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Abstract

Many software properties can be analysed through a relational
size analysis on each function’s inputs and outputs. Such rela-
tional analysis (through a form of dependent typing) has been suc-
cessfully applied to declarative programs, and to restricted imper-
ative programs; but it has been elusive for object-based programs.
The main challenge is that objects maymutateand they may be
aliased. In this paper, we show how safety policies of programs
can be analysed by tracking size properties of objects and be en-
forced by objects’ invariants and the preconditions of methods.
We propose several new ideas to allow bothmutability andshar-
ing of objects, whilst aiming forprecisionin our analysis. We in-
troduce the concept ofsize-immutabilityto facilitate sharing, and
also a set ofalias controlsto track unaliased objects whose size
properties may change. We formalise our results through a set
of advanced type checking rules for an object-based imperative
language. We re-affirm the utility of the proposed type system by
showing how a variety of software properties can be automatically
verified according to size-inspired safety policies.
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1. Introduction

Size properties are extremely useful in program analysis to sup-
port program optimization and verification. Each piece of data
structure typically has one or more associated size properties. For
simple types, such asint, bool orfile, size property can capture
their values (or abstract states). For aggregate types, size may refer
to the length/height of linked structures, cardinality of collections
or bounds of arrays. We may also ascribe size property to mem-
ory utilization in order to estimate space required for execution.
For functions, size property can capture relations between input
and output sizes, input preconditions, and also size invariance for
parameters in recursion[10].

Past research into size properties has been most explored for
functional [23, 22, 36, 10] and logic programming languages [34,
3]. Such properties have been applied to a range of important
problems, including: (i) array bound check elimination [38, 39],
(ii) memory space estimates for both region model [22] and heap-
with-reuse model [21], (iii) complexity analysis [18], (iv) termina-
tion analysis[3, 26], and (v) support for safer programming where
size invariants (e.g. balanced AVL trees) are guaranteed at com-
pile time[36]. These applications are important towards support-
ing the goal of more reliable (and rigorous) software engineering
processes. They constitute a realization of the automated verifica-
tion for size-based software contracts.

To track size properties accurately, arelational analysisis re-
quired. This is expressible through a form ofdependent typing[36],
known assized type[23, 10], that has been applied to declarative
paradigms. To the best of our knowledge, no one has successfully
designed a relational size analysis (or corresponding dependent
type system) for static reasoning of object-based imperative pro-
grams.

Two key problems with objects aremutability and aliasing.
Objects may mutate and their property changes be tracked. Ob-
jects may also alias with each other, and this must be analysed
and/or be controlled. To highlight the problem of aliasing in the
presence of mutation, consider the followingInt object type ex-
pressed as an abstract data type (ADT), with an increment method.



adt Int { int val ;
void incr(Int x, int v) { x.val = x.val + v } }

Each object of theInt type has a primitive integerval field,
whose size we may wish to track. To do so, we introduce an an-
notated object type, sayInt〈n〉, wheren is a size variable for cap-
turing the value of theval field via n=m and withtrue as the
object’s invariant, as follows:

adt Int〈n〉 where n=m ; true { int〈m〉 val ; · · · }
Consider two variablesa andb of theInt type. We can provide

an annotated type for these variables usinga :: Int〈x〉, b :: Int〈y〉,
wherex andy denote the sizes of current objects referenced bya

andb, respectively. Consider now a program fragment with alias-
ing and updates.

Int a = new Int(5); // x′ = 5

Int b = a; // y′ = x ∧ x′ = x

incr(a, 1); // x′ = x + 1
Ideally, we would like to perform size analysis, locally for each

statement, as shown on the RHS. This would result in the follow-
ing statex′ = 6 ∧ y′ = 5, after composing the effects of the three
statements. However, this reasoning is unsound as we did not take
alias relationships into account. Note the use of the prime notation
(e.g. x′, y′) to denote new states of the size variables after each
statement.

Accurately tracking the sizes of mutable objects requires the
aliasing problem to either becarefully analysedor betightly con-
trolled. In this paper, we chose the latter path, as analysing global
aliases could quickly become unmanageable. Our main contribu-
tions are:

• We have successfully designed asized type system for ob-
jects, which is able to track size information accurately. To
the best of our knowledge, no one has applied such an ad-
vanced relational analysis to object-based imperative pro-
grams before.

• Each object declaration is expressed as an ADT. Our motiva-
tion for using ADTs is to allow each set of software proper-
ties to be specified via asafety policy(or protocol), whose
correct usage can be automatically verified against thesize
invariant of each ADT and thepreconditionson its library
of operations.

• Our approach provides an elegant balance betweenmutabil-
ity andsharing, while working towards accurate size track-
ing. We achieve this using a novel property, calledsize-
mutability , obtained with a set of alias controls. We use
read-onlyannotation for size-immutability, anduniqueness
andlent annotations to limit aliasing for mutable size prop-
erties.

• We formalise a set of advanced type checking rules with
alias controls and size constraints. We have implemented a
prototype to validate our proposal and have also proven key
safety theoremsto confirm the desired properties of well-
typed programs.

Sec 2 proposes a core imperative language with objects, and
highlights how size properties are captured via an annotated type
system. Sec 3 introduces the basic concept of size-mutability and
how to track it using alias controls. Sec 4 shows how safety proto-
cols may be specified through size invariants and methods’ precon-
ditions in ADTs. Sec 5 presents a set of advanced size-checking
type rules, followed by key correctness properties. Sec 6 describes
related work, followed by a short conclusion.

2. Kernel Language

We design a simple kernel language, calledOIMP, with alias
and size annotations. We present an object-based rather than an
object-oriented language to focus on the key issues for the size
analysis of objects. We intend forOIMP to be used as a backend
to existing programming languages, such as Java, C or C++. Its
syntax is given in Fig. 1. Note that the suffix notationy∗ denotes
a list of zero or more distinct syntactic terms that are suitably sep-
arated. For example,(t v)∗ denotest1 v1, . . . , tn vn wheren≥0.

P ::= prim∗ user∗ meth∗

prim ::= adt pn〈n1, . . . , np〉 where {n∗}; φI {pmeth∗}
user::= adt cn〈n1, . . . , np〉 where φ ; φI {field∗ meth∗}

pn ::= void | bool | int | float | · · ·
pmeth::= t mn((t v)∗) where φpr ; φpo

meth::= t mn((t v)∗) where φpr ; φpo {e}
τ ::= cn | pn t ::= τ〈n∗〉@A
w ::= v | v.f field ::= t f A ::= U | L | S | R

e ::= (cn) null | k | w | w = e | if v then e1 else e2

| new cn(v∗) | mn(v∗) | t v = e1 ; e2

| bind v of (v1, .., vn) in e

φ ∈ F (Presburger Size Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ
b ∈ BExp (Boolean Expression)

::= true | false | α1 =α2 | α1 <α2 | α1≤α2

α ∈ AExp (Arithmetic Expression)

::= c | n | c ∗ α | α1+α2 | −α | max(α1,α2) | min(α1,α2)

wherec ∈ Z is an integer constant; n ∈ SV is a size variable

f ∈ Fd is a field name; v ∈ Var is an object variable

Figure 1. Syntax for the OIMP language
Local variable declaration is supported by block structure of the

form: (t v = e1; e2) with e2 denoting its result. For convenience,
we may also useτ instead oft and rely on fresh size variables
and alias defaults for annotations. We assume a call-by-value
mechanism forOIMP, where values (primitives or references) are
passed as arguments to parameters of methods. For simplicity, we
do not allow parameter updates (or re-assignments). There is no
loss of generality, as we can always copy parameters to local vari-
ables for updating, without altering the observable behaviour of
method calls. Each user-defined method declarationmethcontains
a preconditionφpr and a postconditionφpo. The former must be
satisfied for each caller, while the latter must be ensured by the
method’s body. For size constraints used (e.gφpr andφpo), we
restrict to Presburger arithmetic, as decidable (and practical) con-
straint solvers exist, e.g. [32]. For each reference (variable, pa-
rameter or field) of an object type, we add an alias control, named
A, as follows:τ〈n1, . . . , nm〉@A. Each alias control could either be
R, U, S or L to denoteread-only, unique, sharedor lent-once, re-
spectively. They are primarily used to track the mutability of size
properties for objects and uniqueness of their references, and will
be elaborated later in Sec 3.

The OIMP language has been kept simple to make easier the
formulation of static and dynamic semantics. Typical language
constructs, such as multi-declaration block, sequence, calls with



complex arguments,etc. can be automatically translated to con-
structs inOIMP. Also, loops can be viewed as syntactic abbrevi-
ations for tail-recursive methods, and are supported by our analy-
sis.

2.1 Primitive ADTs

We provide two kinds of object type, namely primitive (prim)
type or user-definable (user) type. Both are expressed using the
ADT mechanism to allow safety policies on objects to be speci-
fied. For each primitive ADT, we specify a set of size variables
n1, . . . , np with a size invariantφI that holds for each object, and
{n∗} to capture a subset of the size variables that are mutable. We
also specify a set of primitive method declarations that are trusted
to meet its postconditionφpo, whenever its preconditionφpr is sat-
isfied. An example is thebool primitive ADT, with no mutable
size variables and0≤n≤1 as its size invariant.

adt bool〈n〉 where {} ; 0≤n≤1
{ bool〈r〉@S not(bool〈m〉@S) where

true; m′=m∧(m=0∧r=1∨m=1∧r=0); · · · }
Another example is the array ADT, with a safety policy that no
array bound violations ever occur, as given below:

adt Array〈s〉 where {}; s>0

{Array〈s〉@U newArray(int〈n〉@S a, int〈v〉@S val)
where n>0 ; s=n∧noX{n, v};

int〈r〉@S sub(Array〈s〉@S a, int〈i〉@S idx)
where 0 ≤ i<s ; noX{s, i} ;

void〈〉@S update(Array〈s〉@S a, int〈i〉@S idx,
int〈v〉@S val) where 0 ≤ i<s ; noX{s, i, v} ;

int〈r〉@S len(Array〈s〉@S a) where true ; r=s∧s′=s; }

Safe array bound is guaranteed by the precondition0≤i<s for
thesub method (to retrieve an element of the array) andupdate

method (to modify a location of the array), whilen>0 is for the
newArray method (to create a new array of positive size). Fur-
thermore, the array’s size is never changed by any of the oper-
ations. This may be specified throughnoX which returns a for-
mula where the original and prime variables are made equal, e.g.
noX{s, i}≡(s′=s∧i′=i). As every call’s precondition is checked,
no array bound violation occurs. The binary search method below
adheres to this safe array policy, with the help of the precondition
0≤i∧j<s.

int〈r〉@S bs(Array〈s〉@S a, int〈i〉@S i, int〈j〉@S j, int〈v〉@S
val) where 0≤i∧j<s ; noX{s, i, j, v}∧(r=−1∨i≤r≤j) {

if j<i then −1 else { int m=(i+j)/2; int p=sub(a, m);

if p<val then bs(a, i, m−1, val)
else if p>val then bs(a, m+1, j, val) else m } }

For some problems, e.g. sparse matrix, the indexes may come
from another array, called an indirection array. To handle such
programs, we can provide:

adt ArrayI〈s, mn, mx〉 where {mn, mx}; s>0∧mn≤mx {
void〈〉@S update(ArrayI〈s, mn, mx〉@L a,

int〈i〉@S idx, int〈v〉@S val) where 0 ≤ i<s ;

mx′=max(mx, v)∧mn′=min(mn, v)∧noX{s, i, v}

int〈r〉@S sub(ArrayI〈s, mn, mx〉@L a, int〈i〉@S idx)
where 0 ≤ i<s ; mn ≤ r ≤ mx∧noX{s, mn, mx, i}; · · · }

Apart froms which captures the size of the array, we also have
mn andmx to capture the min/max values for the elements in the
array. The last two size variables aremutableand may be changed
by theupdate method, but is guaranteed to satisfy the size invari-
antmn≤mx. Furthermore, we can bound the result ofsub method
whenever indexes are retrieved from an indirection array.

2.2 User-Defined ADTs

Each user-defined ADT is specified with a set of fields that
are visible only to its accompanying methods. (In particular, each
new or bind construct may only be used within its ADT declara-
tion.) For each ADT declaration, we specify a set of size variables
n1, . . . , np that can be tracked via the constraintφ, that is limited
to
Vp

i=1 ni=αi wherebyV(αi)∩{n1, . . . , np}=∅. This defines
size properties that depend solely on object components. Another
constraintφI is used to capture the size invariant of each instance
of this object type. For example, a user-definedBool object type
can be specified in terms of a primitivebool field, as follows. Note
that this primitive field may be updated.

adt Bool〈n〉 where n=m ; 0≤n≤1 { bool〈m〉@S val;
void〈〉@S Not(Bool〈m〉@L v) where true;

m=0∧m′=1∨m=1∧m′=0 {b.val=not(b.val)}; · · · }
A more complex example is the binary tree with a size variables

to track the number of nodes, defined as:

adt Tree〈s〉 where s=1+s1+s2 ; s≥0
{ int〈v〉@S val ; Tree〈s1〉@U left ; Tree〈s2〉@U right; · · · }

Alternatively, if we desire AVL trees, we could add a size variable
h for height and another invariant−1≤h1−h2≤1 to enforce a bal-
anced height requirement, as shown below. This invariant can be
viewed as a safety policy for our type system to ensure that only
proper AVL trees (with this invariant) are constructed.

adt AVLTree〈h, s〉 where h=1+max(h1, h2)∧s=1+s1+s2

; h≥0∧s≥0∧(−1≤h1−h2≤1)
{ int〈v〉@S val ; AVLTree〈h1, s1〉@U left ;
AVLTree〈h2, s2〉@U right; · · · }

Size invariant is safely verified within each ADT, while a method’s
precondition is verified for each of its callers.

2.3 A Special Construct

Our kernel language includes a special construct, calledbind,
which is used to associate the fieldsf1, . . . , fn of an objectv to
a set of local variablesv1, . . . , vn. This binding is valid over the
scope of an expressione and results in local variables being used
as synonyms to the corresponding fields. Unlike the usual pattern-
matching construct (see [37]),bind is based on a pass-by-name
(instead of pass-by-value) mechanism. Furthermore, it is usedonly
for the purpose of analysis and do not cause runtime overheads.
This construct is particularly crucial for tracking the size proper-
ties of objects that depend on multiple components. For example,
consider a method to insert an element into a binary search tree.



void〈〉@S insert(Tree〈s〉@L t, int〈c〉@S i)
where s>0 ; c′=c

{ if i<t.val then if t.left=null then

t.left = new Tree(i, null, null)
else insert(t.left, i)

else if t.right=null then

t.right = new Tree(i, null, null)
else insert(t.right, i) }

With the field access construct, we can only capture the size
relation between an object anda single field. With thebind con-
struct, we can capture the size relation between an object andall
its fields. Hence, we can capture a more precise size mutation
for size variables that depend on multiple fields, as illustrated in
the following alternative definition ofinsert. The local variables
w, l, r are associated with the corresponding fields, in the same
order as their declaration.

void〈〉@S insert(Tree〈s〉@L t, int〈c〉@S i)
where s>0 ; c′=c∧s′=s+1

{ bind t of (w, l, r) in
if i<w then if l=null then l = new Tree(i, null, null)

else insert(l, i)
else if r=null then r = new Tree(i, null, null)

else insert(r, i) }

Despite being special, we can automatically insertbind con-
structs into our program as follows. For each field accessv.f of
a variablev, we identify the largest expression scope that antic-
ipates a field access but does not accessv itself (unless it is in
shared mode), before introducing a binding forv and its fields
v.f1, . . . , v.fn through a fresh set of local variables.

3. Alias Controls for Size Tracking

We adopt four alias controls from [7, 1], namely read-only (R),
lent (L), shared (S) and unique (U). Each reference in a location
(field, parameter or local variable) can be marked with any of the
annotations, except thatL-mode applies only to parameters. While
the alias controls are adapted from [1, 7], there are differences in
how the type rules are being checked, as described later in Sec 5.
Formal definitions of these alias properties are given below.

DEFINITION 1 (READ-ONLY ). A location that is marked as
read-only (denoted byR) can be initialized with a reference, but
cannot be changed thereafter via the location.

DEFINITION 2 (UNIQUENESS). A reference to an object is
unique (denoted byU) if it is theonly reference to the object at the
current scope.

DEFINITION 3 (SHARED). A reference (from a location) to
an object isshared (denoted byS) if it may be globally aliased
with other reference(s).

In classical alias annotation work[1], theL-mode is used to de-
scribe variables whose references do not escape their declaration
blocks. Such locations are candidates for lending, as the unique-
ness of source objects are not compromised. As a result, each ob-
ject can be lent out multiple times. The uniqueness property is
always restored once all locations that are lent out (including tran-
sitive lending) are dead. However, the policy of allowing many

lendings for a single object, and of allowing lents to be reassigned
to other lent locations, may cause aliasing problems to re-surface.
To avoid this problem, we propose a refined policy, calledlent-
once1:

DEFINITION 4 (LENT-ONCE). A parameter that is marked
as lent-once (denoted byL) has the following properties: (i) its
value does not escape the method, (ii) the lent-once parameter is
never re-assigned, (iii) it has exclusive access to the object in its
method’s scope.

The last two conditions prevent aliases from occurring in the scope
of each lent-once location. As we exclude local variable from
theL-mode, call sites are theonly places where lendings can oc-
cur. While this lent-once policy may appear restrictive, its short-
coming can be addressed bypreprocessing(converting lent to lent-
once, where possible) andintersection types[30] (allowing differ-
ent parameter aliasing for each call site).

3.1 Alias Subtyping

As we deal with the types of expressions, our subtype rela-
tion (shown below) need not includeR. Each value retrieved from
an R-field is automatically casted to theS-mode. Note thatU-
mode references act as universal sources, whileL-mode locations
serve as sinks only. This subtyping effectivelypreventsan S-
reference from being copied into aU-location. Unlike [1], we dis-
allow S ≤a L to enforce non-aliasing of theL-mode parameters.

A≤a A U ≤a L U ≤a S

3.2 Size Mutability

Our main idea for tracking size properties is the concept ofsize-
mutability. To help identify size properties that are immutable for
objects, we shall use theread-onlymode to protect certain fields
from being changed. We classify eachfield andsize variable, as
follows:

DEFINITION 5 (SIZE-MUTABILITY FOR FIELD). A field is
classified assize-immutable, if it is marked with theR-mode. Oth-
erwise, it is classified assize-mutable.

DEFINITION 6 (SIZE-MUTABILITY FOR SIZE VARIABLE ).
A size variableof an object type issize-immutableif it depends
on only size-immutable variable(s) that come from size-immutable
field(s). Otherwise, it issize-mutable.

For some primitive type, likeint〈n〉, its size variable is automat-
ically classified assize-immutable, as its values cannot be changed
after they have been created. For user-defined object type, like
Int〈n〉, its field (size property) may change after its objects have
been created and is thereforesize-mutable, in general. Neverthe-
less, we can obtain more size-immutable fields/variables with the
help of theR-mode. Consider:

adt Pair〈a, b, c〉 where a=p ∧ b=q ∧ c=p+q ; true
{ int〈p〉@S x; int〈q〉@R y; · · · }

adt List〈n〉 where n=m+1 ; n≥0
{ Int〈v〉@S val; List〈m〉@R next; · · · }

1Subsequent to our formulation, we found out that a similar policy,
called limited unique, has already been proposed in [9], though
their focus has been on the specification of such properties and not
on a formal mechanism, such as the type-based one proposed here.



In Pair, the first field is size-mutable, while the second field is
size-immutable. Of its three size variables{a, b, c}, onlyb is size-
immutable. This is becauseb depends on only size-immutableq
which came from a read-only field. InList, we usen to track
the length of the linked list, and this is made size-immutable by
protecting thenext field with theR-mode.

Objects may be freely shared without losing track of the prop-
erties of their size-immutable variables. However, the same cannot
be said for size-mutable variables, as global aliasing can quickly
invalidate local analysis. Our solution for objects with size-mutable
fields to track, is to make their referencesunique. Uniqueness can
guarantee that the references of these fields are never aliased.

For example, we can design another list structure whosenext

field can be updated but must be unique, as shown below. Note
that uniqueness allows the length of this linked list to be tracked,
even with mutation on its tail.

adt List2〈n〉 where n=m+1 ; n≥0
{ Int〈v〉@S val; List2〈m〉@U next; · · · }

3.3 Classification of Size Variables

Thus far, we have classified size variables into two main groups,
namely size-mutable and size-immutable. However, the size-mutable
group can be further classified into eithertrackableornon-trackable
size variables, due to theabsenceor presenceof global aliasing,
respectively. This classification of size variables can be inferred
from the objects’ type declarations. We provide a pair of mu-
tual recursive definitions, namedVobj and Vfield, to classify the
size variables of annotatedobject typeandfields/parameters(with
suffixesI, T , and N to denoteimmutable, trackable and non-
trackablerespectively), as follows:

Vobj(τ〈s∗〉) = (dI , dT , dN )

Vfield(τ〈s∗〉@R) =df (dI , ∅, dT ∪ dN )

Vobj(τ〈s∗〉) = (dI , dT , dN )

Vfield(τ〈s∗〉@S) =df (∅, dI , dT ∪ dN )

A ∈ {U, L} Vobj(τ〈s∗〉) = (dI , dT , dN )

Vfield(τ〈s∗〉@A) =df (∅, dI ∪ dT , dN )

adt pn〈n∗〉 where MVar; φI {pmeth∗} ∈ P

Vobj(pn〈n∗〉) =df (n∗ −MVar, MVar, ∅)

adt cn〈n∗〉 where φ ; φI {(ti fi)i:1..p meth∗} ∈ P
Vfield(ti) = (dI

i , dT
i , dN

i ), i ∈ {1..m}
nI = depends(n∗,

Sm
i=1 dI

i , φ)
nT = depends(n∗,

Sm
i=1 dT

i , φ)
nN = depends(n∗,

Sm
i=1 dN

i , φ)

Vobj(cn〈n∗〉) =df (nI − (nT ∪ nN ), nT − nN , nN )

For each field with size variabless∗, we extract fromn∗ those
that depend on somes∗ via φ. This dependency is defined below.
Each primitive constraint fromφ is of the restricted formn = α.
We defineV to return all free size variables in a formula. For exam-
ple,V(x′=z + 1 ∧ y=2) = {x′, y, z}. We extend it to annotated
type and type environment, e.g.V(τ〈n∗〉@A) = {n∗}.

depends(n∗, s∗, φ) =df

S
(n=α)∈φ {n | (V(α)∩s∗)6=∅ }

GivenφP = (a=p ∧ b=q ∧ c=p+q) from thePair object
definition, we can infer that{b} is size-immutable,{a, c} are
trackable size-mutable and∅ denotes an empty set of non-trackable
size-mutable variables.

nI = depends([a, b, c], [q], φP ) = {b, c}
nT = depends([a, b, c], [p], φP ) = {a, c}
Vobj(Pair〈a, b, c〉) = ({b}, {a, c}, ∅)

For each object type declaration that is recursive, we may derive
definitions forVobj andVfield that are circular, but they can still be
analysed via fixed-point computation.

4. Specification of Safety Protocols

With the help of size (and alias) annotations, we can specify
suitable safety policies for software through the use ofsize invari-
ants for each object type and the use ofpreconditionsfor each
method declaration. Apart from enforcing data structure invariant
(e.g. AVL tree) and avoiding bound violations (e.g. safe array),
we may also check if operations of an ADT are invoked according
to a temporal protocol.

Let us highlight how we can specify the safety policy for a file
protocol (defined below) that allows read/write from a file only af-
ter it has been opened. The state of each file is encoded bys∈1..3
with 1, 2, 3 to denoteinitial , open, andclosestates, respectively.
(While the states of protocol are encoded using integer values, we
stress that it is easy to use syntactic sugar to make protocol spec-
ification more natural to programmers. Furthermore, our use of
integer domain to encode values of finite states is meant to support
a more convenient relational analysis via Presburger constraints.)
Once closed, no more read/write operations can be performed.
These temporal requirements are enforced by the sized precon-
ditions of each method. In general, not all the safety preconditions
can be enforced directly, but we allow programmer to insert run-
time tests to ensure conformance. For example, opening a file may
fail if it does not exist and this situation can be co-related with the
returned flag (ofopen) that can be tested at runtime.

adt File〈s〉 where {s}; 1≤s≤3 {
File〈s〉@U newFile() where true; s=1

bool〈b〉@S open(File〈s〉@L f, string〈〉@S name)
where s=1; (b=1∧s′=2)∨(b=0∧s′=1)

string〈〉@S read(File〈s〉@L f) where s=2; s′=2

void〈〉@S write(File〈s〉@L f, string〈〉@S buf)
where s=2; s′=2

void〈〉@S close(File〈s〉@L f) where s=2; s′=3

int〈r〉@S getState(File〈s〉@L f)where true; r=s∧s=s′ }

Capturing such a protocol as a primitive ADT assumes that its im-
plementation has been separately verified against its stated inter-
face. We can also rely on user-defined ADTs for the specification
of safety protocols. An example is the following bounded buffer
ADT which is guaranteed toneither underflow nor overfloweach
buffer of a given capacity.



adt Buffer〈s, c〉 where s=n∧c=a;

0≤s≤c∧0≤h<c∧0≤t<c∧c = e {
Array〈a〉@R arr; int〈e〉@R cap; int〈h〉@S h; int〈t〉@S t;
Buffer〈s, c〉@U newBuffer(int〈n〉@S n)

where n>0; s=0∧c=n∧n′=n

{ new Buffer(newArray(n, 0), n, 0, n−1) }
void〈〉@S add(Buffer〈s, c〉@L b, int〈n〉@S n)

where s<c; s′=s+1∧noX{c, n}
{ bind b of (a, c, h, t) in {

update(a, h, n); h=mod(h+1, c)} }
int〈n〉@S get(Buffer〈s, c〉@L b)

where s>0; s′=s−1∧c′=c

{ bind b of (a, c, h, t) in {
t=mod(t+1, c); sub(a, t)} } · · · }

Note the use of a cyclic array to store the contents of the buffer,
with the help of the followingmod primitive.

int〈r〉@S mod(int〈a〉@S x, int〈b〉@S y)
where b>0 ; 0≤r<b∧noX{a, b}

This example illustrates how we can safely build a more sophisti-
cated ADT from simpler ones. As an example of the use of this
buffer ADT, we have the following method which can safely add
n elements, provided that the preconditions+n≤c is satisfied.

void〈〉@S addMany(Buffer〈s, c〉@L b, int〈n〉@S n,
int〈v〉@S val) where s+n≤c

; s′=s+max(0, n)∧noX{c, n, v}
{ if n≤0 then ()
else add(b, val); addMany(b, n−1, val) }

5. Verification via Sized Typing

We present type judgements forexpressions, method declara-
tions, object declarationsand programsto check for their well-
typedness, using relations of the form:

Γ; C;∆;Θ ` e :: t, ∆1, Θ1 C `meth meth `pmeth pmeth
`prim prim `user user `P prim∗ user∗ meth∗

Note thatΓ is a type environment mapping program variables
to their annotated types;∆(∆1) denotes the size constraint that
holds for the size variables associated withΓ (Γ and t) for ex-
pressione before (after) its evaluation;t is an annotated type.C
captures a set of user-defined ADTs whose fields are visible. Also,
Θ(Θ1) is used to hold the variables whose uniqueness have been
consumed before (after) the evaluation ofe. We shall refer to such
references asdead, as they are not to be accessed. Take note that
both∆(∆1) andΘ(Θ1) are tracked flow-sensitively.

The major syntax-directed type rules for these judgements are
given in Fig 2, whereas the rest of the rules are given in our tech-
nical report [11]. Compared to [1], we have attained two key in-
novations. Firstly, we do not require a separatelast-use analysis
to determine when a unique reference (from a variable) becomes
dead, as we keep track of consumed uniqueness via the dead set
(denoted byΘ). Secondly, we do not requiredestructive readfor
field access (which nullifies the field after each read). Instead, we

track the liveness of each unique field with the help of thebind

construct and the dead set. These changes improve both the accu-
racy and usability of our alias analysis.

In the rest of this section, we highlight important aspects of our
sized type system via examples. Before that, we introduce some
preliminary definitions. The functionprimetakes a set of size vari-
ables and returns their primed version, e.g.prime({s1, . . . , sn})
= {s′1, . . . , s′n}. Note that prime operation is idempotent, namely
v′′ = v′. We extend this to annotated type, type environment and
even substitution. For example, we haveprime(τ〈n1, . . . , nk〉) =
τ〈n′1, . . . , n′k〉, andprime[x 7→ a, y 7→ b] = [x′ 7→ a′, y′ 7→ b′].
We usen∗ = fresh() to generate new size variablesn∗. We ex-
tend it to annotated type, so thatt̂ = fresh(t) will return a new
type t̂ with the same underlying type ast but with fresh size vari-
ables instead. The functionequate(t1, t2) generates equality con-
straints for the corresponding size variables of its two arguments,
assuming that they share the same underlying type. For example,
equate(Int〈r〉, Int〈s′〉)=(r=s′). The functionrename(t1, t2)
returns a mapping instead, e.g.rename(Int〈r〉, Int〈s′〉)=(r 7→s′).
To extract the alias of an annotated type, we useann(τ〈v∗〉@A) = A.
The functioninv(t) returns the size invariant oft (after quantify-
ing the size variables of its fields), whileinv(Γ) extends to type
environment. The functionunify(t1, t2) returns a new fresh type
whose alias annotation is an upper bound oft1 andt2. Also, con-
ditional is expressed asξ1¢b¤ξ2 =df if b then ξ1 else ξ2.

Updates of size constraint due to change of program state are
effected by a sequential composition operator,◦X , with X denot-
ing the set of size variables that are being updated. For example, if
∆=(a′=a+b ∧ b′=3 ∧ i=a′), then we can obtain the following
where thea size variable is being updated.

(∆◦{a}a
′=i+1) = ∃a0 · a0=a+b∧b′=3∧i=a0∧a′=i+1

= b′=3∧i=a+b∧a′=i + 1

More formally, sequential composition is defined as:

φ1 ◦X φ2 =df ∃R · ρ1(φ1) ∧ ρ2(φ2)

where X = {s1, . . . , sn} are size variables being updated
R = {r1, . . . , rn} are fresh size variables
ρ1 = {s′i 7→ ri}n

i=1 ρ2 = {si 7→ ri}n
i=1

5.1 Variable Read

The [VAR] rule is used to return an object via a reference cap-
tured by variablev. Here, a unique reference loses its uniqueness
and must not be referenced again (unless it has been re-assigned).
It is thus added to adead setusingΘ1=Θ∪({v}¢A=U¤∅) where
A is the alias annotation for the type ofv. This rule also re-
turns a freshly annotated typet1=fresh(t) and a size constraint
φ=equate(t1, prime(t)) to relate the resulting annotated type with
that of variablev. AssumingΓ={v::Int〈d〉@U}, ∆=noX{d}, we
have:

φ = (r1=d′) v /∈ Θ U 6= L

Γ; C; ∆;Θ ` v :: Int〈r1〉@U, ∆∧φ, Θ ∪ {v}
Note how the dead set has changed, and how the size property of
the result (namelyr1) is associated with the latest size variables
(namelyd′) from the type environment.L-mode references cannot
escape via this rule.



[AUX]

Γ(v) = t t1 = fresh(t)

φ = equate(t1, prime(t))

Γ ` v::t1, φ, V(t)

[VAR]
Γ ` v::t, φ, Y A=ann(t) A6=L

v/∈Θ Θ1=Θ∪({v}¢A=U¤∅)
Γ; C;∆;Θ ` v :: t, ∆ ∧ φ, Θ1

[CON−UL]
AS=ann(tS) AT =ann(tT ) `tS<:tT , ρ

Θ1=Θ∪({v}¢AS=U∧AT 6=L¤∅)
v/∈(Θ∪Λ) Λ1=Λ∪({v}¢AT =L¤∅)

Θ, Λ, Ψ ` conUL(v, tS , tT ), Θ1, Λ1, Ψ]ρ

[ASSIGN]

Γ; C;∆; Θ ` e :: t1, ∆1, Θ1 Γ ` v::t, φ, Y

ann(t) 6∈ {L, R} ` t1 <: t, ρ X = V(t1) ∪ V(t)

¬ isParam(v) ∆2 = ∃X ·∆1 ◦Y ρ(φ)

Γ; C;∆;Θ ` v = e :: void〈〉@S, ∆2, Θ1/v

[BIND]
adt cn〈s∗〉 where φ; φI {(ti fi)i:1..p meth∗} ∈ P

v/∈Θ Γ(v) = cn〈n∗〉@A ρ1 = ([U 7→ S]¢A∈{S, R}¤[])
cn∈C ρ2=[s7→n′]∗ ρ3=ρ2]

Up
i=1 rename(ti, prime(ti))

Γ1={vi::ρ1ti}p
i=1 Γ−{v|A∈{L, U}}∪Γ1; C;∆1; Θ ` e :: t, ∆2, Θ1

∆1=∆∧(ρ2 φ∧φI)∧noX (Γ1)∧inv(Γ1) I=∃i∈1..p·vi∈Θ1

∆3=∆2◦{n∗}ρ3 φ Θ2=(Θ1−
Sp

i=1{vi})∪{v|I}
(¬I∧∆3)⇒ρ3 φI I⇒(A=U) Y =

Sp
i=1 V(ti) Z=Y ∪prime(Y )

Γ; C;∆;Θ ` bind v of (v1, . . ., vp) in e :: t, ∃Z·∆3, Θ2

[CALL]

t̂0 mn((t̂i v̂i)i:1..p) where φpr; φpo · · · ∈ P
t0 = fresh(t̂0) Λ0 = ∅ ρ0 = [ ] Γ(vi) = ti i∈1..p
Θi−1, Λi−1, ρi−1 ` conUL(vi, ti, t̂i), Θi, Λi, ρi i∈1..p
ρ = rename(t̂0, t0)]ρp]prime(ρp) ∆≈>V(Γ) ρφpr

X=
Sp

i=1 V(t̂i) Y =X∪prime(X) L=
Sp

i=1 V(ti)

Γ; C;∆; Θ0 ` mn(v1..p) :: t0, ∆ ◦L ∃Y · ρ φpo, Θp

[METH]

Γ = {v1::t1, . . . , vp::tp} ∆=noX (Γ)∧φpr∧inv(Γ)
Γ; C;∆; ∅ ` e :: t, ∆1, Θ ` t<:t0, ρ
ann(t0) 6= L ann(ti) = Ai, i∈0..p

Y =
Sp

i=1(XN∪(XT¢Ai=U¤∅) | ( , XT, XN)=Vfield(ti))
(∃ prime(Y) ·∆1)⇒ρ φpo ∀i∈1..p · (Ai=L)⇒vi 6∈ Θ

C `meth t0 mn((ti vi)i:1..p) where φpr; φpo {e}

[IF]

Γ; C;∆∧b′=1;Θ ` e1 :: t1, ∆1, Θ1

Γ; C;∆∧b′=0;Θ ` e2 :: t2, ∆2, Θ2 t=unify(t1, t2)
Γ(v)=bool〈b〉@S ρi=rename(ti, t), i = 1, 2

∆3 = (ρ1∆1)∨(ρ2∆2) Θ3 = Θ1 ∪Θ2

Γ; C;∆; Θ ` if v then e1 else e2 :: t, ∆3, Θ3

[SUBT]

Vobj(τ〈s1, . . . , sm〉) = (SI , ST , )
(A3, A4)=[R 7→S](A1, A2) A3≤aA4

ρI = [ni 7→ si]si∈SI ρT = [ni 7→ si]si∈ST

ρ = (ρI¢A3 = S ∨ A4 = S¤ρI ] ρT )

` τ〈s1, . . . , sm〉@A1 <: τ〈n1, . . . , nm〉@A2, ρ

Figure 2. Major Size and Alias Type Rules for Safety Verification

5.2 Assignment

The assignment rule [ASSIGN] ensures that the LHS and RHS
are consistent in accordance with (i) alias subtyping (ii) flow of
trackable size properties (iii) imperative update of its LHS. It also
checks that the LHS is neither a parameter variable, nor inR- or
L-mode. To capture imperative update, we link the current size
constraint with a new updated state for the affected size variables
from the LHS. GivenΓ = {x :: int〈a〉@S}, we have:

¬isParam(x) S 6∈ {L, R}
Γ;∆1; Θ ` x + 1 :: int〈r1〉@S, ∆2, Θ

∆2 = (∆1∧r1=a′+1) Γ ` x :: int〈r2〉@S, a′ = r2, {a}
` int〈r1〉@S <: int〈r2〉@S, [r2 7→ r1]

Γ; C;∆1; Θ ` x = x + 1 :: void〈〉@S, ∃r1·∆2 ◦{a} a′ = r1, Θ

If ∆1 = (a′= a), the final constraint simplifies toa′=a+1 which
reflects the update. Apart from alias subtyping, the subtype rela-
tion [SUBT] also captures the flow oftrackablesize variables as a
mapping. In the case of the above, when anS-object flows to an
S-location, only the size-immutable size variable is captured via

its mapping, namely[r2 7→ r1]. Some other examples are:

` Pair〈s1, s2, s3〉@U <: Pair〈n1, n2, n3〉@S, [n2 7→ s2]
` Pair〈s1, s2, s3〉@U <: Pair〈n1, n2, n3〉@U, [ni 7→ si]

3
i=1

` Pair〈s1, s2, s3〉@S <: Pair〈n1, n2, n3〉@U, !FAIL

Another important aspect of assignment is the restoration of the
uniqueness for the LHS variable/field. As this is not applicable to
shared objects, let us examine another example with∆2 = noX{d}.
Notice a smaller dead set.

¬isParam(v) U 6∈ {L, R}
Γ;∆2; {v} ` new Int(4) :: Int〈r1〉@U, ∆2∧r1=4, {v}

Γ ` v :: Int〈r2〉@U, d′=r2, {d}
` Int〈r1〉@U <: Int〈r2〉@U, [r2 7→ r1]

Γ; C;∆2; {v} ` v = new Int(4) :: void〈〉@S, d′=4, {}

5.3 Conditional

For conditional, our rule is able to track the size constraint path-
sensitively, but the dead set is tracked only flow-sensitively but not
path-sensitively. GivenΓ1= Γ+{x::bool〈h〉@S,v::Int〈j〉@U} and
∆=(h′=0), we have:



Γ1; C;∆∧h′=1; {}`v::Int〈r1〉@U, false, {v}
Γ1; C;∆∧h′=0; {}`new Int(5)::Int〈r2〉@U, ∆∧r2=5, {}

Γ1; C;∆; {} ` if x then v else (new Int(5))
:: Int〈r3〉@U, ∆∧r3=5, {v}

Note thath′=1 and h′=0 captures path-sensitivity. As a re-
sult, the final size constraint is able to ignore an infeasible branch.
A branch is infeasible if its corresponding size constraint yields
false. However, the uniqueness ofv is consumed even though it
occurs in the infeasible branch. This is so as the dead set is tracked
only flow-sensitively.

5.4 Method Declaration and Call

For method declaration, our type rule must ensure that each
decoration at the method header is consistent with its body. The
declared size constraint may be weaker than the analysed size con-
straint (from the method body), but not vice versa. Note that
non-trackable size variables and mutable size variables of unique
parameters must be quantified, as we do not track them across
method boundary.

The rule for method call must ensure thatU-mode parameters
consume uniqueness, and thatL-mode parameters adhere to the
lent-once policy. RelationΘ, Λ, Ψ ` conUL(v, tS , tT ), Θ1, Λ1, Ψ1

(named [CON−UL]) helps ensure the above. It checks that each
variablev is neither lent twice, nor has its uniqueness consumed
twice. Note thatΛ captures unique variables which are temporar-
ily lent out. The method invocation rule also includes a safety
check on the precondition of the callee. This is performed by the
predicate≈>X defined as follows:

∆ ≈>X φ =df (∆ ⇒ ρφ), where
ρ = [s1 7→ s′1, .., sn 7→ s′n] andVu(φ) ∩X = {s1, .., sn}.

whereVu returns the size variables in unprimed form, for exam-
ple Vu(x′=z+1∧y=2) = {x, y, z}. As an example of checking
a method call, given

Γ = {p :: Buffer〈r, z〉@U, v :: int〈m〉@S}
∆ = (r′=3 ∧ r=0 ∧ z=10 ∧ m=30 ∧ noX{z, m})

we obtainV(Γ) = {r, z, m} and the following:

t1 = Buffer〈r, z〉@U t̂1 = Buffer〈s, c〉@L
p 6∈ Θ ρ1 = [s 7→r, c 7→z]

Θ, ∅, [ ] ` conUL(p, t1, t̂1), Θ, {p}, ρ1

t2 = int〈m〉@S t̂2 = int〈n〉@S
v 6∈ Θ ∪ {p} ρ2 = ρ1 ] [n 7→m]

Θ, {p}, ρ1 ` conUL(v, t2, t̂2), Θ, {p}, ρ2

∆ ≈>V(Γ) (r < z)

Γ; C;∆;Θ ` add(p, v) :: void〈〉@S, ∆2, Θ

Note that uniqueness ofp is only lent-out and not consumed.
We also have:

∆2 = ∆ ◦{r,z,m} (r′ = r + 1 ∧ noX{z, m})
= (r′=4 ∧ r=0 ∧ z=10 ∧ m=30 ∧ noX{z, m})

5.5 Binding

The bind expression enables us to accurately capture the size
relations among object fields as well as between an object and its

fields. In addition, it can replace the field access construct alto-
gether (for type checking). When an object subjected to abind op-
eration is marked by eitherR orS, all its unique fields are remarked
asS using[U 7→S] in the scope ofbind. On the other hand, the ob-
ject will lose its uniqueness if any one of its fields loses it. For
instance, givenΓ=Γ0+{v::List2〈n〉@U}, the following deriva-
tion demonstrates howv loses its uniqueness when its uniquey
field loses it (denoted byI = (y∈Θ1)):

v /∈ Θ Γ0 ∪ Γ1; C;∆1; Θ ` y :: t1, ∆2, Θ1 Θ1 = Θ∪{y}
Γ(v)=t A=ann(t) I=(y∈Θ1) I⇒A=U ¬I∧∆3⇒n′≥0
Γ; C;∆;Θ ` bind v of (x, y) in y :: t1, ∆4, Θ1−{y}∪{v|I}

for some valuesΓ1, t1, ∆1,∆2, ∆3 and∆4. As a counter-example,
considerbind v of (x, y) in x. Here,v does not lose its unique-
ness as the uniqueness of itsy field remains intact.

A well-typedbind expression also permits the size invariantφI

of the bound object to betemporarily violatedin its scope, but
ensures thatφI holds whenever the object escapes. This is en-
forced by the check(¬I∧∆3)⇒ρ3 φI with I denoting the loss of
one or more unique fields. Our rule also ensures that an object
and its unique fields are never used simultaneously to avoid alias-
ing. It achieves this by hiding the visibility of variablev through
Γ−{v|A∈{L, U}} when type-checking the body of thebind con-
struct.

5.6 Soundness of Type System

We have proposed a small-step operational semantics instru-
mented with alias and size notations. We have also formulated
and proved several novel safety properties that our checking sys-
tem possesses:

• Alias Property: (1) All unique references are unaliased dur-
ing the evaluation; (2) each unique reference can only be
lent once within each stack frame; and (3)R-mode fields
never change during evaluation.

• Type Preservation: Each well-typed program preserves its
type under reduction with a runtime environment and a store
which are consistent with the compile-time counterparts. The
final size property is consistent with the value obtained on
termination.

• Progress: Well-typed programs can never go wrong. It
guarantees that safety policies are met for well-typedOIMP

programs.

Details on the dynamic semantics, formal descriptions of the
soundness theorems and their proofs can be found in our technical
report [11]. Detailed correctness proof for size analysis can also
be found in [31] in the context of a first-order functional language
with primitive resources.

6. Related Work

Sized type was first proposed by Hughes, Pareto and Sabry [23,
22] as a formal mechanism for proving the correctness of certain
size-related properties for embedded functional programs. Their
proposal captures an upper or lower bound for each data, depend-
ing on whether it is declared as data or co-data. This catered to
independent attribute analysis, rather than relational analysis. Sep-
arately, dependent type was proposed by Xi and Pfenning [36, 38]



Programs Size (lines) Safety Checking
Source Annotation (seconds)

bisort 340 7 0.68
em3d 462 19 0.30
health 562 22 6.08
mst 473 31 0.20

power 765 24 1.32
treeadd 195 6 0.12

tsp 545 10 0.42
perimeter 745 12 8.48
n-body 1128 31 0.37
Voronoi 1000 45 1.90

insert(AVL) 64 1 1.36
delete(AVL) 157 2 4.79

bs(array) 41 1 0.08
buffer 65 6 0.12

Figure 3. Performance of Verification

to capture size information and has been applied to a variety of
applications. These early works are based on the type checking
framework. Later, Chin and Khoo [10] enriched sized typing by
devising fixed-point methods for safely inferring the size relations
for functional programs. A common feature of these past works is
that they are based primarily on functional languages, and operate
over mostly immutable data structures.

Recently, some advance has been achieved in extending depen-
dent types to imperative programming through a language, called
Xanadu [37]. However, Xanadu supports only a limited set of
types, including read-only lists; but not general objects. This re-
striction avoided the aliasing problem, as onlysize-immutableob-
jects are effectively used. With a different research goal, Odersky
et. al. [29] designed a dependent type system for objects and
classes. However, its purpose is to modelJAVA ’s inner classes,
virtual types and family polymorphism, rather than tracking size
properties.

Sharing objects through aliases is both a powerful feature and
a weakness of object-oriented languages [1, 7, 19]. As each object
may be updated via any alias, object being changed may not even
be aware of it; causing such programs to be harder to understand
and reason. To regain control over aliasing, various researchers
have proposed alias annotations to limit the capability of pointer
variables so that local reasoning is possible. A wide range of alias
annotations have been proposed, which have been systematically
organised into a general capability system[1, 7]. Our work is built
on top of such alias controls. Uniqueness [27] gives unaliased ref-
erence, and is closely related to linear type systems [35, 17]. Lent
mechanism allows other annotations to be borrowed temporarily
over a program scope, where they do not escape. It is related to
quasi-linearity [24]. Read-only annotation is related to immutabil-
ity, and can facilitate sharing and invariants. Another well-studied
mechanism is ownership annotation in support of object encapsu-
lation. Here, every object has an owner, whose access is limited
to the ownership tree, such that external objects have only indirect
accesses through the owner’s methods. Ownership encapsulation
has been applied to a number of applications, including region-
types for real-time Java [4], prevention of data races and deadlocks
in concurrent programs[5, 6], and as aids to program understand-
ing [1]. Our present proposal for sized type for objects rely on
a smaller set of alias annotations, but offers a mutually beneficial
synergy. With the portfolio of size-inspired applications, we ex-

pect the type system proposed here to further reinforce on the im-
portance of alias control mechanisms; and to continue to benefit
from their advances.

Instead of confining aliasing[19], there have been a number of
attempts at analysing possible aliasing structures. Systems such as
TVLA [33], PALE [28], and Roles [25], enable the shape of local
object graphs to be analysed and captured. Most of these systems
employ heavier machinery to capture state change and to enforce
the expected aliasing structures. For example, Sagiv, Rep and Wil-
helm [33] employed three-value logic to capture points-to relation
between objects as well as imperative changes on shape graph.
These proposals are complimentary to our goal of size analysis in
relational form, and may open up new classes of mutable objects
that could be precisely analysed.

In recent years, several approaches have been advocated for
verifying software to ensure that it conforms to stated safety pol-
icy. One popular approach [20, 2, 12, 8] is based on the con-
cept of model checking in which program states are approximated
through boolean predicates. Choosing a suitable predicate ab-
straction remains one of the main challenges, and various sym-
bolic techniques have been proposed to facilitate this task. With
a different approach, several type based techniques [14, 16, 13]
have also been advocated for checking if user programs conform
to some stated safety protocols. The focus has been on design-
ing bounded typestates together with linear typing for supporting
strong updates. As an approach between the above two, Flana-
gan et.al.[15] use verification-condition generation and automatic
theorem-proving techniques in their extended static checking sys-
tem for Java. However, they incorporate a trade-off between sound-
ness and usefulness. Moreover, most of these proposals are based
on finite state approximation of the program states, and are typi-
cally formulated in a path-insensitive manner.

Through the use of relational size analysis (with disjunctive
formulae), our proposal has the potential to give more precise veri-
fication. Furthermore, our use of alias controls and size-immutability
(often omitted in other works) has provided a clearer path towards
analysing object-based imperative programs.

7. Conclusion

We have proposed an advanced type system to capture size re-
lations for objects. We make use of size-immutability to facili-
tate sharing, and alias controls to identify unaliased objects. This
mechanism permits size relation in constraint form to be accu-
rately analysed for object-based programs. Our type system
can be viewed as a sound and decidable lightweight verification
method. We use the ADT mechanism augmented with size invari-
ants together with pre/post conditions on methods, to allow us to
express a variety of size-inspired safety policies - ranging from
safe array bounds, data structure invariant to protocol verification.

We have implemented a prototype system which converts an-
notated Java programs (without concurrency and exceptions) to
our kernel language, before type checking is applied to verify the
specified safety policies (with a prototype system accessible at
http://loris-4.ddns.comp.nus.edu.sg/˜nguyenh2/mi ). Our pro-
totype was implemented using the Glasgow Haskell compiler. To
evaluate this prototype, we hand-annotated a set of programs from
the Java Olden benchmark together with programs described in
this paper, before subjecting them to sized type checking. The
performance statistics (on Red Hat Linux 9.0 for Pentium 2.4 GHz



with 768MB) is summarised in Fig 3. Due to modular type check-
ing, our system verifies each medium-sized program under 10 sec-
onds, despite the use of Presburger constraint solving[32]. Size
and alias annotations are required for the headers of object and
method declarations which account for less than 5% of the source
code. Our recent investigations into automatic inference of size
constraints for an imperative language without objects [39] (for
array bound check elimination) could further reduce the burden of
annotations.
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