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Abstract. Global choreographies define the rules that peers should re-
spect in their interaction, with the aim of guaranteeing interoperability.
An abstract choreography can be seen as a protocol specification; it does
not refer to specific peers and, especially in an open application domain,
it might be necessary to retrieve a set of web services that fit in it. A
crucial issue, that is raising attention, is verifying whether the business
process of some peers, in particular the parts that encode the commu-
nicative behavior, will produce interactions which are conformant to the
agreed protocol (legality issue). Such issue is tackled by the so called
conformance test, which is a means for certifying the capability of in-
teracting of the involved parts: two peers that are proved conformant
to a same protocol will actually interoperate by producing a legal con-
versation. This work proposes an approach to the verification of a priori
conformance of a business process to a protocol, which is based on the
theory of formal languages and guarantees the interoperability of peers
that are individually proved conformant.

Keywords: web service interaction protocols, conformance test, formal
verification, finite state automata.

1 Introduction

In this work we propose a formal framework for verifying the conformance and
the interoperability of web services with respect to a high-level specification of
the global protocol. This proposal builds upon experience of protocol confor-
mance problems in the research area of Multi-agent systems (MASs).

Web services are heterogeneous devices that can be “composed” (in a broad
meaning) so as to accomplish complex tasks. Even though web services are not
necessarily agents, the two share some similarities. For instance, they are usu-
ally supposed to bear an executable description of their business process, that,
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in particular, accounts for their interactive behavior. Similarly, agents are com-
monly supposed to make their communicative behavior (the agent’s interaction
policy) public. In both cases this description can be used to take decisions about
the entity, such as deciding if it can take part to a system of cooperating parties.

According to Agent-Oriented Software Engineering [14], a distinction is made
between the global and the individual points of view of the interaction between
the various parties. The global viewpoint is captured by an abstract protocol,
expressed by formalisms like AUML, automata or Petri Nets. The local viewpoint
of one of the parties, instead, is captured by the agent’s policy. Being part of the
agent implementation, policies are usually written in some executable language.
Having these two descriptions it is possible to decide if an agent can take a role
in an interaction. In fact, this problem can be read as the problem of proving if
the agent’s policy conforms to the abstract protocol specification.

A similar need of distinguishing a global and a local view of the interaction
is recently emerging also in the area of Service Oriented Architectures. In this
case there is a distinction between the choreography of a set of peers, i.e. a global
specification of the way a group of peers interact, and the concept of behavioral
interface, seen as the specification of the interaction from the point of view of an
individual peer: “The fundamental difference between the concept of choreogra-
phy on the one hand, and the concept of behavioral interface (i.e., BPEL abstract
process) on the other, is that a choreography focuses on interactions seen from
a global viewpoint, while behavioral interfaces focus on communication actions
seen from the viewpoint of one of the participants” [4]. A third concept is that
of orchestration (e.g. BPEL executable process) which, intuitively, describes the
whole service, i.e. both its communicative and its non-communicative behav-
ior, allowing execution. The recent W3C proposal of the choreography language
WS-CDL [15] is emblematic. In fact the idea behind it is to introduce specific
choreography languages as languages for a high-level specification, captured from
a global perspective, distinguishing this representation from the other two, that
will be based upon ad hoc languages (like BPEL or ebXML).

Taking this perspective, choreographies and agent interaction protocols un-
doubtedly share a common purpose. In fact, they both aim at expressing global
interaction protocols, i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the interoperability
of the parties (i.e. the capability of actually producing an interaction), and that
the interactions will satisfy given requirements.

One problem that becomes crucial is the development of formal methods for
verifying if the behavior of a peer respects a choreography. The applications
would be various. A choreography could be used at design time (a priori) for
verifying that the internal processes of a service enable it to participate appropri-
ately in the interaction. At run-time, choreographies could be used to verify that
everything is proceeding according to the agreements. A choreography could also
be used unilaterally to detect exceptions (e.g. a message was expected but not
received) or help a participant in sending messages in the right order and at the
right time. Moreover, choreographies allow the implementation of a top-down
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methodology in the design of web services. The work in [7] already takes this
approach by using WS-CDL and BPEL4WS as complementary design tools: the
first design step of an interaction protocol (for the peers of an e-commerce sys-
tem) consists in the development of a WS-CDL description; this is followed by an
implementation step, where BPEL4WS is exploited for representing the behav-
ior of the single peers [7]. A further step could be exploiting formal methods for
synthesizing behavioral interfaces (e.g. abstract BPEL) from the choreography
definition, on the line of the work in [8].

In the literature the problem of verifying conformance of the behavior of an
individual to a general interaction protocol is known as conformance testing.
A conformance test can be considered as a tool that, by verifying the respect
of a protocol, certifies the interoperability of a set of parties: we expect that
two parties which are proved conformant to a same protocol will produce an
interaction, that is legal w.r.t. the encoded rules, when they will interact. In the
last years two kinds of conformance have been studied w.r.t. MASs [12]: a priori
conformance (checked at design time) [9,10], and run-time conformance [3,1]. If
we call a conversation a specific interaction between two agents, consisting only
of communicative acts, the former is a property of the implementation as a whole
–intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification–, while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal. Notice
that the same tests are envisioned for choreographies and for the individual peers
that should play a role defined in them.

In this work we focus on testing a priori conformance and develop a frame-
work based on the use of formal languages. In our framework a global interaction
protocol (a choreography), is represented as a finite state automaton, whose al-
phabet is the set of messages exchanged among peers. It specifies permitted
conversations. Atomic services (peers), that have to be composed according to
the choreography, are described as finite state automata as well. Given such a
representation we capture a concept of conformance that answers positively to
all these questions: is it possible to verify that a peer, playing a role in a given
global protocol, produces at least those conversations which guarantee interoper-
ability with other conformant peers? Will such a peer always follow one of these
conversations when interacting with the other parties in the context of the pro-
tocol? Will it always be able to conclude the legal conversations it is involved in?
Technically, the conformance test is based on the acceptance of both the peer’s
behavior and the global protocol by a special finite state automaton. The inter-
esting characteristic of this test is that it guarantees the interoperability of peers
that are proved conformant individually and independently from one another.

This approach can be applied to a wide variety of cases with the proviso that
both the protocol specification and the behavioral interface can be specified by
regular expressions. Besides simplicity and readability, the reason for adopting
regular expressions is that they guarantee decidability. Of course, in this way
it is not possible to represent concurrency. We are aware of this limit but this
is just a first step of a wider research, and we mean to extend the approach in
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the near future. Focussing on finite state automata is not too much restrictive,
anyway, because many protocols used in MASs can be expressed in this way and
we believe that the same holds for many web services. So far, the framework only
deals with 2-party global protocols. This is also, of course, a limitation that we
aim to relax in future work by extending the framework (see the conclusions for
further discussion). To make this proposal more concrete in Section 4 we explain
these ideas with the help of an example, in which we consider a choreography
and a web service; we show that the latter conforms to the former and, thus,
it will be able to interoperate with any other service that is as well conformant
and that plays another role.

2 Conformant and Interoperable Peers

A business process is a program that defines the behavior of a specific peer, im-
plemented in some programming language. We focus on the interactive behavior
of the peer and we will denote it by the term conversation policy of the peer. A
choreography specifies the overall behavior of a group of interacting peers; many
proposals of languages (e.g. WSCI and WS-CDL) for representing choreogra-
phies can be found in the literature. Also in this case we will focus only on that
part of the choreography that denotes the message exchange among the parties.
For this reason, hereafter the term choreography and the term (conversation)
protocol will be used as synonims.

We face the problem of conformance verification by interpreting “a priori
conformance” as a property that relates two formal languages: the language of
the conversations allowed by the conversation policy of a peer, and the language
of the conversations allowed by a choreography. They will respectively be denoted
by L(pws

lang) and L(pspec), where spec is the choreography specification language,
lang is the language in which the policy, executed by the peer ws, is written, and
p is the name of the policy or of the protocol at issue. The assumption that we
do throughout this paper is that the two languages are regular sets. This choice
restricts the kinds of protocols to which our proposal can be applied, because
finite state automata cannot represent concurrent operations, however, it is still
significant because a wide family of protocols (and policies) of practical use can
be expressed in a way that can be mapped onto such automata. Moreover, the use
of regular sets ensures decidability. Another assumption is that the conversation
protocol encompasses only two peers. The extension to a greater number of peers
will be tackled as future work. Notice that the peers might be implemented in
different languages.

A conversation protocol specifies the sequences of messages that can possibly
be exchanged by the involved peers, and that we consider as legal. In agent lan-
guages that account for communication, messages (named “speech acts”) often
have the form m(ags, agr, l), where m is the performative, ags (sender) and
agr (receiver) are two agents and l is the message content. It is not restrictive
to assume that messages have this form also in the case of web services and
to assume that conversations are sequences of messages of this form [2]. In the
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following analysis it is important to distinguish the incoming messages, w.r.t. a
specific peer ws, from the messages sent by it. We respectively denote the for-
mer, where ws plays the role of the receiver, by m(←−ws), and the latter, where ws
is the sender, by and m(−→ws). We will also simply write ←−m (incoming message)
and −→m (outgoing message) when the peer that receives or sends the message is
clear from the context. Notice that these are just short notations, that underline
the role of a given peer from the individual perspective of that peer. This view
is consistent with the unilateral view typical of languages like BPEL [6], used
to represent behavioral interfaces from the point of view of a peer. So, for in-
stance, m(wss, wsr, l) is written as m(←−−wsr) from the point of view of wsr, and
m(−−→wss) from the point of view of the sender but the three notions denote the
same object.

A conversation, denoted by σ, is a sequence of messages that represents a
dialogue of a set of peers. We say that a conversation is legal w.r.t. a protocol
if it respects the specifications given by the protocol. Since L(pspec) is the set of
all the legal conversations according to p, the definition is as follows.

Definition 1 (Legal conversation). We say that a conversation σ is legal
w.r.t. a protocol specification pspec when σ ∈ L(pspec).

We can now explain, with the help of simple examples, the intuition behind
the terms “conformance” and “interoperability”, that we will then formalize.

Interoperability is the capability of a peer of actually producing a conver-
sation when interacting with another.

A new peer can be introduced in an execution context provided that it satisfies
the rules of the system. As long as this happens, it will not be necessary to verify
interoperability with the single components of the system. This can be done by
checking the interactive behavior of the peer against the rules of the group, i.e.
against its interaction protocol. Such a proof is known as conformance test and
must, intuitively, guarantee the following expectations.

We expect that two peers, that conform to a protocol, will produce a legal
conversation, when interacting with one another.

Let us begin with considering the following case: suppose that the communicative
behavior of the peer ws is defined by a policy that accounts for two conversations
{m1(−→ws)m2(←−ws), m1(−→ws)m3(←−ws)}. This means that after sending a message m1,
the peer expects one of the two messages m2 or m3. Let us also suppose that
the protocol specification only allows the first conversation, i.e. that the only
possible incoming message is m2. Is the policy conformant? According to Def.
1 the answer should be no, because the policy allows an illegal conversation.
Nevertheless, when the peer will interact with another peer that is conformant
to the protocol, the message m3 will never be received because the partner will
never send it. So, in this case, we would like the a priori conformance test to
accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case,
in which the protocol specification states that after the peer ws has sent m1, the
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other peer can alternatively answer m2 or m4 (ws’s policy, instead, is the same
as above). In this case, the expectation is that ws’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the
one with answer m4) that can be enacted by the interlocutor (which is not
under the control of ws), which ws cannot handle. So it does not comply to the
specifications.

As a first observation we expect the policy to be able to handle any in-
coming message, foreseen by the protocol, and we ignore those cases in
which the policy foresees an incoming message that is not supposed to
be received at that point of the conversation, according to the protocol
specification.

Let us, now, suppose that peer ws’s policy can produce the following conver-
sations {m1(←−ws)m2(−→ws), m1(←−ws)m3(−→ws)} and that the set of conversations al-
lowed by the protocol specification is {m1(←−ws)m2(−→ws)}. Trivially, this policy is
not conformant to the protocol because ws can send a message (m3) that cannot
be handled by any interlocutor that is conformant to the protocol.

The second observation is that we expect a policy to never send a message
that, according to the specification, is not supposed to be sent at that point
of the conversation.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(←−ws)m2(−→ws)} while the protocol states that ws can answer to m1 alterna-
tively by sending m2 or m3, conformance holds. The reason is that at any point
of its conversations the peer will always send legal messages. The restriction of
the set of possible alternatives (w.r.t. the protocol) depends on the peer im-
plementor’s own criteria. However, the peer must foresee at least one of such
alternatives otherwise the conversation will be interrupted. Trivially, the case in
which the policy contains only the conversation {m1(←−ws)} is not conformant.

The third observation is that we expect that a policy always allows the
peer to send one of the messages foreseen by the protocol at every point
of the possible conversations. However, it is not necessary that a policy
envisions all the possible alternatives.

To summarize, at every point of a conversation, we expect that a conformant
policy never sends messages that are not expected, according to the protocol,
and we also expect it to be able to handle any message that can possibly be re-
ceived, once again according to the protocol. However, the policy is not obliged
to foresee (at every point of conversation) an outgoing message for every alterna-
tive included in the protocol (but it must foresee at least one of them). Incoming
and outgoing messages are, therefore, not handled in the same way.

These expectations are motivated by the desire to define a minimal set of
conditions which assure the construction of a conformance test that guarantees
the interoperability of peers. We claim –and we will show– that two peers that
respect this minimal set of conditions (w.r.t. an agreed protocol) will actually
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be able to interact, respecting the protocol. The relevant point is that this certi-
fication is a property that can be checked on each single single peer, rather than
on the choreographed system as a whole.

3 Conformance Test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown by
means of the above examples, it is necessary to prove mutual properties of both
L(pws

lang) and L(pspec). The method that we propose, for proving such properties,
consists in verifying that both languages are recognized by a special finite state
automaton, whose construction we are now going to explain. Such an automaton
is based on the automaton that accepts the intersection of the two languages.
This, however, is not sufficient, because there are further conditions to consider,
for instance there are conversations that we mean to allow but that do not belong
to the intersection.

3.1 The Automaton Mconf

If L(pws
lang) and L(pspec) are regular, they are accepted by two (deterministic)

finite automata, that we respectively denote by M(pws
lang) and M(pspec), that we

can assume as having the same alphabet (see [13]). An automaton is a five-tuple
(Q, Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a transition
function mapping Q × Σ to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata
to show the following property: the edges that lead to a same state must all be
labelled either by incoming messages or by outgoing messages w.r.t. ws.

Definition 2 (IO-automaton). Given an automaton M = (Q, Σ, δ, q0, F ), let
Eq = {m | δ(p, m) = q} for q ∈ Q. We say that M is an IO-automaton iff
for every q ∈ Q, Eq alternatively consists only of incoming or only of outgoing
messages w.r.t. a peer ws.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state q that is
reached only by incoming messages by the notation←−q (we will call it an I-state),
and a state q that is reached only by outgoing messages by −→q (an O-state).

Finally, let us denote by M×(pws
lang, pspec) the deterministic finite automa-

ton that accepts the language L(pws
lang) ∩ L(pspec). It is defined as follows. Let

M(pws
lang) be the automaton (QP , Σ, δP , qP

0 , FP ) and M(pspec) the automaton
(QS , Σ, δS, qS

0 , FS):
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M×(pws
lang, pspec) = (QP ×QS , Σ, δ, [qP

0 , qS
0 ], FP × FS)

where for all qP in QP , qS in QS , and m in Σ, δ([qP , qS ], m) = [δP (qP , m), δS

(qS , m)]. We will briefly denote this automaton by M×.
Notice that all the conversations that are accepted by M× are surely con-

formant (Def. 1). For the so built automaton, it is easy to prove the following
property.

Proposition 1. M×(pws
lang , pspec) is an IO-automaton if M(pws

lang) and M(pspec)
are two IO-automata.

−→m3

←−m4

[aP , aS ]

←−m1
[qP

0 , qS
0 ] [fP , fS ]

[
−→
aP ,
−→
dS ] [

−→
dP ,
−→
aS ]

[
←−
dP ,
←−
aS ] [

←−
aP ,
←−
dS ]

−→m2

Fig. 1. A general schema of the Mconf automaton. From bottom-right clockwise cases
(a), (b), (c), and (d).

Definition 3 (Automaton Mconf). The finite state automaton Mconf(pag
lang,

pspec) is built by applying the following steps to M×(pag
lang, pspec) until none is

applicable:

(a) if ←−q = [
←−
aP ,
←−
dS ] in Q is an I-state, such that

←−
aP is an alive state and

←−
dS is

a dead state, we set δ(←−q , m) =←−q for every m in Σ, and we put ←−q in F ;
(b) if ←−q = [

←−
dP ,
←−
aS ] in Q is an I-state, such that

←−
dP is dead and

←−
aS is alive, we

set δ(←−q , m) =←−q for every m in Σ, without modifying F ;
(c) if −→q = [

−→
aP ,
−→
dS ] in Q is an O-state, such that

−→
aP is alive and

−→
dS is dead, we

set δ(−→q , m) = −→q for every m in Σ (without modifying F );
(d) if −→q = [

−→
dP ,
−→
aS ] in Q is an O-state, such that

−→
dP is dead and

−→
aS is alive, we

set δ(−→q , m) = −→q for every m in Σ, and we put −→q in F .

These four transformation rules can, intuitively, be explained as follows. Rule
(a) handles the case in which, at a certain point of the conversation, according
to the policy it is possible to receive a message that, instead, cannot be received
according to the specification (it is the case of message ←−m1 in Figure 1). Actu-
ally, if the peer will interact with another peer that respects the protocol, this
message can never be received, so we can ignore the paths generated by the
policy from the message at issue onwards. Since this case does not compromise
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conformance, we want our automaton to accept all these strings. For this reason
we set the state as final. Rule (b) handles the symmetric case (Figure 1, message←−m4), in which at a certain point of the conversation it is possible, according to
the specification, to receive a message, that is not accounted for by the imple-
mentation. In this case the state at issue is turned into a trap state (a state
that is not final and that has no transition to a different state); by doing so, all
the conversations that are foreseen by the specification from that point onwards
will not be accepted by Mconf . Rule (c) handles the cases in which a message
can possibly be sent by the peer, according to the policy, but it is not possible
according to the specification (Figure 1, message −→m3). In this case, the policy is
not conformant, so we transform the current state in a trap state. By doing so,
part of the conversations possibly generated by the policy will not be accepted
by the automaton. The symmetric case (Figure 1, message −→m2), instead, does
not prevent conformance, in fact, a peer is free not to send a message foreseen by
the protocol. However, the conversations that can be generated from that point,
according to the latter, are to be accepted as well. For this reason the state is
turned into an accepting looping state.

One may wonder if the application of rules (b) and (c) could prevent the
reachability of states, that have been set as accepting states by the other two
rules. Notice that their application cannot prevent the reachability of alive-alive
accepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and Interoperability

We can now discuss how to check that a peer conforms to a given protocol. The
following is a first definition of conformance, that guarantees the expectations
that we have explained by examples in Section 2. That is: the peer will always
send, at any point of conversation, messages that are legal according to pspec

(though it is not necessary that it foresees all the alternatives), and it will be
able to handle at least every incoming message, expected by the protocol. A first
attempt of defining conformance is the following.

Definition 4. A policy pws
lang is conformant to a protocol specification pspec iff

the automaton Mconf(pws
lang, pspec) accepts both languages L(pws

lang) and L(pspec).

The following proposition underlines the role of the public protocol of representing
the set of all the possible interlocutors.

Proposition 2. All the conversations that a policy pws
lang, that is conformant

according to Def. 4 to a protocol specification pspec, will produce when it interacts
with any peer that is equally conformant to pspec, are always legal w.r.t. this
protocol, according to Def. 1.



266 M. Baldoni et al.

Proof. Let us consider the general schema of Mconf in Figure 1. If pws
lang is

conformant, L(pws
lang) is accepted by Mconf . Then, by construction Mconf does

not contain any state [
−→
aP ,
−→
dS ] due to illegal messages sent by the peer nor it

contains any state [
←−
dP ,
←−
aS ] due to incoming messages that are not accounted for

by the policy. Obviously, no conversation σ in L(pws
lang) can be accepted by states

of the kind [
−→
dP ,
−→
aS ] because the peer does not send the messages required to reach

such states. Finally, no conversation produced by the send will be accepted by
states of the kind [

←−
aP ,
←−
dS ] if the interlocutor is also conformant to the protocol,

because the latter cannot send illegal messages. q.e.d.

In other words, whatever conversation is in the intersection ∩i=1,2
wsi

L(pwsi

langi
),

where pwsi

langi
, i = 1, 2 are the conversation policies of two peers that conform

to pspec, it is legal. However, we would like conformance to have a stronger
implication: if two peers, playing the two roles of a same protocol, are proved
conformant to it, we would like each of them to be able to lead to an end
all the conversations it is involved in by the other peer (which will respect the
protocol). Def. 4 guarantees the satisfaction of the first two expectations reported
in Section 2, however, it is not enough to guarantee the above statement (third
expectation), which requires that, at every state of the conversation, if a role
is supposed to send a message out of a set of possibilities, the peer’s policy
envisions at least one of them.

Given L(pspec) and L(pws
lang), let us consider M(pspec) = (QS , Σ, δS , qS

0 ,
FS) and Mconf(pws

lang, pspec) = (QP ×QS, Σ, δ, [qP
0 , qS

0 ], Fconf ). Let us consider
those states qS ∈ QS , that emit edges labelled with outgoing messages, w.r.t. ws,
which are part of strings accepted by M(pspec) (legal conversations according
to the protocol specification). More formally, for each such state qS there is at
least one m(−→ws) such that δS(qS , m(−→ws)) = pS and pS is an alive state. We will
denote by MessqS the set of all such messages.

Definition 5 (Complete automaton). We say that the automaton Mconf is
complete iff for all states of form [qP , qS ] of Mconf , such that MessqS �= ∅, there
is a message m(−→ws)′ ∈MessqS such that δ([qP , qS ], m(−→ws)′) is a state of Mconf

composed of two alive states.

Definition 6 (Policy conformance test). A policy pws
lang is conformant to a

protocol specification pspec iff the automaton Mconf(pws
lang, pspec) is complete and

it accepts both languages L(pws
lang) and L(pspec).

We are now in condition to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Theorem 1. Given a policy pws
lang that is conformant to a protocol specification

pspec, according to the test in Def. 6, for every prefix σ′ that is common to the
two languages L(pspec) and L(pws

lang), there is a conversation σ = σ′σ′′ such that
σ is in the intersection of L(pws

lang) and L(pspec).
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Proof. (sketch) If σ’ is a common prefix, then it leads to a state of the automaton
Mconf of the kind [aP , aS ] (see Figure 1). By the same reasons on which the proof
of Prop. 2 is based, if there is a conversation σ = σ′σ′′ in L(pws

lang), then this must
be a legal conversation. Now, at every step after the state [aP , aS ] mentioned
above, due to policy conformance all the incoming messages (w.r.t. the peer)
must be foreseen by the policy. Moreover, due to the completeness of Mconf ,
in the case of outgoing messages, the policy must foresee at least one of them.
Therefore, from [aP , aS ] it is possible to perform one more common step. q.e.d.

Notice that the intersection of L(pws
lang) and L(pspec) cannot be empty because

of policy conformance, and also that Theorem 1 does not entail that the two
languages coincide (i.e. the policy is not necessarily a full implementation of
the protocol). As a consequence, given that the conversation policies of two
peers ws1 and ws2, playing the different roles of an interaction protocol pspec,
are conformant to the protocol, according to Def. 6, and denoting by I the
intersection ∩i=1,2

wsi
L(pwsi

langi
), we can prove ws1 and ws2 interoperability. The

demonstration is similar to the previous one. Roughly, it is immediate to prove
that every prefix that is common to the two policies also belongs to the protocol,
then, by a reasoning process that is close to the previous demonstration, it is
possible to prove that a common legal conversation must exist

Proposition 3 (Interoperability). For every prefix σ′ that is common to the
two languages L(pws1

lang1
) and L(pws2

lang2
), there is a conversation σ = σ′σ′′ such

that σ ∈ I.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mconf and allow the verification of policy conformance,
are decidable and the following theorem holds.

Theorem 2. Policy conformance is decidable when L(pws
lang) and L(pspec) are

regular languages.

4 An Example

Let us, now, show by means of an example how the proposed conformance test
works. Given an interaction protocol (a choreography) and the interaction policy
of a specific web service, we mean to verify (a priori, at design time) if the web
service fits the interaction schema encoded by the choreography, from the point
of view of one of the roles (the role that the peer should play). We will, then,
verify its a priori conformance. Given that conformance holds, we are guaranteed
that the service will be able to interoperate with any other service, equally proved
conformant to the protocol, that will play the other foreseen role. The protocol
is reported in a graphical notation in Fig. 2. It is very simple: the peer that
plays the role “cinema” waits for a request from another peer (the request is
whether a certain movie is played); then, it can alternatively send the requested
information (yes or no) or refuse to supply information; the protocol is ended by
an acknowledgement from the customer to the cinema.
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cinema customer

request(customer, cine)

refuse(cine,customer)

inform(cine,customer)

inform(customer, cine)

alternative

Fig. 2. The interaction protocol as an AUML sequence diagram [17]
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←−−
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←−−
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[dP , qS
2 ]

[qP
2 , dS ]

Fig. 3. (a) Policy of agent cine; (b) global protocol specification; (c) Mconf automaton.
Only the part relevant to the discussion is shown.

The peer’s policy could, for instance, be described in an executable business
process language, such as BPEL4WS. Actually, in the literature other authors
have already proposed algorithms for extracting a formal representation from a
BPEL representation. For instance, Viroli [18] proposes a formal semantics for
this language, focussing right on the message exchange and correlation sets. It
is not difficult to see that, disregarding the operator that concerns concurrency
(flow), the exception and fault handlers, and correlation sets, it is possible to
turn a BPEL description in a regular language (i.e. a finite state automaton).
Fig. 3 (a) reports a finite state automaton that represents the interactive behav-
ior of our cinema service, 1 Briefly, the web service has a reactive behavior and it
is not trivial to see that it conforms to the protocol: it waits for a message; if it is
1 The program of the customer is not given: we will suppose that it adheres to the

public and global choreography, against which we check the peer’s conformance.
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a request from a customer, then it (always) supplies the requested information;
if it is an acknowledgement it stops. In the remainder of the paper we will refer
to this web service by the name cine. For what concerns the choreography, we
can say something similar, at least for what concerns the current proposal for
WS-CDL. If we ignore the constructs for dealing with concurrency it is possible
to turn a choreography in an automaton. The automaton reported in Fig. 3(b),
for instance, is obtained straightforwardly from the WS-CDL representation re-
ported in the Appendix.

The question that we want to answer is whether cine’s policy is conformant
to the given protocol, and we will discuss whether another agent that plays
as a customer and that is proved conformant to the protocol will actually be
able to interoperate with this particular player of the cinema role. 2 The pro-
tocol allows only two conversations between cine and customer (the content of
the message is not relevant in this example, so we skip it): request(customer,
cine) inform(cine, customer) inform(customer, cine) and request(customer, cine)
refuse(cine, customer) inform(customer, cine). Let us denote this protocol by
get info movieWSCDL (WS-CDL is the specification language). Let us now con-
sider the web service cine. The service’s behavior depends on the message that it
receives, and its policy allows an infinite number of conversations of any length.
Let us denote this language by get info moviecine

BPEL (BPEL should be the im-
plementation language). In general, it allows all the conversations that begin
with a (possibly empty) series of exchanges of kind request(←−−cine) followed by
inform(−−→cine), concluded by a message of kind inform(←−−cine).

To verify its conformance to the protocol, and then state its interoperabil-
ity with other peers that respect such protocol, we need to build the Mconf

automaton for its policy and the protocol specification. For brevity, we skip
its construction steps and directly report Mconf in Fig. 3(c). Let us now an-
alyze Mconf for answering our queries. Trivially, the automaton is complete
and it accepts both languages (of the policy and of the protocol), therefore,
get info moviecine

BPEL is policy conformant to get info movieWSCDL. Moreover,
when the service interacts with another service customer whose policy is confor-
mant to get info movieWSCDL, the messages request(←−−cine) and inform(←−−cine) will
not be received by cine in all the possible states it expects them. The reason is
simple: for receiving them it is necessary that the interlocutor utters them, but
by definition (it is conformant) it will not. The fact that refuse(−−→cine) is never
uttered by cine does not compromise conformance and interoperability.

5 Conclusions and Future Work

In this work we propose a formal framework that can be applied for verify-
ing the conformance and the interoperability of web services with respect to a
global protocol definition which is meant to be provided at the choreography
level. The idea is that a choreography definition can be exploited at design time
2 Notice that in Fig. 3 all the short notations for the messages are to be interpreted

as incoming or outgoing messages w.r.t. the cinema service.
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for verifying that the internal processes of a web service will enable it to par-
ticipate appropriately in the choreography. For achieving this goal we need a
formal framework for specifying both general interaction protocols and web ser-
vices’ local interaction policies. We proposed a framework based on the theory of
formal languages, where both the global protocol and the web service behavior
are expressed by using finite state automata. Finite-state automata have been
adopted also by Berardi et al. [5] but for web service composition.

Within this framework we formalize a notion of a priori conformance (see
Def. 6), having some important property. First, it guarantees that the service,
at any point of its conversations, can only send messages which are legal w.r.t.
the global interaction protocol, because of the Mconf construction step, given
by rule (c). Moreover it guarantees that the service will be able to handle any
incoming message, foreseen by the protocol. Notice that the service may also
expect incoming messages, that are not expected by the protocol specification,
for this does not prevent the correct interaction with another conformant service.
Finally, it guarantees that the service will always send at least one of the messages
foreseen by the protocol, although it is not necessary that its policy envisions
all the possible alternatives (e.g. the designer can restrict the set of the possible
answers). All these properties define a minimal set of conditions which, on the
one hand, ensure the preservation of the interoperability of the peers, while, on
the other hand, they give some flexibility in designing service policies.

As we explained from the very beginning the current choice of finite state au-
tomata bears some serious limitation: the impossibility of tackling concurrency.
Moreover, the framework so far can only check conformance of a service, whose
behavioral interface contains interactions with only another service. Multi-party
interaction is not tackled. These limitations were, in a way, necessary to allow
the identification of a set of concepts and of conditions that characterize inter-
operability and its verification: the first step of the work. As future directions
of research, however, it is mandatory to study, on the one hand, the possible
extensions to policies that encode the interaction with many parties, and on
the other to study whether it is possible to decide conformance in presence of
concurrency, by adopting more expressive kinds of automata. For what concerns
the first problem we think (but still have to prove) that the test as it is now
could quite easily be extended so as to tackle unilateral interactions with many
parties which do not interact with one another. For what concerns the latter
problem, instead, it will be necessary to identify alternative representations. For
instance, process algebras are formal tools that are commonly used for verifying
properties of interacting processes, we could study whether and how to apply
them to prove a property like conformance. Also concurrent regular expressions
[11] should be investigated. Last but not least, a crucial point is the semantics
of the languages used for representing choreographies and behavioral interfaces
(or orchestrations), e.g. BPEL4WS and WS-CDL, which is not precisely defined
yet. The absence of a formal semantics is, indeed, an obstacle to the automation
of property check in service oriented applications. Concerning BPEL4WS, some
proposal of a formal semantics exists and the proposed formal methods derive
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from formal models for concurrency and coordination of distributed systems (e.g.
process algebras) [18,16].
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