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1. INTRODUCTION 

Experience has shown that, while it may be possible to convince oneself of the 
correctness of a sequential program by considering some subset of its executions, 
this is impossible for concurrent programs. Consequently, methods have been 
devised to deduce properties of program behavior from the program text itself. 
The program text obviously contains all the information needed to decide what 
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executions are possible. Moreover, although the number of possible executions is 

likely to be very large, only a single program text need be analyzed. 
An execution of a program can be viewed as an infinite sequence of states 

called a history. In a history, the first state is an initial state of the program and 
each following state results from executing a single atomic action in the preceding 
state. Terminating executions are extended to infinite histories by repeating the 
final state. In a concurrent or distributed program, a history is the sequence of 
states that results from the interleaved execution of atomic actions of the 
processes. 

A property is a set of sequences of states; a program satisfies a property if each 
of its histories is in the property. Specifying a property as a predicate on sequences 
allows the essence of that property to be made explicit. Formulas of temporal 
logic can be interpreted as predicates on sequences of states, and various for- 
mulations of such temporal logics have been used for specifying properties- 
called temporal properties- of interest to designers of concurrent programs [15, 
16, 21, 351. While there is not general agreement on the details of such a 
specification language, there is agreement that temporal logic provides a good 
basis for such a language, and it, or something close to it, is sufficiently expressive. 

Temporal logic has also been used in proving temporal properties of concurrent 
programs [22,25,29,31]. Here, a program is regarded as defining a collection of 
temporal logic axioms. The programmer proves that a program satisfies some 
property of interest by using these axioms along with program-independent 
axioms and inference rules of temporal logic [23] to show that the temporal 
formula characterizing the property is a theorem of the logic. Thus, proving that 
a program satisfies a property is reduced to theorem proving in a temporal logic. 

This paper describes a different approach for proving temporal properties of 
(concurrent) programs. The approach is based on specifying a property as a 
Boolean combination of deterministic Buchi automata. Proof obligations are 
extracted from these automata. These obligations generalize the invariant and 
variant function used to prove partial correctness and termination of sequential 
programs and define verification conditions that must hold for any program 
satisfying the property. The verification conditions themselves can be formulated 
as Hoare triples [ll], so reasoning in temporal logic is not required. 

We proceed as follows: Section 2 gives the semantics of the programs that we 
consider. Section 3 reviews Buchi automata and explains how they can be used 
to specify properties. Extraction of proof obligations from Buchi automata is 
discussed in Section 4. Section 5 illustrates our method on a mutual exclusion 
protocol. Section 6 compares our approach to related work, and Section 7 is a 
summary. 

2. PROGRAMS 

A program II is specified by 

-&, a countable set of program states; 

--Initn C Sn, a set of possible initial states; and 

-tin, a finite set of atomic actions. 

An atomic action defines a set of pairs of program states and is therefore a 
subset of Sn x Sn. Atomic action a! is enabled in a state s provided (3.t: (s, t) 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 



Verifying Temporal Properties without Temporal Logic 149 

MEP : cobegin 
A :: dome -a (1: ) ncsA; 

(2: } activeA := me; 
(3: ) turn :=B; 
(4: ) do acrive~ Arurn=B + (5: ) skip od; 
(6: ) csA; 
(7: ) acffve~ :=fulse 

od 
II 
B :: dome + (1: } ncsB; 

(2: ) acrfvg := true; 
{3: ) turn :=A; 
(4: ] do activeA A turn=A + (5: ) skip od; 
(6: } CQ; 

od 
coend. 

(7: ) actives :=fufse 

Fig. 1. Peterson’s mutual exclusion protocol. 

E LY). The statement 

(if b + C fi) 

is used to specify an atomic action containing those elements (s, t) such that 
(predicate) b holds on s and t is the state produced by executing (assignment) C 
starting in state s. 

A program is usually presented as a text, where statements or phrases in the 
text denote atomic actions. Rather than enumerating the atomic action of a 
program directly, it is frequently convenient to identify in such a text the control 
points that delimit atomic actions. In this paper, control points are denoted by 
marking and numbering them and an atomic action is described by the text 
between these marks. For example, program fragment of process A, 

. . . (3:) x:= 23 (4) . . . . 

defines a single atomic action 

CY~: (if pcA = 3 + pcA := 4; x := 23 fi) 

where pcA simulates the program counter for process A. Thus, a3 is enabled in 
any state in which pcA = 3. 

Formally, a history of a program II is any sequence of states from Sn such that 
the first state is in Init, and every subsequent state is the result of executing an 
enabled atomic action from LZZ~ on the previous state in the sequence. Notice that 
no restriction is made about the choice of an atomic action when more than one 
is enabled.’ To ensure that all histories are infinite, we include in ~8’” an atomic 
action that has no affect on the program state and is enabled when no other 
atomic action is. 

An example program MEP is shown in Figure 1. It is a simplified version of 
the solution to the two-process critical section problem described in [30].’ Based 

1 Fairness is discussed in Section 5.2. 
’ To simplify the presentation, we have assumed that the noncritical section (ncs) always terminates. 

However, the algorithm and our proof do not rely on this assumption. 
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= 1 + PCA := 2; t,csA fi), 
=2 + pcA := 3; activeA := trt&? fi), 

a!: (ifp 
+pcA := 4; tUrn F B fi), 

cA =4 A actives A turn =B + pcA := 5 fi). 
a5 : 
af : 

(if pCA =4 A 7 (actives A turn =B) + pcA := 6 fi), 
(if pcA =5 + pcA := 4 fi), 

a7 : (if pcA =6 -+ PCA := 7; CS,, fi), 

(if pcB =4 A activeA A turn =A + pcs := 5 fi), 

Fig. 2. Atomic actions tiMEp. 

on the control point annotations, we obtain the set of atomic actions dMEp of 
Figure 2. In those atomic actions, variable pcA simulates the program counter for 
process A and pcB simulates the program counter for process B. Finally, we have 

InitMEp = (s 1 s E SMEp /\ S i= (PCA = pc,j = 1 A (tUr?Z = A v tZU72 = B))) 

because, when execution is begun, both processes start at the beginning of their 
loops and turn is initialized. 

3. SPECIFYING PROPERTIES USING BUCHI AUTOMATA 

A property is a set of infinite sequences of program states. We restrict attention 
to properties that can be specified by formulas of some linear-time, temporal 
logic with first-order monadic predicates-that is, formulas composed of temporal 
operators, Boolean connectives, and atoms that are first-order predicates of the 
program states. Such logics are slightly more expressive than propositional 
temporal logics where the atoms are propositions. However, our temporal for- 
mulas can be treated as if they were propositional temporal formulas over 
different sequences. The elements of these sequences are the equivalence classes 
of the program states under the monadic predicates. 

A Buchi automaton is a finite-state machine that accepts or rejects infinite 
sequences of input symbols [6]. Such an automaton m can be used to specify the 
property containing those sequences of program states accepted by m. Procedures 
exist to translate propositional temporal formulas into Buchi automata where 
automaton state transitions are defined in terms of the atoms of the temporal 
formula [l, 81. Therefore, restricting consideration to properties that can be 
specified by Buchi automata-as we do in this paper-is not an additional 
restriction. Moreover, Buchi automata have natural diagrammatic representa- 
tions, and this is sometimes a convenient way to specify a property. 

An example of a Buchi automaton mae is given in Figure 3. It accepts infinite 
sequences in which after a finite prefix each state satisfies the program-state 
predicate p. In temporal logic, this property is specified as OUp. Automaton mae 

contains three automaton states labeled qo, ql, and q2. The start state, qo, is 
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Fig. 3. m,. 

denoted by an edge with no origin, and accepting state, ql, is denoted by two 
concentric circles. A Buchi automaton accepts a sequence (T iff it enters an 
accepting state infinitely often while reading u (assuming nondeterministic 
choices are resolved in favor of acceptance). Notice that there is no way in m,, 
to get from q2 to an accepting state. Such states are called dead states. If an 
automaton is in a dead state, it cannot accept its input. 

Edges between automaton states are labeled by program-state predicates that 
are called transition predicates and define transitions between automaton states. 
If a program state satisfies the transition predicate on an edge, then the edge is 
defined for that program state. For example, because there is an edge labeled p 
from q. to q, in mae, whenever mae is in q. and the next symbol read is a program 

state satisfying p, then a transition to q1 can be made. We adopt the convention 
that there be at least one edge defined from each automaton state for each input 
symbol. 

In order to define a Buchi automaton formally, the following notation will be 
useful: For any sequence d = sosl . . . , 

a[i] s Si, 

u[. .i] = sosl . . . siwl, 

a[i. .] E SiSi+] . . . , 

1 u 1 = the length of u (w if u is infinite), 

INF(u) = (s 1 s appears infinitely often in uj. 

A Buchi automaton m for a property of a program II is a five-tuple (Sn, Q, Qo, 
A, S), where 

Sll is the (countable) set3 of program states of II, 

Qoii: 
is the (finite) set of automaton states of m, 
is the set of start states of m, 

AGQ is the set of accepting states of m, 
6 E (Q x S) + 2Q - 0 is the transition function of m. 

Transition function 6 can be extended to handle finite sequences of program 
states in the usual way: 

(4) if 1 u 1 = 0; 

6*(q, a) = (q’ I 3q”: q” E 6*(q, u[. . I u I - 11): 

q’ E ~(q”, 41 u I - 11)) if 0-C 1~71 Co. 

‘Technically, this is the finite set of equivalence classes (under the monadic predicates of the 

temporal formula being specified) of program states. 
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Fig. 4. m,,. &g-Jj’ 

It is often convenient to represent 6 by using transition predicates, as in the 
diagram above. The transition predicate tij associated with the edge from autom- 
aton state qi to qj holds for a program state s iff qj E 6(qi, s). 

A sequence of automaton states that m might occupy while reading u is called 
a run. Thus, p is a run of m on u iff 

p[O] E Q,, and (Vi: 0 < i < 1 (T I: p[i] E S(p[i - 11, u[i - 11)). 

A Buchi automaton m accepts a sequence (r iff there is a run p of m on a for 
which INF(p) fl A # 0. 

Notice in mae (Figure 3) that two transitions are possible from q. for a program 
state satisfying p, because any program state that satisfies p also satisfies true. 

When there is more than one start state or more than one transition is possible 
from some automaton state for a given input symbol, the automaton is nondeter- 
ministic; otherwise, it is deterministic. Thus, mae is nondeterministic. Using a 
nondeterministic Buchi automaton, it is possible to specify a property that cannot 
be specified by a single deterministic Buchi automaton. However, any property 
that is specified by a nondeterministic automaton can be specified as a Boolean 
combination of properties, each of which can be specified by a deterministic 
Buchi automaton. For example, OOp, the property specified by m,,, is the 
negation of the property Cl0 lp, specified by the deterministic Buchi automaton 
m;, of Figure 4. 

3.1 Examples of Property Specifications 

A Buchi automaton mmutex that specifies the property of Mutual Exclusion for 
two processes is given in Figure 5. Mutual Exclusion is the set of sequences in 
which there is no state where the program counters for two or more processes 
denote control points inside critical sections. In mmUtex, we assume csA (csB) holds 
for any state in which process A (B) is executing in its critical section. 

The property Partial Correctness for pre and post includes all sequences of 
program states where, if the first state in the sequence satisfies pre, then, in any 
state where the program counter denotes the end of the program, post is satisfied. 
A Buchi automaton m,, that specifies this property is shown in Figure 6. In it, 
done is a predicate that holds for program states in which the program counter 
denotes the end of the program. 
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-ve 

pre A done A -post 

8 
true 

0 42 

Fig. 6. rn,. 

4. PROOF OBLIGATIONS 

Every temporal property 9 is a Boolean combination of properties that can be 
specified by deterministic Buchi automata. Without loss of generality, we assume 
this combination is in conjunctive normal form. Thus, 9 is the conjunction of 
clauses LPl, 93, . . . , 9%. To prove that a program II satisfies 9, one proves 
separately that the program satisfies each of these clauses. This establishes that 
every history of program lI is in the property (i.e., set of sequences of program 
states) specified by each clause, so we can conclude that every history of II is in 

the intersection of the properties specified by the clauses and that the program 
satisfies 9. Thus, it suffices to derive proof obligations for a single clause. 

The proof obligations for a single clause involve exhibiting three proof instru- 
ments. The first proof instrument, an invariant, handles the safety aspects of the 
proof; the second, a variant function, handles the liveness aspects; and the third, 
a candidate function, arbitrates among the automata specifying the disjuncts 
of a clause to ensure that any program execution will be accepted by at least 
one automaton representing a deterministic property or rejected by at least one 
automaton representing the negation of a deterministic property. The three 
instruments define verification conditions, which can be formulated as Hoare 
triples. 

4.1 Proof Instruments 

Given a clause 9i of the form 

531 v --- v s* v -qp+l v - - * v T%p+n, 

where each gk is specified by deterministic Buchi automaton mk = (& , Qk, i&O}, 
Ak, 6k), we call ml through m, the positive automata of 9i and m,+, through m,+, 
the negative automata. 

To formulate proof instruments for program II and clause .9i, define a joint 
state x to be an element of JS(9i, II), the joint state space, Q1 X . . e X Q,,+n X 
Sn. Let xCk’ denote the kth component of a joint state x, and let x(“’ abbreviate 
xCp+“+l’. A joint state x is positive, denoted Pas(x), iff for some positive 
automaton mj, x(j) E Aj. Th us, x is positive if one of ml through m, is in an 
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accepting state. The set of negative automata that are in an accepting state in a 
joint state x is neg(x) = (k ] p < k I p + n A x@) E Ak). For p, a sequence of joint 
states, define p (k) to be the projection of p onto its kth element; that is, pCk’ = 
p [O] ‘k’p[l] Ck). . . . A sequence of joint states p is a joint history of II and Yi iff p(“) 
is a history of II and for all 1 5 k 5 p + n, pCk’ is a run of mk on p(“). 

A program II satisfies the property specified by a clause 9i iff each history u 
of II is either accepted by one of the positive automata-and therefore satisfies 
one of the properties L& through gP--or is rejected by one of the negative 
automata-and therefore satisfies one of TL&+~ through ~9,,+~. Thus, Il satisfies 
9i iff for every history u there is a joint history p such that u = p(“) and either 
(1) there is a positive automaton mj, such that IiVF(p”‘) n Aj # 0, or (2) there 
is a negative automaton mk, such that INF(pCk’) n Ak = 0. 

To prove that II satisfies the property specified by a clause LZi’i, three proof 
instruments must be exhibited: 

(1) an invariant I !Z JS(9iy II); 

(2) a candidate function U: JS(Piai, II) -+ 2[p+1..pCn1; and 

(3) a UariUnt function U: JS(Pi, n) + W, where W is a well-founded set.4 

The invariant relates program states in a history to automaton states occupied 
while reading that history. The candidate function identifies negative automata 
that might never again enter an accepting state. The variant function bounds 
the number of times that the candidate function can become empty before one 
of the positive automata enters an accepting state. 

If the invariant, candidate function, and variant function satisfy the obligations 
below, then II will satisfy LYi. In these obligations, x and y denote elements of 
JS (LPi, II), and predicate x + y abbreviates 

X E I A A 6i(X’i’, Xc”)) = y”’ A (3OL: CZ E cQfJI: (Xc”), y’“‘) E Ct). 
lsisn+p 

The obligations are as follows: 

01: For all x E JS(9iai, n), (Alsisn+p xCi) = qio A x(“) E Initn) + x E I. 

02: Forallx,yEJS(~i,n),x~~~~EI. 

03: For all X, y E JS(giai, II), x +y ==+ (Pos(Y) V U(X) 1 U(Y)). 

04: For all X, y E JS(Yi, II), x -SY + (Pos(Y) V U(X) > U(Y) V 0 C U(Y) C 

u(x) - nedy)). 

The first two obligations ensure that I holds throughout any joint history. 01 
requires that the first state of a joint history be in I; 02 requires that, if one 
state in a joint history is in I, then so must the next. 

The third proof obligation requires that variant function u increase only upon 
entering a positive state. It ensures that either (1) some positive automaton 
enters an accepting state infinitely often (and the history is accepted), or (2) 
after some point, u never increases and no positive automaton subsequently 
enters an accepting state. 

4 Recall that a set W is well founded iff it does not contain an infinite descending sequence of 

elements. 
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The final proof obligation, 04, ensures that a history not accepted by a positive 
automaton is rejected by some negative automaton. To see how, observe that, 
after some initial prefix of a history that is not accepted by a positive automaton, 
there will be no positive state, and u will be constant (since its range is well 
founded). In this case, 04 requires that, after executing an atomic action, the 
candidate function on the new state: 

-contain only negative automata that were in the candidate function on the old 

state, 

-not contain automata that are accepting in the new state, and 

-not be empty. 

Thus, unless a positive automaton accepts a history, there must be some negative 
automaton that, after some point in the history, is thereafter in the candidate 
function. This automaton rejects the history since it cannot be in an accepting 
state after the prefix. 

We can now prove the following theorem: 

SOUNDNESS THEOREM. If there are proof instruments I, u, and u that satisfy 
obligutions 01-04, then program n satisfies property Pi. 

PROOF. Let p be a joint history of II and 9% p[O] E I by construction (01). By 
02 and induction, p[j] E I for all 0 <j. We must show that p causes some positive 
automaton to be in an accepting state infinitely often or some negative automaton 
to be in an accepting state only finitely often. Assume that no positive automaton 
is in an accepting state infinitely often. Thus, there is an index Z1 such that 
p[Zl. .] contains no positive states. By 03, the variant function is nonincreasing 
on p[&. .]. Since its range is well founded, there must be an index l2 such that 
l1 5 l2 and the variant function is constant on p[Z2. .]. By 04, there is a negative 
automaton mk such that, for all j > 12, 

k E u(djl) A k 4 wbbl). 

Therefore, mk does not enter an accepting state after 12. This means that mk 
rejects p, so II satisfies 9’i. 0 

We now show that the method is relatively complete. 

COMPLETENESS THEOREM. If program n satisfies property LFi, then there exist 
proof instruments I, v, and u that satisfy obligations 01-04. 

PROOF. Form a directed graph where the nodes are the joint states and there 
is an edge from node x toy iffy is not a positive accepting state and x immediately 
precedes y in some joint history. Define transitive, antisymmetric, relation >> on 
the nodes of this graph such that x >> y iff x # y, there is a path from x toy, and 
an accepting state for each negative automaton appears somewhere on this path. 

Relation >> is well founded, as is shown by the following proof by contradiction: 
If >> were not well founded, then there would be an infinite descending chain X, 
x=- x2 . . . . By construction of the graph, this implies the existence of a joint 
history that includes x1. Let u. be a prefix of such a joint history that ends with 
x1. For each xi in the infinite descending chain, let ci be the path from Xi to x;+l 
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that includes an accepting state for every negative automaton. Such a path exists 
by definition, because xi >> ri+l. Finally, let u be uoal . . . . Notice that u is a joint 
history, that d contains no positive accepting states after uo, and that there are 
infinitely many accepting states for each negative automaton in u. Thus, u does 
not satisfy gi. This is a contradiction, and we conclude that >> is well founded. 

Since >> is well founded, the following ordinal function is well defined: 

H(x) = sup (H(y) + 1). 
xX=-y 

If there is no y such that x >> y, then H(x) = 0 by definition of sup, so His total. 
Notice that if x >> y then H(x) > H(y). Moreover, if there is any path from z to 
y in the graph, then H(r) L H(y). 

The variant function will be constructed using H and the level Z(X) of a node 
X, defined as follows: Level Z(x) is the largest integer i such that for any collection 
of i negative automata there exists some node w with H(w) = H(x) such that 
there is a path from w to x and there is an accepting state for each automaton in 
the collection somewhere on the path. Note that, by definition of H, the level of 
a node will be less than or equal to n. (The equality will hold only if x itself is 
accepting for all negative automata.) 

The three proof instruments can now be defined. Choose I to be the character- 
istic predicate for the set of joint states that appear in joint histories of II and 
gi. Choose u(x) to be 00 if 3c is positive and (H(x), n - Z(X)) otherwise. The range 
of u with lexicographic ordering of pairs with 00 larger than any pair is well 
founded because the ordinals are. Finally, choose u(x) to be the set of negative 
automata that do not have accepting states on any path to x from any w such 
that u(w) = u(x). (Note that u(x) = 0 only if there is no such w different 
from x.) 

Proof obligations 01 and 02 follow immediately from the definition of I. 
To see that 03 holds, notice that if x + y and y is not positive then there 

is a path (of length 1) from x to y in the graph. Thus, H(x) z H(y). Suppose 
H(x) = H(y). Since any path to x can be extended to y, Z(x) 5 Z(y). Therefore, 

u(x) 2 U(Y). 
To see that 04 holds, suppose that x + y, y is not positive, and u(x) = u(y) 

holds. First, note that neg( y) fl u(y) is empty, since there is a trivial path from 
y to itself. Because there is a path from x to y, if mk has an accepting state on a 
path from w to x, then mk must have an accepting state on a path from w to y. 
Therefore, u(y) is contained in u(x). Further, since x # y holds, u(y) # 0. 
04 follows immediately. This completes the proof. Cl 

4.2 Verification Conditions 

Obligations 01-04 can be translated into verification conditions formulated as 
Hoare triples [ll] and predicate logic formulas. The Hoare triple (P) (Y (Q) for 
an atomic action a! asserts that any execution of (Y started in a state satisfying P 
terminates in a state satisfying Q.” Thus, (PI (Y (Q] is valid iff 

(V(s, t): (s, t) E (Y: (s t= P) + (t I= Q)). 

’ Since a is an atomic action, it must terminate once execution commences. 
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To reformulate 01-04 in terms of Hoare triples, we define slight variations of 
the three proof instruments. Define PJS(LYi), the projection of JS(gia;., II) with 
respect to program states, as PJS(9a;) = Q1 X . e. X Qp+n. Elements of PJS(9i) 
are called projected joint states. We write X to denote the projection of a joint 
state X. The projected joint state in which every automaton is in its start state 
is called the projected joint start state and denoted qa. A projected joint 
state f is considered positive if it is the projection of a positive state. For 2, the 

projection of x and s E Sn, we define the following: 

I; = (s 1 s E Sn A (2, s) E I), 

u;(s) = v((% s)), 

4s) = u((% s)), 
PO& = Pas(x), 

neg; f neg(x). 

Finally, we define a projected joint state transition predicate tE to be a predicate 
that holds for any program state causing a transition from a projected joint state 
f to a projected joint state 3. t= can be formed by taking the conjunction over all 
mi of the transition predicates labeling the edge from z(i) to jjci). 

Satisfying the following two verification conditions implies that 01-04 hold. 
The first one implies 01: 

VCl: Inih * I6. 

The next implies 02-04: 

VC2: For all 5, j, E PJS(9i) and a! E L&, 

(I; A v; = v A u; = u A t& 

CY 
(I; A (Posy V v; < V V (vj = V A 0 C u; G U - neg;))]. 

To see that 02,03, and 04 are implied by VC2, choose 

n= (2,s) and Y = (7, s’), 

and assume x: + y. Thus, there is an (Y E &, such that (s, s ‘) E (Y, s I= I;, and 
s K- t=. Choose V and U such that v;(s) = V and u;(s) = U hold. From VC2, we 
conclude that postcondition 

I$ A (Pas; V v; < V V (vy = V A 0 C u; C U - neg?)) 

holds in y. However, this is equivalent to 

I$ A (Posy V vj I V) A (Pas; V v~ < V V 0 C u; G U - neg;). 

02 then follows from the first conjunct, 03 from the second, and 04 from the 
last. 

Conversely, assume 01-04 hold. VCl follows from 01. From 02 we get 

vi A tz) a (I$ 

From 03 we get 

(I; A v; = V A tG) a (Posy V V,T 5 V). 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 



158 l 6. Alpern and F. B. Schneider 

Finally, from 04 we get 

(I; A v; = v A u; = U) CY {Pas; v v; < v v 0 c u; G u - neg$ 

Together, these three Hoare triples imply VC2. 
We have shown that obligations 01-04 are equivalent to verification condi- 

tions VCl and VC2. If the underlying assertion language is expressive enough to 
capture the preconditions and postconditions of the Hoare triples of VC2, then 
the verification conditions can be expressed in this logic. Since Hoare logic is 
semantically complete relative to the completeness of the assertion language, our 
proof technique is complete relative to the semantic and expressive completeness 
of this logic. 

4.3 Eliminating the Candidate Function 

The invariant and variant functions above are generalizations of standard proof 
instruments used to prove partial correctness and termination of sequential 
programs. The candidate function is not standard. It can be a useful proof tool, 
as illustrated in the example of Section 5.2, but-as we now show-is not 
necessary for proving temporal properties. 

Although the set of properties that can be specified by deterministic Buchi 
automata is not closed under negation, it is closed under conjunction and 
disjunction. Thus, any property 9i can be written L V lfi, where k = ~91 
V . . . V 9p and is accepted by deterministic Buchi automaton rn/, and Jf = 
.qp+lA *** A .9p+n and is accepted by deterministic Buchi automaton mN. Having 
made this observation, the proof obligations for Pi can now be stated without 
using a candidate function because there exists only one negative automaton. 
Obligations 01-03 remain as before. 04 becomes 

04’: For all X, y E JS(giai, II), x +y * (Pos(Y) V (Neg(y) * V(X) > V(Y))), 

where Neg(y) holds when mM is in an accepting state in y. 
The verification conditions can also be simplified. VCl is unchanged, and VC2 

becomes 

VC2’: For all f, 9 E PJS(9i) and (Y E Jai,,, 

(I; A v; = v A t=) 

CY 
(I,- A (Pas,; V (V 2 v,- A (Neg; + V > VT)))), 

where Neg; holds when mN is in an accepting state in 4. 

5. EXAMPLE: PETERSON’S PROTOCOL 

To illustrate our verification method, we prove two properties of Peterson’s 
protocol (Figure 1). First, we prove that it prevents two processes from concur- 
rently executing in critical sections. Then, we prove that a process attempting to 
enter its critical section will succeed eventually. 
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5.1 Mutual Exclusion 

To prove that the protocol satisfies Mutual Exclusion as specified by mmutex 
(Figure 5), we use the following proof instruments: 

where 

POL = (turn = A V turn = B) 
A pcA = 3 + activeA 

A pcA = 4 + activeA 

/\ pcA = 5 * activeA 

A PCA = 6 d activeA A (turn = A V lactiveB V pcB = 3) 

A pcA = 7 + activeA A (turn = A v lactiveB v pcB = 3) 

A pcB = 3 * actiueB 

/\ pcB = 4 + activeB 

A pcB = 5 d actiw?B 

A pcB = 6 - activeB A (turn = B V lactiveA V pcA = 3) 

A pcB = 7 + actiVeB A (turn = B v lactiveA v pcA = 3); 

v=o 
u=0 

We now show that verification conditions VCl and VC2 are satisfied with these 
proof instruments. 

To demonstrate VCl, we must show that Initn + I6 holds, where I6 is POL. 
This is trivial. 

To show that VC2 is satisfied, a number of Hoare triples must be checked. For 
every atomic action (Y, they are 

(16 A hl a (47) 

(1~ A tml a (Ii) 

{Ii A ti~J a (Ii). 

For the automaton of Figure 5, 

Because 

taa = ~(CSA A CSB) 

h = CSA A CSB 

tii = true, 

and POL + l(csA A csB) holds, these Hoare triples simplify to 
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There are 16 atomic actions in the program. Since ( false) a! ( false) is trivially 
valid for any (Y, a total of 16 briples must, therefore, be checked. Establishing 
that these 16 triples are valid can be done by inspection. 

Most of the work in this proof concerns invariant I and verifying its invariance. 
To make this easier to handle, I can be presented as a property outline. A property 
outline is a program that has been annotated by asserting at each control point 
the subset of the joint state space in I corresponding to that control point.6 
Subsets of the joint state space are described by enumeration or by a characteristic 
predicate, whichever is more convenient. A property outline equivalent to I above 
is given in Figure 7. Given such a property outline, it is usually possible to verify 
the triples for VC2 by inspection. 

5.2 Starvation Freedom and Fairness 

In addition to mutual exclusion, a solution to the critical section problem should 

ensure that processes attempting entry to critical sections actually do enter 
eventually. A process of MEP is said to starve if it tries to enter its critical 

section but never succeeds. Process A of MEP should eventually enter csA 
whenever 

tuA: PCA = 4 v PC/, = 5 

holds,7 and similarly process B should eventually enter csB whenever 

t?-YB: PCB = 4 v PCB = 5 

holds. The nonstarvation property NY MEP asserts that neither process starves. 
This can be formalized in temporal logic as 

It is easy to see that MEP does not satisfy J9’ MEP for some histories in which 
one or the other process is not given sufficient opportunity to execute, A fairness 
assumption asserts that an atomic action that is enabled “often enough” will be 
executed eventually. Let Sm be a fairness assumption for atomic action (Y.~ A 
fairness assumption for a program II is the conjunction of fairness assumptions- 
one for each atomic action in s&. Thus, ST MEP-the fairness assumption for 
MEP-is defined by 

To show that MEP satisfies J?Y~‘,,, for all histories satisfying FMBp, we must 
prove that MEP satisfies 3$,Ep - .,KY MEp. Putting this property into conjunctive 
normal form, we get 

’ Proof outlines serve the same purpose in Hoare’s logic 1171. 

7 This choice of try is stronger than it needs to be, but simplifies the proof. 

’ See [9] for various types of fairness assumptions. 
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MEP : cobegin 
A :: do true + ( 1: (40, me), (q 1, false) ) 

rlCSA ; 
(2: (40. true), (ql.fulse) 1 
active* := true; 

(3: (40, activeA), (41 ,fulse) 1 
turn := B; 
(4: (40. activeA), (ql,fulse) 1 
do actives A turn=B + [ 5: (40. activeA), (q 1, fake) } 

skip od; 
(6: (qo,uctiveA A (rurn=A v - ucziveB v pc~ =3)), (q 1 ,fUke> 1 

CSA ; 

(7: (qo,uctiveA A (mrn=A v 7 aches v pc~ =3)), (q 1 *fake) ) 
activeA := false 

od 
II 
B :: do true + ( 1: (40, true), (q 1, false) ) 

ncsB ; 

12: (40, true), (4 1 *false) I 
active&J := me; 
(3: (40. uctive8), (ql.fuke) 1 
turn :=A; 
(4: (40, actived, (4 1 *false) 1 
doucriveA~turn=A + (5: (q0,uctive,j,(ql,fuLre)) 

skip od; 

od 

(6: (qo,ucfivesh(fz4rn=B vwmive~ v&,=3)),(q,,fuke)) 
CSB ; 
17: (qo,UCfk~ A(fKm=B V ~~cfilL?A vpcA=3)). (qlvfuke) ) 
uhves := f&e 

Fig. 7. Property outline for I. 

Each of the two clauses (conjuncts) in 39?Y MEP is proved separately. However, 
since the two clauses are symmetric, only the first one is proved here; the proof 
of the second is similar. 

As a fairness assumption for atomic actions, we choose weak fairness, which 
asserts that an atomic action that becomes enabled is eventually executed or 
otherwise becomes disabled. This is expressed in temporal logic as 

WC: q 01enabZed(a); 

where enabled(a) holds in any program state s where atomic action (Y is enabled. 
Thus, the first conjunct of -95+9&p is 

FJY$Ep: v -I kf! v q o1tv,.j 
~~-=,.wEP 

This clause contains 17 disjuncts because 1 &M,W 1 = 16; all but one of these 
disjuncts is negated. Each disjunct is of the form q Olp, so the Buchi automaton 
specification for each is mi, of Figure 4. 
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TO prove that -%%?L&J holds, we use the following proof instruments: 

i 

m 1 tyA 

PCA - 3 
’ = 

tvA A trys A turn = A 
2 + (4 - pcB)mod 7 tvA A ltvB 

7 + PCB - 3 .@A A tvB A tU?‘ll = B 

u = ;, enubkd(a~)) I 
-I tuA 

1 
(i 1 enubzed(a$)) 

tv,z, A tt-&? A turn = A 
tv,z, A (-%?-&J v tUrn = B) 

Rather than checking that verification conditions VCl and VC2 hold, we argue 
informally that obligations 01-04 are satisfied by this choice of proof instru- 
ments. 

01 and 02 are trivially satisfied by the choice of invariant, since the invariant 
rules out no joint state. 

03 follows from the construction of the variant function, as follows: When 
lt?yA holds, then an automaton for a positive disjunct is in an accepting state, 
so 03 is satisfied in that case. If tvA A tyB A turn = A, then v is the number of 
atomic actions that A must execute before entering csA. Since turn = A, subse- 
quent execution by B does not alter this value. If tvA A ltyB, then v includes 
the number of atomic actions B must execute to establish the previous case (tuA 
A tr)% A turn = A). Clearly, execution by A does not alter this value. Finally, 
when tryA A tvB A turn = B, then v is the maximum value of v in the preceding 
case (tyA A 1 tr”jB) plus the number of atomic actions that B must execute to 
make tvA A 1 tvB hold. 

04 follows from the const.ruction of the candidate function, which always 
contains the index of the automaton corresponding to the fairness assumption 
for the enabled atomic action that will reduce v. 

Note that this proof is an instance of the method of helpful directions for weak 
fairness [9]. Each process corresponds to a direction. Execution of an enabled 
atomic action in the helpful direction decreases the variant function. Execution 
of an enabled atomic action in some other direction does not increase the variant 
function, nor does it disable any helpful atomic action. Thus, when tyA A tvB 
A turn = A, the helpful direction is process A; when tvA A (ltyB V turn = B), 
the helpful direction is process B. The weak fairness assumption guarantees that 
the variant function decreases eventually. 

The method of helpful directions is a special case (for proving properties that 
assume weak fairness) of the technique given in this paper. To see this, observe 
that the helpful directions identify atomic actions that decrease the variant 
function. The stipulation that a nonhelpful atomic action not increase the variant 
function guarantees 03. The value of the candidate function can be taken to 
correspond to any subset of the helpful atomic actions. The stipulation that a 
nonhelpful atomic action leave helpful ones enabled guarantees 04. 

6. DISCUSSION 

We have shown how to reduce a temporal property ipto proof obligations that 
can be formulated as formulas of predicate logic and Hoare’s logic. The idea that 
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temporal properties can be proved without temporal logic is not new. For example, 
Manna and Pnueli [20] point out that it is possible to prove temporal properties 
using a partially interpreted first-order logic with operators that correspond 
roughly to the right-hand sides of the definitions of the temporal modalities. The 
use of invariance and well foundedness for proving temporal properties is sug- 
gested by Lehmann, Pnueli, and Stavi [18] and by Manna and Pnueli 1241. 
Manna and Pnueli in [25] advocate using temporal logic along with invariance 
and well foundedness. What is new in this paper is a systematic method for 
reducing a temporal property to nontemporal proof obligations. 

Other investigations into decomposing temporal properties include [3], [ 101, 
[ 121, [27], [28], and [33]. Most of that work is concerned with decomposing 
various classes of global temporal properties of a system into local properties of 
the system components, resulting in so-called compositional proof systems. The 
work in [lo] is most similar to ours in that temporal properties are reduced to 
primitive formulas that resemble triples. That work, however, is concerned only 
with finite sequences (both as properties and programs) and therefore does not 
address the problem we are most concerned with. 

Another, related, approach to verifying that a program satisfies a property is 
model checking [5, 7, 191. Here, a program II is viewed as specifying a Kripke 
structure Z$. Xi is a model for a temporal property 9 iff II satisfies 2 To 
determine if II satisfies 9, it suffices to check whether 5% is a model for 9, and 
this amounts to checking each state in the state space to see which subformulas 
of 9 hold in that state. Thus, for programs with finite-state spaces, it is 
possible to verify mechanically whether the program satisfies a given temporal 
property. 

Recently, Vardi and Wolper [34] observed that, for programs with finite-state 
spaces, Zn can be viewed as a Buchi automaton that accepts exactly the histories 
of II. From this automaton and one that recognizes sequences satisfying 19, a 
Buchi automaton rnnAT9 can be constructed that accepts all histories of II not 
satisfying .G? The decision procedure for the emptiness problem for mnAy9 can 
then be used to determine if II satisfies 9. A similar approach was developed 
independently by Kurshan [ 13, 141. 

Model checking is restricted to programs with finite-state spaces’ but is 
algorithmic. Since it is algorithmic, it can be mechanized and does not require 
creativity in devising invariants, variant functions, or candidate functions. Also, 
model checking is always guaranteed to get the correct answer. In contrast, the 
methods presented in this paper are not limited to finite-state programs. Unfor- 
tunately, the methods are, in general, undecidable. Moreover, they may require 
creativity in devising suitable proof instruments, although this might be viewed 
as an asset since the proof instruments can give insight into why a program 
works. 

The first Buchi-automaton-based method for extracting first-order proof ob- 
ligations for temporal properties was proposed by us in [l] and [2]. That work 
applied to those properties that can be specified using a single deterministic 
Buchi automaton. Formulated in the terminology of this paper, the method 
requires the program prover to exhibit an invariant I and a variant function v 

’ However, proponents of the model checking approach have made progress in weakening the finite- 
state assumption so that it applies only to certain key parts of the program [4, 321. 
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satisfying 

ASl: For all x E JS(z II), (x.(l) = qlo A xcn) E hit,) + x E I; 

AS2: For all X, y E JS’(9, II), x + y + y E I; and 

AS3: For all X, y E JS(9, II), x +y + (Pas(y) V u(y) < u(x)). 

AS1 and AS2 are obligations 01 and 02 of the approach outlined in Section 4. 
Consider the remaining obligations (03 and 04) of that approach. The property 
is a single clause that consists of a single, nonnegated property, so there are no 
negative automata. Thus, u(x) = 0 for every joint state X, so the final disjunct 
of 04 must be false. AS3 and 04 are therefore equivalent, and each implies 03. 
Thus, the two techniques yield essentially the same proof obligations when 
applied to properties that they both can handle. 

The method in [2] is unsatisfactory for properties specified by nondeterministic 
Buchi automata. To use it to prove that a program II satisfies such a property 9, 
a deterministic property g that is contained in 9 is found. Proof obligations are 
then extracted from the deterministic Buchi automaton for LZ If a (finite-state) 
program II satisfies 9, an appropriate 9 always exists, but may be big and 
difficult to find. Furthermore, the proof obligations for a nondeterministic 
property now depend on the program as well as on the Buchi automaton for the 
property to be proved. The approach of Section 4 does not suffer from these 
difficulties since every property that can be specified using a nondeterministic 
Buchi automaton can be specified as a Boolean combination of properties 
specified by deterministic ones [6]. 

In [26], Manna and Pnueli concurrently and independently developed a differ- 
ent technique for extending the approach in [2] to obtain proof obligations for 
properties specified by nondeterministic Buchi automata. The approach is based 
on a V-automaton for a property. Simplifying slightly,l’ a V-automaton is a 
Buchi automaton that accepts its input iff every run on that input eventually is 
restricted to accepting states. Using the parlance of Section 4, to show that every 
history of a program will be accepted by a V-automaton m, one must exhibit an 
invariant I that satisfies obligations 01 and 02 and a variant function u satisfying 

MPl: For all X, y E JS(9, n), x + y 4 u(y) 5 u(x); and 

MP2: For all X, y E JS(P, II), (x +y A x(l)4 Al) + u(y) < u(x). 

The V-automaton for a property is isomorphic to the Buchi automaton for the 
negation of that property.” This suggests there might be a connection between 
the proof obligations that are obtained from a V-automaton for the negation of 
a deterministic property and the proof obligations we obtain for a clause with a 
single negated property. And there is. Since there are no positive joint states 
with a single negated property, 03 and MPl are equivalent. We can choose the 
candidate function such that 04 and MP2 are equivalent-define u to be empty 
whenever the Buchi automaton is in an accepting state and to be (1) when it is 

lo We are ignoring the behavior of V-automata on finite sequences, the placement of transition 

predicates in states rather than on edges, and V-automata with recurrent states (which are shown to 

be equivalent V-automata without such states in [ZS]). 

‘I To obtain a V-automaton for 9 from a Buchi automaton for ~9, exchange the accepting and 
nonaccepting states. 
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not. Therefore, the two techniques yield the same proof obligations for a property 
whose negation can be specified by a deterministic Buchi automaton. 

The key insight underlying the approach in [26] is that proof obligations for 
the negation of a property can be extracted directly from a Buchi automaton for 
the property-whether or not this automaton is deterministic.12 Given a property 
specified by a Buchi automaton, to extract proof obligations using the approach 
in [26], the Buchi automaton for the negation of the property is constructed. 
With the technique presented in this paper, the property is decomposed into a 
Boolean combination of properties where the nonnegated terms must be specified 
by deterministic Buchi automata. Depending on the property, one or the other 
approach may be easier. An added advantage of our Boolean decomposition 
approach is that parts of the proof may be reusable since other properties might 
be constructed from these parts. 

A final insight into the difference between the approach in [26] and our earlier 
approach from [2] is obtained by considering clauses of the form Jf + J%, as was 
done in Section 4.3. The technique used in [2] is a restriction to the special case 
true + J%, and the technique used in [26] treats the other special case, Jt/ + 
false. Of these “special cases,” the second is general; the first is not. 

7. SUMMARY 

We have described an approach to proving temporal properties of concurrent 
programs. This approach is based on using deterministic Buchi automata to 
specify properties. Such automata are quite expressive-any temporal property 
can be formulated as a Boolean combination of properties specified by them. 
Proof obligations for a property are extracted directly from the automata for that 
property. These proof obligations are discharged by devising suitable proof 
instruments. The adequacy of the proof instruments is established by verifying 
predicate logic formulas and triples. Thus, temporal inference is not necessary 
for proving temporal properties. The same techniques that prove total correctness 
of sequential programs can prove arbitrary temporal properties of concurrent 
ones. 
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