and
paths (trajectories). Firstly, we define the probability space on histories. To
this end, we introduce the notion of concatenation as follows.

Definition 7.10. Let ξ ∈ Hists(M) be a history and (a, t, s) ∈ ΓM be a
combined action. Define ξ ◦ (a, t, s) ∈ Hists(M) to be the history obtained

by concatenating (a, t, s) to ξ↓ (i.e. ξ ◦ (a, t, s) = ξ[0] . . . ξ↓
a,t
−→ s) .

Then the probability space on histories of fixed length is given as follows.

Definition 7.11. Suppose D is a measurable scheduler and α is an initial
distribution. The sequence

{

PrnM,D,α : SnM → [0, 1]
}

n≥0
of probability mea-

sures is inductively as follows:

Pr0M,D,α(Ξ) :=
∑

s∈Ξ

α(s) ;

Prn+1
M,D,α(Ξ) :=

∫

Ωn
M

[∫

ΓM

1Ξ(ξ ◦ γ) µ
D
M(ξ, dγ)

]

PrnM,D,α(dξ) .

Again, it can be shown that all integrand functions in Definition 7.11 are
measurable (cf. [57]). Then, the probability space on paths (trajectories) is
given as follows.

Definition 7.12 (Probability Space on Paths). Let D be a measurable
scheduler and α be an initial distribution. The probability space

(ΩM,SM,PrM,D,α)

is defined as follows:

• ΩM and SM is defined as in Definition 7.7;

• PrM,D,α is the unique probability measure such that

PrM,D,α(Cyl(Ξ)) = PrnM,D,α (Ξ)

for all n ≥ 0 and Ξ ∈ SnM .

7.5. A GENERAL INTEGRAL CHARACTERIZATION 61

We refer for the detailed construction of (ΩM,SM,PrM,D,α) to [58, 74,
57].

We end this section with a fundamental property asserting that the role
of initial distribution can be decomposed into Dirac distributions on indi-
vidual states.

Proposition 7.1. For each measurable scheduler D and initial distribution
α, PrM,D,α(Π) =

∑

s∈S α(s) · PrM,D,D[s](Π) for all Π ∈ SM.

Recall that D[s] is the Dirac distribution at s (cf. Definition 4.1). This
proposition allows one to focus only on Dirac distributions when one wants
to compute/approximate probability mass of certain measurable sets of tra-
jectories.

7.5 A General Integral Characterization

In this section, we derive a general integral characterization for the prob-
ability measure on paths (trajectories). Below we fix a CTMDP M =
(S, Ser, Sla, Act,Eer,Ela,P) . For the sake of simplicity, we will omit all
‘M’s which appear in the subscripts (of e.g., the notation ‘Pr’). The proofs
for this section are highly measure-theoretic, and are put in Section 7.7.

Firstly, we define shifting functions on histories and paths which shifts
each path/history by one transition step.

Definition 7.13. Given Π ∈ SM and (s, a) ∈ S×Act, we define the function
P s,aΠ : R≥0 → 2Paths(M) by:

P s,aΠ (t) := {π ∈ Paths(M) | s
a,t
−→ π ∈ Π} .

Analogously, given Ξ ∈ SnM with n ≥ 1 and (s, a) ∈ S × Act, we define

Hs,a
Ξ : R≥0 → 2Hists

n−1(M) by:

Hs,a
Ξ (t) := {ξ ∈ Histsn−1(M) | s

a,t
−→ ξ ∈ Ξ} .

We also define the shifted version of a measurable scheduler as follows.

Definition 7.14. Let s ∈ S, a ∈ Act and t ∈ R≥0. For each measurable

scheduler D, the scheduler D[s
a,t
−→] is defined as follows:

• D[s
a,t
−→](ξ, �) := D(s

a,t
−→ ξ, �) for all ξ ∈ Histser(M);

• D[s
a,t
−→](ξ, τ, �) := D(s

a,t
−→ ξ, τ, �) for all (ξ, τ) ∈ Histsla(M)× R≥0.

The following lemma states that each shifted set of paths/histories is
measurable w.r.t corresponding measurable space.

62 CHAPTER 7. CTMDP

Lemma 7.1. P s,aΠ (t) ∈ SM for all Π ∈ SM, (s, a) ∈ S ×Act and t ∈ R≥0 .
Analogously, Hs,a

Ξ (t) ∈ Sn−1
M for all n ≥ 1, Ξ ∈ SnM , (s, a) ∈ S × Act and

t ∈ R≥0 .

Moreover, each shifted scheduler is measurable, as is illustrated by the
following lemma.

Lemma 7.2. Let s ∈ S, a ∈ Act and t ∈ R≥0. For each measurable

scheduler D, D[s
a,t
−→] is a measurable scheduler.

Based on Lemma 7.1 and Lemma 7.2, we define a shift probability func-
tion as follows.

Definition 7.15. Let s ∈ S, a ∈ Act, Π ∈ SM and D a measurable sched-
uler. Define ps,aΠ,D : R≥0 → [0, 1] by:

ps,aΠ,D(t) := Pr
D[s

a,t
−→],P(s,a,�)

(

P s,aΠ (t)
)

for all t ≥ 0.

The following proposition states that the shift probability function is
measurable w.r.t (R≥0,B(R≥0)).

Proposition 7.2. ps,aΠ,D is a measurable function w.r.t (R≥0,B(R≥0)) given
any Π ∈ SM, s ∈ S, a ∈ Act and measurable scheduler D.

Below we present the integral characterization for measurable schedulers,
which is the main result of this section.

Theorem 7.1. Let D be a measurable scheduler. For each Π ∈ SM and
s ∈ Ser, we have

PrD,D[s](Π) =
∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fEer(s,a)(t) · p

s,a
Π,D(t) dt .

For each Π ∈ SM and s ∈ Sla, we have

PrD,D[s](Π) =

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,aΠ,D(t)

 dt .

7.6 Conclusion

In this chapter, we introduced continuous-time Markov decision processes
(CTMDPs) [64, 63] and several related notions from [74, 58]. These notions
are namely paths, histories, schedulers and probability spaces on paths and
histories. We illustrated them in a way that combines the setting of early [74]
and late [58] schedulers. Moreover, as a contribution, we proved a general
integral characterization for the probability space on paths of a CTMDP.

7.7. PROOFS 63

7.7 Proofs

In the following, we fix a CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P).

Proposition 7.1. For each measurable scheduler D and each initial distri-
bution α, PrM,D,α(Π) =

∑

s∈S α(s) · PrM,D,D[s](Π) for all Π ∈ SM.

Proof. Define Pr′(Π) :=
∑

s∈S α(s) · PrM,D,D[s](Π) for Π ∈ SM. We prove
that Pr′ coincides with PrM,D,α. It is clear that Pr

′ is a probability measure
since each PrM,D,D[s] is a probability measure. So it suffices to prove that
Pr′ coincides with PrM,D,α on

⋃

n≥0{Cyl(Ξ) | Ξ ∈ SnM}. To this end, we
proceed by induction on n.

Base Step: n = 0 and Ξ ∈ SnM. By definition, we have

PrM,D,α(Cyl(Ξ)) = Pr0M,D,α(Ξ) =
∑

s∈S

α(s) · 1Ξ(s) = Pr′(Cyl(Ξ)) .

Inductive Step: Assume Ξ ∈ Sn+1
M . Define

g(ξ) :=

∫

ΓM

1Ξ(ξ ◦ γ) µ
D
M(ξ, dγ) .

Let {gm}m≥0 be a sequence of simple functions that converges increasingly
to g (cf. Proposition 3.1), which are denoted by gm =

∑lm
i=1 d

i
m · 1Ξi

, where
lm ≥ 1, dim ≥ 0 and Ξi ∈ SnM for all 1 ≤ i ≤ lm. Then

Prn+1
M,D,α(Ξ) =

∫

Ωn
M

g(ξ) PrnM,D,α(dξ) = lim
m→∞

lm
∑

i=1

dim · PrnM,D,α(Ξi) .

By induction hypothesis,

PrM,D,α (Cyl(Ξi)) = PrnM,D,α(Ξi) =
∑

s∈S

α(s) · PrM,D,D[s] (Cyl(Ξi)) .

64 CHAPTER 7. CTMDP

Thus we have

PrM,D,α (Cyl(Ξ))

= Prn+1
M,D,α(Ξ)

= lim
m→∞

lm
∑

i=1

dim ·
∑

s∈S

α(s) · PrM,D,D[s] (Cyl(Ξi))

= lim
m→∞

∑

s∈S

α(s) ·
lm
∑

i=1

dim · PrM,D,D[s] (Cyl(Ξi))

=
∑

s∈S

α(s) · lim
m→∞

lm
∑

i=1

dim · PrnM,D,D[s](Ξi)

=
∑

s∈S

α(s) ·

∫

Ωn
M

g(ξ) PrnM,D,D[s](dξ)

=
∑

s∈S

α(s) · Prn+1
M,D,D[s](Ξ)

=
∑

s∈S

α(s) · PrM,D,D[s] (Cyl(Ξ)) ,

which justifies the induction hypothesis.

Lemma 7.1. P s,aΠ (t) ∈ SM for all Π ∈ SM, (s, a) ∈ S × Act and t ∈ R≥0

. Analogously, Hs,a
Ξ (t) ∈ Sn−1

M for all n ≥ 1, Ξ ∈ SnM , (s, a) ∈ S × Act and
t ∈ R≥0 .

Proof. We first prove the case for paths. Fix some s ∈ S, a ∈ Act and t ≥ 0.
Define the set S ′ by: S ′ := {Π ∈ SM | P s,aΠ (t) ∈ SM} . We prove that
S ′ = SM. By Remark 7.1, it suffices to prove that

1. {Cyl(Hists(θ)) | θ is a template.} ⊆ S ′, and

2. S ′ is a σ-algebra.

The first point follows directly from the definition of templates. To see the
second point, one can verify that (i) P s,aΩM

(t) = ΩM, (ii) P s,aΠc (t) =
[

P s,aΠ (t)
]c

and (iii) P s,a⋃
n≥0 Πn

(t) =
⋃

n≥0 P
s,a
Πn

(t) .

The proof for histories can be similarly obtained by proving the following
fact: {Ξ ∈ SnM | Hs,a

Ξ (t) ∈ Sn−1
M } = SnM for n ≥ 1.

Lemma 7.2. Let s ∈ S, a ∈ Act and t ∈ R≥0. For each measurable

scheduler D, D[s
a,t
−→] is a measurable scheduler.

Proof. Fix some arbitrary b ∈ Act, ǫ ∈ [0, 1] and n ≥ 0. Let D be a
measurable scheduler. We have

{ξ ∈ Histsn(M) ∩Histser(M) | D[s
a,t
−→](ξ, b) ≤ ǫ} = Hs,a

Ξ (t) ,

7.7. PROOFS 65

where Ξ := {ξ ∈ Histsn+1(M)∩Histser(M) | D(ξ, b) ≤ ǫ} . By Lemma 7.1,
Hs,a

Ξ (t) is measurable. As for histories in Histsla(M), we define

shift(X) := {(ξ, τ) ∈ (Histsn(M) ∩Histsla(M))× R≥0 | (s
a,t
−→ ξ, τ) ∈ X}

for each X ∈ Sn+1
M ⊗ B(R≥0) . Let

X ′ := {X ∈ Sn+1
M ⊗ B(R≥0) | shift(X) ∈ SnM ⊗ B(R≥0)} .

Then one can prove X ′ = Sn+1 ⊗ B(R≥0) in a similar way to the proof of
Lemma 7.1. In detail, one can proceed by proving that

1. {Hists(θ)× I | |θ| = n+ 1 and I is an interval of R≥0} ⊆ X ′, and

2. X ′ is a σ-algebra.

Then, from

{(ξ, τ) ∈ Histsn(M)× R≥0 | D[s
a,t
−→](ξ, τ, b) ≤ ǫ} =

shift
(

{(ξ, τ) ∈ Histsn+1(M)× R≥0 | D(ξ, τ, b) ≤ ǫ}
)

,

we obtain that {(ξ, τ) ∈ Histsn(M) × R≥0 | D[s
a,t
−→](ξ, τ, b) ≤ ǫ} is mea-

surable.

Proposition 7.2. ps,aΠ,D is a measurable function w.r.t (R≥0,B(R≥0)) given
any Π ∈ SM, s ∈ S, a ∈ Act and measurable scheduler D.

Proof. Fix some s ∈ S, a ∈ Act and measurable scheduler D. Define the set

S ′ := {Π ∈ SM | ps,aΠ,D is a measurable function.} .

We show that (cf. Definition 3.14 and Definition 3.12)

1. S ′ is a λ-system, and

2. the π-system {Cyl(Ξ) | Ξ ∈ SnM for some n ≥ 0} ⊆ S ′ .

We first prove the second point. The proof proceeds through an induciton
on n such that Cyl(Ξ) ∈ S ′ for all Ξ ∈ SnM. The base step n = 0 is
straightforward since ps,aΠ,D is constantly 0 or 1, depending on whether s ∈
Ξ or not. The base step n = 1 follows from the definition of templates
(Definition 7.6) and the finiteness of S and Act, which implies that ps,aΠ,D
is a simple function (cf. Definition 3.6). Below we consider the inductive
step for n + 1 with n ≥ 1. Let Ξ ∈ Sn+1

M with n ≥ 1. For a measurable
set of histories Ξ′ and a measurable scheduler D′, we denote the measurable
function gΞ′,D′ by:

gΞ′,D′(ξ) :=

∫

ΓM

1Ξ′(ξ ◦ γ)µD
′

M(ξ, dγ) .

Let {gm}m∈N be a sequence of simple functions that converges increasingly
and pointwisely to gΞ,D (cf. Proposition 3.1). Denote gm =

∑lm
i=1 d

i
m · 1Ξi

m

. By defintion,

66 CHAPTER 7. CTMDP

• 1Hs,a
Ξ (t)(ξ ◦ γ) = 1Ξ(s

a,t
−→ ξ ◦ γ) for all t ≥ 0, ξ ∈ Ωn−1

M and γ ∈ ΓM;

• µ
D[s

a,t
−→]

M (ξ, �) = µDM(s
a,t
−→ ξ, �) for all t ≥ 0 and ξ ∈ Ωn−1

M .

Then, we have g
Hs,a

Ξ (t),D[s
a,t
−→]

(ξ) = gΞ,D(s
a,t
−→ ξ) for all t ≥ 0 and ξ ∈ Ωn−1

M ;

it follows that

lim
m→∞

gm(s
a,t
−→ ξ) = gΞ,D(s

a,t
−→ ξ) = g

Hs,a
Ξ (t),D[s

a,t
−→]

(ξ) .

Note that by definition, gm(s
a,t
−→ ξ) =

∑lm
i=1 d

i
m · 1Hs,a

Ξi
m
(t)(ξ) for all t ≥ 0

and ξ ∈ Ωn−1
M . Thus, by Proposition 3.1, we obtain

ps,aCyl(Ξ),D(t)

=Pr
D[s

a,t
−→],P(s,a,�)

(

P s,aCyl(Ξ)(t)
)

=Prn
D[s

a,t
−→],P(s,a,�)

(

Hs,a
Ξ (t)

)

=

∫

Ωn−1
M

g
Hs,a

Ξ (t),D[s
a,t
−→]

(ξ) Prn−1

D[s
a,t
−→],P(s,a,�)

(dξ)

= lim
m→∞

lm
∑

i=1

dim · Prn−1

D[s
a,t
−→],P(s,a,�)

(Hs,a
Ξi
m
(t))

= lim
m→∞

lm
∑

i=1

dim · Pr
D[s

a,t
−→],P(s,a,�)

(P s,a
Cyl(Ξi

m)
(t))

= lim
m→∞

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t)

for all t ≥ 0. It follows from Proposition 3.2 and the induction hypothesis
that ps,aCyl(Ξ),D is a measurable function.

Now the first point follows from the following facts:

• ps,aΩM,D is measurable since ps,aΩM,D(t) = 1 for all t ≥ 0;

• Whenever Π1,Π2 ∈ S ′ and Π1 ⊆ Π2, we have Π2\Π1 ∈ S ′ since
ps,aΠ2\Π1,D

= ps,aΠ2,D
− ps,aΠ1,D

;

• For any sequence {Πn}n≥0 such that Πn ∈ S ′ and Πn ⊆ Πn+1 for all
n ≥ 0, we have

⋃

n≥0Πn ∈ S ′ since ps,a⋃
n≥0 Πn,D

= lim
n→∞

ps,aΠn,D
.

By applying Dynkin’s π-λ Theorem (Theorem 3.3), we obtain that SM ⊆ S ′,
which implies the result.

Theorem 7.1. Let D be a measurable scheduler. For each Π ∈ SM and
s ∈ Ser, we have

PrD,D[s](Π) =
∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fEer(s,a)(t) · p

s,a
Π,D(t) dt .

7.7. PROOFS 67

For each Π ∈ SM and s ∈ Sla, we have

PrD,D[s](Π) =

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,aΠ,D(t)

 dt .

Proof. Let s ∈ S. Define Pr′ : SM → [0, 1] by:

Pr′(Π) :=
∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fEer(s,a)(t) · p

s,a
Π,D(t) dt

if s ∈ Ser, and

Pr′(Π) :=

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,aΠ,D(t)

 dt

if s ∈ Sla. We prove that Pr′ coincides with PrD,D[s]. It is straightforward
from Proposition 7.2, Theorem 3.1 and Theorem 3.2 that Pr′ is a probability
measure. Below we prove that Pr′ and PrD,D[s] coincide on

⋃

n≥0{Cyl(Ξ) |
Ξ ∈ SnM}. The proof proceeds through induction on n.

Base Step: n ∈ {0, 1} and Ξ ∈ SnM. If n = 0, we have

PrD,D[s](Cyl(Ξ)) = Pr0D,D[s](Ξ) = 1Ξ(s) = Pr′(Cyl(Ξ)) .

Otherwise, n = 1. If s ∈ Ser, then we have

PrD,D[s](Cyl(Ξ))

= Pr1D,D[s](Ξ)

=

∫

Ω0
M

[∫

ΓM

1Ξ(ξ ◦ γ) µ
D
M(ξ, dγ)

]

Pr0D,D[s](dξ)

=

∫

ΓM

1Ξ(s ◦ γ) µ
D
M(s, dγ)

Let U := {γ ∈ ΓM | s ◦ γ ∈ Ξ} . Then U ∈ UM. Thus,
∫

ΓM

1Ξ(s ◦ γ) µ
D
M(s, dγ)

= µDM(s, U)

=
∑

a∈En(s)

D(s, a) ·

∫

R≥0

fEer(s,a)(t) ·

[

∑

s′∈S

1U (a, t, s
′) ·P(s, a, s′)

]

dt

=
∑

a∈En(s)

D(s, a) ·

∫

R≥0

fEer(s,a)(t) ·

[

∑

s′∈S

1Ξ(s
a,t
−→ s′) ·P(s, a, s′)

]

dt

=
∑

a∈En(s)

D(s, a) ·

∫

R≥0

fEer(s,a)(t) · p
s,a
Cyl(Ξ),D(t) dt

68 CHAPTER 7. CTMDP

where the last equality follows from Proposition 7.1. If s ∈ Sla, then we
have

PrD,D[s](Cyl(Ξ))

= Pr1D,D[s](Ξ)

=

∫

Ω0
M

[∫

ΓM

1Ξ(ξ ◦ γ) µ
D
M(ξ, dγ)

]

Pr0D,D[s](dξ)

=

∫

ΓM

1Ξ(s ◦ γ) µ
D
M(s, dγ) .

Let U := {γ ∈ ΓM | s ◦ γ ∈ Ξ} . Then U ∈ UM. Thus,

∫

ΓM

1Ξ(s ◦ γ) µ
D
M(s, dγ)

= µDM(s, U)

=

∫

R≥0

fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) ·

[

∑

s′∈S

1U (a, t, s
′) ·P(s, a, s′)

]

dt

=

∫

R≥0

fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) ·

[

∑

s′∈S

1Ξ(s
a,t
−→ s′) ·P(s, a, s′)

]

dt

=

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,aCyl(Ξ),D(t)

 dt .

where the last step follows from Proposition 7.1.

Inductive Step: Assume Ξ ∈ Sn+1
M with n ≥ 1. Denote

gΞ′,D′(ξ) :=

∫

ΓM

1Ξ′(ξ ◦ γ) µD
′

M(ξ, dγ) .

Let {gm : ΩnM → [0, 1]}m≥0 be a sequence of simple functions that converges

7.7. PROOFS 69

increasingly to gΞ,D. Denote gm =
∑lm

i=1 d
i
m · 1Ξi

m
. If s ∈ Ser, then

PrD,D[s] (Cyl(Ξ))

= Prn+1
D,D[s] (Ξ)

=

∫

Ωn
M

gΞ,D(ξ) Pr
n
D,D[s](dξ)

= lim
m→∞

lm
∑

i=1

dim · PrnD,D[s]

(

Ξim
)

= lim
m→∞

lm
∑

i=1

dim ·

∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fEer(s,a)(t) · p

s,a
Cyl(Ξi

m),D
(t) dt

= lim
m→∞

∑

a∈En(s)

D(s, a) ·

[

∫ ∞

0
fEer(s,a)(t) ·

lm
∑

i=1

dim · ·ps,a
Cyl(Ξi

m),D
(t) dt

]

=
∑

a∈En(s)

D(s, a) ·

[

∫ ∞

0
fEer(s,a)(t) · lim

m→∞

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t) dt

]

,

where the fourth equality follows from the induction hypothesis and the last
equality follows from Theorem 3.2. Note that

lim
m→∞

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t)

= lim
m→∞

lm
∑

i=1

dim · Pr
D[s

a,t
−→],P(s,a,�)

(

P s,a
Cyl(Ξi

m)
(t)
)

= lim
m→∞

lm
∑

i=1

dim · Prn−1

D[s
a,t
−→],P(s,a,�)

(

Hs,a
Ξi
m
(t)
)

.

Denote g′m(ξ) :=
∑lm

i=1 d
i
m · 1Hs,a

Ξi
m
(t)(ξ) . Then g′m(ξ) = gm(s

a,t
−→ ξ). It

follows that lim
m→∞

g′m(ξ) = gΞ,D(s
a,t
−→ ξ). By definition,

1. 1Ξ

(

(s
a,t
−→ ξ) ◦ γ

)

= 1Hs,a
Ξ (t) (ξ ◦ γ) for all combined actions γ;

2. µDM(s
a,t
−→ ξ, U) = µ

D[s
a,t
−→]

M (ξ, U) for all U ∈ UM.

70 CHAPTER 7. CTMDP

Thus gΞ,D(s
a,t
−→ ξ) = g

Hs,a
Ξ (t), D[s

a,t
−→]

(ξ) = lim
m→∞

g′m(ξ). It follows that

lim
m→∞

lm
∑

i=1

dim · Prn−1

D[s
a,t
−→],P(s,a,�)

(

Hs,a
Ξi
m
(t)
)

=

∫

Ωn−1
M

g
Hs,a

Ξ (t),D[s
a,t
−→]

(ξ) Prn−1

D[s
a,t
−→],P(s,a,�)

(dξ)

= Prn
D[s

a,t
−→],P(s,a,�)

(

Hs,a
Ξ (t)

)

.

Then, we have

PrD,D[s] (Cyl(Ξ))

=
∑

a∈En(s)

D(s, a) ·

[∫ ∞

0
fEer(s,a)(t) · Pr

n

D[s
a,t
−→],P(s,a,�)

(

Hs,a
Ξ (t)

)

dt

]

=
∑

a∈En(s)

D(s, a) ·

[∫ ∞

0
fEer(s,a)(t) · p

s,a
Cyl(Ξ),D(t) dt

]

.

Now assume that s ∈ Sla. We have

PrD,D[s] (Cyl(Ξ))

= Prn+1
D,D[s] (Ξ)

=

∫

Ωn
M

gΞ,D(ξ) Pr
n
D,D[s](dξ)

= lim
m→∞

lm
∑

i=1

dim · PrnD,D[s]

(

Ξim
)

= lim
m→∞

lm
∑

i=1

dim ·

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,a
Cyl(Ξi

m),D
(t)

 dt

= lim
m→∞

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) ·

[

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t)

]

dt

=

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) ·

[

lim
m→∞

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t)

]

dt

where the fourth equality is from the induction hypothesis and the last

7.7. PROOFS 71

equality follows from Theorem 3.2. Note that

lim
m→∞

lm
∑

i=1

dim · ps,a
Cyl(Ξi

m),D
(t)

= lim
m→∞

lm
∑

i=1

dim · Pr
D[s

a,t
−→],P(s,a,�)

(

P s,a
Cyl(Ξi

m)
(t)
)

= lim
m→∞

lm
∑

i=1

dim · Prn−1

D[s
a,t
−→],P(s,a,�)

(

Hs,a
Ξi
m
(t)
)

Denote g′m(ξ) :=
∑lm

i=1 d
i
m · 1Hs,a

Ξi
m
(t)(ξ) . Then g′m(ξ) = gm(s

a,t
−→ ξ). It

follows that lim
m→∞

g′m(ξ) = gΞ,D(s
a,t
−→ ξ). By definition,

1. 1Ξ

(

(s
a,t
−→ ξ) ◦ γ

)

= 1Hs,a
Ξ (t) (ξ ◦ γ) for all combined action γ;

2. µDM(s
a,t
−→ ξ, U) = µ

D[s
a,t
−→]

M (ξ, U) for all U ∈ UM.

Thus gΞ,D(s
a,t
−→ ξ) = g

Hs,a
Ξ (t), D[s

a,t
−→]

(ξ) = lim
m→∞

g′m(ξ). It follows that

lim
m→∞

lm
∑

i=1

dim · Prn−1

D[s
a,t
−→],P(s,a,�)

(

Hs,a
Ξi
m
(t)
)

=

∫

Ωn−1
M

g
Hs,a

Ξ (t),D[s
a,t
−→]

(ξ) Prn−1

D[s
a,t
−→],P(s,a,�)

(dξ)

= Prn
D[s

a,t
−→],P(s,a,�)

(

Hs,a
Ξ (t)

)

.

Then we have

PrD,D[s] (Cyl(Ξ))

=

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · Prn
D[s

a,t
−→],P(s,a,�)

(

Hs,a
Ξ (t)

)

 dt

=

∫ ∞

0
fEla(s)(t) ·

∑

a∈En(s)

D(s, t, a) · ps,aCyl(Ξ),D(t)

 dt .

It follows that the inductive step is completed.

72 CHAPTER 7. CTMDP

Chapter 8

Acceptance Probability of

CTMC-Paths by DTA

A continuous-time Markov chain (CTMC) is a continuous-time Markov
decision process (cf. Chapter 7) such that all states of the CTMDP are
late-schedulable and have exactly one enabled action (i.e., exactly one non-
deterministic choice). (It does not matter whether states of a CTMC are
early-schedulable or late schedulable, since each state has exactly one en-
abled action.) Under a CTMC, there is a unique measurable scheduler which
selects upon each history the only enabled action of the last state of the his-
tory. Intuitively, the class of CTMCs is a “deterministic” subclass of the
one of CTMDPs, where no actual non-determinism is present. Applications
of CTMCs include Markovian queueing networks [14, 68], stochastic Petri
nets, system biology and so forth.

Formal verification of CTMCs has received much attention in recent
years [6]. Many applicable results have been obtained on time-bounded
reachability [4, 35], CSL model checking [4, 75], and so forth. In this chap-
ter, we focus on verifying CTMCs against timed-automata specification.
In particular we consider approximating the probabilities of sets of CTMC-
paths accepted by a deterministic timed automata (DTA) [1, 17]. In general,
DTA represents a wide class of linear real-time specifications. For example,
we can describe time-bounded reachability probability “to reach target set
G ⊆ S within time bound T while avoiding unsafe states U ⊆ S” (G∩U = ∅)
by the single-clock DTA A1 (Fig. 8.1), and the property “to reach target set
G ⊆ S within time bound T1 while successively remaining in unsafe states
U ⊆ S for at most T2 time” (G∩U = ∅) by the two-clock DTA A2 (Fig. 8.2),
both with initial configuration (q0,~0). (We omit redundant locations that
cannot reach the accepting state.)

The problem to verify CTMCs against DTA-specifications is first consid-
ered by Donatelli et al. [31] where they enriched CSL [4] with an acceptance
condition of one-clock DTA, yielding the logic CSLTA. In their paper, they

73

74 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

q0 q1

S\(G ∪ U), x ≤ T, ∅

G, true, ∅

S, true, ∅

Figure 8.1: DTA A1

q0 q1

q2

S\(G ∪ U), x ≤ T1, {y}

U, x ≤ T1 ∧ y < T2, ∅

G, true, ∅

S, true, ∅

U, x ≤ T1 ∧ y < T2, ∅

G, true, ∅

S\(G ∪ U), x ≤ T1, {y}

Figure 8.2: DTA A2

proved that CSLTA is at least as expressive as CSL and asCSL [4, 2], and
is strictly more expressive than CSL. Moreover, they presented a model-
checking algorithm for CSLTA using Markov regenerative processes [31].
Chen et al. [24] systematically studied the DTA-acceptance condition on
CTMC-paths. More specifically, they proved that the set of CTMC-path
accepted by a multi-clock DTA is measurable and proposed a system of in-
tegral equations which characterizes the acceptance probabilities. Moreover,
they demonstrated that the product of a CTMC and a DTA is a piecewise
deterministic Markov process [27], a stochastic dynamic system which inte-
grates both discrete control and continuous evolution. Afterwards, Barbot et
al. [9] put the approximation of DTA-acceptance probabilities of CTMC-
paths into practice, especially the algorithm on one-clock DTA, which is first
devised by Donatelli et al. [31] and then re-written by Chen et al. [24]. Later
on, Chen et al. [23] proposed approximation algorithms for time-bounded
verification of several linear real-time specifications, where the restricted
time-bounded case, in which the time guard x < T with a fresh clock x and
a time bound T is enforced on each edge that leads to some final state of
the DTA, is covered. Very recently, Mikeev et al. [55] applies the notion of
DTA-acceptance condition on CTMC-paths to system biology. It is worth
noting that Brázdil et al. also studied DTA-specifications in [17]. However
they focused on semi-Markov processes as the underlying continuous-time
stochastic model and limit frequencies of locations (in the DTA) as the per-
formance measures, rather than path-acceptance conditions.

The contributions of this chapter are as follows. We start by providing a
rigorous proof for the measurability of the set of CTMC-paths accepted by

8.1. CONTINUOUS-TIME MARKOV CHAINS 75

a DTA, correcting the proof provided by Chen et al. [24]. We confirm the
correctness of the integral equation system characterizing acceptance prob-
abilities provided by Chen et al. [24] through a direct application of Theo-
rem 7.1, and derive a differential characterization. Based on the differential
characterization, we present an approximation algorithm to approximate
acceptance probabilities, and provide tight error bounds for the approxima-
tion algorithm. Whereas other works [9, 55, 31] focus on single-clock DTA,
our approximation algorithm is applicable to any (multi-clock) DTA. To our
knowledge, this is the first such approximation algorithm with explicit error
bounds. Barbot et al. [9] suggested an approximation scheme, but did not
provide error bounds.

The chapter is organized as follows. In Section 8.1, we introduce the
notion of continuous-time Markov chains. In Section 8.2, we introduce the
notion of deterministic timed automata. In Section 8.3, we prove the mea-
surability of accepted paths, and present the proof for the integral equa-
tions [24] that characterize the acceptance probability. In Section 8.4, we
develop several mathematical technicalities useful to our main result. In
Section 8.5, we propose a differential characterization for the family of ac-
ceptance probability functions. Base on these results, we establish and solve
our approximation scheme in Section 8.6. Finally, Section 8.7 concludes the
chapter.

8.1 Continuous-Time Markov Chains

In this section, we present basic definitions for continuous-time Markov
chains [36, 68]. These definitions are just simplified definitions from the
ones in Chapter 7, which omit the single enabled actions at each state and
the different between early- and late-schedulable states.

Definition 8.1. A continuous-time Markov chain (CTMC) is a triple (S,E,P),
where

• S is a finite non-empty set of states,
• E : S → R>0 is a total exit-rate function, and
• P : S × S → [0, 1] is a transition matrix such that

∑

u∈S P(s, u) = 1
for all s ∈ S.

A path of a CTMC (S,E,P) is an infinite sequence
〈

s0
t0−→ s1

t1−→ . . .
〉

such

that sn ∈ S and tn ∈ R≥0 for all n ∈ N0. The set of paths of a CTMC M
is denoted by Paths(M).

The evolution of a CTMC and the notions of paths and histories are
the same as the one of a CTMDP (cf. Chapter 7). The definition of the
probability space PrM,D,α, with a CTMC M, the unique measurable sched-
uler D for M which always chooses the Dirac distribution at sole enabled

76 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

action, and an initial distribution α for M, is defined in the same way as
in Chapter 7. Since the scheduler is unique in the context of CTMCs, we
will abbreviate ‘PrM,D,α’ as ‘PrM,α’, and omit the subscript M whenever
possible.

In this chapter, we consider CTMCs with labelled states. Informally, a
labelling function assigns to each state of a CTMC a label which specifies
the atomic property that holds at the state.

Definition 8.2. Let M = (S,E,P) be a CTMC. A labelling function L is
a function S → L, where L is a set of labels.

With labels, one can view any path (trajectory) s0
t0−→ s1

t1−→ . . . of a
CTMC as a timed word t0L(s0)t1L(s1) . . . ; this allows one to specify de-
sired linear properties on a CTMC via acceptance conditions of a timed
automaton (cf. Section 8.2).

8.2 Deterministic Timed Automata

The class of timed automata [1] is an extension of that of finite automata
with clocks. It can be used either as a language acceptor for words integrated
with time information (i.e., timed words), or as a formal description for timed
transition systems (just like finite automata for finite reactive systems). The
class of deterministic timed automata is a subclass of timed automata, which
is an analogue to deterministic finite automata.

The key concept in timed automata is the concept of clocks. Generally,
clocks are abstract variables holding non-negative real values interpreted as
time-elapse quantities.

Definition 8.3. Let X be a finite set of clocks. A (clock) valuation on X
is a function η : X → R≥0. We denote by Val(X) the set of valuations on
X .

Clocks play a role in the notion of timed automata through the notion
of guards (or clock constraints). Intuitively, a guard is a logical formula
interpreted over clock valuations.

Definition 8.4. A guard g (or clock constraint) over a finite set of clocks
X is a logical formula generated by the following gramma:

g ::= x ⋊⋉ c | g ∧ g ,

where x ∈ X , ⋊⋉∈ {<,≤, >,≥}, c ∈ N0 and ‘∧’ represents the logical ‘and’
operator. We denote the set of guards over X by Φ(X). For each η ∈ Val(X)
and g ∈ Φ(X), the satisfaction relation η |= g is inductively defined by:
η |= x ⋊⋉ c iff η(x) ⋊⋉ c, and η |= g1 ∧ g2 iff η |= g1 and η |= g2.

8.2. DETERMINISTIC TIMED AUTOMATA 77

Given X ⊆ X , η ∈ Val(X) and t ∈ R≥0, the valuations η[X := 0], η + t,
and η − t are defined as follows:

1. η[X := 0](x) := 0 for all x ∈ X, and η[X := 0](x) := η(x) for all
x ∈ X\X;

2. (η + t)(x) := η(x) + t for all x ∈ X ;
3. (η − t)(x) := η(x) − t for all x ∈ X , provided that η(x) ≥ t for all
x ∈ X .

Intuitively, η[X := 0] is obtained by resetting all clocks of X to zero on η,
and η+ t resp. η− t is obtained by delaying resp. backtracking t time units
from η.

In this chapter, we will also view a clock valuation as a real vector indexed
by the elements of X . We may also refer g ∈ Φ(X) to the set of valuations
that satisfy g: this may happen in the phrases such as “g1 ∩ g2”, etc.

The notion of deterministic time automata is a subclass of timed au-
tomata [1], which is illustrated as follows.

Definition 8.5. [1, 17] A deterministic timed automaton (DTA) is a tuple
(Q,Σ,X ,∆, F), where:

• Q is a finite set of locations;
• F ⊆ Q is a set of final locations;
• Σ is a finite alphabet of signatures;
• X is a finite set of clocks;
• ∆ ⊆ Q× Σ× Φ(X)× 2X ×Q is a finite set of rules such that

1. ∆ is deterministic: for all (q1, a1, g1, X1, q
′
1), (q2, a2, g2, X2, q

′
2) ∈

∆, if (q1, a1) = (q2, a2) and g1 ∩ g2 6= ∅ then (g1, X1, q
′
1) =

(g2, X2, q
′
2).

2. ∆ is total: for all (q, a) ∈ Q × Σ and η ∈ Val(X), there exists
(q, a, g,X, q′) ∈ ∆ such that η |= g.

In the following, we fix a DTA A = (Q,Σ,X ,∆, F). The next definition
illustrates the notion of configurations which is closely related to runs of
DTAs on timed words. To ease the notation, given any triple (q, η, a) ∈
Q × Val(X) × Σ, we define (gηq,a,X

η
q,a,q

η
q,a) ∈ Φ(X) × 2X × Q to be the

unique triple such that the rule (q, a,gηq,a,X
η
q,a,q

η
q,a) ∈ ∆ satisfies η |= g

η
q,a;

the triple is well-defined and unique since ∆ is deterministic and total.

Definition 8.6. [1] A configuration of A is a pair (q, η), where q ∈ Q and
η ∈ Val(X). A timed signature is a pair (t, a) where t ∈ R≥0 and a ∈ Σ.
The one-step transition function

κ : (Q×Val(X))× (R≥0 × Σ) → Q×Val(X)

is defined by: κ((q, η), (t, a)) = (qη+tq,a , (η + t)[Xη+t
q,a := 0]) .

78 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Intuitively, the configuration κ((q, η), (t, a)) is obtained as follows: firstly,
we delay t time-units at (q, η) to obtain (q, η + t); then we find the unique
rule (q, a, g,X, q′) ∈ ∆ such that η+ t |= g; finally, we obtain κ((q, η), (t, a))
by changing the location to q′ and resetting η + t with X. For the sake of
simplicity, we may represent “κ((q, η), (t, a)) = (q′, η′)” by the more intuitive

phrase “(q, η)
(t,a)
−−−→ (q′, η′)”.

Then the notion of timed words and runs on timed words is demonstrated
in the following definition.

Definition 8.7. [1] A timed word is an infinite sequence of timed sig-
natures. The run of A on a timed word w = {(tn, an)}n∈N0 with ini-
tial configuration (q, η), denoted by Aq,η(w), is the unique infinite sequence
{(qn, ηn)(tn, an)}n∈N0 which satisfies that (q0, η0) = (q, η) and (qn+1, ηn+1) =
κ((qn, ηn), (tn, an)) for n ≥ 0.

A timed word w is accepted by A with initial configuration (q, η) iff
Aq,η(w) = {(qn, ηn)(tn, an)}n∈N0 satisfies that qn ∈ F for some n ≥ 0.
Moreover, w is accepted by A with initial configuration (q, η) within k steps
(k ≥ 0) iff Aq,η(w) = {(qn, ηn)(tn, an)}n∈N0 satisfies that qn ∈ F for some
0 ≤ n ≤ k.

8.3 Measurability and The Integral Equations

In this section, we first formally define the notion of DTA-acceptance on
CTMC-trajectories, following the definition from [24], which is the central
theme of this chapter. Then we provide a rigorous proof for the measura-
bility of the set of CTMC-trajectories accepted by a DTA, and the system
of integral equations that characterizes the acceptance probability.

Below we fix a CTMC M = (S,E,P), a DTA A = (Q,Σ,X ,∆, F) and
a labelling function L : S → Σ. Firstly, we formally define the notion of
DTA-acceptance on CTMC-trajectories.

Definition 8.8. [24] The set of M-paths accepted by A w.r.t the triple
(s, q, η) ∈ S ×Q×Val(X), denoted by PathsM,A(s, q, η), is defined by:

PathsM,A(s, q, η) := {π ∈ Paths(M) |

π[0] = s and L(π) is accepted by A with initial configuration (q, η)} ,

where L(π) is the timed word given by:

L(π) := 〈(π〈0〉,L(π[0])) (π〈1〉,L(π[1])) . . . (π〈n〉,L(π[n]))〉 .

Moreover, the set of M-paths accepted by A w.r.t (s, q, η) ∈ S×Q×Val(X)
within k-steps (k ≥ 0), denoted by PathsM,A

k (s, q, η), is defined as the set
of paths π ∈ Paths(M) such that π[0] = s and L(π) is accepted by A with
initial configuration (q, η) within k-steps.

8.3. MEASURABILITY AND THE INTEGRAL EQUATIONS 79

In this chapter, we omit the superscript “M,A” if the underlying context
is clear.

Below we prove that Paths(s, q, η) is measurable w.r.t the measurable
space (ΩM,SM) (cf. Definition 7.7) for all (s, q, η) ∈ S × Q × Val(X),
where the measurable space results from omitting the deterministic choices
of actions in the definition for CTMDPs. Given measurability, the integral-
equation system that characterizes the acceptance probability [24] follows
directly from Theorem 7.1.

Remark 8.1. We point out the flaw in the measurability proof by Chen et
al. [24]. The error appears on Page 11 under the label “(1b)” which handles
the equality guards in timed transitions. In (1b), for an timed transition e
emitted from q with guard x = K, four DTAs Ae,Ae, A

>
e ,A

<
e are defined

w.r.t the original DTA A. Then it is argued that

PathsC(Ae) = PathsC(Ae)\(Paths
C(A>

e) ∪ Paths
C(A<

e)) .

This is incorrect. The left part PathsC(Ae) excludes all timed paths which
involve both the guard x > K and the guard x < K (from q). However the
right part does not. So the left and right part are not equal.

By definition,
⋃

k≥0 Pathsk(s, q, η) = Paths(s, q, η). Thus in order to
prove the measurability of Paths(s, q, η), it suffices to prove that each set
Pathsk(s, q, η) is measurable under (ΩM,SM). The following proposition
presents this point, whose proof uses a decomposition of Pathk(s, q, η) into
subsets of paths. Below given a word β of length k (k ≥ 1) on some alphabet,
we denote by βi the i-th symbol of β (i.e., β = β1 . . . βk).

Proposition 8.1. For all k ∈ N0 and (s, q, η) ∈ S × Q × Val(X), the set
Pathsk(s, q, η) is measurable w.r.t. (ΩM,SM).

Proof. Fix some k ∈ N0 and (s, q, η) ∈ S × Q × Val(X). If k = 0, then the
measurability follows from the fact that either Paths0(s, q, η) = Paths(M)
(q ∈ F) or Paths0(s, q, η) = ∅ (q 6∈ F). From now on, we assume that k ≥ 1.

Given a word β ∈ Sk and a word γ ∈ ∆k, we define the set Pathsβ,γ(s, q, η)
to be the set of all π ∈ Paths(M) such that π[0] = s, π[i] = βi+1 for all
0 ≤ i ≤ k − 1, and the run Aq,η(L(π)) = {(qn, ηn)(tn, an)}n≥0 satisfies that
(qi, ai,g

ηi+ti
qi,ai ,X

ηi+ti
qi,ai ,q

ηi+ti
qi,ai) = γi+1 for all 0 ≤ i ≤ k − 1. Intuitively, the

set Pathsβ,γ(s, q, η) consists of all paths whose runs sequentially follow the
state sequence β and the rule sequence γ. By definition,

⋃

(β,γ)

Pathsβ,γ(s, q, η) = Pathsk(s, q, η) ,

where (β, γ) ranges over the set

Sk ×
{

γ′ ∈ ∆k | ∃1 ≤ i ≤ k.∃q ∈ F. (q is a component of the tuple γi)
}

.

80 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Thus, it suffices to show that each Pathsβ,γ(s, q, η) is measurable.
Fix some β ∈ Sk and γ ∈ ∆k. If either β1 6= s, or the first component

of the tuple γ1 is not q, or β and γ mismatch (i.e., the action in some γi
does not match L(βi)), or the last component of γi is not equal to the first
component of γi+1 for some i, then Pathsβ,γ(s, q, η) = ∅, which is clearly
measurable. From now on, we assume that β ∈ Sk and γ ∈ ∆k survive the
failure conditions in this paragraph.

Consider an arbitrary path

π = s0
t0−→ . . . sk−1

tk−1
−−−→ · · · ∈ Pathsβ,γ(s, q, η) .

(Note that Pathsβ,γ(s, q, η) may still be empty.) Let the run Aq,η(L(π)) be
{(qn, ηn)(tn, an)}n≥0. Since the rule sequence γ is fixed, we can represent
each ηi (0 ≤ i ≤ k− 1) as a vector-valued linear function hi on t0, . . . , tk−1.
(In fact, hi is a function on t0, . . . , ti−1.) Thus, π ∈ Pathsβ,γ(s, q, η) implies
that (i) π[i] = βi+1 for all 0 ≤ i ≤ k − 1 and (ii) hi(t0, . . . , tk−1) + ti |= gi+1

for all 0 ≤ i ≤ k − 1, where gj is the rule component of the tuple γj (for
1 ≤ j ≤ k). Conversely, one easily verifies that for all π ∈ Paths(M), if
(i) π[i] = βi+1 for all 0 ≤ i ≤ k − 1 and (ii) hi(t0, . . . , tk−1) + ti |= gi+1 for
all 0 ≤ i ≤ k − 1, then π ∈ Pathsβ,γ(s, q, η). Thus, there exists some set
J ⊆ Rk definable through a system of a finite number of linear inequalities,
dependent only on γ and η, such that π ∈ Pathsβ,γ(s, q, η) iff π[i] = βi+1 and
(π〈0〉, . . . , π〈k − 1〉) ∈ J . We first assume that J can be defined through
a system of finitely many linear inequalities where all comparison operators
are ≤ or ≥. Then J is a closed subset of Rk, which implies that

Pathsβ,γ(s, q, η) =
⋂

n∈N0

⋃

{Cyl(Hists(θ)) | θ ∈ Cn} ,

where Cn is the set of all templates θ (cf. Definition 7.6) such that there
exists non-negative integers n0, . . . , nk−1 such that

•
(

Πk−1
i=0

[

ni

n ,
ni+1
n

]

)

∩ J 6= ∅ and
•

θ = 〈β1,

[

n0
n
,
n0 + 1

n

]

× {β2}, . . . ,

[

nk−2

n
,
nk−2 + 1

n

]

× {βk}, [
nk−1

n
,
nk−1 + 1

n
]× S〉 .

Intuitively, the closed-ness of J allows us to “cover” J with arbitrarily small
grids, where each grid (with β) can be interpreted directly as a template
(cf. Definition 7.6). It follows that Pathsβ,γ(s, q, η) is measurable. Now we
assume that J is defined through a system of finitely many linear inequalities
which involves the comparison operator ‘<’ or ‘>’. This case can be reduced
to the previous case (where only ‘≤’ and ‘≥’ are present) as follows: firstly,

8.3. MEASURABILITY AND THE INTEGRAL EQUATIONS 81

we modify each inequality aT · t < c in J to aT · t ≤ c − 1
n and each

inequality aT · t > c in J to aT · t ≥ c+ 1
n , to obtain a new system of linear

inequalities which defines a closed set Jn ⊆ Rk. From previous analysis, the
set Πn of all paths π such that (i) π[i] = βi+1 for all 0 ≤ i ≤ k − 1 and
(ii) (π〈0〉, . . . , π〈k − 1〉) ∈ Jn is measurable, for all n ∈ N. By definition
and the representation of J through a finite system of linear inequalities,
J =

⋃

n∈N Jn. Thus by Pathsβ,γ(s, q, η) =
⋃

n∈NΠn, Pathsβ,γ(s, q, η) is
measurable.

Based on Proposition 8.1 and Theorem 7.1, we directly obtain the inte-
gral characterization as follows. Below we define the following functions:

• for each n ∈ N0, we define the function

probn : S ×Q×Val(X) → [0, 1]

by: probn(s, q, η) = PrD[s] (Pathsn(s, q, η)) (cf. Definition 8.8);
• we define the function

prob : S ×Q×Val(X) → [0, 1]

by: prob(s, q, η) = PrD[s] (Paths(s, q, η)) .

Moreover, we abbreviate (gηq,L(s),X
η
q,L(s),q

η
q,L(s)) as (g

η
q,s,X

η
q,s,q

η
q,s) .

Theorem 8.1. The family {probn}n∈N0 satisfies the following properties:
(i) prob0(s, q, η) = 1F (q); (ii) for all n ∈ N0, if q ∈ F then probn+1(s, q, η) =
1, otherwise

probn+1(s, q, η) =
∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · probn
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt .

The function prob satisfies the following system of integral equations: If
q ∈ F then prob(s, q, η) = 1, otherwise

prob(s, q, η) =
∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · prob
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt .

Proof. We first consider the case for the family {probn}n∈N0 . Let (s, q, η) ∈
S × Q × Val(X). By definition, one can verify that prob0(s, q, η) = 1F (q)
and probn(s, q, η) = 1 with q ∈ F . Given n ∈ N0 and q ∈ Q\F , we obtain
directly from Theorem 7.1 that

probn+1(s, q, η) =
∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · probn
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt .

82 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Then the case for prob follows from Monotone Convergence Theorem (cf.
Theorem 3.2).

In this chapter, we study the approximation of the function prob.

8.4 Mathematical Technicalities

In this section, we prepare several mathematical technicalities to derive the
differential characterization for the function prob (cf. Section 8.5). In de-
tail, we review several equivalence relations on clock valuations [1] and the
product region graph between CTMC and DTA [24], and prove that the
function prob is Lipschitz continuous.

Below we fix a CTMC M = (S,E,P), a DTA A = (Q,Σ,X ,∆, F) and
a labelling function L : S → Σ. For a clock x ∈ X , we denote by Tx the
largest integer c that appears in some guard x ⋊⋉ c of A, by Tmax the integer
maxx∈X Tx, and by Emax the value max{E(s) | s ∈ S}.

8.4.1 Equivalence Relations on Clock Valuations

Definition 8.9. [1] Two valuations η, η′ ∈ Val(X) are guard-equivalent,
denoted by η ≡gd η

′, if they satisfy the following conditions:

1. for all x ∈ X , η(x) > Tx iff η′(x) > Tx;
2. for all x ∈ X , if η(x) ≤ Tx and η′(x) ≤ Tx, then (i) int(η(x)) =

int(η′(x)) and (ii) frac(η(x)) > 0 iff frac(η′(x)) > 0.

where int(�) and frac(�) is the integral and fractional part of a real number,
respectively. Moreover, η and η′ are equivalent, denoted by η ≡ η′, if (i)
η ≡gd η

′ and (ii) for all x, y ∈ X , if η(x), η′(x) ≤ Tx and η(y), η′(y) ≤ Ty,
then frac(η(x)) ⋊⋉ frac(η(y)) iff frac(η′(x)) ⋊⋉ frac(η′(y)) for all ⋊⋉∈ {<,=, >
}. We will call equivalence classes of ≡ regions. Given a region [η]≡, we say
that [η]≡ is marginal if for some clock x ∈ X , η(x) ≤ Tx and frac(η(x)) = 0.

In other words, equivalence classes of ≡gd are captured by (i) a boolean
vector over X which indicates whether η(x) > Tx or not, (ii) an integer vector
which indicates the integral parts of clocks in {x ∈ X | η(x) ≤ Tx}, and (iii) a
boolean vector which indicates whether η(x) is an integer when η(x) ≤ Tx.
Equivalence classes of ≡ is further captured by a linear order on the set
{x ∈ X | η(x) ≤ Tx} w.r.t the ordering on the values {frac(η(x))}η(x)≤Tx .
Below we state some basic properties of ≡gd and ≡.

Proposition 8.2. [1] The following properties on ≡gd and ≡ hold:

1. both ≡g and ≡ is an equivalence relation over clock valuations, and
has finite index;

8.4. MATHEMATICAL TECHNICALITIES 83

2. if η ≡gd η
′, then η and η′ satisfy the same set of guards that appear in

the rules of A;
3. if η ≡ η′, then

• for all t > 0, there exists t′ > 0 such that η + t ≡ η′ + t′, and
• for all t′ > 0, there exists t > 0 such that η + t ≡ η′ + t′;

4. if η ≡ η′, then η[X := 0] ≡ η′[X := 0] for all subsets X ⊆ X ;
5. for all η ∈ Val(X) and X ⊆ X , {η′[X := 0] | η′ ∈ [η]≡} is a region.

Besides these two equivalence notions, we define another finer equiva-
lence notion as follows.

Definition 8.10. Two valuations η, η′ ∈ Val(X) are bound-equivalent, de-
noted by η ≡bd η

′, if for all x ∈ X , either η(x) > Tx and η′(x) > Tx, or
η(x) = η′(x).

Intuitively, η ≡bd η
′ means that the behaviours of η and η′ are almost

equal, as they either have the same value on a clock, or their values on a
clock x are both over the relevance threshold Tx. It is straightforward to
verify that ≡bd is an equivalence relation.

The following lemma specifies the relation between ≡bd and prob (cf.
Barbot et al. [9]). Below we present an alternative proof.

Proposition 8.3. Let s ∈ S, q ∈ Q and η, η′ ∈ Val(X). If η ≡bd η
′, then

prob(s, q, η) = prob(s, q, η′).

Proof. We prove that Paths(s, q, η) = Paths(s, q, η′). Assume that π ∈
Paths(s, q, η). Then the run Aq,η(L(π)) = {(qn, ηn)(π〈n〉,L(π[n]))}n≥0 sat-
isfies that qn ∈ F for some n ≥ 0. Denote

Aq,η′(L(π)) = {(q′n, η
′
n)(π〈n〉,L(π[n]))}n≥0 .

We prove inductively on n that qn = q′n and ηn ≡bd η
′
n for all n ≥ 0. This

would imply π ∈ Paths(s, q, η′). The inductive proof can be carried out by
the fact that ηn ≡bd η

′
n implies

• ηn + π〈n〉 ≡bd η
′
n + π〈n〉 and

• (ηn + π〈n〉)[X := 0] ≡bd (η′n + π〈n〉)[X := 0] for all X ⊆ X .

Thus Paths(s, q, η) ⊆ Paths(s, q, η′) due to the arbitrary choice of π. The
other direction of inclusion can be proved symmetrically.

In the following, we further introduce a useful proposition.

Proposition 8.4. For all η ∈ Val(X), there exists a real number trht > 0
such that η+ t ≡ η+ t′ for all t, t′ ∈ (0, trht). For all η ∈ Val(X), if η(x) > 0
for all x ∈ X , then there exists a real number tlft > 0 such that η− t ≡ η− t′

for all t, t′ ∈ (0, tlft).

84 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Proof. Define Z := {η(x) − Tx | x ∈ X and η(x) > Tx}. If η(x) > Tx for
all clocks x, then we can choose trht to be any positive real number and
tlft = minZ. Below we assume that there exists x ∈ X such that η(x) ≤ Tx.

Define Z ′ := {frac(η(x)) | x ∈ X and η(x) ≤ Tx}. Let c1, c2 be the
maximum and the minimum value of Z ′, respectively. Note that 0 ≤ c2 ≤
c1 < 1. Then we choose trhs to be 1 − c1. The choice of tlft subjects to the
two cases below.

1. c2 > 0. Then we can choose tlft to be min({c2} ∪ Z).
2. c2 = 0. If Z ′ = {c2} then we can choose tlft = min({1}∪Z). Otherwise,

let c′ > c2 be the second minimum value in Z ′. Then we can choose
tlft = min({c′} ∪ Z).

It is straightforward to verify that trht, tlft satisfy the desired property.

Let η ∈ Val(X). We denote η+ to be a representative in {η + t | t ∈
(0, trht)}, and η

− to be a representative in {η−t | t ∈ (0, tlft)}, where trht, tlft
are specified in Proposition 8.4. The choice among the representatives will
be irrelevant due to the fact that all of them are equivalent under ≡. Note
that if a region [η]≡ is not marginal, then [η]≡ = [η+]≡ = [η−]≡; this is
because one can always find a real number δ small enough such that integral
parts of all values (η ± δ)(x) (x ∈ X) do not change, and the corresponding
fractional parts remain positive.

8.4.2 Product Region Graph

In this part, we define a qualitative variation of the product region graph
proposed by Chen et al. [24], mainly to derive a qualitative property of the
function prob.

Definition 8.11. The product region graph GM,A = (VM,A, EM,A) of M
and A is a digraph defined as follows:

• VM,A = S ×Q× (Val(X)/ ≡);
• ((s, q, [η]≡), (s

′, q′, [η′]≡)) ∈ EM,A iff (i) P(s, s′) > 0 and (ii) there
exists t ∈ R>0 such that [η+ t]≡ is not a marginal region and (q′, η′) =
κ((q, η), (t,L(s))).

A vertex (s, q, [η]≡) ∈ VM,A is called final if q ∈ F .

By Proposition 8.2, Definition 8.11 is well-defined. We omit the super-
script ‘M,A’ in “GM,A = (VM,A, EM,A)” if the underlying context is clear.

The following lemma states the relationship between prob and the prod-
uct region graph. Below we define

Zη := {0, 1} ∪ {frac(η(x)) | x ∈ X and η(x) ≤ Tx}

for each η ∈ Val(X). Intuitively, Zη captures the relevant fractional values
of η.

8.4. MATHEMATICAL TECHNICALITIES 85

Proposition 8.5. For all (s, q, η) ∈ S × Q × Val(X), prob(s, q, η) > 0 iff
(s, q, [η]≡) can reach some final vertex in G.

Proof. “only if”: It is clear that prob(s, q, η) > 0 iff probn(s, q, η) > 0 for
some n ∈ N0. We prove by induction on n that for all (s, q, η) ∈ S × Q ×
Val(X), if probn(s, q, η) > 0 then (s, q, [η]≡) can reach some final vertex in
G. The base step n = 0 is straightforward from the definition. Assume that
probn+1(s, q, η) > 0 with q 6∈ F . (If q ∈ F , then (s, q, [η]≡) itself is a final
vertex.) By Theorem 8.1, we can obtain that

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · probn
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt > 0 .

(8.1)
Consider the regions traversed by η + t when t goes from 0 to ∞. Denote
Zη = {w0, . . . , wm} (cf. the line before the proposition) such that m ≥ 1
and wi > wi+1 for all 0 ≤ i < m. Note that w0 = 1 and wm = 0. We divide
[0,∞) into open intervals (0, 1), (1, 2), (Tmax − 1, Tmax), (Tmax,∞). For each
integer k < Tmax, we further divide the interval (k, k+ 1) into the following
open sub-intervals, excluding a finite number of isolating points:

(k + 1− w0, k + 1− w1), . . . , (k + 1− wm−1, k + 1− wm) .

Then we define the cluster I of intervals by:

I := {(k+ 1−wi, k+ 1−wi+1) | 0 ≤ k < Tmax, 0 ≤ i < m} ∪ {(Tmax,∞)} .

One can verify by definition that for all I ∈ I and t′, t ∈ I, η + t ≡ η + t′.
In other words, [η + t]≡ does not change when t is restricted to one of the
intervals in I. By Inequality (8.1), there exists I ∈ I such that

∫

I

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · probn
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt > 0 .

This means that there exists u∗ ∈ S and t∗ ∈ I such that

P(s, u∗) · probn

(

u∗,qη+t
∗

q,s , (η + t∗)[Xη+t∗

q,s := 0]
)

> 0 .

Since I is nonempty, [η + t∗]≡ is not a marginal region. Thus there exists

an edge from (s, q, [η]≡) to (u∗,qη+t
∗

q,s , [(η + t∗)[Xη+t∗
q,s := 0]]≡) in G. By the

induction hypothesis, the vertex (u∗,qη+t
∗

q,s , [(η+t∗)[Xη+t∗
q,s := 0]]≡) can reach

some final vertex G. Thus (s, q, [η]≡) can reach some final vertex in G.
“if”: Assume (s, q, [η]≡) can reach some final vertex in G. Let the reach-

ability route be

(s, q, [η]≡) = (sn, qn, [ηn]≡) → (sn−1, qn−1, [ηn−1]≡) · · · → (s0, q0, [η0]≡)

86 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

with q0 ∈ F . We prove inductively on m ≤ n that probm(sm, qm, η
′) > 0

for all η′ ∈ [ηm]≡. The case m = 0 is straightforward. Assume that
probm(sm, qm, η

′) > 0 for all η′ ∈ [ηm]≡. Let η′′ ∈ [ηm+1]≡ be an arbitrary
clock valuation. By (sm+1, qm+1, [ηm+1]≡) → (sm, qm, [ηm]≡), P(sm+1, sm) >
0 and there exists η′m+1 ∈ [ηm+1]≡, η

′
m ∈ [ηm]≡ and t ∈ R>0 such that

[ηm+1 + t]≡ is not marginal and (qm, η
′
m) = κ((qm+1, η

′
m+1), (t,L(sm+1))).

By η′′ ≡ η′m+1, there exists t′ ∈ R>0 such that η′′ + t′ ≡ η′m+1 + t, which
further implies that

(η′′ + t′)[Xη′′+t′

qm+1,sm+1
:= 0] ≡ (η′m+1 + t)[X

η′m+1+t
qm+1,sm+1 := 0] (= η′m) .

By the fact that [η′′ + t′]≡ is not marginal, there exists an interval I ⊆ R≥0

with positive length such that for all τ ∈ I, η′′ + τ ≡ η′′ + t′ and

(η′′ + τ)[Xη′′+τ
qm+1,sm+1

:= 0] ≡ (η′′ + t′)[Xη′′+t′

qm+1,sm+1
:= 0] ≡ η′m .

Thus by induction hypothesis,

probm

(

sm, qm, (η
′′ + τ)[Xη′′+τ

qm+1,sm+1
:= 0]

)

> 0

for all τ ∈ I. Below we prove by contradiction that

∫

I

{

fE(s)(τ) ·

[

∑

u∈S

P(sm+1, u)· (†)

probm

(

u, qm, (η
′′ + τ)[Xη′′+τ

qm+1,sm+1
:= 0]

)

]}

dτ > 0 .

This would imply probm+1(sm+1, qm+1, η
′′) > 0 by Theorem 8.1. Suppose

that (†) does not hold. By Proposition 7.2, the integrand function h∗ : I → R

at the left hand side of (†) is measurable. Thus, there exists a sequence
{hk}k∈N of simple functions such that hk ↑ h∗ and

∫

I hk(τ) dτ ↑
∫

I h
∗(τ) dτ

(cf. Proposition 3.1). Since (†) does not hold (i.e.,
∫

I h
∗(τ) dτ = 0), for

all k ∈ N, the set Ck := {τ ∈ I | hk(τ) > 0} has Borel measure zero.
Thus

⋃

k∈NCk also has Borel measure zero. It follows that h∗ is zero on a
non-empty subset of I; contradiction to the induction hypothesis.

8.4.3 Lipschitz Continuity

In this part, we prove that the function prob is Lipschitz continuous. More
specifically, we prove that all functions that satisfy a boundness condition
related to ≡bd and the system of integral equations specified in Theorem 8.1
are Lipschitz continuous. The Lipschitz continuity will be fundamental to
our differential characterization and the error bound of our approximation
result.

8.4. MATHEMATICAL TECHNICALITIES 87

Theorem 8.2. Let h : S×Q×Val(X) → [0, 1] be a function which satisfies
the following conditions for all s ∈ S, q ∈ Q and η, η′ ∈ Val(X):

• if η ≡bd η
′ then h(s, q, η) = h(s, q, η′);

• if q ∈ F then h(s, q, η) = 1, otherwise h(s, q, η) is equal to the integral

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt .

For all s ∈ S, q ∈ Q and η, η′ ∈ Val(X), if ‖η − η′‖∞ < 1 then

|h(s, q, η)− h(s, q, η′)| ≤M1 · ‖η − η′‖∞ ,

where M1 := |X | ·EmaxTmax · e
Emax·Tmax .

Proof. If q ∈ F , then the result follows directly from h(s, q, η) = h(s, q, η′) =
1. From now on, we assume that q 6∈ F . To prove the theorem, it suffices
to prove that

|h(s, q, η)− h(s, q, η′)| ≤ EmaxTmax · e
EmaxTmax · ‖η − η′‖∞ ,

provided that ‖η − η′‖∞ < 1 and η, η′ differ exactly on one clock, i.e. |{x ∈
X | η(x) 6= η′(x)}| = 1. To this end we define δ(ǫ) for each ǫ ∈ (0, 1) as
follows:

δ(ǫ) := sup {|h(s, q, η)− h(s, q, η′)| | s ∈ S, q ∈ Q, η, η′ ∈ Val(X),

‖η − η′‖∞ ≤ ǫ and η, η′ differ only on one clock.}

Note that for all η, η′ ∈ Val(X) and X ⊆ X :

• if η and η′ differ at most on one clock, then so are η[X := 0] and
η′[X := 0];

• ‖η[X := 0]− η′[X := 0]‖∞ ≤ ‖η − η′‖∞.

Let ǫ ∈ (0, 1). Let s ∈ S, q ∈ Q\F and η, η′ ∈ Val(X) which satisfies
‖η − η′‖∞ ≤ ǫ < 1 and differ exactly on the clock x, i.e., η(x) 6= η′(x) and
η(y) = η′(y) for all y 6= x. W.l.o.g, we can assume that η(x) < η′(x). We
clarify two cases below.

Case 1: int(η(x)) = int(η′(x)). Then by η(x) < η′(x), frac(η(x)) <
frac(η′(x)). Consider the “trajectories” of η+ t and η′ + t when t goes from
0 to ∞. We divide [0,∞) into open integer intervals (0, 1), (1, 2), . . . , (Tmax−
1, Tmax) and (Tmax,∞). For each n < Tmax, we further divide the interval
(n, n+ 1) into the following open sub-intervals:

(n, n+ 1− frac(η′(x))), (n+ 1− frac(η′(x)), n+ 1− frac(η(x))),

(n+ 1− frac(η(x)), n+ 1) .

88 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

One can observe that for t ∈ (n, n+1−frac(η′(x)))∪(n+1−frac(η(x)), n+1),
we have η+ t ≡gd η

′+ t, which implies that η+ t and η′+ t satisfies the same
set of guards in A. However for t ∈ (n+ 1− frac(η′(x)), n+ 1− frac(η(x))),
it may be the case that η+ t 6≡gdη

′+ t due to their difference on the clock x.
Thus the total length for t within (n, n + 1) such that η + t 6≡gdη

′ + t is no
greater than |η(x)− η′(x)|. Then we have (†):

δn :=

∣

∣

∣

∣

∣

∫ n+1

n
fE(s)(t) ·

{

∑

u∈S

[

P(s, u) · h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

−P(s, u) · h
(

u,qη
′+t
q,s , (η′ + t)[Xη′+t

q,s := 0]
)

]

}

dt

∣

∣

∣

∣

∣

≤

∫ n+1

n

{

fE(s)(t) · δ(ǫ)
}

dt+E(s) · e−E(s)·n · |η(x)− η′(x)|

≤ δ(ǫ) ·

∫ n+1

n

{

fE(s)(t)
}

dt+E(s) · e−E(s)·n · ǫ

Note that for all t ∈ (Tmax,∞) and X ⊆ X ,

(η + t)[X := 0] ≡bd (η′ + t)[X := 0] ;

this implies (from Proposition 8.3)

h(u,qη+tq,s , (η + t)[Xη+t
q,s := 0]) = h(u,qη

′+t
q,s , (η′ + t)[Xη′+t

q,s := 0]) .

Therefore we have (‡):

|h(s, q, η)− h(s, q, η′)|

≤
Tmax−1
∑

n=0

δn

≤ δ(ǫ) ·

∫ Tmax

0

{

fE(s)(t)
}

dt+E(s) · ǫ ·
Tmax−1
∑

n=0

e−E(s)·n

≤ δ(ǫ) · (1− e−E(s)·Tmax) + ǫ ·E(s) · Tmax

≤ δ(ǫ) · (1− e−Emax·Tmax) + ǫ ·Emax · Tmax

Case 2: int(η(x)) < int(η′(x)). By |η(x)−η′(x)| < 1, we have int(η(x))+1 =
int(η′(x)) and frac(η′(x)) < frac(η(x)). Similarly, we divide the inter-
val [0,∞) into integer intervals (0, 1), (1, 2), . . . , (Tmax − 1, Tmax), (Tmax,∞).
And in each interval (n, n+1), we divide the interval into the following open
sub-intervals:

(n, n+ 1− frac(η(x))), (n+ 1− frac(η(x)), n+ 1− frac(η′(x))),

(n+ 1− frac(η′(x)), n+ 1) .

8.4. MATHEMATICAL TECHNICALITIES 89

If t ∈ (n+ 1− frac(η(x)), n+ 1− frac(η′(x))), then η + t ≡gd η
′ + t. And if

t lies in either (n, n+ 1− frac(η(x))) or (n+ 1− frac(η′(x)), n+ 1), then it
may be the case that η+ t 6≡gdη

′ + t. Thus the total length within (n, n+1)
such that η+ t 6≡gdη

′+ t is still smaller than |η(x)− η′(x)|. Therefore we can
apply the analysis (†) and (‡), to obtain that

|h(s, q, η)− h(s, q, η′)| ≤ δ(ǫ) · (1− e−EmaxTmax) + ǫ ·Emax · Tmax

Thus by the definition of δ(ǫ), we obtain

δ(ǫ) ≤ δ(ǫ) · (1− e−Emax·Tmax) + ǫ ·Emax · Tmax

which implies δ(ǫ) ≤ ǫ · eEmax·Tmax ·Emax · Tmax . By letting ǫ = ‖η − η′‖∞,
we obtain the desired result.

The Lipschitz continuity of the function prob follows directly from The-
orem 8.2.

Corollary 8.1. For all s ∈ S, q ∈ Q and η, η′ ∈ Val(X), if ‖η − η′‖∞ < 1
then

|prob(s, q, η)− prob(s, q, η′)| ≤M1 · ‖η − η′‖∞

where M1 is defined as in Theorem 8.2.

Proof. Directly from Theorem 8.1 and Theorem 8.2.

By Corollary 8.1, we can further prove that prob is the unique solution of
a revised system of integral equations from the one specified in Theorem 8.2.

Theorem 8.3. The function prob is the unique solution of the following
system of integral equations on h : S ×Q×Val(X) → [0, 1]:

1. for all s ∈ S, q ∈ Q and η, η′ ∈ Val(X), if η ≡bd η
′ then h(s, q, η) =

h(s, q, η′);
2. for all (s, q, η) ∈ S ×Q×Val(X), (i) if q ∈ F then h(s, q, η) = 1, and

(ii) if (s, q, [η]≡) cannot reach a final vertex in G then h(s, q, η) = 0;
3. for all (s, q, η) ∈ S×Q×Val(X), if (s, q, [η]≡) can reach a final vertex

in G and q 6∈ F , then h(s, q, η) equals

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt .

Proof. By Theorem 8.1, Proposition 8.3 and Proposition 8.5, prob satisfies
the integral-equation system. Below we prove that the integral-equation
system has only one solution.

We first prove that if h : S × Q × Val(X) → [0, 1] satisfies the integral-
equation system, then h satisfies the prerequisite of Theorem 8.2. Let h
be such a function which satisfies the integral-equation system. We only

90 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

need to consider the case for h(s, q, η) where (s, q, [η]≡) cannot reach a final
vertex in G. Assume (s, q, η) such that (s, q, [η]≡) cannot reach a final vertex
in G. Note that h(s, q, η) = 0. From the proof of Proposition 8.5, we can
construct a cluster I of disjoint open intervals which satisfies the following
conditions: (i)

⋃

I ⊆ R≥0; (ii) R≥0\
⋃

I is a finite set; (iii) for all I ∈ I and
t, t′ ∈ I, η+ t ≡ η+ t′. Choose any t ∈

⋃

I and u ∈ S such that P(s, u) > 0.

Then (u,qη+tq,s ,
[

(η + t)[Xη+t
q,s := 0]

]

≡
) cannot reach some final vertex in G

since [η + t]≡ is not marginal. Thus h(u,qη+tq,s , (η + t)[Xη+t
q,s := 0]) = 0 by

Proposition 8.5. It follows that

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt = 0 ,

which shows that h satisfies the prerequisite of Theorem 8.2.
Then suppose that h1, h2 : S × Q × Val(X) → [0, 1] are two distinct

solutions of the integral-equation system. Define h := |h1 − h2|. By Theo-
rem 8.2, h is Lipschitz continuous on Val(X). Furthermore, by the fact that
η ≡bd η

′ implies h(s, q, η) = h(s, q, η′), the image of h can be obtained on
S ×Q×

∏

x∈X [0, Tx]. Thus the maximum value

M := sup{h(s, q, η) | (s, q, η) ∈ S ×Q×Val(X)}

can be reached. Since h1 6= h2, M > 0. Denote

C := {(s, q, η) ∈ S ×Q×Val(X) | h(s, q, η) =M} .

We first prove that (†): for all (s, q, η) ∈ C and all edge (s, q, [η]≡) →
(s′, q′, [η′]≡) in G, there exists η′′ ∈ [η′]≡ such that (s′, q′, η′′) ∈ C.

Consider an arbitrary (s, q, η) ∈ C. Since M > 0, (s, q, [η]≡) can reach
a final vertex in G and q 6∈ F . From the proof of Proposition 8.5, we can
divide [0,∞) into a cluster I of disjoint open intervals, disregarding only a
finite number of isolating points, such that [η+ τ]≡ (τ ∈ I) does not change

for all I ∈ I. Thus h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

is piecewise continuous

on t ∈ R≥0, for all u ∈ S. Note that

h(s, q, η)

≤

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

]}

dt

≤

∫ ∞

0

{

fE(s)(t) ·

[

∑

u∈S

P(s, u) · h (s, q, η)

]}

dt

= h (s, q, η)

By the piecewise continuity, h
(

u,qη+tq,s , (η + t)[Xη+t
q,s := 0]

)

= M whenever

t ∈
⋃

I and P(s, u) > 0. Note that [0,∞)\ (
⋃

I) is finite. Thus for all edge

8.5. A DIFFERENTIAL CHARACTERIZATION 91

(s, q, [η]≡) → (s′, q′, [η′]≡) in G, there exists t ∈
⋃

I such that qη+tq,s = q′ and
(η+ t)[Xη+t

q,s := 0] ∈ [η′]≡. It follows from (s′, q′, (η+ t)[Xη+t
q,s := 0]) ∈ C that

(†) holds.
Let (s, q, η) ∈ C. Then there exists a path

(s, q, [η]≡) = (s0, q0, [η0]≡) → (s1, q1, [η1]≡) . . . (sn, qn, [ηn]≡)

in G with qn ∈ F . However, from (†), one can prove through induction
that there exists η′ ∈ [ηn]≡ such that (sn, qn, η

′) ∈ C, which implies qn 6∈ F .
Contradiction. ThusM = 0 and the solution to the integral-equation system
is unique.

8.5 A Differential Characterization

In this section, we present a differential characterization for the function
prob (cf. Section 8.3). Below we fix a CTMC M = (S,E,P), a DTA
A = (Q,Σ,X ,∆, F) and a labelling function L : S → Σ.

The following definition introduces our notion of derivative.

Definition 8.12. Given a function h : S×Q×Val(X) → [0, 1], we denote by
∇+

1
h (resp. ∇−

1
h) the right directional derivative (resp. the left directional

derivative) of h along the direction 1 (the vector whose coordinates are all
one) if the derivative exists. Formally, we define:

• ∇+
1
h(s, q, η) := lim

t→0+
1
t · (h(s, q, η + t)− h(s, q, η)), if the limit exists;

• ∇−
1
h(s, q, η) := lim

t→0+
1
t · (h(s, q, η) − h(s, q, η − t)), if η(x) > 0 for all

x ∈ X and the limit exists;

for each (s, q, η) ∈ S ×Q×Val(X).

Below we calculate these directional derivatives for the function prob.

Theorem 8.4. For all (s, q, η) ∈ S×Q×Val(X) with q 6∈ F , ∇+
1
prob(s, q, η)

exists, and ∇−
1
prob(s, q, η) exists given that η(x) > 0 for all x ∈ X . Fur-

thermore,

∇+
1
prob(s, q, η) =

E(s) · prob(s, q, η)−E(s) ·

[

∑

u∈S

P(s, u) · prob(u,qη
+

q,s, η[X
η+

q,s := 0])

]

and

∇−
1
prob(s, q, η) =

E(s) · prob(s, q, η)−E(s) ·

[

∑

u∈S

P(s, u) · prob(u,qη
−

q,s , η[X
η−

q,s := 0])

]

whenever ∇−
1
prob(s, q, η) exists.

92 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Proof. Let (s, q, η) ∈ S ×Q×Val(X) with q 6∈ F . To ease the notation, we
temporarily denote by h[s, q, η] the function

τ 7→ fE(s)(τ) ·

[

∑

u∈S

P(s, u) · prob
(

u,qη+τq,s , (η + τ)[Xη+τ
q,s := 0]

)

]

.

We first prove the case for ∇+
1
prob(s, q, η). By Theorem 8.1,

prob(s, q, η) =

∫ ∞

0
h[s, q, η](τ) dτ

and

prob(s, q, η + t) =

∫ ∞

0
h[s, q, η + t](τ) dτ

for all t ≥ 0. Note that h[s, q, η], h[s, q, η + t] is Riemann integratable since
it is piecewise continuous on τ (cf. the cluster I constructed in the proof
of Proposition 8.5). Thus,

∫∞
0 h[s, q, η](τ) dτ and

∫∞
0 h[s, q, η + t](τ) dτ can

be deemed as Riemann integral. By the variable substitution τ ′ = t+ τ , we
have

prob(s, q, η + t) = eE(s)·t ·

∫ ∞

t
h[s, q, η](τ) dτ

for all t ≥ 0. Then we have

prob(s, q, η + t)− prob(s, q, η)

= eE(s)·t ·

∫ ∞

t
h[s, q, η](τ) dτ −

∫ ∞

0
h[s, q, η](τ) dτ

= (eE(s)·t − 1) ·

∫ ∞

t
h[s, q, η](τ) dτ −

∫ t

0
h[s, q, η](τ) dτ

By Proposition 8.4, there exists trhs > 0 such that qη+τq,s and X
η+τ
q,s does not

change for τ ∈ (0, trhs). Thus h[s, q, η] is continuous on τ when t ∈ (0, trhs).
Moreover, the point τ = 0 can be continuously redefined on h[s, q, η]. Thus
by L’Hôspital’s Rule, we obtain

∇+
1
prob(s, q, η) =

E(s) · prob(s, q, η)−E(s) ·

[

∑

u∈S

P(s, u) · prob(u,qη
+

q,s, η[X
η+

q,s := 0])

]

.

Then we handle the case for ∇−
1
prob(s, q, η) given that η(x) > 0 for all

8.6. APPROXIMATION ALGORITHM 93

x ∈ X . For t ∈ (0,min{η(x) | x ∈ X}), we have

prob(s, q, η)− prob(s, q, η − t)

= prob(s, q, (η − t) + t)− prob(s, q, η − t)

= (eE(s)·t − 1) ·

∫ ∞

t
h[s, q, η − t](τ) dτ −

∫ t

0
h[s, q, η − t](τ) dτ

= (1− e−E(s)·t) ·

∫ ∞

0
h[s, q, η](τ) dτ − e−E(s)·t ·E(s) ·

∫ t

0

{

eE(s)·τ ·

[

∑

u∈S

P(s, u) · prob
(

u,qη−τq,s , (η − τ)[Xη−τ
q,s := 0]

)

]}

dτ

where the last step is obtained by performing the variable substitutions
τ ′ = τ − t in the first integral and τ ′ = t − τ in the second integral. By
Proposition 8.4, there exists tlft > 0 such that q

η−t
q,s and X

η−t
q,s does not

change for t ∈ (0, tlft). Thus the integrand function in the integral

∫ t

0

{

eE(s)·τ ·

[

∑

u∈S

P(s, u) · prob
(

u,qη−τq,s , (η − τ)[Xη−τ
q,s := 0]

)

]}

dτ

is continuous on τ when t ∈ (0, tlft); furthermore, the point τ = 0 can be
continuously redefined on the integrand function. Thus we can also apply
L’Hôspital’s Rule and obtain the desired result.

Remark 8.2. Note that if [η]≡ is not marginal, then [η+]≡ = [η−]≡ =
[η]≡. This tells us that ∇1prob(s, q, η) exists when [η]≡ is not marginal,
i.e., ∇+

1
prob(s, q, η) = ∇−

1
prob(s, q, η).

Theorem 8.4 will serve as a basis for our approximation algorithm.

8.6 Approximation Algorithm

In this section, we present an algorithm that approximates the function
prob through finite approximation schemes. We establish our approximation
scheme based on Theorem 8.4. Then we prove that our approximation
scheme converges to prob with a derived error bound.

Below we fix a CTMC M = (S,E,P), a DTA A = (Q,Σ,X ,∆, F) and
a labelling function L : S → Σ. For computational purpose, we assume that
all numerical values in M are rational.

Given clock valuation η and t ≥ 0, we define η ⊕ t ∈ Val(X) by:

(η ⊕ t)(x) := min{Tx, η(x) + t}

for all x ∈ X . Note that η ⊕ 0 = η iff η(x) ≤ Tx for all clocks x. Intuitively,
‘⊕’ is a variant operator of ‘+’ which takes into account the relevance thresh-
old for clock valuations.

94 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

To ease the notation, we extend ⊕,+, [�]≡, E(�),P(�, �) and �+ to triples
(s, q, η) ∈ S ×Q×Val(X) in a straightforward fashion, as follows:

• (s, q, η)⊕ t := (s, q, η ⊕ t) and (s, q, η) + t = (s, q, η + t);
• [(s, q, η)]≡ := (s, q, [η]≡) is a vertex of G;
• E(s, q, η) := E(s), and P ((s, q, η), u) := P(s, u) for each u ∈ S;
• (s, q, η)+ := (s, q, η+).

Moreover, we say that [(s, q, η)]≡ is marginal if [η]≡ is marginal; we denote

the triple (u,qη
+

q,s, η[X
η+
q,s := 0]) ∈ S ×Q×Val(X) by (s, q, η)+u , for u ∈ S.

Remark 8.3. By Corollary 8.1 and Proposition 8.3, one obtains easily that
prob(v + t) = prob(v ⊕ t) for all v ∈ S ×Q×Val(X) and t ≥ 0.

8.6.1 Approximation Schemes

In this part, we establish our approximation scheme in two steps: firstly, we
discretize the hypercube

∏

x∈X [0, Tx] ⊆ Val(X) into small grids; secondly, we
establish our approximation scheme by building constraints between these
discrete values through finite difference methods. By the Lipschitz conti-
nuity (Corollary 8.1) and Proposition 8.3, we don’t need to consider clock
valuations outside

∏

x∈X [0, Tx]. The discretization is as follows.

Definition 8.13. Let m ∈ N. The set of discretized points Dm is defined
as follows:

Dm :={h[(s, q, η)] | (s, q, η) ∈ S ×Q×Val(X),

and for all x ∈ X , η(x) ∈ [0, Tx] and η(x) ·m is an integer.} .

Intuitively, Dm results from discretizing the hypercube
∏

x∈X [0, Tx] ⊆
Val(X) with discretization step m. Note that the point h[v] is in fact v ∈
S×Q×Val(X). To simply the presentation, sometimes we do not distinguish
between the point h[v] and the element v.

Below we fix a m ∈ N and define ρ := m−1 (i.e., the discretization step
size). Based on Theorem 8.4, we render our basic approximation scheme as
follows.

Definition 8.14. The approximation scheme Υm consists of the discrete
points in Dm and a system of linear equations on Dm. The system of linear
equations contains one of the following equations for each h[v] ∈ Dm:

• h[v] = 0 if [v]≡ (as a vertex of G) cannot reach a final vertex in G;
• h[v] = 1 if [v]≡ is a final vertex in G;

8.6. APPROXIMATION ALGORITHM 95

• If [v]≡ can reach a final vertex in G and itself is not a final vertex,
then

h[v ⊕ ρ]− h[v]

ρ
= E(v) · h[v]−E(v) ·

∑

u∈S

P(v, u) · h[v+u] .

Intuitively, h[v] approximates prob(v) for h[v] ∈ Dm. We relate elements
in Dm by using ∇+

1
h described in Theorem 8.4.

Remark 8.4. We would like to remark that Υm does not have initial values
from which we can approximate prob incrementally. This phenomenon is an
inherent feature from the automata-theoretic definition of the problem (cf.
Definition 8.8). In contrast to approximation schemes with initial values,
this increases the difficulty to solve the problem and leads to the following
two problems: one is whether Υm has a solution, or even a unique solution;
the other is the error bound max{|h∗[v]−prob(v)| | h[v] ∈ Dm} provided that
h∗ is the unique solution of Υm.

Below we first derive the error bound of Υm, which is defined as the
maximal error of each linear equality when we substitute all h[v]’s by the
corresponding prob(v)’s. We would like to note that generally the error
bound of an approximation scheme without initial value does not imply any
information of the error between the solution to the approximation scheme
and the function which the approximation scheme approximates.

Proposition 8.6. For all h[v] ∈ Dm, if [v]≡ is not a final vertex and can
reach some final vertex (in G) then

∣

∣

∣

∣

1

ρ
· (prob(v ⊕ ρ)− prob(v))−∇+

1
prob(v)

∣

∣

∣

∣

< M2 · ρ ,

where M2 := 2 ·Emax ·M1 .

Proof. Let h[v] ∈ Dm such that [v]≡ is not a final vertex and can reach
some final vertex in G. Since h[v] ∈ Dm, the function f [v] : [0, ρ] → [0, 1],
defined by f [v](t) := prob(v ⊕ t)(= prob(v + t)), is continuous on [0, ρ] and
is differentiable on (0, ρ) (cf. Theorem 8.4 and Remark 8.2). By Lagrange’s
Mean-Value Theorem, there exists ρ′ ∈ (0, ρ) such that 1

ρ · (prob(v ⊕ ρ) −

prob(v)) =
(

d
dtf [v]

)

(ρ′). By Theorem 8.4, we obtain
(

d

dt
f [v]

)

(ρ′) = E(v) · prob(v + ρ′)−E(v) ·
∑

u∈S

P(v, u) · prob((v + ρ′)+u)

and

∇+
1
prob(v) = E(v) · prob(v)−E(v) ·

∑

u∈S

P(v, u) · prob(v+u) .

Let v = (s, q, η). By the definition of ρ, [η + ρ′]≡ = [η+]≡. Then by Corol-
lary 8.1, we obtain the desired result.

96 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

To analyze Υm, we further define several auxiliary approximation schemes.
Below we define subsets Bm,B

max
m of Dm as follows:

Bm = {h[v] ∈ Dm | [v]≡ is not final and can reach some final vertex in G};

Bmax
m = {h[v] ∈ Bm | v = (s, q, η) and η(x) = Tx for all x ∈ X} .

Intuitively, Bm contains the discrete points to be determined in Dm, and
Bmax
m is the extreme discrete points in Bm. For each h[v] ∈ Bm, we define

Nv ∈ N0 to be the minimum number such that either h [v ⊕ (Nv · ρ)] ∈ Bmax
m ,

or [v ⊕ (Nv · ρ)]≡ cannot reach some final vertex in G.
Below we transform Υm into an equivalent form.

Definition 8.15. The approximation scheme Υ′
m consists of the discrete

points Dm, and the system of linear equations which contains one of the
following linear equalities for each h[v] ∈ Dm:

• h[v] = 0 if [v]≡ cannot reach a final vertex in G;
• h[v] = 1 if [v]≡ is a final vertex of G.
• if h[v] ∈ Bm\B

max
m , then

h[v] =
1

1 + ρ ·E(v)
· h[v ⊕ ρ] +

ρ ·E(v)

1 + ρ ·E(v)
·
∑

u∈S

P(v, u) · h[v+u] (8.2)

• if h[v] ∈ Bmax
m then h[v] =

∑

u∈S P(v, u) · h[v+u] .

It is clear that Υ′
m is an equivalent reformulation of Υm. Note that the

case for h[v] ∈ Bmax
m in Υ′

m is derived from the fact that v⊕ρ = v. The error
bound of the approximation scheme Υ′

m is as follows. To ease the notation,
in the following we define

dρ,v :=
1

1 + ρ ·E(v)
.

Proposition 8.7. For all h[v] ∈ Bmax
m ,

prob(v) =
∑

u∈S

P(v, u) · prob(v+u) .

For all h[v] ∈ Bm\B
max
m , the value

∣

∣

∣

∣

∣

prob(v)−

(

dρ,v · prob(v ⊕ ρ) + (1− dρ,v) ·
∑

u∈S

P(v, u) · prob
(

v+u
)

)∣

∣

∣

∣

∣

is smaller than M2 · ρ
2 .

Proof. The case for h[v] ∈ Bmax
m is due to the fact that ∇+

1
prob(v) = 0

by definition. The case h[v] ∈ Bm\B
max
m can be directly derived from the

statement of Proposition 8.6, using the fact that Υ′
m is a direct equivalent

reformulation of Υm.

8.6. APPROXIMATION ALGORITHM 97

In the following, we unfold Υ′
m into another equivalent form Υ′′

m.

Definition 8.16. The approximation scheme Υ′′
m consists of the discrete

points Dm, and one of the following linear equality for each h[v] ∈ Dm:

• h[v] = 0 if [v]≡ cannot reach some final vertex in G, and h[v] = 1 if
[v]≡ is a final vertex in G;

• if h[v] ∈ Bm\B
max
m , then

h[v] =

Nv−1
∑

l=0

{

dlρ,v · (1− dρ,v) ·
∑

u∈S

P(v, u) · h
[

(v ⊕ (l · ρ))+u
]

}

+ dNv
ρ,v · f(v) (8.3)

where f(v) := 0 if [v ⊕ (Nv · ρ)]≡ cannot reach some final vertex in G,
and f(v) :=

∑

u∈S P(v, u)·h [(v ⊕ (Nv · ρ))
+
u] if h [v ⊕ (Nv · ρ)] ∈ Bmax

m ;
• if h[v] ∈ Bmax

m then h[v] =
∑

u∈S P(v, u) · h[v+u] .

Intuitively, Υ′′
m is obtained by unfolding h[v⊕ρ] further in Equation (8.2).

In the following, we prove that Υ′
m and Υ′′

m are equivalent, i.e., they have
the same set of solutions.

To ease the notation, we describe Υ′′
m by a matrix equation v = Av+b

where v is the vector over Bm to be solved, b : Bm → R is a vector and
A : Bm × Bm → R is a matrix. For example, for h[v] ∈ Bm\B

max
m , the row

A(h[v],−) is specified by the coefficients on h[v′] ∈ Bm in Equation (8.3);
the value b(h[v]) is the sum of the coefficients on Dm\Bm in Equation (8.3).
The exact permutation among Bm is irrelevant. Analogously, we describe
Υ′
m by a matrix equation v = Cv + d.

Proposition 8.8. Υ′
m and Υ′′

m are equivalent, i.e., they have the same set
of solutions.

Proof. We first consider the direction from Υ′
m to Υ′′

m. However, it is clear
that Υ′′

m is obtained directly from Υ′
m, by expanding h[v ⊕ ρ] repeatedly in

Equation (8.2) whenever v ⊕ ρ ∈ Bm\B
max
m .

Then we consider the non-trivial direction from Υ′′
m to Υ′

m. Let {h[v] |
h[v] ∈ Dm} be a solution of Υ′′

m. Define the function ĥ by: ĥ := 1Bm
· h. We

prove that for all h[v] ∈ Bm\B
max
m and all 0 ≤ n < Nv,

h[v] =
n
∑

l=0

{

dlρ,v · (1− dρ,v) ·
∑

u∈S

P(v, u) · ĥ
[

(v ⊕ (l · ρ))+u
]

}

+
n
∑

l=0

{

dlρ,v · d (h [v ⊕ (l · ρ)])
}

+ dn+1
ρ,v · h [v ⊕ ((n+ 1) · ρ)] . (8.4)

98 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

We prove this by induction on Nv−n. The case when n = Nv−1 is directly
specified by Γ′′

m. Let 0 ≤ n < n + 1 < Nv and assume that Equation 8.4
holds when Nv′ − n′ < Nv − n. By induction hypothesis, we have

h[v] =

n+1
∑

l=0

{

dlρ,v · (1− dρ,v) ·
∑

u∈S

P(v, u) · ĥ
[

(v ⊕ (l · ρ))+u
]

}

+

n+1
∑

l=0

{

dlρ,v · d (h [v ⊕ (l · ρ)])
}

+ dn+2
ρ,v · h [v ⊕ ((n+ 2) · ρ)] .

Then, we have (†):

h[v] =

n
∑

l=0

{

dlρ,v · (1− dρ,v) ·
∑

u∈S

P(v, u) · ĥ
[

(v ⊕ l · ρ)+u
]

}

+
n
∑

l=0

{

dlρ,v · d (h [v ⊕ (l · ρ)])
}

+ dn+1
ρ,v ·

{

(1− dρ,v) ·
∑

u∈S

P(v, u) · ĥ
[

(v ⊕ ((n+ 1) · ρ))+u
]

+ d (h [v ⊕ ((n+ 1) · ρ)]) + dρ,v · h [v ⊕ ((n+ 2) · ρ)]
}

.

Note that Nv⊕(n+1)·ρ − 0 = Nv − (n+ 1) < Nv − n. Thus by the induction
hypothesis,

h[v ⊕ ((n+ 1) · ρ)]

=(1− dρ,v) ·
∑

u∈S

{

P(v, u) · ĥ
[

(v ⊕ ((n+ 1) · ρ))+u
]

}

+ d (h [v ⊕ ((n+ 1) · ρ)]) + dρ,v · h [v ⊕ ((n+ 2) · ρ)] .

Thus, Equation (8.4) holds when we substitute h[v ⊕ ((n+ 1) · ρ)] into (†).
By taking n = 0 in Equation (8.4), we obtain that {h[v] | h[v] ∈ Dm} is a
solution of Υ′

m.

Below we derive the error bound of Υ′′
m.

Proposition 8.9. The error bound of the approximation scheme Υ′′
m is

M3 · ρ, where M3 := Tmax ·M2.

Proof. We only need to consider h[v] ∈ Bm\B
max
m . By Proposition 8.7,

∣

∣

∣

∣

∣

prob(v)−

(

dρ,v · prob(v ⊕ ρ) + (1− dρ,v) ·
∑

u∈S

P(v, u) · prob
(

v+u
)

)∣

∣

∣

∣

∣

< M2 · ρ
2 . (8.5)

8.6. APPROXIMATION ALGORITHM 99

Expanding prob[v ⊕ ρ] one step further in (8.5) will result in another error
of dρ,v ·M2 · ρ

2. By repeated expansion up to Nv (≤ Tmax · ρ
−1) steps, the

error bound of Υ′′
m is no greater than M2 · ρ

2 ·
∑Nv−1

n=0 dnρ,v, which is smaller
than M2 · Tmax · ρ.

8.6.2 Error-Bound Analysis

In this part, we analyze the error between prob and the solution to the
approximation scheme Υm (or equivalently Υ′

m, Υ
′′
m). We fix some m ∈ N

and ρ = m−1. We define

• Emin = min{E(s) | s ∈ S} and
• pmin = min{P(s, u) | s, u ∈ S and P(s, u) > 0} .

We note that Emin > 0 by Definition 8.1.

Recall that we describe Υ′′
m by v = Av + b and Υ′

m by v = Cv + d in
the previous part. Below we analyse the equation v = Av + b.

We first reproduce (on CTMCs and DTAs) the notions of δ-seperateness
and δ-wideness, which is originally discovered by Brazdil et al. [17] on semi-
Markov processes and DTAs. These notions are used to derive the error
bound. The following definition introduces a related technical notion of
transition relations.

Definition 8.17. For each t ∈ R>0, the binary relation
t
−→ on S×Q×Val(X)

is defined by: ((s, q, η), (u, q′, η′)) ∈
t
−→ iff P(s, u) > 0, [η+t]≡ is not marginal,

and κ((q, η), (t,L(s)) = (q′, η′).

We write “(s, q, η)
t
−→ (u, q′, η′)” instead of “((s, q, η), (u, q′, η′)) ∈

t
−→”; we

will call an (s, q, η)
t
−→ (u, q′, η′) a transit. The notions of seperateness and

wideness are defined as follows. Below we recall that

Zη = {0, 1} ∪ {frac(η(x)) | x ∈ X and η(x) ≤ Tx} .

Definition 8.18. Let δ ∈ R>0. A clock valuation η is δ-separated if for all

d1, d2 ∈ Zη, either d1 = d2 or |d1 − d2| ≥ δ. A transit (s, q, η)
t
−→ (u, q′, η′)

is δ-wide if t ≥ δ and for all τ ∈ (t− δ, t+ δ), η + τ ≡ η + t. Furthermore,
a sequence of transits

(s0, q0, η0)
t1−→ (s1, q1, η1) . . .

tn−→ (sn, qn, ηn) (n ≥ 1)

from (s0, q0, η0) to (sn, qn, ηn), where (si, qi, ηi)
ti+1
−−→ (si+1, qi+1, ηi+1) for all

0 ≤ i < n, is δ-wide if (si, qi, ηi)
ti+1
−−→ (si+1, qi+1, ηi+1) is δ-wide for all

0 ≤ i < n.

100 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Intuitively, a transit is δ-wide if one can adjust the transit by up to δ
time units, while keeping the DTA rule used to obtain this transition (cf.
Definition 8.7).

To explain the usage of separateness and wideness, we further import
the following technical notions.

Definition 8.19. A collection I of disjoint non-empty open intervals in
R≥0 is an open partition (of [0, 1]) if

⋃

I ⊆ [0, 1] and [0, 1]\ (
⋃

I) is a finite
set. Given a non-empty open interval I ⊆ [0, 1] with I = (c1, c2) and a t ∈
R≥0, we define I⋄t to be the (possibly empty) interval (frac(c1+t), frac(c2+t))
.

The following proposition illustrates the usage of separateness and wide-
ness, which is also the counterpart of the one on semi-Markov processes and
DTA [16, 17]. In the following, |G| denotes the number of vertices of G.

Proposition 8.10. Let δ ∈ R>0. For all (s, q, η) ∈ S × Q × Val(X), if η
is δ-separated, q 6∈ F and (s, q, [η]≡) can reach some final vertex in G, then
there exists a δ

|G| -wide and at most |G|-long sequence of transits from (s, q, η)

to some (s′, q′, η′) with q′ ∈ F .

Proof. Let (s, q, η) ∈ S × Q × Val(X) such that (s, q, [η]≡) is not final and
can reach some final vertex in G. Assume that η is δ-separated. Then there
exists a path

(s, q, [η]≡) = (s1, q1, r1) → · · · → (sn, qn, rn)

in G such that 1 < n ≤ |G| and qn ∈ F . Firstly, we inductively construct a
sequence of transits

(s, q, η) = (s1, q1, η1)
t1−→ . . .

tn−1
−−−→ (sn, qn, ηn)

such that ηi ∈ ri for all 1 ≤ i ≤ n, while maintaining the following structures:

• two open partitions I ′
i, Ii with Zηi ⊆ [0, 1]\

⋃

I ′
i, for each 1 ≤ i ≤ n;

• a bijection ϕi : I
′
i → Ii, for each 1 ≤ i ≤ n;

• two intervals (ci1, c
i
2) ∈ Ii, (w

i
1, w

i
2) ∈ I ′

i with ϕi((w
i
1, w

i
2)) = (ci1, c

i
2),

for each 1 ≤ i ≤ n− 1;
• a ci ∈ (ci1, c

i
2), for each 1 ≤ i ≤ n− 1.

Initially, we set η1 = η and I1 = I ′
1 = {(wj , wj+1) | 0 ≤ j < k}, where

the unique finite sequence {wj}0≤j≤k satisfies that Zη = {w0, w1, . . . , wk}
and wj < wj+1 for all 0 ≤ j < k ; (note that w0 = 0 and wk = 1;) we let ϕ1

be the identity mapping.
Assume that the sequence of transits until (si, qi, ηi), together with I ′

i, Ii
and ϕi, are constructed. Since (si, qi, ri) → (si+1, qi+1, ri+1) in G, there

8.6. APPROXIMATION ALGORITHM 101

exists ti > 0 such that [ηi + ti]≡ is not marginal, qi+1 = q
ηi+ti
qi,si and (ηi +

ti)[X
ηi+ti
qi,si := 0] ∈ ri+1. Since [ηi + ti]≡ is not marginal, we can adjust

ti, while without changing [ηi + ti]≡, so that we can choose (wi1, w
i
2) ∈ I ′

i

with 1 ∈ (wi1 + frac(ti), w
i
2 + frac(ti)). Define (ci1, c

i
2) := ϕi((w

i
1, w

i
2)) and

choose ci ∈ (ci1, c
i
2) arbitrarily (e.g., ci := 1

2 · (c
i
1 + ci2)). Then we set ηi+1 :=

(ηi + ti)[X
ηi+ti
qi,si := 0] ∈ ri+1, and split Ii, I

′
i as follows:

Ii+1 :=
(

Ii − {ϕi((w
i
1, w

i
2))}

)

∪ {(ci1, c
i), (ci, ci2)} ;

I ′
i+1 :={(wi1 + frac(ti), 1), (0, frac(w

i
2 + frac(ti)))}

∪ {I ⋄ ti | I ∈ I ′
i − {(wi1, w

i
2)}} .

The mapping ϕi+1 : I
′
i+1 → Ii+1 is defined as follows:

ϕi+1((w
i
1 + frac(ti), 1)) = (ci1, c

i) , ϕi+1((0, frac(w
i
2 + frac(ti)))) = (ci, ci2);

ϕi+1(I ⋄ ti) = ϕi(I) for all I ∈ I ′
i − {(wi1, w

i
2)} .

Intuitively, we record by I ′
i every possible splitting point caused by a transit

which may make the wideness of ηi + ti decrease, and we record the un-
timed splitting information by Ii, where the correspondence between them
is maintained by ϕi.

Since n ≤ |G|, at most |G| − 1 splitting operations occur on intervals
during the inductive construction described above. Based on this point, we
inductively construct a new δ

|G| -wide sequence of transits

(s, q, η) = (s′1, q
′
1, η

′
1)

t′1−→ . . .
t′n−1
−−−→ (s′n, q

′
n, η

′
n)

such that si = s′i, qi = q′i and η
′
i ≡ ηi for all 1 ≤ i ≤ n, while maintaining

an open partition I ′′
i and a bijection ψi : I

′′
i → I ′

i for each 1 ≤ i ≤ n, which
satisfy the following conditions for all 1 ≤ i ≤ n:

1. Zη′i ⊆ [0, 1]\
⋃

I ′′
i ;

2. for all I1, I2 ∈ I ′′
i , sup I1 ≤ inf I2 iff supψi(I1) ≤ inf ψi(I2);

3. for all x ∈ X , (d′1, d
′
2) ∈ I ′′

i and (d1, d2) ∈ I ′
i, if ψi((d

′
1, d

′
2)) = (d1, d2)

then (i) η′i(x) = d′1 iff ηi(x) = d1 and (ii) η′i(x) = d′2 iff ηi(x) = d2.

Intuitively, the new inductive construction maintains the order on the frac-
tional values in the previous sequence of transits, while adjusting the timed
information on each transit to meet the wideness requirement. In the new
inductive construction, we define NI (for each I ∈

⋃n
i=1 Ii) to be the num-

ber of splittings on the interval I in the previous inductive construction, i.e.,
NI := |{I ′ ∈ In | I ′ ⊆ I}| − 1.

Initially, we set (s′1, q
′
1, η

′
1) := (s, q, η), I ′′

1 = I ′
1 and ψ1 to be the iden-

tity mapping. Assume that the sequence of transits until (s′i, q
′
i, η

′
i) is con-

structed. Let (di1, d
i
2) ∈ I ′′

i be such that ψi((d
i
1, d

i
2)) = (wi1, w

i
2). We

102 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

choose t′i such that int(t′i) = int(ti), 1 ∈ (di1 + frac(t′i), d
i
2 + frac(t′i)) and

the length of (di1 + frac(t′i), 1) (resp. (0, frac(di2 + frac(t′i)))) is no smaller
than (N(ci1,c

i) + 1) · δ
|G| (resp. (N(ci,ci2)

+ 1) · δ
|G|). Then we set

(s′i+1, q
′
i+1, η

′
i+1) = (si+1,q

η′i+t
′
i

q′i,s
′
i
, (η′i + t′i)[X

η′i+t
′
i

q′i,s
′
i
:= 0])

and split I ′′
i , ψi as follows:

I ′′
i+1 := {I ⋄ t′i | I ∈ I ′′

i − {(di1, d
i
2)}}

∪ {(di1 + frac(t′i), 1), (0, frac(d
i
2 + frac(t′i)))};

ψi+1(I
′ ⋄ t′i) = I ⋄ ti whenever ψi(I

′) = I and I ′ 6= (di1, d
i
2);

ψi+1((d
i
1 + frac(t′i), 1)) = (wi1 + frac(ti), 1);

ψi+1((0, frac(d
i
2 + frac(t′i)))) = (0, frac(wi2 + frac(ti))) .

By the choice of t′i and ti, one can prove inductively on i that for all 1 ≤
i ≤ n, (i) (si, qi) = (s′i, q

′
i), (ii) ηi ≡ η′i and ηi + ti ≡ η′i + t′i, and (iii) for all

I ∈ I ′′
i , the length of I is no smaller than (Nϕi(ψi(I)) + 1) · δ

|G| . Thus, the

newly-constructed sequence of transits is δ
|G| -wide.

Based on Proposition 8.10, we study the equation v = Av + ζ, where
ζ : Bm → R is an arbitrary real vector. We define ζmax : Bm → R by:
ζmax(h[v]) =M3 · ρ for all h[v] ∈ Bm. Given a vector ζ : Bm → R, we denote
by |ζ| the vector such that |ζ|(h[v]) = |ζ(h[v])| for all h[v] ∈ Bm. We denote
by ~0 the vector with all coordinates zero.

Proposition 8.11. Assume m > 2|G|2. Let ζ : Bm → R be a vector such
that |ζ| ≤ ζmax. Then the matrix series

∑∞
n=0A

nζ converges. Moreover,

‖
∞
∑

n=0

Anζ ‖∞≤ |G| · c−|G| ·M3 · ρ ,

where c := e−Emax·Tmax · pmin ·
Emin

2|G|2+Emin
.

Proof. Let δ := |G|−2 and k := ⌊ m
|G|2

⌋. We analyse (
∑∞

n=0A
nζ)(h[v]) for

each h[v] ∈ Bm. Let h[v] ∈ Bm with v = (s, q, η).

Firstly, we consider the case when ζ = ζmax and h[v] ∈ Bmax
m . By defi-

nition, η is 1-separated. Then by Proposition 8.10, there exists a shortest
|G|−1-wide sequence of transits

(s, q, η) = (s1, q1, η1)
t1−→ . . .

tn−1
−−−→ (sn, qn, ηn)

with 1 < n ≤ |G|, qi 6∈ F for all 1 ≤ i ≤ n− 1 and qn ∈ F . By the definition
of wideness, [ηi + ti]≡ is not marginal for all 1 ≤ i ≤ n − 1. We adjust

8.6. APPROXIMATION ALGORITHM 103

the timed information in the sequence up to δ by deviations {δi}1≤i≤n−1, to
obtain a new sequence of transits

(s, q, η) = (s1, q
′
1, η

′
1)

t1+δ1−−−→ . . .
tn−1+δn−1
−−−−−−−→ (sn, q

′
n, η

′
n) ,

where δi ∈ [0, δ) for all 1 ≤ i ≤ n−1. Given any such deviations {δi}1≤i≤n−1,
we can prove inductively on i that for all 1 ≤ i ≤ n− 1 (†):

• q′i = qi, η
′
i ≡gd ηi;

• ηi(x)+ ti ≤ η′i(x)+ (ti+ δi) ≤ ηi(x)+ ti+
∑i

j=1 δj < ηi(x)+ ti+ |G|−1

for all clocks x.
• η′i + (ti + δi) ≡gd ηi + ti (which follows from the previous two items

and the |G|−1-wideness of the original sequence of transits).

It follows that one can deviate the original sequence of transits up to δ
amount, while maintaining the reachability to some (sn, qn, η

′
n) with qn ∈ F .

Then, we inductively define {Vi}1≤i≤n with each Vi ⊆ Dm by:

• V1 = {h[v]};
• Vi+1 = {h[(v′ ⊕ τ)+si+1

] | h[v′] ∈ Vi, τ ∈ [ti, ti + δ), h[v′ ⊕ τ] ∈ Dm} .

We prove that (‡): for all 1 ≤ k ≤ n and (s′, q′, η′) ∈ Vk, (s
′, q′) = (sk, qk),

and (s′, q′, η′) ∈ Bm if k 6= n. The case when k = 1 is straightforward.
Below we fix an arbitrary 1 < k ≤ n. Let (s′, q′, η′) ∈ Vk. From the
inductive definition of Vi, there exists a finite sequence {(s′′i , q

′′
i , η

′′
i)}1≤i≤k

such that

• (s′′1, q
′′
1 , η

′′
1) = (s, q, η) and (s′′k, q

′′
k , η

′′
k) = (s′, q′, η′), and

• for all 1 ≤ i < k,

(s′′i+1, q
′′
i+1, η

′′
i+1) =

(

s′′i ,q
(η′′i ⊕(ti+δi))

+

q′′i ,s
′′
i

, η′′i ⊕ (ti + δi)

[

X
(η′′i ⊕(ti+δi))

+

q′′i ,s
′′
i

])

for some δi ∈ [0, δ).

By the definition of Vi, s
′′
i = si for all 1 ≤ i ≤ k. We extend the sequence

{δi}1≤i<k to a whole collection of deviations {δi}1≤i<n, where the values
{δi}k≤i<n are arbitrarily chosen from the interval [0, δ). By the previous
analysis in this proof, we can construct a new sequence of transits

(s, q, η) = (s1, q1, η
′′′
1)

t1+δ1−−−→ . . .
tn−1+δn−1
−−−−−−−→ (sn, qn, η

′′′
n) .

We prove by induction on i that for all 1 ≤ i ≤ k, (i) q′′i = qi and (ii) for all
clocks x, either η′′i (x) = η′′′i (x), or both η

′′
i (x) ≥ Tx and η′′′i (x) ≥ Tx holds.

The base step i = 1 is straightforward. Assume the inductive hypothesis
for i. By the definition of transits, ti + δi > 0. It follows that

η′′i + ti + δi ≡bd η
′′′
i + ti + δi .

104 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

This further implies that

[η′′′i + ti + δi]≡ = [
(

η′′i ⊕ (ti + δi)
)+

]≡

since [η′′′i + ti + δi]≡ is not marginal. Thus, we have q′′i+1 = qi+1 and for all
clocks x, either η′′i+1(x) = η′′′i+1(x), or both η′′i+1(x) ≥ Tx and η′′′i+1(x) ≥ Tx
holds; this completes the inductive step.

Thus, we have (s′, q′) = (sk, qk), and for all clocks x, either η′(x) = η′′′k (x)
or both η′(x) and η′′′k (x) is greater than or equal to Tx. Assume that k 6= n.
By the definition of transits, (sk, qk, [(η

′′′
k)

+]≡) is not final and can reach
some final vertex in G. So we also have that (s′, q′, [(η′)+]≡) is not final and
can reach some final vertex in G, which implies that (s′, q′, [η′]≡) is not final
and can reach some final vertex in G. By the arbitrary choice of (s′, q′, η′),
we obtain that Vk ⊆ Bm, for 1 ≤ k < n.

Below we prove by induction on i ≥ 1 that for all v′ ∈ Vn−i,

|(Aiζmax)(v
′)| ≤ (1− c

i) ·M3ρ .

Note that (§): Aζmax ≤ ζmax and Aζ1 ≤ Aζ2 for all ~0 ≤ ζ1 ≤ ζ2. It follows
that Ajζmax ≤ Aiζmax for all 0 ≤ i ≤ j.

Base Step: i = 1. Consider an arbitrary v′ ∈ Vn−1. If Nv′ · ρ <
tn−1 + δn−1, then from Υ′′

m and (‡), we have

1−
∑

h[v′′]∈Bm

A(h[v′], h[v′′]) ≥ pmin ·

(

1

1 + ρ ·E(v′)

)Nv′

≥ pmin ·

(

1

1 + ρ ·E(v′)

)Tmax/ρ

≥ pmin · e
−Emax·Tmax

≥ c .

Otherwise, there are at least k := ⌊δ/ρ⌋ distinct τ ’s from the interval
[tn−1, tn−1+ δn−1) such that h[v′⊕ τ] ∈ Dm. Note that kρ ≥ 1

2 |G|
−2. By (‡),

we have

1−
∑

h[v′′]∈Bm

A(h[v′], h[v′′])

≥

(

1

1 + ρ ·E(v′)

)Tmax/ρ

·
kρ ·E(v′)

1 + ρ ·E(v′)
· pmin

≥ e−Emax·Tmax ·
1
2 |G|

−2 ·E(v′)

1 + 1
2 |G|

−2 ·E(v′)
· pmin

≥ e−Emax·Tmax · pmin ·
Emin

2|G|2 +Emin
.

Thus, we obtain |(Aζmax)(v
′)| ≤ (1− c) ·M3ρ.

8.6. APPROXIMATION ALGORITHM 105

Inductive Step: Assume that (Aiζmax)(v
′′) ≤ (1 − c

i) · M3ρ for all
v′′ ∈ V′

n−i. We prove the case for i + 1. Fix some v′ ∈ Vn−(i+1). If
Nv′ · ρ < tn−1 + δn−1, then by a similar analysis in the base step, we have

(Ai+1ζmax)(v
′) ≤

(

1− pmin ·

(

1

1 + ρ ·E(v′)

)Nv′

· ci

)

·M3ρ ≤ (1−c
i+1)·M3ρ

Otherwise, there are at least k := ⌊δ/ρ⌋ distinct τ ’s from the interval
[tn−(i+1), tn−(i+1) + δn−(i+1)) such that h[v′ ⊕ τ] ∈ Dm. By the induction
hypothesis, we have

(Ai+1ζmax)(v
′)

≤ M3ρ ·

{

1−

(

1

1 + ρ ·E(v′)

)Nv′

·
kρ ·E(v′)

1 + ρ ·E(v′)
· pmin · c

i

}

≤ M3ρ ·

{

1− e−Emax·Tmax · pmin ·
Emin

2|G|2 +Emin
· ci
}

= M3ρ · (1− c
i+1) .

Then the inductive step is completed.
Then we obtain

(A|G|−1ζmax)(v
′) ≤ (Aiζmax)(v

′) ≤ (1− c
i) ·M3ρ ≤ (1− c

|G|−1) ·M3ρ

for all 1 ≤ i ≤ n−1 and v′ ∈ Vn−i. Thus, A
|G|−1ζmax(v) ≤ (1−c

|G|−1) ·M3ρ,
for all v ∈ Bmax

m .
Now consider an arbitrary v ∈ Bm while ζ = ζmax. If either v ⊕ (Nvρ) 6∈

Bmax
m or h[(v ⊕ (Nvρ))

+
u] 6∈ Bm for some u ∈ S with P(v, u) > 0, then

(A|G|ζmax)(v) ≤ (Aζmax)(v)

≤

(

1−

(

1

1 + ρE(v)

)Tmax/ρ

· pmin

)

·M3ρ

≤ (1− e−Emax·Tmax · pmin) ·M3ρ

≤ (1− c
|G|) ·M3ρ

Otherwise, by

∑

u∈S

P(v∗, u) · (A|G|−1ζmax)((v
∗)+u) = (A|G|ζmax)(v

∗) ≤ (A|G|−1ζmax)(v
∗)

where v∗ := v ⊕ (Nvρ), we have

(A ·A|G|−1ζmax)(v) ≤

(

1−

(

1

1 + ρ ·E(v)

)Tmax/ρ

· c|G|−1

)

·M3ρ

≤ (1− c
|G|) ·M3ρ .

106 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Then A|G|ζmax ≤ (1− c
|G|) · ζmax. It follows that

Ai|G|ζmax ≤ (1− c
|G|)iζmax

for all i ∈ N. Thus by (§),
∑∞

i=0A
iζmax converges since

∑∞
i=0A

iζmax is
bounded by |G| · c−|G| · ζmax.

Finally, we consider any ζ such that |ζ| ≤ ζmax. Since all entries of Ai

are non-negative,
∣

∣Aiζ
∣

∣ ≤ Aiζmax. Thus by Cauchy’s criterion,
∑∞

i=0A
iζ

converges and ‖
∑∞

i=0A
iζ ‖∞≤ |G| · c−|G| ·M3ρ.

By Proposition 8.11, the system of linear equation v = Av + ζ has a
solution for all |ζ| ≤ ζmax, when m > 2|G|2. The following propositions show
that the linear equation has a unique solution.

Proposition 8.12. Assume that m > 2|G|2. For all solutions v of v =
Av + ζ with ‖ ζ ‖∞ < M3ρ, |v| ≤ v∗, where v∗ :=

∑∞
i=0A

iζmax.

Proof. Let v be an arbitrary solution of v = Av + ζ. Define v′ = v∗ − v.
By the fact that v∗ = Av∗ + ζmax, v

′(h[v]) > (Av′)(h[v]) for all h[v] ∈ Bm.
Suppose that there exists some h[v] ∈ Bm such that v′(h[v]) < 0. W.l.o.g, we
assume that v′(h[v]) is the least element of {v′(h[v′]) | h[v′] ∈ Bm}. Denote
c :=

∑

h[v′]∈Bm
A(h[v], h[v′]) ∈ [0, 1]. Then v′(h[v]) > c · v′(h[v]), which

implies c > 1. Contradiction. Thus v′ ≥ ~0. Similar arguments holds if we
define v′ = v∗ + v. Thus we have |v| ≤ v∗.

Proposition 8.13. The matrix equation v = Av+ ζ has a unique solution
for all ζ such that ‖ζ‖∞ < M3ρ. It follows that I−A is invertible, where I

is the identity matrix.

Proof. By Proposition 8.11, the equation v = Av + ζ has a solution. By
Proposition 8.12, all solutions of v = Av + ζ are bounded by v∗. Suppose
that the equation has two distinct solutions. Then the homogeneous equa-
tion v = Av has a non-trivial solution, which implies that the solutions of
v = Av + ζ cannot be bounded. Contradiction. Thus v = Av + ζ has a
unique solution and I−A is invertible.

Now we analyse the approximation scheme Υ′
m (Υm). In the following

theorem (which is the main result of this chapter), we prove that the equa-
tion v = Cv + d has a unique solution (i.e. I − C is invertible), and give
the error bound between the unique solution and the function prob.

Theorem 8.5. The matrix equation v = Cv + d (for Υ′
m) has a unique

solution v. Moreover, maxh[v]∈Bm
|v(h[v])− prob(v)| ≤ |G| · c−|G| ·M3ρ.

Proof. We first prove that v = Cv + d has a unique solution. Let v =
Cv + ζ be a matrix equation such that ‖ ζ ‖∞ < M2ρ

2. From the proof of
Proposition 8.8, we can equivalently expand this equation into some equation

8.7. CONCLUSION 107

v = Av + ζ ′ with ‖ ζ ′ ‖∞ < Tmax/ρ ·M2ρ
2 = M3 · ρ. Since v = Av + ζ ′

has a unique solution, v = Cv + ζ also has a unique solution. Thus I −C

is invertible and v = Cv + d has a unique solution.
Now we prove the error bound between v and prob. Define the vector v′

such that v′(h[v]) = v(h[v])−prob(v) for all h[v] ∈ Bm. By Proposition 8.7,
v′ is the unique solution of v = Cv+ ζ, for some ‖ ζ ‖∞< M2ρ

2. Then v′ is
also the unique solution of the equation v = Av+ζ ′, for some ‖ ζ ′ ‖∞< M3ρ.
By Proposition 8.11, ‖ v′ ‖∞≤ |G| · c−|G| ·M3ρ.

By Theorem 8.5 and the Lipschitz Continuity (Corollary 8.1), we can
approximate the value prob(s, q, η) as follows: given ǫ ∈ (0, 1), we choose m
sufficiently large and some h[v] ∈ Dm such that |prob(v)−prob(s, q, η)| < 1

2 ·ǫ

and M3|G|c
−|G| · ρ < 1

2 · ǫ. Then we solve the approximation scheme Υ′
m to

obtain v(h[v]).

8.7 Conclusion

In this chapter, we corrected the errors in the paper [24] by new proofs,
namely, the proof for the measurability of the set of CTMC-paths accepted
by a DTA and the proof for the integral characterization. And we presented
the first algorithm to approximate the acceptance probabilities of CTMC-
paths by a multi-clock DTA under finite acceptance condition. Unlike the
result by Barbot et al. [9], we are able to derive a tight approximation error.

108 CHAPTER 8. ACCEPTANCE OF CTMC-PATHS BY DTA

Chapter 9

Cost-Bounded Reachability

on CTMDPs

In this chapter, we focus on the problem to compute max/min resource-
bounded reachability probability on a CTMDP (cf. Chapter 7). Typical
resource types considered here are time and cost, where a time bound can be
deemed as a special cost bound with unit-cost one. In general, the task is to
compute or to approximate the optimal (max/min) reachability probability
to certain target states within a given resource bound (e.g., a time bound).

Optimal time-bounded reachability probability over CTMDPs has been
widely studied in recent years. Neuhäußer et al. [59] proved that the max-
imal time-bounded reachability probability function is the least fixed point
of a system of integral equations. Rabe and Schewe [65] showed that the
max/min time-bounded reachability probability can be attained by a deter-
ministic piecewise-constant time-positional scheduler. Efficient approxima-
tion algorithms are also developed by, e.g., Neuhäußer et al. [59], Brázdil et
al. [15], Hatefi et al. [46] and Rabe et al. [35].

As to optimal cost-bounded reachability probability, much less is known.
To the best of the author’s knowledge, the only prominent result is by
Baier et al. [5], which establishes a certain duality property between time
and cost bound, under the setting of time-abstract schedulers. This dual-
ity results in an approximation algorithm for the case of one-dimensional
cost-bounds. Their result is restrictive in the sense that (i) it assumes that
the CTMDP have everywhere positive unit-cost values, (ii) it only takes
into account one-dimensional cost-bound aside the time-bound, and (iii) it
does not really provide an approximation algorithm when both time- and
cost-bounds are present.

Besides resource-bounded reachability probability, we would like to men-
tion another well-investigated objective on CTMDPs with costs (or dually,
rewards), which is (discounted) accumulated reward over finite/infinite hori-
zon (cf. [20, 63], just to mention a few).

109

110 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

In this chapter, we consider multi-dimensional maximal cost-bounded
reachability probability (abbr. MMCRP) over CTMDPs under the setting
of both early and late schedulers, for which the unit-cost is constant. We
first prove that the MMCRP function is the least fixed-point of a system of
integral equations. Then we prove that deterministic cost-positional mea-
surable schedulers suffice to achieve the MMCRP value. Finally, we describe
a numerical algorithm which approximates the MMCRP value with an error
bound. The approximation algorithm relies on a differential characteriza-
tion which in turn is derived from the least fixed-point characterization.
The complexity of the approximation algorithm is polynomial in the size of
the CTMDP and the reciprocal of the error bound, and exponential in the
dimension of cost-bound vectors.

Besides, we point out a proof error in the treatment of maximal time-
bounded reachability probability on continuous-time Markov decision pro-
cesses [57, 59]. We fix this error in the more general setting of maximal
cost-bounded reachability probability through a new methodology.

The chapter is organized as follows. In Section 9.1, we define the notion
of maximal cost-bounded reachability probability and derive the least-fixed-
point characterization, while we also point out the proof error in [57, 59]. In
Section 9.2, we prove that the maximal cost-bounded reachability probabil-
ity can be reached by a measurable deterministic cost-positional scheduler.
In Section 9.3, we derive a differential characterization which is crucial to
our approximation algorithm. In Section 9.4, we present our approximation
algorithm. Finally, Section 9.5 concludes the chapter.

We denote by ~x the real vector whose coordinates are all equal to x ∈ R

(with the implicitly known dimension).

9.1 Cost-Bounded Reachability Probability

In this section, we introduce the notion of maximal cost-bounded reachabil-
ity probability. Below we fix a CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P)
(cf. Chapter 7). We define:

• Emax := max ({Ela(s) | s ∈ Sla} ∪ {Eer(s, a) | s ∈ Ser, a ∈ En(s)});

• Pmin := min{P(s, a, s′) | s, s′ ∈ S, a ∈ Act,P(s, a, s′) > 0}.

In the whole chapter, we will use ‘E(s, a)’ to denote Eer(s, a) when s ∈ Ser
and a ∈ Act, and ‘E(s)’ to denote Ela(s) when s ∈ Sla.

Firstly, we introduce the notion of cost functions which associates costs
(or dually, rewards) to a CTMDP.

Definition 9.1. Let k ∈ N. A cost function w (for M) is a function w :
S×Act→ Rk≥0 such that for all s ∈ Sla and a, b ∈ En(s), w(s, a) = w(s, b).

9.1. COST-BOUNDED REACHABILITY PROBABILITY 111

Intuitively, a cost function assigns to each pair in S×Act a non-negative
real vector c, where each component cj of the vector can be viewed as the
unit cost per time w.r.t certain resource represented by the coordinate index
j, when certain action is chosen at certain current state. A cost function
should observe the restriction that when it is applied to a late-schedulable
state, the cost should be independent of the action chosen (by a scheduler)
at the state; this restriction is to make cost functions compatible with the
notion of late-schedulable states (cf. Chapter 7).

In the following, we fix a cost function w : S × Act → Rk≥0 (for M),
where k ∈ N is a fixed natural number. We abbreviate ‘(w(s, a))i’ (s ∈ S,
a ∈ Act, 1 ≤ i ≤ k) as ‘wi(s, a)’. For a late-schedulable states s ∈ Sla, we
simple use ‘w(s)’ to denote ‘w(s, a)’ for an arbitrary a ∈ En(s). We define

• wmin := min{wi(s, a) | 1 ≤ i ≤ k, s ∈ S, a ∈ En(s),wi(s, a) > 0}, and

• wmax := max{wi(s, a) | 1 ≤ i ≤ k, s ∈ S, a ∈ En(s)} .

We assume that wmin is well-defined and wmin > 0 (i.e., w is not the zero
function.): if w is the zero function, then the cost-bounded reachability on
M will be equivalent to reachability on the discrete-time Markov decision
process with state space S, actions Act and the probability transition matrix
P (cf. [7, Section 10.6]).

The main focus of this chapter is on costs of paths and histories. The
cost is assigned linearly w.r.t the unit-cost and the time spent in a state.
The following definition presents the details.

Definition 9.2. Given a path π ∈ Paths(M) and a set G ⊆ S of states, we
denote by C(π,G) the accumulated cost vector along π until G is reached;
formally, if π[m] ∈ G for some m ≥ 0 then

C(π,G) :=
n
∑

i=0

π〈i〉 ·w(π[i], π(i)) ,

where n ∈ N0∪{−1} is the smallest integer such that π[n+1] ∈ G; otherwise,
C(π,G) := ~∞, for which ~∞ is the k-dimensional vector whose all coordinates
are ∞.

Given a history ξ ∈ Hists(M), we denote by C(ξ) the accumulated cost
vector of ξ; formally,

C(ξ) :=

|ξ|−1
∑

i=0

ξ〈i〉 ·w(ξ[i], ξ(i)) .

Then, we introduce the notion of maximal cost-bounded reachability
probability, which is the main subject of this chapter.

112 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

Definition 9.3. Let G ⊆ S. For each measurable scheduler D, we define
the function probDG : S ×Rk → [0, 1] by: probDG(s, c) := PrD,D[s] (Π

c

G) where

Πc

G := {π ∈ Paths(M) | C(π,G) ≤ c} .

Moreover, we define probmax
G : S × Rk → [0, 1] by:

probmax
G (s, c) := sup

D∈MSched(M)
probDG(s, c)

for all s ∈ S and c ∈ Rk, where MSched(M) is the set of all measurable
schedulers (for M).

Remark 9.1. It is not hard to prove that Πc

G is measurable. One can
proceed by showing that each Πc

n,G, which is the set of paths π that can reach
G within cost-bound c and n transition steps, is a closed set on the collection
of variables (π〈0〉, . . . , π〈n − 1〉). Then the result follows from the fact that
Πc

G =
⋃

n∈NΠc

n,G. Thus, all functions in Definition 9.3 are well-defined.

From the definition, we can see that Πc

G is the set of paths which can
reach G within the cost-bound vector c, and probmax

G (s, c) is the maximal
probability of Πc

G with initial distribution D[s] (i.e., with fixed initial state
s) ranging over all measurable schedulers. It is worth noting that if c 6≥ ~0,
then both probDG(s, c) and probmax

G (s, c) is zero.

From Theorem 7.1 and Proposition 7.1, we can directly obtain the fol-
lowing results.

Corollary 9.1. Let D be a measurable scheduler and G ⊆ S. The function
probDG satisfies the following conditions for all s ∈ S:

1. if s ∈ G then probDG(s, c) = 1Rk
≥0
(c) for all c ∈ Rk;

2. if s ∈ Ser −G then

probDG(s, c) =
∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · prob
D[s

a,t
−→]

G (s′, c− t ·w(s, a))

]

dt ;

3. if s ∈ Sla −G then

probDG(s, c) =

∫ ∞

0
fE(s)(t) ·

{

∑

a∈En(s)

D(s, t, a)·

[

∑

s′∈S

P(s, a, s′) · prob
D[s

a,t
−→]

G (s′, c− t ·w(s))

]}

dt .

9.1. COST-BOUNDED REACHABILITY PROBABILITY 113

Intuitively, Corollary 9.1 expands the function probDG to an integral rep-
resentation.

The following theorem mainly presents the fixed-point characterization
for probmax

G , while it also states that probmax
G is Lipschitz continuous.

Theorem 9.1. Let G ⊆ S. The function probmax
G (�, �) is the least fixed-point

(w.r.t ≤) of the higher-order operator

TG :
[

S × Rk → [0, 1]
]

→
[

S × Rk → [0, 1]
]

defined by:

• TG(h)(s, c) := 1Rk
≥0
(c) for all s ∈ G and c ∈ Rk;

• for all s ∈ Ser −G and c ∈ Rk,

TG(h)(s, c) :=

max
a∈En(s)

∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · h(s′, c− t ·w(s, a))

]

dt ;

• for all s ∈ Sla −G and c ∈ Rk,

TG(h)(s, c) :=
∫ ∞

0
fE(s)(t) · max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · h(s′, c− t ·w(s))

]

dt ;

for each h : S × Rk → [0, 1] (cf. Definition 3.8). Moreover,

∣

∣probmax
G (s, c)− probmax

G (s, c′)
∣

∣ ≤
Emax

wmin
· ‖c− c′‖∞

for all c, c′ ≥ ~0 and s ∈ S .

Proof. For each n ∈ N0, we define the function probmax
n,G : S ×Rk → [0, 1] by

probmax
n,G (s, c) := sup

D∈MSched(M)
PrD,D[s]

(

Πc

n,G

)

,

where

Πc

n,G := {π ∈ Paths(M) | C(π,G) ≤ c and π[m] ∈ G for some 0 ≤ m ≤ n} .

Intuitively, probmax
n,G is the maximal cost-bounded reachability probability

function within n steps. For each n ∈ N0 and δ > 0, define

ǫ(n, δ) := sup

{

∣

∣probmax
n,G (s, c)− probmax

n,G (s, c′)
∣

∣ |

s ∈ S, c, c′ ≥ ~0 and ‖ c− c′ ‖∞≤ δ

}

.

Note that ǫ(0, δ) = 0 for all δ > 0. Firstly, we prove by induction on n ≥ 0
that the following assertions hold:

114 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

(a) probmax
n,G (s, c) = 1Rk

≥0
(c) if s ∈ G ;

(b) given any δ > 0, ǫ(n, δ) ≤ Emax
wmin

· δ ;

(c) if n > 0 then probmax
n+1,G(s, c) = TG(prob

max
n,G)(s, c) for all s ∈ S − G

and c ∈ Rk.

The base step when n = 0 is straightforward: it is clear that PrD,D[s](Π
c

0,G) =
1G(s) · 1Rk

≥0
(c) for all measurable schedulers D; thus (a), (b) holds and (c)

is vacuously true. For the inductive step, let n = m + 1 with m ≥ 0 and
assume that (a),(b),(c) hold at m. It is easy to see that (a) holds at n. We
prove that (b) and (c) hold for n.

We first prove the inductive step for (c). Let c ≥ ~0 and s ∈ S−G. (The
situation when c 6≥ ~0 is straightforward.) Assume that s ∈ Ser − G. By
Theorem 7.1 and Proposition 7.1, for all measurable schedulers D,

PrD,D[s](Π
c

m+1,G) =
∑

a∈En(s)

D(s, a) ·

∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s,a)
m,G

)

]

dt .

If we modify D to D′ by setting D′(s, �) to the Dirac distribution at the
action

argmax
a∈En(s)

∫ ∞

0
fE(s,a)(t) ·

(

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s,a)
m,G

)

)

dt

andD′(ξ, �) = D(ξ, �), D′(ξ, �, �) = D(ξ, �, �) for ξ 6= s, thenD′ is a measurable
scheduler which satisfies that PrD,D[s](Π

c

m+1,G) ≤ PrD′,D[s](Π
c

m+1,G) (since

D′[s
a,t
−→] = D[s

a,t
−→]). Thus,

probmax
m+1,G(s, c) = sup

D∈MSched(M)
max
a∈En(s)

∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s,a)
m,G

)

]

dt .

We further prove that probmax
m+1,G(s, c) equals maxa∈En(s) G

s
er(a, c), where

Gser(a, c) :=
∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · probmax
m,G(s

′, c− t ·w(s, a))

]

dt .

Denote probmax
m+1,G(s, c) = supD∈MSched(M)maxa∈En(s) F

s
er(D, a, c) with

Fser(D, a, c) :=
∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s,a)
m,G

)

]

dt .

9.1. COST-BOUNDED REACHABILITY PROBABILITY 115

It is not difficult to see that probmax
m+1,G(s, c) ≤ maxa∈En(s) G

s
er(a, c) . Below

we prove the reverse direction. Let

a∗ := argmax
a∈En(s)

Gser(a, c) ,

where the action is chosen w.r.t an arbitrarily-fixed linear order when ties
occur. We clarify two cases below.

Case 1: w(s, a∗) = ~0. For each ǫ > 0, we can choose the measurable
scheduler Dǫ such that the following conditions hold:

• Dǫ(s, �) = D[a∗];

• Dǫ(s
a∗,t
−−→ ξ, �) = Dm,ǫ

ξ[0](ξ, �) for all t ∈ R≥0 and ξ ∈ Histser(M);

• Dǫ(s
a∗,t
−−→ ξ, τ, �) = Dm,ǫ

ξ[0](ξ, τ, �) for all t, τ ∈ R≥0 and ξ ∈ Histsla(M);

the measurable scheduler Dm,ǫ
ξ[0] is chosen such that

PrDm,ǫ

ξ[0]
,D[ξ[0]]

(

Πc

m,G

)

≥ probmax
m,G(ξ[0], c)− ǫ .

The decisions D(ξ, �) or D(ξ, τ, �) (for all other ξ ∈ Hists(M) and τ ∈ R≥0)
are irrelevant and can be set to an arbitrary canonical distribution. It is not
hard to verify that Dǫ satisfies

max
a∈En(s)

Fser(D
ǫ, a, c) ≥ Fser(D

ǫ, a∗, c) ≥ Gser(a
∗, c)− ǫ .

Thus probmax
m+1,G(s, c) = Gser(a

∗, c) by the arbitrary choice of ǫ.

Case 2: w(s, a∗) 6= ~0. Then the integrand function of Gser(a
∗, c) takes

non-zero values only on [0, T c
s,a∗] with

T c

s,a∗ := min

{

ci

wi(s, a∗)
| 1 ≤ i ≤ k,wi(s, a

∗) > 0

}

.

By induction hypothesis (b), the integrand of Gser(a
∗, c) is Lipschitz contin-

uous on [0, T c
s,a∗]. For each N ∈ N, we divide the interval [0, T c

s,a∗) into N

pieces I1, . . . , IN with [tj−1, tj) := Ij = [j−1
N · T c

s,a∗ ,
j
N · T c

s,a∗) for 1 ≤ j ≤ N .

Then we construct the measurable scheduler DN,ǫ as follows:

• DN,ǫ(s, �) = D[a∗];

• DN,ǫ(s
a∗,t
−−→ ξ, �) = Dm,ǫ

ξ[0],j(ξ, �) whenever ξ ∈ Histser(M) and t ∈ Ij ;

• DN,ǫ(s
a∗,t
−−→ ξ, τ, �) = Dm,ǫ

ξ[0],j(ξ, τ, �) whenever ξ ∈ Histsla(M), τ ∈ R≥0

and t ∈ Ij ;

the measurable scheduler Dm,ǫ
ξ[0],j is defined such that

PrDm,ǫ

ξ[0],j
,D[ξ[0]]

(

Π
c−tj ·w(s,a∗)
m,G

)

≥ probmax
m,G(ξ[0], c− tj ·w(s, a∗))− ǫ .

116 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

The decisions DN,ǫ(ξ, �) or DN,ǫ(ξ, �, �) for all other ξ’s are irrelevant. By

induction hypothesis (b) and the monotonicity of Π
c−t·w(s,a∗)
m,G on t,

lim
N→∞,ǫ→0+

Fser(D
N,ǫ, a∗, c) = Gser(a

∗, c) .

Then, since N, ǫ can be arbitrarily chosen, probmax
m+1,G(s, c) = Gser(a

∗, c).
Now assume that s ∈ Sla −G. By Theorem 7.1 and Proposition 7.1,

PrD,D[s](Π
c

m+1,G) =

∫ ∞

0
fE(s)(t) ·

∑

a∈En(s)

D(s, t, a) ·

[

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s)
m,G

)

]

dt

for all measurable scheduler D. Note that for each a ∈ En(s), the function

t 7→
∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s)
m,G

)

is measurable w.r.t (R≥0,B(R≥0)) due to Proposition 7.1 and Proposition 7.2.
Thus, if we modify D to D′ by setting (i) D′(s, t, �) to

D

[

argmax
a∈En(s)

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s)
m,G

)

]

for each t ∈ R≥0, (ii) D
′(ξ, �, �) = D(ξ, �, �) for all ξ ∈ Histsla(M)\{s} and

(iii) D′(ξ, �) = D(ξ, �) for all ξ ∈ Histser(M), then D′ is still a measur-
able scheduler which satisfies PrD,D[s](Π

c

m+1,G) ≤ PrD′,D[s](Π
c

m+1,G) (since

D′[s
a,t
−→] = D[s

a,t
−→]). Then,

probmax
m+1,G(s, c) = sup

D∈MSched(M)

∫ ∞

0
fE(s)(t)·

max
a∈En(s)

[

∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s)
m,G

)

]

dt .

We prove that supD∈MSched(M)

∫∞
0 fE(s)(t) ·maxa∈En(s) F

s
la(D, a, t, c) dt with

Fsla(D, a, t, c) :=
∑

s′∈S

P(s, a, s′) · Pr
D[s

a,t
−→],D[s′]

(

Π
c−t·w(s)
m,G

)

(which is essentially probmax
m+1,G(s, c)) equals

∫ ∞

0
fE(s)(t) · max

a∈En(s)
Gsla(a, t, c) dt

9.1. COST-BOUNDED REACHABILITY PROBABILITY 117

with

Gsla(a, t, c) :=
∑

s′∈S

P(s, a, s′) · probmax
m,G(s

′, c− t ·w(s)) .

It is not difficult to see that the former item is no greater than the latter
one. Below we prove the reverse direction. Define

a∗(t) := argmax
a∈En(s)

Gsla(a, t, c)

where the maximum is chosen w.r.t an arbitrarily-fixed linear order when
ties occur. We consider two cases.

Case 1: w(s) = ~0. Then a∗(t) is independent of t, which we shall denote
by a∗. For each ǫ > 0, we define the measurable scheduler Dǫ as follows:

• Dǫ(s, t, �) = D[a∗] for all t ≥ 0;

• Dǫ(s
a∗,t
−−→ ξ, τ, �) = Dm,ǫ

ξ[0](ξ, τ, �) for all t, τ ∈ R≥0 and ξ ∈ Histsla(M);

• Dǫ(s
a∗,t
−−→ ξ, �) = Dm,ǫ

ξ[0](ξ, �) for all t ∈ R≥0 and ξ ∈ Histser(M);

the measurable scheduler Dm,ǫ
ξ[0] is defined such that

PrDm,ǫ

ξ[0]
,D[ξ[0]]

(

Πc

m,G

)

≥ probmax
m,G(ξ[0], c)− ǫ .

Dǫ satisfies that

max
a∈En(s)

Fsla(D
ǫ, a, t, c) ≥ Fsla(D

ǫ, a∗, t, c) ≥ Gsla(a
∗, t, c)− ǫ

for all t ≥ 0. Thus,

probmax
m+1,G(s, c) =

∫ ∞

0
fE(s)(t) · G

s
la(a

∗, t, c) dt

since ǫ can be arbitrarily chosen.
Case 2: w(s) 6= ~0. Then for all a ∈ En(s), Gsla(a, t, c) takes non-zero

value only on t ∈ [0, T c
s] with

T c

s := min

{

ci

wi(s)
| 1 ≤ i ≤ k,wi(s) > 0

}

.

From the induction hypothesis (b), maxa∈En(s) G
s
la(a, �, c) is Lipschitz con-

tinuous on [0, T c
s]. For each N ∈ N, we divide the interval [0, T c

s) into N
equal pieces I1, . . . IN with [tj−1, tj) := Ij = [j−1

N · T c
s ,

j
N · T c

s). Then we
construct the measurable scheduler DN,ǫ for each ǫ > 0 as follows:

• DN,ǫ(s, t, �) = D[a∗(tj)] when t ∈ Ij ;

• DN,ǫ(s
a∗(tj),t
−−−−→ ξ, �, �) = Dm,ǫ

ξ[0],j(ξ, �, �) when t ∈ Ij and ξ ∈ Histsla(M);

118 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

• DN,ǫ(s
a∗(tj),t
−−−−→ ξ, �) = Dm,ǫ

ξ[0],j(ξ, �) when t ∈ Ij and ξ ∈ Histser(M);

the measurable scheduler Dm,ǫ
ξ[0],j is chosen such that

PrDm,ǫ

ξ[0],j
,D[ξ[0]]

(

Π
c−tj ·w(s)
m,G

)

≥ probmax
m,G(ξ[0], c− tj ·w(s))− ǫ .

From the inductive hypothesis (b) and the monotonicity of Π
c−t·w(s)
m,G on t,

we obtain

lim
N→+∞

ǫ→0+

∫ ∞

0
fE(s)(t) · max

a∈En(s)
Fsla(D

N,ǫ, a, t, c) dt =

∫ ∞

0
fE(s)(t) · max

a∈En(s)
Gsla(a, t, c) dt

which implies the inductive step for (c).

It remains to show that the inductive step for (b) holds. Let c, c′ ≥ ~0
and s ∈ S − G. Denote δ := ‖c− c′‖∞ . Assume that s ∈ Ser. Consider
an arbitrary a ∈ En(s). If w(s, a) = ~0, then clearly |Gser(a, c)− Gser(a, c

′)| ≤
ǫ(m, δ) . Otherwise,

∣

∣Gser(a, c)− Gser(a, c
′)
∣

∣

≤

∫ T

0
fE(s,a)(t) · ǫ(m, δ) dt+ fE(s,a)(T) ·

∣

∣

∣
T c

s,a − T c′

s,a

∣

∣

∣

≤ (1− e−E(s,a)·T) · ǫ(m, δ) + e−E(s,a)·T ·
Emax

wmin
· δ

≤
Emax

wmin
· δ

where T := min{T c
s,a, T

c′

s,a} and the last step is obtained through induction
hypothesis (b). It follows that

∣

∣probmax
m+1,G(s, c)− probmax

m+1,G(s, c
′)
∣

∣

≤ max
a∈En(s)

∣

∣Gser(a, c)− Gser(a, c
′)
∣

∣

≤
Emax

wmin
· δ .

Assume now that s ∈ Sla. Consider any a ∈ En(s). If w(s) = ~0, then

∣

∣Gsla(a, t, c)− Gsla(a, t, c
′)
∣

∣ ≤ ǫ(m, δ)

for all t ≥ 0. It follows that
∣

∣probmax
m+1,G(s, c)− probmax

m+1,G(s, c
′)
∣

∣ ≤ ǫ(m, δ)
. Otherwise, by the inductive step (c) and the induction hypothesis (b), we

9.1. COST-BOUNDED REACHABILITY PROBABILITY 119

have

∣

∣probmax
m+1,G(s, c)− probmax

m+1,G(s, c
′)
∣

∣

≤

∫ T

0
fE(s)(t) · ǫ(m, δ) dt+ fE(s)(T) ·

∣

∣

∣T c

s − T c′

s

∣

∣

∣

≤ (1− e−E(s)·T) · ǫ(m, δ) + e−E(s)·T ·
Emax

wmin
· δ

≤
Emax

wmin
· δ ,

where T := min{T c
s , T

c′

s } . Thus the inductive step for (b) is completed.
Secondly, we prove that lim

n→∞
probmax

n,G = probmax
G . From definition,

probmax
n,G ≤ probmax

n+1,G and probmax
n,G ≤ probmax

G for all n ≥ 0. Thus the
limit function lim

n→∞
probmax

n,G exists and is no greater than probmax
G . For the

reverse direction, let s ∈ S and c ∈ Rk. Fix an arbitrary ǫ > 0. Let D
be a measurable scheduler such that PrD,D[s](Π

c

G) ≥ probmax
G (s, c) − ǫ. By

definition, probmax
n,G (s, c) ≥ PrD,D[s](Π

c

n,G). It follows that

lim
n→∞

probmax
n,G (s, c) ≥ lim

n→∞
PrD,D[s](Π

c

n,G) = PrD,D[s](Π
c

G) ≥ probmax
G (s, c)−ǫ.

Thus lim
n→∞

probmax
n,G (s, c) = probmax

G (s, c) since ǫ is arbitrarily chosen.

Thirdly, we prove that probmax
G is the least fixed-point of TG. It is clear

that probmax
G (s, c) = 1Rk

≥0
(c) if s ∈ G. By applying Monotone Convergence

Theorem (Theorem 3.2) on (c), we obtain probmax
G (s, c) = TG(prob

max
G)(s, c)

when s ∈ S\G. Thus, probmax
G is a fixed-point of TG. To see that it is the

least fixed-point of TG, one can proceed by induction on n ≥ 0 that given any
fixed-point h of TG, prob

max
n,G ≤ h for all n ≥ 0 by the facts that probmax

0,G ≤ h
and probmax

n+1,G = TG(prob
max
n,G). It follows that probmax

G ≤ h for any fixed-
point h of TG.

Finally, by taking the limit from (b) we can obtain that

∣

∣probmax
G (s, c)− probmax

G (s, c′)
∣

∣ ≤
Emax

wmin
· ‖c− c′‖∞

for all c, c′ ≥ ~0 and s ∈ S .

The Lipschitz constant Emax
wmin

will be crucial to the error bound of our
approximation algorithm.

Remark 9.2. We describe the proof error in [57, 59]. The error lies in
the proof of [57, Lemma 5.1 on Pages 119] which tries to prove that the
time-bounded reachability probability functions are continuous. In detail, the
error is at the proof for right-continuity of the functions. Let us take the
sentence “This implies ... for some ξ ≤ ǫ

2 .” from line -3 to line -2 on page

120 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

119 as (*). (*) is wrong in general, as one can treat D’s as natural numbers,
and define

Prn(“reach G within z”) :=

{

n · z if z ∈ [0, 1n]

1 if z ∈ (1n ,∞)
.

Then supn Prn(“reach G within z”) equals 1 for z > 0 and 0 for z = 0. Thus
supD PrD(“reach G within z”) on z ≥ 0 is right-discontinuous at z = 0,
which does not satisfy (*) (treat D as a natural number). Note that [57,
Lemma 5.1] is correct; it is the proof that is flawed. Also note that Lemma
5.1 is important as the least fixed-point characterization [57, Theorem 5.1
on Page 120] and the optimal scheduler [57, Theorem 5.2 on page 124] di-
rectly rely on it. We fix this error in the more general setting of cost-bounded
reachability probability through a new methodology as illustrated in this sec-
tion.

9.2 Optimal Measurable Schedulers

In this section, we establish optimal measurable schedulers for maximal
cost-bounded reachability probability. We show that there exists a de-
terministic cost-positional measurable scheduler that achieves the maxi-
mal cost-bounded reachability probability. Below we fix a CTMDP M =
(S, Ser, Sla, Act,Eer,Ela,P) . We first introduce the notion of deterministic
cost-positional schedulers.

Definition 9.4. A measurable scheduler D is called deterministic cost-
positional iff the following conditions hold:

• for all ξ, ξ′ ∈ Histser(M), if ξ↓ = ξ′↓ and C(ξ) = C(ξ′), then
D(ξ, �) = D(ξ′, �);

• for all ξ, ξ′ ∈ Histsla(M) and t, t′ ∈ R≥0, if ξ↓ = ξ′↓ and C(ξ) + t ·
w(ξ↓) = C(ξ′) + t′ ·w(ξ′↓), then D(ξ, t, �) = D(ξ′, t′, �);

• for all ξ ∈ Histser(M), D(ξ, �) is Dirac;

• for all ξ ∈ Histsla(M) and t ∈ R≥0, D(ξ, t, �) is Dirac.

Intuitively, a deterministic cost-positional scheduler makes its decision
solely on the current state and the cost accumulated so far, and its decision
is always Dirac. Below we show that such a scheduler suffices to achieve
maximal cost-bounded reachability probability.

Theorem 9.2. For all c ∈ Rk and G ⊆ S, there exists a measurable deter-
ministic cost-positional scheduler Dc such that probmax

G (s, c) = PrDc,D[s](Π
c

G)
for all s ∈ S.

9.2. OPTIMAL MEASURABLE SCHEDULERS 121

Proof. Let G ⊆ S. Fix an arbitrary linear order � on Act. Consider some
c ∈ Rk. We define the function Ger : Ser ×Act× Rk → [0, 1] by:

Ger(s, a,x) :=
∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− x− t ·w(s, a))

]

dt .

We further define the function Gla : Sla ×Act× Rk × R≥0 → [0, 1] by:

Gla(s, a,x, t) :=
∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− x− t ·w(s)) .

Note that probmax
G (s, c− x) = maxa∈En(s) Ger(s, a,x) if s ∈ Ser −G; and

probmax
G (s, c− x) =

∫ ∞

0
fE(s)(t) · max

a∈En(s)
Gla(s, a,x, t) dt

if s ∈ Sla−G. We construct the measurable scheduler Dc as follows. Consider
an arbitrary ξ ∈ Hists(M). Define

Xξ

6=~0
:=
{

s ∈ Ser | ∃a
∗ ∈ En(s).

[

Ger(s, a
∗,C(ξ)) = max

a∈En(s)
Ger(s, a,C(ξ))

∧w(s, a∗) 6= ~0
]}

∪
{

s ∈ Sla | w(s) 6= ~0
}

and Xξ
=0 := {s ∈ S | probmax

G (s, c−C(ξ)) = 0} . Note that the defini-

tions of Xξ

6=~0
and Xξ

=0 depend only on C(ξ). The probability distribution

Dc(ξ, �), Dc(ξ, �, �) is determined by the following procedure.

1. If ξ↓ ∈ Xξ
=0 ∩Ser, then we set Dc(ξ, �) = D[aξ↓=0] where a

ξ↓
=0 ∈ En(ξ↓) is

an arbitrarily fixed action.

2. If ξ↓ ∈ Xξ
=0 ∩ Sla and t ∈ R≥0, then we set Dc(ξ, t, �) = D[aξ↓=0], where

the choice of aξ↓=0 is the same as above.

3. If ξ↓ ∈ Ser ∩ (Xξ

6=~0
\Xξ

=0), then we set Dc(ξ, �) = D[aξ], where aξ ∈

En(ξ↓) satisfies that

Ger(ξ↓, a
ξ,C(ξ)) = max

a∈En(ξ↓)
Ger(ξ↓, a,C(ξ)) and w(ξ↓, aξ) 6= ~0 ;

if there are multiple such aξ ’s, we choose the least of them w.r.t �.
Note that the choice of aξ depends only on C(ξ) and ξ↓.

4. If ξ↓ ∈ Sla ∩ (Xξ

6=~0
\Xξ

=0) and t ∈ R≥0, then we set Dc(ξ, t, �) = D[aξ,t],

where aξ,t ∈ En(ξ↓) satisfies

Gla(ξ↓, a
ξ,t,C(ξ), t) = max

a∈En(ξ↓)
Gla(ξ↓, a,C(ξ), t) ;

if there are multiple such aξ,t ’s, we choose the least of them w.r.t �.
Note that the choice of aξ,t depends only on C(ξ) + t ·w(ξ↓) and ξ↓.

122 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

5. If ξ↓ ∈ Ser\(X
ξ

6=~0
∪Xξ

=0), then we set Dc(ξ, �) to be the Dirac distribu-

tion at an action aξ ∈ En(ξ↓) which satisfies that

Ger(ξ↓, a
ξ,C(ξ)) = max

a∈En(ξ↓)
Ger(ξ↓, a,C(ξ))

and there exists s ∈ S such that P(ξ↓, aξ, s) > 0 and the distance from

s to Xξ

6=~0
\Xξ

=0 is (one-step) smaller than that from ξ↓ in the digraph

Gξ (to be defined later in this proof). If there are multiple such aξ ’s,
we choose the least of them w.r.t �.

6. If ξ↓ ∈ Sla\(X
ξ

6=~0
∪Xξ

=0) and t ∈ R≥0, then we set Dc(ξ, t, �) to be the

Dirac distribution at an action aξ,t ∈ En(ξ↓) which satisfies that

Gla(ξ↓, a
ξ,t,C(ξ), t) = max

a∈En(ξ↓)
Gla(ξ↓, a

ξ,t,C(ξ), t)

and there exists s ∈ S such that P(ξ↓, aξ,t, s) > 0 and the distance

from s to Xξ

6=~0
\Xξ

=0 is (one-step) smaller than that from ξ↓ in the

digraph Gξ. If there are multiple such aξ,t ’s, we choose the least of
them w.r.t �. Note that aξ,t only depends on C(ξ) + t ·w(ξ↓) and ξ↓,
and the dwell-time t does not affect the choice of aξ,t since w(ξ↓) = ~0.

The digraph Gξ is defined such that its vertex set is S, and its edge set is
the set of all (u, v) ∈ S × S such that either u ∈ Ser and

∃b ∈ En(u).
[

P(u, b, v) > 0 ∧ Ger(u, b,C(ξ)) = max
a∈En(u)

Ger(u, a,C(ξ))
]

holds, or u ∈ Sla and

∃b ∈ En(u).
[

P(u, b, v) > 0 ∧ Gla(u, b,C(ξ), 0) = max
a∈En(u)

Gla(u, a,C(ξ), 0)
]

holds. The legitimacy of the third step in the procedure above follows from
Proposition 9.1 to be proved later: the set X ′ ⊆ S\(Xξ

6=~0
∪ Xξ

=0) of states

that cannot reach Xξ

6=~0
\Xξ

=0 should be empty, or otherwise one can reduce

all values in
{probmax

G (s, c−C(ξ))}s∈X′

by a small amount, to obtain a pre-fixed-point which is strictly smaller than
{probmax

G (s, c−C(ξ))}s∈S . By definition, Dc is deterministic cost-positional.

Note that there are finitely many triples (Xξ

6=~0
, Xξ

=0,G
ξ) since S is finite. By

Theorem 9.1, the function x 7→ Ger(s, a,x) (resp. (x, t) 7→ Gla(s, a,x, t)) is
separately continuous on {x | x ≤ c} (resp. {(x, t) | x+t·w(s) ≤ c}) and its
complement set, for all s ∈ S and a ∈ En(s). Thus, the set of all histories ξ

with length n such that the triple (Xξ

6=~0
, Xξ

=0,G
ξ) happens to be a specific one

9.2. OPTIMAL MEASURABLE SCHEDULERS 123

is measurable w.r.t (ΩnM,SnM). It follows that Dc is a measurable scheduler.
Below we prove by contradiction that probmax

G (s, c) = PrDc,D[s](Π
c

G) for all

s ∈ S and c ≥ ~0.
Define the function h : S × Rk → [0, 1] by h(s, c) := PrDc,D[s](Π

c

G).

Suppose that probmax
G 6= h. Let h := probmax

G −h. (Note that probmax
G ≥ h.)

Then there exists s ∈ S and c ≥ ~0 such that h(s, c) > 0. Define T :=
max1≤i≤k{

ci

wmin
} . Let

d := sup
{

h(s, c′) | s ∈ S,~0 ≤ c′ ≤ c
}

and

d′ := sup
{

h(s, c′) | ~0 ≤ c′ ≤ c, and either s ∈ Ser and w(s, a∗) 6= ~0

with D[a∗] = Dc′(s, �) or s ∈ Sla with w(s) 6= ~0
}

.

We first show that d′ < d by a (nested) contradiction proof.
Suppose d′ = d. Choose ǫ > 0 such that d > eEmax·T · ǫ. Then choose

s ∈ S and ~0 ≤ c′ ≤ c such that d− ǫ < h(s, c′) ≤ d, and either s ∈ Ser with
w(s, a∗) 6= ~0 (D[a∗] = Dc′(s, �)) or s ∈ Sla with w(s) 6= ~0. On one hand, by
Theorem 7.1, if s ∈ Ser then

h(s, c′) =

∫ ∞

0
fE(s,a∗)(t) ·

[

∑

s′∈S

P(s, a∗, s′) · h(s′, c′ − t ·w(s, a∗))

]

dt;

then with Theorem 9.1, we obtain

h(s, c′) ≤

∫ T

0
fE(s,a∗)(t) ·

[

∑

s′∈S

P(s, a∗, s′) · h(s′, c′ − t ·w(s, a∗))

]

dt .

On the other hand, by Theorem 7.1, if s ∈ Sla then

h(s, c′) =

∫ ∞

0
fE(s)(t) ·

[

∑

s′∈S

P(s, a∗(t), s′) · h(s′, c′ − t ·w(s))

]

dt

with D[a∗(t)] = Dc′(s, t, �). Then with Theorem 9.1, we obtain

h(s, c′) ≤

∫ T

0
fE(s)(t) ·

[

∑

s′∈S

P(s, a∗(t), s′) · h(s′, c′ − t ·w(s))

]

dt .

In either case, we can obtain d − ǫ ≤ (1 − e−Emax·T) · d. This implies
d ≤ eEmax·T · ǫ. Contradiction to the choice of ǫ.

Thus d > d′. Let δ := d− d′ and ǫ := P
|S|
min · δ. We inductively construct

a finite sequence s0, s1, . . . , sl in S (1 ≤ l ≤ |S|) which satisfies

h(si, c
′) > d−P−i

min · ǫ (i = 0, . . . , l)

124 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

for some fixed c′, as follows. Note that the triple (Xs
6=~0
, Xs

=0,G
s) for s ∈ S

(w.r.t any c′′ ∈ Rk) remains constant as s varies, since C(s) = ~0.

1. Initially, we set i = 0 and choose s0 ∈ S and ~0 ≤ c′ ≤ c such that

d− ǫ < h(s0, c
′) ≤ d .

2. As long as both i ≤ l and 0 ≤ d − P−i
min · ǫ < h(si, c

′) ≤ d holds,
si ∈ S\(Xsi

6=~0
∪ Xsi

=0) (w.r.t Dc′) since P−i
min · ǫ ≤ δ. On one hand,

assume that si ∈ Ser. Then

h(si, c
′) =

∑

s′∈S

P(si, a
∗, s′) · h(s′, c′) with D[a∗] = Dc′(si)

and there exists u ∈ S such that (i) P(si, a
∗, u) > 0 and (ii) via u the

distance to Xsi
6=~0

\Xsi
=0 in Gsi (w.r.t Dc′) is decreased by one. Moreover,

from
h(si, c

′) ≤
∑

s′∈S

P(si, a
∗, s′) · h(s′, c′)

we obtain

d−P−i
min · ǫ < (1−Pmin) · d+Pmin · h(u, c

′) ,

which can be further reduced to h(u, c′) > d−P
−(i+1)
min ·ǫ . On the other

hand, assume that si ∈ Sla. Since w(si) = ~0, Dc′(si, t, �) remains con-
stant when t varies. Let a∗ be the action such that D[a∗] = Dc′(si, 0, �).
Then

h(si, c
′) =

∑

s′∈S

P(si, a
∗, s′) · h(s′, c′)

and there exists u ∈ S such that P(si, a
∗, u) > 0 and via u the distance

to Xsi
6=~0

\Xsi
=0 in Gsi (w.r.t Dc′) is decreased by one. Moreover, from

h(si, c
′) ≤

∑

s′∈S

P(si, a
∗, s′) · h(s′, c′)

we obtain

d−P−i
min · ǫ < (1−Pmin) · d+Pmin · h(u, c

′) ,

which is further reduced to h(u, c′) > d−P
−(i+1)
min · ǫ .

3. In either case in the previous step, we set si+1 := u.

4. If si+1 ∈ X
si+1

6=~0
\X

si+1

=0 , then the construction is terminated. Otherwise,

back to Step 2.

The legitimacy and termination (within |S| steps) of the inductive construc-
tion follows directly from the definition of Dc′ . By sl ∈ Xsl

6=~0
\Xsl

=0, we obtain

d− δ ≥ h(sl, c
′) > d−P−l

min · ǫ (l ≤ |S|) ,

which is a contradiction due to ǫ = P
|S|
min · δ. Thus prob

max
G = h.

9.3. DIFFERENTIAL CHARACTERIZATIONS 125

9.3 Differential Characterizations

In this section, we derive differential characterizations for the functions
probmax

G . These differential characterizations will be fundamental to our
approximation algorithms.

Below we fix a CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P), a set G ⊆ S
and a cost function w : S × Act → Rk≥0. To introduce the differential
characterization, we first extend the function probmax

G as follows.

Definition 9.5. Let ZG := {(s, a) ∈ (Ser −G)× Act | a ∈ En(s)} . Define
probmax

G : ZG × Rk → [0, 1] by

probmax
G ((s, a), c) :=

∫ ∞

0
fE(s,a)(t) ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− t ·w(s, a))

]

dt

for (s, a) ∈ ZG and c ∈ Rk.

Intuitively, we extend probmax
G to ZG. By Theorem 9.1, one easily sees

that probmax
G (s, c) = maxa∈En(s) prob

max
G ((s, a), c) for all s ∈ Ser − G and

c ∈ Rk.
The following two definitions introduce a sort of directional derivative

which will be crucial in our approximation algorithm.

Definition 9.6. Let c ∈ Rk≥0. For z ∈ ZG ∪ (Sla −G), we define

∇+probmax
G (z, c) := lim

t→0+

probmax
G (z, c+ t ·w(z))− probmax

G (z, c)

t
.

If ci > 0 whenever wi(z) > 0 (1 ≤ i ≤ k), we further define

∇−probmax
G (z, c) := lim

t→0−

probmax
G (z, c+ t ·w(z))− probmax

G (z, c)

t
;

otherwise, let ∇−probmax
G (z, c) := ∇+probmax

G (z, c) .

Thus ∇+probmax
G (z, c) (resp. ∇−probmax

G (z, c)) is the right (resp. left)
directional derivative along the vector w(z). The following theorem gives a
characterization for ∇+probmax

G (z, c) and ∇−probmax
G (z, c) .

Theorem 9.3. For all z ∈ ZG ∪ (Sla\G) and c ∈ Rk≥0, ∇
+probmax

G (z, c) =
∇−probmax

G (z, c). Moreover,

∇+probmax
G ((s, a), c) =

∑

s′∈S

R(s, a, s′) ·
(

probmax
G (s′, c)− probmax

G ((s, a), c)
)

for all (s, a) ∈ ZG and c ∈ Rk≥0. And

∇+probmax
G (s, c) = max

a∈En(s)

∑

s′∈S

R(s, a, s′) ·
(

probmax
G (s′, c)− probmax

G (s, c)
)

.

126 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

for all s ∈ Sla\G and c ∈ Rk≥0. The function R : S × Act × S → R≥0 is
defined as follows:

• R(s, a, s′) := E(s, a) ·P(s, a, s′) when s ∈ Ser;

• R(s, a, s′) := E(s) ·P(s, a, s′) when s ∈ Sla;

Proof. Let z ∈ ZG ∪ (Sla\G) and c ≥ ~0. We first assume that z ∈ ZG and
z = (s, a). Define the function h[(s, a), c′] to be

τ 7→ fE(s,a)(τ) ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c′ − τ ·w(s, a))

]

.

Denote λ := E(s, a). Consider ∇+probmax
G . By definition, for all t > 0,

probmax
G ((s, a), c+ t ·w(s, a))

=

∫ ∞

0
h[(s, a), c+ t ·w(s, a)](τ) dτ

=

∫ t

0
h[(s, a), c+ t ·w(s, a)](τ) dτ +

∫ ∞

t
h[(s, a), c+ t ·w(s, a)](τ) dτ

= e−λ·t ·

∫ t

0
λ · eλ·τ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c+ τ ·w(s, a))

]

dτ

+ e−λ·t ·

∫ ∞

0
h[(s, a), c](τ) dτ

= e−λ·t ·

∫ t

0
λ · eλ·τ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c+ τ ·w(s, a))

]

dτ

+ e−λ·t · probmax
G ((s, a), c)

where the third equality is obtained by the variable substitution τ ′ = t− τ
for the first integral, and τ ′ = τ − t in the second integral. The legitimacy of
the variable substitution follows from the fact that the integrand is piecewise
continuous (thus Riemann integratable) (cf. Theorem 9.1). (Hence, the
concerned integrals can be deemed as Riemann integrals.) Thus by the
continuity of probmax

G (Theorem 9.1) and an application of L’Hospital’s Rule
to Definition 9.6, we obtain

∇+probmax
G ((s, a), c) =

λ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c)

]

− λ · probmax
G ((s, a), c) ,

which implies the result.

9.3. DIFFERENTIAL CHARACTERIZATIONS 127

The proof for ∇+probmax
G ((s, a), c) = ∇−probmax

G ((s, a), c) follows a sim-
ilar argument. By definition and the previous derivation, for adequate t > 0,
we have

probmax
G ((s, a), c)

= probmax
G ((s, a), (c− t ·w(s, a)) + t ·w(s, a))

= e−λ·t ·

∫ t

0
λ · eλ·τ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− (t− τ) ·w(s, a))

]

dτ

+ e−λ·t · probmax
G ((s, a), c− t ·w(s, a))

=

∫ t

0
λ · e−λ·τ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− τ ·w(s, a))

]

dτ

+ e−λ·t · probmax
G ((s, a), c− t ·w(s, a)) .

where the last equality is obtained through the variable substitution τ ′ =
t− τ . Thus by continuity and L’Hôspital’s rule, we obtain

∇−probmax
G ((s, a), c) =

λ ·

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c)

]

− λ · probmax
G ((s, a), c) .

It follows that ∇+probmax
G ((s, a), c) = ∇−probmax

G ((s, a), c) .

Now we assume that z = s ∈ Sla\G. Denote λ := E(s). Define h[s, c] to
be the function

τ 7→ fλ(τ) · max
a∈En(s)

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− τ ·w(s))

]

.

128 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

We first consider ∇+probmax
G . By Theorem 9.1, for all t > 0, we have

probmax
G (s, c+ t ·w(s))

=

∫ ∞

0
h[s, c+ t ·w(s)](τ) dτ

=

∫ t

0
h[s, c+ t ·w(s)](τ) dτ +

∫ ∞

t
h[s, c+ t ·w(s)](τ) dτ

= e−λ·t ·

∫ t

0
λ · eλ·τ · max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c+ τ ·w(s))

]

dτ

+ e−λ·t ·

∫ ∞

0
h[s, c](τ) dτ

= e−λ·t ·

∫ t

0
λ · eλ·τ · max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c+ τ ·w(s))

]

dτ

+ e−λ·t · probmax
G (s, c)

where the third equality is obtained by the variable substitution τ ′ = t− τ
for the first integral, and τ ′ = τ − t in the second integral. The legitimacy
of the variable substitution follows from the fact that the integrand is piece-
wise continuous (cf. Theorem 9.1). Thus by applying L’Hospital’s rule to
Definition 9.6, we obtain that

∇+probmax
G (s, c) =

max
a∈En(s)

λ ·

[

∑

s′∈S

P(s, a, s′) ·
(

probmax
G (s′, c)− probmax

G (s, c)
)

]

,

which implies the result. The proof for ∇−probmax
G (s, c) follows a similar

argument. By Theorem 9.1 and previous derivations, for adequate t > 0,

probmax
G (s, c)

= probmax
G (s, (c− t ·w(s)) + t ·w(s))

= e−λ·t ·

∫ t

0
λ · eλ·τ · max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− (t− τ) ·w(s))

]

dτ

+ e−λ·t · probmax
G (s, c− t ·w(s))

=

∫ t

0
λ · e−λ·τ · max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · probmax
G (s′, c− τ ·w(s))

]

dτ

+ e−λ·t · probmax
G (s, c− t ·w(s)) .

9.3. DIFFERENTIAL CHARACTERIZATIONS 129

where the last equality is obtained through the variable substitution τ ′ =
t− τ . Thus by applying L’Hospital’s Rule to Definition 9.6, we obtain

∇−probmax
G (s, c) =

max
a∈En(s)

λ ·

[

∑

s′∈S

P(s, a, s′) ·
(

probmax
G (s′, c)− probmax

G (s, c)
)

]

which directly shows that ∇+probmax
G (s, c) = ∇−probmax

G (s, c).

Remark 9.3. The value R(s, a, s′) can be viewed as the exit-rate of s via a
to s′ (cf. [57]).

Theorem 9.3 gives a differential characterization for probmax
G (z, �) with

z ∈ ZG∪(Sla−G). Since ∇
+probmax

G (z, c) = ∇−probmax
G (z, c), we will solely

use ∇probmax
G (z, c) to denote both of them.

Theorem 9.3 allows one to approximate probmax
G (z, c+ t ·w(z)) through

probmax
G (z, c) and ∇probmax

G (z, c). This suggests an approximation algo-
rithm which approximates probmax

G (z, c) from {probmax
G (z, c′) | c′ � c} .

An exception is the case when w(z) = ~0. Below we tackle this situation.

Proposition 9.1. Let

YG :={z ∈ ZG ∪ (Sla\G) | w(z) = ~0}

∪ {s ∈ Ser −G | (∃a ∈ En(s).w(s, a) = ~0)} .

For all c ∈ Rk≥0, the function y 7→ probmax
G (y, c) (y ∈ YG) is the least

fixed-point (w.r.t ≤) of the higher order operator Yc,G : [YG → [0, 1]] →
[YG → [0, 1]] defined as follows: for each (s, a) ∈ YG ∩ ZG,

Yc,G(h)(s, a) :=
∑

s′∈YG∩S

P(s, a, s′) · h(s′) +
∑

s′∈S\YG

P(s, a, s′) · probmax
G (s′, c) ;

for each s ∈ YG ∩ Ser,

Yc,G(h)(s) := max{max{h(s, a) | a ∈ En(s), (s, a) ∈ YG},

max{probmax
G ((s, a), c) | a ∈ En(s), (s, a) 6∈ YG}} ;

for each s ∈ YG ∩ Sla,

Yc,G(h)(s) :=

max
a∈En(s)

∑

s′∈YG∩S

P(s, a, s′) · h(s′) +
∑

s′∈S\YG

P(s, a, s′) · probmax
G (s′, c)

 .

130 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

Proof. Let c ∈ Rk≥0. By Theorem 9.1, y 7→ probmax
G (y, c) is a fixed-point

of Yc,G. Suppose that it is not the least fixed-point of Yc,G. Let the least
fixed-point be h∗. Define

• δ := max{probmax
G (y, c)− h∗(y) | y ∈ YG}, and

• Y ′ := {y ∈ YG | probmax
G (y, c)− h∗(y) = δ} .

Since y 7→ probmax
G (y, c) 6= h∗, we have δ > 0. Consider an arbitrary y ∈ Y ′.

By the maximal choice of δ and Y ′, one can obtain that

1. for all (s, a) ∈ Y ′ ∩ ZG, s
′ ∈ Y ′ whenever s′ ∈ S and P(s, a, s′) > 0;

2. for all s ∈ Y ′∩Ser, (s, a) ∈ Y ′ whenever a ∈ En(s) and probmax
G (s, c) =

probmax
G ((s, a), c) .

3. for all s ∈ Y ′∩Sla, s
′ ∈ Y ′ whenever there exists an a ∈ En(s) such that

P(s, a, s′) > 0 and probmax
G (s, c) =

∑

s′′∈S P(s, a, s′′) · probmax
G (s′′, c) .

Intuitively, one can decrease every coordinate in Y ′ on probmax
G by a same

amount so that a certain “balance” still holds. Choose δ′ ∈ (0, δ) such that

probmax
G (s, c)− δ′ ≥ max{probmax

G ((s, a), c)− δ′ · 1Y ′(s, a) | a ∈ En(s)}

for all s ∈ Y ′ ∩ Ser, and

probmax
G (s, c)− δ′ ≥ max

a∈En(s)

[

∑

s′∈S

P(s, a, s′) · (probmax
G (s′, c)− δ′ · 1Y ′(s′))

]

for all s ∈ Y ′∩Sla. Define h : S×Rk → [0, 1] by: h(s, c′) := probmax
G (s, c′)−δ′

if c′ = c and s ∈ Y ′, and h(s, c′) := probmax
G (s, c′) otherwise. Then h is a

pre-fixed-point of TG which satisfies that h � probmax
G . Contradiction to

Theorem 9.1.

9.4 Approximation Algorithm

In this section, we develop approximation algorithms to compute the maxi-
mal cost-bounded reachability probability under measurable schedulers. Our
numerical algorithms will achieve the following task:

• Input: a CTMDP (S, Ser, Sla, Act,Eer,Ela,P), a cost function w :
S × Act → Rk≥0, a set G ⊆ S, a state s ∈ S, a vector c ∈ Nk0 and an
error bound ǫ > 0;

• Output: a value x ∈ [0, 1] such that |probmax
G (s, c)− x| ≤ ǫ.

For computational purposes, we assume that each wi(s, a) is an integer;
rational numbers (and simultaneously the input cost-bound vector) can be
adjusted to integers by multiplying a common multiplier of the denomina-
tors, without changing the maximal probability value to be approximated.

9.4. APPROXIMATION ALGORITHM 131

In the following, we fix a CTMDP M = (S, Ser, Sla, Act,Eer,Ela,P) and a
cost function w : S ×Act→ Rk≥0. And we fix a set G ⊆ S.

Based on Theorem 9.3 and Proposition 9.1, we design our approximation
scheme as follows. First we introduce our discretization for a given c ∈ Nk0
and a discretization step 1

N (N ∈ N). Note that probmax
G (s, c) = 1 whenever

s ∈ G and c ≥ ~0. Thus we do not need to incorporate those points into
discretization.

Definition 9.7. Let c ∈ Nk0 and N ∈ N. Define

Disc(c, N) := {d ∈ Rk | ~0 ≤ d ≤ c and N · di ∈ N0 for all 1 ≤ i ≤ k} .

The set Dc

N of discretized points is defined as follows:

Dc

N := ((S −G) ∪ ZG)×Disc(c, N) .

Thus Dc

N is the set of “grid points” that are within the scope of c and
are discretized with discretization step 1

N . The following definition presents
the approximation scheme on Dc

N . Intuitively, the approximation scheme
describes how those “points” are related.

Definition 9.8. Define XG := ((S − G) ∪ ZG) − YG. The approximation
scheme ΥG

c,N on Dc

N consists of the following items:

• exactly one rounding argument for each element of Dc

N ;

• a system of equations for elements in XG ×Disc(c, N) ;

• a linear program on YG for each d ∈ Disc(c, N) .

Rounding Arguments: For each element y ∈ Dc

N , the rounding argument
for y is as follows:

probG(y) =
K

N2
if probG(y) ∈

[

K

N2
,
K + 1

N2

)

for some integer 0 ≤ K ≤ N2.

Equations: The system of equations is described as follows. For all points
((s, a),d) ∈ Dc

N with (s, a) ∈ ZG, w(s, a) 6= ~0 and d− 1
N ·w(s, a) ≥ ~0, there

is a linear equation

probG((s, a),d)− probG((s, a), pre(d, (s, a)))
1
N

= (E1)

∑

s′∈S

R(s, a, s′) ·
(

probG(s
′, pre(d, (s, a)))− probG((s, a), pre(d, (s, a)))

)

where pre(d, z) := d− 1
N ·w(z) for z ∈ ZG∪(Sla\G). For all ((s, a),d) ∈ Dc

N

with (s, a) ∈ ZG, w(s, a) 6= ~0 and d − 1
N · w(s, a) 6≥ ~0, there is a linear

equation
probG((s, a),d) = 0 . (E2)

132 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

For all (s,d) ∈ Dc

N such that s ∈ Ser and w(s, a) 6= ~0 for all a ∈ En(s),
there is an equation

probG(s,d) = max
a∈En(s)

probG((s, a),d) . (E3)

For all (s,d) ∈ Dc

N with s ∈ Sla, w(s) 6= ~0 and d− 1
N ·w(s) ≥ ~0, there is a

linear equation

probG(s,d)− probG(s, pre(d, s))
1
N

= (E4)

max
a∈En(s)

∑

s′∈S

R(s, a, s′) ·
(

probG(s
′, pre(d, s))− probG(s, pre(d, s))

)

For all (s,d) ∈ Dc

N with s ∈ Sla, w(s) 6= ~0 and d− 1
N ·w(s) 6≥ ~0, there is a

linear equation
probG(s,d) = 0 . (E5)

Linear Programs: For each d ∈ Disc(c, N), the collection {probG(y,d)}y∈YG
of values is the unique optimum solution of the linear program as follows:

min
∑

y∈YG
probG(y,d), subject to:

• probG((s, a),d) ≥
∑

s′∈S P(s, a, s′) · probG(s
′,d) for all (s, a) ∈ YG ∩

ZG;

• probG((s, a),d) ≤ probG(s,d) for all (s, a) ∈ YG∩ZG and s ∈ YG∩Ser;

• probG(s,d) ≥
∑

s′∈S P(s, a, s′) · probG(s
′,d) for all s ∈ YG ∩ Sla and

a ∈ En(s);

• probG(y,d) ∈ [0, 1] for all y ∈ YG;

where the values {probG(y,d)}y∈XG
are assumed to be known.

In all of the statements above, both probG(s,d) and probG(s,d) repre-
sents 1 for s ∈ G.

Generally, probG(y,d) approximates probmax
G (y,d) and probG(y,d) ap-

proximates the same value with a rounding operation. A detailed computa-
tional sequence of the approximation scheme is described in Algorithm 1.

In principle, we compute the “higher” grid point probG(z,d+ 1
N ·w(z))

by probG(z,d) and (E1) (or (E4)), and then update other “higher” points
through (E3) and the linear program. The rounding argument is incorpo-
rated to avoid precision explosion caused by linear programming. The fol-
lowing proposition shows that Algorithm 1 indeed terminates after a finite
number of steps.

Proposition 9.2. Algorithm 1 terminates after a finite number of steps for
all c ∈ Nk0 and N ∈ N.

9.4. APPROXIMATION ALGORITHM 133

Algorithm 1 The Computation of ΥG
c,N

1: Set all relevant discretized points to zero by (E2) and (E5);
2: Compute all probG(s,d) that can be directly obtained through (E3);
3: Compute all probG(y,d) that can be directly obtained through the linear

program;
4: Compute all probG(y,d) that can be directly obtained by the rounding

argument;
5: Compute all relevant discretized points that can be directly obtained

through (E1) and (E4), and back to Step 2. until all grid points in Dc

N

are computed;

Proof. Let c ≥ ~0 and N ∈ N. The proposition can be proved through a
straightforward induction on

∑k
i=1 di that both probG(y,d) and probG(y,d)

can be computed after a finite number of steps for all (y,d) ∈ Dc

N . The base
step where probG(y,d) is computed through (E2) or (E5) is easy. For the
inductive step, suppose that for all (y,d′) ∈ Dc

N with
∑k

i=1 d
′
i <

∑k
i=1 di,

both probG(y,d
′) and probG(y,d

′) can be computed after a finite number of
steps by Algorithm 1. Then the inductive step can be sequentially justified
by (E1) or (E4), (E3), the linear program and the rounding argument.

Below we prove that the approximation scheme really approximates
probmax

G . To ease the notation, we shall use probG(y,d) or probG(y,d)
to denote both the variable at the grid point and the value it holds under
the approximation scheme.

Theorem 9.4. Let c ∈ Nk0 and N ∈ N with N ≥ Emax. For each (y,d) ∈
Dc

N ,

|probG(y,d)− probmax
G (y,d)| ≤

(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

di

]

+
Emax

N

and

∣

∣probG(y,d)− probmax
G (y,d)

∣

∣ ≤
(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

di

]

+
Emax

N
+

1

N2
.

Proof. We proceed by induction on the number of computation steps illus-
trated by Algorithm 1.

Base Step: (y,d) satisfies that d − 1
N · w(y) 6≥ ~0 . Then we know that

probmax
G (y,d−x ·w(y)) = 0 where x ∈ [0, 1

N] is the largest real number such

134 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

that d − x · w(y) ≥ ~0. Then by Theorem 9.3 and Lagrange’s Mean-Value
Theorem, we obtain that

probmax
G (y,d)− probmax

G (y,d− x ·w(y)) = x · ∇probmax
G (y,d− x′ ·w(y))

for some x′ ∈ (0, x). It follows that probmax
G (y,d) ≤ 1

N ·E(y). Thus we have:

|probmax
G (y,d)− probG(y,d)| ≤

1

N
·Emax .

Inductive Step. The inductive step can be classified into the following
cases:

Case 1: (y,d) = (s,d) with s ∈ Ser and probG(s,d) is computed through
(E3). Then the result follows directly from the fact that

|probmax
G (s,d)− probG(s,d)| ≤ max

a∈En(s)
|probmax

G ((s, a),d)− probG((s, a),d)| .

Case 2: (y,d) is computed through the linear program for d. From Knaster-
Tarski’s Fixed-Point Theorem (Theorem 2.1), the linear program indeed
computes the least fixed-point of Yd,G. By induction hypothesis, for all
y′ ∈ XG,

∣

∣probG(y
′,d)− probmax

G (y′,d)
∣

∣ ≤
(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

di

]

+
Emax

N
.

Thus by induction on n, one can prove that

∣

∣

∣
Yd,n(~0)− Y ′

d,n(~0)
∣

∣

∣
≤

(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

di

]

+
Emax

N
,

where Y ′
d
is the operator obtained by replacing {probmax

G (y, c)}y∈XG
in the

definition of Yd,G (cf. Proposition 9.1) with {probG(y, c)}y∈XG
, and Yd,n

(resp. Y ′
d,n) is the n-th Picard’s iteration of Yd,G (resp. Y ′

d
). It follows that

|probG(y,d)− probmax
G (y,d)| ≤

(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

di

]

+
Emax

N
.

Case 3: (y,d) = ((s, a),d) and prob(y,d) is computed through (E1). By
Lagrange’s Mean-Value Theorem and Theorem 9.3, we have

probmax
G (y,d)− probmax

G (y, pre(d, y)) =
1

N
· ∇probmax

G (y,d− x ·w(y))

9.4. APPROXIMATION ALGORITHM 135

for some x ∈ (0, 1
N). By Theorem 9.3 and Theorem 9.1, we can obtain that

probmax
G ((s, a),d) = probmax

G ((s, a), pre(d, (s, a))) + δ + (*)

1

N
·
∑

s′∈S

R(s, a, s′) ·
[

probmax
G (s′, pre(d, y))− probmax

G (y, pre(d, y))
]

for some δ ∈ [− 2
N2 ·

E2
max·wmax

wmin
, 2
N2 ·

E2
max·wmax

wmin
] . Rewriting (*) and (E1), we

obtain that

probmax
G (y,d) =

1

N
·

[

∑

s′∈S

R(s, a, s′) · probmax
G (s′, pre(d, y))

]

+

(

1−
E(s, a)

N

)

· probmax
G (y, pre(d, y)) + δ

and

probG(y,d) =
1

N
·

[

∑

s′∈S

R(s, a, s′) · probG(s
′, pre(d, y))

]

+

(

1−
E(s, a)

N

)

· probG(y, pre(d, y)) .

By induction hypothesis, we have

|probmax
G (y,d)− probG(y,d)| ≤
(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

(pre(d, y))i

]

+ |δ|+
1

N2
+

Emax

N
,

from which the induction step can be obtained.
Case 4: (y,d) = (s,d) and probG(y,d) is computed through (E4). This
case is very much similar to the previous case. By Lagrange’s Mean-Value
Theorem and Theorem 9.3, we have

probmax
G (s,d)− probmax

G (s, pre(d, s)) =
1

N
· ∇probmax

G (s,d− x ·w(s))

for some x ∈ (0, 1
N). By Theorem 9.3 and Theorem 9.1, we can obtain that

probmax
G (s,d) = probmax

G (s, pre(d, s)) + δ + (**)

1

N
· max
a∈En(s)

∑

s′∈S

R(s, a, s′) ·
[

probmax
G (s′, pre(d, s))− probmax

G (s, pre(d, s))
]

for some δ ∈ [−2·E2
max·wmax

N2·wmin
, 2·E

2
max·wmax

N2·wmin
] . Rewriting (**) and (E4), we

obtain

probmax
G (s,d) =

1

N
· max
a∈En(s)

[

∑

s′∈S

R(s, a, s′) · probmax
G (s′, pre(d, s))

]

+

(

1−
E(s)

N

)

· probmax
G (s, pre(d, s)) + δ

136 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

and

probG(s,d) =
1

N
· max
a∈En(s)

[

∑

s′∈S

R(s, a, s′) · probG(s
′, pre(d, s))

]

+

(

1−
E(s)

N

)

· probG(s, pre(d, s)) .

By induction hypothesis, we have

|probmax
G (s,d)− probG(s,d)| ≤
(

2 ·E2
max ·wmax

N ·wmin
+

1

N

)

·

[

k
∑

i=1

(pre(d, s))i

]

+
Emax

N
+ |δ|+

1

N2
,

from which the induction step can be obtained.

Case 5: prob(y,d) is computed through rounding. The induction step for
this case is straightforward.

From Theorem 9.4, we derive our approximation algorithm as follows.

Corollary 9.2. There exists an algorithm such that given any ǫ > 0, s ∈ S,
G ⊆ S and c ∈ Nk0, the algorithm outputs a d ∈ [0, 1] which satisfies that
|d− probmax

G (s, c)| ≤ ǫ. Moreover, the algorithm runs in

O((max{Emax,
M

ǫ
})k · (

k
∏

i=1

ci) · (|M|+ log
M

ǫ
)8)

time, where M := (2 · E2
max ·

wmax
wmin

+ 1) ·
[

∑k
i=1 ci

]

+ Emax + 1 and |M| is

the size of M .

Proof. The algorithm is a simple application of Theorem 9.4. If s ∈ G, the
algorithm just returns 1; otherwise, the algorithm just calls Algorithm 1 with
N := ⌊max{Emax,

M
ǫ }⌋+1 and set d := probG(s, c). By Theorem 9.4, we can

directly obtain that |d− probmax
G (s, c)| ≤M · 1

N . For each d ∈ Disc(c, N),
the total computation of {probG(y,d)}y∈XG∪YG and {probG(y,d)}y∈XG∪YG

takes O((|M| + log M
ǫ)

8) time, since the most time consuming part is the
linear program which takes O((|M| + logN)8) time (cf. [66]). Thus the
total running time of the algorithm is

O((max{Emax,
M

ǫ
})k · (

k
∏

i=1

ci) · (|M|+ log
M

ǫ
)8)

since the size of Disc(c, N) is O(Nk · (
∏k
i=1 ci)) .

9.5. CONCLUSION 137

9.5 Conclusion

In this chapter, we established an integral characterization for (multi dimen-
sional) maximal cost-bounded reachability probability on continuous-time
Markov decision processes, the existence of deterministic cost-positional op-
timal scheduler and an algorithm to approximate the cost-bounded reach-
ability probability with an error bound. The approximation algorithm is
based on a differential characterization of cost-bounded reachability proba-
bility, which in turn is derived from the integral characterization. The error
bound is obtained through the differential characterization and a certain Lip-
schitz property. Moreover, the approximation algorithm runs in polynomial
time in the size of the CTMDP and the reciprocal of the error bound, and
exponential in the dimension of the cost-bound vector. Besides, we pointed
out a proof error in the treatment of maximal time-bounded reachability
probability on continuous-time Markov decision processes [57, 59]. We fixed
this error in the more general setting of maximal cost-bounded reachability
probability through a new methodology.

138 CHAPTER 9. COST-BOUNDED REACHABILITY ON CTMDPS

Chapter 10

Conclusion

This dissertation focuses on both algorithmic and complexity aspect of for-
mal verification of probabilistic systems. The contributions of this disserta-
tion are as follows.

In Chapter 5, we prove that the decision problem of simulation preorder
between probabilistic pushdown automata and finite probabilistic automata
is in EXPTIME. We demonstrate the EXPTIME-membership of the decision
problem through a tableaux system obtained by a variation of the one by
Colin Stirling [70, 69] and a partition-refinement technique. Combined with
the EXPTIME-hardness result by Kučera and Mayr [52], we are able to
show that the decision problem is EXPTIME-complete.

In Chapter 6, we prove that the threshold problem of the bisimilarity
metric on finite probabilistic automata defined by van Breugel and Wor-
rell [72] lies in UP ∩ coUP, which is a subclass of NP ∩ coNP. Our re-
sult significantly improves the previous complexity result by van Breugel et
al. [71].

In Chapter 8, we correct errors in the paper [24] with new proofs and
develop a numerical approximation algorithm for acceptance probability of
CTMC-paths by a general (multi-clock) deterministic timed automata. Un-
like the work by Barbot et al. [9], we are able to provide a tight error bound
for our approximation algorithm.

In Chapter 9, we study maximal cost-bounded reachability probability on
continuous-time Markov decision processes. In detail, we provide a integral
characterization for the maximal cost-bounded reachability probability func-
tion, prove the existence of optimal cost-positional scheduler, and develop a
numerical approximation algorithm for maximal cost-bounded reachability
probability on CTMDPs. Meanwhile, we also fix a proof error in the work
by Neuhäußer and Zhang [59, 57]. The time complexity of the algorithm is
polynomial in the size of the CTMDP, the unary representation of the cost-
bound vector and the reciprocal of the given error bound, and exponential
in the dimension of the cost-bound vector.

139

140 CHAPTER 10. CONCLUSION

Bibliography

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[2] Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Matthias Kuntz,
and Markus Siegle. Model checking Markov chains with actions and
state labels. IEEE Trans. Software Eng., 33(4):209–224, 2007.

[3] Christel Baier, Ernst Moritz Hahn, Boudewijn R. Haverkort, Holger
Hermanns, and Joost-Pieter Katoen. Model checking for performability.
Mathematical Structures in Computer Science, 23(4):751–795, 2013.

[4] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time Markov
chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.

[5] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Reachability in continuous-time Markov reward decision
processes. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors,
Logic and Automata, volume 2 of Texts in Logic and Games, pages
53–72. Amsterdam University Press, 2008.

[6] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Performance evaluation and model checking join forces.
Commun. ACM, 53(9):76–85, 2010.

[7] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[8] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena
Wolf. Comparative branching-time semantics for Markov chains. Inf.
Comput., 200(2):149–214, 2005.

[9] Benôıt Barbot, Taolue Chen, Tingting Han, Joost-Pieter Katoen, and
Alexandru Mereacre. Efficient CTMC model checking of linear real-
time objectives. In Parosh Aziz Abdulla and K. Rustan M. Leino,
editors, TACAS, volume 6605 of Lecture Notes in Computer Science,
pages 128–142. Springer, 2011.

141

142 BIBLIOGRAPHY

[10] Gilles Bernot, Jean-Paul Comet, Adrien Richard, and Janine Guespin.
Application of formal methods to biological regulatory networks: ex-
tending Thomas asynchronous logical approach with temporal logic.
Journal of Theoretical Biology, 229(3):339–347, 2004.

[11] Andrea Bianco and Luca de Alfaro. Model checking of probabalistic
and nondeterministic systems. In P. S. Thiagarajan, editor, FSTTCS,
volume 1026 of Lecture Notes in Computer Science, pages 499–513.
Springer, 1995.

[12] Patrick Billingsley. Probability and Measure. John Wiley & Sons, New
York, NY, USA, 2nd edition, 1986.

[13] Garrett Birkhoff. Lattice Theory, volume 25 of Colloquium Publications.
American Math. Society, New York, USA, rev. ed. edition, 1948.

[14] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains - Modeling and Performance
Evaluation with Computer Science Applications; 2nd Edition. Wiley,
2006.

[15] Tomás Brázdil, Vojtech Forejt, Jan Krcál, Jan Kret́ınský, and Antońın
Kučera. Continuous-time stochastic games with time-bounded reacha-
bility. Inf. Comput., 224:46–70, 2013.

[16] Tomás Brázdil, Jan Krcál, Jan Kret́ınský, Antońın Kučera, and Vojtech
Rehák. Stochastic real-time games with qualitative timed automata
objectives. In Paul Gastin and François Laroussinie, editors, CONCUR,
volume 6269 of Lecture Notes in Computer Science, pages 207–221.
Springer, 2010.

[17] Tomás Brázdil, Jan Krcál, Jan Kret́ınský, Antońın Kučera, and Vojtech
Rehák. Measuring performance of continuous-time stochastic processes
using timed automata. In Marco Caccamo, Emilio Frazzoli, and Radu
Grosu, editors, HSCC, pages 33–42. ACM, 2011.

[18] Tomás Brázdil, Antońın Kucera, and Oldrich Strazovský. On the de-
cidability of temporal properties of probabilistic pushdown automata.
In Volker Diekert and Bruno Durand, editors, STACS, volume 3404 of
Lecture Notes in Computer Science, pages 145–157. Springer, 2005.

[19] Tomás Brázdil, Antońın Kučera, and Oldrich Strazovský. Deciding
probabilistic bisimilarity over infinite-state probabilistic systems. Acta
Inf., 45(2):131–154, 2008.

[20] Peter Buchholz and Ingo Schulz. Numerical analysis of continuous
time Markov decision processes over finite horizons. Computers & OR,
38(3):651–659, 2011.

BIBLIOGRAPHY 143

[21] Supratik Chakraborty and Amit Kumar, editors. IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India,
volume 13 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2011.

[22] Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and Vish-
wanath Raman. Algorithms for game metrics (full version). Logical
Methods in Computer Science, 6(3), 2010.

[23] Taolue Chen, Marco Diciolla, Marta Z. Kwiatkowska, and Alexan-
dru Mereacre. Time-bounded verification of CTMCs against real-time
specifications. In Uli Fahrenberg and Stavros Tripakis, editors, FOR-
MATS, volume 6919 of Lecture Notes in Computer Science, pages 26–
42. Springer, 2011.

[24] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru
Mereacre. Model checking of continuous-time Markov chains against
timed automata specifications. Logical Methods in Computer Science,
7(1), 2011.

[25] Taolue Chen, Tingting Han, and Jian Lu. On metrics for probabilistic
systems: Definitions and algorithms. Computers & Mathematics with
Applications, 57(6):991–999, 2009.

[26] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In Dex-
ter Kozen, editor, Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer, 1981.

[27] M.H.A. Davis. Markov Models and Optimizations. Chapman & Hall,
New York, NY, USA, 1993.

[28] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle
Stoelinga. Game refinement relations and metrics. Logical Methods in
Computer Science, 4(3), 2008.

[29] Yuxin Deng. Lecture Notes on Probabilistic Concurrency. Lecture
Notes, available at http://basics.sjtu.edu.cn/~yuxin/ ., 2009.

[30] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash
Panangaden. Metrics for labelled Markov processes. Theor. Comput.
Sci., 318(3):323–354, 2004.

[31] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. Model check-
ing timed and stochastic properties with CSLTA. IEEE Trans. Software
Eng., 35(2):224–240, 2009.

http://basics.sjtu.edu.cn/~yuxin/

144 BIBLIOGRAPHY

[32] R. M. Dudley. Real Analysis and Probability. Cambridge University
Press, 2002.

[33] Kousha Etessami and Mihalis Yannakakis. Recursive Markov decision
processes and recursive stochastic games. In Lúıs Caires, Giuseppe F.
Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 891–
903. Springer, 2005.

[34] Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of nonlinear equations. J.
ACM, 56(1), 2009.

[35] John Fearnley, Markus Rabe, Sven Schewe, and Lijun Zhang. Efficient
approximation of optimal control for continuous-time Markov games.
In Chakraborty and Kumar [21], pages 399–410.

[36] William Feller. An Introduction to Probability Theory and Its Applica-
tions. John Wiley & Sons, New York, NY, USA, 3rd edition, 1968.

[37] Hongfei Fu. The complexity of deciding a behavioural pseudometric on
probabilistic automata. Technical Report AIB-2011-26, RWTH Aachen,
December 2011.

[38] Hongfei Fu. Model checking EGF on basic parallel processes. In Tevfik
Bultan and Pao-Ann Hsiung, editors, ATVA, volume 6996 of Lecture
Notes in Computer Science, pages 120–134. Springer, 2011.

[39] Hongfei Fu. Computing game metrics on Markov decision processes. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Watten-
hofer, editors, ICALP (2), volume 7392 of Lecture Notes in Computer
Science, pages 227–238. Springer, 2012.

[40] Hongfei Fu. Approximating acceptance probabilities of CTMC-paths
on multi-clock deterministic timed automata. In Calin Belta and Franjo
Ivancic, editors, HSCC, pages 323–332. ACM, 2013.

[41] Hongfei Fu. Maximal cost-bounded reachability probability on
continuous-time Markov decision processes. In Anca Muscholl, editor,
FoSSaCS, volume 8412 of Lecture Notes in Computer Science, pages
73–87. Springer, 2014.

[42] Hongfei Fu and Joost-Pieter Katoen. Deciding probabilistic simulation
between probabilistic pushdown automata and finite-state systems. In
Chakraborty and Kumar [21], pages 445–456.

[43] Jan Friso Groote and Hans Hüttel. Undecidable equivalences for basic
process algebra. Inf. Comput., 115(2):354–371, 1994.

BIBLIOGRAPHY 145

[44] Robert L. Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel,
editors. Hybrid Systems, volume 736 of Lecture Notes in Computer
Science. Springer, 1993.

[45] Hans Hansson and Bengt Jonsson. A logic for reasoning about time
and reliability. Formal Asp. Comput., 6(5):512–535, 1994.

[46] Hassan Hatefi and Holger Hermanns. Improving time bounded reach-
ability computations in interactive Markov chains. In Farhad Arbab
and Marjan Sirjani, editors, FSEN, volume 8161 of Lecture Notes in
Computer Science, pages 250–266. Springer, 2013.

[47] Chaodong He, Yuxi Fu, and Hongfei Fu. Decidability of behavioral
equivalences in process calculi with name scoping. In Farhad Arbab
and Marjan Sirjani, editors, FSEN, volume 7141 of Lecture Notes in
Computer Science, pages 284–298. Springer, 2011.

[48] Petr Jancar, Antońın Kucera, and Richard Mayr. Deciding
bisimulation-like equivalences with finite-state processes. Theor. Com-
put. Sci., 258(1-2):409–433, 2001.

[49] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refine-
ment of probabilistic processes. In LICS, pages 266–277. IEEE Com-
puter Society, 1991.

[50] Dexter Kozen. Results on the propositional mu-calculus. Theor. Com-
put. Sci., 27:333–354, 1983.

[51] Antońın Kučera, Javier Esparza, and Richard Mayr. Model checking
probabilistic pushdown automata. Logical Methods in Computer Sci-
ence, 2(1), 2006.

[52] Antońın Kučera and Richard Mayr. On the complexity of checking se-
mantic equivalences between pushdown processes and finite-state pro-
cesses. Inf. Comput., 208(7):772–796, 2010.

[53] Kim Guldstrand Larsen and Arne Skou. Bisimulation through proba-
bilistic testing. Inf. Comput., 94(1):1–28, 1991.

[54] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems,
A Cyber-Physical Systems Approach. http://LeeSeshia.org, 2011.

[55] Linar Mikeev, Martin R. Neuhäußer, David Spieler, and Verena Wolf.
On-the-fly verification and optimization of DTA-properties for large
Markov chains. Formal Methods in System Design, 43(2):313–337, 2013.

[56] Robin Milner. Communication and Concurrency. PHI Series in com-
puter science. Prentice Hall, 1989.

146 BIBLIOGRAPHY

[57] Martin R. Neuhäußer. Model Checking Nondeterministic and Randomly
Timed Systems. PhD thesis, RWTH Aachen, 2010.

[58] Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen. De-
layed nondeterminism in continuous-time Markov decision processes.
In Luca de Alfaro, editor, FOSSACS, volume 5504 of Lecture Notes in
Computer Science, pages 364–379. Springer, 2009.

[59] Martin R. Neuhäußer and Lijun Zhang. Time-bounded reachability
probabilities in continuous-time Markov decision processes. In QEST,
pages 209–218. IEEE Computer Society, 2010.

[60] Prakash Panangaden. Labelled Markov Processes. Imperial College
Press, 2009.

[61] David Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science,
pages 167–183, London, UK, 1981. Springer-Verlag.

[62] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977.

[63] Tomás Prieto-Rumeau and Onésimo Hernández-Lerma. Selected Topics
on Continuous-Time Controlled Markov Chains and Markov Games.
Imperial College Press, London, UK, 2012.

[64] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA,
1st edition, 1994.

[65] Markus N. Rabe and Sven Schewe. Finite optimal control for time-
bounded reachability in CTMDPs and continuous-time Markov games.
Acta Inf., 48(5-6):291–315, 2011.

[66] Alexander Schrijver. Theory of Linear and Integer Programming.
Wiley-Interscience series in discrete mathematics and optimization. Wi-
ley, 1999.

[67] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for prob-
abilistic processes. Nord. J. Comput., 2(2):250–273, 1995.

[68] William J. Stewart. Probability, Markov Chains, Queues, and Simu-
lation - The Mathematical Basis of Performance Modeling. Princeton
University Press, 2009.

[69] Colin Stirling. Decidability of bisimulation equivalence for normed
pushdown processes. Theor. Comput. Sci., 195(2):113–131, 1998.

BIBLIOGRAPHY 147

[70] Colin Stirling. Decidability of bisimulation equivalence for pushdown
processes. Unpublished manuscript, available at http: // homepages.
inf. ed. ac. uk/ cps/ , 2000.

[71] Franck van Breugel, Babita Sharma, and James Worrell. Approxi-
mating a behavioural pseudometric without discount for probabilistic
systems. Logical Methods in Computer Science, 4(2), 2008.

[72] Franck van Breugel and James Worrell. A behavioural pseudometric for
probabilistic transition systems. Theor. Comput. Sci., 331(1):115–142,
2005.

[73] Rob J. van Glabbeek. The linear time-branching time spectrum (ex-
tended abstract). In Jos C. M. Baeten and Jan Willem Klop, editors,
CONCUR, volume 458 of Lecture Notes in Computer Science, pages
278–297. Springer, 1990.

[74] Nicolás Wolovick and Sven Johr. A characterization of meaningful
schedulers for continuous-time Markov decision processes. In Eugene
Asarin and Patricia Bouyer, editors, FORMATS, volume 4202 of Lec-
ture Notes in Computer Science, pages 352–367. Springer, 2006.

[75] Lijun Zhang, David N. Jansen, Flemming Nielson, and Holger Her-
manns. Automata-based CSL model checking. Logical Methods in
Computer Science, 8(2), 2011.

http://homepages.inf.ed.ac.uk/cps/
http://homepages.inf.ed.ac.uk/cps/

148 BIBLIOGRAPHY

BIBLIOGRAPHY 149

Aachener Informatik-Berichte

This list contains all technical reports published during the past three

years. A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika brahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination

Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

http://aib.informatik.rwth-aachen.de/
mailto:biblio@informatik.rwth-aachen.de

150 BIBLIOGRAPHY

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric

on Probabilistic Automata

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for

Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

BIBLIOGRAPHY 151

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika brahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of

Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the

Interdisciplinary Development of a Trustworthy Platform for Globally

Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error

tolerance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

152 BIBLIOGRAPHY

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

mailto:biblio@informatik.rwth-aachen.de

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Background: Formal Methods
	Outline of the Dissertation
	Origins of the Chapters and Credits
	Basic Notations

	Lattice Theory
	Measure Theory
	Measure Space
	Lebesgue Integral
	Product -Algebra
	Dynkin's - Theorem

	Probabilistic Automata
	Probabilistic Automata
	Bisimulation and Simulation on PAs

	Simulation Preorder between pPDAs and fPAs
	Probabilistic Pushdown Automata
	Extended Stack Symbols
	Tableaux Proof System
	EXPTIME-Hardness
	Conclusion

	Bisimilarity Metric on Probabilistic Automata
	Bisimilarity Metric on PAs
	Approximate Bisimilarity Metrics
	Self-Closed Sets
	The Membership of UPcoUP
	Conclusion

	Continuous-Time Markov Decision Processes
	The Model
	Paths and Histories
	Measurable Spaces on Paths and Histories
	Schedulers and Their Probability Spaces
	A General Integral Characterization
	Conclusion
	Proofs

	Acceptance Probability of CTMC-Paths by DTA
	Continuous-Time Markov Chains
	Deterministic Timed Automata
	Measurability and The Integral Equations
	Mathematical Technicalities
	Equivalence Relations on Clock Valuations
	Product Region Graph
	Lipschitz Continuity

	A Differential Characterization
	Approximation Algorithm
	Approximation Schemes
	Error-Bound Analysis

	Conclusion

	Cost-Bounded Reachability on CTMDPs
	Cost-Bounded Reachability Probability
	Optimal Measurable Schedulers
	Differential Characterizations
	Approximation Algorithm
	Conclusion

	Conclusion

