
MATHEMATICS OF COMPUTATION
Volume 70, Number 236, Pages 1745–1749
S 0025-5718(00)01290-4
Article electronically published on July 18, 2000

VERIFYING THE GOLDBACH CONJECTURE UP TO 4 · 1014

JÖRG RICHSTEIN

Abstract. Using a carefully optimized segmented sieve and an efficient check-
ing algorithm, the Goldbach conjecture has been verified and is now known to
be true up to 4 · 1014. The program was distributed to various workstations.
It kept track of maximal values of the smaller prime p in the minimal partition
of the even numbers, where a minimal partition is a representation 2n = p+ q
with 2n − p′ being composite for all p′ < p. The maximal prime p needed in
the considered interval was found to be 5569 and is needed for the partition
389965026819938 = 5569 + 389965026814369.

1. Introduction

In his famous letter to Leonhard Euler dated 7 June 1742, Christian Goldbach
first conjectures that every number that is a sum of two primes can be written as a
sum of “as many primes as one wants”. Goldbach considered 1 as a prime and gives
a few examples. In the margin of his letter, he then states his famous conjecture
that every number is a sum of three primes. This is easily seen to be equivalent to
that every even number is a sum of two primes which is referred to as the Binary
Goldbach Conjecture. Its weaker form, the Ternary Goldbach Conjecture states that
every odd number can be written as a sum of three primes. The ternary conjecture
has been proved under the assumption of the truth of the generalized Riemann
hypothesis ([5], [11]) and remains unproved unconditionally for only a finite (but
not yet computationally coverable) set of numbers [4]. Although believed to be
true, the binary Goldbach conjecture is still lacking a proof.

Two main approaches have been used in the past to efficiently verify the binary
Goldbach conjecture: in order to verify its truth for a given interval [a, b], one has
to find sets of primes P1 and P2 such that

{2n | a ≤ 2n ≤ b} ⊆ P1 + P2 = {p1 + p2 | p1 ∈ P1, p2 ∈ P2}.
The difference between both ways is the choice and generation of the sets P1 and
P2. In method A,

P1 = {p | p ∈ [1, b− a+ δ]}, P2 = {p | p ∈ [a− δ, a]},
whereas in method B

P1 = {p | p ∈ [1, δ]}, P2 = {p | p ∈ [a− δ, b]}.
Due to practical memory limitations, it will be necessary to partition [a, b] for

large b− a and perform the generation of the set P2 for each of the resulting parts.

Received by the editor October 14, 1999 and, in revised form, January 6, 2000.
2000 Mathematics Subject Classification. Primary 11P32; Secondary 11-04.
Key words and phrases. Goldbach conjecture, distributed computing.

c©2000 American Mathematical Society

1745

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1746 JÖRG RICHSTEIN

It turns out that in both methods, the value of δ can be chosen to be very small
compared to b. Therefore, the size of the sets P2 to be successively generated is
much smaller in A than in B.

Method A was first implemented in [12]. As shown in [5], the generation of the
small sets P2 can be carried out very efficiently by employing strong pseudoprime
tests to several bases, which can currently be used to strictly prove primality up to
341550071728321 ([8]). This makes the first method preferable, since one needs to
generate the primes from a much larger interval in method B.

Though method A is faster than method B, due to its current limitation and
the fact that method A does not in general calculate the minimal partitions, the
second method has been chosen here, implemented and distributed to numerous
machines. Section 2 explains the subdivision of the interval [1, 4 · 1014] into “ma-
chine manageable” segments. The generation of the sets P2 is described in Section
3. In Section 4, the verification process is presented. Running times of the imple-
mentation and practical considerations are given in Section 5. Finally, the resulting
maximal values of the minimal partitions are listed.

2. Segmentation

Let Πn denote the product of the first n odd primes. As a preparation for
the distribution to several machines, the interval [1, 4 · 1014] was first split into
subintervals Ik of length 226 · Π5 ≈ 1012 (so 0 ≤ k ≤ 396). Each subinterval to
be processed was further subdivided into segments Sik of length 2t · Π5, where the
optimal value for t was determined experimentally depending on k (see Section 5).
The segments Sik were mapped onto 32-bit integer arrays Aik of length 2t−6 · Π5

elements, such that a bit j (0 ≤ j ≤ 31) of an array element Aik[m] (0 ≤ i <
226−t, 0 ≤ m < 2t−6 · Π5) corresponds to the (odd) number 226 · Π5 · k + 2t · Π5 ·
i + 26 ·m+ 2 · j + 1. As a preparation for the verification process, each array has
been preceded with an additional dδ/26e number of elements Aik[−dδ/26e] through
Aik[−1]. Initially, δ was chosen to be equal to 10000.

3. Generation of the sets P2

In order to generate the sets P2 (to be represented by 1-bits in the arrays Aik),
an optimized, segmented version of Eratosthenes’ sieve as first used in [3] and later
described in detail in [1] was implemented.

In addition to the basic method, the sieving of multiples of 3 and 5 that have al-
ready been sieved out has been avoided for prime factors between 17 and pm, where
pm depends on the value of t (and therefore again on k). The sieving process can
be summarized as follows: the last dδ/26e elements of the previous segment Ai−1

k

are copied onto the elements −dδ/26e through −1 of Aik. The first segment S0
0

was handled separately; in the other cases where i = 0, the last segment S226−t−1
k−1

was processed again. Then, a prepared array with all bits set to 1 except for
those which correspond to multiples of the first five odd primes is copied onto
the current array Aik (starting with element 0). The factors l · p of all primes
17 ≤ p <

√
226 ·Π5 · k + 2t · Π5 · (i + 1) to be sieved out are first adjusted to be

congruent to 2p (mod 15) by successively adding 2p to the first odd l · p in the
current segment and setting the corresponding bits of Aik to 0. Then, the sequence

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

VERIFYING THE GOLDBACH CONJECTURE UP TO 4 · 1014 1747

2p, 4p, 6p, 2p, 6p, 4p, 2p, 4p is repeatedly and successively added to the current mul-
tiple of p and the corresponding bits are set to 0 until the upper end of the segment
is reached. This way, approximately 30% of the sieving costs were saved.

4. Verification process

In order to find a partition for all even numbers of the current segment Sik,
one can proceed as follows: A second array C of the same length as Aik (without
the preceding dδ/26e elements) representing the even numbers of a segment Sik
is initialized to all bits set to 0. Then, for each pi ∈ P1, the array Aik is shifted
successively by (pi−pi−1)/2 bits starting with p1 = 3 (and p0 defined as 1). Now all
bits of the shifted Aik correspond to even numbers q1 + pi, q2 + pi, . . . with ql ∈ P2.
Aik is then joined to C by logical “or” (starting with Aik[0]). By continuing this way,
the segment Sik is completely verified when all bits of C are set to 1. Since it turns
out that the array C fills up quickly, this addition of primes from P1 by shifting
Aik will only be done up to some pa and the remaining 0-bits handled separately
(eventually leading to new maximal values of the minimal partitions).

The problem with this method is that it is relatively costly to perform the shift-
ings of Aik by variable (pi−pi−1)/2. Additionally, it gets even more expensive when
the difference between successive primes from P1 exceeds 64, because then addi-
tional shift/mask/add-operations will be necessary. Though the latter case will not
be of relevance in the near future since a prime gap of 64 first occurs at 31397, the
procedure can be simplified as follows, avoiding variable shifts. For each p ∈ P1,
the remainder (p − 1)/2 (mod 32) is stored together with p. The whole array Aik
is now shifted only 32 times by one bit (independent from the choice of pa). After
the ith shifting (starting with i = 0), all stored remainders (p − 1)/2 (mod 32),
p ∈ P1, p ≤ pa are checked for being equal to i. If so, C is or-joined to Aik shifted
b(p − 1)/64c words (where these word shifts are actually simple index changes).
The last shift only adjusts Aik; after the array has been shifted by a complete word,
the copying of the last dδ/26e elements onto the next array Ai+1

k as mentioned in
Section 3 then starts at element Aik[−dδ/26e+1]. In order not to loose any maximal
values of the minimal partitions, it is essential that pa is always smaller than the
previous maximum during the whole computation. Since the maximal pa chosen
was smaller than the maximal smaller prime already needed in the partitions of the
even numbers of S0

0 , this problem was not of practical relevance.

5. Practical considerations and running times

Optimal values for the parameters t, pm and pa have been precalculated exper-
imentally in intervals of length 1013 on each machine type involved. Depending
on k, sources were rebuilt and recompiled with a new parameter combination. It
turned out that the ranges 9 ≤ t ≤ 11, 40000 ≤ pm ≤ 120000 and 181 ≤ pa ≤ 307
yielded the best results. The total memory requirement was therefore at most 4MB
for the arrays Aik and C.

The program was written in C and distributed to seven Sun Ultra1 and six Sun4
workstations. In addition, two PC’s running Linux have been used. Approximately
107 even numbers were checked per second. The time until completion was around
130 days with processes running on lowest priority in background. The share of the
costs to generate the sets P2 varied between 45% at 1012 and 60% near 4 · 1014.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1748 JÖRG RICHSTEIN

Table 1.

n p(n) p(n)
log2 n log logn

n p(n) p(n)
log2 n log log n

6 3 1.6023 113632822 1163 1.1575
12 5 0.8896 187852862 1321 1.2350
30 7 0.4943 335070838 1427 1.2440
98 19 0.5935 419911924 1583 1.3436

220 23 0.4691 721013438 1789 1.4262
308 31 0.5408 1847133842 1861 1.3357
556 47 0.6380 7473202036 1877 1.1625
992 73 0.7939 11001080372 1879 1.1191

2642 103 0.8037 12703943222 2029 1.1912
5372 139 0.8762 21248558888 2089 1.1658
7426 173 0.9956 35884080836 2803 1.4873

43532 211 0.7808 105963812462 3061 1.4686
54244 233 0.8207 244885595672 3163 1.4080
63274 293 0.9977 599533546358 3457 1.4243

113672 313 0.9410 3132059294006 3463 1.2452
128168 331 0.9708 3620821173302 3529 1.2543
194428 359 0.9685 4438327672994 3613 1.2637
194470 383 1.0332 5320503815888 3769 1.2996
413572 389 0.9086 8342945544436 3917 1.3042
503222 523 1.1784 10591605900482 4003 1.3086

1077422 601 1.1839 12982270197518 4027 1.2962
3526958 727 1.1790 15197900994218 4057 1.2903
3807404 751 1.2034 28998050650046 4327 1.3114

10759922 829 1.1357 46878442766282 4519 1.3221
24106882 929 1.1349 76903574497118 4909 1.3859
27789878 997 1.1943 184162477860248 5077 1.3476
37998938 1039 1.1928 217361316706568 5209 1.3668
60119912 1093 1.1807 389965026819938 5569 1.4038

6. Results

In [7], it was conjectured that p(n) � log2 n log logn. In the range covered
there, it was derived that p(n) < 1.603 · log2 n log logn. As an extension to results
from [2], [7] and [13], Table 1 shows the maximal values of the function p(n) =
min{p | ∃q : n = p+ q} for even n along with the quotients p(n)/ log2 n log logn.

In [2], it was suggested that the quotient logn/ log2 p(n) stays approximately
constant. Contrary to that, it seems likely from the data obtained that the
quotient tends to infinity with n. Note that this also follows from the conjecture
p(n)� log2 n log logn of [7].

7. Remark

An exception to the ternary Goldbach conjecture would now require a prime
gap of 4 · 1014 below 1043000, from whereon it is known to be true unconditionally
([4]). Since a gap of that size is expected to occur first at around 1014000000 ([10]),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

VERIFYING THE GOLDBACH CONJECTURE UP TO 4 · 1014 1749

the existence of a counterexample to the ternary conjecture has become even more
unlikely.

8. Acknowledgments

The author wishes to thank Andrew Granville for his helpful comments and
suggestions, and the staff of the Institut für Informatik, Universität Giessen, for
their support and the computing time necessary to carry out this work.

References

1. C. Bays, R. Hudson, The Segmented Sieve of Eratosthenes and Primes in Arithmetic Pro-
gressions, BIT 17 (1977), 121–127. MR 56:5405

2. J. Bohman, C. E. Fröberg, Numerical Results on the Goldbach Conjecture, BIT 15 (1975),
239–243. MR 52:10644

3. R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp., 27
(1973), 959–963. MR 48:8360

4. J. R. Chen, Y. Wang, On the odd Goldbach problem, Acta Math. Sinica, 32 (1989), 702–718.
MR 91e:11108

5. J. M. Deshouillers, H. J. J. te Riele, Y. Saouter New experimental results concerning the Gold-
bach conjecture, Proc. 3rd Int. Symp. on Algorithmic Number Theory, LNCS 1423 (1998),
204–215. CMP 2000:05

6. P. H. Fuss, Correspondance mathématique et physique de quelques célèbres géomètres du
XVIIIe siècle, tome I, St. Pétersbourg, (1843), 127+135.

7. A. Granville, H. J. J. te Riele, J. van de Lune Checking the Goldbach Conjecture on a Vector
Computer, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, Dordrecht (1989),
423–433. MR 93c:11085

8. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915–926. MR
94d:11004

9. A. P. Juškevič, Christian Goldbach: 1690–1764, Vita mathematica, Birkhäuser Basel (1994),
161.

10. H. Riesel, Prime Numbers and Computer Methods for Factorization, 2nd Edition, Birkhäuser,
(1994). MR 95h:11142

11. Y. Saouter, Checking the odd Goldbach conjecture up to 1020, Math. Comp. 67 (1998), 863–
866. MR 98g:11115

12. M. K. Shen, On checking the Goldbach Conjecture, BIT 4 (1964), 243–245. MR 30:3051
13. M. K. Sinisalo, Checking the Goldbach Conjecture up to 4 · 1011, Math. Comp. 61 (1993),

931–934. MR 94a:11157
14. M. L. Stein, P. R. Stein, Experimental results on additive 2 bases, BIT 38 (1965), 427–434.

Institut für Informatik, Fachbereich Mathematik, Justus-Liebig-Universität, Gies-

sen, Germany

E-mail address: Joerg.Richstein@informatik.uni-giessen.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=56:5405
http://www.ams.org/mathscinet-getitem?mr=52:10644
http://www.ams.org/mathscinet-getitem?mr=48:8360
http://www.ams.org/mathscinet-getitem?mr=91e:11108
http://www.ams.org/mathscinet-getitem?mr=93c:11085
http://www.ams.org/mathscinet-getitem?mr=94d:11004
http://www.ams.org/mathscinet-getitem?mr=95h:11142
http://www.ams.org/mathscinet-getitem?mr=98g:11115
http://www.ams.org/mathscinet-getitem?mr=30:3051
http://www.ams.org/mathscinet-getitem?mr=94a:11157

	1. Introduction
	2. Segmentation
	3. Generation of the sets P2
	4. Verification process
	5. Practical considerations and running times
	6. Results
	7. Remark
	8. Acknowledgments
	References

