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Abstract. We address the problem of automatic verification of programs with
dynamic data structures. We consider the case of sequential, non-recursive pro-
grams manipulating 1-selector-linked structures such as traditional linked lists
(possibly sharing their tails) and circular lists. We propose an automata-based
approach for a symbolic verification of such programs using the regular model
checking framework. Given a program, the configurations of the memory are
systematically encoded as words over a suitable finite alphabet, potentially infi-
nite sets of configurations are represented by finite-state automata, and statements
of the program are automatically translated into finite-state transducers defining
regular relations between configurations. Then, abstract regular model checking
techniques are applied in order to automatically check safety properties concern-
ing the shape of the computed configurations or relating the input and output
configurations. For this particular purpose, we introduce new techniques for the
computation of abstractions of the set of reachable configurations and to refine
these abstractions if spurious counterexamples are detected. Finally, we present
experimental results showing the applicability of the approach and its efficiency.

1 Introduction

In this paper, we address the problem of automatic verification of programs with dy-
namic linked data structures. Such programs are in general difficult to write and un-
derstand, and so the possibility of their formal verification is highly desirable. Formal
verification of such programs is, however, a very difficult task too. Dynamic allocation
leads to a necessity of dealing with infinite state spaces. The objects to be dealt with
are in general graphs whose shape is difficult to be restricted in advance. The problem
is that the linked data structures may fulfil some shape invariants at certain program
points, but these invariants may be temporarily broken in various ways while perform-
ing some operations over the data structures.

We consider in this work the case of sequential non-recursive programs manipulat-
ing structures with one next pointer such as traditional singly-linked lists and circular
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Informatique) and the Czech Grant Agency (projects GA CR 102/04/0780 and 102/03/D211).

N. Halbwachs and L. Zuck (Eds.): TACAS 2005, LNCS 3440, pp. 13–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



14 A. Bouajjani et al.

lists (possibly sharing their parts) that belong among the most commonly used struc-
tures in practice. We propose an automata-based approach for symbolic verification of
such programs using the regular model checking framework [11, 19, 3]. To the best of
our knowledge, this is the first time regular model checking is systematically used in
this area—so far, there has only been an isolated ad-hoc attempt to do so in [2].

As our first contribution, we provide a systematic encoding of the configurations
of considered programs as words over a suitable finite alphabet. Potentially infinite
sets of configurations can then be represented by finite-state automata. Moreover, we
propose an automatic translation of non-recursive sequential C-like programs (without
pointer arithmetics and with suitably abstracted non-pointer data values) into finite-state
transducers applicable to the sets of program configurations represented by automata
and defining regular relations between these configurations. The translation is done
statement-by-statement, and one can then either take a union of all statement transduc-
ers or use them separately.

By repeatedly applying the transducer (or transducers) representing a program to the
automaton encoding a set of possible initial configurations, one can obtain the sets of
configurations reachable in any finite number of steps. It is, however, usually impossible
to obtain the set of all reachable configurations in this way—the computation will not
stop for most programs with loops. One thus has to consider techniques that will accel-
erate the computation achieving termination as often as possible—a general termination
result cannot be obtained as the verification problem considered is clearly undecidable.

In the literature, several different general-purpose techniques have been proposed
to accelerate the computation of reachable states in regular model checking. They in-
clude, e.g., widening [3, 17], collapsing of automata states based on the history of their
creation by composing transducers [10, 1], abstraction of automata [2], or inference of
languages [6]. In this work, however, as our further contribution, we propose a new set
of acceleration techniques that are more tailored for the given domain and thus promise
much better performance results. These techniques are based on new language abstrac-
tions, which contrary to those introduced in [2], are not defined on the representation
structures (i.e. the automata representing sets of configurations), but defined on words
(corresponding to configurations). Such abstractions are defined by means of finite-state
transducers following different generic schemas. The definitions of these abstractions
are guided by the observation that in the configurations of the programs we consider
there are some repeated patterns for which it is sufficient to remember their number
of repetitions precisely up to some fixed bound. If the number of repetitions is higher,
we abstract it to an arbitrary value. The abstraction schemas we define are refinable
in the sense that they define infinite sequences of abstraction mappings with increas-
ing precision. Therefore, our verification approach is based on computing abstractions
of the sets of reachable configurations, and on refining the abstractions when spurious
counterexamples are detected.

These techniques allow us to fully automatically compute safe overapproximations
of the state space of programs with 1-selector-linked dynamic data structures from
whose elements the non-pointer fields are abstracted away. In this way, we can automat-
ically check many important safety properties related to a correct use of dynamically
allocated memory—absence of null pointer dereferences, working with uninitialized
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pointers, memory leakage (i.e. checking that there does not arise any unfreed and un-
accessible garbage), etc. Furthermore, we can automatically handle the cases where
a finite number of elements of the considered dynamic data structures are allowed to
carry other than pointer fields. Using this fact and a simple technique which we pro-
pose for describing the desired input/output configurations, we can then automatically
verify various properties relating the input and output of the considered programs (e.g.,
that the output of a list reversing procedure is really exactly the reverse of the input
list, etc.). Finally, we show how the techniques can be applied to dealing with linked
dynamic data structures whose elements contain any data fields of finite type too.

We have implemented the proposed techniques in a prototype tool and tried it out
on a number of procedures manipulating classical singly-linked lists as well as cyclic
lists. The results are very encouraging and show the applicability of our approach.

Related Work. Out of the work on verification of programs with dynamic linked data
structures published in the literature, the two approaches that are probably the closest
to our approach are the ones related to the tools Pale [15] and TVLA [16].

Pale (or more precisely its version for singly-linked structures) based on [8] uses
a similar encoding of configurations as the one we propose in the following. The pos-
sibility of sharing parts of the lists is, however, not considered there. Moreover, there
is no translation of the programs to transducers for manipulating sets of configurations
in the Pale approach. The effect of the program is expressed by manipulating a logical
description of the configurations, and automata come into play only when deciding the
resulting WS1S formulae in Mona [12]. The approach of Pale is not as automatic as
ours—only loop-free code can be handled automatically; if there are loops in the code
to be checked, the user has to manually provide their invariants. We adopt a different
methodology based on abstract symbolic reachability analysis which can also be used
to automatically generate invariants.

TVLA is based on abstractions of the arising pointer structures described in a 3-
valued logic [16]. The approach is more automatic than the one of Pale, but still the
user may be required to provide some instrumentation predicates (or simulation invari-
ants in the later approach of [7]) to make the abstraction sufficiently precise. The recent
work [13] presents the first steps towards automatically obtaining the necessary instru-
mentation predicates by an analysis of spurious counterexamples. Moreover, up to very
recently, TVLA had difficulties with cyclic structures that were resolved in a way [14]
which like our approach exploits the observation that singly-linked structures exhibit
some internal repeated structural patterns.

Both Pale and TVLA are extended to handle structures with more than a single next
pointer. We are preparing such an extension of our approach based on tree (or more
general) automata too.

Finally, representations of linked memory structures based on automata were used
in [9, 5, 18, 4] too. In [5, 18], the special problem of may-alias analysis is primarily
considered and a different symbolic representations of memory structures is used—it
is based on tuples of automata (one for each pointer variable) and alias relations (using
linear constraints). In [4], an alias logic with a Hoare-like proof system is introduced. In
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this work, one memory structure is represented as a collection of automata whereas our
representation is based on representing a set of memory structures with one automaton.

Outline. The rest of the paper is organised as follows. In Section 2 we introduce basic
concepts about automata and transducers. In Section 3 we describe our encoding of
pointer programs with automata and transducer. Then, we give our verification method
in Section 4. Finally, we describe our experimental results in Section 5 and conclude.

2 Automata and Transducers

A finite-state automaton is a 5-tuple A = (Q,Σ,δ,qinit ,F) where Q is a finite set of
states, Σ a finite alphabet, δ ⊆ Q×Σ×Q a set of labelled transitions, qinit ∈ Q the initial
state and F ⊆ Q a set of final states.

The transition relation →⊆ Q × Σ∗ × Q of A is defined as the smallest relation sat-
isfying: (1) ∀q ∈ Q : q

ε−→ q, (2) if (q,a,q′) ∈ δ, then q
a−→ q′, and (3) if q

w−→ q′ and
q′ a−→ q′′, then q

wa−→ q′′. The (regular) language recognised by A from a state q ∈ Q is
L(A,q) = {w : ∃q′ ∈ F. q

w−→ q′}. The language of A is L(A) = L(A,qinit). We suppose
here that automata are manipulated in their canonical (i.e. minimal deterministic) form.

A finite-state transducer over Σ is a 5-tuple τ = (Q,Σε × Σε,δ,qinit ,F) where Q is
a finite set of states, Σε = Σ∪{ε}, δ ⊆ Q×Σε ×Σε ×Q is a set of transitions, qinit ∈ Q
is the initial state, and F ⊆ Q a set of final states. The transition relation →⊆ Q ×
Σ∗ × Σ∗ × Q is defined as the smallest relation satisfying: (1) q

ε,ε−→ q for every q ∈ Q,

(2) if (q,a,b,q′) ∈ δ, then q
a,b−→ q′ and (3) if q

u,v−→ q′ and q′ a,b−→ q′′, then q
ua,vb−−−→ q′′.

A transducer τ defines a (regular) relation Rτ = {(u,v) : ∃q′ ∈ F. qinit
u,v−→ q′}.

Given a language L ⊆ Σ∗ and a relation R ⊆ Σ∗ × Σ∗, let R(L) be the set {v ∈ Σ∗ :
∃u ∈ L. (u,v) ∈ R}. Sometimes, we abuse the notation by identifying a transducer τ
(resp. an automaton A) with the relation Rτ (resp. the language L(A)). For instance, we
write τ(A) to denote Rτ(L(A)).

Let id ⊆ Σ∗ × Σ∗ be the identity relation and ◦ the composition of relations. Given
a transducer τ, let τ0 = id, τi+1 = τ ◦ τi, and let τ∗ = ∪∞

i=0τi be the reflexive-transitive
closure of τ.

3 From Programs to Transducers

In this section, we describe the translation we propose for automatic verification of
sequential, non-recursive programs with 1-selector-linked dynamic data structures in
the framework of regular model checking. Our translation is general enough to cover
any program of this kind (not containing pointer arithmetics and not explicitly covering
the possibly necessary abstraction of non-pointer data).

We first describe how to encode as words the so-called program stores, i.e. the dy-
namic memory part of program configurations containing dynamically allocated mem-
ory cells linked by pointers. This encoding is similar to the one used in [8], but extended
with the possibility of lists sharing their parts. Then, we propose an encoding of the stan-
dard C pointer operations (apart from pointer arithmetics) in the form of transducers.
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This is different from [8] where operations are encoded by changing a logical descrip-
tion of the configurations. Some of the pointer operations cannot be translated directly
to a single transducer, therefore we propose to simulate their effect by computing a limit
of a repeated application of certain simple auxiliary transducers.

In the following, we will use as a running example the following procedure reversing
a list l. We suppose the data fields normally present in the elements of the data type List
to be abstracted away and just the next-pointer fields to be preserved.

List x,y,l;
l1: y = null;
l2: while (l != null) { // i.e. if (l!=null) goto l3; else goto l7;
l3: y = l->next;
l4: l->next = x;
l5: x = l;
l6: l = y; } // i.e. l = y; goto l2;
l7: l = x;
l8: // end of program

3.1 Encoding Stores as Words

Basically, a store is encoded as the concatenation of several words (separated by a spe-
cial symbol), each of them representing a list of elements. Successive elements of these
lists are given from the left to the right, with positions of pointer variables marked by
special symbols. We suppose for the moment that list elements contain no data—later
we show that adding data of a finite type is not a problem. We also suppose for the
beginning that the store does not contain cycles nor shared parts (i.e. no two different
next-pointers point to the same list element). To encode such stores as words, we use the
following alphabet Σ: For every pointer variable x used in the program at hand, we have
x ∈ Σ, and Σ further contains the letters | to separate lists (and some special parts of the
configurations), / to separate list elements (i.e. / represents a next-pointer), # to express
that a next-pointer points to null, and ! to denote that the next-pointer value is undefined.

Then, we can encode a store without sharing and cycles as a sequence of three parts
separated by the symbol | as follows:

– The first part contains a sequence of pointer variables whose values are undefined.
In order not to have to consider all their possible orderings, we fix in advance a
certain ordering on Σ that is respected here as well as in similar situations below.

– The second part contains pointer variables pointing to null.
– Finally, the third part contains the list sequences separated again by the symbol |.

Each list sequence is encoded as follows: Every list element is represented by a
(possibly empty) sequence of pointer variables pointing to it, lists elements are sep-
arated by the symbol /, and lists end either with the symbol # (null) or ! (undefined).

For example, the word x y | | l / / # | encodes a possible initial configuration of the
list reversion example: x and y are undefined, no variable points to null, and l points to
a list with two elements.

Now, regular expressions (or alternatively finite-state automata) can be used to de-
scribe sets of stores. For instance, the regular expression (x y | | l /+ # |)+ (x y | l |)
encodes all possible initial stores for our list reversion example.
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Fig. 1. A store with sharing

Notice that in our encoding, we do not allow garbage (parts of the memory not
accessible from pointer variables). As soon as an operation creates garbage, an error is
reported. In fact, such a situation corresponds to a memory leak in C (in Java, on the
other hand, we can always perform “garbage collection” and remove the garbage).

Remark: Clearly, pointer variables appear exactly once in every word. The separator |
and the symbols # and ! appear a bounded number of times since we do not consider
stores with garbage. Finally, the symbol / can appear an unbounded number of times.

Lists with Sharing and/or Loops. To encode sharing of parts of lists as, for example,
in Figure 1, we extend the alphabet Σ by a finite set of pairs of markers (m f , mt , n f , nt ,
etc.). A “from” marker Xf may be used after a next-pointer sign / to indicate that the
given next-pointer points to an element marked by Xt (the corresponding “to” marker).
Then, e.g., the word | | x / m f | y / / n f | nt mt / / # | encodes the store of Figure 1.

As one can easily see, the above store could be encoded in several other ways too
(for instance, as | | x / nt / / # | y / / n f |). Although we partially normalize the
encoding by imposing a certain ordering on the symbols that are attached to the same
memory location, we do not define a canonical representative of the store. However,
our experimental results (see Section 5) show that this is not an obstacle to a practical
applicability of our method. Furthermore, using a canonical form would complicate the
encoding of program statements.

Notice also that markers allow us to encode circular lists (as, e.g., | | x nt / / n f |
corresponding to a circular list of two elements pointed to by x).

It is not difficult to see that given a store with k pointer variables encoded with more
than k pairs of markers, one can encode the same store with at most k markers provided
that no garbage is allowed: If a “to” marker is at the beginning of a sequence of cells that
is not accessible without using markers, we can put these sequence directly in place of
the corresponding “from” marker and save one pair of markers. For example, the store
| | x / m f | y / / n f | nt mt / / # | of Figure 1 can be described with one pair of markers
as | | x / nt / / # | y / / n f | or also as | | x / m f | y / / mt / / #|.

Typically, the number of markers that is really needed is even smaller than k as we
will demonstrate in our experiments.

3.2 Encoding Program Statements as Transducers

We now describe our encoding of program statements as transducers. We consider
non-recursive C programs without pointer arithmetics. Initially, we also suppose all
non-pointer data manipulations to be abstracted away—we briefly return to handling
them later. Such programs may easily be pre-processed to contain only statements of
the form pointer assignment; goto l; or if (pointer test) goto l1; else
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Fig. 2. An example store, the store after the statement l->next=x, and after a rearrangement

goto l2;. Moreover, by introducing auxiliary variables, we can eliminate multiple
pointer dereferences of the form x->next->next and consider single dereferences only.

To encode full configurations of the considered programs, we extend the encoding
of stores by adding a letter for the line of the program the control is currently at (fol-
lowed by a separator |). Moreover, for the needs of our verification procedure, we add a
single letter indicating the so-called computation mode. The mode is either n (normal),
e (error—a null pointer dereference or working with an undefined pointer has been de-
tected), s (shifting, used later for implementing the pointer manipulation statements that
cannot be implemented as a single transducer), and u (unknown result that arises when
an insufficient number of markers is used). For instance, the initial configurations of the
list reversion example are then (n l1 | x y | | l /+ # |)+(n l1 | x y | l |).

Conditional jumps based on tests like x==null or x==y are now quite easy to en-
code. The transducer just checks whether x is in the null section or in the same section as
y (taking / and | as section separators), and according to this changes the letter encoding
the current line. If x or y is in the undefined section, we go to the error mode. Similarly,
assignments of the form x=null or x=y are easy to handle—x is deleted from its current
position (using an x,ε transition) and put to the section of y (using an ε,x transition).

A slightly more involved case is the one of tests based on the x->next construct
and the one of the y=x->next assignment. Apart from generating an error when x is
undefined or null, one has to consider the successor of x, which may involve going from
a “from” marker to the appropriate “to” marker. However, as the number of markers is
finite, the transducer can easily remember from which marker to which it is going and
skip the part of the configuration between these markers.

Adding/Removing Markers. The most difficult case is then the one of the l->next=x
assignment. The transducer first tries to commit the operation by using a pair of unused
markers (say m f /mt) out of the in advance chosen set of marker pairs (an unused marker
pair is one that does not appear in the current configuration word). Then, behind the
section of l, the transducer puts m f , and marks the section of x by mt . For instance, in
the list reversion procedure, n l4 | | | x / / # | l / y / # | is transformed via l->next=x
into n l5 | | | mt x / / # | l / m f | y / # | as shown in Figure 2 (a), (b).

However, there may not be any unused markers left. In such a case, the transducer
tries to reclaim some by re-arranging the configuration. This can be done by moving
some sequence of cells that starts with a “to” marker directly into the place of the
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corresponding “from” marker (provided these markers do not constitute a loop). As
explained in Section 3.1, this is always possible provided the chosen number of pairs
of markers is sufficiently big (more than the number of pointer variables). For example,
n l5 | | | mt x / / # | l / m f | y / # | can be re-arranged to n l5 | | | l / x / / # | y / # | as
sketched in Figure 2 (c).

The above operation, however, cannot be encoded as a single transducer as it may
require an unbounded sequence (such as the list after x in our example) to be shifted to
another place, and a finite-state transducer is incapable of remembering such sequences.
To circumvent this problem, we use a very simple transducer τ which does one step
of the shifting—i.e. it shifts a single element of the sequence by deleting it from its
current location and re-producing it at its required location. The desired result is then
the limit τ∗(Con f ) where Con f is a regular set of configurations on which the operation
is applied. The limit (or an upper approximation of it) is computed using our abstract
reachability analysis techniques. In order not to mix half-shifted sequences with the
ready-to-use ones, the shifting is done in a special computation mode when no other
operations are possible. 3

If some marker has to be eliminated but this cannot be done, we go to the u mode
and stop the computation. Such a situation cannot happen when we use as many markers
as pointer variables. Nevertheless, it may happen when the user tries to use a smaller
number of them with the aim of reducing the verification time (which is often, but
not always possible). If one does not want to use markers at all, the two operations of
introducing and eliminating a pair of markers (including shifting) are done at once.

Finally, the remaining malloc(x) and free(x) operations are again easy to encode.
The malloc(x) operation introduces a sequence of elements with a single element,
pointed to by x, and with an undefined successor. The free(x) operation removes an
element, makes x and all its aliases undefined, and possibly makes undefined the next-
pointer originally leading to x.

Adding Data Values to List Elements. The encoding can easily be extended to handle
list elements containing data of a finite type. Their values are added into Σ and then
every memory cell encoded as a sequence surrounded by / and/or | contains not only
the pointers (markers) pointing to it, but also the appropriate data value. The tests and
assignments on *x may then easily be added by testing whether the appropriate data
letter is in the section of x or changing the data letter in this section.

4 Automatic Verification Techniques

We introduce in this section infinite-state verification techniques based on the
regular model checking framework. These techniques combine automata-based
reachability analysis with abstraction techniques. We concentrate in this work on the
verification of safety properties. In the context of regular model checking, given a trans-
ducer τ modelling some infinite-state system, an initial set of configurations Init, and

3 Let us note that shifting could be implemented as an atomic, special purpose (and rather com-
plex) operation directly on the automata too.
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a set of bad configurations Bad, the safety verification problem consists in deciding
whether

τ∗(Init)∩Bad = /0 (1)

Since the problem is undecidable in general (the transitions of any Turing machine
can be straightforwardly encoded by a finite-state transducer), we adopt an approach
based on computing abstractions of the set τ∗(Init) and refining these abstractions when
spurious counterexamples are detected.

4.1 Abstract Regular Model Checking

A language abstraction is a mapping α : 2Σ∗ → 2Σ∗
such that ∀L ∈ 2Σ∗

. L ⊆ α(L). An
abstraction α′ refines (or is a refinement of) an abstraction α if ∀L ∈ 2Σ∗

. α′(L) ⊆ α(L).
An abstraction α is finite-range if the set {L ∈ 2Σ∗

: ∃L′ ∈ 2Σ∗
. α(L′) = L} is finite. We

say that an abstraction mapping is regular if it can be defined by a finite-state transducer.
Given a transducer τ and a language abstraction α, let τα be the mapping such that

∀L ∈ 2Σ∗
. τα(L) = α(τ(L)).

The first step of our approach is to define a language abstraction α and compute
the set τ∗

α(Init). Clearly, if α is a finite-range abstraction, the iterative computation
of τ∗

α(Init) as τα(Init) ∪ τ2
α(Init) ∪ . . . eventually terminates. By definition of α, the

obtained set τ∗
α(Init) is an overapproximation of τ∗(Init), and therefore, if τ∗

α(Init) ∩
Bad = /0, the problem (1) has a positive answer. Otherwise, the answer to the problem
(1) is not necessarily negative since during the computation of τ∗

α(Init), the abstraction
α may introduce extra behaviours leading to Bad.

Let us examine this case. Assume that τ∗
α(Init)∩ Bad �= /0, which means that there

is a symbolic path:
Init, τα(Init), τ2

α(Init), · · ·τn−1
α (Init), τn

α(Init) (2)

such that τn
α(Init)∩Bad �= /0. We analyze this path by computing the sets Xn = τn

α(Init)∩
Bad, and for every k ≥ 0, Xk = τk

α(Init)∩ τ−1(Xk+1). Two cases may occur: (i) either
X0 = Init ∩ (τ−1)n(Xn) �= /0, which means that the problem (1) has a negative answer,
or (ii) there is a k ≥ 0 such that Xk = /0, and this means that the symbolic path (2)
is actually a spurious counterexample due to the fact that α is too coarse. In this last
situation, we need to refine α and iterate the procedure. Therefore, our approach is based
on the definition of abstraction schemas allowing to compute families of (automatically)
refinable abstractions.

In a previous work [2], we have proposed representation-oriented abstractions which
consist in defining finite-range abstractions on automata (used as symbolic representa-
tion structures for sets of configurations). The general principle of these abstractions
is to collapse automata according to some given equivalence relation on their states,
regardless of the kind of the represented configurations or the analyzed system.

In this work, we adopt an alternative approach by considering configuration-oriented
abstractions which are defined on configurations. This approach allows us to define ab-
straction techniques which are more adapted to the application domain we are consid-
ering here. In the next subsections, we propose generic schemas for defining families
of refinable configuration-oriented abstractions. Instances of these schemas have been
implemented in a prototype tool and used in several experiments (see Section 5).
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4.2 Piecewise 0-k Counter Abstractions

The idea behind the first abstraction schema we introduce is to abstract each word by
considering some finite decomposition of it, and by applying 0-k counter abstraction
(which looses the information about the ordering between symbols and only keeps
track of their numbers of occurrences up to k) to each piece of the word in this de-
composition. Formally, for w ∈ Σ∗, let dec(w) = (a1,w1,a2,w2, · · · ,an,wn) such that
w = a1w1a2w2 · · ·anwn, ∀i, j ∈ {1, . . . ,n}. ai ∈ Σ and ai �= a j, and ∀i ∈ {1, . . . ,n}. wi ∈
{a1, . . . ,ai}∗. Intuitively, dec(w) corresponds to the unique decomposition of w accord-
ing to the first occurrences in w of each of the symbols in Σ.

Given a word w and a symbol a, let |w|a denote the number of occurrences of a
in w. Given k ∈ N>0, we define a mapping αk from words to languages such that for
every w ∈ Σ∗, if dec(w) = (a1,w1,a2,w2, · · · ,an,wn), then αk(w) = a1L1a2L2 · · ·anLn

where ∀i ∈ {1, . . . ,n}. Li = {u ∈ {a1, . . . ,ai}∗ : ∀ j ∈ {1, . . . , i}. |wi|a j < k and |u|a j =
|wi|a j , or |wi|a j ≥ k and |u|a j ≥ k}. We generalize αk from words to languages in the
straightforward way in order to obtain a language abstraction. We can easily prove that:

Proposition 1. For every k ≥ 0, αk is regular and effectively representable by a finite-
state transducer.

Clearly, for every given alphabet Σ, the set of possible 0-k abstractions is finite, and
therefore, the number of piecewise 0-k abstractions is also finite since they consist in
concatenations of a bounded number of symbols and 0-k abstractions.

Proposition 2. For every k ∈ N, the abstraction αk is finite-range.

In fact, below, we consider a generalization of the above schema obtained as follows.
We allow that decompositions may be computed according to the first occurrences of
only a subset of the alphabet, called decomposition symbols. Furthermore, we allow
that the abstraction does not concern some symbols, called strong symbols, i.e. all their
occurrences are preserved at their original positions. Typically, strong symbols are those
which are known to have a bounded number of occurrences in all considered words.
For instance, in words corresponding to encodings of program configurations, strong
symbols correspond to markers, separators, and pointer variables which are known to
have either a fixed or a bounded number of occurrences in all configurations.

Formally, let Σ1,Σ2 ⊆ Σ be two sets of symbols such that Σ1 ∩ Σ2 = /0, where Σ1

is the set of decomposition symbols and Σ2 is the set of strong symbols. (Notice that
there may be symbols which are neither in Σ1 nor in Σ2.) Then, given w ∈ Σ∗, we
define dec(w) to be the decomposition (a1,w1,a2,w2, · · · ,an,wn) such that (1) w =
a1w1a2w2 · · ·anwn, (2) ∀i ∈ {1, . . . ,n}. ai ∈ Σ1 ∪ Σ2 and, ai ∈ Σ1 ⇒ |a1a2 · · ·an|ai = 1,
and (3) ∀i ∈ {1, . . . ,n}. wi ∈ ({a1, . . . ,ai}\Σ2)∗. Then, for each given k, the abstraction
αk is defined precisely as before.

The previous proposition still holds if the number of occurrences of each strong
symbol is bounded. Let us call p-Σ2-bounded language any set of words L such that
∀w ∈ L. ∀a ∈ Σ2. |w|a ≤ p.

Proposition 3. For every bound p ≥ 0, and for every k ∈ N, the abstraction αk is finite-
range when it is applied to p-Σ2-bounded languages.
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As for the abstraction refinement issue, it is easy to see that the abstraction schema
introduced above defines a family of refinable abstractions.

Proposition 4. For every p-Σ2-bounded language L, and for every k ≥ 0, we have
αk+1(L) ⊆ αk(L). Moreover, if L is infinite, then αk+1(L) � αk(L).

4.3 Closure Abstractions

We introduce hereafter another family of regular abstractions. Now, the idea is to apply
iteratively extrapolation rules which may be seen as rewriting rules replacing words of
the form uk, for some given word u and positive integer k, by the language uku∗.

Let u ∈ Σ∗ and let k ∈ N>0 be a strictly positive integer. A relation R ⊆ Σ∗ ×Σ∗ is an
extrapolation rule wrt. the pair (u,k) if R = {(w,w′) ∈ Σ∗ ×Σ∗ : w = u1uku2 and w′ ∈
u1uku∗u2}. An extrapolation system is a finite union of extrapolation rules.

Clearly, for every language L, we have L ⊆ R(L) (i.e. R defines a language abstrac-
tion). In fact, we are interested in abstractions which are the result of iterating extrapo-
lation systems. Therefore, let us define a closure abstraction as the reflexive-transitive
closure R∗ of some extrapolation system R.

It is easy to see that every extrapolation system corresponds to a regular relation
(i.e. definable by a finite-state transducer). The question is whether closure abstractions
of regular languages are still regular and effectively computable. In the general case,
the answer is not known. However, we provide a reasonable condition on extrapolation
systems which guarantees the effective regularity of closure abstractions.

First of all, we can prove that if we consider a single extrapolation rule, the corre-
sponding closure abstraction if effectively computable.

Lemma 1. For every extrapolation rule R, and for every regular language L, the set
R∗(L) is regular and effectively constructible.

Proof. Let A be an automaton recognizing L. Let B be an automaton recognizing uku∗,
and let qi (resp. q f ) be its initial (resp. final) state. Then, for every pair of states (q,q′)
of A that are related by uk, we extend A by a unique copy of B and two ε transitions
q ε−→qi and q f

ε−→q′ (which can then be removed by the classical algorithms). ��

Now, let R = R1 ∪ ·· · ∪ Rn be an extrapolation system where each of the Ri’s is an
extrapolation rule wrt. a pair (ui,ki) ∈ Σ∗ × N>0. Our idea is to define a condition on
R such that the computation of R∗(L) can be done for every language L by computing
sequentially closures wrt. each of the extrapolation rules Ri in some ordering. Let ≺⊆
Σ∗ ×Σ∗ be the smallest relation such that for every u,v ∈ Σ∗, u ≺ v if (1) u is not a factor
of v (i.e. u does not appear as a subword of v), and (2) u cannot be written as w1vpw2

for any p ∈ N and two words w1,w2 such that w1 is a suffix of v and w2 is a prefix of v.
We can prove the following lemma which says that if u ≺ v, then u can never appear in
any power of v.

Lemma 2. ∀u,v ∈ Σ∗, if u ≺ v then ∀p ≥ 0. ∀w1,w2 ∈ Σ∗. vp �= w1uw2

Proof. Immediate from the definition of ≺: The fact that u can appear in some power
of v implies that one of the two conditions defining u ≺ v is false. ��
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We say that the extrapolation system R is serialisable if the reflexive closure of
the relation ≺ (i.e. ≺ ∪id) defines a partial ordering on the set {uk1

1 , . . . ,ukn
n } (i.e. ≺ is

antisymmetric and transitive on this set).

Lemma 3. Let R be a serialisable extrapolation system and let Ri1 Ri2 . . .Rin be a total
ordering of the rules of R which is compatible with ≺. Then, R∗ = R∗

in ◦R∗
in−1

· · · ◦R∗
i1

.

Proof. Follows from Lemma 2: closing by some Ri j never creates new rewriting con-
texts for any of the Ri� with � < j. ��

From the two lemmas 1 and 3 we deduce the following fact:

Theorem 1. For every serialisable extrapolation system R and for every regular lan-
guage L, the set R∗(L) is regular and effectively constructible.

Closure abstractions (even serialisable ones) are not finite-range in general. To see this,
consider the infinite family of (finite) languages Ln = (ab)n for n ≥ 0 and the extrapo-
lation rule R with U = {a} and k = 1. Then, the images of the languages above form an
infinite family of languages defined by R∗(Ln) = (a+b)n for every n ≥ 0.

Therefore, in the verification framework described in Section 4.1, the use of a clo-
sure abstraction α does not guarantee the termination of the computation τ∗

α(Init). How-
ever, as our experiments show (see Section 5) the extrapolation principle used in these
abstractions is powerful enough to force termination in many practical cases while pre-
serving the necessary accuracy of the analysis of complex properties.

Let us finally mention that the abstraction schema introduced above defines a family
of refinable abstractions.

Proposition 5. Let R be an extrapolation system wrt. a set of pairs {(u1,k1), ...,(un,kn)},
let k′

1, . . . ,k
′
n be integers such that ∀i. k′

i ≥ ki, and let S be the extrapolation system wrt.
{(u1,k′

1), . . . ,(un,k′
n)}. Then, for every language L, we have S∗(L) ⊆ R∗(L). Moreover,

if L is infinite, then S∗(L) � R∗(L).

5 Applications and Experimental Results

We have experimented with a prototype implementation of our techniques on several
procedures manipulating linked lists. We have implemented a prototype compiler trans-
lating programs into transducers as explained in Section 3. As shown in Table 1, we
have considered procedures for reversing a list, inserting an element into a list at a
given position, deleting an element of a list at a given position, merging two lists
element-by-element, and the procedure of Bubblesort over a list. Let us note that al-
though these procedures primarily work with simple linear lists, temporarily they may
yield several lists sharing their tails or create circular links. Moreover, we have consid-
ered working directly with circular lists too, namely a procedure for reversing such lists
and a procedure for removing a segment of a circular list (the motivating example of
[14]).

As remarked in Section 3, a store can have several encodings. Therefore, to perform
correctly the check τ∗

α(Init)∩ Bad = /0, we require the set Bad to contain all possible
encodings of bad stores. In all properties we consider below, this can be easily achieved.
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5.1 Checking Consistency of Working with the Dynamic Memory

For all the examples, we have firstly checked a basic consistency property that consisted
in checking that there is no null pointer dereference, no work with undefined pointers,
no memory leak (i.e. there does not arise any undeleted and inaccessible garbage), and
that the result is a single list pointed to by the appropriate variable. The specification of
such a property for a given procedure is easy and can be derived automatically. For the
list reversion example, the set of bad states can be specified using the below extended
regular expression4 where V = x? y?:

(((e+u) Σ∗)+(Σ l8 Σ∗)) & ¬(n l8 | V | ((l V |)+(V | l V (/ V )∗ / # |)))
The expression says that it is bad when we try to do a null pointer dereference or work
with an undefined pointer value—this is recognized automatically in the transducers
and signalized by the first letter of the resulting configuration set to e. If the first letter
becomes u (for unknown), the program cannot be verified using the given number of
markers and we have to add some. Finally, it is bad when we reach the final line l8, and
the result is not an empty list (represented by l behind #) nor a single list pointed to by
l. We do not care about the values of x and y.

The above property of course holds for the correct versions of all the considered
procedures. In such a case, our tool provides the user with a safe overapproximation of
all the configurations reachable at every line. In this way, we, e.g., automatically obtain
the following invariant of the loop of the list reversion procedure:

(nl2 | y | lx |)+(nl2 | y | x | l(/)+# |)+(nl2 | | ly | x(/)+# |)+(nl2 | | | x(/)+# | ly(/)+# |)
Roughly, this invariant says that the list is either empty, is pointed to from l, from x, or
partially from x and partially from l.

To try out the ability of our techniques to generate counterexamples, we have also
tried to examine a faulty version of the list reversion procedure where lines 4 and 5
were swapped. In this case, an error is reported and we are told that from a list with
one element (i.e. from a configuration n l1 | x y | | l / # |), we can obtain a circular list
(a configuration n l8 | y | mt l x / m f | where m f and mt represent the “from” and “to”
versions of a marker m). The user can then also trace the program forwards from the
initial configuration or backwards from the erroneous one.

5.2 Checking More Complex Properties

Further, we have tried to verify some more complex properties of the considered pro-
grams. Let us start, e.g., with the Bubblesort procedure. When checking just its basic
consistency property, we have completely abstracted away the data values stored in the
list and made all the conditional jumps fully nondeterministic. To check that the pro-
cedure really sorts, we used a technique inspired by [15]. We considered the values of
the list elements to be abstracted to being either greater or less than or equal than their
successors. The abstracted data values were represented by two special letters (gt and
lte) associated with every list item. We supposed lte and gt to be distributed arbitrarily
in the initial configurations. We then checked that the basic consistency property holds

4 We use “?” to denote zero or one occurrences and “&” to denote intersection.
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and, moreover, the result is a sorted list (i.e. a sequence of elements labelled—up to the
last element—by lte).

In the case of the merge procedure, we let all elements of the first list be labelled as
a elements in the initial configuration and all elements of the other list as b elements.
Then we checked that the output list contains a regular mixture of a and b elements.

Finally, for the list reversion and insertion and circular list reversion procedures, we
did a fully precise verification of their effect. In the case of list reversion, this means
that the output contains exactly the same elements as before, but in a reversed order.
For the insertion procedure, the required property is that the output list is precisely the
input list up to one new element added into the appropriate place.

To check the above rather strong property, we have proposed a simple, yet efficient
technique. Let us explain it on the case of list reversion. In the initial configurations, we
let the first and last element be labelled by special labels bgn and end. Next, we consider
as initial all the configurations that can arise from the original initial configurations by
attaching two further labels—namely f st and snd—to an arbitrary pair of successive
elements. The labels are invisible for the unmodified program—they stay attached to
their initial elements. Then, to check the desired property, it suffices that every reachable
final configuration starts with end, ends with bgn, and contains a sequence snd/ f st.
This guarantees that no element can be dropped (then, there would be a way to obtain
a configuration without some of the labels), no element can be added (either end would
not be the first, bgn the last, or some snd/ f st pair would get separated by another
element), and the elements must be re-arranged in the given way (otherwise the required
resulting ordering of the labels could be broken).

5.3 The Results of the Experiments

For each verification example, we applied one instance of the abstractions presented
in Section 4. For checking the basic consistency properties, we used the piecewise 0-2
counter abstraction with no decomposition symbols (Σ1 = /0) and with strong symbols
Σ2 containing the pointer variables, the separator |, and the symbol #. Therefore, just
the parts of words containing exclusively the / symbols are abstracted. As noticed in
Section 3.1, / is the only symbol which can appear an unbounded number of times
in lists without data. Therefore, our abstraction is finite range by Proposition 3. For
the more complex properties, we used closure abstractions. The extrapolation rules we
applied correspond to the loops one naturally expects to possibly arise in the consid-
ered structures (e.g., (/a,2), (/b,2), (/a/b,2) for the list merge procedure)—providing
such information seems to be easy in many practical situations. In all the cases, the
abstractions we used are defined by serialisable extrapolation systems. Therefore, by
Theorem 1, they are regular and effectively computable.

We tried out both verification over programs described by a single transducer as well
as over programs described by a set of transducers (one per arc of the program control
flow graph). Column T of Table 1 shows the running times obtained in the latter case.
They were about 1.6 to 6 times better than in the former case. The computation times
are presented for the minimum number of markers necessary not to run into the “do not
known” result. In the case of inserting into a list, we, however, indicate that sometimes
it may be advantageous to use more than a necessary number of markers, which is
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Table 1. Some results of experimenting with classical and circular linked lists (obtained at
2.4GHz Intel Pentium 4 from an early prototype tool based on Yap Prolog and the FSA library)

Program Markers |M|max
st.+tr. Tsec Program Markers |M|max

st.+tr. Tsec

Reverse, bas.cons. 0 51+105 0.3 Merge, bas.cons. 0 209+279 2.7
Reverse, full 0 281+369 4.2 Merge, corr.mix. 0 1080+1415 40.4

Faulty reverse 1 61+138 0.2 Bubblesort, bas.cons. 2 2095+2872 305
Insert, bas.cons. 0 81+102 0.5 Bubblesort, full 2 2339+2887 279
Insert, bas.cons. 2 165+577 0.15 Circ.list rev., bas.cons. 3 655+764 5.4

Insert, full 0 755+936 10.8 Circ.list reverse, full 3 2349+2822 50.6
Delete, bas.cons. 0 55+113 0.3 Circ.l. rem.seg., bas.c. 2 116+291 1.0

especially the case of loop-free procedures where it may completely eliminate the need
for the complex operation of shifting. For every experiment, we also indicate the number
of states and transitions of the biggest encountered automaton (or transducer).

We further made a comparison with the abstract regular model checking techniques
based on automata abstraction introduced in [2]. We observed an equal performance on
the faulty reverse example, but on the other examples, the new techniques were about
2.9 to 88 times better (not taking into account the Bubblesort example and checking of
the correct mixture property for the list merge example where we stopped the tool based
on [2] after 2000 seconds).

We believe that the verification times obtained from our prototype are very encour-
aging. Some of the verification times that can be found in the literature for similar
verification experiments (especially the ones obtained from Pale) are lower but that is
partly due to an incomparable degree of automation (especially in Pale where a signif-
icant amount of user intervention is needed) and partly due to the fact that our tool is
just an early Prolog-based prototype. We expect much better times from a more solid
implementation of our tool, which we are now working on.

6 Conclusion

We have proposed a new approach to automatic verification of programs with dynamic
linked structures based on a combination of automata-based symbolic reachability anal-
ysis with abstraction techniques.

Our approach applies to C-like sequential programs with 1-selector linked struc-
tures, for which it allows to verify automatically (safety) properties concerning their
data structures. The same techniques can also be used for automatic invariant genera-
tion for these programs. Notice that our approach is not restricted to C programs but
can be adapted to other languages with similar operations on linked structures too.

The techniques we define are based on simple abstractions of regular sets of config-
urations which, on one hand, are abstract enough to force termination in many practical
cases and, on the other hand, are accurate enough to handle complex properties of the
considered data structures. The experimental results are quite encouraging and show the
applicability of our approach at least to particular pointer-intensive library routines.
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The techniques we propose in this paper are defined in a general way which makes
them not restricted to the application domain we consider here. In fact, they can be used
as efficient acceleration techniques in the generic framework of regular model checking
for the verification of various classes of infinite-state systems as well.

A certain deficiency of the closure abstraction technique as presented above is the
need to manually provide the extrapolation rules when non-pointer data fields are not
abstracted away. However, very recently, we have proposed a heuristic for automatically
deriving such rules based on on-the-fly monitoring of non-looping sequences of states
in the encountered automata and on trying to divide them to a given number of equal
subsequences, which can then be used as a basis for extrapolation. This heuristic was
successful in all the considered examples with a similar time and space efficiency as
presented above (the verification times being sometimes worse but sometimes even
better). A proper theoretical as well practical investigation of this technique is a part of
our future work.

For the future, we plan an extension of our framework to the case of more general
linked data structures using representations based on more general classes of automata.
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