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Cow dung is a valuable source ofmanure to improve soil quality. This study aims

to enhance the soil quality by decreasing diesel contamination in the soil

through the vermicomposting of cow dung and nanoparticles of ZnO. Using

a powder made from cow dung, zinc ions may be easily converted into ZnO

nanoparticles. To increase the quality of soil, Eisenia fetida and nanoparticles of

ZnO mixed with cow dung was used. These nanoparticles were characterized

by FT-IR, SEM, and TEM. The diesel impure soils were examined for 70 days by

gas chromatography. Observations showed that the soil samples without the

earthworms had a higher concentration of diesel than the earthworm present in

the soil. In this method, diesel (4.5 ml) was reduced by almost 50% after 70 days.

Diesel concentrations were significantly higher during sampling time than they

were later in soil contaminated with E. fetida.
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Introduction

Soil contamination is caused by a wide range of human activities, including industrial and

agricultural wastes. Vermiremediation, which uses an earthworm called Eisenia fetida, was

successful in purifying diesel-contaminated soil (Behnaz et al., 2020). Abiotic and biotic

components of the soil interact mechanically and biochemically with Eisenia fetida to promote

plant growth and productivity (Dada et al., 2015). Burrowing earthworms ingests soil particles

so that they are mechanically broken down, and this provides themwith increased surface area

for biotic activities. Earthworm burrows facilitate water movement, enhance soil aeration, and

facilitate the movement of nutrients and oxygen. Also, earthworms increase the soil quality

(Sinha et al., 2008). They create favorable conditions for bacteria and improve soil aeration by

stimulating and accelerating the microbial activity (Singleton et al., 2003). A large number of

biodegraded microorganisms are found in the guts of earthworms. They are reduced into the

soil as vermicast by the worms (Dabke, 2013). Vermi transformation involves the
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decomposition of degradable organic contaminants such as pesticides

and herbicides using enzymes (such as peroxidases) and

microorganisms (such as bacteria and fungi) found in the

alimentary canal of earthworms (Shi et al., 2020). The use of

various treatment methods has been proposed for oily sludge in

recent years, including land farming, incineration, stabilization/

solidification, solvent extraction, ultrasonication, pyrolysis,

chemical treatment, and bioremediation (Ping et al., 2012; Teresa

et al., 2012; Leandro et al., 2020). Earthworms have the ability to

survive harsh chemical conditions, which makes them ideal for

purifying hydrocarbon-based aromatic contaminants (Luc et al.,

2011; Jacobo et al., 2014). During vermicomposting, cow dung is

commonly used, owing to its effective contribution to worm growth

(Xin et al., 2016). As such, metal nanoparticles (MgO, NiO, CuO,

ZnO, TiO2, etc.) and their metal oxides (Ag, Au, Pt, Cu, Zn, etc.)

become the most feasible solution, and physically, they differ from

each other such as their big outside area-to-volume ratio, controlled

morphology (consistent and homogenous), and small sizes (Hirpara

and Gajera, 2020). ZnO-based nanoparticles have gained popularity

in the synthesis and production process due to their decreased

toxicity (Veeramani et al., 2013). Due to the high energy and

toxic chemical requirements, neither of these methods is easily

scaleable. Because harmful chemicals can be utilized in the

synthesis process and because they persist on the nanoparticle

surface despite repeated washings, this technique’s

biocompatibility is compromised for a number of reasons, one of

which is that it can be used to treat diseases (Khan et al., 2018; Shahid

et al., 2019). Worldwide demand for petroleum products is still high,

both for use as fuel and as lubricants in machinery. Because crude oil

is so prevalent and widely used, soil degradation brought on by crude

oil derivatives is a serious ecological issue. Gasoline hydrocarbons can

disrupt water relationships and gas exchange in plants, inhibit

germination, and promote chlorophyll degradation (Bona et al.,

2011). Alkyl, ethylene, naphthenic, and aromatic hydrocarbons are

the most hazardous petroleum xenobiotics (Gray et al., 1994).

Organic pollutants persistent in the atmosphere are polycyclic

aromatic hydrocarbons, which decrease plant growth (Jain et al.,

2011). Additionally, many earthworms can help clean up polluted

soils from various oils like engine oil (Murugan et al., 2022). In soils,

petroleum hydrocarbons are toxic to plants and microorganisms.

Mixtures of petroleum products are commonly falling in the soils of

mechanic workshops in developing countries, and diverse types of

petroleum products can penetrate into the soil at the same time or at

different times. Based on the literature report, previous research work

was expensive and tookmore time to remove diesel from the soil. The

aim of this work was to remove 50% diesel from soils using cow

manure and ZnO nanoparticles in a quick and inexpensive process.

2 Materials and methods

2.1 Sources of materials

Zinc nitrate was purchased from Sigma-Aldrich. The

earthworms used in this experiment weighed around 0.89*0.81 g

each. Merck eicosane is the supplier of gasoline and diesel fuel. FT-IR

(Shimadzu 8201pc, Japan 4,000–1,000 cm-1) spectra were captured

using the KBr disc approach. Gas chromatography–mass

spectroscopy was performed using a PerkinElmer Clarus

SQ8 GC-MS model (EI, United States). Scanning electron

microscopy and transmission electron microscopy were used to

confirm the morphology of ZnO nanoparticles. A scanning

electron microscope (SEM) typeVP-1450 (LEO, Co., Germany)

was utilized for the SEM study. LEO 912 AB (TEM) equipment

was utilized for the study. Red soil (local soil name) cowmanure was

purchased from a local market.

2.2 Experimental design

For the experiment, 100 g of fine-sieved previously identified

red soil (local soil, South India) was added to a 500-ml beaker.

The soils were selected for this study, according to the Indian

naming system (Pitchaikkaran et al., 2022) and the USDA key to

taxonomy (Staff, 2010). The 4500-ppm (4.5 ml) diesel was added

to the dried soil. The cow dung was crushed to remove large

lumps, air-dried, and stored in a dry area. Eicosane soil–diesel

mixture, cow dung, and the ZnO nanoparticles were stirred

following the procedures (Schwartz et al., 2012). For every

group of beakers, one is with earthworms and another one

SCHEME 1
Synthesis of ZnO nanoparticles using cow dung
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without earthworms. In the control experiment, there were no

earthworms. Each beaker of earthworm soil was weighed, and

15 earthworms were added in 48 h on top of the soil in each

beaker (Barkley et al., 2011).

At room temperature, both the experimental and control

beakers were incubated for 5–70 days. A gauze lid was placed on

the beakers, and they were left at room temperature. The soil’s

total petroleum hydrocarbon content was extracted using a

standard literature method (Contreras-Ramos et al., 2006). A

PerkinElmer GC-MS Clarus SQ-18 model instrument was used

to determine the amounts of petroleum hydrocarbon in the soil

samples.

2.2.1 Preparation of ZnO with the cow dung
extract

The extract for the reduction of ZnO ions into nanoparticles

(ZnO) was made by combining 60 g of cow dung. After that, the

mixture was boiled for 60 min. The extract was cooled to room

temperature before being filtered onto a filter paper. To be used in

future research, the extract was kept in the refrigerator (Ponnusamy

et al., 2021).

2.2.2 Preparation of zinc nanoparticles
A stirrer heater was used to boil 60 ml of water and dried

cow dung (10 g) to 70–80°C for the synthesis of nanoparticles.

FIGURE 1
FT-IR spectrum of the cow dung–ZnO nanocomposite.

FIGURE 2
TEM image of ZnO nanoparticles.
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As the temperature reached 70°C, 10 g of zinc nitrate was

applied to the solution. This mixture is then reduced to a deep

yellow paste by boiling it. This paste was then deposited in a

ceramic crucible and heated for 3 h at 350°C in an air-heated

furnace. For characterization purposes, a light-yellow powder

was obtained and carefully collected and packed. To obtain a

finer nature for characterization, the substance was mashed in

a mortar pestle. Scheme 1 depicts the synthesis of ZnO

nanoparticles.

3 Results and discussion

3.1 Characterization of ZnO nanoparticles:
FT-IR spectra

According to the IR spectra (Figure 1), peaks at 3272cm-1

and 1628cm-1 3,445 attributed to ZnO and OH functional

groups, respectively. It was concluded that the extract was

responsible for removing metal ions and for capping the

nanoparticles because bioactive molecules were present in

the extract.

3.2 Characterization of ZnO nanoparticles

3.2.1 Transmission electron microscopy
To learn more about the size and morphology of the ZnO

nanoparticles, a TEM study was performed. TEM images of ZnO

nanoparticles at different magnifications are shown in Figures

2A,B. The average particle size of ZnO nanoparticles can be seen

in the TEM images to be in the range of 16–27 nm.

3.2.2 Scanning electron microscopy
Zinc particles and zinc aggregates can be seen in the scan of

SEM. The SEM image revealed a spherical-shaped nanoparticle

with a diameter of 200 nm. Figure 3 shows the formation of

aggregated molecules in the 12 m range. Figure 4 indicates soil

stabilization with cow dung ZnO nanoparticles.

3.2.3 Table 1 and GC-MS (with and without
earthworms)

Cow dung and ZnO nanoparticles were prepared by a slight

modification of the experimental procedure (Mupondi, 2010;

Ponnusamy et al., 2021). The eicosane, the earthworms, and the

soil–petroleummixture were prepared by following the literature

FIGURE 3
SEM image of the ZnO nanoparticle.

FIGURE 4
Soil stabilization using Eisenia fetida.
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method (Mohan et al., 2011). Mature E. fetida earthworms had

been purchased from a local market.

In diesel-contaminated soil, the addition of E. fetida and ZnO

nanoparticles increased the minimum soil quality during 70 days.

Such vermiremediation processes increase the soil nature and reduce

the diesel contamination in soil naturally (Isabela et al., 2022).

Many methods can be used to achieve vermicomposting in

practice. A contaminated field or farmland may be seeded directly

with earthworms. In addition to earthworms, cow dung, poultry

droppings, or formulated supplements can be added to the soil as

nutrient media (Hickman and Reid, 2008). During a period of

60 days, Eisenia fetida and Lumbricus terrestris were used to

FIGURE 5
Diesel GCMS (without earthworms).

FIGURE 6
Diesel GCMS (with the earthworm E. fetida).
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remediate soils polluted with petroleum hydrocarbons, measured as

total petroleum hydrocarbons. There was a significant reduction in

soil TPH by the end of the experiment (Almutairi, 2019). The use of

earthworms as a biomonitoring agent may not be appropriate when

earthworms are being used to clean up contaminants. The adaptations

that earthworms have developed physiologically and genetically may

influence risk assessments in long-term contaminated sites (Spurgeon

andHopkin, 2000) (Ponnusamy et al., 2021).Organic carbon contents

and soil toxicity (NPK) were reduced in vermiremediation treatment

(Abdollahinejad et al., 2020; Vasilyeva et al., 2020; Ugochukwu et al.,

2021). The FT-IR results indicate the ZnO nanoparticles present in

cow dung. SEM analysis indicates the morphology of nanoparticles.

The GC-MS shows diesel reduction with and without earthworms of

E. fetida. It could be hypothesized that petroleum hydrocarbons in

polluted soils incubated with an earthworm could have resulted from

the degradation of diesel since they were absent in polluted soils not

incubated with an earthworm. Figure 5 indicates without earthworm

GC-MS, and Figure 6 shows the earthworm-treated diesel GC-MS.

Based on the GC-MS result, the earthworms of E. fetida contained

50% diesel hydrocarbons, as was observed in the study. E. fetidamay

be capable of vermiremediating petroleum through degradation

(vermidegradation).

This suggests that E. fetida contributes to the degradation of

diesel in soil and that these hydrocarbons are possible degradation

products. Incubation of soil with an earthworm for 70 days resulted

in a higher concentration of degradation by-products, indicating that

the longer the period the greater the degradation is. A single

petroleum hydrocarbon was detected initially in the soil but was

lost completely during the study Table 1.

4 Conclusion

Globally, soil is continuously subjected to contamination from

diesel, petrol, and industrial wastes. We used the traditional method

of vermiremediation to remove oil contamination in the soil. This

research revealed some findings that are useful for the future

application of vermiremediation to remove diesel oil from soil

using E.fetida earthworms. The less toxic metals are used to

prepare cow dung nanoparticles. The ZnO nanoparticles were

characterized by FT-IR, SEM, and TEM. Based on the results of

this study, it can be concluded that E fetida has the potential to

facilitate the cleansing of diesel-contaminated soil. As 70 days would

not be enough time to achieve full remediation, 50% diesel was

removed from soils in a short period of time and at a low price. Such

remediation can be extended to a longer period to achieve a higher

level of soil remediation.
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TABLE 1 Effect of the E.fetida earthworm, cow dung, and ZnO nanoparticles on the diesel-contaminated soil.

S.No Soil name Contamination of hydrocarbon
in soil

Standard concentration value
in ppm

After treatment of
E. fetida and
nanoparticles value in
ppm

01 Red soil Diesel 4,500 2,500
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