

QUT Digital Repository:
http://eprints.qut.edu.au/

Verbeek, H.M.W. and van der Aalst, Wil M. and ter Hofstede, Arthur H. (2007)
Verifying Workflows with Cancellation Regions and OR-joins: An Approach
Based on Relaxed Soundness and Invariants. The Computer Journal
50(3):pp. 294-314.

 © Copyright 2007 Oxford University Press
This is an electronic version of an article published in [The Computer Journal
50(3):pp. 294-314]

Verifying Workflows with Cancellation Regions and

OR-joins: An Approach Based on Invariants

H.M.W. Verbeek1, W.M.P. van der Aalst1,2, and A.H.M. ter Hofstede2

1 Faculty of Faculty of Technology Management,
Eindhoven University of Technology, The Netherlands,

2 Faculty of Information Technology,
Queensland University of Technology, Australia

Abstract

The YAWL (Yet Another Workflow Language) workflow language supports
the most frequent control-flow patterns found in the current workflow practice.
As a result, most workflow languages can be mapped onto YAWL without loss
of control-flow details, even languages allowing for advanced constructs such as
cancellation regions and OR-joins. At the moment no analysis techniques are
available for such languages, because both cancellation regions and OR-joins
are “non-local” properties and therefore difficult to verify. Hence, a verifi-
cation approach for YAWL is desirable, because such an approach could be
used for any workflow language that can be mapped onto YAWL. This paper
introduces a verification approach for YAWL that abstracts from the actual
semantics of the OR-join. This approach is correct (errors reported are really
errors), but not necessarily complete (not every error might get reported).
This incompleteness is due to the fact that the approach approximates the
OR-join semantics. Nevertheless, our approach can be used to successfully
detect errors in YAWL models. Moreover, the approach can easily be trans-
ferred to other workflow languages allowing for advanced constructs such as
cancellations and OR-joins.

1 Introduction

At the moment, dozens of workflow management systems are available on the mar-
ket, examples are Staffware, COSA, WebSphere Workflow, Visual Workflo, SAP
R/3 Workflow, Forté Conductor, Meteor, and Mobile. Unfortunately, these systems
all use proprietary languages to specify workflows, each with different constructs,
possibilities, and impossibilities.

This papers focuses on the verification of workflows, and in particular, on the
control-flow aspect of these workflows. Basically, this control-flow aspect deter-
mines which tasks can be executed in which order. Typically, all available workflow
management systems support the more basic control-flow patterns, like sequence,
choice, and parallel flow. However, more advanced patterns exist [6] that are typi-
cally supported by some, but not all, of these systems.

The YAWL (Yet Another Workflow Language) workflow language [5] was orig-
inally conceived as a workflow language that would support all-but-one of the 20
most frequently used patterns found in existing workflow languages. As such, YAWL
supports the multiple instance patterns, the OR-join pattern, and the cancellation
patterns. The only pattern not supported by YAWL is the implicit termination
pattern, and the authors of YAWL deliberately chose not to support this pattern.

1

Condition

Input condition

Output condition

Atomic task

and-split task

xor-split task

Composite task

Multiple instances
of an atomic task

Multiple instances
of a composite task

or-split task

and-join task

xor-join task

or-join task

... cancellation region

Figure 1: Symbols used in YAWL

Figure 2: Example YAWL model

Figure 1 shows the symbols used by YAWL, and gives an indication of the patterns
supported by YAWL.

Exactly because YAWL supports these most frequent patterns, it is positioned
to be a kind of ‘lingua franca’ for the control-flow aspect of workflow languages. As
such, it is a desirable language for verification purposes: If one can verify YAWL
models, one can verify the most frequently occurring patterns and, hopefully, most of
the existing workflow models in practice. However, exactly because YAWL supports
a lot of advanced patterns, verification of YAWL models is not an easy journey.
However, precisely due to YAWL’s comprehensive support for advanced patterns,
the verification of YAWL models is a challenging problem.

Figure 2 shows a YAWL model which will be used as a running example in the
remainder of this paper. Execution of the YAWL model starts at the far left, at the
input condition. This condition is reached as soon as an instance of the workflow
is created. If the input condition has been reached, task A can be started. If task
A completes, tasks B and C can be started. Task E can only be started after both
task B and task C have been completed. If task E completes, the tasks B and D and
the condition p are cancelled (that is, aborted or withdrawn). Task F acts as an
OR-join, that is, after it is triggered via one of its input arcs, it waits if additional
triggers may arrive. If condition p is reached, then task F is not to be started if task

2

E can still be completed. If task E has been completed, task F is not to be started
as long as condition p may be reached. YAWL uses a kind of backwards reasoning
technique to determine whether a task with OR-join behavior such as task F may
be started or not [39].

Figures 1 and 2 illustrate the capabilities of YAWL. From a verification point
of view concepts such as composite tasks, multiple instances, XOR/AND-joins, and
XOR/OR/AND-joins are fairly standard and not complicating matters. The two
constructs that are more difficult to tackle are the cancellation region and the OR-
join. These are very useful constructs and more and more languages start to support
them. Therefore, it is highly relevant to be able to verify YAWL models, that is,
the results can be transferred to other contemporary languages ranging from BPML
and UML to Staffware and BPEL. The complicating factor of both the cancellation
region and the OR-join is that they make the semantics non-local as is discussed
below.

Cancellation region. In Figure 2 the completion of task E results in the re-
moval of all tokens/activities in the region consisting of B, D, and p. Clearly, the
effect is non-local; besides relating inputs to outputs the task influences a region
without being able to see the effect of the cancellation. Note that the task ini-
tiating the cancellation cannot tell whether something is actually cancelled. This
corresponds to the ability of reset nets [13, 14, 16]. A reset net is a Petri net
with special arcs (reset arcs) to empty a place independent of the number of to-
kens involved. This seemingly innocent extension of Petri nets has rather dramatic
consequences. Simple questions such as reachability become undecidable. This
shows that, although cancellation regions form a very useful modeling construct,
they complicate matters. Note that several languages offer such a construct, for
example, Staffware allows one step to withdraw another step, BPMN offers several
ways to model cancellations [38], and BPEL offers constructs such as compensation
and fault handlers that use cancellation-like behaviors. Hence, it is important to
be able to analyze models with cancellations.

OR-join. Task F in Figure 2 is a so-called OR-join. Once the OR-join is
triggered it will wait as long as additional triggers may arrive. This is also referred
to as the “bus-driver semantics” [39], that is, the OR-join is like a bus driver that
has to make a decision each time a passenger enters the bus. Should the bus start
moving or not? The bus-driver semantics assumes that the bus driver has “perfect
knowledge”, that is, (s)he can see whether there are still potential passengers on
their way to the bus. If there are no such passengers, the bus starts to drive,
otherwise the bus will continue to wait. Since potential passengers may decide
at any time not to take the bus, the bus may start to drive at a moment no new
passengers are boarding, that is, only when it becomes clear that no more passengers
will actually board the synchronization takes place. The bus-driver semantics is very
appealing for people making workflow designs. Instead of using an explicit AND-join
in case of parallel routing and an explicit XOR-join in case of alternative routing
or even a small network of AND-joins and XOR-joins to deal with mixtures of
parallel and alternative routing, the designer can always use an OR-join and let the
system decide whether it needs to synchronize of not. Therefore, many languages
support OR-join constructs having the bus-driver semantics, for example, BPMN,
BPEL, EPCs, and a variety of workflow systems (Eastman, Domino Workflow,
etc.) support some notion of an OR-join. Unfortunately, these languages are vague
about the exact semantics or they impose syntactical requirements to make the
interpretation easier. For example, in the context of EPCs the OR-join has been
debated for several years [8, 21, 24] and it is even possible to create a paradox (the
vicious circle [3, 23]). To avoid such problems many systems do not allow cycles in
combination with OR-joins, for example, the various implementations of BPEL do
not allow links to form a cycle. YAWL is the only system we know that supports

3

the OR-join without any restrictions. Clearly the OR-join has non-local semantics,
the decision to wait or not does not only depend on its direct predecessors but also
on parts of the model that may lead to future triggers (that is, “passengers”).

This paper presents a verification approach that can deal with cancellation re-
gions and the OR-joins. To make things tangible and to be able to implement and
experiment with our approach, we use YAWL as a target language. However, we
again would like to emphasize that the results are applicable to a large class of
models and systems (as has just been motivated). We will use an approach based
on T-invariants [9, 30]. The use of invariants allows us to abstract from the actual
semantics of OR-joins. Our approach cannot give a definitive proof that the model
at hand is sound: it can only indicate the presence of errors, not the absence. Piv-
otal to our approach is the concept of “good execution paths”, which corresponds
to the so-called relaxed soundness property. Basically, a part of a model which is
not covered by good execution paths, must contain some kind of error.

The remainder of this paper is organized as follows. Section 2 discusses related
work in the area of control-flow verification for workflow models. Section 3 provides
the formal concepts we need for our approach, such as WF-nets, relaxed sound-
ness, and T-invariants. Section 4 introduces the mapping from YAWL models onto
WF-nets, the subclass of Petri nets on which our approach is based. Section 5
introduces our verification approach and its possibilities. Section 6 introduces the
tool WofYAWL, which implements our verification approach. Section 7 introduces
a case study with our tool, and Section 8 concludes the paper.

2 Related work

The workflow language YAWL has been introduced in [5]. The design of the
language is based on the patterns presented in [6]. For detailed information on
patterns (including animations and product evaluations), a website is available:
www.workflowpatterns.com. Documentation on YAWL and the software can be
downloaded from www.yawl-system.com (YAWL is an open source workflow man-
agement system).

From a verification point of view, the cancellation regions and the OR-joins are
most challenging. The YAWL OR-join semantics has been discussed extensively in
[39]. As far as we know, no publications exist on the verification of the control-flow
aspect of YAWL models. In fact, we know of no analysis techniques that aim at
workflow languages supporting both cancellation regions and OR-joins.

Many authors have been focusing on the verification of workflow models with less
expressive power. An overview of verification problems for workflow models is given
in [18]. An early example is FlowMake [31, 32], which aims at the verification of
the control-flow aspect using graph reduction techniques. Although the authors use
a fairly simple language (just XOR/AND-split/join nodes), their approach turned
out to be flawed as shown in [4, 25]. Another example is the Woflan tool [35, 37], the
workflow verification tool on which the WofYAWL tool (presented in this paper)
is built. Woflan focuses on the soundness property for a subclass of Petri nets
(WF-nets) [2].

This paper uses the notion of relaxed soundness. This notion was introduced in
[11, 10], where it was used as a correctness criterion for EPCs [22]. Like YAWL,
EPCs also include OR-joins, which significantly complicates the use of the tra-
ditional soundness property as defined in [2]. To fix this, the relaxed soundness
property was introduced at the level of EPCs, and mappings were defined from
relaxed sound EPCs to sound WF-nets.

Most other papers that deal with the verification of the control-flow aspect
of workflow models use model checking techniques [20, 33, 26, 7, 17, 27]. These

4

techniques all require the construction of the state space, and typically deal with
different verification questions than those addressed by this paper. For us, a combi-
nation of our tools with model checking techniques would be ideal: First we check
with our tools whether a process model adheres to some minimal requirements that
any process model should adhere to, second we check additional properties using
model checking. Note that some of the model checking techniques [7, 17] are not
limited to the control-flow aspect, but can also deal with the data aspect as well.
However, the main difficulty of incorporating data is the requirement to truly model
applications and humans. This is often not feasible and therefore analysis needs to
abstract from data.

This paper heavily uses the fruits of more than 40 years of Petri net research.
See [12, 30] for pointers. Particularly relevant is the work on invariants [9], Petri
nets with inhibitors arcs, and reset nets [13, 14, 16].

3 Preliminaries

This section introduces the formal Petri-net and YAWL related definitions used in
this paper. First of all, we introduce WF-nets [1], a subclass of Petri nets which
we use to capture the essential part of the process. Next, we introduce the well-
known concepts of soundness [1] and relaxed soundness [10] on WF-nets. Both these
concepts are used to verify processes. A process is called sound if it can always
complete properly no matter what, and it is called relaxed sound if all parts of the
process can be involved in proper completion. However, both these concepts rely
on the ability to generate the entire state space of the process. If this state space is
too large to be generated within reasonable time, soundness and relaxed soundness
might remain inconclusive. For this reason, we also introduce a new approach based
on the well-known T-invariants. As we will show later on, this approach comes very
close to relaxed soundness, but it does not rely on the construction of the state space.
As indicated in Section 1, we focus on YAWL because of its expressiveness. Unlike
existing approaches we allow for cancellation regions and the OR-joins. Instead of
considering YAWL in detail, we introduce EWF-nets, which capture the essential
behavior of YAWL processes. We will motivate why it is possible to abstract from
the other parts of YAWL not contained in EWF-nets at the end of this section.

3.1 WF-nets

Basically, a WF-net is a Petri net which has one source place, usually denoted i,
and one sink place, o, such that all nodes are covered by the directed paths from i
to o. To be able to handle YAWL’s cancellation regions, we include inhibitor arcs
to our definition of nets. An inhibitor arc specifies that a transition is only enabled
if a given place is empty.

Definition 1 net
A (Petri) net N is a tuple (P, T, Fi, Fo, I), where:

• P is a set of places,

• T is a set of transitions such that P ∩ T = ∅,
• Fi ∈ T → IP (P) maps every transition onto a set of input places,

• Fo ∈ T → IP (P) maps every transition onto a set of output places, and

• I ∈ T → IP (P) maps every transition onto a set of inhibitor places.

5

Usually, Fi(t) is denoted •t, and Fo(t) is denoted t•. In a similar way, we denote
I(t) as ◦t. Furthermore, we extend these notations to places: •p = {t ∈ T |p ∈ t•},
p• = {t ∈ T |p ∈ •t}, and p◦ = {t ∈ T |p ∈ ◦t}.

Figure 3: An example net with an inhibitor arc

Figure 3 shows an example of a Petri net with an inhibitor arc. As usual,
transitions are visualized using rectangles and places are visualized using circles.
There is one source place i (•i = ∅), one sink place o (o• = ∅), and four more
places. There are five transitions. There is one inhibitor arc connecting place nA
and transition end A∗.

The state of a Petri net, also called marking, corresponds to a multiset of places,
that is, M ∈ P → IN . For any p ∈ P , M(p) is the number of tokens residing in
place p. We will use [p] to denote the marking with just a token in p. A transition
t ∈ T is enabled in state M if and only if for all p ∈ •t: M(p) > 0, and for all
p ∈ ◦t: M(p) = 0. An enabled transition t can fire by removing tokens from the
input places and producing tokens for the output places, that is, in the resulting
marking M ′(p) = M(p) + 1 if p ∈ t • \ • t, M ′(p) = M(p) − 1 if p ∈ •t \ t•, and
M ′(p) = M(p) in all other cases.

Consider the net shown in Figure 3. Assume that initially there is a token in
place i, that is, the initial state is [i]. In this state start A∗ can fire. This will result
in state [bA]. As long as there is a token in bA, transition start A can fire. If startA
fires in [bA], the resulting state is [bA, sA, nA]. Transition startA can fire repeatedly,
that is, states of the form [bA, sAk, nAk] for k ∈ IN are reachable. As a result,
doA can also fire repeatedly, resulting in states of the form [bA, sAm, eAn, nAk] for
k, m, n ∈ IN and k = m + n. Transition endA can fire once for every firing of both
start A and do A. Transition end A∗ can only fire if place bA contains a token and
place nA is empty (note the inhibitor arc), that is, the top part of the net can be
activated multiple times while the lower part can only complete if the top part is
“finished”. Note that behavior of the net shown in Figure 3 cannot be modelled
using classical Petri nets (that is, a Petri net without inhibitor arcs).

In the remainder of this paper, the concept of a path is used regularly. To avoid
confusion, we mention that I is ignored for paths, that is, only Fi and Fo are taken
into account for paths. Thus, if n0n1 . . . nN is a path, then nx+1 ∈ Fi(nx)∪Fo(nx),
for all 0 ≤ x < N .

Figure 3 is a so-called WorkFlow-net (WF-net) having a source place i, a sink
place o, and all other nodes on a path from i to o.

Definition 2 WF-net
A WF-net [1] is a net (P, T, Fi, Fo, I) such that:

One source place There is exactly one place i ∈ P such that •i = ∅.
One sink place There is exactly one place o ∈ P such that o• = ∅.

6

Directed path Every node n ∈ P ∪ T is on some directed path from i to o.

The example net shown in Figure 4 is also a WF-net: the topmost place is its
only source place, the bottommost place its only sink place, and every node is on
some directed path from the topmost place to the bottommost place.

Figure 4: Another WF-net

3.2 Soundness and relaxed soundness

In the context of workflow, place i is the entry point for new cases, while place o is
the exit point. Furthermore, ideally, every case that enters the WF-net (by adding
a token to place i) should exit it exactly once (by removing a token from place o)
while leaving no references to that case behind in the WF-net (no tokens should
be left behind). Furthermore, every part of the process should be viable, that is,
every transition in the corresponding WF-net should be executable. Together, these
requirements constitute the soundness property [1].

Definition 3 Soundness
Let net N = (P, T, Fi, Fo, I) be a WF-net with source place i and sink place o.
Furthermore, let [p] denote the state with exactly one token in place p (and no
tokens in all other places). Net N is said to be sound [1] iff:

• From every state reachable from [i], the state [o] is reachable (completion is
always possible).

• If in some state s reachable from [i] the place o is marked, then s = [o]
(completion is always proper).

• No transition is dead.

Figure 5: The state space of the example net

Figure 5 shows the state space of the example WF-net shown in Figure 4. The
topmost state corresponds to the state [i], whereas the bottommost state corre-
sponds to the state [o]. From this state space, we can conclude that the example
WF-net is sound: (1) from every state reachable from [i], there exists a path to

7

[o], (2) [o] is the only reachable state marking place o, and (3) all transitions are
present in Figure 5.1

Some verification techniques require the addition of an extra transition ∗ such
that •∗ = {o} and ∗• = {i} to a WF-net N . We use ∗N to denote this short-circuited
WF-net. Figure 6 shows the short-circuited example net. Note a short-circuited
net is not a WF-net. The short-circuited WF-net can be used to express soundness
in terms of well-known Petri-net properties: A WF-net is sound if and only if its
short-circuited net is live and bounded [1]. Recall that liveness and boundedness are
two well-known properties supported by a variety of analysis tools and techniques
[12, 28, 30].

Figure 6: The short-circuited example net

In some circumstances, the soundness property is too restrictive. Usually, a
designer of a process knows that certain situations will not occur. As a result, cer-
tain execution paths in the corresponding WF-net should be considered impossible.
Thus, certain reachable states should be considered unreachable. Note that in the
verification process we are often forced to abstract from data, applications, and
human behavior. Note that it is typically impossible to model the behavior of hu-
mans and applications. However, by abstracting from these aspects typically more
execution paths become possible in the model. In her thesis [10], Juliane Dehnert in-
troduced the notion of relaxed soundness to cope with this phenomenon. A WF-net
is called relaxed sound if every transition can contribute to proper completion.

Definition 4 Relaxed soundness
Let net N = (P, T, Fi, Fo, I) be a WF-net with source place i and sink place o. A
transition t ∈ T is said to be relaxed sound [10] iff there exists an execution sequence
σ = t1t2 . . . tn such that:

• transition t is included, that is, t = ti for some 1 ≤ i ≤ n, and

• the net effect of σ is moving the token from place i to place o.

Net N is said to be relaxed sound iff all transitions t ∈ T are relaxed sound.

As mentioned before, every case that enters a WF-net should exit it exactly once
while leaving no references to that case behind in the WF-net (no tokens should be
left behind). Thus, the ultimate goal of a WF-net is to move from place i to place
o. The notion of relaxed soundness brings this goal down to the level of transitions:
every transition occurs in at least one firing sequence moving a token from place i
to place o. A transition that cannot aid in moving a token from place i to place o,
cannot help the WF-net in achieving its goal. Hence, such a transition has to be
erroneous.

1Note that the transition and place labels have been omitted throughout the paper since the
mappings are obvious and explicit labels would only distract from the core ideas.

8

1

2 4

5

3

Figure 7: An execution path for the example WF-net

Figure 7 visualizes an execution path in the example net: First transition 1 is
executed, then transition 2, and so on. It is straightforward to check that in the
example net all transitions are covered by such execution paths.

3.3 T-invariants

An interesting observation2 now is that an execution path that moves a token from
place i to place o corresponds to a cyclic execution path in the short-circuited net:
By executing the short-circuiting transition once, the token is back in place i. It is
well-known that a cyclic execution path corresponds to a semi-positive transition
invariant. A semi-positive transition invariant (or T-invariant for short) is a bag
(multi set) of transitions such that the accumulated sets of input places equals the
accumulated sets of output places (where accumulation yields bags, not sets). As a
result, the net effect of executing every transition from the bag exactly once is zero.

Definition 5 T-invariant
Let net N = (P, T, Fi, Fo, I) be a net and let w ∈ T → IN be a function assigning a
non-negative weight to each of the transitions. Function w is a T-invariant of net
N if and only if for all p ∈ P :

∑
t∈•p w(t) =

∑
t∈p• w(t).

By definition, every relaxed sound transition is covered by some path from the
initial marking [i] to the final marking [o]. As a result, every relaxed sound transi-
tion is covered by some T-invariant in the short-circuited net. However, this does not
work the other way around. T-invariants abstract from the state of the net. There-
fore, it might be possible that the bag of transitions covered by some T-invariant
cannot be executed (because some tokens are lacking). As a result, there may be a
transition that is covered by some T-invariant in the short-circuited net, but that
is not covered by any execution path from state [i] to state [o]. Figure 8 visualizes
a T-invariant for the short-circuited example WF-net which does not correspond to
an execution path, where the numbers indicate transition weights and black tran-
sitions have weight zero. Note that the execution path would simply block on the
transition in the middle.

Thus, if we are unable to generate the state space in reasonable time, then
we can use T-invariants as an approximation. Note that for every execution path
from state [i] to state [o] the short-circuiting transition only needs to be executed
once to obtain a cyclic execution path. Furthermore, note that there may be cyclic
execution paths present in the WF-net itself. For these two reasons, we restrict
ourselves to T-invariants where the short-circuiting transition has either weight 0
(corresponds to a cycle in the WF-net itself) or 1 (corresponds to an execution path
from [i] to [o]).

2The same observation has also been used in, for example, [34, 36] to reduce computation time
for deciding life-cycle inheritance.

9

1

2 1

5

1

1

13 1

Figure 8: A T-invariant for the short-circuited example WF-net

For constructing a set of minimal (semi-positive) T-invariants, we will use the
generic algorithms as described by Colom and Silva [9]. In the worst case, these al-
gorithms are exponential space in the number of transitions, whereas the algorithm
to construct a coverability graph is non-primitive recursive space. Thus, construct-
ing a set of T-invariants has a better complexity than constructing a coverability
graph. Nevertheless, it might be possible to improve the complexity even further,
as we do not need a complete set of minimal T-invariants: We only require a subset
of minimal T-invariants that cover all transitions that are covered by some minimal
T-invariant. Although there is room for improvement, experiments show that our
approach using T-invariants already outperforms state-space methods and is able
to deal with complex workflows. The computation time is typically reduced from
minutes (or even hours) to just a few seconds.

3.4 YAWL

In the introduction, we used figures 1 and 2 to illustrate the capabilities of YAWL.
YAWL allows for the hierarchical decomposition of workflow models, that is, using
composite tasks it is possible to decompose parts of a model. In Section 3.5 we will
explain why we can abstract from this hierarchical decomposition and focus on a
single Extended WorkFlow net (EWF-net). Figure 2 represents such an EWF-net.
The next definition formalizes the notion of an EWF-net.

Definition 6 EWF-net
An EWF-net [5] N is a tuple (C, i, o, T, F, s, j, r, n) such that:

• C is a set of conditions,

• i ∈ C is the input condition,

• o ∈ C is the output condition,

• T is a set of tasks,

• F ⊆ ((C \ {o}) × T) ∪ (T × (C \ {i})) ∪ (T × T) is the flow relation,

• every node in the graph (C ∪ T, F) is on a directed path from i to o,

• s ∈ T → {∧,×,∨} specifies the split behavior of each task, where ∧ corresponds
to an AND-join, × to an XOR-join, and ∨ to an OR-join,

• j ∈ T → {∧,×,∨} specifies the split behavior of each task, where ∧ corresponds
to an AND-split, × to an XOR-split, and ∨ to an OR-split,

• r ∈ T �→ IP (T ∪ C \ {i, o}) specifies the additional tokens to be removed by
emptying a part of the workflow, and

10

• n ∈ T �→ IN×IN inf ×IN inf ×{dynamic, static} specifies the multiplicity of each
task (minimum, maximum, threshold for continuation and dynamic/static cre-
ation of instances).

An EWF-net resembles a WF-net to a large extent: a condition corresponds
to a place, a unique input condition and a unique output condition exist, a task
correspond to a transition, the flow relation corresponds to the input places and
output places, and every node is on some path from the input condition to the
output condition. Nevertheless, as the name suggests, EWF-nets contain extensions
to WF-nets:

• First of all, conditions are not mandatory in between tasks: tasks can be
directly connected to tasks. Basically, an arc from task t to task u (that is,
(t, u) ∈ F ∩(T ×T)) is considered to be a placeholder for an implicit condition
c such that •c = {t} and t• = {u}.

• Second, every task has an associated join behavior, which can be either ∧
(requires all inputs), × (requires one input), or ∨ (requires any non-empty
set of inputs). Likewise, every task has an associated split behavior, which
can also be either ∧ (produces all outputs), × (produces one output), or ∨
(produces any non-empty set of outputs).

• Third, an EWF-net supports the concept of a cancellation region through
function r. If a task t ∈ dom(r) is completed, then all nodes in r(t) are
cancelled (in Petri net terms: all tokens in the corresponding places would be
removed).

• Fourth and last, an EWF-net also supports the concept of multiple task in-
stances through function n. Using this function, it is possible to specify a
lower bound and an upper bound for the number of instances created after
initiating the task. Furthermore, it is possible to specify a threshold for the
number of completed instances. If this threshold is reached, all remaining run-
ning instances are terminated and the task completes automatically. Finally,
there is a fourth parameter indicating whether the number of instances is fixed
after creating the initial instances. The value of the parameter is “static” if
after creation no instances can be added and “dynamic” if it is possible to
add additional instances while there are still instances being processed.

EWF-nets can be seen as an extension of WF-nets. Therefore, we adopt some
of the notations for WF-nets, for example, for x ∈ (T ∪ C): •x = {y | (y, x) ∈ F}
and x• = {y | (x, y) ∈ F}.

3.5 Abstractions

A complete YAWL model is a non-empty set of EWF-nets with a special EWF-net
Ntop. Composite tasks are mapped onto EWF-nets such that the set of EWF-nets
forms a tree-like structure with Ntop as root node. Furthermore, a complete YAWL
model contains a map. Tasks in the domain of this map are composite tasks which
are mapped onto EWF-nets. Throughout this paper we will assume that there
are no name clashes, for example, names of conditions differ from names of tasks
and there is no overlap in names of conditions and tasks originating from different
EWF-nets. If there are name clashes, tasks/conditions are simply renamed.

The goal of this paper is a verification approach for a complete YAWL model
based on relaxed soundness and T-invariants. As such, our approach pivots on the
good execution paths from the start to the end. As any EWF-net has a well-defined
point of entry (its input condition) and a well-defined point of exit (its output

11

C e(C)

T U i(T,U)

s(T,{U}) j(U,{T})

U

C

b(T)

e(C)

i(U,T) j(T,{U})

j(T,{C})

j(T,{C,U})

U

T

C

b(T)

e(C)

b(U)

s(T,Y)

c(T,C)

c(T,U)

T b(T)

j(T,X) s(T,Y)

T

ex
pl

ic
it

co
nd

iti
on

ta
sk

im
pl

ic
it

co
nd

iti
on

O
R

-jo
in

ca
nc

el
la

tio
n

re
gi

on

c(T,T)

Figure 9: Mapping templates

condition), there is no need to replace a composite task by its underlying EWF-net
when verifying the EWF-net that contains that composite task. We can simply
verify that underlying EWF-net in isolation. As a result, we can abstract from
hierarchy.

In a similar way, we can also abstract from multiple instances (function n). For
the verification, we may assume that the YAWL engine is able to keep the multiple
running instances from getting mixed (this is indeed the case). Thus, if we have
verified an EWF-net for one instance in isolation, then we may assume that running
multiple instances in parallel on the engine will not result in erroneous behavior.

4 Mapping

This section presents the mapping from YAWL models to WF-nets. As we have
argued at the end of the previous section, for our approach, it suffices to verify the
EWF-nets of the YAWL model in isolation, and we can also abstract from multiple
instances (function n of the EWF-net). Furthermore, for our approach, we can
also abstract from the actual YAWL semantics of the OR-joins (or-splits): We only
want to know whether an OR-join (or-split) with a specific set of inputs (outputs)
is viable, that is, whether it is covered by some good execution path.

To keep the join behavior separated from the split behavior, we map a task
onto a busy place, a number of join transitions, and a number of split transitions.
Conditions get mapped onto places, where explicit conditions are mapped onto
explicit places and implicit conditions onto implicit places. A cancellation region is
mapped onto a set of cancel transitions, using also inhibitor arcs. Figure 9 visualizes
the mapping.

The remainder of this section presents the detailed mapping. For this mapping,
assume that we have an EWF-net (C, i, o, T, F, s, j, r, n), and that we want to map
it onto a WF-net (P, U, Fi, Fo, I).

4.1 Places

The set of places P contains three types of places: explicit places, implicit places,
and busy places. An explicit place e(c) corresponds to an explicit condition c ∈ C,
an implicit condition i(t, u) corresponds to an implicit condition between tasks t ∈ T
and u ∈ T , and a busy place b(t) corresponds to a task t ∈ T .

12

P = {e(c)|c ∈ C}
∪ {i(t, u)|(t, u) ∈ F ∩ (T × T)}
∪ {b(t)|t ∈ T }

(1)

4.2 Transitions

The set of transitions U contains three types of transitions: join transitions, split
transitions, and cancel transitions. A join transition j(t, X) corresponds to starting
task t ∈ T given the input set X ⊆ C ∪ T , a split transition s(t, X) corresponds
to completing task t ∈ T given the output set X ⊆ C ∪ T , and a cancel transition
c(t, x) corresponds to canceling a task or an explicit or implicit condition x ∈
C ∪ T ∪ (F ∩ (T × T)) because task t ∈ T has completed. Note that the validity of
the actual input set depends on the task’s join behavior, that is, on j(t), and that
the validity of the actual output set depends on the task’s split behavior.

validj(X, t) =

⎧⎨
⎩

|X | = | • t| if j(t) = ∧
|X | = 1 if j(t) = ×
|X | > 0 if j(t) = ∨

(2)

valids(X, t) =

⎧⎨
⎩

|X | = |t • | if s(t) = ∧
|X | = 1 if s(t) = ×
|X | > 0 if s(t) = ∨

(3)

Cancel transitions can either cancel a busy place (if the task cancels itself or another
task), an explicit place (if the task cancels an explicit condition), or an implicit place
(if the task cancels two tasks who have this implicit condition in between). If the
task cancels another task, then all tokens from the corresponding busy place need
to be removed. However, if a task cancels itself, then all but one token need to be
removed as we need the last one to continue. Normally, this would be hard to model
in a WF-net, if possible at all. However, because we are only interested in good
execution paths (and simply ignore the bad ones), we can model this in a simple
and elegant way: Any model that could remove all but one token and then continue
will do. Figure 9 shows how we can model this: We add a cancel transition to the
task, but do not add an inhibitor arc between its busy place and any split transition
(as this would effectively block the split transitions).

U = {j(t, X)|t ∈ T ∧ X ⊆ •t ∧ validj(X, t)}
∪ {s(t, X)|t ∈ T ∧ X ⊆ t • ∧valids(X, t)}
∪ {c(t, x)|t ∈ dom(r) ∧ x ∈ r(t)}
∪ {c(t, (u, v))|t ∈ dom(r) ∧ u, v ∈ r(t) ∧ (u, v) ∈ F ∩ (T × T)}

(4)

4.3 Input places

The set of input places depends on the transition type. Join transitions have only
explicit or implicit places as input places, split transitions only busy places, and
cancel transitions explicit, implicit, and busy places. A join transition j(t, X) has
an explicit place e(c) as input iff c ∈ X ∩ C and has implicit place i(u, v) as input
iff u ∈ X ∧ v = t.

Fi(j(t, X)) = {e(c)|c ∈ X ∩ C}
∪ {i(u, t)|u ∈ X ∧ (u, t) ∈ (F ∩ (T × T))} (5)

A split transition s(t, X) only has busy place b(t) as input place.

Fi(s(t, X)) = {b(t)} (6)

13

A cancel transition c(t, x) has an explicit place e(c) as input place iff x = c, has
implicit place i(u, v) as input place iff x = (u, v), and has busy place b(u) as input
place iff t = u (to check whether it may cancel, that is, whether it is active) or
x = u (to actually cancel task u). Note that a cancel transition c(t, x) has place
b(t) as input. Later on, we will see that this transition has this place as output
place as well. As a result, the token is only tested, but not removed.

Fi(c(t, x)) = {b(t)} ∪
⎧⎨
⎩

{e(x)} if x ∈ C
{i(x)} if x ∈ T × T
{b(x)} if x ∈ T

(7)

4.4 Output places

The set of output places also depends on the transition type. Join transitions have
only busy places as output places, split transitions only explicit or implicit places,
and cancel transitions only busy places. A join transition j(t, X) has busy place
b(t) as output.

Fo(j(t, X)) = {b(t)} (8)

A split transition s(t, X) has an explicit place e(c) as output iff c ∈ X ∩C and has
implicit place i(u, v) as output place iff u = t ∧ v ∈ X .

Fo(s(t, X)) = {e(c)|c ∈ X ∩ C}
∪ {i(t, v)|v ∈ X ∧ (t, v) ∈ (F ∩ (T × T))} (9)

A cancel transition c(t, x) has busy place b(t) as output place (as mentioned before,
we only want to test this token).

Fo(c(t, X)) = {b(t)} (10)

4.5 Inhibitor places

A task may only complete if its cancellation region is empty, that is, if all tokens in
the corresponding places (whether they be explicit, implicit, or busy places) have
been removed. Thus, the transitions that model the completion of the task, that
is, the split transitions, need to be inhibited by all these places. As a result, a
split transition s(t, X) has an explicit place e(c) as inhibitor place iff c ∈ r(t), has
implicit place i(u, v) as inhibitor place iff u, v ∈ r(t), and has busy place b(u) as
inhibitor place iff u �= t ∧ u ∈ r(t). As mentioned earlier, a busy place of some
task should not inhibit any of the task’s split transitions, as this would effectively
block the split transitions. Therefore, we require u �= t. Join transitions and cancel
transitions have no inhibitor places.

I(j(t, X)) = ∅
I(s(t, X)) = {e(c)|c ∈ r(t) ∩ C}

∪ {i(u, v)|u, v ∈ r(t) ∩ T ∧ (u, v) ∈ F}
∪ {b(u)|u �= t ∧ u ∈ r(t) ∩ T }

I(c(t, x)) = ∅

(11)

4.6 Example

Figure 10 shows the WF-net that results from applying the mapping to the example
EWF-net from Figure 2.

14

e(i) b(A)

i(A,B) b(B) i(B,D) b(D) e(p)

e(o)b(F)

i(E,F)b(E)i(C,E)b(C)i(A,C)

j(A,{i}) s(
A

,{B
,C

})

j(B,{A}) j(D,{B})

j(C,{A}) j(E,{B,C})

j(F,{p})

j(F
,{p

,E
})

j(F,{E})

s(B,{D,E})

s(C,{E})

s(D,{p})

s(E,{F})

s(F,{o})

c(
E

,B
)

c(
E

,(B
,D

))

i(B,E)

c(
E

,D
)

c(
E

,p
)

Figure 10: The example EWF-net mapped onto a WF-net

5 Verification

With the mapping in place, we can now turn our attention towards the verification
of the YAWL models. As mentioned in Section 1, our goal is not a complete and
exhaustive verification of a YAWL model, as such a verification would have to take
the complex semantics of the OR-joins into account. Instead, we propose a much
simpler form of verification that can simply abstract from this complex semantics.

5.1 Goal

Pivotal to our approach is the concept of good execution paths. A good execution
path is a path that, if started from the initial state (the state where the instance
has just been created, that is, the state where the input place contains one token),
ends in the completed state (the state where the instance has been properly com-
pleted, that is, the state where only the output place contains one token). All other
paths are considered bad execution paths. Clearly, any task should be viable, that
is, should be covered by a good execution path. As a result, at least one of its
corresponding join transitions and at least one of its corresponding split transitions
should be on some good execution path. Furthermore, it could be the case that no
good execution path exists in which a task cancels some node in its cancellation
region. Thus, the entire cancellation region of a task should be covered as well by
the good execution paths.

Definition 7 Viability
Let N = (C, i, o, T, F, s, j, r, n) be an EWF-net, and let (P, U, FI , Fo, I) be the WF-
net EWF-net N is mapped onto. A transition u ∈ U is called viable iff it is covered
by some good execution path (that is, a firing sequence starting in state [i] and
resulting in state [o]). The join behavior of a task t ∈ T is called viable iff at least
one of its join transitions is viable. Likewise, the split behavior of a task t ∈ T is
called viable iff at least one of its split transitions is viable. The cancel behavior of
a task t ∈ T is called viable iff all its cancel transitions are viable. A task t ∈ T is
called viable iff its join and split behavior are viable.

5.1.1 Relaxed soundness

The definition of viability on the level of WF-nets corresponds to the definition of
relaxed soundness: A transition is viable iff it is relaxed sound.

Theorem 1 Let N = (P, U, Fi, Fo, I) be a WF-net. A transition t ∈ U is viable iff
it is relaxed sound.

15

Proof By definition, the set of good execution paths coincides with the execution
sequences that move the token from the input place to the output place.

As a result, we can use the relaxed soundness property to compute the set of vi-
able transitions. However, the relaxed soundness property requires the entire state
space to be computed, and constructing that state space might not be an option.
For instance, if the number of reachable states is unbounded, we simply cannot
construct the state space. Furthermore, for Petri nets that include inhibitor arcs
the reachability problem is known to be undecidable [15]. As a result (we could
use a state space to decide reachability), computing the state space might also not
be an option if inhibitor arcs are present. For these reasons, we also introduce a
structural property that can be used to approximate the set of viable transitions:
T-invariants.

5.1.2 T-invariants

By definition, every good execution path removes a token from the input place and
adds a token to the output place. As a result, every good execution path corresponds
to a T-invariant in the short-circuited net (see also Section 3). However, this does
not hold in the other direction: T-invariants might exist that do not correspond
to a good execution path. Some of these ‘bad’ T-invariants can be detected quite
easily:

• A T-invariants should have weight 0 or 1 for the short-circuiting transition
(we do not want to fire the short-circuiting transition more than once; note
that if the weight is 0 then the T-invariant might correspond to an internal
cycle).

• A T-invariant that includes a cancel transition for some task should also in-
clude a join transition for that task (a task can only cancel other nodes if it
has been started).

Nevertheless, ‘bad’ T-invariants might remain, and the remaining set of T-invariants
might still cover some non-viable transitions. As a result, the warnings obtained by
our approach might not be complete, but they will be correct.

5.2 Viability

Using either the relaxed soundness property or the T-invariant property, we can
obtain (an approximation of) the set of viable transitions. However, we still need
to map the results back onto the level of the YAWL model.

5.2.1 Input and output nodes

Figure 11 shows how we can map the viability information from the WF-net level
back to the EWF-net level, using the join behavior of task F (see also Figure 2 and
Figure 10).

• If all corresponding join transitions are viable, then no errors are detected and
no warnings are issued.

• If only transition j(F, {p, E}) is not viable (that is, only j(F, {p}) and j(F, {E})
are viable in Figure 11), then task F might as well have been an XOR-join,
and a warning is issued.

• If only transition j(F, {p}) is viable, then (apparently) task F cannot be exe-
cuted successfully using the input from task E, and a warning is issued.

16

Viable Not viable Warning
j(F, {p})
j(F, {p, E})
j(F, {E})

none None.

j(F, {p})
j(F, {p, E})

j(F, {E}) None.

j(F, {p})
j(F, {E})

j(F, {p, E}) Task F could have been an XOR-join.

j(F, {p, E})
j(F, {E})

j(F, {p}) None.

j(F, {p}) j(F, {p, E})
j(F, {E})

Task E is not viable for task F.

j(F, {p, E}) j(F, {p})
j(F, {E})

Task F could have been an AND-join.

j(F, {E}) j(F, {p})
j(F, {p, E})

Condition p is not viable for task F.

none j(F, {p})
j(F, {p, E})
j(F, {E})

Task F is not viable.

Figure 11: Possibilities for an OR-join

• . . .

Note that we have used a binary OR-join to explain our approach, but that other
joins are covered as well by our approach. In general, if some input is not covered
by any of the viable transitions, then a warning is issued that the uncovered inputs
are not viable for this task; if only the transition with all inputs is viable, then a
warning that the OR-join could have been an AND-join is issued; if only transitions
with only one input are viable, then a warning that the OR-join could have been
an XOR-join is issued; and if none of the transitions is viable, then a warning is
issued that this task is not viable. Formally, let t ∈ T be a task, and let its set of
join transitions be

{j(t, X1), . . . , j(t, Xk), j(t, Xk+1), . . . , j(t, Xn)}, (12)

such that only the first k join transitions are viable. Then:

• task t is not viable if k = 0,

• node n is not viable for task t if n ∈ (X1 ∪ . . . ∪ Xn) \ (X1 ∪ . . . ∪ Xk),

• task t could have been an AND-join if j(t) = ∨ ∧ k = 1 ∧ |X1| = | • t|, and

• task t could have been an XOR-join if j(t) = ∨ ∧ ∀1≤i≤k|Xi| = 1.

Mutatis mutandis, the same holds for output nodes and splits.

17

e(i) b(A)

i(A,B) b(B) i(B,D) b(D) e(p)

e(o)b(F)

i(E,F)b(E)i(C,E)b(C)i(A,C)

j(A,{i}) s(
A

,{B
,C

})

j(B,{A}) j(D,{B})

j(C,{A}) j(E,{B,C})

j(F
,{p

,E
})

s(B,{D,E})

s(C,{E})

s(D,{p})

s(E,{F})

s(F,{o})

i(B,E)

Figure 12: A T-invariant in the example WF-net

5.2.2 Cancel nodes

A cancellation region of task t is viable iff all cancel transitions for task t are viable.
Only nodes x for which the cancel transitions c(t, x) is viable can be cancelled
successfully by task t. As a result, if a cancel transition c(t, x) is not viable, then
the cancellation of node x by task t is not viable.

5.3 Example

The transitions j(F, {p}), j(F, {p, E}), and c(E, B) in Figure 10 are not relaxed sound.
As a result, these transitions are not viable, and the following warnings are issued:

• Condition p is not viable for task F.

• Task F could have been an XOR-join.

• The cancellation of task B by task E is not viable.

Figure 12 shows a fragment of the example WF-net that corresponds to a T-
invariant. It is trivial to check that this fragment does not correspond to a good
execution path (see also Figure 10), because transition s(E, {F}) can only fire if the
places i(B, D), b(D), and e(p) are empty. Thus, the example EWF-net contains a
T-invariant that does not correspond to a good execution sequence, and we might
not detect all non-viable transitions. Indeed, we only detect transitions j(F, {p})
and c(E, B) to be not viable. As a result, using T-invariants, only the following
warning is issued:

• The cancellation of task B by task E is not viable.

This example illustrates that without computing the state space we can issue useful
warnings. However, these warnings are not necessarily complete.

6 Tool

Based on the mapping and the properties as described in the previous two sections,
we can now present our tool, called WofYAWL. WofYAWL is a command-line utility
that uses the core algorithms of the Woflan workflow verification tool.

6.1 Woflan

Woflan [35, 37] is a workflow verification tool that has been around now for almost
ten years. It started as a soundness verification tool that uses the fact that soundness
corresponds to the well-known boundedness and liveness properties. During the

18

M

i o

...... ...

Figure 13: The resulting WF-net

years, several things have been added and/or changed. At the moment, Woflan can
determine soundness for WF-nets, can provide diagnostic information if a WF-net is
not sound, can check several inheritance relations between two WF-nets, can reduce
WF-nets using boundedness and liveness preserving reduction rules [28], and can
import for example PNML [19], Staffware, and BPEL files [29].

For the diagnostic information, Woflan uses algorithms for computing minimal
sets of semi-positive invariants that are as efficient as possible [9]. For computing
a state space, Woflan uses the algorithm to construct a coverability graph in com-
bination with a balanced binary search tree. Unlike the state space, a coverability
graph is always finite. Therefore, given sufficient time and space, a coverability
graph can always be constructed. From the constructed coverability graph, we can
deduce whether the state space is finite. Furthermore, if the state space is finite,
then the coverability graph is identical to the state space.

6.2 WofYAWL

The command-line utility WofYAWL imports a YAWL model, maps all embedded
EWF-nets to WF-nets, optionally reduces the resulting WF-nets using boundedness
and liveness preserving reduction rules, and optionally generates a report using
relaxed soundness and/or T-invariants.

6.2.1 Import

First, WofYAWL imports the provided YAWL model. For this import, we use the
XML file that the YAWL editor exports for the YAWL engine. At the moment, the
latest version of the corresponding XML Schema is version 4, and WofYAWL can
import any file that adheres to this schema or previous versions of this schema.

6.2.2 Mapping

Second, WofYAWL maps every embedded EWF-net onto a WF-net, using the map-
ping as specified in Section 4. The resulting WF-nets are combined into one WF-net
together with a new input place, a new output place, an input transition for every
WF-net, and an output transition for every WF-net. Figure 13 visualizes this com-
bining of WF-nets into one WF-net, assuming that the YAWL model embeds M
EWF-nets. Note that every good execution in one of the ‘sub’ WF-nets is also a
good execution path in the resulting WF-net. Note that for brute-force state-based
methods it would not have been a good idea to merge the EWF-nets onto one big
WF-net. However, since we use reductions and can always resort to the calculation
of invariants, the performance is typically good even after merging the EWF-nets.

As the transitions that are added in this step are of no interest to the user, they
will not be added to the report even if they are not viable.

19

6.2.3 Reduction

Third, WofYAWL optionally reduces the WF-net using boundedness and liveness
preserving reduction rules [28]. Typically, a reduced WF-net will result in a smaller
state space. Therefore, if WofYAWL has problems constructing the state space,
it might be a good idea to have the WF-net reduced before the state space is
constructed. Note, however, that the report will be based on a different WF-net,
that is, on the reduced WF-net, and that this might complicate the interpretation
of the report.

Fourth, WofYAWL optionally creates a report based on relaxed soundness and/or
T-invariants.

6.2.4 Relaxed soundness

If we can construct a coverability graph within reasonable time, and if from this
coverability graph we learn that the state space is finite, then we propose to use
relaxed soundness as it provides a more complete report. If we fail to construct a
coverability graph within reasonable time, we propose to construct a coverability
graph for the reduced WF-net. If no errors are found for the reduced WF-net, then
no errors will be found for the original WF-net. If the state space turns out to be
infinite, then we could use the constructed coverability graph as an approximation
for that infinite state space. However, the results obtained from this approximation
might be incorrect. Recall that good execution paths are paths that start in the
state with one token in the input place and end in the state with one token in the
output place. In the coverability graph, this latter state may be obscured by other
states, and it might not even be present at all. As a result, only a subset of the good
execution paths might be found, which could result in incorrect results. Therefore
we do not propose to use this approximative approach. Instead, we propose to use
only the results based on the T-invariants.

6.2.5 T-invariants

If constructing the state space for the reduced WF-net is also a problem, then we
propose to use T-invariants. Errors found using T-invariants will correspond to
errors found using relaxed soundness, but possibly not all errors will be detected
using T-invariants.

6.3 Example

Figure 14 shows a sample report for the example EWF-net (see Figure 2). For this
report, no reductions were applied, and both a report based on relaxed soundness
(see the behavior element in the report) and a report based on T-invariants (the
structure element) were generated. Note that the names of tasks and conditions
have been extended by an underscore and a number (for example, F 3, p 2). The
YAWL editor (Version 1.4) used for the example generates these extensions when
exporting to a YAWL engine file. From both reports, we learn that the condition p
is not viable for task F, that task F could be and XOR-join instead of an OR-join,
and that the cancellation of task B by task E is not viable.

7 Case study

As a case study we use a YAWL model describing the lifestyle of some famous artist
shown in Figure 15. This example is one of the standard examples for the YAWL
toolset and can be downloaded from www.yawl-system.com and executed using

20

<wofyawl version="0.6" status="released">

<net file="example.xml">

<structure>

<uncovered task="t:example.ywl:example:F_3:join:p_2"/>

<uncovered task="t:example.ywl:example:E_7:reset:*B_6"/>

<warning specification="example.ywl"

decomposition="example"

task="E_7"

cancel="B_6"

/>

</structure>

<behavior>

<uncovered task="t:example.ywl:example:F_3:join:p_2"/>

<uncovered task="t:example.ywl:example:F_3:join:E_7*F_3:p_2"/>

<uncovered task="t:example.ywl:example:E_7:reset:*B_6"/>

<warning specification="example.ywl"

decomposition="example"

task="F_3"

input="p_2"

/>

<warning specification="example.ywl"

decomposition="example"

task="F_3"

OR-join="XOR-join"

/>

<warning specification="example.ywl"

decomposition="example"

task="E_7"

cancel="B_6"

/>

</behavior>

</net>

</wofyawl>

Figure 14: A report for the example EWF-net

the YAWL workflow engine. This particular example contains relevant control-
flow patterns and is easy to explain, as it doesn’t require much domain knowledge.
Therefore, it is a nice example to demonstrate and test our verification approach.

Figure 15 shows this model using Version 1.4 of the YAWL Editor, after we have
added several errors to it:

• The task “Do everything you are told” now cancels the tasks “Decide to make
music”, “Do audition”, “Learn to play instrument”, the conditions “Audition
failed?” and “Audition passed”, and the (unnamed) condition following the
task “Learn to play instrument”.

• The join behavior of the task “Choose songs” has been changed from an XOR-
join to an AND-join.

• The split behavior of the task “Initial solo performance” has been changed from
an XOR-split to an AND-split.

Appendix A shows the resulting YAWL file.
Appendix B shows the initial report. From this report, we learn that the

state space could not be generated (the YAWL net is reported to be unbounded).
Therefore, we restrict ourselves to the results obtained using the T-invariants:

21

Figure 15: The lifestyle model

22

1. The task “Decide to go solo” is not viable for the task “initial solo performance”
(as any path that goes through task “Decide to go solo” and that starts task
“initial solo performance” cannot complete properly).

2. The task “Join band” is not viable for the task “initial solo performance”.

3. The condition “Done?” is not viable for the task “Send record to marketing
dept”.

4. The task “Send record to marketing dept” is not viable.

5. The task “initial solo performance” is not viable for the task “Decide to go
solo”.

6. The task “Decide to go solo” could be an XOR-split instead of an OR-split.

7. The task “initial solo performance” is not viable for the task “Join band”.

8. The task “Join band” could be an XOR-split instead of an OR-split.

The warnings 1, 2, 5, and 7 clearly indicate that something is wrong with the
task “initial solo performance”. Warnings 1 and 5 state that the arc from task
“Decide to go solo” to task “initial solo performance” cannot successfully be taken,
warnings 2 and 7 state the same for the arc from task “Join band” to task “initial
solo performance”. But apparently, nothing is wrong with the alternative task, task
“Write a song”. These warnings should be sufficient for the designer to have a closer
look at the “initial solo performance” task, and to reconsider its split behavior.

The warnings 6 and 8 are a direct result of the previous error. As task “initial
solo performance” is not viable, both preceding or-splits should choose to do only
the task “Write a song”. As a result, both could have been XOR-splits instead of
OR-splits.

The warnings 3 and 4 indicate that something is wrong with the entire “Make
record” process, as the arc from condition “Done?” to task “Send record to marketing
dept” is not viable, which makes the entire process not viable. In such a case, it
usually pays off to do a sample execution for this process: The process is not viable,
hence no execution can lead to proper completion, thus, every execution should go
wrong somewhere. Using a sample execution, a designer should have no problems
at all to detect that the task “Choose songs” should be an XOR-join instead of an
AND-join.

After having repaired both errors, we generate a new report. From this report,
we learn that the state space is finite (and could be constructed within reasonable
time). As a result, we use the results obtained using relaxed soundness:

1. Cancellation of task “Decide to make Music” by task “Do everything you are
told” is not viable.

2. Cancellation of task “Do audition” by task “Do everything you are told” is not
viable.

3. Cancellation of task “Learn to play instrument” by task “Do everything you are
told” is not viable.

4. Cancellation of condition “” by task “Do everything you are told” is not viable.

5. Cancellation of condition “Audition failed” by task “Do everything you are told”
is not viable.

6. Cancellation of condition “Audition passed” by task “Do everything you are
told” is not viable.

23

7. Cancellation of the implicit condition between task “Decide to make Music”
and task “Do audition” by task “Do everything you are told” is not viable.

8. Cancellation of the implicit condition between task “Decide to make Music”
and task “Learn to play instrument” by task “Do everything you are told” is not
viable.

Clearly, these warnings correspond to the first error we introduced. After having
repaired this error as well, we obtain a report containing no warnings and the
resulting model is indeed correct.

8 Conclusion

This paper presented a verification approach for the control-flow aspect of YAWL
models. This verification approach is based on two properties that are known in the
Petri-net literature: relaxed soundness and T-invariants. First, the YAWL model
is mapped onto a WF-net, which is a subclass of Petri nets especially tailored
towards workflow verification. Second, using the relaxed soundness property and/or
the T-invariants property, a report with warnings is generated. If the state space
of the WF-net can be constructed within reasonable time, the relaxed soundness
property can be used, which yields a more complete report. Otherwise, the T-
invariants property can be used, as T-invariants do not require this state space to
be constructed. However, using T-invariants we possibly obtain less warnings (that
is, a correct but possibly incomplete error report).

Our verification approach is not complete; in the sense that errors may exist
that remain undetected by the approach. For a complete approach, we would have
to take the complex OR-join semantics into account. Note that our verification
approach can abstract from this semantics precisely because we did not require it
to be complete. As a result, we believe that, at the moment, our verification is a fair
trade off between a complete verification approach and no verification approach at
all. In the near future, we hope to be able to also introduce a complete verification
approach, which takes the OR-join semantics into account. However, as mentioned,
this might be very hard, as this requires a formalism that makes many (but not all)
relevant properties undecidable [39]. Note that besides the OR-join, the cancellation
region is complicating matters. Using just cancellation region we get the expressive
power of reset nets and it is known that reachability is undecidable for reset nets
[13, 14, 16].

Being able to verify YAWL models, and given the fact that YAWL models
support the most frequently occurring patterns found in existing workflow models
today, our verification approach can also be applied to many existing workflow mod-
els found today. That is, its application is not limited to YAWL. Our verification
approach could immediately be applied to any proprietary workflow language for
which a mapping to YAWL exists. For example, our verification approach can be
applied directly to other languages, like EPCs and BPEL [29].

Another interesting feature of our approach, that was left unaddressed in this
paper, is the possibility to rule out unviable OR-join behavior. Given the tasks
that have been executed for some running case, we can determine the set of good
execution paths that are still open for this case. If these good execution paths do
not contain some join transition that corresponds to an OR-join, than that join
transition should not be executed, and that OR-join has to wait for additional
tokens. In general, only join transitions that are covered by the good execution
paths should be enabled and considered for execution.

24

Acknowledgments The authors would like to thank the people working on YAWL.
Special thanks go to Lachlan Aldred and Lindsay Bradford for developing and edit-
ing the lifestyle example.

References

[1] W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248
of Lecture Notes in Computer Science, pages 407–426, Toulouse, France, June
1997. Springer, Berlin, Germany.

[2] W.M.P. van der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[3] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the semantics of EPCs: A
vicious circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80. Gesellschaft
für Informatik, Bonn, 2002.

[4] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An alternative
way to analyze workflow graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C.
Woo, and M.T. Ozsu, editors, Proceedings of the 14th International Conference
on Advanced Information Systems Engineering (CAiSE’02), volume 2348 of
Lecture Notes in Computer Science, pages 535–552. Springer, Berlin, Germany,
2002.

[5] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Advanced workflow patterns. In O. Etzion and P. Scheuermann, editors, 7th
International Conference on Cooperative Information Systems (CoopIS 2000),
volume 1901 of Lecture Notes in Computer Science, pages 18–29. Springer,
Berlin, Germany, 2000.

[7] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and
J.C. van de Pol. mCRL: A toolset for analysing algebraic specifications. In
G. Berry, H. Comon, and A. Finkel, editors, Proceedings of the 13th Interna-
tional Conference on Computer Aided Verification (CAV’01), volume 2102 of
Lecture Notes in Computer Science, pages 250–254. Springer, Berlin, Germany,
2001.

[8] R. Chen and A.W. Scheer. Modellierung von Processketten mittels Petri-Netz
Theorie. Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 107
(in German), University of Saarland, Saarbrücken, 1994.

[9] J.-M. Colom and M. Silva. Convex geometry and semiflows in P/T nets: A
comparative study of algorithms for computation of minimal P-semiflows. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture
Notes in Computer Science, pages 79–112. Springer, Berlin, Germany, 1990.

[10] J. Dehnert. A Methodology for Workflow Modelling: from Business Process
Modelling towards Sound Workflow Specification. PhD thesis, Technische Uni-
versität Berlin, Berlin, Germany, August 2003.

25

[11] J. Dehnert and W.M.P. van der Aalst. Bridging the gap between business
models and workflow specifications. International Journal of Cooperative In-
formation Systems, 13(3):289–332, 2004.

[12] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

[13] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability
and undecidability. In K. Larsen, S. Skyum, and G. Winskel, editors, Pro-
ceedings of the 25th International Colloquium on Automata, Languages and
Programming, volume 1443 of Lecture Notes in Computer Science, pages 103–
115, Aalborg, Denmark, July 1998. Springer, Berlin, Germany.

[14] C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets.
In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Lectures on
Concurrency and Petri Nets, volume 1644 of Lecture Notes in Computer Sci-
ence, pages 301–310, Prague, Czech Republic, July 1999. Springer-Verlag.

[15] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Journal
of Information Processing and Cybernetics, 30:143–160, 1994.

[16] A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems every-
where! Theoretical Computer Science, 256(1–2):63–92, April 2001.

[17] J.F. Groote and M.A. Reniers. Algebraic Process Verification, chapter 7, pages
1151–1208. Handbook of Process Algebra. Elsevier Science B.V., Amsterdam,
The Netherlands, 2001.

[18] A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification prob-
lems in conceptual workflow specifications. Data and Knowledge Engineering,
24(3):239–256, 1998.

[19] M. Jungel, E. Kindler, and M. Weber. The Petri net markup language. In
S. Philippi, editor, Proceedings of AWPN 2000 - 7thWorkshop Algorithmen
und Werkzeuge für Petrinetze, pages 47–52. Research Report 7/2000, Institute
for Computer Science, University of Koblenz, Germany, 2000.

[20] C. Karamanolis, D. Giannakopoulou, J. Magee, and S.M. Wheater. Formal
verification of workflow schemas.

[21] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Process-
modellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK).
Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89 (in Ger-
man), University of Saarland, Saarbrücken, 1992.

[22] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische processmodellierung
auf der grundlage ereignisgesteuerter processketten (epk). Veröffentlichungen
des Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of
Saarland, Saarbrücken, 1992.

[23] E. Kindler. On the semantics of EPCs: A framework for resolving the vicious
circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes
in Computer Science, pages 82–97. Springer, Berlin, Germany, 2004.

[24] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23–40, 2006.

26

[25] H. Lin, Z. Zhao, H. Li, and Z. Chen. A novel graph reduction algorithm
to identify structural conflicts. In Proceedings of the Thirty-Fourth Annual
Hawaii International Conference on System Science (HICSS-35), pages 3778–
3787. IEEE Computer Society Press, 2002.

[26] T. Madhusudan. A model-checking approach to workflow design and verifi-
cation. In Fourth International Conference on Electronic Commerce Research
(ICECR-4), 2001.

[27] P. Matousek. Verification of Business Process Models. PhD thesis, Technical
University of Ostrava, Ostrava-Poruba, Czech Republic, 2003.

[28] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[29] C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and H.M.W. Verbeek. WofBPEL: A tool for automated analysis of BPEL
processes. In ICSOC 2005 proceedings, volume (to appear) of Lecture Notes in
Computer Science. Springer, Berlin, Germany, 2005. Accepted as tool demo.

[30] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Advances in Petri Nets.
Springer, Berlin, Germany, 1998.

[31] W. Sadiq and M.E. Orlowska. Applying graph reduction techniques for iden-
tifying structural conflicts in process models. In M. Jarke and A. Oberweis,
editors, Advanced Information Systems Engineering, 11th. International Con-
ference, CAiSE’99, Proceedings, volume 1626 of Lecture Notes in Computer
Science, pages 195–209, Heidelberg, Germany, June 1999. Springer, Berlin,
Germany, 1999.

[32] W. Sadiq and M.E. Orlowska. Analyzing process models using graph reduction
techniques. Information Systems, 25(2):117–134, 2000.

[33] M. Schroeder. Verification of business processes for a correspondence handling
center using CCS. In EUROVAV, pages 253–264, 1999.

[34] H.M.W. Verbeek. Verification of WF-nets. PhD thesis, Eindhoven University
of Technology, Eindhoven, The Netherlands, June 2004. BETA dissertation
series D65.

[35] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based
workflow diagnosis tool. In M. Nielsen and D. Simpson, editors, Application
and Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer
Science, pages 475–484. Springer, Berlin, Germany, 2000.

[36] H.M.W. Verbeek and T. Basten. Deciding life-cycle inheritance on Petri nets.
In W.M.P. van der Aalst and E. Best, editors, 24th International Conference on
Application and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lecture
Notes in Computer Science, pages 44–63, Eindhoven, The Netherlands, June
2003. Springer, Berlin, Germany.

[37] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnozing workflow
processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

[38] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Rus-
sell. Pattern-based Analysis of BPMN - An extensive evaluation of the Control-
flow, the Data and the Resource Perspectives. BPM Center Report BPM-05-26,
BPMcenter.org, 2005.

27

[39] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Achieving a general, formal and decidable approach to the OR-join in workflow
using reset nets. In G. Ciardo and P. Darondeau, editors, Applications and
Theory of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science,
pages 423–443. Springer, Berlin, Germany, 2005.

A The erroneous lifestyle example

<?xml version="1.0" encoding="UTF-8"?>

<specificationSet

xmlns="http://www.citi.qut.edu.au/yawl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="Beta 6"

xsi:schemaLocation="http://www.citi.qut.edu.au/yawl/schema/YAWL_SchemaBeta6.xsd"

>

<specification uri="FlyerExampleWithCancellations1.4">

<metaData>

<title>The YAWL Flyer Example</title>

<creator>Eric Verbeek</creator>

<description>The erroneous flyer example.</description>

<version>1.0</version>

</metaData>

<schema xmlns="http://www.w3.org/2001/XMLSchema"/>

<decomposition id="Create_Music" isRootNet="true" xsi:type="NetFactsType">

<processControlElements>

<inputCondition id="InputCondition_8">

<flowsInto>

<nextElementRef id="Decide_to_make_music_24"/>

</flowsInto>

</inputCondition>

<task id="Decide_to_make_music_24">

<flowsInto>

<nextElementRef id="Learn_to_play_instrument_22"/>

<isDefaultFlow/>

</flowsInto>

<flowsInto>

<nextElementRef id="Do_audition_17"/>

<predicate ordering="0">true()</predicate>

</flowsInto>

<join code="xor"/>

<split code="xor"/>

<decomposesTo id="Decide_to_make_music"/>

</task>

<task id="Learn_to_play_instrument_22">

<flowsInto>

<nextElementRef id="_11"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<startingMappings>

<mapping>

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</startingMappings>

<completedMappings>

<mapping>

28

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</completedMappings>

<decomposesTo id="Learn_to_play_instrument"/>

</task>

<task id="Do_audition_17">

<flowsInto>

<nextElementRef id="Audition_failed_13"/>

<isDefaultFlow/>

</flowsInto>

<flowsInto>

<nextElementRef id="Audition_passed_10"/>

<predicate ordering="0">true()</predicate>

</flowsInto>

<join code="xor"/>

<split code="xor"/>

<decomposesTo id="Do_audition"/>

</task>

<condition id="Audition_failed_13">

<flowsInto>

<nextElementRef id="Do_audition_17"/>

</flowsInto>

<flowsInto>

<nextElementRef id="Learn_to_play_instrument_22"/>

</flowsInto>

</condition>

<condition id="_11">

<flowsInto>

<nextElementRef id="Join_band_20"/>

</flowsInto>

<flowsInto>

<nextElementRef id="Decide_to_go_solo_21"/>

</flowsInto>

</condition>

<condition id="Audition_passed_10">

<flowsInto>

<nextElementRef id="Do_everything_you_are_told_25"/>

</flowsInto>

</condition>

<task id="Do_everything_you_are_told_25">

<flowsInto>

<nextElementRef id="Make_Record_28"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<removesTokens id="Audition_failed_13"/>

<removesTokens id="Audition_passed_10"/>

<removesTokens id="Decide_to_make_music_24"/>

<removesTokens id="Do_audition_17"/>

<removesTokens id="Learn_to_play_instrument_22"/>

<removesTokens id="_11"/>

<removesTokensFromFlow>

<flowSource id="Decide_to_make_music_24"/>

<flowDestination id="Do_audition_17"/>

</removesTokensFromFlow>

<decomposesTo id="Do_everything_you_are_told"/>

</task>

29

<task id="Decide_to_go_solo_21">

<flowsInto>

<nextElementRef id="Write_a_song_26"/>

<predicate>true()</predicate>

</flowsInto>

<flowsInto>

<nextElementRef id="Initial_solo_performance_27"/>

<predicate>true()</predicate>

<isDefaultFlow/>

</flowsInto>

<join code="xor"/>

<split code="or"/>

<decomposesTo id="Decide_to_go_solo"/>

</task>

<task id="Join_band_20">

<flowsInto>

<nextElementRef id="Write_a_song_26"/>

<predicate>true()</predicate>

</flowsInto>

<flowsInto>

<nextElementRef id="Initial_solo_performance_27"/>

<predicate>true()</predicate>

<isDefaultFlow/>

</flowsInto>

<join code="xor"/>

<split code="or"/>

<decomposesTo id="Join_band"/>

</task>

<task id="Make_Record_28">

<flowsInto>

<nextElementRef id="Rehearse_tour_19"/>

<isDefaultFlow/>

</flowsInto>

<flowsInto>

<nextElementRef id="Choose_path_12"/>

<predicate ordering="0">true()</predicate>

</flowsInto>

<join code="xor"/>

<split code="xor"/>

<decomposesTo id="Make_Record"/>

</task>

<task id="Initial_solo_performance_27">

<flowsInto>

<nextElementRef id="Initial_solo_performance_27"/>

</flowsInto>

<flowsInto>

<nextElementRef id="Get_recording_contract_18"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Initial_solo_performance"/>

</task>

<task id="Write_a_song_26">

<flowsInto>

<nextElementRef id="Get_recording_contract_18"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

30

<startingMappings>

<mapping>

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</startingMappings>

<completedMappings>

<mapping>

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</completedMappings>

<decomposesTo id="Write_a_song"/>

</task>

<condition id="Choose_path_12">

<flowsInto>

<nextElementRef id="Develop_bad_habits_23"/>

</flowsInto>

<flowsInto>

<nextElementRef id="Develop_as_artist_14"/>

</flowsInto>

</condition>

<task id="Develop_bad_habits_23">

<flowsInto>

<nextElementRef id="_15"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Develop_bad_habits"/>

</task>

<task id="Rehearse_tour_19">

<flowsInto>

<nextElementRef id="Do_tour_16"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Rehearse_tour"/>

</task>

<task id="Get_recording_contract_18">

<flowsInto>

<nextElementRef id="Make_Record_28"/>

</flowsInto>

<join code="or"/>

<split code="and"/>

<decomposesTo id="Get_recording_contract"/>

</task>

<task id="Develop_as_artist_14">

<flowsInto>

<nextElementRef id="_15"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Develop_as_artist"/>

</task>

<task id="Do_tour_16">

<flowsInto>

<nextElementRef id="_15"/>

</flowsInto>

31

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Do_tour"/>

</task>

<task id="_15">

<flowsInto>

<nextElementRef id="OutputCondition_9"/>

</flowsInto>

<join code="or"/>

<split code="and"/>

</task>

<outputCondition id="OutputCondition_9"/>

</processControlElements>

</decomposition>

<decomposition id="Do_tour"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Send_record_to_marketing_dept"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Develop_as_artist"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Decide_to_go_solo"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Do_everything_you_are_told"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Join_band"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Write_a_song"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Choose_songs"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Develop_bad_habits"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Learn_to_play_instrument"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Do_audition"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Get_recording_contract"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Initial_solo_performance"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Decide_to_make_music"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Make_Record" xsi:type="NetFactsType">

<processControlElements>

<inputCondition id="InputCondition_1">

<flowsInto>

<nextElementRef id="Choose_songs_6"/>

</flowsInto>

</inputCondition>

<task id="Choose_songs_6">

<flowsInto>

<nextElementRef id="Record_songs_5"/>

</flowsInto>

<join code="and"/>

<split code="and"/>

<decomposesTo id="Choose_songs"/>

</task>

<task id="Record_songs_5">

32

<flowsInto>

<nextElementRef id="Done_3"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<startingMappings>

<mapping>

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</startingMappings>

<completedMappings>

<mapping>

<expression query=""/>

<mapsTo>null</mapsTo>

</mapping>

</completedMappings>

<decomposesTo id="Record_songs"/>

</task>

<condition id="Done_3">

<flowsInto>

<nextElementRef id="Choose_songs_6"/>

</flowsInto>

<flowsInto>

<nextElementRef id="Send_record_to_marketing_dept_4"/>

</flowsInto>

</condition>

<task id="Send_record_to_marketing_dept_4">

<flowsInto>

<nextElementRef id="OutputCondition_2"/>

</flowsInto>

<join code="xor"/>

<split code="and"/>

<decomposesTo id="Send_record_to_marketing_dept"/>

</task>

<outputCondition id="OutputCondition_2"/>

</processControlElements>

</decomposition>

<decomposition id="Record_songs"

xsi:type="WebServiceGatewayFactsType"/>

<decomposition id="Rehearse_tour"

xsi:type="WebServiceGatewayFactsType"/>

</specification>

</specificationSet>

B Report on the lifestyle example

<wofyawl version="0.6" status="released">

<net file="FlyerExample14.xml">

<structure>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"

input="Decide_to_go_solo_21"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"

33

input="Join_band_20"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Send_record_to_marketing_dept_4"

input="Done_3"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Send_record_to_marketing_dept_4"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Decide_to_go_solo_21"

output="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Decide_to_go_solo_21"

or-split="xor-split"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Join_band_20"

output="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Join_band_20"

or-split="xor-split"/>

</structure>

<warning description="YAWL net is unbounded"/>

<behavior>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"

input="Decide_to_go_solo_21"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"

input="Join_band_20"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"

input="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Get_recording_contract_18"

input="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Get_recording_contract_18"

OR-join="xor-join"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="_15"

OR-join="xor-join"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Choose_songs_6"

input="InputCondition_1"/>

34

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Choose_songs_6"

input="Done_3"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Choose_songs_6"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Send_record_to_marketing_dept_4"

input="Done_3"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Make_Record"

task="Send_record_to_marketing_dept_4"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Decide_to_go_solo_21"

output="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Decide_to_go_solo_21"

or-split="xor-split"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Join_band_20"

output="Initial_solo_performance_27"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Join_band_20"

or-split="xor-split"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Decide_to_make_music_24"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Learn_to_play_instrument_22"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Do_audition_17"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Audition_failed_13"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="_11"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Audition_passed_10"/>

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Decide_to_make_music_24*Learn_to_play_instrument_22"/>

35

<warning specification="FlyerExampleWithCancellations1.4"

decomposition="Create_Music"

task="Do_everything_you_are_told_25"

cancel="Decide_to_make_music_24*Do_audition_17"/>

</behavior>

</net>

</wofyawl>

36

