
Verilog HDL, Powered by PLI: a Suitable Framework for
Describing and Modeling Asynchronous Circuits at All

Levels of Abstraction
Arash Saifhashemi

Department of Computer Eng.

Amirkabir University of Technology

424, Hafez Ave.
Tehran 15914, Iran

saif@ce.aut.ac.ir

Hossein Pedram
Department of Computer Eng.

Amirkabir University of Technology
424, Hafez Ave.

Tehran 15914, Iran

pedram@ce.aut.ac.ir

ABSTRACT
In this paper, we show how to use Verilog HDL along with PLI
(Programming Language Interface) to model asynchronous
circuits at the behavioral level by implementing CSP
(Communicating Sequential Processes) language constructs.
Channels and communicating actions are modeled in Verilog
HDL as abstract actions.
Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles–Asynchronous circuits,
Parallel circuits; D.1.3 [Programming Techniques]: Concurrent
Programming–CSP; B.6.3 [Logic Design]: Design Aids–
Hardware description languages, Simulation, Verilog, PLI.
General Terms Design, Languages.
Keywords
Asynchronous circuits, CSP, CHP, Verilog, PLI, Channel
1. INTRODUCTION
Today, many asynchronous circuit design flows use CSP-derived
languages, originally developed by Hoare [2], to model
asynchronous circuits at the behavioral level.
The main motivation for using CSP is its two specific features,
which standard HDLs have been said to lack. First, using ports
and channels, CSP has made communication actions between two
processes abstract actions. Secondly, in CSP language one can
nest concurrent blocks within sequential blocks and vice versa
without any limitation on the statements within them or the
nesting level. This feature is so called fine-grained concurrency.
On the other hand, there are some problems with CSP. First, it has
not been formally standardized. Hence, code exchanging is
difficult. Second, it has little thing, if anything at all, to do with
the lower levels of the design. Thus, in contrast to synchronous
design flows, one cannot describe their circuits at different levels
using a single language and platform. In fact, most design flows
that use CSP in the behavioral level use Verilog or VHDL at

lower levels. Besides, they can hardly use a single test bench at all
levels of the design.
Several CSP modeling tools have been developed until now,
which can be classified into two groups:
1. Developers of the first group have invented their ad-hoc
languages, derived from CSP together with a simulator for them.
LARD [5] is an example.
2. The second group wished to use standard HDLs and strengthen
them to support CSP features. In this way, they would be able to
use commercial simulators [3, 4].
Although the first group has developed practical tools and
complex circuits, their tools have some shortcomings:
1. Since they have used CSP-derived languages, they share the

same problems of CSP.
2. Comparing to commercial synchronous modeling tools, they

are limited.
3. In many cases, they are not available to the public.
It can be claimed that if it becomes possible to model all CSP
constructs in a standard HDL at an abstraction level equal to CSP,
there would be no need to invent another ad-hoc language and
develop its simulator. Additionally, in contrast to CSP, standard
HDLs like Verilog and VHDL can describe circuits at lower
levels very well. Thus, they can potentially be ideal for describing
asynchronous circuits at all levels of abstraction.
Although Verilog HDL is popular among synchronous designers,
most people who have developed a solution for simulating CSP
have used or compared their solution with VHDL [3, 4, 5].
This paper mainly deals with channels and communication
actions, i.e. we try to make channel communications abstract
actions in Verilog HDL. Therefore, together with the fine-grained
concurrency feature of Verilog, which VHDL lacks, most
important features of CSP would be addressed.
The rest of this article is organized as follows: Section 2 describes
how to use Verilog along with PLI to implement a channel as an
abstract construct. Section 3 includes some other applications of
PLI. Section 4 concludes the paper.

2. ABSTRACTING CHANNELS
Several implementations have been suggested for implementing
CSP communication actions. Four-phase implementation [1] has
been used most until now. The following code shows such an
implementation for a WRITE action in Verilog:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-688-9/03/0006…$5.00.

330

20.3

DAC 2003, June 2-6, 2003, Anaheim, CA, USA. DAC 2003,
Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

module p (out, req, ack);
input req;

 output out, ack;

 reg data;

 always
 begin
 //Produce data;

 wait (req == 1); ack = 1; out = data;
 wait (req == 0); ack = 0;

 end
endmodule
Here, the designer has to specify the handshaking protocol
together with handshaking signals at the definition part of the
module. Hence, we can formally define our goals as follows:
- Omit the need of mentioning and defining the handshaking
signals from the definition part of the module.
- Hide the handshaking actions from the users notice.
The ideal code would be like this:
module p (out);
 output out;
 reg data;
 //Produce data;
 //out!data; ??
endmodule
Reaching these two goals is not possible through pure Verilog.
2.1 Programming Language Interface
Detailed description of the PLI is beyond the scope of this paper.
However, in short terms, PLI is a procedural interface, which
provides the ability to call precompiled C routines within the
Verilog code. Thus, most of the C language features can be used
in Verilog. As an example, consider this simple Verilog code:
for (i = 1; i <= 20; i = i + 1)
 @(posedge clk)
 $rnd_data (x_bus);
As can be seen, rnd_data is called to put random data on x_bus.
Its body was written in C and compiled in advance. Simulators
link this routine to the Verilog body at elaboration time.
Many library routines are provided to support interfacing the C
language and Verilog. For example, for x_bus in PLI space,
several features such as its length, the net to which it is connected,
its type, its current value, etc. can be found. In addition, its value
can be changed by the PLI routine.
A PLI feature that we mostly take advantage of is shared memory
(global variables). That is, several PLI functions can access and
change the value of a global variable.
2.2 A solution to communication actions
A possible way to hide handshaking variables is to place them in
the global memory of PLI space instead of the Verilog body.
Two processes on a channel can communicate by calling PLI
routines. Through these routines, they change and read values of
some shared variables.

Instead of handshaking variables in Verilog body, we can define a
structure for a channel in PLI space shared memory as follows:

struct t_channel{
 BOOL bWriteDone, bReadDone;

 char *buffer;

 handle hSimulationNet; }
Each two req and ack signals are tied together to form a single
variable: bWriteDone and bReadDone. Additionally, we have a
handle, which functions like a pointer in C, to the net on which
writer’s and reader’s ports are placed. Thus, by calling
$Write(p,data) in one process and $Read(c,data) in another, we
can check if ports p and c are on the same net, and hence have
formed a channel.

Now, consider the example of a producer and a consumer module.
One of them continuously produces data, while the other
consumes that data. They communicate on channel (in, out).

At the first glance, it seems that we should implement the
following algorithm:

Producer Consumer

Ve
ri
lo
g

module p(out);
always
begin
//Produce data
$Write(out,data);
end
endmodule

module c(in);
always
begin
$Read(in,data);
//Consume data
end
endmodule

PL
I

Write_Calltf(){
buffer=data;
bWriteDone=1;
while(!bReadDone);
bWriteDone=0;
while(bReadDone);
}

Read_Calltf(){
while(!bWriteDone);
data=buffer;
bReadDone=1;
while(bWriteDone);
bReadDone=0;
}

Unfortunately, this code does not work because while a PLI
routine is executed, the simulator is blocked and cannot simulate
other processes. So, when one process is blocked in a while loop
within the PLI system call, the whole simulation will stop since in
PLI routines the inherent Verilog concurrency is lost. Generally, it
is not possible to have wait actions in a PLI routine.

One possible solution to this problem is to push wait actions back
to Verilog body and leave the remained job to PLI. In this way,
PLI routines do not block the simulation anymore. In other words,
we let PLI just do those tasks that would not be blocked and can
be executed in zero time. Instead, wait actions are moved to
Verilog body. To do so, we have to make some alterations in our
channel structure. The new one can be as follows:

struct t_channel{
BOOL bWriteDone, bIsReadRequest;

char *buffer;

handle hReadDone, hReadClear,
 hSimulationNet;}

Note that here we changed the type of bReadDone signal to a
handle (hReadDone) because we want to have a wait action on
this signal in Verilog body. We define this variable in our Verilog
module, but we store its handle in the PLI global memory.
Through it, the other process can change the value of the actual
signal. Also, we added a handle called hReadClear, on which, in
consumer process we can have a wait action.

331

Now we can present the method as follows:

module p(out);
 ...

 reg bReadDone;
always
begin

//Produce data

 bReadDone=1'b0; $Write(out,data);
 $RegisterReadDoneFlag(out,bReadDone);
 wait(bReadDone==1'b1);
 $ResetWriteRequest(out);

end
endmodule
Below, the pseudo code description of each PLI function is given.

Write(out,data){

 buffer = data; bWriteDone = TRUE;

 if (bIsReadRequest)

change the value of bReadClear(using
hReadClear) to TRUE;}

RegisterReadDoneFlag(out,bReadDone){
 hReadDone = handle(bReadDone)}

ResetWriteRequest(out){
 bWriteDone=FALSE;}
Obviously, none of the above functions blocks the simulation.
The consumer process is as follows:
module c(in);
...
 reg bReadClear;
always
begin
 bReadClear=1'b0;
 $RegisterReaderFlag(in,bReadClear);

wait(bReadClear==1);
$Read (in,data); $ResetReadRequest(in);

 //Consume data;
end
endmodule
The new PLI functions are described below using pseudo code:
RegisterReaderFlag(in,bReadClear){
 if(bWriteDone==TRUE)
 Change bReadClear to TRUE;
 else{

store the bReadClear handle in
hReadClear;
bIsReadRequest = TRUE;}

}

Read(in,data){

 data = buffer;

Change the value of bReadDone(using
hReadDone) to TRUE;}

ResetReadRequest(in){

 bIsReadRequest=FALSE;}

We introduced two registers in Verilog body, bReadDone and
bReadClear. Notice that their handles are stored in PLI body.

What happens is simple: the producer module writes data into the
buffer, then stores the handle of bReadDone signal in the shared
memory of the PLI (by calling RegisterReadDoneFlag). Later, the
consumer will use this handle to unblock the producer process.
Therefore, the producer can wait on the signal. Since this wait
does not block the simulation, the simulation can go on.

On the other side, the reader first resets the value of bReadClear.
Then, it stores its handle into the shared memory of the PLI
interface. Later, using its handle the writer would set this flag.
Next, the consumer waits on that signal to become TRUE.

Observe that if RegisterReaderFlag function is called sooner than
Write, Write function changes the value of bReadClear. However,
if Write function is called before RegisterReaderFlag,
RegisterReaderFlag changes the value of bReadClear;

Whoever starts first, will wait for the other to finish, and both
communication actions will finish in parallel.

Next, a routine for implementing probes is presented:

Probe_Calltf(port){

if(m_bIsWriteDone || m_bIsReadRequest)
return TRUE;

else return FALSE;}
This routine can be used in Verilog body as follows:

if ($Probe(prt)) …
Next, to make the communication action abstract, we define them
as macros.

The final code for producer can be considered like this:

`define USES_CHANNEL reg bReadDone;\
 reg bReadClear;

`define WRITE(prt,d) begin\
bReadDone=1'b0; $Write(prt,d);\

$RegisterReadDoneFlag(prt,bReadDone);\

wait(bReadDone==1'b1);
$ResetWriteRequest(prt);\

end

module p(prt);
 `USES_CHANNEL

always
begin

//Produce data

 `WRITE(out,data)

end
endmodule

332

The same thing can be done for the consumer module. Notice that
a top module should connect in and out ports on a single net.

The above code is at the same level of abstraction as it is in CSP.

It is worth mentioning that one can write similar PLI routines to
implement communication actions using other handshaking
protocols. The only change would be to include the file containing
new macros.

Finally, it is also possible to build a synthesis tool based on this
method just like any other synthesis tool that synthesizes a CSP
description. For example, a simple tool can replace the macros
with their equivalent handshaking protocol actions. Some
synthesis directives can be used for specifying the protocol for
each communication action, and the ports’ kinds.

2.3 Generalize the method to handle more
than one channel
The presented method can be generalized to enable managing
more channels. The approach that we used is this: there is a list of
channels in the PLI body. Each member of the list is of channel
structure type. When a PLI routine is called by a communication
action on a port, if the handle of the net on which the port is
placed is not in the list (this handle is stored in hSimulationNet
field of the channel struct), the PLI routine adds a new member to
the list, and fills the new hSimulationNet field.

On the other hand, if the handle of the net was previously placed
in the list, the communication action will be done as before.
Observe that in this way if we generalize ports for more than one
process, like when we need to have a shared bus, as far as all the
ports are on a single net, the method works and there is no need of
any further change.

3. OTHER APPLICATIONS OF PLI
Here are some other usages of PLI in asynchronous design:

1. Pure handshaking: In [1], a type of communication
action is defined for synchronization between two
processes. This can be implemented by a new macro.

2. Arbitration: Although not as abstract as it is in CSP, here
is an example a non-deterministic choice in Verilog:

Arb =*[[A -> A!x B -> B!x]][]

In the above CSP code, A and B ports are probed and the
one which returns true is selected. However, if both return
true, the functionality is not deterministic and arbitration
should be done. One form of equivalent Verilog code can
be as follows:
arbNumber = $Arbitrate(A,B)

if (arbNumber == 1) `WRITE(A, x)

if (arbNumber == 2) `WRITE(B, x)

The PLI function Arbitrate can probe both A and B. If
both return true, it can arbitrarily select one.

3. Statistical measurements: For example, after a slight
change in PLI routines of communication actions, one can
make them count each communication action. Later, this
number can be used as an approximate assessment of the
circuit’s power consumption.

4. Bullet operator: in [1] bullet operator is defined to relate
two communication actions in a way that they finish
together. To implement, one can write a new macro, e.g.,
A!x●B!y can be implemented by
`WRITE_WRITE(p1, v1, p2, v2), where A, x, B, y are
the parameters respectively. Any handshaking protocol,
but now for two interleaved actions, can be used to make
this macro work. This method and the second one are
similar to the ones in [3].

5. Using a single test bench (mixed mode simulation): A
simple interface module can be added to the test bench to
convert the abstract communication actions to the
implemented handshaking protocol to let mixed mode
simulation possible.

4. Conclusions
In conclusion, Verilog HDL together with PLI some routines can
be considered as a perfect alternative for asynchronous designers
because it is a standard HDL and supports lower levels of the
design, hence, mixed mode simulation would be possible.
Besides, many competent simulators are available for it. In
contrast to VHDL, it supports fine-grained concurrency. This kind
of modeling is not restricted to a single asynchronous design flow
and can be used in any asynchronous design flow that a CSP-
derived language is used.

5. REFERENCES
[1] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits.

Internal Report. Caltech-CS-TR-93-28. California Institute
of Technology, Pasadena, CA. 1993

[2] C.A.R. Hoare. Communicating Sequential Processes. CACM
21, 8, pp 666-677, 1978

[3] Chris J. Myers. Asynchronous Circuit Design. John Wiley &
Sons, INC.

[4] Jens Sparsoe and Steve Furber. Principles of Asynchronous
Circuit Design. Kluwer Academic Publishers.

[5] Philip Endecott and S. Furber. Modelling and Simulation of
Asynchronous Systems using the LARD.
http://www.cs.man.ac.uk/amulet/projects/lard

333

