
Technical Report 77 April 1992

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This work was sponsored in part at Computational Logic, Inc. by
National Aeronautics and Space Administration Langley Research
Center (NAS1-18878). The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
Computational Logic, Inc., NASA Langley Research Center or the
U.S. Government.

Verifying the Interactive Convergence
Clock Synchronization Algorithm

Using the Boyer-Moore Theorem Prover

William D. Young

1

1. Introduction

The application of formal methods to the analysis of computing systems promises to provide higher and higher
levels of assurance as the sophistication of our tools and techniques increases. Improvements in tools and
techniques come about as we pit the current state of the art against new and challenging problems. A promising area
for the application of formal methods is in real-time and distributed computing. Some of the algorithms in this area
are both subtle and important. Their proofs are an ideal testing ground for formal methods because they involve
detailed and sophisticated reasoning that is challenging even for a competent human mathematician. We believe that
formal methods are already demonstrating that they can make a genuine contribution toward the clarity and
correctness of these algorithms [11, 2].

One important algorithm in this field is the Interactive Convergence Clock Synchronization Algorithm (ICCSA) of
Lamport and Melliar-Smith [9]. This algorithm maintains approximate synchronization among a number of clocks
even when the clocks begin running at slightly different times, run at slightly varying rates, and some percentage of
them may be faulty. The presentation of Lamport and Melliar-Smith both develops the algorithm and states
formally the assumptions and desired properties required to state and prove its correctness properties.

A mechanical verification of the algorithm using EHDM was performed by John Rushby and Friedrich von Henke
and described in [11].1 The EHDM effort resulted is a completely formal presentation of the algorithm and its
proof, a presentation that is arguably somewhat clearer and more rigorous than the original published proof. Rushby
and von Henke challenged users of proof systems other than EHDM as follows.

We found that EHDM served us reasonably well; we do not know whether other specification and
verification environments would have fared as well or better. [W]e invite the developers and users of
other verification systems to repeat the experiment described here. We suggest the Interactive
Convergence Clock Synchronization Algorithm is a paradigmatic example of a problem where formal
verification can show its value and a verification system can demonstrate its capabilities; it is a ‘‘real’’
rather than an artificial problem, its verification is large enough to be challenging without being
overwhelming, it requires a couple of fairly interesting supporting theories, and its proofs are quite
intricate and varied.

In response to this challenge and as part of an ongoing attempt to verify an implementation of the Interactive
Convergence Clock Synchronization Algorithm, we decided to undertake a proof of the correctness of the algorithm
using the Boyer-Moore theorem prover.

This paper describes our approach to proving the ICCSA using the Boyer-Moore prover. Since our proof follows
closely that of Rushby and von Henke, we will not dwell on the details of the proof but assume that the reader is
familiar with their quite cogent description of the EHDM version of the proof [11]. Instead we concentrate on the
use of features of the Boyer-Moore logic and theorem prover that were especially helpful in the specification and
proof and on the differences from the Rushby and von Henke version. We assume that the reader is somewhat
familiar with the Boyer-Moore logic and theorem prover [3, 5].

This paper is organized as follows. The next section introduces briefly the Interactive Convergence Clock
Synchronization Algorithm and the problem it is designed to solve. Sections 3 and 4 describe some interesting
aspects of the specification and proof, respectively, and some of the more significant ways in which these differ
from the EHDM version. Finally, section 5 contains some conclusions from this study.

1Rushby subsequently revised this proof, partly in response to our observations.

2

2. The Interactive Convergence Clock Synchronization Algorithm

A difficult problem facing designers of systems that achieve fault-tolerance via redundant processing capability is
synchronizing the processors so that they deliver their results at approximately the ‘‘same time.’’ One solution to
this problem is the Interactive Convergence Clock Synchronization Algorithm of Lamport and Melliar-Smith [9].
This algorithm maintains approximate synchronization among a number of clocks even when the clocks begin
running at slightly different times, run at slightly varying rates, and some percentage of them may be faulty.

We desire an algorithm in which each processor periodically resynchronizes with all of the other processors in such
a way that:

S1. all nonfaulty clocks have approximately the same value at any time; and,

S2. the adjustment to any clock during a synchronization period is bounded.
Proving that any algorithm achieves these two conditions is difficult because it requires accounting for a number of
continually changing quantities.2 Lamport and Melliar-Smith were able to prove that the ICCSA algorithm has
these properties. Their proof is quite detailed involving approximate reasoning and neglect of various terms.

Conceptually the algorithm operates as follows. Each processor pi maintains an offset or correction to its private
(hardware) clock; the private clock value plus correction is the adjusted clock value. The correction is periodically
updated by adding to it the mean of the differences between pi’s adjusted clock value and all other processors’
adjusted clock values. Any processor pj with adjusted value too divergent from pi’s is assumed to be faulty and a
difference of 0 between pi’s and pj’s clocks is used in computing the mean.

Though the algorithm is conceptually quite simple, the statement of the correctness properties and their proof is
complex. The correctness of the algorithm is stated in terms of certain quantities listed in figure 1 and others
computed in terms of them. The proof shows that under certain conditions on the relationships among these
parameters, this algorithm does maintain adequate synchronization among n processes with at most m faulty
processes. Here adequate synchronization is defined in terms of formal statements of conditions S1 and S2 above.
A completely formal description of the algorithm and its correctness conditions is given by Rushby and von
Henke [11]. Our formalization follows fairly closely the Rushby and von Henke version and is given as the
sequence of Boyer-Moore ‘‘events’’ in the appendix. In the following two sections we highlight features of the
Boyer-Moore logic and prover that were particularly helpful in our specification with emphasis on the differences
from the EHDM version.

3. Specifying the ICCSA in the Boyer-Moore Logic

Capturing formally the Interactive Convergence Clock Synchronization Algorithm within the Boyer-Moore logic
was a challenge despite the fact that we had as a model a fully formal version in EHDM. There are difference in the
languages that make translating from one to the other nontrivial. In particular, EHDM allows full first order
quantification and uses higher-order functions in a manner that cannot be specified in the Boyer-Moore logic.
However, recent additions to the logic—particularly CONSTRAIN and DEFN-SK—made our task much easier than
it otherwise would have been.

2In fact, a proof of an implementation of the ICCSA algorithm was asserted to be ‘‘probably beyond the ability of any current mechanical
verifier’’ [10]. However, there have been tremendous advances in the state of the art of automated reasoning in the nearly 10 years since this
comment was made.

3

n number of clocks.

m number of faulty clocks.

R clock time between synchronizations.

S clock time to perform the synchronization algorithm.

δ maximum real time skew between any two good clocks.

δ0 maximum initial real time skew between any two good clocks.

ε maximum real time clock read error.

ρ maximum clock drift rate.

Σ maximum correction permitted.

Figure 1: Some Quantities Required for Specifying the ICCSA

3.1 Computing with Rationals

The Boyer-Moore logic provides as ‘‘primitives’’ the data types of booleans, naturals, literal atoms, negative
integers, and lists. Describing the ICCSA and proving its synchronization properties requires the manipulation of
numerous rational quantities. The Boyer-Moore ‘‘shell’’ mechanism allows the user to add new recursively defined
data types. The rationals have been added as a new shell and explored to some extent in some previous specification
efforts. Until recently, however, there has not been a well thought out library of definitions and rewrite rules for
rationals as have been developed for several other data types including naturals and integers. Recently Matt Wilding
of CLI created a useful library for the rationals; this library provided a solid basis for our proof.

The rationals library is built on top of an earlier library for the integers.3 Operations defined include equality, the
various arithmetic operations on rationals, and the relational operator RLESSP. A number of useful rewrite rules are
proved about these functions and included in the library. On top of the basis provided by Wilding’s library, we
defined some additional operations required for the ICCSA specification, such as rational absolute value, operations
coercing integers to rationals, and arithmetic operations taking both integer and rational arguments. Proving
properties of these functions was usually quite easy because the underlying library was well thought-out. This
contrasts with some earlier proof efforts [1, 7, 12] in which all theories had to be built ‘‘from scratch.’’

There are some quirks in dealing with rationals in the logic that are not present for most data types. In particular,
there are an infinite number of representations for each rational number. This leads to the need to reduce all
rationals to a canonical form before comparing them. All of the operations in Wilding’s rationals library leave
rationals in reduced form.

Rational equality is defined in terms of these reduced forms:

(DEFN REQUAL (X Y)
(EQUAL (REDUCE X) (REDUCE Y))).

However, since the prover has extensive built-in heuristics for EQUAL, but not for REQUAL, it was convenient to
open up this definition whenever possible. This leads to a continual need to deal with terms of the form
(REDUCE X). Luckily, the rationals library contains an extensive collection of rewrites such as the following two

3A rational is represented as a pair of integers (RATIONAL I J) with appropriate constraints on the signs of i and j.

4

for the RPLUS function that eliminate most appearances of the REDUCE operator.

(PROVE-LEMMA RPLUS-REDUCE (REWRITE)
(AND (EQUAL (RPLUS (REDUCE X) Y)

(RPLUS X Y))
(EQUAL (RPLUS X (REDUCE Y))

(RPLUS X Y))))

(PROVE-LEMMA REDUCE-RPLUS (REWRITE)
(EQUAL (REDUCE (RPLUS X Y))

(RPLUS X Y)))

These ubiquitous REDUCE expressions caused one oddity in the specification. The library contains a number of
rewrite rules such as:

(PROVE-LEMMA RPLUS-RZEROP (REWRITE)
(IMPLIES (RZEROP X)

(AND (EQUAL (RPLUS X Y) (REDUCE Y))
(EQUAL (RPLUS Y X) (REDUCE Y)))))

However, using this rewrite rule an expression such as

(EQUAL (RHO) (RPLUS (RHO) (RATIONAL 0 1)))

rewrites to

(EQUAL (RHO) (REDUCE (RHO)))

that is not provable unless (RHO) is known to be in reduced form, eg., if (RHO) is a constrained constant (see
section 3.2 below). This led to the need to require that most constrained constants be in reduced form.

This rather odd but innocuous requirement could be avoided by consistently using REQUAL rather than EQUAL
whenever referring to rational quantities. However, even with extensive theory development, heuristic reasoning
support for REQUAL would not equal that available for EQUAL. An experimental facility supporting reasoning with
congruence relations recently implemented by Bishop Brock of CLI might have alleviated some of this difficulty,
but was not used here.

The utility of the rationals library is greatly enhanced by the addition of several useful metafunctions.
Metafunctions [4] are user-defined term simplification routines that are proven to preserve the meaning (evaluation)
of the term to which they are applied. For example, a function in the rationals library ‘‘cancels’’ complementary
terms in a rationals RPLUS expression. Proving that this function preserves the meaning (value) of the term to
which it is applied sanctions the installation of this code as an additional simplification routine within the prover.
The code is installed automatically by the prover upon proof of the required theorems and replaces a potentially
infinite collection of rewrite rules.

The collection of metafunctions within the rationals library greatly simplifies reasoning about RPLUS, RTIMES, and
RLESSP expressions. We added an additional metalemma for the RLEQ (rationals less than or equal) function.
This was not strictly necessary since RLEQ is defined in terms of REQUAL and RLESSP. However, to avoid the
explosion of cases on theorems involving many RLEQ hypotheses, we decided to develop a theory for RLEQ on top
of Wilding’s rationals library and leave RLEQ disabled (so that it would not be automatically opened up by the
prover). We are not completely convinced of the wisdom of this decision.

5

3.2 Uses of CONSTRAIN

As we saw in section 2 above, the ICCSA is described in terms of a large number of integer and rational-valued
parameters; these are conceptually global constants for purposes of the specification. There is a sizable collections
of assumptions about the relative sizes of these quantities. In the Rushby and von Henke specification, these are
given as EHDM axioms. Within the Boyer-Moore logic there are various options for how to introduce these
constants into the specification:

• pass them as parameters to each function requiring them and add the assumptions as explicit
hypotheses on each theorem requiring them;

• define each constant as a declared function of no arguments and add any required assumptions as
axioms;

• use the Boyer-Moore CONSTRAIN [6] mechanism to introduce the constants as new function symbols
and introduce the assumptions axiomatically within the CONSTRAIN.

The advantage of this final approach is that it guarantees that the introduced axioms are consistent without cluttering
up definitions and theorems with a multitude of additional parameters and hypotheses. Moreover, using a
CONSTRAIN event to introduce a new function symbol avoids the overspecification often occasioned by
introducing functions via explicit definitions; only the required properties of the function need be specified.

A CONSTRAIN event introduces one or more function symbols along with axioms that they must satisfy. To
guarantee the consistency of the axioms, the user must supply witness functions that satisfy the axioms. For
example, we model the function ∆(i)

p,q that computes the difference in clock values between processes p and q in
period i, with the CONSTRAIN event:

(CONSTRAIN DELTA2-INTRO (REWRITE)
(AND (RATIONALP (DELTA2 R P I))

(EQUAL (DELTA2 P P I) (RATIONAL 0 1))
(IMPLIES (NOT (NUMBERP I))

(EQUAL (DELTA2 R P I)
(DELTA2 R P 0)))

(EQUAL (REDUCE (DELTA2 P Q I))
(DELTA2 P Q I)))

((DELTA2 (LAMBDA (R P I) (RATIONAL 0 1)))))

This asserts that the newly introduced function DELTA2 is rational-valued, returns zero as the difference from a
process’s own clock value, always coerces it’s third argument to a natural number, and returns a rational in reduced
form.4 We also supply a function that satisfies these axioms, namely the function of three arguments that always
returns rational zero. A CONSTRAIN event is not accepted unless the axioms, appropriately instantiated with the
witness functions, can be proved. This assures the consistency of the axioms by exhibiting a model.

Most of the constant parameters of our specification are introduced in a single large CONSTRAIN event
PARAMETERS-INTRO given in Figure 2. It might have been better to introduce these via several different
CONSTRAIN events. In that case, it could have been more difficult to find appropriate witness functions, however.

A very strong advantage of introducing the various parameters in this way is that their names and properties become
‘‘globally’’ visible. This allows us to give our theorems in a succinct form very close to those of the EHDM
representation. Figure 3, for example, shows the same lemma in both its EHDM form5 and in the Boyer-Moore
logic.

4This is not a minimal set. The first axiom follows from the fourth one.

5Forms in [11] were pretty printed using a special facility described in that report; raw input to EHDM is much less elegant. The version here
is in the prettified format.

6

(CONSTRAIN PARAMETERS-INTRO (REWRITE)
;; R and S

(AND (RATIONALP (R))
(RATIONALP (S))
(RLESSP (RATIONAL 0 1) (R)) ;; posR
(RLESSP (RATIONAL 0 1) (S)) ;; posS
(RLEQ (RTIMES (RATIONAL 3 1) (S)) (R)) ;; C1

;; rho
(RATIONALP (RHO))
(RLEQ (RATIONAL 0 1)

(RTIMES (RATIONAL 1 2) (RHO))) ;; rho_pos
(RLESSP (RTIMES (RATIONAL 1 2) (RHO)) ;; rho_small

(RATIONAL 1 1))
;; other parameters

(RATIONALP (EPSILON))
(RATIONALP (DELTA))
(RATIONALP (DELTA0))
(RATIONALP (BIG-SIGMA))
(RATIONALP (BIG-DELTA))
(NUMBERP (N))
(NOT (EQUAL (N) 0)) ;; C0_a
(NUMBERP (M)) ;; C0_b
(LESSP (M) (N))
(RLESSP (RATIONAL 0 1) (BIG-DELTA)) ;; C0_c
(RLEQ (BIG-SIGMA) (S)) ;; C2
(RLEQ (BIG-DELTA) (BIG-SIGMA)) ;; C3
(RLEQ (RPLUS (DELTA) ;; C4

(RPLUS (EPSILON)
(RTIMES (RATIONAL 1 2)

(RTIMES (RHO) (S)))))
(BIG-DELTA))

(RLEQ (RPLUS (DELTA0) (RTIMES (RHO) (R))) ;; C5
(DELTA))

(RLEQ ;; C6
(RPLUS
(RTIMES (RATIONAL 2 1)

(RPLUS (EPSILON) (RTIMES (RHO) (S))))
(RPLUS (RQUOTIENT-NAT

(RTIMES-NAT (TIMES 2 (M)) (BIG-DELTA))
(DIFFERENCE (N) (M)))

(RPLUS
(RQUOTIENT-NAT
(RTIMES-NAT (N) (RTIMES (RHO) (R)))
(DIFFERENCE (N) (M)))

(RPLUS (RTIMES (RHO) (BIG-DELTA))
(RQUOTIENT-NAT
(RTIMES-NAT (N) (RTIMES (RHO)

(BIG-SIGMA)))
(DIFFERENCE (N) (M)))))))

(DELTA)))
((R (LAMBDA () (RATIONAL 3 1)))
(S (LAMBDA () (RATIONAL 1 1)))
(RHO (LAMBDA () (RATIONAL 0 1)))
(EPSILON (LAMBDA () (RATIONAL 0 1)))
(DELTA (LAMBDA () (RATIONAL 0 1)))
(DELTA0 (LAMBDA () (RATIONAL 0 1)))
(BIG-SIGMA (LAMBDA () (RATIONAL 1 2)))
(BIG-DELTA (LAMBDA () (RATIONAL 1 2)))
(N (LAMBDA () 1))
(M (LAMBDA () 0))))

Figure 2: CONSTRAIN Introducing ICCSA Parameters

7

The EHDM Version:

lemma1def: Lemma
S1C(p, q, i) ∧ S2(p, i) ∧ nonfaulty(p, i + 1) ∧ nonfaulty(q, i + 1) ⊃ |∆(i)q p| < ∆

The Boyer-Moore Version:

(PROVE-LEMMA LEMMA1 (REWRITE)
(IMPLIES (AND (S1C P Q I)

(S2 P I)
(NONFAULTY P (ADD1 I))
(NONFAULTY Q (ADD1 I)))

(RLESSP (RABS (DELTA2 Q P I)) (BIG-DELTA))))

Figure 3: EHDM and Boyer-Moore Versions of the Same Lemma

3.3 DEFN-SK

Another relatively new feature of the logic that proved useful was the DEFN-SK facility [8] that allows the
introduction of quantified expressions into the specification. Several important constructs in the Rushby and von
Henke version were defined via quantification. Earlier versions of the Boyer-Moore logic could not express many
of these conveniently. In particular, to prove an existential statement required exhibiting a witness constructively.

A DEFN-SK event allows the definition of an explicitly quantified term and the use of this term in other definitions
and theorems. For example, the notion of a good clock (within the interval [T0..TN]) is defined by Rushby and von

Henke as:6

goodclock: function[proc, clocktime, clocktime → bool] =
(λp,T0,TN :

(∀ T1,T2 :
T0 ≤ T1 ∧ T0 ≤ T2 ∧ T1 ≤ TN ∧ T2 ≤ TN

⊃ |cp(T1)-cp(T2)-(T1-T2)|
≤ ρ/2 * |T1-T2|))

Our definition is given by the DEFN-SK event:

6Notice that this definition is from the revised specification. The first published version had ‘‘<’’ where the current version has ‘‘≤’’. This has
the rather curious consequence that there are no good clocks in a system in which the parameter ρ that gives the maximum clock drift rate is zero.
Intuitively, this means that if all clocks are perfect no clocks are good. This illustrates the need for extreme care in defining these functions.

8

(DEFN-SK+ GOOD-CLOCK (P LOW HIGH)
(FORALL (T1 T2)
(IMPLIES (AND (IN-INTERVAL T1 LOW HIGH)

(IN-INTERVAL T2 LOW HIGH))
(RLEQ (RABS (RPLUS (CLOCK P T1)

(RPLUS (RNEG (CLOCK P T2))
(RPLUS (RNEG T1) T2))))

(RTIMES (RATIONAL 1 2)
(RTIMES (RHO)

(RABS (RPLUS T1 (RNEG T2)))))))))

A DEFN-SK event causes two axioms to be added to the database; these two axioms corresponding to the
skolemization of the event in each ‘‘direction’’ and together allow us to use an instance of a quantified expression
appearing in a hypothesis to a theorem and to prove an instance appearing as the conclusion. The macro version
DEFN-SK+ of the event also causes these axioms to be encapsulated and proved as rewrite rules. For
GOOD-CLOCK these two theorems are shown in figure 4. See [8] for details on how these are generated and a proof
of the soundness of the approach.

(PROVE-LEMMA GOOD-CLOCK-SUFF (REWRITE)
(IMPLIES

(IMPLIES
(AND (IN-INTERVAL (T1 HIGH LOW P) LOW HIGH)

(IN-INTERVAL (T2 HIGH LOW P)
LOW HIGH))

(RLEQ (RABS (RPLUS (CLOCK P (T1 HIGH LOW P))
(RPLUS (RNEG (CLOCK P (T2 HIGH LOW P)))

(RPLUS (RNEG (T1 HIGH LOW P))
(T2 HIGH LOW P)))))

(RTIMES (RATIONAL 1 2)
(RTIMES (RHO)

(RABS (RPLUS (T1 HIGH LOW P)
(RNEG (T2 HIGH LOW P))))))))

(GOOD-CLOCK P LOW HIGH)))

(PROVE-LEMMA GOOD-CLOCK-NECC (REWRITE)
(IMPLIES

(NOT (IMPLIES
(AND (IN-INTERVAL T1 LOW HIGH)

(IN-INTERVAL T2 LOW HIGH))
(RLEQ (RABS (RPLUS (CLOCK P T1)

(RPLUS (RNEG (CLOCK P T2))
(RPLUS (RNEG T1) T2))))

(RTIMES (RATIONAL 1 2)
(RTIMES (RHO)

(RABS (RPLUS T1 (RNEG T2))))))))
(NOT (GOOD-CLOCK P LOW HIGH))))

Figure 4: Theorems Generated for a DEFN-SK+ Event

Use of DEFN-SK allows us to define concepts involving quantifiers in a fashion that is very analogous to their
EHDM counterparts. However, we did not always find this convenient. For example, Rushby and von Henke

9

define SDEF as follows:

Sdef: Axiom T ∈ S(i) = (∃ Π: 0 ≤ Π ∧ Π ≤ R ∧ T = T(i) + Π)

A close analogue in the Boyer-Moore logic using DEFN-SK would be:

(DEFN-SK+ SDEF (TM I)
(EXISTS PI
(AND (RLEQ (RATIONAL 0 1) PI)

(RLEQ PI (S))
(EQUAL (REDUCE TM)

(RPLUS (TI I) (RPLUS (RDIFFERENCE (R) (S)) PI)))))

However, we found the following definition to be more convenient and to eliminate an unnecessary existential
quantifier.

(DEFN IN-S (TM I)
(IN-INTERVAL TM

(RDIFFERENCE (TI (ADD1 I)) (S))
(TI (ADD1 I))))

This illustrates that often the use of one style of definition is more ‘‘natural’’ in a given logic even when others
styles are available. It is not surprising then that some of our definitions were quite different than the corresponding
EHDM versions. However, we believe them to be equivalent in all relevant aspects. As an exercise, we proved the
lemma that shows the equivalence of the definitions SDEF and IN-S.

(PROVE-LEMMA SDEF-IN-S-EQUIVALENCE ()
(IFF (SDEF TM I) (IN-S TM I)))

Using CONSTRAINs and DEFN-SKs, we were able to write theorems that are textually very close to the EHDM
versions in most cases. It is evident from the two versions of LEMMA1 listed in Figure 3 that, except for minor
textual differences, there is very little difference in the presentation of theorems in the two logics. This was the rule
rather than the exception for the lemmas required in our proof.

3.4 Avoiding Higher Order Functions

The ability within EHDM to define higher order functions is a definite benefit from the perspective of writing clear
and elegant specifications. However, many of the uses of higher order functions can be avoided by careful use of
facilities available within the Boyer-Moore logic. This was true of each of the uses of the EHDM higher order
facilities in the ICCSA specification.

As an example, consider the MEAN function defined by Rushby and von Henke as follows:

⊕*1
*2 *3: function[nat, nat, function [nat → number] → number] =

(λi, j, F: if i ≤ j then Σi
j F/(j + 1 - i) else 0 end if).

Notice that one parameter to this definition is a function F. From this definition, Rushby and von Henke prove a
number of quite general lemmas.

There is not a similar facility within the Boyer-Moore logic though many of the advantages of such higher order
definitions are available via other routes. For example, our version of the MEAN is defined as follows:

10

(DEFN RSUM (LST)
(IF (NLISTP LST)

(RATIONAL 0 1)
(RPLUS (CAR LST) (RSUM (CDR LST)))))

(DEFN RMEAN (LST)
(RQUOTIENT-NAT (RSUM LST) (LENGTH LST)))

Rather than parameterizing RMEAN with a function, we parameterize it with a list of elements returned by the
function. This is conceptually equivalent and we can prove all of the nice properties of the EHDM version. Most of
the interesting properties are really properties of RSUM rather than of RMEAN.

This style of trivial transformation is not the only way to deal with higher order functions and properties in the logic.
An interpreter is available for the logic and permits reasoning about functions at the meta-level. Also, it is possible
to ‘‘fake’’ higher-order properties in other ways. We have checked the proof, for example, that there is no
algorithm that solves a certain version of the Byzantine General’s problem. [2] This is inherently a second order
property.

4. Aspects of the Proof

4.1 Restraining the Prover

Our proof of ICCSA was somewhat atypical of most proofs using the Boyer-Moore prover. Rushby and von Henke
had done much of the difficult work of finding a sequence of lemmas leading up to the proofs of the desired
correctness theorems. Moreover, because of the way the EHDM prover operates, the collection of lemmas
necessary for a given proof are displayed along with their specific instantiations. Given this information,
constructing a formal proof is largely a matter of intelligent simplification and tautology checking.7

A proof in the Boyer-Moore theorem prover typically relies more on the prover’s heuristics to choose among
previously proven lemmas and instantiate them correctly. However, the prover can be used in a more restrained
fashion by disabling most functions and rewrite rules and using the prover as a simple proof checker. This is done
by enabling only those lemmas known to be relevant and adding USE hints to specify particular instantiations of the
variables in needed lemmas. This was the approach we followed in our proof of the ICCSA; most functions and
lemmas were globally disabled. We also made use of an experimental feature for encapsulating the names of a
group of events into a ‘‘theory’’ that can be enabled or disabled collectively. Figure 5 shows a particular lemma in
our script that is an example of the use of USE hints, selective enabling, and theory enabling to obtain the proof.

4.2 Order of Steps in the Proof

The Boyer-Moore prover allows very little flexibility in the order of steps in a proof. Each function must be fully
defined or constrained before it is used; each lemma must be proven before it can be used in proofs. For definitions
this means that there is no genuine mutual recursion8 For proofs it means that the proof is presented (though not
necessarily discovered) in a very ‘‘bottom-up’’ style. This approach guarantees that there are no circularities in the
proof.

EHDM does not impose such a limited ordering on the steps in the proof. To assure that there are no circularities in

7The EHDM proof of ICCSA used only the EHDM ground prover. [11]

8There is a standard way to gain the effects of mutual recursion by defining several ‘‘functions’’ within one and using a flag to distinguish
among them. [5] Also, there is an available read macro for the prover that turns a list of mutually recursive definitions into an event of this type.

11

(LEMMA SUBLEMMA-A (REWRITE)
(IMPLIES (AND (NONFAULTY P I)

(NONFAULTY Q I)
(IN-R TM I))

(RLEQ (SKEW P Q TM I)
(RPLUS (SKEW P Q (TI I) I)

(RTIMES (RHO) (R)))))
((USE (REARRANGE-ALT (X (C P I TM))

(Y (C Q I TM))
(U (C P I (TI I)))
(V (RPLUS TM (RNEG (TI I))))
(W (C Q I (TI I))))

(LEMMA2D (PI (RPLUS TM (RNEG (TI I)))))
(LEMMA2D (P Q) (PI (RPLUS TM (RNEG (TI I))))))

(ENABLE-THEORY REDUCTIONS)
(ENABLE SKEW RDIFFERENCE RNEG-RPLUS C-REDUCE TI-NEXT RABS-POSITIVE2

RPLUS-RLEQ-REWRITE RPLUS-RLEQ-REWRITE2 RLEQ-RTIMES-HACK
IN-R IN-INTERVAL RHO-RLEQ0 RLEQ-TRANSITIVE RLEQ-RPLUS-HACK3
RLEQ-HALF-RPLUS RLEQ-RTIMES-HACK RPLUS-RLEQ-REWRITE)))

Figure 5: Proof of SUBLEMMA-A Showing USE Hints

the resulting proof, a tool called the EHDM Proof Chain Analyzer is run over the final proof and checks for
circularities. In the proof of ICCSA there is a circularity in the proof of the main theorem THEOREM1. This is
explained as follows:

This circularity is apparent, rather than real, as it occurs in the context of an inductive proof, in which the
theorem is used for i in the part of the proof that extends it to i + 1. We are working towards
constructing a proof description that reflects this induction step more straightforwardly. [11]

Unfortunately, determining whether such a circularity is apparent or real requires a fairly deep understanding of the
proof. The Boyer-Moore approach does not allow even an apparent circularity but the cost is a much more
regimented approach to proof presentation.

As an interesting aside, just as Rushby and von Henke had to deal with the structure of the inductive proof of
THEOREM1 in EHDM, we had to confront the same issue in the Boyer-Moore system. We could approach it either
by defining an appropriate induction schema to make available the required inductive hypotheses (the typical
approach in the Boyer-Moore system) or by using another approach altogether. Defining an appropriate induction
schema would have been difficult because the inductive hypothesis was really required in the proof of a large
subsidiary lemma CULMINATION. We would have needed to prove THEOREM1 and CULMINATION
simultaneously by packaging them into one lemma. This trick is used often in the Boyer-Moore prover. Our
solution was again somewhat atypical and illustrates a clever (we think) use of DEFN-SK.

THEOREM1 has form:

(PROVE-LEMMA THEOREM1 (REWRITE)
(IMPLIES (S1A I) (S1C P Q I)))

We introduced the DEFN-SK event below to define the structure of the theorem:

12

(DEFN-SK THEOREM1-ONE-STEP (I)
(FORALL (P Q)

(IMPLIES (S1A I)
(S1C P Q I))))

Notice that this is parameterized by i. Asserting (THEOREM1-ONE-STEP I) is equivalent to asserting that
THEOREM1 holds through period i. Wherever the EHDM approach used THEOREM1 in the proof, we simply
asserted THEOREM1-ONE-STEP as an additional hypothesis on the lemma, as in CULMINATION below:
(PROVE-LEMMA CULMINATION (REWRITE)
(IMPLIES
(AND (S1A (ADD1 I))

(S1C P Q I)
(NONFAULTY P (ADD1 I))
(NONFAULTY Q (ADD1 I))
(IN-R TM (ADD1 I))
(THEOREM1-ONE-STEP I))

(RLEQ (SKEW P Q TM (ADD1 I))
(RPLUS
(RQUOTIENT-NAT
(RPLUS
(RTIMES-NAT (M)

(RPLUS (DELTA)
(RTIMES (RATIONAL 2 1) (BIG-DELTA))))

(RTIMES-NAT (DIFFERENCE (N) (M))
(RTIMES (RATIONAL 2 1)

(RPLUS (EPSILON)
(RPLUS (RTIMES (RHO) (S))

(RTIMES (RATIONAL 1 2)
(RTIMES (RHO) (BIG-DELTA))))))))

(N))
(RPLUS (RTIMES (RHO) (R))

(RTIMES (RHO) (BIG-SIGMA))))))).

This made available, in the proof of CULMINATION exactly the instance of THEOREM1 required in that proof. We
then used CULMINATION in the proof (by induction on i) of the lemma:

(PROVE-LEMMA THEOREM1-VERSION1 (REWRITE)
(THEOREM1-ONE-STEP I).

CULMINATION is used in the proof of the induction step, its THEOREM1-ON-STEP hypothesis being relieved by
the inductive hypothesis. THEOREM1 follows straightforwardly from THEOREM1-VERSION1. This approach
indicates again the utility of DEFN-SK in adding clarity and proof power.

4.3 Proof Encapsulation

The Boyer-Moore logic has no convenient way of structuring a specification and proof into a collection of
‘‘modules.’’ This is largely dictated by the requirement that the specification and proof be presented in a very
‘‘bottom up’’ fashion. A collection of related units may be grouped together in the script, but there is no formal
mechanism within the logic of encapsulating them into a module or structure of any sort. This is not often a
problem but makes a large script somewhat harder to browse effectively.

In contrast, EHDM has a simple but useful structuring mechanism. Related units are grouped into modules.
Modules implement a style of information hiding by making visible only certain declarations within an
EXPORTING section. Modules gain access to one another by including a USING section.

13

4.4 Syntax

The Boyer-Moore logic is sometimes criticized for its Lisp-like syntax. This syntax has the advantage of being
uniquely-readable (unambiguous) and very easily parsed. It has the disadvantage of being different from traditional
mathematical syntax. Several papers have described proofs in the Boyer-Moore logic using a more traditional
syntax; however, these may mislead a prospective user of the theorem prover. We feel that the small effort of
learning a new syntax is well rewarded by gaining access to a powerful proof tool.

EHDM has reaped the benefits of both a readily parsable syntax and a more familiar ‘‘display’’ syntax by
implementing a table driven translator from standard EHDM syntax into a LaTEX format. This gives a nice
customizable syntax for presentation that Rushby and von Henke claim ‘‘enabled us to do most of our work using
compact and familiar notation and thereby contributed greatly to our productivity’’ [11]. We believe that this
overstates the value of this ‘‘compact and familiar notation.’’

Our experience with attempting a similar translator for the Boyer-Moore logic is that it is generally
counterproductive to try to integrate such a translator with a theorem prover that uses a different syntax for its
internal representation, proof diagnostics, and output script. If the translation could be entirely transparent to the
user, there would be no difficulty. However, users of mechanical proof tools often need to be aware of the details of
the internal representation of rewrite rules, the particular transformations on terms that they effect, and other things
that are most efficiently expressed in a syntax that is close to that used by the machine. When this is no longer true,
then syntax will not be an issue. Until then, we feel that the need to continually deal with two different forms is
confusing and largely unnecessary. Nevertheless, we have recently developed a simple facility for printing Boyer-
Moore events in a more familiar infix notation. It is not well integrated with the prover and does not serve as an
input facility to the prover. It does allow publishing Boyer-Moore forms in a syntax which may be more familiar to
typical audience.

Another problem of the EHDM translator is that the notation is not always compact and familiar. For example, we
found the expression

ρ*∆×n-m/n,

(that appears in a number of lemmas) to be impossibly confusing until we realized that the term n-m is treated as
though it were parenthesized. Here the apparent familiarity of the syntax is detrimental because the expected
precedence rules are not observed, with the result that the expression is unnecessarily confusing. This is probably a
simple flaw in the translator table. But it points up the difficulty of having the correctness of a published proof rely
not only on the prover and proof chain analyzer, but also on another tool that translates from one notation to another
in a moderately complex fashion.

5. Conclusions

There are a number of other differences between the Boyer-Moore and EHDM versions of the ICCSA proofs that
could be covered in a more detailed comparison of the two versions.

We believe that the exercise of specifying and proving the ICCSA using the Boyer-Moore prover was useful in
several ways.

• It exercised and further displayed the value of a number of the newer features of the Boyer-Moore
logic and their support in the theorem prover. These features include the CONSTRAIN and DEFN-SK
events.

• It provided the basis for a comparison with the EHDM system and a style of proof possible within that
system. This aspect will lead to a joint paper comparing the two systems on this problem.

• It provided a verified specification of the Interactive Convergence Clock Synchronization algorithm as

14

a basis for possible future work building toward a verified implementation.

We believe that two important goals of proof are to increase one’s understanding and intuition about the content and
significance of a theorem, and to provide a convincing argument that it is, in fact, valid. Mechanically supported
proofs like those in EHDM and ours contribute to both of these goals. We understand this quite subtle algorithm
and the reason it works much better for the effort. Moreover, our success in convincing a congenitally skeptical
mechanical proof checker of the validity of the correctness theorems practically guarantees that we have eliminated
any errors that the much touted ‘‘social process’’ might overlook. Such confidence is particularly comforting in
domains such as this where a well-developed intuition is difficult to cultivate; the theorem prover is not subject to
being misled by the urgings of a misguided or ill-informed intuition.

15

References

1. W. R. Bevier. "Kit and the Short Stack". Journal of Automated Reasoning 5, 4 (December 1989), 519-530.

2. W. R. Bevier and W. D. Young. "Machine Checked Proofs of the Design of a Fault-Tolerant Circuit". To appear
Formal Aspects of Computing, 1992.

3. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

4. R. S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof
Procedures. In The Correctness Problem in Computer Science, R. S. Boyer and J S. Moore, Eds., Academic Press,
London, 1981.

5. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, Boston, 1988.

6. R.S. Boyer, D. Goldschlag, M. Kaufmann, J S. Moore. Functional Instantiation in First Order Logic.
Proceedings of the 1989 Workshop on Programming Logic, May, 1989.

7. W. A. Hunt, Jr. "Microprocessor Design Verification". Journal of Automated Reasoning 5, 4 (December 1989),
429-460.

8. M. Kaufmann. "An Extension of the Boyer-Moore Theorem Prover to Handle First-Order Quantifiers". To
appear in Journal of Automated Reasoning, 1992.

9. L. Lamport and P. M. Melliar-Smith. "Synchronizing clocks in the presence of faults". Journal of the ACM 32,
1 (January 1985), 52-78.

10. NASA Conference Publication 2377. Peer Review of a Formal Verification/Design Proof Methodology.
NASA, July, 1983.

11. J. Rushby and F. von Henke. Formal Verification of a Fault-Tolerant Clock Synchronization Algorithm.
NASA CR-4239, June 1989.

12. W. D. Young. "A Mechanically Verified Code Generator". Journal of Automated Reasoning 5, 4 (December
1989), 493-518.

16

Appendix
The ICCSA Event List

This appendix contains the Boyer-Moore event list representing the specification and proof of the Interactive
Convergence Clock Synchronization Algorithm. It does not contain the entire proof since it is built ‘‘on top of’’ a
standard library of integer facts. For brevity we have also not included the collection of definitions and lemmas
defining the rationals library on which our proof is constructed. The complete script is available on request.

LEMMA events are macro expanded into a PROVE-LEMMA followed by a DISABLE.

;; LENGTH

(defn length (x)
(if (nlistp x)

0
(add1 (length (cdr x)))))

(prove-lemma length-append (rewrite)
(equal (length (append x y))

(plus (length x) (length y))))

(lemma length-0 (rewrite)
(equal (equal (length x) 0)

(nlistp x)))

;; PLISTP

(defn plistp (x)
(if (nlistp x)

(equal x nil)
(plistp (cdr x))))

(defn plist (x)
(if (nlistp x)

nil
(cons (car x) (plist (cdr x)))))

;; FIRSTN and RESTN

(defn firstn (lst n)
(if (zerop n)

nil
(cons (car lst)

(firstn (cdr lst) (sub1 n)))))

(lemma firstn-n (rewrite)
(implies (equal n (length lst))

(equal (firstn lst n)
(plist lst))))

(lemma firstn-append-lessp (rewrite)
(implies (leq m (length lst))

(equal (firstn (append lst lst2) m)
(firstn lst m))))

(defn restn (lst n)
(if (zerop n)

lst
(restn (cdr lst) (sub1 n))))

(lemma restn-n (rewrite)
(implies (and (plistp lst)

(equal n (length lst)))
(equal (restn lst n) nil))

((enable restn)))

17

(lemma restn-1 (rewrite)
(implies (lessp m 1)

(equal (restn (list x) m)
(list x)))

((enable restn)))

(lemma restn-append (rewrite)
(implies (leq n (length lst1))

(equal (restn (append lst1 lst2) n)
(append (restn lst1 n) lst2)))

((enable restn)))

(lemma firstn-append-restn (rewrite)
(implies (leq m (length lst))

(equal (append (firstn lst m)
(restn lst m))

lst)))

;; RATIONALS WITH NATURALS

(defn rinverse-nat (n)
(reduce (rational 1 (fix n))))

(lemma reduce-rinverse-nat (rewrite)
(equal (reduce (rinverse-nat n))

(rinverse-nat n))
((enable reduce-reduce)))

(defn rtimes-nat (i r)
(rtimes (rational (fix i) 1) r))

(defn rtimes-nat2 (r i)
(rtimes r (rational (fix i) 1)))

(lemma reduce-rtimes-nat (rewrite)
(and (equal (reduce (rtimes-nat x y))

(rtimes-nat x y))
(equal (reduce (rtimes-nat2 x y))

(rtimes-nat2 x y)))
((enable rtimes-nat rtimes-nat2)
(enable-theory reductions)))

(lemma rtimes-nat-rtimes-nat2 (rewrite)
(equal (rtimes-nat2 x y)

(rtimes-nat y x))
((enable rtimes-nat rtimes-nat2 commutativity-of-rtimes)))

(lemma rneg-rtimes-nat (rewrite)
(equal (rneg (rtimes-nat i r))

(rtimes-nat i (rneg r)))
((enable rtimes-nat rneg-rtimes)
(disable correctness-of-cancel-rneg-terms-from-equality)))

(defn rquotient-nat (r i)
(rtimes r (rinverse-nat i)))

(lemma rneg-rquotient-nat (rewrite)
(equal (rneg (rquotient-nat r n))

(rquotient-nat (rneg r) n))
((enable rquotient-nat rneg-rtimes

rneg-rtimes2)))

(disable rinverse-nat)
(disable rtimes-nat)
(disable rtimes-nat2)
(disable rquotient-nat)

(lemma rtimes-nat-add1 (rewrite)
(equal (rtimes-nat (add1 i) r)

(rplus r (rtimes-nat i r)))
((enable rtimes-nat rtimes-add1)))

18

(lemma rtimes-nat-zerop (rewrite)
(implies (zerop i)

(equal (rtimes-nat i r)
(rational 0 1)))

((enable rtimes-nat rzerop-rtimes)))

(lemma rinverse-nat-positive (rewrite)
(rleq (rational 0 1)

(rinverse-nat n))
((enable rinverse-nat numberp-inverse-nonnegative

rleq-reduce)))

(lemma rabs-rinverse-nat (rewrite)
(equal (rabs (rinverse-nat n))

(rinverse-nat n))
((enable rabs-positive2 rinverse-nat-positive

reduce-rinverse-nat)))

(lemma rquotient-nat-rtimes-nat (rewrite)
(implies (not (zerop n))

(equal (rquotient-nat (rtimes-nat n x) n)
(reduce x)))

((enable rtimes-inverse rtimes-nat rquotient-nat
rinverse-nat nzerop-denominator-reduce)))

(lemma rtimes-nat-rquotient-nat (rewrite)
(implies (not (zerop n))

(equal (rtimes-nat n (rquotient-nat x n))
(reduce x)))

((enable rtimes-inverse rtimes-nat rquotient-nat rinverse-nat
nzerop-denominator-reduce commutativity-of-rtimes
commutativity2-of-rtimes rationalize-invert rtimes-1)))

(lemma rquotient-nat-rplus (rewrite)
(equal (rquotient-nat (rplus x y) n)

(rplus (rquotient-nat x n)
(rquotient-nat y n)))

((enable rquotient-nat rtimes-rplus-right-distributivity)))

(lemma div-mon2 (rewrite)
(implies (and (rleq x y)

(not (zerop z)))
(rleq (rquotient-nat x z)

(rquotient-nat y z)))
((enable rquotient-nat rtimes-right-cancellation rinverse-nat

nzerop-denominator-reduce reciprocal-positive)))

(lemma rationalize-rleq2 (rewrite)
(implies (not (zerop n))

(rlessp (rational 0 1) (rational n 1)))
((enable rleq rlessp fix-rational ilessp rationalp

integerp)))

(lemma rtimes-nat2-positive-preserves-rleq (rewrite)
(implies (and (not (zerop n))

(rleq (rtimes-nat2 x n)
(rtimes-nat2 y n)))

(rleq x y))
((enable rtimes-right-cancellation rtimes-nat2 rationalize-rleq2)))

;; RSUM and RMEAN

(defn rsum (lst)
(if (nlistp lst)

(rational 0 1)
(rplus (car lst)

(rsum (cdr lst)))))

(disable rsum)

(lemma reduce-rsum (rewrite)
(equal (reduce (rsum lst))

(rsum lst))
((enable reduce-rplus rsum)))

19

(lemma rplus-rsum (rewrite)
(equal (rplus (rsum lst1) (rsum lst2))

(rsum (append lst1 lst2)))
((enable rsum rplus-rzerop reduce-rsum

associativity-of-rplus)))

(lemma rsum-append (rewrite)
(equal (rsum (append lst1 lst2))

(rplus (rsum lst1) (rsum lst2)))
((enable associativity-of-rplus rsum rplus-rzerop

reduce-rsum)))

(defn rmean (lst)
(rquotient-nat (rsum lst) (length lst)))

(defn all-rlessp (lst x)
(if (nlistp lst)

t
(and (rlessp (car lst) x)

(all-rlessp (cdr lst) x))))

(lemma all-rlessp-append (rewrite)
(equal (all-rlessp (append x y) z)

(and (all-rlessp x z)
(all-rlessp y z)))

((enable all-rlessp)))

(lemma all-rlessp-rleq-transitive (rewrite)
(implies (and (all-rlessp lst x)

(rleq x y))
(all-rlessp lst y))

((enable rlessp-rleq-transitivity)))

(lemma sum-bound (rewrite)
(implies (and (listp lst)

(all-rlessp lst x))
(rlessp (rsum lst)

(rtimes-nat (length lst) x)))
((enable all-rlessp rsum rtimes-nat-zerop

rtimes-nat-add1 rlessp-rleq rplus-rzerop
rlessp-reduce rlessp-rplus-pair)))

(lemma nzerop-inverse-positive (rewrite)
(implies (not (zerop n))

(RLESSP (RATIONAL 0 1)
(RATIONAL 1 n)))

((enable rlessp rationalp fix-rational ilessp)))

(lemma mean-bound (rewrite)
;; if all of the elements in the list are less than x,
;; then the mean of the list is less than x
(implies (and (listp lst)

(all-rlessp lst x))
(rlessp (rmean lst) x))

((use (sum-bound))
(enable rlessp-invert-rtimes rinverse-numberp-inverse

nzerop-inverse-positive length-0 rtimes-nat
nzerop-denominator-reduce rquotient-nat rinverse-nat)))

;; MAP-RABS

(defn map-rabs (lst)
(if (nlistp lst)

nil
(cons (rabs (car lst))

(map-rabs (cdr lst)))))

(lemma length-map-rabs (rewrite)
(equal (length (map-rabs lst))

(length lst)))

(lemma map-rabs-append (rewrite)
(equal (map-rabs (append x y))

(append (map-rabs x) (map-rabs y))))

20

(lemma plistp-map-rabs (rewrite)
(plistp (map-rabs lst))

((enable map-rabs plistp)))

(lemma plist-map-rabs (rewrite)
(equal (plist (map-rabs x))

(map-rabs x))
((enable map-rabs plist)))

(lemma rabs-rsum-map-rabs (rewrite)
(rleq (rabs (rsum lst))

(rsum (map-rabs lst)))
((enable rsum rabs-rplus-hack)))

(lemma abs-mean (rewrite)
;; the abs of the mean is leq the mean of the absolute values

(rleq (rabs (rmean lst))
(rmean (map-rabs lst)))

((enable rabs-rtimes rtimes-rleq2 rabs-rsum-map-rabs
rinverse-nat-positive rquotient-nat rzerop-rtimes
rabs-rinverse-nat length-map-rabs)))

(lemma listp-map-rabs (rewrite)
(equal (listp (map-rabs x))

(listp x)))

;; REARRANGE LEMMAS

(lemma rearrange1 (rewrite)
(equal (rdifference x y)

(rplus (rdifference x (rplus u v))
(rplus (rdifference (rplus w z) y)

(rdifference (rplus u v) (rplus w z)))))
((enable rdifference rneg-rplus associativity-of-rplus reduce-rneg)))

(lemma rabs-negation-equality-hack (rewrite)
(equal (rabs (rplus y (rplus (rneg w) (rneg z))))

(rabs (rplus w (rplus z (rneg y)))))
((use (rabs-rneg (x (rplus y (rplus (rneg w) (rneg z))))))
(enable commutativity-of-rplus commutativity2-of-rplus

rplus-reduce rneg-rneg rneg-rplus)))

(lemma rearrange2-transitivity (rewrite)
(implies
(rleq (rabs (rplus x (rneg y)))

(rplus (rabs (rplus x (rplus (rneg u) (rneg v))))
(rplus (rabs (rplus u

(rplus v (rplus (rneg w) (rneg z)))))
(rabs (rplus w (rplus z (rneg y)))))))

(rleq (rabs (rplus x (rneg y)))
(rplus (rabs (rplus x (rplus (rneg u) (rneg v))))

(rplus (rabs (rplus y (rplus (rneg w) (rneg z))))
(rabs (rplus u

(rplus v
(rplus (rneg w) (rneg z)))))))))

((use (rleq-transitive
(x (rabs (rplus x (rneg y))))
(y (rplus (rabs (rplus x (rplus (rneg u) (rneg v))))

(rplus (rabs (rplus u (rplus v (rplus (rneg w) (rneg z)))))
(rabs (rplus w (rplus z (rneg y)))))))

(z (rplus (rabs (rplus x (rplus (rneg u) (rneg v))))
(rplus (rabs (rplus y (rplus (rneg w) (rneg z))))

(rabs (rplus u (rplus v (rplus (rneg w) (rneg z))))))))))
(enable rabs-negation-equality-hack

rleq-reflexive commutativity2-of-rplus
commutativity-of-rplus rleq-reduce rplus-cancel)))

(lemma rearrange2 (rewrite)
(rleq (rabs (rplus (rdifference x (rplus u v))

(rplus (rdifference (rplus w z) y)
(rdifference (rplus u v) (rplus w z)))))

(rplus (rabs (rdifference x (rplus u v)))
(rplus (rabs (rdifference y (rplus w z)))

(rabs (rplus u (rdifference v (rplus w z)))))))

21

((use (rabs-rplus-rleq2 (x (rdifference x (rplus u v)))
(y (rdifference (rplus u v) (rplus w z)))
(z (rdifference (rplus w z) y)))

(rabs-rneg (x (rdifference (rplus w z) y))))
(enable rplus-reduce rneg-rneg rdifference

reduce-rneg associativity-of-rplus
rneg-rplus rdifference rearrange2-transitivity)))

(lemma rearrange (rewrite)
(rleq (rabs (rdifference x y))

(rplus (rabs (rdifference x (rplus u v)))
(rplus (rabs (rdifference y (rplus w z)))

(rabs (rplus u (rdifference v (rplus w z)))))))
((use (rearrange1) (rearrange2))))

(lemma rearrange-alt (rewrite)
(rleq (rabs (rplus x (rneg y)))

(rplus (rabs (rplus x (rneg (rplus u v))))
(rplus (rabs (rplus u (rneg w)))

(rabs (rplus y (rneg (rplus w v)))))))

((use (rearrange (z v)))
(enable rplus-reduce rneg-rneg reduce-rneg

associativity-of-rplus rneg-rplus rdifference commutativity-of-rplus)))

(lemma rearrange3 (rewrite)
(rleq (rabs (rdifference x y))

(rplus (rabs (rdifference u y))
(rplus (rabs (rdifference v x))

(rplus (rabs (rdifference v w))
(rabs (rdifference u w))))))

((use (rabs-rplus-rleq3 (x (rplus u (rneg y)))
(y (rplus x (rneg v)))
(z (rplus v (rneg w)))
(w (rplus w (rneg u))))

(rleq-transitive
(x (rabs (rplus x (rneg y))))
(y (rabs (rplus (rplus u (rneg y))

(rplus (rplus x (rneg v))
(rplus (rplus v (rneg w))

(rplus w (rneg u)))))))
(z (rplus (rabs (rplus u (rneg y)))

(rplus (rabs (rplus v (rneg x)))
(rplus (rabs (rplus v (rneg w)))

(rabs (rplus u (rneg w)))))))))
(enable rplus-reduce rneg-rneg reduce-rneg

rabs-rdifference associativity-of-rplus rneg-rplus
rdifference commutativity-of-rplus rleq-reflexive)))

(lemma rearrange4 (rewrite)
(rleq (rabs (rdifference (rplus a x) (rplus b y)))

(rplus (rabs (rdifference a b))
(rplus (rabs x) (rabs y))))

((use (rabs-rplus-rleq2 (x (rplus a (rneg b))) (y x) (z (rneg y))))
(enable rdifference commutativity-of-rplus commutativity2-of-rplus

associativity-of-rplus rabs-rneg rneg-rplus)))

;; REARRANGE-DELTA from module JUGGLE

(lemma rearrange-delta-step1 nil
(implies (and (not (zerop i))

(rleq (rplus x (rplus y (rplus z (rplus w v)))) d))
(rleq (rplus (rtimes-nat2 x i)

(rplus (rtimes-nat2 y i)
(rplus (rtimes-nat2 z i)

(rplus (rtimes-nat2 w i)
(rtimes-nat2 v i)))))

(rtimes-nat2 d i)))
((enable rleq requal rtimes-nat2 rtimes-rplus-right-factorization

rlessp-antisymmetric rlessp-trichotomy rationalized-non-zerop-rlessp)
(enable-theory reductions)))

22

(lemma rearrange-delta-step2 nil
(implies (and (lessp m n)

(rleq x (rtimes-nat2 d (difference n m))))
(rleq (rplus (rtimes-nat2 d m) x) (rtimes-nat2 d n)))

((enable rtimes-nat2 rzerop-rtimes rplus-rzerop rleq-reduce
rtimes-distributes-over-plus rplus-cancel rtimes-rzerop)))

(lemma rearrange-delta-step3 nil
(implies (and (not (zerop i))

(rleq (rplus x (rplus y (rplus z (rplus w (rplus v u)))))
(rtimes-nat2 d i)))

(rleq (rplus (rquotient-nat x i)
(rplus (rquotient-nat y i)

(rplus (rquotient-nat z i)
(rplus (rquotient-nat w i)

(rplus (rquotient-nat v i)
(rquotient-nat u i))))))

d))
((enable rtimes-nat2 rzerop-rtimes rplus-rzerop rleq-reduce

rquotient-nat rtimes-rplus-right-factorization rplus-cancel
rtimes-rzerop rinverse-nat nzerop-denominator-reduce
rtimes-multiply-by-rinverse rinverse-numberp-inverse
nzerop-inverse-positive)))

(lemma rearrange-delta-step4 (rewrite)
(equal (rplus (rquotient-nat x n)

(rplus (rquotient-nat y n)
(rplus (rquotient-nat z n)

(rplus w (rplus (rquotient-nat u n) v)))))
(rplus (rquotient-nat (rplus x (rplus y (rplus z u))) n)

(rplus w v)))
((enable associativity-of-rplus commutativity-of-rplus reduce-rtimes

commutativity2-of-rplus rquotient-nat rinverse-nat
rtimes-rplus-right-factorization)))

(lemma rearrange-delta-step5 (rewrite)
(equal (rplus (rtimes-nat m d)

(rplus (rtimes-nat y (rtimes (rational 2 1) (rplus e z)))
(rplus (rtimes-nat (plus m m) w) (rtimes-nat y x))))

(rplus (rtimes-nat m (rplus d (rtimes (rational 2 1) w)))
(rtimes-nat y

(rtimes (rational 2 1)
(rplus e (rplus z (rtimes (rational 1 2) x)))))))

((enable-theory reductions)
(enable rtimes-nat associativity-of-rplus

rtimes-distributes-over-rplus commutativity-of-rtimes
commutativity2-of-rtimes half3
commutativity-of-rplus commutativity2-of-rplus
rtimes-distributes-over-plus rtimes2-expand)))

(lemma rearrange-delta (rewrite)
(implies (and (lessp m n)

(numberp m)
(rleq (rplus (rtimes (rational 2 1) (rplus epsilon (rtimes rho s)))

(rplus (rquotient-nat (rtimes-nat (times 2 m) big-delta)
(difference n m))

(rplus (rquotient-nat (rtimes-nat n (rtimes rho r))
(difference n m))

(rplus (rtimes rho big-delta)
(rquotient-nat

(rtimes-nat n (rtimes rho big-sigma))
(difference n m))))))

delta))

23

(rleq (rplus (rquotient-nat
(rplus
(rtimes-nat m

(rplus delta
(rtimes (rational 2 1) big-delta)))

(rtimes-nat
(difference n m)
(rtimes (rational 2 1)

(rplus epsilon
(rplus (rtimes rho s)

(rtimes (rational 1 2)
(rtimes rho big-delta)))))))

n)
(rplus (rtimes rho r)

(rtimes rho big-sigma)))
delta))

((use (rearrange-delta-step1
(d delta)
(i (difference n m))
(x (rtimes (rational 2 1)

(rplus epsilon (rtimes rho s))))
(y (rquotient-nat (rtimes-nat (times 2 m) big-delta)

(difference n m)))
(z (rquotient-nat (rtimes-nat n (rtimes rho r))

(difference n m)))
(w (rtimes rho big-delta))
(v (rquotient-nat (rtimes-nat n (rtimes rho big-sigma))

(difference n m))))
(rearrange-delta-step2
(x
(rplus
(rtimes-nat2 (rtimes (rational 2 1)

(rplus epsilon (rtimes rho s)))
(difference n m))

(rplus (reduce (rtimes-nat (times 2 m) big-delta))
(rplus (reduce (rtimes-nat n (rtimes rho r)))

(rplus (rtimes-nat2 (rtimes rho big-delta)
(difference n m))

(reduce (rtimes-nat n
(rtimes rho big-sigma))))))))

(d delta))
(rearrange-delta-step3
(i n)
(d delta)
(x (rtimes-nat2 delta m))
(y (rtimes-nat2 (rtimes (rational 2 1)

(rplus epsilon (rtimes rho s)))
(difference n m)))

(z (rtimes-nat (times 2 m) big-delta))
(w (rtimes-nat n (rtimes rho r)))
(v (rtimes-nat2 (rtimes rho big-delta)

(difference n m)))
(u (rtimes-nat n

(rtimes rho big-sigma)))))
(enable rtimes-nat-rquotient-nat rtimes-nat-rtimes-nat2

reduce-rtimes-nat
rquotient-nat-rtimes-nat rearrange-delta-step4 rearrange-delta-step5)

(enable-theory reductions)))

;; THE INTERACTIVE CONVERGENCE ALGORITHM PROOF

(constrain parameters-intro (rewrite)
;; R and S

(and (rationalp (R))
(rationalp (S))
(rlessp (rational 0 1) (R)) ;; posR
(rlessp (rational 0 1) (S)) ;; posS
(rleq (rtimes (rational 3 1) (S)) (R)) ;; C1

;; rho
(rationalp (rho))
(rleq (rational 0 1) (rtimes (rational 1 2) (rho))) ;; rho_pos
(rlessp (rtimes (rational 1 2) (rho)) ;; rho_small

(rational 1 1))

24

;; other parameters
(rationalp (epsilon))
(rationalp (delta))
(rationalp (delta0))
(rationalp (big-sigma))
(rationalp (big-delta))
(numberp (n))
(not (equal (n) 0)) ;; C0_a
(numberp (m)) ;; C0_b
(lessp (m) (n))
(rlessp (rational 0 1) (big-delta)) ;; C0_c
(rleq (big-sigma) (s)) ;; C2
(rleq (big-delta) (big-sigma)) ;; C3
(rleq (rplus (delta) ;; C4

(rplus (epsilon)
(rtimes (rational 1 2)

(rtimes (rho) (s)))))
(big-delta))

(rleq (rplus (delta0) (rtimes (rho) (R))) ;; C5
(delta))

(rleq (rplus (rtimes (rational 2 1) ;; c6
(rplus (epsilon) (rtimes (rho) (S))))

(rplus (rquotient-nat (rtimes-nat (times 2 (m)) (big-delta))
(difference (n) (m)))

(rplus (rquotient-nat (rtimes-nat (n) (rtimes (rho) (r)))
(difference (n) (m)))

(rplus (rtimes (rho) (big-delta))
(rquotient-nat

(rtimes-nat (n) (rtimes (rho) (big-sigma)))
(difference (n) (m)))))))

(delta)))
((R (lambda () (rational 3 1)))
(S (lambda () (rational 1 1)))
(rho (lambda () (rational 0 1)))
(epsilon (lambda () (rational 0 1)))
(delta (lambda () (rational 0 1)))
(delta0 (lambda () (rational 0 1)))
(big-sigma (lambda () (rational 1 2)))
(big-delta (lambda () (rational 1 2)))
(n (lambda () 1))
(m (lambda () 0))))

(lemma big-sigma-positive (rewrite)
(rlessp (rational 0 1) (big-sigma))

((use (rlessp-rleq-transitivity (x (rational 0 1)) (y (big-delta)) (z (big-sigma))))))

(lemma S-rleq (rewrite)
(and (rlessp (rational 0 1) (S))

(rleq (rational 0 1) (S)))
((use (rlessp-rleq (x (rational 0 1)) (y (s))))))

(lemma c5 (rewrite)
(rleq (rplus (delta0) (rtimes (rho) (r))) (delta)))

;; This is just a part of parameters-intro isolated so that I could USE it more
;; conveniently.

(lemma c6 (rewrite)
(rleq (rplus (rtimes (rational 2 1) (rplus (epsilon) (rtimes (rho) (S))))

(rplus (rquotient-nat (rtimes-nat (times 2 (m)) (big-delta))
(difference (n) (m)))

(rplus (rquotient-nat (rtimes-nat (n) (rtimes (rho) (r)))
(difference (n) (m)))

(rplus (rtimes (rho) (big-delta))
(rquotient-nat

(rtimes-nat (n) (rtimes (rho) (big-sigma)))
(difference (n) (m)))))))

(delta))
((use (parameters-intro))))

(lemma SinR (rewrite)
(rlessp (S) (R))

((enable rtimes3-rlessp)))

25

(constrain T0-intro (rewrite)
(rationalp (T0))

((T0 (lambda () (rational 0 1)))))

(defn Ti (i)
(rplus (T0) (rtimes-nat i (R))))

(disable ti)

(lemma ti-zerop (rewrite)
(implies (zerop i)

(equal (ti i) (reduce (t0))))
((enable ti rplus-rzerop rtimes-nat-zerop)))

(lemma ti-next (rewrite)
(equal (ti (add1 i))

(rplus (ti i) (R)))
((enable commutativity-of-rplus ti rtimes-nat-add1

commutativity2-of-rplus
rplus-reduce)))

(lemma not-numberp-ti (rewrite)
(implies (not (numberp i))

(equal (ti i) (ti 0)))
((enable ti rtimes-nat-zerop)))

;; We use a different but equivalent notion of Rdef. The Rushby approach uses
;; an unnecessary existential quantifier.

(defn-sk+ Rdef (tm i)
(exists pi

(and (rleq (rational 0 1) pi)
(rleq pi (R))
(equal (reduce tm) (rplus (ti i) pi)))))

(defn in-interval (tm low high)
(and (rleq low tm)

(rleq tm high)))

(disable in-interval)

(lemma in-interval-inclusion (rewrite)
(implies (and (in-interval y low x)

(in-interval x low high))
(in-interval y low high))

((enable rleq-transitive in-interval)))

(defn in-R (tm i)
(in-interval tm (Ti i) (ti (add1 i))))

(lemma not-numberp-in-r (rewrite)
(implies (not (numberp i))

(equal (in-r tm i)
(in-r tm 0)))

((enable in-r not-numberp-ti)))

(disable in-r)

;; This shows that the two definitions of Rdef are equivalent. Subsequently, we won’t
;; bother with Rushby’s definition.

(prove-lemma Rdef-in-R-equivalence ()
(iff (Rdef tm i)

(in-R tm i))
((use (rdef-necc)

(rdef-suff (pi (rplus tm (rneg (ti i))))))
(enable in-interval rdifference rleq-rdifference3 in-r

rleq-rdifference4 ti-next rleq-rplus rplus-preserves-rleq)
(do-not-induct t)))

;; Again, the Rushby definition is quite different but we prove below
;; the equivalence of the two.

26

(defn-sk+ Sdef (tm i)
(exists pi

(and (rleq (rational 0 1) pi)
(rleq pi (S))
(equal (reduce tm) (rplus (ti i) (rplus (rdifference (R) (S)) pi))))))

(defn in-S (tm i)
(in-interval tm

(rdifference (Ti (add1 i)) (S))
(Ti (add1 i))))

(disable in-s)

(lemma sdef-in-s-equivalence-case3 (rewrite)
(implies (and (equal (rplus (s) tm)

(rplus (ti i)
(rplus (r) (pi-1 i tm))))

(rleq (pi-1 i tm) (s))
(rleq (rational 0 1) (pi-1 i tm)))

(rleq tm (rplus (ti i) (r))))
((use (rleq-rplus (z tm) (y (rplus (ti i) (r))) (x (rdifference (s) (pi-1 i tm)))))
(enable reduce-rplus rdifference commutativity-of-rplus

commutativity2-of-rplus associativity-of-rplus
rleq-rdifference-rzero)))

(lemma sdef-equivalence-hack (rewrite)
(implies (rleq tm (rplus (ti i) (r)))

(rleq (rplus tm
(rplus (rneg (ti i)) (rneg (r))))

(rational 0 1)))
((enable-theory reductions)
(enable rleq requal)))

(prove-lemma Sdef-in-S-equivalence ()
(iff (Sdef tm i)

(in-S tm i))
((use (sdef-necc)

(sdef-suff (pi (rdifference tm (rplus (ti i) (rdifference (r) (s)))))))
(enable-theory reductions)
(enable in-s in-interval rdifference associativity-of-rplus

rleq-rplus ti-next sdef-in-s-equivalence-case3 sdef-equivalence-hack
rleq-rplus-hack rneg-rplus rneg-rneg rdifference rleq-rplus-hack2)))

(lemma inRS (rewrite)
(implies (in-S tm i)

(in-R tm i))
((enable rdifference sinr rlessp-rdifference2 in-s in-r in-interval

associativity-of-rplus commutativity-of-rplus ti-next)
(use (rplus-preserves-rleq3

(x (ti i))
(y tm)
(z (rplus (r) (rneg (s))))))))

(lemma Ti-in-S (rewrite)
(in-S (Ti (add1 i)) i)

((enable-theory reductions)
(enable in-s in-interval rdifference ti-next rleq requal

associativity-of-rplus rlessp-rleq s-rleq rleq-reflexive)))

(lemma in-S-lemma (rewrite)
(implies (and (in-S t1 i)

(in-S t2 i))
(rleq (rabs (rdifference t1 t2)) (S)))

((use (betweenness-distance (p1 t1) (p2 t2)
(low (rplus (ti i) (rplus (r) (rneg (s)))))
(high (rplus (ti i) (r)))))

(enable in-s in-interval rdifference rneg-rplus rneg-rneg reduce-rneg
ti-next associativity-of-rplus rleq-transitive rabs-positive2
rleq-reduce rleq-reflexive s-rleq)))

27

(lemma in-S-lemma2 (rewrite)
(implies (and (in-S t1 i)

(in-S t2 i))
(rleq (rabs (rplus t1 (rneg t2))) (S)))

((use (in-s-lemma))
(enable rdifference)))

(constrain clock-intro (rewrite)
(rationalp (clock p ct))

((clock (lambda (x y) (rational 0 1)))))

(lemma rho-rleq0 (rewrite)
(rleq (rational 0 1) (rho))

((use (rtimes-rleq (x (rational 1 2)) (y (rho))))))

(defn-sk+ good-clock (p low high)
;; This says that p’s clock is good within the interval [low, high]
;; where rho is the maximum clock drift rate.
(forall (t1 t2)

(implies (and (in-interval t1 low high)
(in-interval t2 low high))

(rleq (rabs (rplus (clock p t1)
(rplus (rneg (clock p t2))

(rplus (rneg t1) t2))))
(rtimes (rational 1 2)

(rtimes (rho)
(rabs (rplus t1 (rneg t2)))))))))

;; Delta2 is the function that reads the difference between the clocks of r and p
;; in period i. If either of r or p is not a process, then all bets are off.

(constrain delta2-intro (rewrite)
(and (rationalp (delta2 r p i))

(equal (delta2 p p i) (rational 0 1))
(implies (not (numberp i))

(equal (delta2 r p i)
(delta2 r p 0)))

(equal (reduce (delta2 p q i))
(delta2 p q i)))

((delta2 (lambda (r p i) (rational 0 1)))))

(defn d2-bar (r p i)
(if (and (not (equal r p))

(rlessp (rabs (delta2 r p i)) (big-delta)))
(delta2 r p i)

(rational 0 1)))

(disable d2-bar)

;; This assumes that processes are numbered from 1..(n).

(defn d2-bar-list (n p i)
(if (zerop n)

nil
(cons (d2-bar n p i) (d2-bar-list (sub1 n) p i))))

(lemma length-d2-bar-list (rewrite)
(equal (length (d2-bar-list n p i))

(fix n)))

(defn d2-bar-mean (n p i)
(rmean (d2-bar-list n p i)))

(disable d2-bar-mean)

(defn delta1 (p i)
(d2-bar-mean (n) p i))

(disable delta1)

28

(lemma non-numberp-d2-bar-list (rewrite)
(implies (not (numberp i))

(equal (d2-bar-list n p i)
(d2-bar-list n p 0)))

((enable delta1 d2-bar)))

(lemma non-numberp-delta1 (rewrite)
(implies (not (numberp i))

(equal (delta1 p i)
(delta1 p 0)))

((enable delta1 non-numberp-d2-bar-list
d2-bar-mean)))

(constrain corr0-intro (rewrite)
(and (rationalp (corr0))

(equal (reduce (corr0)) (corr0)))
((corr0 (lambda () (rational 0 1)))))

(defn corr (p i)
(if (zerop i)

(corr0)
(rplus (corr p (sub1 i))

(delta1 p (sub1 i)))))

(lemma corr-add1 (rewrite)
(equal (corr p (add1 i))

(rplus (corr p i) (delta1 p i)))
((enable non-numberp-delta1 corr)))

(defn adjusted (p i tm)
(rplus tm (corr p i)))

(disable adjusted)

(lemma adjusted-zero (rewrite)
(equal (adjusted p 0 tm)

(rplus tm (corr0)))
((enable adjusted)))

(lemma adjusted-reduce (rewrite)
(equal (adjusted p i (reduce tm))

(adjusted p i tm))
((enable adjusted rplus-reduce)))

(lemma not-numberp-adjusted (rewrite)
(implies (not (numberp i))

(equal (adjusted p i tm)
(adjusted p 0 tm)))

((enable adjusted)))

(lemma adjusted-rplus (rewrite)
(equal (adjusted p i (rplus x y))

(rplus (adjusted p i x) y))
((enable adjusted associativity-of-rplus

commutativity-of-rplus)))

(defn c (p i tm)
(clock p (adjusted p i tm)))

(disable c)

(lemma clock-prop (rewrite)
(equal (c p (add1 i) tm)

(c p i (rplus tm (delta1 p i))))
((enable c adjusted corr non-numberp-delta1

associativity-of-rplus commutativity-of-rplus)))

(lemma c-reduce (rewrite)
(equal (c p i (reduce tm))

(c p i tm))
((enable c adjusted-reduce)))

29

(lemma c-commutativity (rewrite)
(equal (c p i (rplus y x))

(c p i (rplus x y)))
((enable commutativity-of-rplus)))

(lemma d2-bar-prop (rewrite)
(rlessp (rabs (d2-bar p q i)) (big-delta))

((enable d2-bar)))

(defn skew (p q tm i)
(rabs (rdifference (c p i tm)

(c q i tm))))

(disable skew)

(lemma not-numberp-skew (rewrite)
(implies (not (numberp i))

(equal (skew p q tm i)
(skew p q tm 0)))

((enable skew c not-numberp-adjusted)))

(defn nonfaulty (p i)
(good-clock p (adjusted p 0 (ti 0)) (adjusted p i (ti (add1 i)))))

(lemma not-numberp-nonfaulty (rewrite)
(implies (not (numberp i))

(equal (nonfaulty p i)
(nonfaulty p 0)))

((enable nonfaulty not-numberp-adjusted)))

(defn faulty (p i)
(not (nonfaulty p i)))

(disable nonfaulty)

(defn-sk+ S1A (i)
(forall r

(implies (and (leq (add1 (m)) r)
(leq r (n)))

(nonfaulty r i))))

(defn-sk+ S1C (p q i)
(forall tm

(implies (and (nonfaulty p i)
(nonfaulty q i)
(in-R tm i))

(rleq (skew p q tm i) (delta)))))

(lemma not-numberp-S1C (rewrite)
(implies (and (not (numberp i))

(S1C p q 0))
(S1C p q i))

((use (S1C-necc (i 0) (tm (tm i p q))))
(enable not-numberp-skew not-numberp-nonfaulty not-numberp-in-r)))

(defn S2 (p i)
(rlessp (rabs (rdifference (corr p (add1 i))

(corr p i)))
(big-sigma)))

(disable s2)

;; These are the basic assumptions of the theorem

(axiom A0 (rewrite)
(rlessp (skew p q (ti 0) 0) (delta0)))

(defn-sk+ some-ok-time (p q i)
(exists t0

(and (in-S t0 i)
(rlessp (rabs (rdifference (c p i (rplus t0 (delta2 q p i)))

(c q i t0)))
(epsilon)))))

30

(axiom A2 (rewrite)
(implies (and (nonfaulty p i)

(nonfaulty q i)
(S1C p q i)
(S2 p i))

(and (rleq (rabs (delta2 q p i)) (s))
(some-ok-time p q i))))

(lemma d2-bar-list-listp (rewrite)
(equal (listp (d2-bar-list n p i))

(not (zerop n))))

(lemma d2-bar-list-all-rlessp-big-delta (rewrite)
(all-rlessp (map-rabs (d2-bar-list n p i))

(big-delta))
((enable d2-bar-prop)))

(disable rmean)

(lemma delta1-rlessp (rewrite)
(rlessp (rabs (delta1 p i))

(big-sigma))
((use (rlessp-rleq-transitivity2 (x (rabs (delta1 p i)))

(y (rmean (map-rabs (d2-bar-list (n) p i))))
(z (big-sigma)))

(all-rlessp-rleq-transitive (x (big-delta)) (y (big-sigma))
(lst (map-rabs (d2-bar-list (n) p i))))

(mean-bound (lst (map-rabs (d2-bar-list (n) p i))) (x (big-sigma))))
(enable delta1 d2-bar-mean abs-mean listp-map-rabs d2-bar-list-listp

d2-bar-list-all-rlessp-big-delta)))

(lemma theorem2 (rewrite)
(S2 p i)

((enable rdifference s2 associativity-of-rplus
delta1-rlessp rabs-reduce
rplus-rzerop)))

(lemma upper-bound (rewrite)
(implies (and (in-s tm i)

(rleq (rabs pi) (rdifference (r) (s))))
(rleq (adjusted p i (rplus tm pi))

(adjusted p (add1 i) (ti (add1 (add1 i))))))
((use (rleq-transitive (x pi)

(y (rplus (r) (rneg (big-sigma))))
(z (rplus (r) (delta1 p i))))

(theorem2)
(abs-ax6 (x pi)

(y (rdifference (r) (s))))
(abs-ax6 (x (rdifference (corr p (add1 i))

(corr p i)))
(y (big-sigma))))

(enable rlessp-rleq big-sigma-positive adjusted-rplus
rneg-greater-rleq rplus-cancel rplus-preserves-rleq-hack
associativity-of-rplus ti-next in-s in-interval
rdifference rleq-reduce adjusted corr-add1 s2 rlessp-rleq)))

(lemma small-shift (rewrite)
(rleq (rneg (r)) (rdifference (corr p (add1 i)) (corr p i)))

((use (theorem2) (sinr))
(disable corr theorem2 sinr)
(enable rabs-rneg-rleq rlessp-transitive rdifference

rlessp-rleq-transitivity2 s2)))

(lemma adj-inductive-step (rewrite)
(implies (rleq t0 (adjusted p i (ti i)))

(rleq t0 (adjusted p (add1 i) (ti (add1 i)))))
((use (small-shift))
(disable corr)
(enable rleq-transitive associativity-of-rplus rplus-cancel ti-next adjusted

rleq-reduce rdifference rplus-rneg-rleq-hack)))

31

(defn sub1-induction (i)
(if (zerop i)

t
(sub1-induction (sub1 i))))

(lemma adj-always-positive (rewrite)
(rleq (rplus (t0) (corr0)) (adjusted p i (ti i)))

((induct (sub1-induction i))
(enable ti-zerop adjusted-reduce not-numberp-adjusted

adjusted-zero rleq-reduce rleq-reflexive adj-inductive-step)))

(lemma lower-bound (rewrite)
(implies (rleq (rational 0 1) pi)

(rleq (adjusted p 0 (ti 0))
(adjusted p i (rplus (ti i) pi))))

((use (adj-always-positive))
(enable-theory reductions)
(enable ti-zerop rleq-rplus2 adjusted-zero adjusted-rplus)))

(lemma lower-bound2 (rewrite)
(implies (and (in-s tm i)

(rleq (rabs pi) (rdifference (r) (s))))
(rleq (adjusted p 0 (ti 0))

(adjusted p i (rplus tm pi))))
((use (lower-bound (pi (rplus tm (rplus (rneg (ti i)) pi))))

(rleq-transitive (x (rational 0 1))
(y (rplus tm

(rplus (rneg (ti i))
(rplus (rneg (r)) (s)))))

(z (rplus tm (rplus (rneg (ti i)) pi)))))
(enable rplus-reduce rleq-hack

associativity-of-rplus rneg-rneg ti-next
rneg-rplus rdifference in-s in-interval
rleq-reduce rabs-rneg-rplus)))

(lemma gc-prop (rewrite)
(implies (and (good-clock p t0 tn)

(in-interval tm t0 tn))
(good-clock p t0 tm))

((use (good-clock-necc (t2 (t2 tm t0 p)) (t1 (t1 tm t0 p))
(high tn) (low t0) (p p))

(in-interval-inclusion (low t0) (high tn) (x tm) (y (t1 tm t0 p)))
(in-interval-inclusion (low t0) (high tn) (x tm) (y (t2 tm t0 p))))))

(lemma bounds (rewrite)
(and (rleq (adjusted p 0 (ti 0))

(adjusted p i (ti (add1 i))))
(rleq (adjusted p i (ti (add1 i)))

(adjusted p (add1 i) (ti (add1 (add1 i))))))
((use (lower-bound2 (pi (rational 0 1)) (tm (ti (add1 i))))

(upper-bound(pi (rational 0 1)) (tm (ti (add1 i)))))
(enable ti-in-s rlessp-rdifference2 sinr rplus-rzerop

adjusted-reduce rdifference)))

(lemma nonfx (rewrite)
(implies (nonfaulty p (add1 i))

(nonfaulty p i))
((use (gc-prop (t0 (adjusted p 0 (ti 0)))

(tn (adjusted p
(add1 i)
(ti (add1 (add1 i)))))

(tm (adjusted p i (ti (add1 i))))))
(enable nonfaulty in-interval bounds)))

(lemma s1a-lemma (rewrite)
(implies (s1a (add1 i))

(s1a i))
((use (s1a-necc (r (r-1 i)) (i (add1 i))))
(enable nonfx)))

32

(lemma lemma2 (rewrite)
(implies (and (nonfaulty p (add1 i))

(rleq (adjusted p i tm)
(adjusted p (add1 i) (ti (add1 (add1 i)))))

(rleq (adjusted p 0 (ti 0))
(adjusted p i tm))

(rleq (adjusted p i (rplus tm pi))
(adjusted p (add1 i) (ti (add1 (add1 i)))))

(rleq (adjusted p 0 (ti 0)) (adjusted p i (rplus tm pi))))
(rleq (rabs (rplus (c p i (rplus tm pi))

(rplus (rneg (c p i tm))
(rneg pi))))

(rtimes (rational 1 2) (rtimes (rho) (rabs pi)))))
((use (good-clock-necc (low (adjusted p 0 (ti 0)))

(high (adjusted p
(add1 i)
(ti (add1 (add1 i)))))

(t2 (adjusted p i tm))
(t1 (adjusted p i (rplus tm pi)))))

(enable adjusted-rplus associativity-of-rplus nonfaulty c
rabs-reduce rneg-rplus reduce-rneg in-interval)))

(lemma lemma2a (rewrite)
(implies (and (nonfaulty p (add1 i))

(rleq (rabs (rplus pi phi)) (rdifference (r) (s)))
(rleq (rabs phi) (rdifference (r) (s)))
(in-s tm i))

(rleq (rabs (rplus (c p i (rplus tm (rplus phi pi)))
(rplus (rneg (c p i (rplus tm phi)))

(rneg pi))))
(rtimes (rational 1 2) (rtimes (rho) (rabs pi)))))

((use (lemma2 (tm (rplus tm phi))))
(enable upper-bound lower-bound2 associativity-of-rplus

rabs-commutativity-hack)))

(lemma lemma2b-step (rewrite)
(implies (and (rleq (rabs phi) (s))

(rleq (rabs pi) (s)))
(rleq (rabs (rplus pi phi))

(rplus (r) (rneg (s)))))
((use (rleq-transitive (x (rabs (rplus pi phi)))

(y (rplus (rabs pi) (rabs phi)))
(z (rplus (r) (rneg (s))))))

(enable times-3-rleq-rewrite rabs-rplus-rleq s-rleq parameters-intro)))

(lemma lemma2b-step2 (rewrite)
(implies (rleq (rabs phi) (s))

(rleq (rabs phi)
(rplus (r) (rneg (s)))))

((enable times-3-rleq-rewrite2 s-rleq parameters-intro)))

(lemma lemma2b (rewrite)
(implies (and (nonfaulty p (add1 i))

(rleq (rabs phi) (s))
(rleq (rabs pi) (s))
(in-s tm i))

(rleq (rabs (rplus (c p i (rplus tm (rplus phi pi)))
(rplus (rneg (c p i (rplus tm phi)))

(rneg pi))))
(rtimes (rational 1 2) (rtimes (rho) (rabs pi)))))

((enable lemma2a lemma2b-step rdifference lemma2b-step2)))

(lemma lemma2c (rewrite)
(implies (and (nonfaulty p (add1 i))

(rleq (rabs pi) (s))
(in-s tm i))

(rleq (rabs (rplus (c p i (rplus tm pi))
(rplus (rneg (c p i tm))

(rneg pi))))
(rtimes (rational 1 2) (rtimes (rho) (rabs pi)))))

((use (lemma2b (phi (rational 0 1))))
(enable s-rleq rplus-rzerop rplus-reduce

c-reduce)))

33

(lemma lemma2d (rewrite)
(implies (and (nonfaulty p i)

(rleq (rational 0 1) pi)
(rleq pi (r)))

(rleq (rabs (rplus (c p i (rplus (ti i) pi))
(rplus (rneg (c p i (ti i)))

(rneg pi))))
(rtimes (rational 1 2) (rtimes (rho) (rabs pi)))))

((use (good-clock-necc (low (adjusted p 0 (ti 0)))
(high (adjusted p i (ti (add1 i))))
(t1 (adjusted p i (rplus (ti i) pi)))
(t2 (adjusted p i (ti i)))))

(enable-theory reductions)
(enable nonfaulty in-interval lower-bound adjusted-rplus ti-next

rplus-cancel adjusted-zero ti-zerop adj-always-positive
rleq-rplus2 rleq-reflexive rleq-transitive c rneg-rplus
associativity-of-rplus rabs-reduce)))

(lemma rabs-negate-lemma1-hack (rewrite)
(equal (rabs (rplus (c p i t0)

(rplus (delta2 q p i)
(rneg (c p i

(rplus t0
(delta2 q p i)))))))

(rabs (rplus (c p i
(rplus t0 (delta2 q p i)))

(rplus (rneg (c p i t0))
(rneg (delta2 q p i))))))

((use (rabs-negate-hack (x (c p i t0))
(y (delta2 q p i))
(z (c p i (rplus t0 (delta2 q p i))))))))

(lemma lemma1 (rewrite)
(implies (and (s1c p q i)

(s2 p i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i)))

(rlessp (rabs (delta2 q p i)) (big-delta)))
((use (a2)

(some-ok-time-necc)
(s1c-necc (tm (t0-1 i p q)))
(rabs-rplus-rleq2
(x (rplus (c p i (t0-1 i p q))

(rplus (delta2 q p i)
(rneg (c p i

(rplus (t0-1 i p q)
(delta2 q p i)))))))

(y (rplus (c q i (t0-1 i p q))
(rneg (c p i (t0-1 i p q)))))

(z (rplus (c p i
(rplus (t0-1 i p q) (delta2 q p i)))

(rneg (c q i (t0-1 i p q))))))
(lemma2c (pi (delta2 q p i)) (tm (t0-1 i p q)))
(rlessp-rleq-transitivity2
(x (rabs (delta2 q p i)))
(y (rplus (rabs (rplus (c p i (t0-1 i p q))

(rplus (delta2 q p i)
(rneg (c p i

(rplus (t0-1 i p q)
(delta2 q p i)))))))

(rplus (rabs (rplus (c q i (t0-1 i p q))
(rneg (c p i (t0-1 i p q)))))

(rabs (rplus (c p i
(rplus (t0-1 i p q) (delta2 q p i)))

(rneg (c q i (t0-1 i p q))))))))
(z (big-delta)))

34

(rlessp-rleq-transitivity
(x (rplus (rabs (rplus (c p i (t0-1 i p q))

(rplus (delta2 q p i)
(rneg (c p i

(rplus (t0-1 i p q)
(delta2 q p i)))))))

(rplus (rabs (rplus (c q i (t0-1 i p q))
(rneg (c p i (t0-1 i p q)))))

(rabs (rplus (c p i
(rplus (t0-1 i p q) (delta2 q p i)))

(rneg (c q i (t0-1 i p q))))))))
(y (rplus (delta)

(rplus (epsilon)
(rtimes (rational 1 2)

(rtimes (rho) (s))))))
(z (big-delta)))

(rleq-transitive
(x (rabs (rplus (c p i (t0-1 i p q))

(rplus (delta2 q p i)
(rneg (c p i

(rplus (t0-1 i p q)
(delta2 q p i))))))))

(y (rtimes (rational 1 2)
(rtimes (rho)

(rabs (delta2 q p i)))))
(z (rtimes (rational 1 2) (rtimes (rho) (s))))))

(enable rabs-rdifference rleq-rtimes-hack rho-rleq0 rlessp-rleq nonfx
inrs skew rdifference associativity-of-rplus
parameters-intro rleq-rlessp-hack rabs-negate-lemma1-hack)

(enable-theory reductions)))

(lemma lemma3 (rewrite)
(implies (and (s1c p q i)

(s2 p i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(in-s tm i))

(rlessp (rabs (rplus (c p i (rplus tm (delta2 q p i)))
(rneg (c q i tm))))

(rplus (epsilon)
(rtimes (rho) (s)))))

((use (a2)
(some-ok-time-necc)
(rearrange-alt
(x (c p i (rplus tm (delta2 q p i))))
(y (c q i tm))
(u (c p i

(rplus (t0-1 i p q) (delta2 q p i))))
(v (rplus tm (rneg (t0-1 i p q))))
(w (c q i (t0-1 i p q))))

(lemma2c
(p q)
(tm (t0-1 i p q))
(pi (rplus tm (rneg (t0-1 i p q)))))

(lemma2b
(tm (t0-1 i p q))
(phi (delta2 q p i))
(pi (rplus tm (rneg (t0-1 i p q)))))

(rlessp-rleq-transitivity2
(x (rabs (rplus (c p i (rplus tm (delta2 q p i)))

(rneg (c q i tm)))))
(y (rplus (rabs (rplus (c p i (rplus tm (delta2 q p i)))

(rplus (rneg (c p i
(rplus (delta2 q p i) (t0-1 i p q))))

(rplus (rneg tm) (t0-1 i p q)))))
(rplus (rabs (rplus (c p i

(rplus (delta2 q p i) (t0-1 i p q)))
(rneg (c q i (t0-1 i p q)))))

(rabs (rplus (c q i tm)
(rplus (rneg (c q i (t0-1 i p q)))

(rplus (rneg tm) (t0-1 i p q))))))))
(z (rplus (epsilon)

(rtimes (rho) (s)))))

35

(rleq-transitive
(x (rplus (rabs (rplus (c p i (rplus tm (delta2 q p i)))

(rplus (rneg (c p i
(rplus (delta2 q p i) (t0-1 i p q))))

(rplus (rneg tm) (t0-1 i p q)))))
(rabs (rplus (c q i tm)

(rplus (rneg (c q i (t0-1 i p q)))
(rplus (rneg tm) (t0-1 i p q)))))))

(y (rtimes (rho)
(rabs (rplus tm (rneg (t0-1 i p q))))))

(z (rtimes (rho) (s)))))
(enable-theory reductions)
(enable in-s-lemma2 rho-rleq0 rlessp-rplus-triple rplus-reduce

rneg-rneg rneg-rplus in-s-lemma2 c-reduce nonfx rdifference
c-commutativity rlessp-transitive associativity-of-rplus
rho-rleq0 rlessp-rleq-hack rleq-rtimes-hack rleq-half-rplus)))

(lemma sublemma1 (rewrite)
(implies (and (s1c p r i)

(s2 p i)
(nonfaulty p (add1 i))
(nonfaulty r (add1 i)))

(equal (d2-bar r p i)
(delta2 r p i)))

((use (lemma1 (q r)))
(enable d2-bar delta2-intro)))

(lemma lemma2x (rewrite)
(implies (and (s1c p r i)

(s2 p i)
(nonfaulty p (add1 i))
(nonfaulty r (add1 i))
(in-s tm i))

(rleq (rabs (rplus (c p i (rplus tm (delta2 r p i)))
(rplus (rneg (c p i tm))

(rneg (delta2 r p i)))))
(rtimes (rational 1 2) (rtimes (rho) (big-delta)))))

((use (lemma2c (pi (delta2 r p i)))
(lemma1 (q r))
(rleq-transitive
(x (rabs (rplus (c p i (rplus tm (delta2 r p i)))

(rplus (rneg (c p i tm))
(rneg (delta2 r p i))))))

(y (rtimes (rational 1 2)
(rtimes (rho) (rabs (delta2 r p i)))))

(z (rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))

(enable rleq-rtimes-hack rho-rleq0 rlessp-rleq nonfx a2
rleq-rtimes-pos2 rleq-transitive)))

(lemma lemma4-version1 (rewrite)
(implies (and (s1c q r i)

(s1c p q i)
(s1c p r i)
(s2 p i)
(s2 q i)
(s2 r i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(nonfaulty r (add1 i))
(in-s tm i))

(rlessp (rabs (rplus (rplus (c p i tm)
(d2-bar r p i))

(rplus (rneg (c q i tm))
(rneg (d2-bar r q i)))))

(rplus (rtimes (rational 1 2) (rtimes (rho) (big-delta)))
(rplus (rtimes (rational 1 2) (rtimes (rho) (big-delta)))

(rplus (rplus (epsilon) (rtimes (rho) (s)))
(rplus (epsilon) (rtimes (rho) (s))))))))

((use (rearrange3
(x (rplus (c p i tm) (d2-bar r p i)))
(y (rplus (c q i tm) (d2-bar r q i)))
(u (c q i (rplus tm (d2-bar r q i))))
(v (c p i (rplus tm (d2-bar r p i))))
(w (c r i tm))))

36

(enable-theory reductions)
(enable sublemma1 lemma3 lemma2x rdifference rlessp-rleq-transitivity2

rlessp-rleq rlessp-rplus-pair rneg-rplus rleq-rlessp-rplus-pair)))

(lemma lemma4-hack (rewrite)
(equal (rplus z (rplus z (rplus x (rplus y (rplus x y)))))

(rtimes (rational 2 1) (rplus x (rplus y z))))
((enable rtimes-add1 rtimes-rzerop commutativity-of-rplus

commutativity2-of-rplus)))

(lemma lemma4 (rewrite)
(implies (and (s1c q r i)

(s1c p q i)
(s1c p r i)
(s2 p i)
(s2 q i)
(s2 r i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(nonfaulty r (add1 i))
(in-s tm i))

(rlessp (rabs (rplus (c p i tm)
(rplus (d2-bar r p i)

(rplus (rneg (c q i tm))
(rneg (d2-bar r q i))))))

(rtimes (rational 2 1)
(rplus (epsilon)

(rplus (rtimes (rho) (s))
(rtimes (rational 1 2)

(rtimes (rho) (big-delta))))))))
((use (lemma4-version1))
(enable associativity-of-rplus lemma4-hack)))

(lemma lemma5 (rewrite)
(implies (and (s1c p q i)

(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(in-s tm i))

(rlessp (rabs (rplus (c p i tm)
(rplus (d2-bar r p i)

(rplus (rneg (c q i tm))
(rneg (d2-bar r q i))))))

(rplus (delta) (rtimes (rational 2 1) (big-delta)))))
((use (rearrange4 (a (c p i tm))

(b (c q i tm))
(x (d2-bar r p i))
(y (d2-bar r q i)))

(s1c-necc))
(enable rdifference associativity-of-rplus rneg-rplus

rlessp-rleq-transitivity2 rleq-rlessp-rplus-pair skew nonfx inrs
rlessp-times2 d2-bar-prop)))

(lemma rleq-rplus-hack3 (rewrite)
(equal (rleq (rplus x (rplus y z)) (rplus y w))

(rleq (rplus x z) (reduce w)))
((enable rleq requal)))

(lemma sublemma-a (rewrite)
(implies (and (nonfaulty p i)

(nonfaulty q i)
(in-r tm i))

(rleq (skew p q tm i)
(rplus (skew p q (ti i) i)

(rtimes (rho) (r)))))
((use (rearrange-alt (x (c p i tm))

(y (c q i tm))
(u (c p i (ti i)))
(v (rplus tm (rneg (ti i))))
(w (c q i (ti i))))

(lemma2d (pi (rplus tm (rneg (ti i)))))
(lemma2d (p q) (pi (rplus tm (rneg (ti i))))))

37

(enable-theory reductions)
(enable skew rdifference rneg-rplus c-reduce ti-next rabs-positive2

rplus-rleq-rewrite rplus-rleq-rewrite2 rleq-rtimes-hack in-r
in-interval rho-rleq0 rleq-transitive rleq-rplus-hack3 rleq-half-rplus
rleq-rtimes-hack rplus-rleq-rewrite)))

(lemma delta1-rleq-s (rewrite)
(rlessp (rabs (delta1 p i)) (s))

((use (theorem2))
(enable s2 rdifference corr-add1 associativity-of-rplus

rabs-reduce rlessp-transitive rleq-rlessp-relation)))

(lemma sublemma2 (rewrite)
(equal (skew p q tm (add1 i))

(rabs (rplus (c p i (rplus tm (delta1 p i)))
(rneg (c q i (rplus tm (delta1 q i)))))))

((enable skew rdifference clock-prop)))

(lemma lemma6 (rewrite)
(implies (and (nonfaulty p (add1 i))

(nonfaulty q (add1 i))
(in-r tm (add1 i)))

(rleq (skew p q tm (add1 i))
(rplus (rabs (rplus (c p i (ti (add1 i)))

(rplus (delta1 p i)
(rplus (rneg (c q i (ti (add1 i))))

(rneg (delta1 q i))))))
(rplus (rtimes (rho) (r))

(rtimes (rho) (big-sigma))))))
((use (sublemma-a (i (add1 i)))

(rearrange
(x (c p i

(rplus (ti (add1 i)) (delta1 p i))))
(y (c q i

(rplus (ti (add1 i)) (delta1 q i))))
(u (c p i (ti (add1 i))))
(v (delta1 p i))
(w (c q i (ti (add1 i))))
(z (delta1 q i)))

(lemma2c (tm (ti (add1 i))) (pi (delta1 p i)))
(lemma2c (tm (ti (add1 i))) (pi (delta1 q i)) (p q)))

(disable correctness-of-cancel-rplus-rleq)
(enable rdifference rneg-rplus sublemma2 rplus-rleq-rlessp-cancel2 rleq-transitive

rplus-rleq-rlessp-cancel delta1-rleq-s ti-in-s rleq-rtimes-pos2 rlessp-rleq
delta1-rlessp rho-rleq0 rleq-rtimes-hack rleq-half-rplus)))

(defn l1-term-list (p q i r)
;; This generates the list of terms to which the mean is applied in lemma l1.
;; Notice that they don’t have the absolute-value applied.
(if (zerop r)

nil
(append (l1-term-list p q i (sub1 r))

(list (rplus (c p i (ti (add1 i)))
(rplus (d2-bar r p i)

(rplus (rneg (c q i (ti (add1 i))))
(rneg (d2-bar r q i)))))))))

(lemma length-l1-term-list (rewrite)
(equal (length (l1-term-list p q i r))

(fix r))
((enable l1-term-list)))

(lemma l1-term-list-rewrite (rewrite)
(equal (rsum (l1-term-list p q i r))

(rplus (rtimes-nat r (c p i (ti (add1 i))))
(rplus (rsum (d2-bar-list r p i))

(rplus (rneg (rtimes-nat r (c q i (ti (add1 i)))))
(rneg (rsum (d2-bar-list r q i)))))))

((enable l1-term-list d2-bar-list rsum rtimes-nat-zerop rtimes-nat-add1
associativity-of-rplus rneg-rplus
reduce-rplus rsum-append rplus-rzerop
commutativity-of-rplus reduce-reduce rplus-reduce)))

38

(lemma l1 (rewrite)
(rleq (rabs (rplus (c p i (ti (add1 i)))

(rplus (delta1 p i)
(rplus (rneg (c q i (ti (add1 i))))

(rneg (delta1 q i))))))
(rmean (map-rabs (l1-term-list p q i (n)))))

((use (abs-mean (lst (l1-term-list p q i (n)))))
(enable rleq-transitive rmean l1-term-list-rewrite length-l1-term-list

rquotient-nat-rplus rquotient-nat-rtimes-nat rplus-reduce
rneg-rtimes-nat delta1 d2-bar-mean rmean
length-d2-bar-list rneg-rquotient-nat rleq-reflexive)))

(lemma l2 (rewrite)
(rleq (rabs (rplus (c p i (ti (add1 i)))

(rplus (delta1 p i)
(rplus (rneg (c q i (ti (add1 i))))

(rneg (delta1 q i))))))
(rquotient-nat (rplus (rsum (firstn (map-rabs (l1-term-list p q i (n))) (m)))

(rsum (restn (map-rabs (l1-term-list p q i (n))) (m))))
(n)))

((use (l1))
(enable rplus-rsum firstn-append-restn rmean

length-map-rabs length-l1-term-list)))

(lemma bound-faulty (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(not (zerop r))
(nonfaulty p (add1 i))
(nonfaulty q (add1 i)))

(rlessp (rabs (rplus (c p i (ti (add1 i)))
(rplus (d2-bar r p i)

(rplus (rneg (c q i (ti (add1 i))))
(rneg (d2-bar r q i))))))

(rplus (delta) (rtimes (rational 2 1) (big-delta)))))
((enable lemma5 ti-in-s)))

(defn firstn-l1-induction (m n)
(if (zerop n)

t
(if (zerop m)

t
(if (equal m n)

t
(firstn-l1-induction m (sub1 n))))))

(lemma firstn-l1-term-list (rewrite)
(implies (leq m n)

(equal (firstn (map-rabs (l1-term-list p q i n)) m)
(map-rabs (l1-term-list p q i m))))

((induct (firstn-l1-induction m n))
(enable map-rabs-append firstn-n plist-map-rabs

length-map-rabs length-l1-term-list
firstn-append-lessp)))

(lemma l3-sublemma (rewrite)
(implies (and (leq m (n))

(S1A (add1 i))
(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(not (zerop m)))

(all-rlessp (firstn (map-rabs (l1-term-list p q i (n))) m)
(rplus (delta)

(rtimes (rational 2 1) (big-delta)))))
((induct (sub1-induction m))
(enable all-rlessp firstn map-rabs l1-term-list bound-faulty

map-rabs-append firstn-l1-term-list all-rlessp-append)))

39

(lemma l3 (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(lessp m (n)))

(rleq (rsum (firstn (map-rabs (l1-term-list p q i (n))) m))
(rtimes-nat2 (rplus (delta) (rtimes (rational 2 1) (big-delta)))

m)))
((use (sum-bound (lst (map-rabs (l1-term-list p q i m)))

(x (rplus (delta)
(rtimes (rational 2 1)

(big-delta)))))
(l3-sublemma))

(enable firstn rsum rtimes-nat-rtimes-nat2 rtimes-nat-zerop
rleq-reflexive firstn-l1-term-list rtimes-nat-rtimes-nat2
length-map-rabs length-l1-term-list rlessp-rleq listp-map-rabs)))

(defn-sk+ theorem1-one-step (i)
(forall (p q)

(implies (S1A i)
(S1C p q i))))

(lemma bound-nonfaulty (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(leq (add1 (m)) r)
(leq r (n))
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(theorem1-one-step i))

(rlessp (rabs (rplus (c p i (ti (add1 i)))
(rplus (d2-bar r p i)

(rplus (rneg (c q i (ti (add1 i))))
(rneg (d2-bar r q i))))))

(rtimes (rational 2 1)
(rplus (epsilon)

(rplus (rtimes (rho) (s))
(rtimes (rational 1 2)

(rtimes (rho) (big-delta))))))))
((use (S1A-necc (i (add1 i)))

(theorem1-one-step-necc (p q) (q r))
(theorem1-one-step-necc (q r)))

(enable lemma4 theorem2 S1A-lemma ti-in-s)))

(defn l4-term-list (p q i m r)
(if (leq m r)

(cons (rabs (rplus (c p i (ti (add1 i)))
(rplus (d2-bar m p i)

(rplus (rneg (c q i (ti (add1 i))))
(rneg (d2-bar m q i))))))

(l4-term-list p q i (add1 m) r))
nil)

((lessp (difference (add1 r) m))))

(lemma l4-term-strip-last (rewrite)
(implies (and (leq m r)

(not (zerop r)))
(equal (l4-term-list p q i m r)

(append
(l4-term-list p q i m (sub1 r))
(list (rabs (rplus (c p i (ti (add1 i)))

(rplus (d2-bar r p i)
(rplus (rneg (c q i (ti (add1 i))))

(rneg (d2-bar r q i)))))))))))

(lemma length-l4-term-list-from1 (rewrite)
(equal (length (l4-term-list p q i 1 r)) (fix r))
((induct (sub1-induction r))
(enable l4-term-strip-last)))

40

(lemma length-l4-term-list (rewrite)
(equal (length (l4-term-list p q i (add1 m) r))

(difference r m))
((enable length-l4-term-list-from1 l4-term-strip-last)))

(defn l1-l4-relation-induction (m n)
(if (not (lessp m n))

(if (equal m n)
t

(if (lessp n m) t f))
(l1-l4-relation-induction m (sub1 n))))

(lemma l1-l4-term-lists-relation (rewrite)
(implies (and (not (zerop n))

(leq m n))
(equal (restn (map-rabs (l1-term-list p q i n)) m)

(l4-term-list p q i (add1 m) n)))
((induct (l1-l4-relation-induction m n))
(enable restn-n plistp-map-rabs length-map-rabs length-l1-term-list

restn-append map-rabs-append restn-1 l4-term-strip-last)))

(lemma listp-l4-term-list (rewrite)
(implies (and (lessp m n)

(not (zerop n)))
(listp (l4-term-list p q i (add1 m) n)))

((enable l4-term-strip-last)))

(lemma l4-sublemma (rewrite)
(implies (and (leq r (n))

(leq (add1 (m)) r)
(S1A (add1 i))
(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(theorem1-one-step i))

(all-rlessp (l4-term-list p q i r (n))
(rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))))

((enable bound-nonfaulty)))

(lemma l4-version1 (rewrite)
(implies (and (lessp m (n))

(leq (m) m)
(S1A (add1 i))
(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(theorem1-one-step i))

(rleq (rsum (l4-term-list p q i (add1 m) (n)))
(rtimes-nat2 (rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))

(difference (n) m))))
((use (sum-bound (lst (l4-term-list p q i (add1 m) (n)))

(x (rtimes (rational 2 1)
(rplus (epsilon)

(rplus (rtimes (rho) (s))
(rtimes (rational 1 2)

(rtimes (rho) (big-delta)))))))))
(enable rtimes-nat-rtimes-nat2 rlessp-rleq

listp-l4-term-list length-l4-term-list l4-sublemma)))

(lemma l4 (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(theorem1-one-step i))

41

(rleq (rsum (restn (map-rabs (l1-term-list p q i (n))) (m)))
(rtimes-nat2 (rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))

(difference (n) (m)))))
((enable l1-l4-term-lists-relation l4-version1)))

(lemma l5 (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(theorem1-one-step i))

(rleq (rabs (rplus (c p i (ti (add1 i)))
(rplus (delta1 p i)

(rplus (rneg (c q i (ti (add1 i))))
(rneg (delta1 q i))))))

(rquotient-nat
(rplus (rtimes-nat2

(rplus (delta) (rtimes (rational 2 1) (big-delta))) (m))
(rtimes-nat2

(rtimes (rational 2 1)
(rplus (epsilon)

(rplus (rtimes (rho) (s))
(rtimes (rational 1 2)

(rtimes (rho) (big-delta))))))
(difference (n) (m))))

(n))))
((use (div-mon2

(x (rsum (append (firstn (map-rabs (l1-term-list p q i (n))) (m))
(restn (map-rabs (l1-term-list p q i (n))) (m)))))

(y (rplus
(rtimes-nat2 (rplus (delta) (rtimes (rational 2 1) (big-delta))) (m))
(rtimes-nat2 (rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))

(difference (n) (m)))))
(z (n)))

(rleq-transitive
(x (rabs (rplus (c p i (ti (add1 i)))

(rplus (delta1 p i)
(rplus (rneg (c q i (ti (add1 i))))

(rneg (delta1 q i)))))))
(y (rquotient-nat

(rsum (append (firstn (map-rabs (l1-term-list p q i (n))) (m))
(restn (map-rabs (l1-term-list p q i (n))) (m))))

(n)))
(z (rquotient-nat

(rplus
(rtimes-nat2 (rplus (delta) (rtimes (rational 2 1) (big-delta))) (m))
(rtimes-nat2 (rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))

(difference (n) (m))))
(n)))))

(enable rleq-transitive rsum-append rleq-rplus-pair l2 l3 l4)))

(lemma culmination (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(nonfaulty p (add1 i))
(nonfaulty q (add1 i))
(in-r tm (add1 i))
(theorem1-one-step i))

42

(rleq (skew p q tm (add1 i))
(rplus (rquotient-nat

(rplus
(rtimes-nat
(m) (rplus (delta)

(rtimes (rational 2 1) (big-delta))))
(rtimes-nat

(difference (n) (m))
(rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))))

(n))
(rplus (rtimes (rho) (r))

(rtimes (rho) (big-sigma))))))
((use (l5)

(rleq-transitive
(x (skew p q tm (add1 i)))
(y (rplus (rabs (rplus (c p i (ti (add1 i)))

(rplus (delta1 p i)
(rplus
(rneg (c q i (ti (add1 i))))
(rneg (delta1 q i))))))

(rplus (rtimes (rho) (r)) (rtimes (rho) (big-sigma)))))
(z (rplus (rquotient-nat

(rplus (rtimes-nat
(m) (rplus (delta)

(rtimes (rational 2 1)
(big-delta))))

(rtimes-nat
(difference (n) (m))
(rtimes (rational 2 1)

(rplus (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(rtimes (rho) (big-delta))))))))

(n))
(rplus (rtimes (rho) (r)) (rtimes (rho) (big-sigma)))))))

(enable rlessp-rleq lemma6 rleq-rplus-pair rleq-reflexive rtimes-nat-rtimes-nat2)))

(lemma theorem1-basis (rewrite)
(S1C p q 0)

((use (sublemma-a (i 0) (tm (tm 0 p q)))
(rleq-transitive (x (skew p q (tm 0 p q) 0))

(y (rplus (skew p q (ti 0) 0) (rtimes (rho) (r))))
(z (delta)))

(a0) (c5))
(enable S1C-suff rlessp-rleq rlessp-rleq-transitive3)))

(lemma theorem1-ind-step0 (rewrite)
(implies (and (S1A (add1 i))

(S1C p q i)
(theorem1-one-step i))

(S1C p q (add1 i)))
((use (rearrange-delta (delta (delta))

(big-sigma (big-sigma))
(r (r))
(n (n))
(big-delta (big-delta))
(m (m))
(s (s))
(rho (rho))
(epsilon (epsilon)))

(c6) (culmination (tm (tm (add1 i) p q))))
(enable rleq-transitive)))

(lemma theorem1-ind-step (rewrite)
(IMPLIES (AND (NOT (ZEROP I))

(THEOREM1-ONE-STEP (SUB1 I)))
(THEOREM1-ONE-STEP I))

43

((use (theorem1-ind-step0 (i (sub1 i)) (p (p i)) (q (q i)))
(theorem1-one-step-necc (i (sub1 i)) (p (p i)) (q (q i)))
(theorem1-one-step-suff))

(enable S1A-lemma)
(disable theorem1-one-step-suff)))

(lemma theorem1-version1 (rewrite)
(theorem1-one-step i)

((induct (sub1-induction i))
(enable theorem1-basis not-numberp-S1C theorem1-ind-step)))

(lemma theorem1 (rewrite)
(implies (S1A i)

(S1C p q i))
((use (theorem1-version1)

(theorem1-one-step-necc))))

i

Table of Contents

1. Introduction . 1
2. The Interactive Convergence Clock Synchronization Algorithm . 2
3. Specifying the ICCSA in the Boyer-Moore Logic . 2

3.1. Computing with Rationals . 3
3.2. Uses of CONSTRAIN . 5
3.3. DEFN-SK . 7
3.4. Avoiding Higher Order Functions . 9

4. Aspects of the Proof . 10
4.1. Restraining the Prover . 10
4.2. Order of Steps in the Proof . 10
4.3. Proof Encapsulation . 12
4.4. Syntax . 13

5. Conclusions . 13

ii

List of Figures

Figure 1: Some Quantities Required for Specifying the ICCSA 3
Figure 2: CONSTRAIN Introducing ICCSA Parameters 6
Figure 3: EHDM and Boyer-Moore Versions of the Same Lemma 7
Figure 4: Theorems Generated for a DEFN-SK+ Event 8
Figure 5: Proof of SUBLEMMA-A Showing USE Hints 11

