

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Kiev SANTOS DA GAMA

Thèse dirigée par Didier DONSEZ

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique (MSTII)

Towards Dependable Dynamic
Component-based Applications

Thèse soutenue publiquement le « 6 Octobre 2011»,
devant le jury composé de :

Mme Claudia RONCANCIO
Professeur, Ensimag - Grenoble INP, Président

M Gilles MULLER
Directeur de Recherche, INRIA, Rapporteur

M Lionel SEINTURIER
Professeur, Université de Lille & IUF, Rapporteur

M Ivica CRNKOVIC
Professor, Mälardalen University, Membre

M Didier DONSEZ

Professeur, Université Joseph Fourier, Membre

M Gaël THOMAS
Maître de Conférences, Université Pierre et Marie Curie, Membre

M Peter KRIENS

Technical Director, OSGi Alliance, Invité

ABSTRACT

Software is moving towards evolutionary architectures that are able to easily accommodate
changes and integrate new functionality. This is important in a wide range of applications, from
plugin-based end user applications to critical applications with high availability requirements.
Dynamic component-based platforms allow software to evolve at runtime, by allowing components
to be loaded, and executed without forcing applications to be restarted. However, the flexibility of
such mechanism demands applications to cope with errors due to inconsistencies in the update
process, or due to faulty behavior from components introduced during execution. This is mainly true
when dealing with third-party components, making it harder to predict the impacts (e.g., runtime
incompatibilities, application crashes) and to maintain application dependability when integrating
such third-party code into the application. Components whose origin or quality attributes are
unknown could be considered as untrustworthy since they can potentially introduce faults to
applications when combined with other components, even if unintentionally. The quality of
components is harder to evaluate when components are combined together, especially if it happens
on-the-fly. We are interested in reducing the impact that can be brought by untrustworthy
components deployed at runtime and that would potentially compromise application dependability.

This thesis focuses on applying techniques for moving a step forward towards dependable
dynamic component-based applications by addressing different dependability attributes namely
reliability, maintainability and availability. We propose the utilization of strong component isolation
boundaries, by providing a fault-contained environment for separately running untrustworthy
components. Our solution combines three approaches: (i) the dynamic isolation of components,
governed by a runtime reconfigurable policy; (ii) a self-healing component isolation container; and
(iii) the usage of aspects for separating dependability concerns from functional code.

Keywords: Dependability, Component-based development, Self-healing, Application isolation,
Aspect-oriented Programming, Dynamic component-based applications

RÉSUMÉ

Les logiciels s'orientent de plus en plus vers des architectures évolutives, capables de s'adapter
facilement aux changements et d'intégrer de nouvelles fonctionnalités. Ceci est important pour
plusieurs classes d'applications qui ont besoin d‘évoluer sans que cela implique d’interrompre leur
exécution.

Des plateformes dynamiques à composants autorisent ce type d'évolution à l'exécution, en
permettant aux composants d'être chargés et exécutés sans requérir le redémarrage complet de
l’application en service. Toutefois, la flexibilité d'un tel mécanisme introduit de nouveaux défis qui
exigent de gérer les possibles erreurs dues à des incohérences dans le processus de mise à jour, ou en
raison du comportement défectueux de composants survenant pendant l'exécution de l’application.
Des composants tiers dont l'origine ou la qualité sont inconnus peuvent être considérées a priori
comme peu fiables, car ils peuvent potentiellement introduire des défauts d'applications lorsqu'il est
combiné avec d'autres composants. Nous sommes intéressés à la réduction de l'impact de ces
composants considérés comme non fiables et qui sont susceptibles de compromettre la fiabilité de
l’application en cours d’exécution.

Cette thèse porte sur l'application de techniques pour améliorer la fiabilité des applications
dynamiques à composants. Pour cela, nous proposons l'utilisation des frontières d'isolation pouvant
fournir du contingentement de fautes. Le composant ainsi isolé ne perturbe pas le reste de
l’application quand il est défaillant. Une telle approche peut être vu sous trois perspectives
présentées: (i) l'isolement des composants dynamiques, régi par une politique d'exécution
reconfigurable, (ii) l'autoréparation de conteneurs d‘isolement, et (iii) l'utilisation des aspects pour
séparer les préoccupations de fiabilité à partir du code fonctionnel.

Mots-clés : Fiabilité, Développement basé sur des composants, Autoréparation, Isolation des
applications, Programmation orientée aspects, Plateforme dynamiques à composants.

!

Acknowledgements

I would like to thank the members of the jury for accepting to evaluate my work: Gilles Muller
et Lionel Seinturier for being rapporteurs, which means a significant amount of work. I also thank
Claudia Roncancio, Ivica Crnkovic and Gaël Thomas for accepting to participate as examiners of my
thesis. Thanks also to Peter Kriens, who could manage to participate through video conferencing
software since he had to be at California at that time (which force him to wake up at 4 AM).

Remerciements

Je voudrais remercier les directeurs de l’équipe Adèle, Jacky Estublier et Philippe Lalanda,
pour m’avoir accueilli dans l’équipe. Et, bien sûr, mon directeur de thèse Didier Donsez pour son
aide dans des diverses aspects.

Je remercie tous les membres de l’équipe Adèle pour leur amitié. Je tiens particulièrement à
remercier Walter Rudametkin, Johann Bourcier et Jonathan Bardin pour des nombreuses discussions
qui m’ont beaucoup aidé, spécialement les dernières discussions avec Walter et Jo pendant la
rédaction de ma thèse. Merci à Yoann Maurel qui m’a aussi aidé à donner une meilleure perspective
dans quelques aspects de mon travail. Merci à Stéphanie, Vincent et German pour m’avoir aidé à
raffiner le discours et la présentation de mes diapos. Merci aussi aux autres amis avec qui j’ai travaillé
et beaucoup discuté sur des choses pas toujours dans le domaine de ma thèse : Lionel Touseau,
Gabriel Pedraza et Thomas Lévêque. Un grand merci à tous les autres avec qui je n’ai pas directement
travaillé: Noé Torito, Diana, El Mehdi, Antonin, Eric, Idrissa, Pierre B. , P. Alain, Bassem, Marc, Joao,
Ozan Hipne, Etienne, Clémént ainsi que tous les autres qui avaient passé par l’équipe pendant que
j’étais là.

Pendant mon doctorat j’ai pu aussi exercer des activités d’enseignement comme moniteur à
l’Ensimag, et je remercie à Claudia pour avoir accepté d’être ma tutrice de monitorat. Elle m’a
beaucoup aidé dans ce trajet, et m’a même trouvé des heures de travail avec elle dans l’équipe BD.
Merci aussi à tous les enseignants avec qui je travaillé pendant cette période.

Je tiens à remercier Laurent Daynès pour son aide au début de cette thèse, et à Olivier Gattaz
pour m’avoir rassuré qu’il existe un intérêt de ce travail dans un contexte industriel. Je remercie aussi
André Bottaro et Olivier Beyler pour m’avoir permit de présenter chez Orange mes travaux de
recherche, et d’avoir un avis critique donné par son équipe lors de cet exposé.

Pendant la rédaction j’ai eu l’aide de Nicolas Palix, et mes amis manauaras Jander et Raquel qui
ont pu faire des relectures de quelques chapitres de mon manuscrit de thèse, en me donnant des
suggestions et des petites corrections. Merci à vous tous.

Je remercie à toute ma famille et mes amis d’ici et du Brésil pour leur support et les mots
d’encouragement. Plus directement lié au travail de cette thèse, je remercie Fabio Souza, Fernando
Castor et Nelson Rosa, pour leurs remarques ainsi que tout genre d’aide pendant mes visites à Recife.

Merci à ma femme pour l'énorme sacrifice d'avoir resté en France pendant 4 ans. Elle n'a jamais
voulu venir, et l'interruption de sa carrière a été un geste d'amour et d'altruisme. Toute cette période
a été très difficile pour elle et par conséquent pour moi aussi. Finalement, un grand merci à notre
petite Marina, qui est née pendant ce doctorat et qui nous a apporté beaucoup de bonheur.

Merci au modafinil pour m'avoir aidé à rester reveillé pendant la rédaction

Muito obrigado a todos vocês! Sentirei saudades dos amigos que fiz em Grenoble.

Merci, gracias, كراا ش

Table of Contents

CHAPTER 1 INTRODUCTION .. 13

1.1 MOTIVATIONS .. 13

1.2 OBJECTIVES ... 15

1.3 WHAT THIS THESIS IS NOT ABOUT ... 15

1.4 DIAGRAMS NOTATION ... 16

1.5 DOCUMENT STRUCTURE .. 16

PART I STATE OF THE ART ... 19

CHAPTER 2 SOFTWARE DEPENDABILITY .. 21

2.1 DEPENDABILITY .. 22

2.1.1 Dependability Attributes .. 23

2.1.2 Software Fault Tolerance .. 24

2.2 SOFTWARE RESILIENCE .. 28

2.3 SYSTEM RECOVERY ... 28

2.3.1 Self-healing Systems ... 29

2.3.2 Recovery-Oriented Computing ... 30

2.4 SUMMARY ... 32

CHAPTER 3 APPLICATION ISOLATION TECHNIQUES .. 35

3.1 BACKGROUND .. 36

3.2 REQUIREMENTS .. 37

3.3 TECHNIQUES ... 37

3.3.1 Hardware-Enforced Isolation .. 37

3.3.2 Software-based Isolation .. 39

3.3.3 Summary ... 40

3.4 ISOLATION IN THE JAVA PLATFORM .. 40

3.4.1 Namespace Isolation .. 41

3.4.2 Process-based Isolation .. 41

3.4.3 Domain-based Isolation ... 41

3.4.4 Comparison ... 42

3.5 SUMMARY ... 42

CHAPTER 4 COMPONENT ISOLATION .. 43

4.1 ISOLATION BOUNDARIES ... 44

4.2 PARADIGMS .. 44

4.2.1 Component-based Development .. 44

4.2.2 Service-oriented Computing ... 48

4.2.3 Service Component Architecture .. 52

4.3 COMPONENT TECHNOLOGY SUPPORT .. 54

4.3.1 Oz/K .. 54

4.3.2 Singularity .. 54

4.3.3 COM ... 55

4.3.4 .NET Platform... 56

4.3.5 Java Enterprise Edition ... 56

4.3.6 OSGi ... 57

4.4 SUMMARY ... 64

PART II PROPOSED APPROACH ... 65

CHAPTER 5 PROPOSITIONS .. 67

5.1 MOTIVATIONS .. 68

5.1.1 Component Quality .. 68

5.1.2 Software Evolution .. 70

5.1.3 Plugin-based Applications .. 71

5.1.4 Critical Applications Availability ... 73

5.1.5 Runtime Update Challenges ... 74

5.1.6 Target Problems .. 76

5.2 PROPOSED APPROACH ... 77

5.2.1 Fault-contained Boundaries .. 78

5.2.2 Monitoring and Self-recovery ... 82

5.3 SUMMARY ... 85

CHAPTER 6 TARGET COMPONENT PLATFORM .. 87

6.1 OSGI AS THE TARGET COMPONENT PLATFORM ... 88

6.2 ISSUES ... 88

6.2.1 Excessive Resource Consumption ... 89

6.2.2 Native Libraries Crashes ... 89

6.2.3 Dangling Objects .. 90

6.3 DIVISION OF WORK .. 93

6.4 CLARIFICATION OF TERMS ... 93

6.5 SUMMARY ... 94

PART III IMPLEMENTATION .. 95

CHAPTER 7 COMPONENT ISOLATION APPROACH ... 97

7.1 VIRTUALIZED PERSPECTIVE ... 98

7.1.1 Related Techniques in OSGi ... 98

7.1.2 Trusted and Sandbox Platforms .. 99

7.2 ARCHITECTURE .. 100

7.2.1 Core Component .. 101

7.2.2 Isolation Policy Manager .. 104

7.2.3 Service Registry .. 110

7.2.4 Platform Proxy .. 114

7.3 ISOLATION CONTAINERS ... 120

7.3.1 Java Isolates ... 121

7.3.2 Java Virtual Machines .. 122

7.3.3 Platform Launchers ... 123

7.4 SUMMARY ... 124

CHAPTER 8 SELF-HEALING MECHANISM .. 125

8.1 EXTERNAL CONTROL LOOP ... 126

8.2 DETAILED ARCHITECTURE ... 126

8.2.1 Sandbox Components .. 127

8.2.2 Autonomic Manager ... 129

8.3 FAULT MODEL .. 133

8.4 FAULT DETECTION AND RECOVERY .. 134

8.5 GENERAL CONSIDERATIONS .. 135

8.5.1 Assumptions ... 135

8.5.2 Microreboot Considerations .. 135

8.6 DISCUSSION AND LIMITATIONS ... 136

8.6.1 Replacing Faulty Components .. 136

8.6.2 Resource Accounting .. 137

8.6.3 Evaluation of Trust ... 138

8.7 SUMMARY ... 139

CHAPTER 9 DEPENDABILITY AS A CROSSCUTTING CONCERN ... 141

9.1 SEPARATION OF CONCERNS FOR ADAPTIVE DEPENDABLE MECHANISMS .. 142

9.2 ASPECT-ORIENTED PROGRAMMING .. 143
9.2.1 Non-functional Requirements as Aspects ... 144

9.2.2 Autonomic Computing and AOP ... 144

9.2.3 AOP in the OSGi Platform ... 144

9.3 REPRESENTING LAYERS AS ASPECTS ... 145

9.3.1 Software Reengineering .. 146

9.3.2 Layers Aspectization ... 147

9.3.3 Proposed Reengineering Pattern ... 149

9.4 OSGI CASE ... 150

9.4.1 OSGi Layers as Aspects .. 151

9.4.2 Dependability Aspects ... 154

9.5 WEAVING DIFFERENT OSGI VERSIONS ... 157

9.6 SUMMARY ... 158

PART IV EXPERIMENTS AND CONCLUSIONS ... 159

CHAPTER 10 EXPERIMENTAL RESULTS .. 161

10.1 CONSULTING SERVICES ... 161

10.2 ASPIRE PROJECT... 162

10.2.1 Dependability Requirements .. 163

10.2.2 Test Setting .. 164

10.3 COMPARISON BETWEEN ISOLATION CONTAINERS ... 164

10.4 FAULT INJECTION TECHNIQUE EMPLOYED .. 167

10.5 TESTING THE SELF-HEALING MECHANISMS ... 167

10.5.1 Detection of Stale Reference Retainers ... 168

10.5.2 Causally Related Events ... 169

10.5.3 Mean time to Repair ... 170

10.6 SUMMARY .. 171

CHAPTER 11 CONCLUSIONS AND PERSPECTIVES... 173

11.1 CONCLUSIONS ... 173

11.1.1 Self-healing Component Sandbox ... 174

11.1.2 Dependability as a Separate Concern ... 174

11.2 PERSPECTIVES .. 175

11.2.1 Resource Accounting at the Component Level ... 175

11.2.2 Automated Component Promotion .. 176

11.2.3 Diversity of Isolation Environments .. 177

RESUME EN FRANÇAIS .. 179

INTRODUCTION .. 179

SURETE LOGICIELLE ... 180

TECHNIQUES D’ISOLATION DES APPLICATIONS .. 180

ISOLATION DES COMPOSANTS ... 180

PROPOSITIONS .. 181

PLATEFORME A COMPOSANTS CIBLEE .. 181

APPROCHE D’ISOLATION DES COMPOSANTS .. 181

MECANISME D’AUTOREPARATION ... 182

LA SURETE COMME PREOCCUPATION TRANSVERSALE .. 182

RESULTATS EXPERIMENTAUX .. 182

CONCLUSIONS ET PERSPECTIVES ... 183

REFERENCES .. 185

GLOSSARY .. 203

APPENDIX A PUBLICATIONS .. 205

APPENDIX B IMPLEMENTATION DETAILS .. 207

Figure Index

Figure 2.1 The threats to dependability, illustrated with their causal relationship 22
Figure 2.2. State transitions in a reliability multi-level model .. 23
Figure 2.3. Illustration of MTTR and MTTF over time.. 23
Figure 2.4. Illustration of the N-version programming technique .. 26
Figure 2.5. Structure of the recovery blocks technique ... 26
Figure 2.6. Two styles of N Self-checking programming.. 27
Figure 2.7 A control loop (a) and the MAPE-K loop proposed by IBM for autonomic elements (b) 30
Figure 4.1. The basic actors in Service-oriented Computing .. 49
Figure 4.2. Overview of the SOA layers, adapted from [Arsanjani04] ... 50
Figure 4.3. Class loader hierarchy in Java EE server. .. 57
Figure 4.4. Colored forms represent OSGi’s layered perspective of its architecture [OSGi11]. 58
Figure 4.5. The state diagram illustrates the states and transitions of an OSGi’s bundle lifecycle. 58
Figure 4.6. Example class loader graph in OSGi [OSGi11]. .. 59
Figure 5.1. Google Chrome’s task manager lists all processes spawned by the browser, and allows to
get information as well as terminating them. ... 72
Figure 5.2. Multi-process architecture used by Intenet Explorer 8, where each tab is hosted as a
separate process [Zeigler11] ... 72
Figure 5.3. Error message of a plugin crash in Firefox 4 ... 73
Figure 5.4. Annual revenue loss by country due to IT downtime in Europe [CA10a] 74
Figure 5.5. Dependencies between different components that share the same isolation boundary in an
application. .. 77
Figure 5.6. Isolation boundaries added to application components individually (a) or in groups (b) .. 79
Figure 5.7. Usage of an isolation policy at runtime ... 81
Figure 5.8. Base model that represents the isolation concepts ... 81
Figure 5.9. Illustration of a reconfiguration fired by a runtime promotion of a component 82
Figure 5.10. Autonomic managers for the isolation containers that host untrustworthy components .. 83
Figure 5.11. Autonomic manager’s control loop architecture to be used with the self-healing
component sandbox. .. 84
Figure 6.1. Bundle X retrieves a service that was already registered at instant t1, before that bundle’s
installation at instant t2. .. 91
Figure 6.2. Bundles with different installation timestamps I. Bundle x retrieves a service instance after
receiving its registration notification. .. 91
Figure 6.3. A bundle update correctly handled in (a) and incorrectly handled in (b), where a stale
reference points to an unregistered service from a bundle that should no longer be used. 92
Figure 7.1. Virtualization approach for separating execution of untrustworthy bundles from the
trusted part of the application .. 99
Figure 7.2. Perspective of the solution in terms of logical components. The original OSGi internal
components that we have changed are in gray, while components introduced by our solution are in
white. ... 100
Figure 7.3. Illustration of the same application split into two isolation containers on the top (dashed
bundles are inactive.), but giving a virtual perspective of a single application on the bottom............. 102
Figure 7.4. OSGi bundle state transitions. The ones in bold font are affected by our solution. 103
Figure 7.5. Identifiers of the same bundle may differ from one platform to another. A correspondence
list is kept persisted and in memory in order to correctly apply the mirrored life cycle transitions. .. 104
Figure 7.6. Illustration of different isolation levels in OSGi. The one in the bottom is the regular direct
binding provided by OSGi. The middle and top ones are provided in our solution and refer to service
and component isolation, respectively. ... 105
Figure 7.7. A model that represents the two types of isolated entities used in our implementation. .. 106
Figure 7.8. Sequence diagram showing the component isolation steps. .. 109
Figure 7.9. Administrative tool for editing the isolation policy at runtime. .. 110
Figure 7.10. A service lookup that needs to query the isolated platform ... 113

Figure 7.11. Service isolation steps. ... 114
Figure 7.12. The arrows in the middle illustrate the directions in which distinct types of messages are
sent. .. 116
Figure 7.13. White-box view of the PlatformProxy component. .. 117
Figure 7.14. Communication diagram illustrating the steps of a method call redirected to the adjacent
isolated platform. ... 118
Figure 7.15. Classes and the corresponding attributes of the protocol message abstractions 119
Figure 7.16. Class hierarchy around the asynchronous pipe solution we implemented for low level
communication ... 120
Figure 7.17. Approach using Java Isolates as isolation containers on the Multitasking Virtual Machine.
 .. 121
Figure 7.18. Approach using Java Virtual Machines as the isolation containers. 122
Figure 7.19. Startup steps of the isolated platform .. 123
Figure 7.20. Prototype’s multi-console GUI. .. 124
Figure 8.1. Blackbox view of the solution architecture. .. 126
Figure 8.2. Detailed perspective of the main components involved in the architecture of our solution.
 .. 127
Figure 8.3. Illustration of the control loop implemented as a chain of responsibility. 130
Figure 8.4. Class diagram that models the information stored in the Knowledge Base. 131
Figure 8.5. Monitoring GUI of the sandbox as a VisualVM plugin ... 132
Figure 8.6. Illustration of the sandbox fault model as a hierarchy in a class diagram. 133
Figure 9.1. Package diagram illustrating the static dependencies ... 143
Figure 9.2. Aspects are maintained outside the target application code, and then are intermixed with it
after the weaving process. ... 143
Figure 9.3. The upper part of the figure shows aspects defining pointcuts (circles) on the reengineered
system. The lower figure introduces aspectized system layers grouping such pointcuts. 148
Figure 9.4. Aspects help simulating a layer’s single point of access. .. 151
Figure 9.5. Illustration of OSGi bundle lifecycle state transitions scattered over several interfaces:
BundleContext (BC), Bundle (B), BundleActivator (BA), PackageAdmin (PA). 152
Figure 9.6. Package diagram illustrating how the aspects are independently applied to different OSGi
implementations ... 154
Figure 9.7. The aspects on the left side are the layer abstractions that are reused by the specific aspects
that are illustrated on the right side. ... 155
Figure 10.1. The scenario illustrates high availability requirements in the edge computers (circled) that
collect data and also need to autonomously react to failures. ... 163
Figure 10.2. Resident memory footprint of sandbox solution using different VM combinations 166
Figure 10.3. The test probes are responsible for activating the faulty behavior in the components. 167
Figure 10.4. MBeans used for testing. .. 168
Figure 10.5. Correlation that chained together a series of events. ... 169
Figure 10.6. Correlation of a sandbox restart with a loop cycle having excessive usage of CPU 170
Figure 10.7. A sandbox reboot triggered by excessive thread allocation ... 170

Tables

Table 2.1. System classes and types according to their availability in terms of “nines” 24
Table 3.1. Comparison of the approaches in relation to the two protection goals and the need of IPC. 42
Table 4.1. Comparative of each isolation-related effort around OSGi technology................................... 63
Table 9.1. Layer scattering over OSGi API: total join point shadows (JPS), affected classes (C) and
packages (P) .. 158
Table 10.1. Microbenchmark in microseconds (μs) on a void method m with different signatures
between isolated platforms. .. 165
Table 10.2. Average start up time and sandbox MTTR ... 166

Listings

Listing 7.1. Example of a policy file using the isolation DSL ... 107
Listing 7.2. Regular expression for the component isolation criteria syntax (part of the DSL shown in
the appendix). ... 107
Listing 7.3. Regular expression for the service isolation criteria syntax (part of the DSL shown in the
appendix). ... 107
Listing 7.4. Example of service registration in OSGi ... 111
Listing 7.5. Code for a service lookup in OSGi .. 111
Listing 9.1. The example shows the same pointcut definition in the form of an anonymous pointcut in
aspect A4 and as a named pointcut in aspect A5. .. 148
Listing 9.2. Layer aspect AL3 defines the redundant pointcut of previous example 149
Listing 9.3. Advices reusing pointcuts of different layer aspects. ... 156
Listing 9.4. Main advice of the ServiceIsolation aspect ... 156
Listing 9.5. Aspect for monitoring services garbage collection.. 156
Listing 9.6. Creation of the sandbox monitoring probe aspect. ... 157
Listing 10.1. Runtime Exception thrown upon a call to an invalid proxy. ... 169

Chapter 1

Introduction

“If we knew what it was we were doing, it would not be called

research, would it? “

Albert EINSTEIN

Contents

1.1 MOTIVATIONS .. 13

1.2 OBJECTIVES .. 15

1.3 WHAT THIS THESIS IS NOT ABOUT .. 15

1.4 DIAGRAMS NOTATION ... 16

1.5 DOCUMENT STRUCTURE .. 16

1.1 Motivations

Increasingly, software needs to accommodate new features after being already in use in
production environments. It requires the ability to evolve at runtime with minimal interruptions
because of a true need for providing non-stop systems, or simply for avoiding users to be annoyed by
application restarts [Taylor09].

Some applications with critical availability requirements (the so-called critical systems
[Coyle10]) need to be updated with little perceived execution interruption because application
unavailability would lead to consequences such as loss of business, data, infrastructure, etc. These
updates may be for different reasons such as changes on business requirements, new functionality
added or even bug fixes. Non-critical applications may also present requirements for evolving
software at runtime. For instance, end-user applications such as Web browsers, office application
suites and mobile applications that need to have the user experience improved with the possibility to
easily add new functionality (i.e., plugins) without interrupting application usage.

In domains such as ubiquitous computing [Weiser91], systems and applications must adapt to
continuously changing contexts in an opportunistic manner. Devices, services, and connectivity may
appear and disappear at anytime. In such highly dynamic scenarios, applications should be able to
adapt their behavior autonomously, being ready to handle failures and unavailability, as well as the
appearance of new services, performing the necessary configurations at runtime [DiNitto08].

14

All of these requirements lead towards architectures that are able to support runtime software
evolution [Oreizy98a][Taylor09] by allowing new components to be located, loaded, and executed at
application runtime, thus accommodating changes and integrating new functionality during
execution. However, the ability to introduce components during application execution without
application disruption or without introducing any errors is a challenging task. Besides the potential
problems (e.g., dependency resolution errors, type incompatibilities, interruption of ongoing
operations) of the runtime update process, there is also the possibility of introducing components
with faults that can be activated later during execution.

Components are typically tested individually with unit testing, and as a group by means of
integration testing. It is not easy to detect in advance all the incompatibilities or application errors
that may arise when (and after) introducing a component into a running system. Nevertheless,
preventing the occurrence of such problems is fundamental in component-based development. If a
component fails during execution, the whole composition that depends on it could fail, and
depending on the failure, the whole application may also be taken down.

If the components involved in a composition are known ahead of application execution, formal
methods used in static code analysis can be effective ways for testing and detecting errors. Indeed,
there are drawbacks such as the size of software that such approaches are able to analyze (i.e., state
explosions in larger software analysis) and the limited amount of people that master these techniques,
which are not trivial. However, if components are not known ahead of execution, the task of
integration testing becomes more difficult. Combinatorial explosions may be faced if we try to predict
combinations by validating a component against all possible system configurations [Szyperski02].
This is something very difficult to achieve in an open Commercial Off-The-Shelf (COTS) components
market where new components are periodically released. Possible combinations still grow if other
components can still be integrated after deployment of the system.

When combining COTS components together, there is no straightforward way to tell if the
resultant composition is strong or if the quality attributes of the original components are preserved.
Even if two components are individually reliable, there is no guarantee that when combined together
they will still present that characteristic [Crnkovic02]. The usage of COTS components “as-is” has
lead to more error-prone and less dependable applications [Fox05]. A recovery-oriented approach
must be considered to cope with faults (instead of avoiding them) in order to achieve dependability, a
concept that involves attributes such as maintainability, availability, reliability, among others. By
acknowledging that hardware fails, that software has bugs and that human operators make mistakes,
recovery-oriented computing tries to reduce application recovery time (maintainability) thus
increasing availability (directly influenced by maintainability), and consequently dependability
which involves such attributes.

Fault tolerance and containment are useful for systems that may face unanticipated events at
runtime that are difficult or impossible to test during development [Tian05]. By establishing barriers
for containment, we can minimize component failure impact in the application. If a new component
deployed into the system introduces a problem, it is desired that the application does not stop
working. Components can be used as units of failure and replacement, giving the impression of
having instantaneous repair [Gray86]. Therefore, with a tiny mean time to repair (MTTR) the failure
can be perceived as a delay instead of a failure.

By taking all of these considerations into account, we want to enable the execution of
untrustworthy (but not necessarily malicious) third-party code without compromising application
stability. An application’s core functionality must be separated from untrustworthy third-party code.
Code of poor quality or not exhaustively tested, resource consuming code, and component
incompatibilities, among others reasons, may bring a program down or significantly degrade
application performance and responsiveness. It is important to provide mechanisms that can avoid
the propagation of faults from one component to another (either untrustworthy or not), so the system
can still execute even if one of its components crash. The identification of the faulty component is also
an important issue that concerns liability (i.e., who is responsible for causing the fault). In the same
way, it is also important to automatically react to possible faults and reestablish normal system
behavior and execution upon component faults.

15

1.2 Objectives

The general goal of this thesis is to provide mechanisms that can make dynamic component-
based applications more dependable. We want to minimize some of the impacts that runtime updates
may introduce, especially those related to executing untrustworthy components. We propose distinct
approaches that combined together can lead us towards the construction of more dependable
applications in dynamic component-based platforms:

i. The dynamic isolation of components, governed by a runtime reconfigurable policy

ii. A self-healing component isolation container

iii. The clear separation of dependability concerns from functional code

We want to be able to dynamically isolate untrustworthy components from the rest of the
application, with the ability to monitor the component behavior at runtime and after the appropriate
evaluation, be able to promote it to be executed in the same environment as the other components. In
case of internal failure of a component, its component container must be able to reestablish execution
automatically as well as identifying and recovering from abnormal behavior. All of the infrastructure
that enables such mechanisms should be separated from the component platform code. It should be
configurable to a level that, for instance, allows the isolation solution to be used without the
monitoring or the recovery mechanism.

In order to reach our objectives, we utilize strong component isolation boundaries that provide
fault-contained boundaries for separately running untrustworthy components. A failure inside the
container is not propagated to the rest of the application. If necessary, the container can be purged
from memory without disruption of the application. The isolated containers have a self-healing
capability, that is, they are able to detect when they present abnormal behavior and are capable of
automatically restore themselves to correct execution.

We propose the separation of the dependability concerns to be implemented by means of
aspect-oriented programming (AOP). By using AOP, such crosscutting concerns can be maintained
outside the target application code, being kept in modular units called aspects. A secondary
proposition of our work consists of an aspect-oriented reengineering pattern that helps using aspects
for abstracting software layers and enabling more semantics in aspects reuse.

As a high-level objective, we want to raise a discussion on what characteristics would have to
be changed, as well as what features would have to be added, in order to reach these objectives. By
doing so, we can do an actual move towards more dependable dynamic component-based platforms
and consequently more dependable applications.

1.3 What this Thesis is not about

Being clear about the objectives in the previous section, this section clarifies some points
concerning what this thesis is not about; therefore we can avoid expectations as well as confusions
that may rise during the reading:

 The work performed in this thesis is of pragmatic nature. This thesis does not present
formal or theoretical validation on fault tolerance, dependability or other domains.

 Although we have developed a custom protocol for transparent communication between
isolated platforms, we do not claim it as a part of the thesis contributions.

 An aspect-oriented reengineering pattern is among our propositions, and it is based on
existing language abstractions. We do not propose or create any new aspect-oriented
construct.

 The resulting prototype is not a production framework. It is experimental work. We
patched and changed existing implementations of a component platform used in software

16

industry, but our proof of concept was not constrained to keep compliance with that
platform’s specification. The behavior of certain actions when using our approach does
not completely mimic the behavior expected by the original platform specification.

1.4 Diagrams Notation

As the adage says, “a picture is worth a thousand words”, we have used several diagrams for
conveying our ideas even though the diagrams alone may sometimes be not enough, thus needing
some auxiliary text for clarification. The UML 2 notation was used in most of the diagrams, while
some of them (the ones with gradients and shades) do not necessarily follow any norm but sometimes
are loosely based on UML 2 elements.

Diagrams like the component and communication diagrams are far from being the most
popular types of UML diagrams, as opposed to the class and sequence diagrams that were also used.
If needed, as a quick reference, the reader may want to use Scott Ambler’s Agile Modeling Website1,
or the UML 2 distilled book [Fowler03]. The official UML specifications can be found in its website2.

1.5 Document Structure

The remainder of this document has four parts. This chapter section presents an overview in
each of them, and gives some hints to the readers that want to focus their reading in the key parts of
this thesis. The first one comprises the state of the art and includes basic concepts and terminology
used throughout this manuscript, as well as related approaches. It is divided into three chapters:

 Chapter 2 presents concepts around software dependability, including software fault-
tolerance and system recovery. The sections that focus on techniques used in our
approach are concentrated on sections 2.1.2 and 2.3.

 Chapter 3 concerns an overview of application isolation techniques (classified as
hardware-enforced and software-based) and provides a section dedicated to isolation in
the Java platform. For those that want to skim over the chapter it is suggested to give
special attention to section 3.4.

 Chapter 4 focuses on isolation techniques applied to components. Some modular
paradigms are presented before getting into detail on a non-exhaustive list of component
technologies that provide means of isolation. For readers who are familiar with the
paradigms presented and may want to skip section 4.2, it may be interesting to see the
isolation perspective on each of the presented paradigms. Section 4.3 is more technology
specific, with its last subsection presenting research efforts that are closely related with the
approach proposed here. For readers that are not familiar with OSGi technology (used in
the implementation and validation), we suggest them to carefully read the introductory
part of section 4.3.6, which introduces some OSGi “jargons” and common terms around
that will be used in this manuscript.

The second part of the manuscript presents our proposed approach target it is divided into two
chapters:

 Chapter 5 contains the proposed approach itself. We suggest the complete reading of the
chapter, but a reader focusing only on section 5.2 would be able to grasp the concepts of
the proposed design.

 Chapter 6 explains the motivations for choosing the target platform used for validation.

1 http://www.agilemodeling.com
2 http://www.omg.org/spec/UML/2.0/

http://www.agilemodeling.com/
http://www.omg.org/spec/UML/2.0/

17

The third part concentrates on the implementation and, inevitably, some sections gets into
much more technical details concerning the changes performed in the component platform that was
used. However, for the sake of brevity details considered irrelevant for the comprehension of the
approach had to be left out of this manuscript.

 Chapter 7 concentrates on the isolation approach, providing architectural details of the
isolation containers, implementation details concerning the isolation policy, IPC and
changes that were performed on the target component platform. Technical details are also
provided about details on the implementation differences involved in the two isolation
container approaches that were used, namely domain-based and process-based.

 Chapter 8 presents the autonomic approach for providing a self-healing capability to the
isolation container. It shows how this solution is placed on top of the isolation approach
and how the fault detection and recovery mechanisms were employed. Section 8.6 gets
into a general discussion on the limitations of monitoring mechanisms in component-
based platforms.

 Chapter 9 shows how we kept the dependability concerns separated from the component
platform code by means of aspect-oriented programming. This chapter also presents a
serendipitous finding concerning a reengineering pattern that we documented for using
aspects to capture layered design and provide more semantics to aspects reuse. Readers
already acquainted with AOP may want to skip sections 9.1 and 9.2, but we encourage
them to rather read section 9.1 and skim over section 9.2.

The fourth and last part concerns the experiments used to validate our approach and the
conclusions drawn from our work.

 Chapter 10 deals with the experiments that validate of our approach. We describe the
consulting services done with a Grenoble start up company that needed counseling in
application isolation, followed by detail about the experiments that we have performed in
the context of the Aspire FP7 project.

 Chapter 11 draws conclusions and envisions perspectives for future advances on this
topic.

PART I

STATE OF THE ART

Chapter 2

Software Dependability

“A refund for defective software might be nice, except it would

bankrupt the entire software industry in the first year”

Andrew S. TANEMBAUM

Contents

2.1 DEPENDABILITY ... 22

2.1.1 DEPENDABILITY ATTRIBUTES .. 23

2.1.2 SOFTWARE FAULT TOLERANCE .. 24

Types of Software Faults ... 24

Fault Models .. 25

Fault-tolerant Techniques ... 25

Fault Containment .. 28

2.2 SOFTWARE RESILIENCE ... 28

2.3 SYSTEM RECOVERY ... 28

2.3.1 SELF-HEALING SYSTEMS .. 29

Autonomic Computing .. 29

MAPE-K Control Loop ... 30

2.3.2 RECOVERY-ORIENTED COMPUTING ... 30

Process Aging and Rejuvenation .. 31

General Design Principles ... 31

Microreboots .. 32

2.4 SUMMARY ... 32

The concepts behind dependable computing are related to the idea of providing systems in
which we can depend on. Effective mechanisms for handling and recovering from faults are of major
importance to achieve that. Different requirements on today’s software are conducting us to
environments where changes are more frequent, and required to be performed during application
execution. The dependability concept has evolved to a broader idea, called resilience, which is related
to the ability to correctly accommodate such continuous changes without affecting dependability.
This chapter provides basic concepts around dependability and resilience, as well as other related
principles that concern some widely used fault-tolerant mechanisms for automatic recovery and
handling of faults. The purpose of this chapter is not to provide an exhaustive list of dependability
concepts, but rather to give an overview of the most important concepts in that domain that were
used in the work of this thesis.

22

2.1 Dependability

Although they do not exactly share the same definition, different terms such as high
confidence, survivability, and trustworthiness, are used to qualify systems that are robust, resistant to
faults and that allows users to trust that it will always work as expected. Dependability is an umbrella
term that encompasses such correlated concepts for describing systems that we can depend on. The
Working Group on Dependable Computing and Fault Tolerance, of the International Federation for
Information Processing, defines dependability as:

“the trustworthiness of a computing system which allows reliance to be
justifiably placed on the service it delivers.”

[IFIP11]

 Based on different sources, an attempt to document a consensus on several concepts around
dependable computing provides another definition of dependability:

“the ability to avoid service failures that are more frequent and more severe
than is acceptable.”

[Avižienis04]

In the context of this definition, the service delivered by a system concerns its behavior as it is
perceived by its user(s), which could be also another system. The failure occurs when a delivered
service deviates from correct service state. Still in [Avižienis04], we can find the definition of failure to
be causally related with error and fault which are all three considered as threats to dependability.
Figure 2.1 illustrates that causal relation, where a fault may lead to an error, which may itself lead to a
failure. A failure occurs when the delivered service deviates from correct service such deviation is
called an error. The hypothesized cause of a deviation is called a fault. An illustrative example is given
in [Laprie96] concerning a programming error (in the sense of a mistake) that is a dormant fault in the
software. When executing the faulty instruction, the fault is activated and an error generated. A
service failure occurs if the erroneous data produced affects delivered service.

Figure 2.1 The threats to dependability, illustrated with their causal relationship

The occurrence of a fault does not necessarily mean that an error is triggered, and, likewise, an
error not always causes failures. A fault that is not active is said to be dormant. A fault may also be
active but not cause any error. An error that is not detected (e.g., error signal, error message) is called
a latent error. In order to produce a service failure, the error must reach and alter the system’s external
state in order to interfere in correct service being delivered.

Other models around the concept of fault exist, such as the one from [Parhami97] as presented
in Figure 2.2. It provides a more detailed view of the transition from an ideal (i.e. correct service) to a
failed stated. However in what was called reliability multi-level model, we find slight differences
from the model used by [Avižienis04] that end up as similarities. In this case defects can be seen as a
specific case of faults, while a malfunction is a term used for failure.

FAULT ERROR FAILURE

23

Figure 2.2. State transitions in a reliability multi-level model

2.1.1 Dependability Attributes

According to [Avižienis04], the dependability concept encompasses a set of attributes:
availability, reliability, safety, integrity, maintainability and confidentiality. The latter is taken into
account when addressing security (confidentiality, integrity and availability) in addition to
dependability. The definitions of these attributes are as follows:

 Availability: the readiness for correct service.

 Reliability: continuity of correct service. It concerns the continuity of service without
having any failure.

 Safety: absence of catastrophic consequences on users and environments. It concerns the
handling of possible hazards (e.g. endangered lives) that can be brought by application
usage.

 Integrity: absence of improper ― or unauthorized if we take security into account ―
system alterations (e.g. corrupted data).

 Maintainability: ability to undergo modifications.

 Confidentiality: the absence of unauthorized disclosure of information.

Some of these attributes (reliability, availability and maintainability) can be measured while
others are rather of subjective evaluation. [Pham99] mentions reliability as a property coupled to the
concept of mean time to failure (MTTF), which is the expected failure time where a component or a
system is expected to perform with success. In other words, reliability can be seen as an average that
says how long the system will take to fail. Maintainability is the probability of isolating and repairing
a fault in a system within a period of time, being related to the concept of mean time to repair (MTTR)
or the mean downtime. This may involve preventive or corrective maintenance, or could also go
beyond that involving adaptive maintenance performed automatically by the system [Avižienis04].

Figure 2.3. Illustration of MTTR and MTTF over time

 When dealing with MTTR, we are talking about a repairable system, which can have its
availability (A) measured (Non-repairable systems actually have their reliability equals to their

IDEAL

DEFECTIVE

FAULTY

MALFUNCTIONING

DEGRADED

FAILED

ERRONEOUS

up

down

failure repair

MTTR

MTTF

time

24

availability [Pham99]). Availability can be said to be the probability of calling a system service and
having it ready to answer. The availability is the MTTF divided by the sum of MTTF and MTTR:

In addition to the availability, systems that are repairable can have the additional measure of
mean time between failures (MTBF), which is often and incorrectly substituted by MTTF [Pham99].
Therefore, the MTBF is the sum of MTTF and MTTR:

Availability is an attribute constantly measured in critical systems (e.g., mission-critical,
business-critical). It is presented in the form of a percentage of time over the year. The ideal
availability is 100% (i.e. a system that is always available) but it is usually classified how close they
get to 100% in terms of “nines”. A system with 5 nines of availability means that it has a measured
availability of 99.999%, as illustrated in Table 2.1, taken from [Gray93]. Under that classification, for
instance, a system to be considered well-managed has 3 nines of availability which means an average
of 526 minutes (8.75 hours) of downtime in a year.

Class System type Availability
Unavailability
(min/year)

1 Unmanaged 90% 52560

2 Managed 99 5256

3 Well-managed 99.9 526

4 Fault-tolerant 99.99 52

5 High-availability 99.999 5

6 Very-high-availability 99.9999 0.5

7 Ultra-high-availability 99.99999 0.05

Table 2.1. System classes and types according to their availability in terms of “nines”

2.1.2 Software Fault Tolerance

Although there exists formal techniques that can help to significantly reduce the occurrence of
software faults, we are not yet able to guarantee that software will be free of faults during its
execution. As already stated decades ago by Dijkstra [Buxton69], testing shows the presence, not the
absence of bugs. In fact, systems should prevent failures from happening by breaking the causal
relations between faults and the resulting failures [Tian05]. Fault tolerance is considered in
[Avižienis04] as a means to attain dependability. It is aimed to use error detection and system
recovery to cope with faults, in order to avoid failures. Such recovery process consists of bringing the
system back to normal operation in the case of faults. This section focuses on fault tolerance specific
to software, rather than hardware related fault tolerance. The next subsections briefly introduces the
concept of soft fail and the types of software faults in regards to their determinism, followed by a
subsection on general software fault tolerance techniques based on design diversity.

Types of Software Faults

While the term hard fail concerns permanent hardware failures when a device or part of it
ceases to function, the term soft fail, which is also called soft error, refers to a spontaneous error or
change that changes (i.e., corrupts) data which cannot be reproduced. Such errors are caused mostly
by electronic noise, but also in rarer situations can be even caused by energetic nuclear particles that
can be originated either by natural decay of atoms in hardware material or, although it may sound
like science fiction, by galactic cosmic rays that constantly bombard the Earth, as pointed out in
research performed by IBM [Ziegler96].

MTTF
A

MTTF MTTR

MTBF MTTF MTTR

25

Gray [Gray86] uses the terms Heisenbugs and Bohrbugs for characterizing different types of
software faults. Heisenbugs (named after the Heisenberg Uncertainty Principle in Physics) are the
type of fault that has a transient nature, and when one is trying to see what is incorrect the problem
goes away. This type of fault is typically originated in limited conditions, such as a race condition or
even due to a soft fail. Debugging or tracing will cause the environment to slightly differ and the
conditions that led to the fault will no longer take place.

Differently, Bohrbugs (named after the Bohr atom, due its simple model) are solid bugs that
will always cause the same error under the same circumstances. This sort of fault is easily detected by
standard techniques. While attempts to debug a Heisenbug, or even a simple application reset, would
make the fault disappear, a Bohrbug will remain in the system until it is fixed. Since Bohrbugs have a
more consistent behavior, they are easier to be identified during the development and testing phases.
Therefore, applications tend to present [Gray86] more Heisenbugs than Borhbugs. Although other
literature [Grottke07] presents the concept of Mandelbugs as a more general type of bug that
encompasses Heisenbugs. Mandelbugs as being considered chaotic and hard to be reproduced, are
rather of non-deterministic nature. Throughout this manuscript, for the sake of clarity we will rather
use a generalized perspective of these abnormal behaviors, by considering them as either deterministic
or non-deterministic.

Fault Models

A fault model [Binder99] works as a hypothetical predictor of faults by explicitly specifying the
potential sources of error. It is important to ensure that the fault-tolerant behavior is met, being useful
while developing fault-tolerant strategies. It helps to predict the abnormal behavior from which the
system needs to provide recovery techniques. Fault models are mainly used for guiding the testing
strategies since it helps to build tests that target specific scenarios.

Two general categories are considered in [Binder99]: specific and non-specific fault models. A
specific fault model uses a fault-directed testing strategy that seeks to reveal faults. In this case, they
need to be designed in a fault efficient way, so they can have a high probability of revealing a fault. A
non-specific fault model involves conformance-directed testing, which targets the conformance of
requirements and specifications. The details of the implementation faults are not very relevant in this
category, which rather needs a test suite that is sufficiently representative of the system requirements
instead of a fault-specific testing approach.

Because specific fault models are fault-oriented, they need to have a high probability of
revealing faults. When creating such category of a fault model, one should think of bug hazards, which
concern a potential risk that increases the chances of a bug. Fault models are based on assumptions of
the these bug hazards, that should be based on convincing arguments or strong evidence that a
particular type of fault specified in the model has a good chance of being found. These assumptions
are based on error-guessing and suspicions. The former relies on developer knowledge, imagining what
could go wrong (e.g., type coercion is a potential source of errors in C++). The latter assumption is
based on common-sense inference (e.g., a novice programmer is more likely to produce faults).

Fault-tolerant Techniques

Fault-tolerance in hardware is typically implemented by means of strict replication of
components. Replicated elements can work in a consensus approach where each component
processes the same instructions and a voter chooses the correct value. This allows to be sure of the
correct value that is expected and also allows identifying faulty components where the results deviate
from the other components. Redundancy is another form of replication, where a failed component is
switched by a replica.

In software fault tolerance, Tian [Tian05] distinguishes the techniques between duplication and
backup, which are respectively equivalent to the two techniques previously presented. In duplication
multiple programs run in parallel using some kind of consensus while backup implies a primary
program that is replaced by an equivalent one in case of faults. In general such techniques for
software fault tolerance rather employ a different type of redundancy based on design diversity
[Laprie90]. In this approach, two or more software variants are compared. These variants are

26

produced from a common service specification therefore they perform the same tasks. However, since
they have different design they would not share similar failure modes. In a diversified design we find
at least, two software variants of the element (e.g., a system, a subsystem) that needs fault tolerance,
and a decider which monitors the result of the variants’ execution. The three most known techniques
of design diversity are N-version programming [Avižienis85], recovery blocks [Randell75] and N self-
checking programming [Laprie90], which are detailed next:

 N-version programming: This technique is equivalent to the N-Modular redundancy
(NMR) technique used in hardware fault tolerance. In the case of NVP, N different
implementations of the same system module are used. Each variant realizes the same task
in a different way, and sends its answer to a voter (i.e., a decider) which analyzes all the
answers and determines which one is correct. In NMR we should always use N as an odd
number. For example, if we have 3 modules doing the same task and the result of one of
differs from the rest, the voter can be sure that the module producing the different value is
faulty, and thus use the value that was produced by the other two modules. The main
conjecture in NVP is that the independence of programming efforts for developing each of
the functionally equivalent systems greatly reduces the probability of identical software
faults in different systems.

Figure 2.4. Illustration of the N-version programming technique

 Recovery blocks: A stand-by sparing approach is used in this technique, based on a similar
approach from hardware fault tolerance. A recovery block is a system block (e.g., a
module, a procedure) with an acceptance test that works as a means of error detection. The
primary block also contains one or more stand-by spares called alternates (i.e. variants).
Instead of using a parallel approach like in NVP, the recovery blocks technique is rather
linear. If an alternate does not pass the acceptance test and a further alternate exists, it is
entered. If the test is passed, the subsequent alternates are ignored, and the execution
continues. But in the case the last alternate fails, the recovery block fails. In all cases, before
entering any alternate, the recovery block saves the current state in a checkpoint so a
rollback can be performed if the alternate’s execution fails.

Figure 2.5. Structure of the recovery blocks technique

Version 1

Version N

...

Distribute
Inputs

DeciderVersion N-1

Primary
Version

Alternate N

...
Execute Alternate 1

Acceptance
Test

Restore
Checkpoint

Checkpoint

Fail

Pass

Discard
Checkpoint

Exit

27

 N self-checking programming: In this technique the self-checking component itself is
responsible for determining whether its result is acceptable. At least two self-checking
components are necessary to be in parallel execution. A self-checking component is able to
check its own dynamic behavior during execution, and it consists of either a variant with
an acceptance test (the lower part of Figure 2.6, similar to a recovery block) or two variants
with a comparison algorithm (the upper part of Figure 2.6, resembling the technique of N-
version programming). In N self-checking programming, at each execution one acting
component serves the application, while the other components remain idle, as if they were
hot spares. If the serving component fails, a spare starts to deliver service. If a spare fails,
the acting component continues delivering service.

Figure 2.6. Two styles of N Self-checking programming

Design diversity has proven to be effective in domains such as avionics and railway systems
[Laprie90]. However, this type of technique entails higher costs of development when it involves
different pieces of software, implying more development and testing time. The usage of such
techniques may depend on the requirements of the application. The definition of dependability is
subjective, since it talks about “…service failures that are more frequent and more severe than is
acceptable”. Also, what dependability attributes are the most important according to the system’s
requirements? Indeed, in the above example of avionics and railway systems the safety requirement
is essential since lives may be endangered in the case of faults in the system. However, a web server
with high availability requirements may employ less expensive fault-tolerant techniques like simple
replication of components, instead of a design diversity choice. Therefore, an analysis of the
dependability related non-functional requirements of the system are crucial for defining which fault-
tolerant techniques should be employed to develop a dependable system.

Distribute
Inputs

Variant 1 Variant 2 Variant 3 Variant 4

Result
Gathering

and
Selection

Result
Gathering

and
Selection

Result
Gathering

and
Selection

Fail

Output

Fail

Fail

Version 1

Version n

Selection

Output

Acceptance
Test 1

Acceptance
Test n

.

.

.

Input

28

Fault Containment

Another technique tolerating faults, not necessarily involving redundant mechanisms, is the
isolation of the faulty element. By establishing barriers between the system and the environment, it is
possible to reduce the severity of failures [Tian05]. Fault containment is seen as a strategy for fault
tolerance, by preventing error propagation across defined system boundaries [Nelson90].. Errors
must be confined to the module which they were originated in order to protect critical resources and
to minimize recovery time.

2.2 Software Resilience

The term resilience has been used in dependable computing as a synonym of fault tolerance
[Laprie08]. However, in other fields like psychology, ecology or business administration the notion
of resilience is related to the capacity of accommodating unforeseen changes. The definition given to
resilience in the context of dependable computing is:

 “The persistence of the avoidance of failures that are unacceptably frequent
or severe, when facing changes.”

[Laprie08]

It presents a complementary definition to that of dependability. However, resilience can be
seen a sort of scalable dependability, where the goal is continuous dependability when facing
changes. This need for resilience is a growing requirement of today’s applications that increasingly
need to run non-stop. Eventually, such applications need to be fixed to accommodate new features or
introduce changes in its current behavior. This ability to successfully accommodate changes is
referred in [Laprie08] as the evolvability property of a system and it is crucial for systems that have to
be resilient.

Self-adaptive software is able to provide such desired evolvability, since it is a capable of
modifying its own behavior when facing changes in its environment [Oreizy99]. A system can be
closed-adapted, where the predefined adaptive behavior is embedded in the system. In this case the
system has a limited number of adaptations and does not allow new behaviors to be introduced at
runtime. Systems that permit such runtime flexibility, where new adaptation plans can be added
during execution are said to be open-adapted. [Taylor09] refers to runtime software evolution (RSE), as
an alternative term to dynamic adaptation, which constitutes the ability of a software system’s
functionality to be changed during runtime, without requiring a system reload or restart.

The current trend of ubiquitous computing and critical applications with high availability
requirements lead to ever changing scenarios where applications need to constantly adapt.
Dependability is always necessary in such contexts, but upon eventual adaptations systems must
ensure that they continue to be dependable. Therefore, resilience can be seen today as the ultimate
objective of dependable applications that take adaptivity into account.

2.3 System Recovery

The recovery mechanisms of typical fault-tolerant techniques employ redundancy. By using
such approach, when a component fails, a backup component or procedure can replace the failed
component providing the correct computations without losing service. However, in the case of a
failure due to external factors (e.g., hardware) that are not covered by the employed fault-tolerant
mechanisms, the system may enter an inconsistent or unstable state. There is also a need for
mechanisms that can restore system to its normal state. Recovery-oriented approaches try to tackle
such issues by providing mechanisms that deal with a post-fault (or even post-failure) scenario. The
next subsections provide an overview of two major techniques for handling those issues: self-healing
systems and recovery-oriented computing.

29

2.3.1 Self-healing Systems

With systems becoming more and more complex, different research communities in computer
science have concentrated on approaches that can minimize human intervention for system
maintenance. One of the motivations to attain is a reduction of costs concerning installation,
configuration, tuning up and maintenance of software applications. Self-adaptation or self-adaptive
systems [Oreizy99] is perhaps a more general term systems to denote systems employing
autonomous mechanisms that generally do not involve direct human decision. We can find many
related techniques usually under the self-* (“self star”) flag for grouping them together (e.g., self-
adaptation, self-configuration, etc).

There are three major types of conditions enumerated in [Cheng05]to identify when systems
would need to employ self-adaptation mechanisms: system errors, changes in the target system
environment and changes in user preferences. Targeting the first scenario we can find self-healing
systems, which are those that are able to detect when they are not operating correctly and
automatically perform the necessary adjustments to restore themselves [Ghosh07]. As stated before,
the objective is to have no human intervention but if this is not the case, we can say that the system
has assisted self-healing. In [Ghosh07], the authors observe that while some scholars consider self-
healing systems as an independent research branch, others include it as a subclass of fault-tolerant
systems.

The implementation of a self-healing system may follow different architectural schemes,
having several possibilities to be implemented [Ghosh07]. But in general, such systems must be able
to recover from a failed component by detecting and isolating it, taking it off line, fixing or isolating
it, and reintroducing the fixed or replacement component into service without any apparent
application disruption [Ganek03].

Autonomic Computing

Following the self-* trend targeting adaptive mechanisms and less maintenance costs, a new
research initiative called autonomic computing was started by IBM in the 2000’s. The term was coined
inspired by the autonomic nervous system, for describing systems that are self-manageable.
According to IBM’s vision [Kephart03], self-healing is one of the four main aspects of autonomic-
computing, which also include self-configuration, self-optimization and self-protection. Their
definitions are as follows:

 Self-healing. Automatic detection, diagnosis and repair of software and hardware problems.

 Self-configuration. Based on high-level policies, the system transparently reacts to internal or
external events and adjusts its own configuration automatically.

 Self-optimization. The system is able to improve continuously its performance.

 Self-protection. Automatic anticipation and reaction of system wide failures due to malicious
attacks or cascading failures which were not self-healed.

Self-healing is just one of the four characteristics that are desired in autonomic computing.
Although that property may have overlapping objectives with self-protection, there may be systems
with autonomic computing principles that do not provide all four characteristics.

Autonomic Managers. Under the design proposed by IBM, these characteristics can be realized with
the help of one or more autonomic managers. An autonomic manager is implemented using an
intelligent control loop, based on feedback control theory. A managed element or managed resource
consists of hardware (e.g., a processor, an electronic device) or software (e.g., a component, a
subsystem, a remote service). A managed element exposes manageability endpoints (also known as
touchpoints) which provide sensors and effectors [Kephart03]. The sensors provide data (e.g., memory
consumption, current load) from the element and the effectors allow performing operations such as
reconfiguring. An autonomic element consists of one or more managed elements controlled by an
autonomic manager that accesses the managed elements via their touchpoints.

30

Policies. In order to perform the adaptations upon state changes, an autonomic system needs to put
some mechanism in practice for doing that without user intervention. At least three types of policies
are useful for autonomic computing in that sense, according to Kephart [Kephart04]: action policies,
goal policies and utility functions. Action policies specify what to do when the system enters a given
state. This is usually found as a policy that define several directives in the form of IF(Condition)
THEN(Action). Goal policies and utility functions provide more indirection by providing a higher
level approach. When the system enters a state, a goal policy defines what is the next desired state or
the set of desired states. A utility function uses a goal function to associate each state with a
numerical value, rather than classifying the different states between desired/undesired or
acceptable/unacceptable. This numerical value is the degree of optimality of the state concerned. The
higher the value, the greater the corresponding state of optimal functioning.

MAPE-K Control Loop

Control loops, taken from control theory and control engineering, are important elements for
building self-adaptive systems. They allow automated reasoning which involves a feedback loop with
four key activities: collect, analyze, decide, and act [Cheng08]. IBM proposes a MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge) control loop model (Figure 2.7) for constructing autonomic
managers. Their model is used as a one of the main references for autonomic control loops. Basically,
the control loop monitors data (e.g., the inspection of system performance or current state) from a
managed element; interprets them verifying if any changes need to be made; if it is the case, the
action needed is planned and executed by accessing the managed element’s effectors. Knowledge is a
representation of live system information (e.g., an architectural model, reified entities) that may be
used and updated by any of the MAPE components, thus influencing decision taking.

Figure 2.7 A control loop (a) and the MAPE-K loop proposed by IBM for autonomic elements (b)

An autonomic manager can also have just portions of its control loop to be automated
[IBM06][IBM06]. Functionalities that are potentially automated could also be under manual
supervision (e.g., decision taking upon certain events) of IT professionals. The administrators are also
responsible for configuration, which can ideally [Huebscher08] be done by means of high-level goals,
which are usually expressed by means of event-condition-action (ECA) policies, goal policies or
utility function policies.

2.3.2 Recovery-Oriented Computing

The Recovery-Oriented Computing (ROC) research project3, conducted by Stanford University
and the University of Berkeley, employs principles that are similar to those of self-healing for
improving system dependability of Internet services. Under the perspective of ROC [Patterson02],

3 http://roc.cs.berkeley.edu/

Managed Resource

Decision

Sensors Effectors

KnowledgeMonitor

Analyze Plan

Execute

Autonomic Manager

Touchpoints

(a) A Generic Control Loop (b) The control loop proposed by IBM

Measure

Control

Resource

http://roc.cs.berkeley.edu/

31

errors originated from people, hardware or software are considered as something that will eventually
happen during application execution and no matter what was the error’s cause; an application must
recover from such errors. By acknowledging that hardware fails, that software has bugs and that
human operators make mistakes, the ROC effort aims to enhance applications dependability by
reducing application recovery time (maintainability) thus increasing availability (directly influenced
by maintainability) [Fox05].

[Avižienis04] points out ROC as a fault tolerance approach to achieve overall system
dependability. However, as its idealizers emphasize, the purpose of ROC is dealing with failure
instead of trying not to fail. While typical research efforts try to avoid applications from failing, that
is, they concentrate on increasing MTTF, ROC focuses on reducing MTTR with automated recovery
mechanisms, avoiding the delays when human intervention is necessary. In the equation of
availability (MTTR/MTTF) having a small value for MTTR or a big value for MTTF provides a
similar result.

Process Aging and Rejuvenation

The term software aging has been used by Parnas [Parnas94] to describe software that becomes
obsolete due to lack of modifications or software that becomes complex and with a compromised
performance because of a bad management on changes. In a sense more appropriate the context of
ROC, software aging is also referred by [Huang95b] as process aging, which is the result of
performance degradation or complete failure after software systems executing for a long time (e.g.
hours, days).

ROC employs techniques that are related to Software Rejuvenation [Huang95b], which is a cost
effective solution to avoid unanticipated software failures related with process aging. In order to
prevent application failures from happening due to process aging, software rejuvenation works as a
sort of pre-emptive rollback mechanism. It introduces proactive repairs that can be carried at the
discretion of the user (e.g., when few or no users are connected to the application). The mechanism
consists of gracefully terminating an application when it is idle, and immediately restarting it at a
clean internal state. However, it is important to keep the application’s permanent state before
terminating it. The goal is to clean up only inconsistent state resulted from non-deterministic faults
without losing the correct application state, a principle that is also followed in ROC.

General Design Principles

According to the principles of ROC, software has to be developed taking into account that it
will eventually fail, and it should facilitate its recovery. Some design principles are proposed in ROC:

 Recovery experiments to test repair mechanisms

 Diagnosing the causes of errors in live systems;

 Partitioning to fault containment and fast recovery from faults

 Reversible systems to handle undo and provide a safety margin;

 Defense in depth in case the first line of defense does not contain an error;

 Redundancy to survive faults and failing fast to reduce MTTR.

ROC introduces the concept of crash-only software [Candea03], which advocates that crash-
only programs should be able to crash safely so they can recover quickly. It suggests the usage of fine
grained components (crash-only components), state segregation, decoupling between components,
retryable requests and leases. An important idea to retain is that this design admits that most failures
are originated from non-deterministic faults and can be recovered by reboots. Therefore every
suspicious component is “microrebooted”. By employing such technique, components will be
rebooted before the system fails. Also, by developing crash-only components the recovery process
becomes very cheap. Being a technique that is fundamental to the work we present in this thesis,
microreboots are describe with more detail in the next section.

32

Microreboots

Systems that run continuously for a long time tend to present performance degradation as well
as an increase in failure occurrence rate [Grottke07]. Normally, hard to identify faults could be
caused by diverse sources that are difficult to track such as race conditions, resource leaks or
intermittent hardware errors. In such cases reboots are the only solution for reestablishing correct
application execution and bring the system back to an acceptable state [Candea2007]. Several studies
suggest that many failures can be recovered by rebooting, even when their cause is not known
[Candea04a]. In [Huang95b], the authors show evidence that a significant amount of software errors
are a consequence of peak conditions in workload, exception handling and timing. Such errors
typically disappear upon software re-execution after clean-up and re-initialization. These are typical
examples of non-deterministic faults, which we often face in our day-to-day experience as users of
desktop and server applications as well as embedded systems. If we take the example of embedded
systems of ordinary devices (e.g., portable phones, ADSL modems), in the presence of unattended
behavior (e.g. unresponsiveness, freezing) the common user reaction to that is rebooting the device.
After the restart is complete the device’s behavior comes back to normality.

Techniques such as Software Rejuvenation may be employed to avoid such scenarios in
continuously running software that starts to degrade. However, while the software rejuvenation
approach is of preventive nature, ROC proposes a mechanism that can act in a corrective way (after
failing) as well as in a preventive way (before failing) like that other strategy. A practical recovery
technique called Microreboot [Candea04a] [Candea06] for the individual reboot of fine-grained
components, achieves benefits similar to full application restarts but at much lower costs. Such
approach increases application availability, because only one part of the application is restarted while
the rest of the application is still executing. By employing this approach on individual components,
one introduces a significant delay avoiding a full application reboot, which can be employed as a last
resort for recovering from non-deterministic faults when microreboots are no longer being effective.

In order to achieve safe microreboots, the crash-only principles must be taken into account.
Applications should be designed with fine-grained components that are well-isolated and stateless.
The microreboot design suggests the usage of a state store for keeping the state of components
outside of them. By doing so, the process of state recovery is completely independent of application
(i.e. component) recovery thus avoiding any state corruption when microrebooting components.

2.4 Summary

One of the motivations behind software dependability is to make users rely on the services a
system delivers, that is, to provide applications in which we trust. The concept of dependability is
broad, and encompasses different attributes: reliability, availability, maintainability, safety, integrity
and confidentiality. Although faults, errors and failures are considered as threats to dependability,
dependable applications can be realized by means of fault-tolerant software, whose goal is to detect
and recover from faults without presenting service failures.

While fault-tolerant mechanisms try to attain dependability by employing techniques typically
based on redundancy, recovery-oriented mechanisms rather deal with situations where the system
should recover from faults or even from degraded scenarios of service failures. A recovery-oriented
mechanism tries to bring systems back to their normal state in such situations. Approaches such as
self-healing and recovery-oriented computing (ROC) are able to deal with post-fault scenarios where
applications can recover from failures.

Self-healing is one of the key properties of autonomic computing, which targets the
construction of self-manageable systems. Techniques such as control loops, used for building
autonomic managers, are able to provide self-healing characteristics. ROC makes the realistic
assumption that systems will fail, no matter what was the cause, and prompt recovery is mandatory
for reducing the MTTR. The goal of that approach is to employ techniques that allow fast recovery.
By using the concept of crash-only software applications can be ready to deal with faults and recover
from them. An important principle behind crash-only software is to break down the application into

33

smaller and loosely coupled components that can be individually rebooted. In such microreboot
approach, faulty components can be individually rebooted and have their state restored to a
consistent value. This approach has proven to be effective against non-deterministic faults and works
at a much lower cost than full application reboots.

With the evolution of applications to ever changing scenarios where adaptivity is necessary,
systems have now the need to persist their dependable characteristics upon changes. Resilience is a
concept that consists in the persistence of dependability when facing changes. Recovery-oriented
mechanisms with adaptive capabilities such as self-healing are fundamental for providing resilience
to applications.

Our work employs recovery techniques presented in this chapter for presenting some level of
dependability when facing changes at runtime (i.e., some level of resilience) in dynamic component-
based applications, which are presented further in the next chapters.

Chapter 3

Application Isolation
Techniques

“No man is an island”

John DONNE

Contents

3.1 BACKGROUND .. 36

3.2 REQUIREMENTS .. 37

3.3 TECHNIQUES.. 37

3.3.1 HARDWARE-ENFORCED ISOLATION ... 37

OS-level Protection Domains .. 38

Process-based isolation .. 38

Virtualization .. 38

3.3.2 SOFTWARE-BASED ISOLATION ... 39

Security Managers .. 39

Application-level Domains .. 39

Language-based Isolation .. 40

3.3.3 SUMMARY .. 40

3.4 ISOLATION IN THE JAVA PLATFORM .. 40

3.4.1 NAMESPACE ISOLATION.. 41

3.4.2 PROCESS-BASED ISOLATION .. 41

3.4.3 DOMAIN-BASED ISOLATION .. 41

3.4.4 COMPARISON ... 42

3.5 SUMMARY ... 42

Application isolation can be seen as a strategy that employs protection mechanisms to achieve
privacy and fault containment. Privacy consists on isolation mechanisms that prevent resources (e.g.,
data, devices, runtime objects) from being improperly accessed. By providing fault containment, the
system can be protected from errors coming from another process. Isolation also contributes to
system resilience by providing failure boundaries permitting part of a system to fail without
compromising the whole [Aiken06].

In modern software that uses multitasking, a common technique for isolating programs is to
put them in separate process and rely on hardware-enforced techniques providing proper isolation
between them. Although this is an effective way of isolation, there are different requirements and

36

different grains of isolation that can be achieved. This chapter presents diverse techniques that rely on
both hardware-enforced and software-based approaches for achieving different isolation levels.
Although these techniques are presented individually, they are not mutually exclusive and can be
combined together to construct different isolation solutions.

We initially discuss some background around the term isolation as a means of protection. We
continue the discussion around requirements defining the isolation needs of an application. The
subsequent section focuses on the different isolation techniques we categorize as: hardware-enforced
isolation, software-based isolation and virtualization. We present a diversity of strategies that ensure
isolation in different levels, focusing on privacy, fault containment or both of them. That overview is
followed by a summary of isolation approaches used in the Java platform, which is an important
background for the implementation and validation of the propositions of this thesis. The next chapter
will rather concentrate on application isolation focusing a finer grain, in the form of software
components.

3.1 Background

Isolation is a broad term that in the next paragraphs we delimit under our perspectives. Such
concept is far from being a recent concern. Work from the 70’s [Saltzer75] already discusses about
information protection by means of isolation and mentions mechanisms such as isolation of users, of
virtual machines and programs. It also gives examples of complete isolation systems where no
sharing of information can happen. Isolation techniques may have been initially employed targeting
information disclosure in systems. However, that concept started to be linked with protection
mechanisms in a wider sense.

Lampson [Lampson74] used the word “protection” as a general term for mechanisms
controlling the access of a program to any system resource. The motivation behind such protection
mechanisms is to avoid errors of one user from harming other users, which in this context may
denote an actual user or another program. Under this point of view, “harm” can be inflicted in
different ways, such as:

 Destroying or modifying another user’s data

 Reading or copying another user’s data without permission.

 Degrading the service another user gets, having a system crash as an ultimate form of
degradation.

A correspondence between these harms and dependability attributes, detailed in the previous
chapter, can be made. The first item of the above list is related to the integrity attribute, and the
second one concerns confidentiality, while the last one refers to reliability, which impacts availability.
We can generalize these attributes by grouping them under two major goals: privacy and fault
containment. Privacy would concern protection in terms of integrity and confidentiality; while fault
containment relates to isolation of faults in order to avoid errors from propagating across modules.

Lampson underlines that we should head to a direction where mechanisms must guarantee
that errors in one module do not affect another one. By isolating applications from one another it is
possible to provide effective ways to create barriers that avoid applications from retrieving
information that they are not supposed to have access, as well as preventing faults from propagating
throughout the system. In order to avoid such propagation, fault containment mechanisms should be
provided. Fault isolation may be seen as physical and logical exclusion of faulty components from the
system [Avižienis04]. However, under the point of view used in this thesis, fault isolation is used as a
general term whose aim is to achieve fault containment. Fault-tolerant mechanisms should ensure a
way to avoid the propagation of faults by confining them in boundaries that do not allow the
propagation of faults to the rest of the system. A sound fault-tolerant strategy should include such
design that confines faults.

37

3.2 Requirements

Throughout this chapter we mention different techniques for providing application isolation in
different levels. However, each one of them is motivated by different requirements. The granularity
and the degree of isolation are two important requirements that need to be taken into account when
defining an isolation technique (i.e., the solution provider point of view); and when choosing an
appropriate one (i.e., the perspective of the user of such technique). In both cases it should also be
considered what goal is more important: privacy, fault isolation or both, when needed.

In terms of granularity, it is necessary to specify what is going to be isolated or shared. There
are two extremes: no isolation or complete isolation. With no isolation, all resources are fully shared,
while in the case of complete isolation the applications are not aware of each other. Other levels of
granularity can be more flexible like binary sharing, where resources should be either public or
private, or another form of limited sharing where fine-grained control mechanisms are used.

The desired degree of isolation concerns what is going to be isolated: only parts of an
application (e.g., modules, components); one application isolated from another; or a set of
applications isolated from another set; and so forth.

3.3 Techniques

Isolation is a concept tightly coupled with security. One of the objectives of isolation is to
provide robustness by ensuring that applications that do not behave correctly (e.g., execution of
malicious code, excessive consumption of system resources like CPU or memory) would not interfere
or bring any harm to other applications running simultaneously in the same environment (e.g.
operating system, virtual machine). The environment should be able, for example, to abort an
application with such unexpected behavior and reclaim system resources without affecting other
applications.

Different isolation categorizations can be found [Brumley10] [Viswanathan11]
[Goonasekera09], but they do not have any consensus although they present a few overlapping
categories. In [Viswanathan11] we find five categories (language-based, sandbox-based, virtual
machine based, OS-kernel based and hardware-based) that in part overlap to the five categories
presented in [Goonasekera09] (hardware isolation, binary code level isolation, integration into OS
kernel isolation facilities, language support and application level isolation). Three high level
categories are reported in [Brumley10]: hardware-based, software-based and hardware + software.
Similar to those used in this last classification, we choose only to group a non-exhaustive list of
isolation mechanisms under two groups: hardware-enforced isolation and software-based isolation.
Isolation solutions may potentially combine techniques from both groups.

This is not a strict classification since implementing an isolation approach in a system may
potentially combine different mechanisms (either from the same category or from different
categories), therefore they are not mutually exclusive. Another fact that can be pointed out is that the
techniques employed for isolation typically try to address both privacy and fault containment, but
some of them may only reach one of these goes.

3.3.1 Hardware-Enforced Isolation

This type of isolation consists of memory protection mechanisms that allow a strong form of
isolation based on hardware infrastructure. In its basic form, it concerns raw and strict separation of
memory spaces, relying on the Memory Management Unit (MMU) to perform the verifications (e.g.,
proper privileges, memory address range) when a program attempts to access memory. Memory
protection uses techniques such as memory paging and segmentation for keeping programs running
in separate address spaces, which does not allow a process to access another process’ memory. Even
though some of the below categories (e.g., process-based isolation) may be considered rather as

38

software-based isolation instead of hardware-based, we consider as hardware-enforced the
techniques that take advantage of memory isolation, which is a hardware resource.

OS-level Protection Domains

This basic form of isolation is inspired on the protection rings concept [Schroeder71] of the
Multics OS. It is based on privilege levels that determine the different protection domains (also called
rings). The lowest ring is the most privileged one, which typically is the one that accesses underlying
hardware. Operating systems implement such technique in their kernels. This concept has been
employed by most operating systems, which usually employ a two-level rings protection mechanism
[Goonasekera09]. In such cases the OS kernel executes at a higher privilege ring (kernel mode) where
it can perform any instruction, including direct access to hardware resources, while most of the
applications execute in a lower privilege level (user mode) with hardware enforcing that high
privilege instructions should not be performed. Performance is a major obstacle when using such
approach for isolating processes, since a context switch from user mode to kernel mode usually is
much more expensive than a context switch between processes running in the same protection level.

Process-based isolation

In general, a process can also be seen as a fault-contained protection domain, although not in
terms of privileges, as presented in the previous section. For instance, two processes running in user
mode also take advantage of fault-containment. Therefore, a crash in a process would not affect the
other processes running. By simply executing processes in parallel, we take advantage of such
memory protection mechanism and achieve a sort of process-based isolation that is provided by the
OS. However, the utilization of separate address spaces for isolation requires using Inter-Process
Communication (IPC) in order to allow communication between the isolated processes. The overhead
of such mechanism comes together with processor context switches. Therefore, this isolation
approach incurs significant overhead if processes need to communicate.

Virtualization

In computer science the term virtualization has been used to describe a technique that consists
of creating an abstraction layer for emulating a given resource (e.g., a file system, an operating
system) in order to transparently share the resource among many users. Such virtual layer is
perceived by users (e.g., a program, a person that uses a system) as if it they were the only ones
accessing a real instance of the resource. Virtualization is useful for sharing resources or also as a form
of isolation towards a more secure environment. In the former case, virtualized hardware can be used,
for instance, by multiple operating systems. The latter possibility would consist of emulating an
environment for isolating applications that can safely execute in a sort of sandbox. Virtual machines,
for instance, can provide an environment for running untrusted applications in isolated sandboxes.

Approaches like Jails [Kamp00] provide a sort of virtual machine environment in the FreeBSD
OS that works as isolated compartments where a user has access only to processes and files from its
own “jail” without having access to resources from other jails. The focus of the Jails mechanism is to
increase privacy, since processes either from the same jail or from different ones have fault
containment thanks to the process-based isolation that the OS provides by default.

System Virtual Machines [Smith05] can be used, for example, to emulate access to hardware
resources and to host applications in a virtualized operating system that would work as a sandbox for
applications. It allows the virtualization of full operating-systems, also being an option for isolation.
An untrusted application may, for instance, execute in a virtualized OS to avoid possible damages to
the actual host OS.

Even though it provides a strong degree of isolation, the utilization of virtual machines hurts
performance because of the virtualization overhead introduced, where the instructions sent to the VM
have to be trapped by its software layer (the Virtual Machine Monitor or hypervisor) and redirected
to the underlying operating system that hosts the VM [Chen01]. The case of full OS virtualization as a
means of isolating programs demands much more resources than running individual processes, both
in terms of initialization and memory [Barham03].

39

Although we see virtualization mostly implemented through isolated processes, similar
virtualization principles may be used without hardware-enforced protection, as it will be presented
by some of the techniques in the next chapter where component isolation approaches are discussed.

3.3.2 Software-based Isolation

Different techniques provide isolation by means of software. Probably one of the most cited
works on this approach is the sandboxing introduced in software-based fault isolation [Wahbe93]. It
prevents code from accessing memory addresses it has no authorization. Software-isolated processes
from the Singularity operating system are also a good example, which will be detailed in the next
chapter. The term sandboxing has an overloaded meaning, and is often used to refer to mechanisms
that introduce some sort of software confinement or mechanisms that reduce the access level of a
process to its environment.

Security Managers

Security policies can provide means of isolation enforced by security managers, which are used
in platforms like Java and .NET. For example, Java applets rely on a sandbox [Fritzinger96] that is
constructed based on security manager and class loaders. The security manager enforces the
boundaries around the sandbox, providing a sort of isolation that restricts it from accessing certain
features of the environment such as file system and network connections. The security manager will
not allow an applet to read or to write to the local system, neither to execute native code. The
isolation provided by security managers is rather focused on privacy instead of fault containment,
which would need to be enforced by other means.

Application-level Domains

We refer to application-level domain as the technique that employs a domain abstraction that
creates a separate memory spaces within the same process. It differs from the OS-level protection
domains previously detailed, since they are implemented rather in the application level. The domain
described here acts as a sort of lightweight process that hosts applications and that has its own virtual
address space within a process. Instead of executing in separate processes, applications run in the
same process but with memory boundaries enforced by software.

Besides the existence of such separate virtual address spaces, when comparing this approach to
standard multithreading provided by the OS one can observe that threads do not provide an actual
isolation mechanism. Therefore, a crash in a thread may compromise its whole application. The
strategy behind application-level domains provides fault containment, using software for providing
memory protection techniques inside a process. An application domain is not able to directly access
the address space of another application domain, even though both of them execute in the same
process. In addition, since the domains reside in the same process there is no process context switch
at the CPU level, which is an expensive task. The context switch between applications running in
different domains happens only at software level. Depending on the runtime implementation other
resource sharing mechanisms (e.g., libraries, file descriptors) can be provided. In case applications
isolated in different domains need to communicate, an IPC mechanism would have to be used.

As an example of application-level domain we can cite KaffeOS [Back00], which is a JVM that is
based on the open source Kaffe JVM [Kaffe11], and introduces an architecture that supports the OS
abstraction of a process in a JVM, which is in fact a sort of application domain. A process executes as if
it were run in its own virtual machine, including isolated memory spaces, possibility of direct sharing
objects between process and process-based resource accounting. Examples of other application-level
domains, which will be detailed further in this thesis, are .NET application domains [Nagel10] and
Java Isolates [JCP06a]. They are provided by managed runtimes, respectively, by the .NET CLR and
experimental JVMs.

40

Language-based Isolation

Language-based isolation is identified in [Goonasekera09] and [Viswanathan11] as a form of
software isolation. It is provided by some programming languages, compilers, assemblers and
runtime environments. The isolation is achieved with the help of type-safe programming languages,
such as Modula and Java. Schneider [Schneider01] points out the fact that such types of languages can
guarantee some safety properties such as memory safety and control safety. With memory safety
programs can only access appropriate memory locations while in the case of control safety programs
can only transfer control to appropriate program points.

Although there are such verifications, programs written in these languages do not ensure fault
containment since the code to be executed will usually share the same memory space, unless strong
isolation mechanisms are enforced in the language level. As an example, the Erlang [Armstrong03]
programming language takes isolation as one of the main characteristics for its programming model.
It uses a concurrent-oriented programming paradigm where language based processes are executed
concurrently. There is no data sharing between processes, so they do not affect one another and
therefore fault isolation is ensured. The only way to send data between processes is through
asynchronous message passing. As presented here, depending on the employed techniques,
language-based isolation can provide different levels of isolation which may involve or not the ability
to provide fault containment.

3.3.3 Summary

The classification we have chosen for presenting different isolation techniques was focused on
a general perspective on hardware-enforced isolation and software-based isolation. Hardware-based
mechanisms provide strong isolation boundaries that allow fault containment. Software-based
isolation is more flexible, but does not necessarily provide fault containment, which is possible with
application-level domains and in programming languages like Erlang. The implementation of a
virtualization approach can be particularly considered, since it may vary depending on the objective,
which may employ different techniques (hardware or software) as well as combining them. The next
section focuses on the perspective of these isolation levels targeting a specific development and
execution platform.

3.4 Isolation in the Java Platform

The Java Platform targets a wide range of devices, from smart cards to enterprise servers. In
order to cope with the diversity of target environments and the inherent resource limitations of more
modest hardware platforms, Java is divided into different editions (standard, enterprise and micro
editions, and JavaCard). They provide distinct application models (e.g., applet, servlet, Xlet, MIDlet)
that are suited for different contexts. Each application model deals with different environments and
constraints, which may influence the isolation mechanisms of choice. Although they all rely on the
namespace-based isolation mechanism achieved by means Java class loaders, we describe two other
types of isolation that are possible in the Java platform. Their usage can be motivated by different
needs, and depending on the environment they can be better suited than the default namespace-
based approach.

While research projects like JavaSeal [Vitek98] and Object Spaces [Bryce00] targeting isolation
in the Java platform can be found, in the context of the work performed in this thesis we are
interested in isolation mechanisms that are rather based on Java Platform standards. Then next
sections provide an overview on the default namespace-based isolation, followed by process-based
isolation and domain-based isolation, which are both compliant with Java standards. These three
approaches can be seen as different “flavors” of software-based isolation, memory protection and
application-level domains, respectively.

41

3.4.1 Namespace Isolation

The class loader mechanism [Liang98] in Java provides the ability to dynamically load classes
during application execution, enabling features such as lazy loading, unloading of classes, multiple
namespaces and extensibility through user defined class loading policies. These multiple namespaces
are the standard form for achieving isolation in Java, where a class type is uniquely determined by
the combination of class name and class loader. To better illustrate namespaces with class loaders,
consider that two class loaders A and B co-existing in the same running application can load different
versions of a foo.Bar class. Each class loader can apparently provide instances of the same class but in
fact the provided foo.Bar objects are of different classes. By considering a fully qualified name
notation to differentiate each class, as the one used in [Liang98], we have two classes <foo.Bar, A>
and <foo.Bar, B> which visibly do not correspond to the same class.

The basic loading mechanism is based on a delegation principle inside a class loader hierarchy.
Before loading a given class, a child class loader asks its parent for that class. If the immediate parent
can not find the class, this delegation continues until the top of the hierarchy. The hierarchy of class
loaders defines that children can “see” the classes loaded by their parent, but not the contrary.
Following that principle, sibling class loaders can not share class definitions. Although this
mechanism isolates code in different namespaces, it does not ensure object instances living in isolated
address spaces. Thus, this software-based mechanism concerns only privacy and does not provide
fault containment since faults in code loaded by a class loader can affect other parts of the application.

3.4.2 Process-based Isolation

In Java this can be done with a combination of techniques by breaking a single application into
multiple pieces running on different VMs (i.e. different processes) allowing application to be located
in separate address spaces managed by the OS. Such type of isolation enables fault containment, thus
a crash in a component would not bring the whole system down. However, using separate address
spaces requires using relatively expensive inter-process communication in order to allow
collaboration between the isolated components. In the case of Java it can be achieved either through
sockets or higher level protocols such as RMI-IIOP. A significant disadvantage of this approach is
exactly the cross-boundary communication overhead, as well as the memory footprint for each VM
instance. Also, in the case of a component bringing a part of the application down, the restart of the
crashed part would need to wait for the whole bootstrap of the VM and the component
container/runtime. Since this solution may incur a large memory footprint, it is more appropriate to
servers than to small devices.

3.4.3 Domain-based Isolation

The JSR 121 [JCP06a] is a relatively recent standardization effort for application isolation in
Java. It defines the notion of isolate, a first class representation of a strong isolation container with an
API to control their lifecycle. The model proposed by the Isolate API does not specify how isolates
should be implemented. The strategy is implementation specific and could range, for example, from a
per-isolate operating system process (e.g. using a standalone JVM) approach, to all-isolates in one
process (i.e. same JVM) approach. The first approach is used in the IBM Research’s Cloneable JVM
[Kawachiya07] project, which implements the JSR-121, while the latter is used in the reference
implementation provided by SunLabs in the Multitasking Virtual Machine (MVM) [Czajkowski01],
which realizes isolates using a multitasking approach. The MVM allows several Java applications to
run in the same OS process, where each isolate is a logical instance of the JVM, with logically
separated heaps, and no objects that can be directly shared. A basic set of resources, like runtime
classes and shared libraries, is shared by all isolates but applications run in complete isolation. In case
of an application failure, only that application is impacted, not the JVM. Other applications are
completely shielded from that application failure. Besides isolation, the MVM has optimized memory
footprint when running multiple applications in the same VM and quick application startup.

The isolation provided by isolates is completely transparent. Legacy Java applications can be
executed in isolates without needing any additional changes. However, applications can be aware of
the existence of isolates and explicitly use the API. Although isolated, Java applications can achieve

42

collaboration through previously existing mechanisms such as sockets and Remote Method
Invocation (RMI), or through Links, which are part of the Isolate API. They provide a low-level layer
for communication through basic data types such as byte arrays, buffers, serialized objects and
sockets. The usage of isolates can make applications more robust by adding fault containment and
clean application termination.

3.4.4 Comparison

The predominant way for isolation in Java is by means of class loaders, which allow separate
namespaces that give less robust isolation. However two other possible approaches are possible:
process-based and domain-based isolation. As summarized in the table, strong isolation boundaries
that provide fault containment between applications imply simpusing IPC mechanisms for
establishing communication between isolated parts of the application.

Considering the two generalized protection goals (privacy and fault containment) that we have
classified in the beginning of this chapter, we provide a brief comparison of these three isolation
approaches. Process-based isolation is a practical way to provide strong isolation boundaries,
although it implies more memory footprint because of multiple VMs involved, as well as the IPC
overhead involving the communication between VMs. Domain-based isolation is possible through a
standardized approach, although experimental, that uses an application container that transparently
provides strong isolation, enabling fault containment and a much more robust isolation mechanism
than the one provided by class loaders. However, like the process-based approach, the isolated
applications need to communicate through IPC.

Isolation Approach Privacy Fault containment IPC

Namespace-based (Class loaders) x

Process-based (Multiple JVMs) x x x

Domain-based (Isolates) x x x

Table 3.1. Comparison of the approaches in relation to the two protection goals and the need of IPC.

3.5 Summary

Application isolation is fundamental to prevent failures from being propagated from one part
of the application to another. Privacy and fault containment can be seen as two distinct goals of
isolation mechanisms. In this chapter we provided an overview on different isolation techniques that
range from hardware-based approaches to software-based approaches. Although we have
categorized isolation techniques under distinct groups, isolation solutions may combine techniques
from different categories in order to provide the desired levels of isolation.

Hardware-enforced techniques take advantage of the underlying OS infrastructure for
providing privacy and fault containment by using separate processes for executing applications. A
process failure does not affect other processes running in parallel and that a process does not access
memory areas outside its allocated range. Software-based isolation relies on different approaches that
can provide privacy with some of them being able to provide fault containment as well. The Java
platform, which is going to be used in the implementation of this thesis’ propositions, provides
namespace-based isolation by default. It can be achieved by means of different class loaders thanks to
the class loading hierarchy used in Java. Without needing to go after custom isolation approaches, it
is still possible to provide increased levels of application by means of process-based and domain-
based isolation that are part of the Java platform standards.

 The next chapter continues the discussion on application isolation techniques but with a more
specific focus, where we outline component-based development and related paradigms and how
isolation is placed in each of them. It is followed by an overview of different component-based
technologies that employ component isolation principles.

Chapter 4

Component Isolation

“The production of too many useful things results in too

many useless people”.

Karl MARX

Contents

4.1 ISOLATION BOUNDARIES .. 44

4.2 PARADIGMS ... 44

4.2.1 COMPONENT-BASED DEVELOPMENT .. 44

Component Models .. 46

Component Frameworks .. 46

Component Platforms .. 47

Non-functional Requirements ... 47

4.2.2 SERVICE-ORIENTED COMPUTING .. 48

Service-oriented Architecture .. 49

Service-based Technologies .. 50

Components and Services .. 51

Isolation ... 52

4.2.3 SERVICE COMPONENT ARCHITECTURE .. 52

Assembly Model .. 53

Isolation ... 53

4.3 COMPONENT TECHNOLOGY SUPPORT ... 54

4.3.1 OZ/K ... 54

4.3.2 SINGULARITY ... 54

4.3.3 COM .. 55

4.3.4 .NET PLATFORM ... 56

4.3.5 JAVA ENTERPRISE EDITION ... 56

4.3.6 OSGI .. 57

Enhanced Namespace-based Isolation ... 59

Isolation-related Efforts ... 60

4.4 SUMMARY ... 64

The previous chapter provided an overview of different strategies for application isolation.
Among them, some techniques are able to provide a strong isolation boundary that provides fault
containment. This chapter provides a perspective on those techniques targeting component-based
development. The chapter starts with a section discussing the need for component isolation

44

boundaries. It is followed by an overview of the component-based development paradigm and two
others that are related to it but that use a service-based approach, namely service-oriented computing
and service component architecture. Finally, the chapter provides an overview of component
isolation on different component technologies. In particular, that section provides a deeper analysis
on other approaches around component-isolation in the OSGi platform, which is a technology
employed in this thesis.

4.1 Isolation Boundaries

The common notion of using a process as a unit of error encapsulation provides protection
domains with fault-isolation [Armstrong03]. Using this simple approach, an error in one process
cannot affect the operation of other processes, providing strong isolation. In the case of components,
isolating them is sufficient for protecting a system from the consequences of a software error, but it is
not sufficient in the event of some kind of failure to determine which component has failed.

Isolating components is useful for constructing individual units of failure. As pointed out by
[Gray86], the recovery of individual parts of the system can give the impression that there was no
failure. However, there is the risk of failures that may take the whole application down. Fault
contained boundaries between component is key for ensuring that the execution of untrustworthy
code does not bring any harm to the execution of other components, or the whole application.
However, using such strong isolation boundaries imply system overhead for performing IPC. The
price of such hardware enforced protection is high, but can be tolerated if there are not many
switches per second [Szyperski02]. However, if inter-component communication across isolation
boundaries is frequent and a synchronous communication model is required, there is indeed more
cost.

What types of protection domains are adequate for components and which ones are mostly
used? Different paradigms provide different levels of abstraction and different technology
perspectives, which may have different isolation needs. The next session provides an overview of
modular paradigms that provide some discussion on these reflections over component isolation
needs.

4.2 Paradigms

The efforts around software modularity date from the early days of software engineering, and
still is an actively explored subject that has been employed by diverse techniques. New modular
techniques are continuously being developed like Aspect-oriented Programming (AOP) [Kiczales97]
and Context-oriented Programming (COP)[Hirschfeld08], which are used as complementary
approaches that try to fill the gap of existing technology.

In order to keep the discussion focused on the modular approaches that are more closely
related to the isolation subject, which is a topic explored in this thesis, we will limit the approaches to
be described in this section to those that we find related with that topic. We provide an overview on
component-based development and other correlated techniques that involve modularity and isolation
concepts, which will serve as the basis of our point of view in each of the enumerated approaches.

4.2.1 Component-based Development

Software Engineering (SE) is a young domain, when compared to other engineering disciplines
like Civil Engineering or Mechanical Engineering. Since this new discipline involves so many abstract
concepts, which are constantly evolving, sometimes it is difficult to find a consensus on definitions
and terminology. This is the case in Component-based Software Engineering (CBSE) – a subdomain
of SE – when trying to find an agreement on the concept of software component (component for short),
which holds several definitions.

45

Because it is a key concept to be studied before continuing in this chapter, it is important to
define what a component is4. In general, we can say that a component is a modular and reusable unit
of software. It can be seen as a black box entity, whose implementation details are encapsulated but
the functionalities are accessible through contracts. However, a discussion around the nuances of a
“complete” definition of component would conduct to a long discussion. Szyperski’s book
[Szyperski02] on component software, which is one of the most used references in the field, already
gathered fourteen other component definitions as of 2002. This section presents three component
definitions and discusses similarities among them. We use one of those fourteen definitions, as well
as Szyperski’s one, and then a third definition that dates of 2003.

The first definition presented here concerns an early book on software composition that uses a
simple definition:

…a component is a “static abstraction with plugs”

[Nierstrasz95]

By saying “static”, the authors explain that they refer to a long-lived entity that is independent
of the applications in which it is used. The term “abstraction” concerns the opaque boundary that
encapsulates the piece of software, while “plugs” refers to the ways of interaction and
communication with the component ― like messages, ports or contracts ― therefore allowing it to be
(re)used. A more elaborate definition enumerates some conditions to be satisfied so a piece of
software can be considered as a component:

A component is a software element (modular unit) satisfying the following
three conditions:

1. It can be used by other software elements, its “clients”.

2. It possesses an official usage description, which is sufficient for a client
author to use it.

3. It is not tied to any fixed set of clients.

[Meyer03]

We can notice again that reuse, explicit contracts (i.e., “plugs”) and independence of the target
application are mentioned. The same principles are also present in Szyperski’s definition of
component, which is the more widely accepted:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties.

[Szyperski02]

The success of component technologies does not necessarily depend on the component
abstractions themselves, but actually on the surrounding infrastructure concerning the design,
development, deployment and execution of components. By simply developing components and
making them communicate by means of their predefined interfaces can be seen as a rudimentary
form of a component-based approach. The usage of component models and component frameworks
differentiates a well structure CBD approach from such rudimentary solutions, and has a significant
impact in technology adoption. Although these concepts may be sometimes considered as intermixed
[Crnkovic02], we provide distinct discussion concerning these two notions.

4 This section provides a brief clarification that may not be sufficient to the reader. More complete discussions around the

component definition can be found in [Szyperski02] (chapters 04 and 11) and [Crnkovic02] (chapter 01)

46

Component Models

Component technology is usually implemented with object-oriented programming (OOP),
providing higher levels of encapsulation based on the OOP abstractions themselves. A component
model specifies the component types (e.g., classes, interfaces) and the patterns of interaction between
them [Bachmann00]. For instance, these types define how components can plug to the component
framework5 so their functionality can be accessed by other components. Besides interaction,
[Heineman01] also mentions composition standards as part of a component model. Under his point of
view, a component model implementation consists of a dedicated set of executable software elements
required to support the execution of components that conform to the model. This complement on his
definition would rather be more appropriate to that of a component framework.

Another perspective [Lau07] considers that a component model should define the syntax, the
semantics and the composition of components. The syntax defines the rules on how components are
constructed, which is usually in the form of a programming language. The semantics concerns what
the components are meant to be, which in most component models take the form of software units
consisting of a name, an interface and code that is implemented usually in an object-oriented
language. The composition of components should be specified through a composition language,
however the widely used component models have no such language and rather use programming
languages for writing the glue code necessary for performing the compositions.

Component Frameworks

Another term not as much discussed as the component definition concerns the concept of
component framework, which has also different definitions. A component framework is seen as a
support infrastructure for component models [Bachmann00]. This is a common point in most of the
definitions. As stated previously, what we may find sometimes is the concept of component model
and framework being intermixed, as in the following:

A component framework is a collection of software components and
architectural styles that determines the interfaces that components may have
and the rules governing their composition.

[Schneider99]

If considering a component model as a distinct concept, its notion (i.e., the interfaces that
components may have and the rules governing composition) is mixed with that of a framework. In
[Szyperski02] we find two definitions for component framework, using different perspectives:

A component framework is a dedicated and focused architecture, usually
around a few key mechanisms, and a fixed set of policies for mechanisms at
the component level.

…

A component framework is a software entity that supports components
conforming to certain standards and allows instances of these components to
be “plugged” into the component framework.

[Szyperski02]

That definition gives a high level perspective (i.e., architecture and mechanisms) on the
description of a framework. The second definition provides a more operational point of view, goes to
a less abstract notion, where it involves the realization of components when talking about instances
and standards conformance (i.e., component models). Another pair of definitions on component
frameworks can be found in [Crnkovic02]:

5 The term framework also holds several definitions, as highlighted in the introductory chapter of [Crnkovic02].

47

A component framework describes a “circuit board” with empty slots into
which components can be inserted to create a working instance.

…

We define a component framework as an application or part of an
application in which components can be plugged to specialize the behavior.

 [Crnkovic02]

Like the definitions from [Szyperski02], these two provide different perspectives. The first one
gives a metaphorical perspective, while the second one talks of a more practical aspect. In general, the
concept of framework is related with execution infrastructure. [Heineman01] mentions software
component infrastructure as a set software components. That is, infrastructure itself is also made by
means of components. Therefore, a framework can be a component made of other components. A
key contribution of frameworks according to [Crncovik02] is that a framework forces components to
use its mechanisms, enforcing that architectural principles are observed. As practical examples,
component frameworks can be seen as a sort of component containers, like the Enterprise Java Beans
(EJB) container and the CORBA Component Model (CCM) container.

Component Platforms

The notion of component platform can also be intermixed to that of component framework. We
have found rather ambiguous notions of what a component platform is. When discussing about
context dependencies, [Szyperski02] mentions component platform as something that defines the
rules of deployment, installation, and activation of components. But from an architectural
perspective, their definition gives a broader view:

A platform is the substrate that allows for installation of components and
component frameworks, such that these can be instantiated and activated.

[Szyperski02]

They also mention that a platform can be concrete, providing direct physical support in
hardware, or virtual, in the case of a platform abstraction that emulates a platform on top of another.
Under our perspective, a component platform is a notion that encompasses concepts (e.g.,
specifications, component models) and runtime infrastructure (e.g., component frameworks,
deployment mechanisms, protocols). To illustrate that, we can consider an example in Java, where the
EJB container (business components) and the Servlet container (web components) are part of the Java
EE platform.

Non-functional Requirements

The functional requirements in CBD concern the services that are expected by those that will
(re)use a component, while non-functional requirements are the constraints under which a
component has to operate [Sametinger97]. Non-functional requirements can be seen divided in three
areas [Gorton06]: technical constraints (e.g., using a language already mastered by the development
team), business constraints (e.g., usage of open source software) and quality attributes. Such
attributes comprise a vast set of characteristics: performance, reliability, availability, scalability, and
security, to cite a few.

A major obstacle to a wider utilization of component-based technologies in dependable
systems concerns the inability to precisely deal with quality attributes [Crnkovic05]. In that domain,
these non-functional requirements are as important as the functions provided by the systems.
Predicting the value of quality attributes on component compositions is not a straightforward task, as
indicated in [Crnkovic05]. The authors present a distinction between different types of attributes in
order to be able to predict them after composition. Attributes can be directly composable, e.g.,
memory footprint, but can also depend on factors that are external to the component, like architecture
or system context.

48

Dependability is a non-functional requirement that involves several other quality attributes
(reliability, availability, maintainability, safety, security, confidentiality), as presented previously.
Components must provide these attributes in order to the construction of dependable component-
based systems be possible, however the component platform can also help in that process by
providing a certain level of dependability if the system is seen as a whole. With the support of
underlying mechanisms (e.g., frameworks, protocols, protection mechanisms), component-based
applications can tolerate a certain level of individual component problems. This is possible if such
problems happen in a minor scale and not very frequently so system functionality cannot be
compromised.

Component-based systems usually employ a centralized approach where all components share
the same memory space (i.e., same process). Fault containment mechanisms are necessary for
preventing the propagation of errors that may affect the quality of other components that are
involved in a composition, as well as the whole system that uses the faulty component. This chapter
discusses component isolation as a specific feature that can improve dependability in component-based
systems. The stronger the level of isolation, the closer to fault containment and the better the
resistance to component faults. Before discussing on component technologies that support some level
of component isolation, this chapter outlines some other paradigms that are related to component-
based development and that also present some degree of component isolation.

4.2.2 Service-oriented Computing

Service-oriented Computing (SOC) [Papazoglou03] is a paradigm where applications are
constructed using services as building blocks. Like components, services also put in practice
modularity principles and provide a good level of encapsulation. Nevertheless, a service has a much
broader sense than components, ranging from abstract concepts of the real world (e.g., a waiter
provides services to restaurant customers) to a more concrete meaning in terms of software (e.g., a
printer spooler service). This broad conceptual nature gives services a potentially ambiguous
meaning that, as usual in Software Engineering, leads to many definitions of the term. The definition
provided by [Papazoglou03] gives a perspective on what services are and what they are supposed to
do:

Services are self-describing, platform-agnostic computational elements that
support rapid, low-cost composition of distributed applications. Services
perform functions, which can be anything from simple requests to
complicated business processes.

[Papazoglou03]

With services, organizations are able to expose programmatically accessible functionality over
a network using open standards technology (e.g., languages, protocols), and invokable through a self-
describing interface, also using standardized technologies. Implementation details (e.g., language
used, executing platform) are not important for the consumer as long as open standards for
communication and interface description are being used. Another definition gives a better
perspective concerning the functioning and interaction of services, focusing on service description
and how it can be used:

A service is a software resource (discoverable) with an externalized service
description. This service description is available for searching, binding, and
invocation by a service consumer.

[Arsanjani04]

Although this definition mentions searching, it fails to describe the prior step of publishing
services descriptions in a catalog before they can be searched. If we take this additional information
into account, the vision given in this definition provides the essence of a basic architecture employed
in SOC. The basic interactions that take place in a service-oriented approach are illustrated in Figure
4.1. They are centered around the service description, which contains the service’s operations

49

description and, depending on the technology being used, it may also contain additional details such
as supported types, binding information, communication protocol, and so forth.

The main actors involved in service-based approaches are shown in Figure 4.1: service catalog
(also called service registry), service consumer and service provider. The sequence of their
interactions is illustrated in the picture. In (1) the service provider publishes a service according to a
service description. At any time a client can query the catalog looking up for a service, based on its
description. In the case of success, the step (3) can be performed and the two entities (consumer and
provider) be bound, so the consumer can invoke (4) the provider’s services.

Figure 4.1. The basic actors in Service-oriented Computing

The service catalog introduces a layer of indirection that augments the decoupling between
consumer and provider. In general, this basic architecture allows enforcing important characteristics
employed by SOC:

 Loose coupling: The service interface is the only common point between service
consumer and provider. They need not know implementation details about each other.

 Late binding: The binding between service consumer and provider is performed only
at runtime, after a service lookup has been performed in the catalog.

 Location transparency: The location is stored in the catalog, and it is known only at
runtime.

Service-oriented Architecture

Perhaps service-oriented architectures (SOA) are the most widely known approach based on
SOC. SOA is a logical way of designing a software system to provide services to either end-user
applications or to other services distributed in a network, via published and discoverable interfaces
[Papazoglou08].

A service-oriented architecture is viewed as layers that provide different abstraction levels, as
presented in Figure 4.2 adapted from [Arsanjani04]. Software components abstract the underlying
systems (lowest layer in the figure) and provide higher level functionality by exposing service
interfaces that form the service layer. This layer is used by business processes that construct
composite applications based on those services.

Other characteristics such as quality of service (QoS), service management and monitoring are
also taken into account in all layers of SOA. As in CBD, the quality attributes are also an important
issue to deal with in SOA [Menasce02, Rosenberg09]. Since SOA concerns a distributed environment,
QoS is of special interest because of network issues that can influence attributes like service
availability, throughput, response time, security and so on. Because SOA integrates functionality
coming from different environments and systems, potential variations in QoS need to be monitored
especially when there are service-level agreements (SLA) dictating the quality attributes that service
consumers expect from service providers. Although this topic is of important value, further
discussions on it are out of the context of this thesis.

Service
Catalog

Consumer Provider

1. Publish2. Find

3. Bind
4. Invoke

Service
Description

50

Figure 4.2. Overview of the SOA layers, adapted from [Arsanjani04]

SOA is technology agnostic. The technology used for implementing the services remains
transparent in the architecture. A service can be provided by a structured program running in a
mainframe, or it can be an object-oriented and component-based system. It is necessary, however,
that the service be capable of performing the communication in compliance with the chosen
technologies. For instance, SOAP Web Services are usually employed in SOA. However, other
technologies may be used as well for constructing an SOA.

Service-based Technologies

SOAP Web Services are the most used technology for the development of services, and is
usually confused with SOA due to its extensive utilization in that approach. This section enumerates
and briefly discusses some service-oriented technologies.

SOAP Web Services. This has been by far the most common service technology used in SOA. It
facilitates the integration of legacy systems, and is an effective way to exposing the existing
functionality of systems as services. This is an umbrella term that involves several technologies and
standards, referred as WS-*, that are controlled by the W3C6 and OASIS7 consortiums. Since there are
many WS-* specifications, we briefly mention three specifications that allow, respectively, service
description; service publication and discovery; and service invocation.

The service descriptions are represented with the XML-based Web Services Description Language
(WSDL), which allows the service to describe operations, bindings, communication ports and
complex types being used. The representation of a service catalog is achieved through the Universal
Description Discovery and Integration (UDDI). The Simple Object Access Protocol (SOAP), also
based on XML, is used for exchanging messages. Usually that protocol is used on top of HTTP, which
facilitates communication over firewalls and gives a good alternative for performing RPC on a distant
network.

RESTful Web Services. This is a lightweight option to what was called “Big Web Services” in
[Richardson07], which refers to the WS-* specifications stack that include WSDL, SOAP, WS-
Notification, WS-Security, etc. The RESTful Web Services approach is based on the REpresentational
State Transfer (REST) [Fielding02] architectural style that is proposed on top of the HTTP 1.0 protocol.

6 World Wide Web Consortium. http://w3.org
7 Organization for the Advancement of Structured Information Standards. http://www.oasis-open.org

ServersMainframe

CRM,
ERP, ...Systems

Enterprise
Components

Services

Business Processes
(Choreography/
Orchestration)

Presentation

Enterprise Systems

http://w3.org/
http://www.oasis-open.org/

51

RESTful Web Services are viewed as resources that are identified by their URLs. Instead of using the
RPC-style communication proposed by Big Web Services, the RESTful approach is based on the
HTTP protocol methods. This approach is very useful for CRUD (Create, Read, Update, Delete)
operations ― managing products and purchase orders, for instance― that can be mapped to PUT,
GET, POST and DELETE methods of HTTP.

Jini. Jini8 is a Java-based service platform originally developed by Sun Microsystems in 1999
[Waldo99] for designing dynamic distributed applications without having to deal with the
underlying network layer. The Jini specification targets dynamic local area networks. It relies on
service-orientation principles to bring flexibility into distributed applications where devices and
machines (i.e., network nodes) can be discovered dynamically. When a service provider publishes its
service, it sends a Java object that implements the service interface to a lookup service (the Jini service
registry). The provider can also optionally publish attributes (service properties) along with the
service interface.

OSGi. The OSGi Service Platform9 is a module system and service-based platform for the
development of modular Java applications, combining SOC and CBD principles in the same platform.
The basic concepts of SOC are used through a service registry that allows loose coupling between
modules that communicate through their published services. A significant difference between OSGi
and the regular SOA is that OSGi’s service registry provides notifications on the arrival and
departure of services, which can be registered and unregistered at any time. Although OSGi is a
centralized platform where modules and services are in the same JVM, communicating with remote
services is possible as well as exposing services to be remotely accessed. This communication mode is
technology independent, and is specified in the Remote Services section of the OSGi specification
[OSGi11]. Therefore, besides the fact that SOC principles are internally used in an OSGi platform, by
means of remote services it can also be part of an SOA in a distributed environment.

Components and Services

The differences between the service-oriented and component-based approaches already start
with the analogy they use. In the “real world” a service is an abstract concept (e.g., policemen provide
a service to their community), being intangible, while components are rather concrete objects (e.g., a
component of a circuit board). Despite the abstraction level differences, CBD and SOA are in fact seen
as complementary approaches. In [Collet07] the authors visualize the coexistence of these two
approaches describing a typical scenario where CBD is typically used for business components
implementation while SOA is used for component and systems integration. This can be illustrated in
the typical SOA layered view of Figure 4.2, where the underlying implementation of services is
provided by business components. They are integrated into an SOA through the published service
interfaces that can be used for service invocation and composition.

A succinct comparison on components versus services can be found in [Papazoglou11],
presented under different dimensions: coupling, invocation, binding and composition. For instance,
components usually use other components by name search or by instantiation so they can invoke
operations through method calls on the component object (strong typing). In the case of services, a
lookup based on the service interface is performed in a service registry, and then, after the binding,
the service provider can be invoked through messages that are translated to the underlying protocol.
This style of invocation does not require the same types on both ends of the communication because
the interface and operation parameters are platform agnostic. As long as the data representations are
correctly translated, the operations can be invoked with no problems.

While in CBD the compositions depend on the component model being used, in typical SOA as
presented in Figure 4.2, the composition of services can take either the form of an orchestration or a
choreography [Erl05]. An orchestration consists of a series of activities that require services. The
composition logic is at the level of the orchestrator, which is a central coordinator, responsible for

8 Now Apache River (http://river.apache.org), a project that continues the development of Jini technology.
9 http://www.osgi.org

http://river.apache.org/
http://www.osgi.org/

52

invoking and combining the services that are part of the composition. The choreography of services
consists of collaborations between participants. Composition logic is embedded in the service. There
is no central coordinator but rather a set of tasks executed by each participant.

In service-oriented platforms such as OSGi, where component-based principles are also used, it
is possible to provide service-oriented component models. In such models the entities being
composed are services. Different OSGi component models put that principle in practice, such as
Apache Felix iPOJO10 [Escoffier07] and the OSGi standardized Declarative Services (based on the
ServiceBinder [Cervantes03]) and Blueprint Container (derived from Spring Dynamic Modules
[Spring09]). These models have a high level of interoperability between them because the
compositions they perform remain in the same abstraction level of the service layer. For instance, an
iPOJO component can combine services provided by both Declarative Services and Spring DM.

Isolation

Since a typical SOA is of distributed nature, the participant applications would be located in
distinct machines. Therefore, a strong degree of isolation between the parts that compose the
architecture can be achieved. However if we look into the underpinnings of each application that
exposes or consumes services, they are most likely component containers (e.g., .NET framework, EJB
container) where we can make no assumptions around component isolation. Nevertheless, this is a
granularity level below the service layer (Figure 4.2), being hidden from other participants of the
architecture.

Although a service consumer can use a service hosted by the same application, it is likely that
instead of having the overhead (e.g., communication protocols, message translations) of passing
through the SOA service layer it is preferable to circumvent that and directly call the component that
provides the required service. In such scenario below the service layer, we fall again in the same
discussion of the previous paragraph, which is also the case with the OSGi when taking into account
its original design of components and their services sharing the same VM. Further details on OSGi
and its isolation model can be found later in this chapter.

In general, in the case of SOA, the “unit of failure” should not be in the component level, but
rather in the service level. A failure in a remote service is isolated and is not propagated to the
system. Therefore, this model inherently provides fault containment. However, there is still a need to
cope with failure, which would cause service unavailability. For instance, providers may put in
practice recovery mechanisms to deal with failure and consumers may reselect equivalent services to
replace the failed provider.

4.2.3 Service Component Architecture

As already illustrated, there is no equivalent of a component model for providing composition
of services in a typical SOA. Compositions are rather oriented by business processes that are able to
use multiple services through techniques like orchestration and choreography of services. As an effort
to fulfill this gap, the Service Component Architecture (SCA) [OSOA07] provides a set of
specifications that describes a structural model for building applications using an SOA. The purpose
of SCA is to simplify the writing of application regardless of the technologies used for
implementation (e.g., Java, BPEL, EJB, C). The SCA specifications were initially established by the
Open SOA11 and since 2007 has been standardized [OASIS07] by the OASIS organization.

Although extensively advocated by their creators as specifications that target SOA, SCA just
provides a general way to create components as well as a mechanism for describing how they work
together [Chappel07b]. They give a technology agnostic approach for building components from
heterogeneous technologies, and are not necessarily bound to service-oriented architectures or SOA-

10 http://felix.apache.org/site/apache-felix-ipojo.html
11 An informal collaboration group of industrials (e.g., IBM, Oracle, Red Hat, SAP) interested in SCA. http://www.osoa.org

http://www.osoa.org/

53

related technologies. The specifications propose the construction of service-oriented architectures
from components.

Assembly Model

The SCA assembly model defines the composition model and how SCA systems are
configured. The basic concepts of the assembly models are component, composite and domain. A
component is a container consisting of three parts:

 Services. The features a component offers to other components. SCA is technology
agnostic, but services specifications are mapped to the technology being used (often
WSDL descriptors and Java interfaces).

 References. They express the services required by the component to ensure its
operation. These required services may be either provided by SCA components or by
thid-party systems (exposing Web Services or communicating via JMS, for example).
This is expressed through bindings (e.g., SOAP / HTTP, JMS, JCA, IIOP).

 Properties. They correspond to the configuration of the component and are configured
at the component construction, being used when instantiating the SCA component.

A composite is a higher level representation that is deployed in a domain. Composites contain
components and wire them together. Composites can be seen as components as well. Besides
containing components, they can also provide properties, services and references (to services or other
components), allowing thus a hierarchical composition approach.

Domains are a sort of execution runtime for composites. A domain, which was called system in
the early versions of the specification, is usually related to a given business functionality or
organization. As exemplified in the assembly model specification, a domain representing the accounts
department of an organization can contain composites dealing with specific functionality (e.g.,
customers, accounts payable).

The technological independence of SCA allows many platforms to take advantage of its
strengths, especially the easy integration with the services approach. However, [Chappel07a] points
out a problem concerning interoperability because the specifications do not define what is necessary
to create composites that can cross domain vendor boundaries. A possible workaround for that issue
is to expose the functionality of an SCA composite as a service so it can be referenced by composites
on other vendors’ runtime. This approach is demonstrated for cross domain communication in
[Bhose10], but not in a multivendor context although it may be feasible with such approach.

SCA implementations can be backed by regular component models, which is the case of the
FraSCAti [Seinturier09] platform for Java-based SCA applications. Its implementation is constructed
using the Fractal component model [Bruneton04]. Implementations of the SCA specification can be
found freely (Apache Tuscany12, OW2 FraSCAti13) and commercially, usually integrated to products
such as IBM Websphere14 and the Service Fabric by Paremus15, who used to freely provide the
Newton SCA platform which is now archived and no longer available.

Isolation

Since SCA involves the transparent utilization of services, typically in an SOA, services may be
located in remote machines. SCA composites can run in a single process on a single computer or be
distributed across multiple processes on multiple computers [Chappel07b]. Because they are just a
logical construct, it is too uncertain to make assumptions if the services being used are in the same
process or not. It depends if the providing SCA implementation also provides services. For instance,

12 http://tuscany.apache.org
13 http://frascati.ow2.org
14 http://www-01.ibm.com/software/websphere/
15 http://www.paremus.com

54

it can be an OSGi application that uses local services as well as distant services in their SCA
components. However, in the general case of SOA one may consider that services are distant, and that
the SCA platform merely binds these distant services to their components and composites. In such
scenario, there is fault containment in the service providers. The same service unavailability issue
described in the SOA section applies to SCA. The composites and components must be able to cope
with service unavailability in case of a providing failing or becoming inaccessible.

4.3 Component Technology Support

This section provides a non-exhaustive of different technologies that provide support to
component isolation. In order to show the diversity of the levels in which component isolation
techniques are used, this section starts presenting a programming language extension (Oz/K),
followed by an operating system. The subsections that follow comprise widely adopted industrial
component technologies.

4.3.1 Oz/K

Oz/K [Lienhard07] is an extension to enhance modularity of the Oz programming language
[Smolka95], a concurrent language providing for functional, object-oriented, and constraint
programming targeting UNIX-based platforms.

The ability to deal with unknown and potentially malicious components is among their
motivations for such enhancements. They propose a primitive form of component, called kell,which is
a first-class unit of modularity and isolation that fails independently. A kell can act as a sandbox for
its subkells, i.e. for kells that it contains). A kell encapsulates activity in the form of threads and sub-
kells and state, in the form of a private data store.

Communication between kells is restricted to messages through gates, which are named
interaction points that allow bidirectional communication, working as a sort of synchronous channel.
Any form of shared state between kells is avoided, to guarantee isolation. Variables and memory cells
are private to a kell and cannot be shared with other kells.

The kell construct offers basic component principles like encapsulation behind well defined
interfaces (gates), separation between interface and implementation, and connectors for interactions
between components. The component-based programming can be mapped to follow the Fractal
component model [Bruneton04], as illustrated by the authors. A Fractal component is interpreted as
an OZ/K kell, whose interfaces are mapped onto gates. Sub-kells are mapped as the sub-components
of a Fractal component, while the membrane of a component is modeled as a record of attributes and
processes. Fractal controllers (e.g., component, binding, attribute, content, lifecycle) could be
developed with the Oz/K extension as well.

4.3.2 Singularity

Singularity [Hunt05] is a Microsoft research micro-kernel OS built with managed code written
in a C# language extension called Sing#. Its kernel is sealed off, and all code runs above the kernel.
The three main architectural features of Singularity are [Hunt07]: software-isolated processes,
contract-based channels and manifest-based programs.

Instead of having processes isolation ensured by hardware, Singularity uses the concept of
software-isolated processes (SIPs) which have a communication overhead smaller than hardware
isolated processes. Instead of having physical address spaces, processes have object spaces. SIPs
consist of safe code, which is submitted to compiler verification of source and intermediate code.
Code needs to be verified ahead of execution in Singularity. Features like run-time code generation
are not allowed. Singularity relies is a similar mechanism called compile-time reflection (CTR) which
produces code when a file is compiled.

Communication between SIPs is done through channel-based contracts, which are bidirectional
and strongly typed channels defined by a contract [Fähndrich06]. If communicating processes ned to

55

exchange objects, it implies transferring the ownership of data. The OS ensures that processes do not
have simultaneous access to the same object. Instead of using copy or marshalling strategies to pass
objects across processes, Singularity passes them by reference achieving a higher efficiency. However,
the reference passing implies changing the ownership of blocks of memory. No two processes can
have simultaneous access to the same object. Each process has its private heap, but a separate heap
called exchange heap must be used when objects have to be moved from one process to another. All
processes can point to objects in the exchange heap but every block of memory in that heap is
accessible by one process at a time.

Singularity has the concept of manifest-based programs (MBP), where all programs need a
static manifest [Hunt07]. Instead of invoking an executable, the user invokes a manifest, which
contains a MBP’s code resources, its required system resources, its capabilities, and its dependencies
on other programs. Upon installation of an MBP, the manifest is used for verifying if the MBP meets
the required safety properties and if its dependencies are met. Every component in Singularity is
described by a manifest, including the kernel, device drivers, and user applications.

4.3.3 COM

The Component Object Model (COM) is a component model created by Microsoft, and used as
the basis for different technologies of that same vendor such as OLE (Object Linking and
Embedding), ActiveX and DCOM (Distributed COM).

In COM, the interactions are usually referred under a perspective of COM clients and servers
[MSDN11a]. A COM client denotes any code that uses functionality provided COM server, which is a
component that implements interfaces compliant with COM. A COM server can be of one of three
different kinds [Szyperski02]: In-process servers are objects living in the same process as the client.
Local servers are objects in a separate process on the same machine. Remote servers are objects on a
different machine, which characterizes DCOM. These last two can be generalized as out-of-process
servers.

In-process servers are implemented as dynamic link libraries (DLL16) or OLE control extensions
(OCX), while out-of-process servers are provided as an executable file (EXE). An in-process
component runs in the same process as the client. This is the fastest way to access objects from
another component because there is no need of marshaling objects or invocation of methods across
process boundaries. Inversely, out-of-process servers reside on different processes. In this case, the
communication between client and server involves RPC, which enforces marshaling and
unmarshalling of parameters. As described in [Szyperski02], COM provides transparent
communication across process boundaries (either local or remote). It creates proxy and stub objects
on the client and server sides, respectively.

Because a DLL consists of a library, it is not executable code. It concerns only classes that can be
loaded and instantiated by executable files. It is possible, though, to use a surrogate executable to
wrap a DLL so a library can work as an out-of-process server. This surrogate process can be the
default system-supplied surrogate or a custom surrogate [MSDN11b]. The same surrogate instance
can load one or more DLL servers. The main advantages of using a surrogate process are fault isolation
and the ability to service multiple clients simultaneously. This approach also allows a DLL server
implementation to be used by remote clients, through DCOM. However, a major disadvantage of
using the system default surrogate process concerns security. This is mainly due to the fact that
whenever giving security permissions to the dllhost executable [Gruen04], any wrapped DLL server
could take advantage of that, introducing a risk to malware that can hide behind dllhost.exe, which is
a typical Windows exploit17. An alternative to minimize that risk is to create custom surrogates that
could have their individual permissions independently of the system’s default surrogate.

16 Not all DLLs provide COM components. DLLs can also just provide functions (“plain vanilla DLL”) that are called

directly.
17 Using the keyword “dllhost” combined with keywords like “virus” or “malware” in search engines will bring thousands of

examples on that issue.

56

4.3.4 .NET Platform

The Microsoft .NET platform presents the concept of application domains, which are referred to
as “lightweight address spaces” [Stutz03]. An application domain can be seen as a form of
lightweight process which can isolate applications that run inside the same Common Language
Runtime (CLR). A single CLR process can run several .NET applications by loading them in separate
application domains. It is possible to have a multi-application environment without the overhead of
process context switching. Application domains are isolated but they reside in the same CLR process
space, so they share some lower level engines such as the garbage collector and just-in-time (JIT)
compiler.

Faults in one application domain are also isolated and do not affect the other applications. This
is useful in environments such as web servers, where each web application is deployed in a separate
application domain. In case of presenting problems, a web application can be removed or restarted
without affecting the CLR process or other application domains. The CLR creates three application
domains by default: System Domain; Shared Domain and Default Domain. The first one works as a
bootloader for system types that are shared with all domains, the second one is responsible for
loading non-system types that are shared. The Default Domain is an instance of an application
domain where application code is executed and from where other application domains can be loaded.

Although isolated from each other, it is possible to achieve communication between
application domains. Objects can be passed across application domains via marshalling using .NET
Remoting, which is the inter-process communication approach of the .NET platform. Application
Domains bring flexibility such as the ability to load assemblies (e.g., DLL) dynamically (i.e, at
runtime). However, there is no individual unloading of assemblies. The process of unloading an
assembly has to be performed by unloading its containing application domain. Therefore, if other
assemblies co-exist in the same application domain they would have to be unloaded as well. As
verified in [Escoffier2006], this limitation is one of the major drawbacks for providing a dynamic
component-based platform where components may be installed and uninstalled frequently.

The .NET framework 4 provides the Managed Add-In Framework (MAF) [Nagel10] which is a
programming model allowing to create and to host add-ins, typically third-party code that needs to
be used without compromising the host application stability. To achieve that, the MAF allows an add-
in to be hosted in a separate Application Domain or in a separate process. A MAF’s architecture
comprises a pipeline of seven assemblies (Host, Host View, Host Adapter, Contract, Add-in Adapter,
Add-in View, Add-in) which need to be provided if an add-in is to be used. Although they provide a
robust approach with isolation in mind for loading and using third-party code, realizing managed
add-ins is overly complex considering the number of assemblies to be provided and maintained for
isolating an add-in.

The security model provided by the.NET framework 4 targets the execution of partially trusted
code [Dai09]. Application domains are used as the units of isolation. Each partially trusted
application domain has a permission grant set. An enforcement mechanism called Level 2 Security
Transparency separates trusted from non-trusted code by drawing barriers between code that can do
security-sensitive things (critical), as file operations, and code that can’t (transparent).

4.3.5 Java Enterprise Edition

Isolation of Java EE is usually done in two flavors: either through class loaders namespaces or
by isolating components in different JVMs. In the former case, isolation fits in the class loading
delegation principle previously described. Although there is no fixed structure for class loaders in
Java EE, each vendor has its own implementation that follows the same principles. The figure, based
on an illustration from [Allamaraju01], clarifies a class loader hierarchy in Java EE.

The white boxes on the top of the illustrated hierarchy represent the standard Java class loaders
provided by the platform. The other class loaders represent a general Java EE class loading scheme.
Each Enterprise Application Archive (EAR) will have its own class loader that will provide each
application with its own namespace [Allamaraju01]. All EJBs of the EAR will be loaded by the same

57

class loader, thus sharing the same namespace. Each Web Application Archive (WAR) is deployed
with its own class loader and will not have class visibility to sibling applications.

Figure 4.3. Class loader hierarchy in Java EE server.

The whole EJB component model was conceived taking distribution into consideration.
Consequently, the component container supports remote communication, which is based on the RMI-
IIOP protocol. Thus EJBs can also be isolated by separating them in different VMs. A crash in one
component would not directly affect components hosted in other VMs. However, this choice leads to
problems such as scalability and memory footprint. The cost of isolating components in separate VMs
hosting heavyweight runtimes such as EJB containers would be expensive in terms of resources;
communication overhead and coordination.

An experimental approach [Jordan06] uses the Isolate API and the MVM for improving
isolation in a J2EE server. They evaluate different grains of isolation, like fine grained individual
servlet isolation, and coarse grained isolation where they introduce J2EE application domains.
Restructuring the code for isolating servlets individually was difficult, which lead them to discard the
implementation of other fine grained isolation cases (e.g. EJBs). Coarse grain isolation of application
domains combining the isolation of whole J2EE applications with the isolation of sub-servers (e.g.
WebServer, Database, JMS) seemed to be a feasible choice for production servers.

4.3.6 OSGi

The OSGi Service Platform was briefly presented on section 4.2.2, where a perspective on the
service-oriented features that are provided by OSGi’s service layer was presented. The current section
focuses on the component-based characteristics ― especially the ones concerning component isolation
― of OSGi that are related to its lifecycle layer and module layer.

These different layers are a logical division of functionality provided by the OSGi framework,
as illustrated in Figure 4.4, from OSGi’s specification [OSGi11]. The module layer provides rules for
sharing type packages between bundles (i.e., modules); the lifecycle layer provides a runtime model for
bundles; the service layer specifies the programming model that ensures loose decoupling between
bundles; and the bundles layer are the actual OSGi modules to be deployed on the framework. The
security layer is based on Java mechanisms with some extensions (e.g., bundle-level permissions),
however it is an optional layer in OSGi.

Bootstrap
Class Loader

Extentions
Class Loader

System
ClassPath

Class Loader

EAR
Class Loader

EAR
Class Loader

EJB
Class Loader

EJB
Class Loader

WAR
Class Loader

WAR
Class Loader

WAR
Class Loader

Child Parent

58

Figure 4.4. Colored forms represent OSGi’s layered perspective of its architecture [OSGi11].

The OSGi modules are bundles in OSGi terminology. They can be dynamically deployed in an
OSGi framework during execution. In fact, there are a set of possible states in a bundle’s lifecycle: a
bundle can be installed, started, stopped, updated or uninstalled, as depicted in the state diagram of
Figure 4.5 based on the one provided in OSGi’s specification [OSGi11]. All state transitions are
performed at runtime without needing to halt application execution.

An OSGi bundle is an ordinary compressed jar file containing classes, resources and a manifest
file. The main difference of an OSGi jar file and a regular jar file lies in the manifest attributes, which
are read by the OSGi runtime. The bundle manifest contains OSGi specific attributes providing
metadata that include general information (e.g., version, provider and name) and bundle
dependencies (e.g., a list of imported and exported class packages). Optionally, the metadata can
specify the bundle activator class, native libraries information, embedded jar files, etc. If we take into
account Szyperski’s component definition, a bundle may be referred as a component, since it defines
its explicit context dependencies; it can be deployed independently and is subject to composition by
third parties. However the provided interfaces are sort of hidden in the code it provides. The only
explicit interface a bundle typically provides is the optional bundle activator class, which is the entry
point of a bundle that must implement the org.osgi.framework.BundleActivator interface. Other
explicit definitions or more elaborate component models are built as seamless pluggable extensions of
the OSGi platform.

Figure 4.5. The state diagram illustrates the states and transitions of an OSGi’s bundle lifecycle.

A bundle can be dynamically loaded or unloaded on the OSGi framework and can optionally
provide or consume services, which are ordinary Java objects. Services need to be registered in the
OSGi service registry as providers of the specified interfaces. Service-oriented principles provide
strong decoupling between components in OSGi. As described in this chapter, the three basic
elements in SOC are the service provider, the service registry and the service consumer. In OSGi they
take the form of a bundle that provides a service, the OSGi service registry and a bundle that requests
a service, respectively. As in a regular SOA, their interactions involve publish, find and bind
operations and are centered on the service registry which in the case of OSGi notifies interested

Hardware/OS

Execution Environment

Module

S
e
c
u
ri
tyLife Cycle

Service
Bundles

Installed

Starting

Active

Stopping

Resolved

Uninstalled
uninstall

re
s
o
lv

e

u
n
in

s
ta

ll

re
fr

e
s
h

u
p
d
a
te

st
ar

t

stop

install

update
refresh

59

parties about service publications or withdrawals. As mentioned in the section 4.2.2, dynamic
composition mechanisms in OSGi rely on a service-oriented composition approach. Different service-
based component models have been constructed on top of the OSGi service registry helping manage
the complexity and minimize the burden of service registration and unregistration that govern the
service dependencies and bindings.

Enhanced Namespace-based Isolation

The framework provides each bundle with its own class loader instance. The class loading
mechanism follows some policies for loading types, basically considering the information provided
by the Import-Package and Export-Package manifest attributes. The default isolation level that exists
in OSGi is by means of multiple class loader instances. These individual class loaders introduce a
basic level of isolation between bundles, which have distinct namespaces that provide a sort of
enhanced namespace-based isolation. Instead of fault isolation and containment, the goal of this isolation
mechanism is rather towards encapsulation and type visibility.

Usually Java applications rely on a straightforward hierarchy while in OSGi the custom class
loader mechanism allows a bundle class loader to query other bundles asking for the classes they
export. Instead of a simple child-to-parent visibility in a tree hierarchy, the class loading in OSGi is
rather a graph that follows a class loading delegation hierarchy where sibling class loaders may
provide classes between them, as presented in Figure 4.6 which is based on material from [OSGi11].

When code from bundles is executing, an object loaded by a given bundle references directly
the objects whose classes were loaded from other bundles. This direct referencing is also the case
when a bundle retrieves a service provided by another bundle. Such isolation model does not provide
any communication channel that can be closed upon bundle departure or that can have security
verifications performed (e.g., communication via proxy objects where access verifications may take
place). There is no protection domain (i.e., individual object spaces in memory) that enforces
communication restrictions or any other forms of application isolation by default. Although it can be
seen as a disadvantage, this communication model is one of the strong characteristics in OSGi
because objects are directly referenced and therefore, no performance overhead is introduced by
additional layers.

Figure 4.6. Example class loader graph in OSGi [OSGi11].

Other mechanism that can be seen also as isolation enforcement is the utilization of optional
framework security permissions (AdminPermission, PackagePermission and ServicePermission)
defined in the optional security layer which can provide a fine grained control to grant authority to
other bundles perform certain actions, for example to retrieve a given service instance.

Bundle
Class Loader

Bundle
Class Loader

Parent/System
Class Loader

System Bundle
Class Loader

Bundle
Class Loader

Bundle
Class Loader

importer exporter

60

Isolation-related Efforts

In [Gama10a] we provide a brief survey around research projects that address dependability in
the OSGi Service Platform, either directly (i.e., as a primary goal) or indirectly (i.e., as a consequence
of a primary goal). Our attempt was to identify which research efforts employed fault-tolerant
techniques targeting the OSGi platform.

In this section we use a subset of the projects studied in that work, and focus on a discussion on
those that provide isolation-related approaches that somehow improve the existing namespace-based
isolation used in OSGi. We append to the list used here two OSGi standardization efforts that are
related to component-isolation in OSGi, namely “Remote Services” and “Multiple Frameworks in
One JVM”.

V-OSGi. The technique of virtualization is applied in the OSGi platform by Virtual OSGi (V-OSGi)
[Royon06] where services are isolated in virtual OSGi platforms. The V-OSGi implementation is
based on the Apache Felix OSGi implementation and consists of a base OSGi framework (the core
service gateway) which hosts several instances of virtualized OSGi frameworks (virtual service
gateways).

By using virtualization customers has the impression that they have exclusive access to the
underlying platform. The idea behind V-OSGi is to isolate entire service gateways providing the users
with independent platforms. A virtualized gateway would be available for each service vendor,
avoiding the communication between services from different vendors, as well as the propagation of
events from one gateway to another. Services are restricted to interact only with the services in the
same gateway, that is, a service from a virtual gateway (i.e. gateway that serves a vendor) is not able
to use a service from another virtual gateway (i.e. a gateway that serves another vendor). A service
from a vendor is not able to access information from services of another vendor.

Although the services from different gateways are isolated, the core service gateway gives a
restricted and controlled means of service cooperation. A static list of shared services (which are
common to all gateways) is passed from the core gateway to the virtual gateways. Each virtualized
gateway works as a regular OSGi platform, being able to achieve the normal component collaboration
through services. Since all virtualized frameworks share the same platform, there is no strong
isolation boundary that provides fault containment.

Hardened OSGi. [Parrend09] provides a taxonomy of security threats due to maliciously
programmed components (bundles) targeting the OSGi platform. The authors describe attacks that
may bring consequences such as undue access, erroneous output, performance breakdown and
denial-of-service. They propose a set of recommendations for building hardened OSGi
implementation that can resist to those types of threats.

They also provide an experimental implementation of a hardened OSGi that implements some
of those recommendations is evaluated in order to see the overhead introduced by those techniques.
Their study does not directly focus on component isolation itself, but they point out security flaws
that are related with the lack of isolation, such as memory exhaustion or excessive CPU consumption
where the misbehaving component cannot be identified. Like the previous approach, the changes
proposed by Hardened OSGi do not introduce any fault containment boundary.

Virtual OSGi Framework. The Virtual18 OSGi Framework [Papageorgiou08] provides an
infrastructure of distributed OSGi platforms that transparently act as a single one. It is constructed on
a structured peer-to-peer network that connects different OSGi frameworks. However, the platform’s
awareness (transparent to the user) of other frameworks is limited to a few nodes, not being
necessary that a node knows all other nodes that participate in the same distributed Virtual
framework.

The service registry is distributed, and services in one node are available to any node that
participates in the Virtual framework. Fault tolerance is handled in the Virtual OSGi framework using

18 Not to be confounded with V-OSGi [Royon06]

61

replication techniques. If a service is not available in a given node, the call is delegated to the
successor node in its distributed hash table. The fact that bundles are running in distinct OSGi
platforms allows strong isolation boundaries between components, providing fault containment in
case of failure because of a remote bundle. In that case only one of host platforms would become
unavailable.

Dependable Distributed OSGi. The approach presented in [Matos08] uses virtualization combined
with replication techniques for providing a dependable OSGi platform. As a basis, they use the idea
presented in V-OSGi [Royon06] where the technique of virtualization is used as a way for isolating
different customer platforms. The text that describes that work is not clear if any intervention on the
OSGi framework was necessary, which was the case in V-OSGi, however the diagrams that describe
the architecture show their approach as additional layers on top of the OSGi framework, constructed
as bundles.

They combine the virtualization approach with the replication and migration of modules in a
distributed environment, trying to improve the reliability of OSGi applications in a scalable manner.
Each customer or provider would host their components and services in its own virtualized platform
without accessing other providers’ environment, thus addressing confidentiality between different
providers. Similar to V-OSGi, the virtualization happens in the same JVM where multiple OSGi
platform instances execute.

Several customers can have their services running in the same JVM, but the proposed
architecture allows the measuring of some resources so the application can do the migration of
modules to other nodes that are idle or consuming fewer resources. Also, it is possible to have the
recovery of failed nodes, by restarting the services of a failed node in another node. An autonomic
module is also able to do this migration based on resource usage.

Just like V-OSGi, the isolation that exists between service providers (i.e., “customers”) in the
same service gateway does not provide fault containment. A malfunctioning component crashing in
one platform would bring down all virtualized OSGi instances. However, if the customer services
execute in a remote node, fault containment can be achieved.

iJVM. This is the only approach we have found that goes down to the Virtual Machine level. The
mechanism of iJVM [Geoffray09] describes a customized Java Virtual Machine (JVM), which
according to the authors is suited for enhancing the robustness of OSGi applications. They provide a
combination of an extensible virtual machine with concepts of the Java Isolation API (JSR 121). The
iJVM implements Isolates working as domains that allow lightweight object isolation and also giving
the possibility to identify to what domain (i.e. a bundle) an object belongs to. They took the design
decision of keeping direct object referencing as a way to keep the fast communication that exists in
OSGi, however boundaries for fault containment are not mentioned.

Their work describes possible code threats (e.g. memory exhaustion, recursive thread creation,
standalone infinite loop, hanging thread) and how iJVM helps to detect and to handle these threats.
However, handling such problems requires manual intervention of a system administrator since
under most of these threats the system may hang or have limited performance until the administrator
takes a decision. However due to the repairing not being automated the time for taking proper action
may vary. The fault containment in this case is partial. For instance, a failure on a native library
would crash the whole VM, however there is fine grained control (bundle level) on excessive resource
consumption.

Reliable OSGi. An attempt to provide a reliable OSGi platform uses a proxy-based solution
[Ahn2007] for providing fault tolerance in the services level. They try to address service reliability
issues by adding a proxy based layer for accessing services. The proxy implementation is responsible
for dynamically locating the best service implementation. In case of faults it isolates the failed service,
by not allowing any calls to it, and tries to locate another service that provides the same functionality.
This solution customizes an OSGi framework implementation. Apparently, the migration of service
state is partially addressed, hence giving the impression of optimally working with stateless services.
As in the majority of the other centralized approaches, Reliable OSGi does not provide strong
isolation boundaries for fault containment.

62

OSGi Replication. Another approach [Thomsen06] proposes replication as a means to avoid having a
single point of failure in OSGi-based gateways for home automation systems. A replication manager,
which takes a form of an OSGi bundle that listens to events of the framework, is responsible for
performing the replications. They use passive replication, where a primary gateway has backup
gateways (sub-gateways). These sub-gateways would not have the full functionality of the primary
gateway, but they would allow the system to keep running with fewer functionality.

Replication of code, data and application state is partially performed. For instance, since they
consider that some actions are event-driven (e.g. a new value of a sensor reading) they do not do full
state replication. With their replication strategy they enhance application uptime, augmenting its
reliability, consequently affecting the system’s availability.

FT-OSGi. The FT-OSGi approach [Torrao09] proposes an architecture and implementation of a set of
extensions to the OSGi platform for handling faults in the OSGi service layer. The authors try to
improve availability and reliability of services by employing replication techniques (active and
passive replication) for services fault tolerance. The mechanisms are deployed as OSGi bundles so the
employed techniques remain transparent to the underlying framework.

The techniques are employed in a distributed scenario where replication is done in different
nodes that run OSGi platforms with the appropriate FT-OSGi extensions. All the distribution and
replication is done transparently from the point of view of the deployed client applications. The
architecture utilizes a group communication protocol for establishing groups of service replicas. In
case of a replica failing, it is removed from the group membership.

Remote Services. This standardization effort has been incorporated in OSGi’s core specification 4.3
[OSGi11]. It deals with the publication of OSGi services to be remotely accessed as well as the
representation of distant services to be transparently invoked locally. The specification does not
provide any technological guidelines or implementation details on how the communication should be
done. It specifies only what properties must be provided and which ones must be expected when
dealing with Remote Services.

Since the service provider and consumer are running in distinct processes, failures are not
propagate to the remote consumers, which need only to deal with service availability. Since OSGi is a
dynamic platform, the specification suggests that failures in the communication layer should be
mapped to the unregistration of imported remote services.

Multiple applications in One JVM. The standardization attempt called “RFC 0138 Multiple
Frameworks In One JVM” was present in an early draft of the OSGi specification version 4.3
[OSGi10a] . It proposes the utilization of multiple frameworks running on the same JVM, in a similary
way to what is done by V-OSGi. There are different motivations behind this approach such as:

 Sharing JVM singleton objects (e.g., standard input and output) between multiple OSGi
instances;

 How to share packages and services between multiple OSGi frameworks in the same JVM;

 Hosting several framework instances from different vendors (i.e. different OSGi
implementations);

 Isolating different applications in separate OSGi frameworks that have to run in the same
JVM (e.g., JVM memory footprint issues on embedded devices).

As stated in the specification proposal, embedding OSGi frameworks in the same JVM is a way
to provide a private scope mechanism for OSGi applications by means of strong isolation
characteristics. However, by the term strong isolation we rather see fault contained boundaries,
which is not the case here, where multiple frameworks share the same JVM.

Discussion

Different isolation-related efforts were presented in the form of eight independent research
projects and two standardization efforts by the OSGi Alliance. We have come up with an analysis
detailed in Table 4.1. We identified the styles of the approaches as distributed (i.e., working in

63

multiple nodes in a network) and centralized (i.e. targeting stand-alone applications), where the
distributed approach inherently provides fault containment between distant components. Dealing
with service departure is still necessary in order to avoid errors when accessing unavailable services.
Some of them target a centralized solution, which is usually the nature of OSGi applications, and
others have applied distributed techniques for enhancing dependability.

In addition we see that the implementation of each one of the studied approaches may be
placed at one of three different levels:

 In the highest level the solutions are developed as OSGi bundles achieving a
transparent layer on top of OSGi;

 In an intermediate level, but still as pure Java code, by changing the OSGi
implementation;

 In the lowest level by using a custom JVM that takes into account the addressed issues.

Similar techniques have been found among some of the projects. This is particularly true for all
distributed approaches, which focus on replication strategies on the service level for transparently
increasing service availability. Although the OSGi platform was conceived as a centralized
architecture that takes modularity and SOA principles into a JVM for enhancing decoupling, the idea
of distribution is being used in research on top of OSGi, as we can identify on these approaches.
Virtualization is another technique used by four different approaches that can be either distributed or
centralized.

Approach Name Style Fault containment Implementation

V-OSGi Centralized No OSGi customization

Hardened OSGi Centralized No OSGi customization

Virtual OSGi Framework Distributed Yes Transparent OSGi layer

Dependable Distributed OSGi Distributed Yes Transparent OSGi layer

iJVM Centralized Partial JVM customization

Reliable OSGi Centralized No OSGi customization

OSGi Replication Distributed Yes Transparent OSGi layer

Fault-tolerant OSGi Distributed Yes Transparent OSGi layer

Remote Services Distributed Yes Transparent OSGi layer

Multiple Applications Centralized No Transparent OSGi layer

Table 4.1. Comparative of each isolation-related effort around OSGi technology

In the other mentioned approaches, fault containment is possible only in the distributed
contexts (although the network would introduce additional concerns) where service consumer and
provider run in separate processes. This strong isolation is almost automatic when components reside
on physically separated machines [Armstrong03]. Among the centralized platforms, the iJVM
approach provides an enhanced level of isolation in comparison to the standard namespace-based
mechanism, but limited if we want to consider a fault contained environment. In general, we can say
that in centralized approaches the level of fault containment is weak. However, the distributed
techniques could be used locally through multiple processes. This may be resource consuming, but its
feasibility depends on the target environment: in a server scenario it may not be a problem, while in
embedded applications such solution does not seem to be adequate.

Only the Dependable Distributed OSGi approach has shown explicit concern with recovery (of
failed nodes in their case). However they focus on a distributed context. We combine a related
approach but targeting a centralized solution for isolation where modules will also be able to migrate
between environments, rather focused on the goal of isolation as it is going to be detailed in the next
chapter.

64

4.4 Summary

This chapter has focused on component isolation. It presented three correlated approaches for
modular development: component-based development, service-oriented computing and service
component architecture. While these last two provided a subsection with a brief discussion on
isolation in each of the two approaches, a section was exclusively dedicated to component isolation,
focusing on the practical aspects of different component-related technologies.

A special emphasis was given to the OSGi Service Platform, which of particular interest in this
thesis, as it is explained in Chapter 6. It also provided the state of the art for isolation-related issues
around OSGi technology. The most used approaches for isolation were OSGi frameworks in
distributed environments as well as virtualization techniques. Chapter 5 comes up next, providing a
broad view on the issues that we target, followed by the propositions of the work conducted in this
thesis.

PART II

PROPOSED APPROACH

Chapter 5

Propositions

“The ultimate task of the architect is to dream.

Otherwise nothing happens.”

Oscar NIEMEYER

Contents

5.1 MOTIVATIONS .. 68

5.1.1 COMPONENT QUALITY.. 68

Maintainability ... 69

Reliability and Trustworthiness .. 69

Untrustworthy Components ... 69

5.1.2 SOFTWARE EVOLUTION ... 70

5.1.3 PLUGIN-BASED APPLICATIONS ... 71

5.1.4 CRITICAL APPLICATIONS AVAILABILITY .. 73

5.1.5 RUNTIME UPDATE CHALLENGES .. 74

5.1.6 TARGET PROBLEMS .. 76

5.2 PROPOSED APPROACH .. 77

5.2.1 FAULT-CONTAINED BOUNDARIES... 78

Dynamic Isolation Policy .. 80

Runtime Reconfigurable Isolation ... 81

5.2.2 MONITORING AND SELF-RECOVERY ... 82

5.3 SUMMARY ... 84

The previous chapters have focused on conceptual and technological background around the
work conducted in this thesis. In the current chapter we describe the main motivations for our work,
the problem we address, and what are our propositions. We briefly discuss the component quality
characteristics that are common to the dependability attributes we want to address, followed by an
overview on software evolution and the dependability issues around different types of applications
that rely on runtime software evolution. After that, we get into more detail about the techniques to be
employed. It is followed by a high level view of the envisioned architecture we want to provide,
consisting of a combination of different techniques that leads to an approach for reducing some of the
negative impacts brought by component updates performed during application execution. An
implementation of the proposed approach is described in the Part III of the manuscript.

68

5.1 Motivations

Software is moving towards architectures that should easily accommodate changes and
integrate new functionality. Different requirements may demand such evolutionary architectures.
They can concern mere extensibility requirements for adding new functionality in non-critical end
user applications such as Web browsers (e.g., Chrome, Internet Explorer) and office application suites
(e.g., Microsoft Office, OpenOffice), or they can concentrate on critical server applications with high
availability requirements such as e-commerce and banking systems.

In order to easily apply changes to such systems, a modular approach is necessary for dividing
applications in pieces that can be easily developed, integrated and maintained. Component-Based
Development (CBD) provides such possibility, allowing the construction of applications assembled
from software components that may involve the integration of different components off-the-shelf
(COTS), typically coming from a third-party vendor.

Dynamic component-based platforms allow software to evolve at runtime, that is, components
that can be located, loaded, and executed during runtime. Such dynamic update mechanism provides
flexibility but introduces new challenges. This is especially true when dealing with third-party
components, which make hard to predict the impacts (e.g., runtime incompatibilities, errors leading
to application crashes) when integrating such third-party code into an application. Component
quality is something hard to be evaluated and even harder when components are combined together.
Third-party components whose origin or quality attributes are unknown may be considered as
untrustworthy since they may potentially introduce faults to applications, although unintentionally.

We see at least two different scenarios that motivate the creation of stronger component
isolation boundaries so fault containment between components can be provided. The first one
concerns third-party components that may compromise application stability in case of misbehaving
functionality. The second one concerns availability also, but in a different context, where high
availability applications may maintain components with critical tasks or core functionality running
apart from the rest of the system, preventing other components from compromising core application
functionality.

5.1.1 Component Quality

Meyer [Meyer03] draws attention to the idea of trusted component, which is a concept centered
on component quality. He envisions a framework for component quality model, the ABCDE of
component quality, dividing the properties of interest as Acceptance, Behavior, Constraints, Design
and Extension (ABCDE). Other more concrete research efforts [Bertoa02, Alvaro05] have proposed to
use the ISO/IEC 9126 Software Quality Model19 for component quality assessment. However, by
claiming that the ISO model is too general they have performed either refinements or customizations
in order to fit that model to a COTS reality. However COTS quality models are difficult to be used
due to the large quantity of attributes to be measured and the lack of information provided by
component vendors.

From a general software perspective, the original ISO 9126 proposes measuring a set of
attributes in order to assess quality in an Information Technology context: functionality, reliability,
usability, efficiency, maintainability, portability. If we take these attributes and do an intersection
with the dependability attributes (availability, reliability, safety, integrity, maintainability and
confidentiality) from [Avižienis04], presented in Chapter 2, we can find two attributes (reliability and
maintainability) in common and that are related with this thesis. The next subsections provide some
considerations on these two attributes, and clarify the concept of trustworthiness under the
perspective of our work, which tries to ensure such attributes not individually in the component
level, but rather in the application level as a whole.

19 The ISO/IEC 9126 has been superseded by ISO/IEC 25000: Software engineering: Software product Quality Requirements

and Evaluation (SQuaRE): Guide to SQuaRE

69

Maintainability

Maintainability may cause confusion concerning the granularity or what part of the software
development life cycle we refer to. It can refer to the ability of applying changes in the application
code (e.g., modular design to facilitate code maintenance), applying changes to an application already
deployed (e.g., applying patches during application execution) and so forth. In a broader sense, it can
be seen as a property that allows identifying the degree in which software is capable to go under
maintenance. Under our perspective we are interested in maintainability in the form of MTTR, as
focused by the view provided by [Avižienis04], so quick recoveries can be performed and the
downtime minimized in case of failures. By applying this perspective into component technology, we
can verify that component platforms capable of dynamic updates can improve maintainability,
although this can be seen just a matter of component technology (the platform), and not a
characteristic of the component itself [Crnkovic05].

Reliability and Trustworthiness

Terms like dependability, robustness and trustworthiness may cause confusion with the term
reliability. Some definitions around dependability have already been detailed in Chapter 2.
Robustness is referred in [Avižienis04] as a secondary attribute of dependability with respect to a
specific class of faults. In the ISO/IEC 9126 quality model, the reliability characteristic has fault-
tolerance, recoverability and maturity as its sub-characteristics. Fault-tolerant and recovery-oriented
techniques are therefore fundamental to make applications compliant with such quality models.

Despite our considerations, reliability and trustworthiness remain ambiguous since the words
reliable and trustworthy are synonyms. Trustworthiness is an important concept in a COTS context
because applications may be composed out of third-party components, which one can rely on or not.
In [Schmidt03] we find an extensive discussion around component trustworthiness, where they
mention the word trustworthy as a mix of fuzzy notions that include the terms reliable, dependable,
faithful, trusty, responsible, credible, believable, loyal, unselfish and true. Their definition, though,
refers to trustworthiness simply by “measured and perceived dependability”.

Defining if a component is trustworthiness is not a precise task. In this thesis, the term
untrustworthy, as its etymology already says by itself, will be used several times to refer to
components that are not trustworthy. Under the point of view used here, trustworthiness takes into
account not only the component itself as an individual entity but how the component fits in an
application (i.e., a composition) in terms of compatibility.

Untrustworthy Components

A common criteria to classify a component as untrustworthy is the presence of malicious code,
which could compromise security. Such issues have been explored in [Parrend09], which enumerates
different types of possible attacks and risks in dynamic component platforms. Although we do not
ignore such risks, under perspective of our work we rather see scenarios where a component may
present non-intentional risks to applications that use it. The considerations taken into account in this
thesis for considering a component as untrustworthy would lie on:

(i) Lack of information about the component (e.g., quality attributes, origin). For instance,
a component that comes from a questionable or unknown provider.

(ii) Lack of testing with the target application that uses the component. This means that
the component was not sufficiently tested or not tested at all with the target
application. Even there is significant information about a component it is hard to
predict the quality of a composition with another component.

(iii) Known potential risks. This is the case in which components are known to be unstable
but are required to be executed, mostly due to a lack of alternatives. This can happen,
to name a few cases, with a component that uses experimental communication
protocols; components that are poorly coded but remain as the only option for a given
functionality; or components that wrap native libraries in managed environments
(e.g., Java, .NET).

70

Third-party components are typically the ones considered as untrustworthy. However, in-
house components can also be considered likewise, but in such cases they are limited to the cases
described in (ii) and (iii). Throughout this manuscript, the concept of (un)trustworthiness will be
used toward components while reliability will concern a broader characteristic referring to the
application as a whole. Maintainability will also be seen under an application perspective, although
the unit of software to be maintained would be a component. Our objective is to work on these two
attributes, and indirectly with the availability attribute, having the ultimate goal of enhancing
dependability in dynamic component-based applications.

5.1.2 Software Evolution

Most of today’s software needs to continuously evolve and adapt. Intensive use in software
leads to changes [Lehman85, Oreizy08], which become unavoidable in most systems. Software that is
used needs to evolve according to its users needs. However, software changes if not appropriately
managed can conduct to continuously increasing problems. Critical systems and other types of
software with high availability requirements demand new approaches for reducing, and even
eliminating the costs and risks of evolving these systems, preferably without incurring downtime.

Parnas [Parnas94] talks about impacts of software maintenance in a degrading process that he
called software aging (not to be confused with process aging, already explained in Chapter 2), which is
observed in the long run as a consequence of inappropriate maintenance. He indicates three
symptoms of software aging: inability to keep up; reduced performance and decreasing reliability. The first
symptom consists in the inability to keep up with changes in requirements. The second one, reduced
performance, is a consequence of changes that will keep software size increasing and the structure
gradually deteriorating. The third symptom is a result of typical maintenance that keeps introducing
bugs.

Lehman calls E-type systems [Lehman85] those that solve a problem or implement a computer
application in the real world, intrinsically demanding constant evolution since they are governed by
user needs and satisfaction rather than compliance to a specification. E-type systems have to be
adapted to a changing environment, changing needs as well as constant and technologies that keep
developing and advancing. He presented eight software evolution laws in [Lehman96], enumerated
in the table that follows:

(1) Continuing Change. An E-type program that is used must be
continually adapted else it becomes progressively less satisfactory.

(2) Increasing Complexity. As a program is evolved, its complexity
increases unless work is done to maintain or reduce it.

(3) Self Regulation. The program evolution process is self regulating
with close to normal distribution of measures of product and process
attributes.

(4) Conservation of Organizational Stability (invariant work rate). The
average effective global activity rate on an evolving system is
invariant over the product life time.

(5) Conservation of Familiarity. During the active life of an evolving
program, the content of successive releases is statistically invariant.

(6) Continuing Growth. Functional content of a program must be
continually increased to maintain user satisfaction over its lifetime.

(7) Declining Quality. E-type programs will be perceived as of declining
quality unless rigorously maintained and adapted to a changing
operational environment.

(8) Feedback System. E-type Programming Processes constitute Multi-
loop, Multi-level Feedback systems and must be treated as such to be
successfully modified or improved.

[Lehman96]

71

Among these laws, continuing change, increasing complexity, continuing growth and declining
quality are all directly related with the software aging symptoms presented by Parnas. Requirements
related to such laws as well as the increasing need around continuous application availability have
motivated software evolution approaches to advance towards runtime software evolution (RSE).
Systems that provide features supporting RSE are able to change software system’s functionality
during runtime, without recompilation, by allowing new components to be located, loaded, and
executed during runtime [Oreizy98a, Taylor09]. Such ability is one of the pillars that enable building
self-adaptive systems [Oreizy99] that can autonomously adapt and evolve in reaction to
environmental changes, new requirements or dealing with application errors.

5.1.3 Plugin-based Applications

Plugin mechanisms provide a way to easily incorporate new features in applications, working
as a place holder for third-party components. The usage of plugins as an extension mechanism has
become very popular in different types of application. It has been used in different Internet browsers
like Netscape, Firefox and Internet Explorer; as well as in Rich-Client Platforms (RCP) such as the
Eclipse Platform [Gamma04] and the Netbeans Platform [Boudreau07].

Under a software evolution perspective, such mechanism can be seen as a sort of design-time
evolution, since a plugin provides implementations for behaviors anticipated by the developers of the
plugin-based application [Oreizy98b]. Since then, plugin platforms have evolved and introduced
more flexibility to plugin architectures. Such an example is Eclipse RCP’s extensions and extension
points mechanism [Gamma04] where a plugin can define an extension point, and other plugins can
contribute their extensions that fit such extension points.

Although plugins are an easy way to add new functionality to applications, they can introduce
an unbound number of errors. A faulty plugin may put at risk the stability of a plugin-based
application, and even crash it. The main reason of such failures lies on the fact of having different
plugins running on the same memory space, without any isolation enforcement. Trying to tackle such
problem, the .NET framework 4.0, provides the Managed Add-In Framework (MAF) [Nagel10] which
is a programming model allowing to create and to host add-ins (a sort of plugin). They are typically
third-party code that needs to be used without any risks to the host application. To achieve that, the
MAF allows an add-in to be hosted in a separate Application Domain or in a separate process.

Plugins are also a frequent source of instability and crashes for browser users [MDN11]. Web
browsers are a popular example of applications that support the incorporation of plugins, and also a
good example of such risks. Most browsers have evolved to the Graphical User Interface (GUI)
concept of multi-tabbed navigation, which allows users to open and navigate through multiple Web
pages in the same browser instance. The user has several tabs open, displaying pages from distinct
URLs. A plugin (e.g., Flash player) malfunction in one of the tabs may crash the browser, closing the
application and consequently all other tabs. In order to avoid that, plugin-based browsers are using
separate processes for fault-confinement.

Google Chrome is one of the first browsers to use the concept of multi-process browser
architecture [Reis09], where separate processes are used for different components. Each plugin and the
rendering engine instance for each Web site run in their own processes. The browser kernel runs in its
own process as well. Although fault tolerance, accountability, memory management, performance
and security as the robustness are enumerated as the benefits that multi-process browser architecture
can bring, this multi-process approach introduces significant memory overhead. This separation is
explicit to the user. Through a menu option, the user can access the list of processes spawned by the
browser, as detailed in Figure 5.1. The three last processes listed in the figure are plugins that are
isolated in their own process, while the other processes represent the application tabs.

Internet Explorer 8 (IE8) is another browser whose process model [Zeigler11] uses a concept
very similar to Google Chrome’s multi-process architecture. As depicted in Figure 5.2, IE8 uses one
tab per process and the main iexplore process instance has base GUI elements, while the other
processes host each tab instance.

72

Figure 5.1. Google Chrome’s task manager lists all processes spawned by the browser, and allows to get

information as well as terminating them.

Figure 5.2. Multi-process architecture used by Intenet Explorer 8, where each tab is hosted as a separate process

[Zeigler11]

Following that trend, the Firefox browser started to move towards the usage of process-based
isolation strategies [Smedberg09]. This will help preventing application failure due to third-party
plugin errors. It started with the concept of crash protection (out-of-process plugins) [Mozillazine11],
by separating plugin execution from the process in which the browser executes [MDN11]. Figure 5.3
shows a crashed Flash player in Firefox 4. Instead of crashing the browser, the plugin region in the UI
displays an error message concerning the plugin crash. After the release of the out-of-process plugins
mechanism, the project roadmap announces out-of-process tabs as the next effort [Mozilla11].

73

Figure 5.3. Error message of a plugin crash in Firefox 4

5.1.4 Critical Applications Availability

Research reports show that IT downtime and data recovery represent major revenue losses for
organizations in Europe [CA10a] and in the United States (U.S.) [CA10b]. They report in [CA10b] an
amount of losses that surpasses $23.5 billion in Europe (calculated as €17.7 billion in [CA10a]) while
in the U.S. they are over $26.5 billion dollars. Besides the revenue losses, IT downtime was found to
have significant effect productivity in European organizations [CA11], where staff would only work
63% of their usual level when critical systems are compromised [CA11].

According to a research report [CA10b], the average annual downtime in 2009 was of 14.2
hours in Europe and 10 hours in North America American organizations, respectively. In terms of
availability measured by “nines”, we can calculate 99% in the former case and 99.9% in the latter. In
terms of revenues, the numbers presented in Figure 5.4 (a) precise the estimated losses due to IT
downtime in organizations from Europe, where France has losses significantly higher than the other
assessed countries as shown in part (b) of Figure 5.4.

Either due to outages because of failures or because software had to go under maintenance
(e.g., module updates, bug fixes), these numbers demonstrate the importance of keeping critical
systems up and running without interruption as much as possible. Criticality can be of different types
― safety-critical, business-critical, mission-critical or security-critical ― but in general, systems are
considered as critical when failure or malfunction will lead to significant negative consequence
[Coyle10]. The increasing complexity and ubiquity on software are transforming critical software into
software that is designed to be easily changed, extended and reconfigured [Hinchey09].

74

Country
Annual Revenue

Loss (€)

France 6 406 000 000

Germany 4 236 000 000

Spain 2 906 000 000

UK 2 681 000 000

Sweden 754 000 000

Finland 443 000 000

Italy 428 000 000

Norway 377 000 000

Netherlands 329 000 000

Denmark 281 000 000

Belgium 194 000 000

(a) (b)

Figure 5.4. Annual revenue loss by country due to IT downtime in Europe [CA10a]

Runtime software evolution (RSE) is appropriate for such types of systems with high
availability requirements. The principles behind RSE are of key importance when autonomous critical
systems encounter errors during operation, as they must be capable of identifying, detecting, and
recovering from errors, potentially without human assistance (error processing) [Hinchey09]. Fault
treatment and error processing are priority tasks in critical systems. Even though eventual
operational errors that may be originated during application execution, the frameworks or
applications that support RSE also carry potential problems that are inherent of the dynamic update
process performed during runtime.

5.1.5 Runtime Update Challenges

When dealing with RSE, the typical units of replacement are components which are
interconnected to form an application. Indeed, the possibility of dynamically performing updates on
parts of the application while it is still running brings a lot of flexibility. Component-based software
development and service-oriented computing offer replaceable building blocks for realizing the goal
of runtime software evolution. These approaches can be employed in different techniques for
constructing adaptive components and services for constructing flexible and evolvable applications.
However, this flexibility comes at a cost since such dynamic reconfigurations have a significant
impact in application execution. Different considerations concerning this dynamism have to be taken
into account [Rudametkin10] when developing software infrastructure and components targeting an
approach where runtime software evolution is possible.

Dynamic updates20 may be overlooked by others but there is a complex series of events that are
involved with such mechanism. Despite different perspectives on component deployment lifecycle
(e.g., install, start, install, update) [Carzaniga98][OSGi11][Szyperski03], for the sake of simplicity we
utilize a general and temporal perspective on the phases that are present in a lifecycle state transition.
These phases consist on stages before, during and after a transition, which we will generally refer to as
an update. The possibility of updates performed during application execution introduces a myriad of
consequences which are of different nature and impact for each of those stages, being a potential risk
to application dependability. Some of these issues, grouped by the corresponding phase, are briefly
discussed next.

20 The terms runtime update and dynamic update will be interchangeably used concerning system updates performed

dynamically (i.e., at runtime).

 -

 1 000 000 000

 2 000 000 000

 3 000 000 000

 4 000 000 000

 5 000 000 000

 6 000 000 000

 7 000 000 000

A
n

n
u

a
l
R

e
v
e
n

u
e

L
o
s
s
 (
€

)

75

Before. As component-based applications are comprised by a set of components with
interrelated dependencies, inter-component dependency asks for a verification of the
requirements (e.g. required hardware) ― also called prerequisites ― in order to check if a
component can be installed in the runtime [Kon00]. If a component is to be replaced,
verification mechanisms should ensure type versioning consistency by not allowing type
compatibility to be broken [Brada06]. The fact of adding or removing components during
application execution may change (or refresh) the set of interconnected dependencies.
Therefore the system is lead to a reconfiguration that can impact other components in the
application. This raises questions around the cost of an update: how many components will be
affected? How long would the update take?

During. An update should not avoid interruptions of on-going operations that would be directly
or indirectly related to such update. Some systems disregard such issue while others try to put
constraints regarding updates. As an example, [Kramer90] and [Vandewoude07], respectively,
propose the criteria of quiescence and tranquillity as safe update states where the node (i.e.,
component) to be updated should not be engaged in transactions fired by the node itself or by
nodes that may call it. This sort of safe update state may not be certain in environments where
the application provider is not able to control all the components, such as in a service-oriented
architecture. In such cases the system must cope with temporary unavailability [Touseau08] of
services in case of updates. Maintaining component state is another issue when components are
updated and their state needs to be preserved while its behavior is updated to a new version. A
transactional update mechanism should ensure restoration of a previous component version in
the case of unsuccessful updates, so the system is able to perform a rollback and restore
component’s behavior and state as it was before the update.

After. The process of a component update can be successful but after it takes place, there may
be inconsistencies such as dangling objects left or executing tasks belonging to the component
that were not properly terminated. Concerning the inter-component dependencies, the system
at this stage must verify the dynamic dependencies among loaded components in a running
system [Kon00]. In some dynamic platforms, the fact of loading a component does not mean
that it is ready to execute. Other issues are rather related with regular application execution,
but may be directly affected after the update of a component that eventually introduces faulty
behavior. Fine-grained resource monitoring allows the application to keep monitoring
component performance in order to identify which components are consuming resources (e.g.,
CPU, memory) more than expected. By identifying which component is responsible for that,
corrective measures can be directly addressed to it. Besides excessive resource consumption,
other errors (e.g. programming errors, non-deterministic faults) may be caused by components
updated at runtime. Fault containment mechanisms should prevent errors introduced by one
component from being propagated to others. The continuous verification of non-functional
attributes conformance can be seen as another issue to be considered after dynamic updates. In
SOA they typically take the form of quality of service (QoS) attributes (e.g., performance,
availability) represented in a service-level agreement (SLA). If the monitored QoS diverge from
expected values the system should perform dynamic optimizations [Argwala06, Grassi07]
which could also include the update or selection of other components or services.

This section illustrated, through a non-exhaustive list, some of the issues related to runtime
updates that may compromise application stability. Besides verifying if the runtime update process is
possible, an update can end up introducing faulty behavior in the application as a side-effect that
reduces application reliability.

Although the work performed in this thesis does not strictly focus on any of the three
presented phases (after, during and before updates), we are concerned with the continuous
observation of dynamic applications and their components, in a context that would present some
form of runtime evolution. Most of the problems we tackle, listed in the next subsection, may be
originated after runtime updates.

76

5.1.6 Target Problems

Components can be individually tested during development (e.g., unit testing), but when
integrating them in a system it is also important to test how different components will interact. It
helps to detect in advance any incompatibilities or application errors that may arise at runtime. It is
hard to predict system trustworthiness when such a system is a result of components (or services)
composition. For instance, if two components A and B are considered as reliable but they were both
tested individually, it does not mean that a composition of A and B will be reliable as well
[Crnkovic02]. But in the case only one of the components of a composition is unreliable, the whole
composition becomes unreliable as well. Whenever a component fails during execution, the whole
composition that depends on it can fail, and depending on the failure, the whole application may also
go down. Awkwardly, there may also be cases where no components are observed to fail, but the
system still does not work as expected [Armstrong03]. Different causes may contribute to system
failure, according to [Crnkovic02]:

 defective software components,

 problems with interfaces between components,

 problems with assumptions (contractual requirements) between components, and

 hidden interfaces and non-functional component behaviors that cannot be detected at
the component level

In part, the first two problems could be detected by testing. Formal methods used in static code
analysis are effective ways for testing and detecting errors in scenarios where components that are
involved in a composition are known ahead of application execution. Indeed, there are drawbacks
such as the size of software that such approaches are able to analyze (i.e. state explosions in larger
software analysis) and the limited amount of people that master these techniques, which are not
trivial. Either using formal methods or not, combinatorial explosions are a major problem if we try to
predict combinations by validating a component against all possible compositions and system
configuration [Szyperski02]. However, in case components can still be integrated after deployment of
the system, the amount of possible combinations grows. If the target component platform has an
open COTS market, where new components are periodically released, the set of combination
possibilities keeps growing.

By not knowing the components ahead of their deployment (e.g., only the interfaces are
known, but not the implementations), the task of integration testing becomes more difficult besides
being costly to be performed at runtime. Fault tolerance and containment are useful for systems that
may face unanticipated events at runtime that are difficult or impossible to test during development
[Tian05]. As also remarked in [Szyperski02], fault isolation is of essential importance in component-
based systems since “a component system is only as strong as its weakest component”. The
application shown in Figure 5.5, which will be used as a reference example throughout the rest of the
chapter, illustrates components that are not completely isolated from each other in a centralized
component platform (i.e., not distributed). In case an untrustworthy component is dynamically
introduced at runtime, application stability may be compromised since it is not possible to provide
guarantees that faults from such unknown component will not propagate to other components. It is
important to provide mechanisms that can avoid the propagation of faults from one component to
another, so the system can still execute even if one of its components crash. The identification of the
faulty component is also an important issue. In the same way, there is a need to automatically react to
possible faults and re-establish normal system execution and correct behavior upon component
faults.

77

Figure 5.5. Dependencies between different components that share the same isolation boundary in an application.

From a general perspective, our objective is to enhance dependability in dynamic component-
based applications in scenarios where untrustworthy components can be loaded at runtime. We
address a subset of dependability attributes [Avižienis04], namely reliability, maintainability and
availability. Under specific objectives, our propositions use resource monitoring and fault
containment to tackle issues mostly originated after dynamic updates, but that can also take place
during application execution even though no dynamic updates were performed. We also take into
consideration some issues observed during updates (interruptions of on-going operations and
component state). The origins of such concerns are particularly around instability accidentally
introduced by untrustworthy components, typically originated from a third-party.

5.2 Proposed Approach

In dynamic component platforms (e.g., OSGi [OSGi11], SOFA/DCUP [Plasil98], DynamicTAO
[Kon00], .NET [Nagel10]), that support runtime software evolution, where it is possible to load
components during application execution. That flexibility results in different problems among which
some have been discussed here. Possibly, untrustworthy components may execute in the platform
and augment the risk of faults. In order to minimize such risks and to provide some degree of
autonomy to applications whenever facing unexpected errors from components, we propose the
utilization of mechanisms that take into account some of the enumerated issues concerning dynamic
updates. Such techniques are put together in an architecture that aims to enhance the dependability
of dynamic component-based applications. The objective is not to introduce fault-tolerance in
components, but rather make the component platform more fault-tolerant with the ability to
automatically recover from errors.

Our main motivations lie in the possibility of enabling the execution of untrustworthy third-
party code without compromising application stability. We believe the core functionality of an
application must be separated from untrustworthy third-party code, thus minimizing the possibility
of error propagation and reducing application disruption. Therefore, we propose the usage of
component isolation techniques combined with recovery-oriented computing in order to enhance existing
dynamic component platforms.

Web browsers have already proven that putting third-party components in isolation can
improve overall robustness. The component isolation techniques we propose must provide stronger
isolation boundaries between components but also must provide some degree of transparency and
flexibility, therefore having the following requirements:

 Fault contained component isolation boundaries to protect other components and
underlying application from faults

 Transparent communication mechanisms across isolation boundaries

B C

E FD

G H I

A

Application

78

 Dynamic (i.e., performed at runtime) isolation of components

 Runtime reconfigurable component isolation levels

The recovery-oriented computing principles enable application or component recovery in case of
faults. These techniques need to be backed up by monitoring and diagnosis in order to detect which
components need to be recovered. By taking that into account, we propose the following to be
expected for a solution that employs such principles:

 Mechanisms for monitoring the application and its components

 Techniques for diagnosing component faults and malfunctioning

 Self-recovery mechanisms to recover from a faulty state

 Recovery-oriented approach toward crashed components

Our goal is to put together such techniques for providing a general solution that does not
require changing existing applications in order to take advantage of the proposed mechanisms. We
want to be able to execute untrustworthy third-party components in isolation so they can not harm
the system. However, the objective is not to put the components in isolation forever since it means
IPC overhead. After observing that they do not present any harm to the system they should be
promoted during application execution, ideally through an automated mechanism.

The subsections that follow provide more details concerning the propositions around the
proposed fault-contained component barriers, as well as the techniques concerning self-recovery.

5.2.1 Fault-contained Boundaries

Different reasons for considering components as untrustworthy have been cited, such as lack of
testing or lack of information about a component. Being untrustworthy does not mean that a
component is harmful. However, dynamically loaded code may inadvertently bring a program down
or significantly degrade application performance and responsiveness. This is an existing risk despite
the component developers intended to provide malicious code or not. By establishing barriers for
fault containment, we can minimize such impact in the application and also facilitate the recovery of
components. If a new component deployed into the system introduces a problem, the application
should not stop working nor be completely reset. If a component with code of poor quality or not
exhaustively tested runs behind a fault-contained barrier, the underlying application is not harmed in
case of faults in that component. It also becomes easier to purge a component from the system
without disrupting the application.

We propose the utilization of stronger isolation boundaries for components so fault
containment can be possible, providing a sort of sandbox for untrustworthy components. Throughout
this manuscript we will use the term sandbox as a simple way for describing such a component
isolation container. The term is not to be confused with the sandboxing technique proposed in
[Wahbe93].

Figure 5.6 takes the application previously illustrated in Figure 5.5 and adds isolation
boundaries to it, that is, two component sandboxes. In this new example, there are different
possibilities of isolation. Components A, B and C, which have dependencies towards them, are
individually isolated according to the application presented in the left side (a) of the figure. Another
approach is the possibility of grouping different components inside the same isolation boundary,
which is the case of components B and C of the application configuration presented in the right side
(b) of the figure. The latter case is useful in scenario where different component providers can deploy
their components in an application. As an illustrative example we can take a Web server that is a
common application for different clients (i.e. a component provider) that can use their own isolated
domains for deploying their components, which could also be seen as Web applications. A failure in a
component from a given provider is not propagated to components outside its isolation boundary
therefore other Web applications are not penalized.

79

Figure 5.6. Isolation boundaries added to application components individually (a) or in groups (b)

Component Grouping Criteria

Both illustrations contained in Figure 5.6 shows only the components A, B and C within
isolation boundaries while the remaining components are residing in the same isolation boundary as
the rest of the application. In the figure, set of untrustworthy components A, B and C are the untrusted
part of the application, while the other components are the trusted part of the application.

Different approaches such as process-based and domain-based isolation can provide containers
with the desired strong isolation boundaries. As already presented in Chapter 3 such boundaries
imply communication costs. Therefore, the communication performed by components B and D, for
instance, would likely involve some sort of IPC. In the proposed architecture design we do not
specify how the isolation boundary is to be implemented. It could be an in-process facility, separate
local processes, software enforced isolation, distributed processes, and so forth. Providing one
isolation container per component is the ideal mechanism in terms of protection. With this
granularity, a failure in any component is contained in its isolation boundary and is not propagated
to the rest of the system. However, this introduces prohibitive communication costs and performance
overhead, since the communication across strong isolation boundaries typically implies IPC.

This communication cost between components is discussed in [Szyperski02] where it is said
that such overhead can be tolerated if the switching between isolated environments is not frequent.
However, in the case of inter-component communications happening at a higher frequency and in a
synchronous way (i.e., the caller has to wait for a response), the communication cost is high, having
an impact in overall performance of the application. This may influence the decision of how to group
components for isolating them. We suggest cohesion, coupling and trustworthiness as three grouping
criteria for choosing which components should share the same isolation container. While the first two
criteria can play a role in minimizing the communication overhead that may be incurred by isolation,
the last criterion cannot say much about it in advance and may also be combined with the other two.
The next paragraphs discuss them into more detail.

Cohesion. It is related to connectivity between elements of a single module. A module has
strong cohesion when it represents a task of a problem domain and its elements contribute to
that task [Eder94]. Although it is a quality parameter that focuses on intra-module correlation
of elements, cohesion can also be considered for groups of components that perform related
tasks in the form of a subsystem or an application. Modules of that form can be deployed in a
component platform and co-exist with other subsystems or applications. For instance, a Web
application deployed in a Web server, a persistence module deployed in a middleware and a
set of correlated plugins deployed to an RCP application can all be seen as cohesive modules,
either physically or logically grouped. We can find platforms that allow components to be

Strong Isolation
Boundaries

B C

E FD

G H I

A

Application

B C

E FD

G H I

A

Application

(a) (b)

80

deployed at runtime without establishing any explicit grouping or delimitation for identifying
a cohesive application or subsystem. By using cohesion as a criterion for isolating components
we are able to make these “hidden” subsystems or applications explicit. In addition, isolating
groups of components together would minimize communication costs between components of
the same group, which would not need to use IPC. Also, in case of failures in the cohesive
group it would present a sort of modular functionality failure (e.g., the application is
temporarily running without a persistence engine).

Coupling. This concept explicitly relates to inter-module relationship. It measures the strength
of the associations between modules [Eder94]. In this case, one should consider the case where
a component has too many components coupled to it. There may be cases where it is more
appropriate to host highly coupled components in the same isolation boundary. For instance, if
several components are coupled to a component A, faults on that component would
compromise the application. Hosting it in an isolated component container would protect the
rest of the system. However, by isolating A the components that are coupled to it would have
the performance penalty of IPC. Components that communicate frequently with A can be
moved to the same isolation boundary in order to avoid that IPC cost. In that case the
components that co-exist with it would fail as well but the rest of the application is shielded
from failures originated in A.

Trustworthiness. This type of grouping would be based on trustworthiness of components.
Different characteristics can be used for evaluating the trustworthiness level of components,
and, for instance, hosting them in different isolation containers. For instance, components of
unknown origin could be hosted in one container, while native components would be hosted in
another one, and components from the same provider would be placed in their respective
containers in a per-provider basis. A straightforward approach for an isolation container that
takes trustworthiness into account would be taking no levels into consideration, and host all
untrustworthy components in the same isolation container, separated from the rest of the
system. In that case, we can say that there are actually two levels of trustworthiness:
trustworthy and untrustworthy. IPC could also be taken into account by combining this
criterion with one of the previous two. This could be the case, for instance, of using an isolation
container for untrustworthy components that perform interrelated tasks (i.e., cohesion).

Dynamic Isolation Policy

The proposed approach keeps information about component isolation separate from the
application. A separate file must contain the rules that represent isolation policy, as shown in Figure
5.7. The component platform is aware of the utilization of such policy file but it remains completely
transparent to existing components and applications that need not perform changes on existing
component or application code. Another important characteristic that must be taken into account
concerns the functioning of the isolation mechanism. Since dynamic component-based platforms
enable reconfigurations to be performed at runtime, the isolation mechanism should work likewise.
During start up or installation of a component, the information in the policy file must be used in
order to determine if such component needs to run in isolation or not.

81

Figure 5.7. Usage of an isolation policy at runtime

The model presented in Figure 5.8 generalizes the idea around an isolation policy according to
the basic concepts we expect. An application represents a component-based application and should
have one isolation policy, which has at least one isolation level. An isolation level is implementation
dependent since it can be interpreted in different ways, especially if in an isolation approach that
allows different components to be hosted within the same isolation boundary. For instance, a level
can be seen as a level of trust, or as group of components according to the grouping criteria
previously discussed. It can also be seen as a group of correlated components (e.g., implement the
same service, the same API), and so on.

Figure 5.8. Base model that represents the isolation concepts

Each level is comprised by a set of rules, which are a group of conditions. A condition can be, for
example, an expression that determines the criteria for identifying an untrustworthy component. For
instance, a component provided by company X, or a component that implements a given API. The
isolated entities (e.g., component, module) result from applying the policy to the application during
start up as well as to new components dynamically loaded into the application. The same rule can be
responsible for the isolation of more than one component instance.

The model described here is of general purpose but it can be specialized according to the needs
of a particular solution. For instance, one may want to customize the isolation level by taking into
account security considerations such as distinct permissions (e.g., file system permissions,
object/component instantiation permission) for each isolation level.

Runtime Reconfigurable Isolation

If after observing the activity of an isolated component, it is verified that it has never caused
any harm to the application, one may want to “promote” that component to a less restrictive isolation
level. A justifiable reason to do so is to avoid the communication costs when a component needs to
communicate with other components outside its isolation boundary and vice-versa. Therefore,
running components within the same isolation boundary is important in terms of performance.

B C

E FD

G H I

A

Application

Isolation
Policy

82

Since the isolation mechanism is governed by the policy, changes in the isolation must reflect in
the policy. Therefore, the isolation policy must be synchronized with what is happening at runtime.
To illustrate that, consider a component that the policy dictates that it should run isolated from the
main application. After using all necessary functionality from the untrustworthy component, it is
observed that its execution apparently brings no harm to the application. The component can then be
promoted, either automatically or by an administrator, to execute in the same isolation boundary as
the main application. If due to any reason the whole application is restarted, that component that was
promoted will be brought back to execute within its original isolated boundary because the policy file
was not updated.

Figure 5.9 provides a three-step simplified view of the runtime promotion of a component. In
step (1), the component C enters the reconfiguration stage because of its promotion from its current
isolation boundary to another one, which in this case is the trusted part of the application. In step (2)
the isolation policy is updated to reflect the promotion of C. If the application is restarted the policy
will be interpreted again and the information about C will be persisted. The third step (3) shows the
component C residing within its new isolation boundary. The communication that exists between
components C and I implied in higher communication costs. In the new scenario, it is not necessary to
do so since the calls between components need not to cross isolation boundaries.

Figure 5.9. Illustration of a reconfiguration fired by a runtime promotion of a component

5.2.2 Monitoring and Self-recovery

Although different techniques propose design diversity as a fault-tolerant approach, this is
something unsuitable to our context. Since the target dynamic applications are open environments
that can be reconfigured by adding and removing components, we cannot ensure that a new
component will internally have such redundant design or that compositions will rely in redundant
components. We rather try to enhance dependability by taking the approach proposed by ROC in
which we must cope with faults instead of trying to avoid them.

Fox and Patterson [Fox05] mention that a recovery-oriented approach must be considered to
achieve dependability since the usage of COTS “as-is” has lead to more error-prone and less
dependable applications. A significant monitoring and management component is fundamental for
dependable systems [Harauz09]. As part of our propositions, we use ROC in a self-recovery approach
that employs monitoring and management techniques in order to improve dependability in dynamic
component-based applications.

The ROC approach proposes to quickly recover from faults, helping to reduce application
recovery time (MTTR). By affecting MTTR, this technique helps addressing maintainability and
consequently availability. From ROC, we employ principles taken from crash-only software and
microreboot techniques [Candea03]. These techniques are used for performing resets isolated faulty

B C

E FD

G H I

A

Application

B

C

E

F

D

G H I

A

Application

Isolation
Policy

Policy file
update

2

Before reconfiguration After reconfiguration

Component
Reconfiguration

(promotion)

Migration to
New Isolation

Boundary

3

1

83

components in order to purge them from memory and bring them back to execution without needing
to reset the whole application. Targeting the recovery of individual component is a very good
strategy that impact in maintainability and availability as we can verify in [Gray86]. They mention
modularization as a good way for providing high availability in systems since modules can be the
unit of failure and replacement. When replacing a module, the application can give the impression of
having instantaneous repair. With such significant reduction in the MTTR, a failure recovery can be
perceived as a delay.

Reliability is also addressed by reducing MTTF. This is possible through monitoring
mechanisms that can help identifying potential faulty behavior in components before any error is
produced or any failure takes place. The detection gives information that can be used for performing
microreboots in such components before the fault is propagated to other components. In case of an
individual microreboot not being effective against a component, the whole sandbox should be
microrebooted. Also, if a component sandbox crashes or hangs, it can be automatically recovered to
normal activity without affecting the other isolation boundaries.

Autonomic Manager

In order to provide the desired autonomous functionality, we propose each component
isolation container to be wrapped as an autonomic element being capable of detecting faulty behavior
and performing self-recovery upon faults (e.g., component faults) or failures (e.g., container crash).
Figure 5.10 shows our example application that uses two additional isolation containers (one hosts
component A and the other hosts components B and C) for untrustworthy components. In the figure,
each isolation container has its own autonomic manager instance connected to it.

Figure 5.10. Autonomic managers for the isolation containers that host untrustworthy components

 As already detailed in Chapter 2, the concept of an autonomic element is taken from
autonomic computing (AC), consisting of a managed element and an autonomic manager. In our case, the
component isolation container is the element to be managed autonomously. Autonomic systems are
comprised by sets of interconnected autonomic elements capable of self-management, self-
configuration, self-optimization and self-healing. IBM’s AC architectural blueprint [IBM06] suggests
that a resource may have one or more autonomic managers, each implementing a self-* control loop.

Our proposition of autonomic element is currently limited to providing self-healing
characteristics to the component sandbox. Quoting Ganek03, we can describe exactly the objective of
our propositions concerning self-healing:

“The self-healing objective must be to minimize all outages in order to keep
enterprise applications up and available at all times.”

[Ganek03]

B C

E FD

G H I

A

Application

KM

A P

E

Autonomic Manager

KM

A P

E

Autonomic Manager

84

Closed control loops are the typical implementation suggested for the realization of autonomic
managers [IBM06]. The MAPE-K (monitor, analyze, plan, execute and knowledge) approach provides
separation of concerns, with good modularization of the tasks to be executed in a control loop. In
Figure 5.11 we show the usual architecture of a MAPE-K control loop, which is used in the autonomic
manager of the component isolation container. The figure depicts the isolation container touchpoints to
be used by the autonomic manager: the sensor, used for gathering monitoring data, and the effector,
used for performing operations on the sandbox.

Figure 5.11. Autonomic manager’s control loop architecture to be used with the self-healing component sandbox.

Continuous Analysis

Whatever decision is taken concerning the isolation, if temporary or permanent, the continuous
observation of the sandbox is important in both cases. Recovering from crashes and malfunctioning if
fundamental for both choices. The continuous monitoring and analysis provided by feedback control
loops allows doing that, taking proper action whenever necessary.

Under a temporal perspective, one may use essentially two approaches: quarantine and
permanent isolation. In the case of quarantine, the intention is to temporarily host the component in an
isolation container. After observation and analysis of the component, if it is verified that it presents no
risks to the application, it can be promoted (automatically or manually, by an administrator) to be
hosted with other components, thus minimizing IPC costs. The case of permanent isolation can be
intentional or unintentional. The former would consist in cases where it is desired to permanently
isolate components, either because of potential dangers for application stability (e.g., native library,
unstable code) or for other reasons (e.g., individual reboot from the rest of the system). The latter case
of permanent isolation would concern components that are not able to leave the quarantine because
observations show that they are unstable or present potential threats to system stability.

All isolation, monitoring and recovery mechanisms proposed here should not have direct
impacts in target applications. A key point to be considered in the implementation of our
propositions is that existing applications would not have to be changed in order to execute
components in isolation or to enable monitoring. The mechanisms should reside in the component
platform, and the isolation information about the components should be separate from the
application by means of a policy file. The monitoring and recovery mechanisms should also be
located outside the application in order to minimize performance impacts, and also not to be affected
by possible failures of the monitored environment.

Applications are not intended to be changed in order to make them run in component
platforms that provide the mechanisms that we propose. However, they can take more advantage of
our approach if some considerations are taken into account when developing components or when
deciding to isolate components. For instance, stateless components would be more appropriate for
the recovery mechanism, and component grouping criteria must also be taken into account if less IPC
overhead is desired.

Component Sandbox

Sensor Effector

KnowledgeMonitor

Analyze Plan

Execute

Self-Healing
Autonomic Manager

85

5.3 Summary

Different motivations were presented in this chapter, aiming mechanisms for the construction
of more dependable dynamic component-based applications. It discussed about the issues in
platforms that allow runtime software evolution, which bring flexibility but also risks because of
dynamic updates. The motivations for using such types of platforms can vary from plugin-based
applications that just want more flexibility without needing to stop during updates; to critical
applications that have high availability requirements and need to be continuously running even
during software updates. The installation of third-party components during runtime also can bring
potential risks when quality attributes are not known in advance or cannot be precisely evaluated
when combined with the components that comprise the running environment.

We have presented our propositions that address problems that can take place after dynamic
updates take place. Our proposed solution concerned the general architecture of a self-healing
component sandbox with the purpose of providing stronger isolation boundaries that prevent fault
propagation. While chapter provided a general view from an architectural perspective, the next
chapter will provide a more practical perspective by presenting the dynamic component-based
platform of choice for implementing and validating our approach, and what particular issues we
want to address. That chapter is followed by the implementation part of this thesis, subdivided into
three chapters.

.

Chapter 6

Target Component Platform

“We can't solve problems by using the same kind of thinking

we used when we created them.”

Albert EINSTEIN

Contents

6.1 OSGI AS THE TARGET PLATFORM .. 88

6.2 CLARIFICATION OF TERMS .. 93

6.3 ISSUES... 88

6.3.1 EXCESSIVE RESOURCE CONSUMPTION .. 89

6.3.2 NATIVE LIBRARIES CRASHES ... 89

6.3.3 DANGLING OBJECTS .. 90

6.4 DIVISION OF WORK .. 93

6.5 SUMMARY ... 93

In the last chapter we presented a broad view on problems concerning the quality and stability
of components and their resulting compositions. It was followed by our propositions to minimize the
impacts of using untrustworthy components in a dynamic component-based scenario. In this chapter,
we map these problems to a more specific scenario and materialize the proposed solution having the
OSGi Service Platform as our target dynamic component-based platform.

Before delving into the implementation details, this chapter describes the motivations behind
the choice of OSGi as the target of our implementations for validating our approach. We enumerate
the concrete issues targeted by our solution that will be used as the base hypotheses for our fault
model. We also provide a brief overview on the division of the implementation work that gives the
structure of the chapters that comprise the implementation part of this document. Some ambiguous
or unknown terms to be used throughout the implementation chapters are briefly explained in the
end of this chapter.

The implementation we performed uses a sandbox for hosting component dynamically loaded
during application execution. This untrustworthy part of the platform does not propagate faults to
the main environment and uses a recovery-oriented approach for re-establishing its service in case of
failures.

Our goal is to implement techniques for conducting us to the objectives presented in this thesis,
without being too strict about OSGi specification compliance. This is an experimental approach that
performs changes in the default behavior of OSGi frameworks. Therefore, adaptations should be
necessary due to limitations of the platform in use. In general, one of this thesis’ goals is to conduct to

88

a discussion on how (i.e., what design changes are necessary) these characteristics could be
incorporated in dynamic component-based platforms ― not being limited to the OSGi platform ― in
order to have more dependable applications.

6.1 OSGi as the Target Component Platform

The implementation of our approach focused on the OSGi Service Platform, which was
presented in Chapter 4. The OSGi technology was originally targeted to home gateways, which is the
reason for its original acronym, Open Services Gateway Initiative (now an obsolete term). Its
increased adoption in different software industry contexts, such as the Eclipse IDE [Gruber05] and
Java application servers [Desertot06] (JOnAS21, Glassfish22, WebSphere23), shows evidence that the
OSGi platform seems to be de facto dynamic module system for Java applications. At the time of
writing of this thesis, standardization efforts around Java modularity have been under inactive status
in the Java Community Process (JCP) website. These specifications concern a Java Module System
[JCP06b] and improved modularity support [JCP07]. While the former has been halted [Reinhold08],
the latter was postponed [Archives10] to future versions of the Java Platform.

OSGi has also been extensively used in different domains of academic research24, especially in
dynamic domains like pervasive computing, where a variety of topics orthogonal to that area are
covered, such as context-awareness [Gu04], home automation [Bottaro07b, Bourcier07], healthcare
[Wen-Wei08, Martin09], to cite a few examples. Due to the widespread adoption of OSGi technology
in software – either industrial or academic – that needs to be based on platforms that support runtime
software evolution, and the continuous growth in utilization, we found of significant value to
implement and validate our approach in a platform that has such a long reach. Since a COTS market
around that platform is emerging [OSGi07] and third-party components are increasingly becoming
available, we believe that in OSGi there are several scenarios and a real need concerning the ability to
execute dynamically deployed untrustworthy third-party code isolated from other components.

The principles and implementation efforts described here aiming dependability in dynamic
component-based applications applied to the OSGi technology can also reach a wide spectrum of
applications, both in industrial and academic projects. Although our implementation and validation
of the approach target the OSGi platform, the propositions are of general purpose and could be
applied to other component platforms.

The goal with our implementation is not to completely transform the OSGi platform into a fully
dependable component platform. We rather focus in validating the proposed techniques so we can
verify if they can really help into moving a step further toward more dependable dynamic
component-based platforms. Therefore, this proof of concept works as feasibility study for evaluating
the effectiveness as well as the impacts when implementing our proposed approach and perhaps in
the future employ these techniques in different contexts.

6.2 Issues

The OSGi platform does not provide fault-tolerant mechanisms for bundles running on top of
it. This responsibility is rather delegated to the bundles themselves, which must behave correctly
ensuring the well-functioning of the application. However, one cannot assure that third-party code
behaves correctly. Besides risks that are present in other component-based platforms, OSGi also has
some specific issues that may compromise application’s stability. This section enumerates problems

21 http://jonas.ow2.org/
22 http://glassfish.java.net/
23 http://ibm.com/software/webservers/appserv/was/
24 http://www.osgi.org/Research/HomePage

http://jonas.ow2.org/
http://glassfish.java.net/
http://ibm.com/software/webservers/appserv/was/
http://www.osgi.org/Research/HomePage

89

that our approach helps to solve or to reduce. While some of them are common to most centralized
component-based platforms, others are applicable to OSGi and similar platforms.

Both Java and .NET platforms run managed and type safe code, having features such as
bounds checking and garbage collection (preventing errors such as buffer overflows and memory
leaks, respectively). It minimizes a range of errors, but applications and components are not free from
naïve or malicious programming errors that under certain circumstances could lead to problems like
excessive memory or CPU consumption. Although sources of errors due to direct memory allocation
and handling pointer variables are not present in the Java platform, applications are not free of
memory leaks neither completely exempt of other types of faults that may crash or hang the
application.

There are also more general issues that concern most component platforms, such as
components that consume too much resources (e.g., CPU, memory), or that may perform illegal
operations that can crash the application. The former is very difficult to identify without proper
isolation and resource monitoring functionality. The latter is difficult to avoid when it is necessary
native code in OSGi applications. Running native code does not necessarily incur these penalties, but
it introduces non-negligible chances of such crashes taking place. Therefore, isolating the potentially
harmful component in its own fault contained environment is a good strategy for safely using its
functionality.

The dynamicity adds another variant to the behavior of components. When testing an OSGi
bundle, one must take into account the arrival and departure of services consumed by the bundle.
OSGi service-based component models (e.g., iPOJO, Declarative Services) help minimizing the error-
prone task of handling such dynamism. However they are not enough to guarantee that a bundle will
behave correctly upon dynamic events.

The next subsections describe the issues that can be introduced by components in the OSGi
platform and that are addressed by our approach and will serve as the basis for our fault model:
excessive resource consumption, native libraries crashes and dangling objects.

6.2.1 Excessive Resource Consumption

An analysis [Parrend08] on component vulnerabilities in OSGi shows that some of these
problems are caused by the lack of CPU and memory isolation between components, which is
fundamental for fault isolation. The namespace-based isolation used in OSGi is not robust enough for
a multiple component vendor scenario where one cannot assure that third-party code behaves
correctly. Since all components and objects coexist in the same memory space without any
mechanism that ensures object domains or other elaborate ways of isolation, components may
introduce faults in applications. As we already emphasized in this manuscript, if a component
crashes, the whole application is compromised.

The authors of the iJVM [Geoffray09] consider as a motivation for their isolation approach a
range of possible attacks from third-party components that can be seen as a sort of security threat
patterns: memory exhaustion, standalone infinite loop, excessive object creation, excessive thread
creation, hanging thread. We rather see these issues as potential errors because of bad programming
practices.

In OSGi and most component-based platforms we do not find too many options concerning
restrictions or configurations on resource consumption, especially in the component level. This is an
important aspect which can affect non-functional requirement such as performance, reliability,
availability, and in general, dependability. Isolation mechanisms can help in the recovery process, but
a fine-grained control on component resource consumption can help identifying the origin of the
problem.

6.2.2 Native Libraries Crashes

The Java platform provides a robust execution environment that prevents some basic
programming errors from happening like memory de-allocation, typing errors, etc. However, the
need to load native libraries into such managed environments opens breaches that can lead to JVM

90

crashes in case of severe errors caused by the underlying native library. When executing native code,
such verifications are no longer possible since the environment has no control on the execution
outside the managed runtime.

In Java, it is possible to load native code by using the Java Native Interface25 (JNI) API which
allows Java code to interoperate with code (applications and libraries) written in other languages
such as C and C++. It is sometimes necessary that applications reuse native code for a variety of
reasons: platform-dependent features of an application that are not supported by Java; reuse of a
library written in another language; or time-critical code that needs to be written in lower level
languages.

The Java Native Access26 (JNA) API is a library that can be used as an alternative to JNI. It is
simples than JNI but introduces more overhead. A significant advantage of JNA over JNI is the
optional feature of VM crash protection. If this feature is activated, native memory accesses are
protected from invalid accesses. However, the utilization of this feature is suggested only when
testing or debugging applications since it is not robust enough to support multi-threading
applications.

Centralized component-based frameworks like OSGi do not provide isolation boundaries that
ensure fault containment, rendering an application vulnerable to such threats, which usually are not
of intentional nature (i.e., malicious code). Therefore, by using a strong isolation boundary that
separates a bundle from the others is a good alternative to guarantee that an eventual crash would
not compromise application stability. This issue is also applicable to other component-based
approaches on top of Java, as well as other based on managed environments like .NET.

6.2.3 Dangling Objects

In another study [Gama08b] we have verified that inconsistencies originated from dangling
objects can be found in applications tested in a scenario of continuous bundle updates. The
conclusions point out that it is very hard to construct dynamic applications that are able to cope with
a truly dynamic environment.

The service-based composition that is possible in OSGi permits a bundle to consume a service
from another bundle without being aware of the existence of that provider. This loose coupling gives
good flexibility to components and applications, but this leaves the possibility of any provider being
used during runtime. As already discussed, the process of component testing as individual units does
not guarantee that they will behave the same way when used together in a composition. In the case of
dynamic platforms such as OSGi, besides testing a bundle’s functionality as an individual black-box
unit, it is important to verify how the bundle code reacts to the dynamic arrival and departure of
services in OSGi applications.

To give an idea about the possibilities of different scenarios, we can illustrate at least three
different situations for a simple service composition where a bundle consumes a service provided by
another bundle. It must be kept in mind that these possibilities keep growing when more bundles are
involved in the same composition.

i. A consumer bundle is started after the service provider bundle is started;

ii. A consumer bundle is started before the service provider bundle is started;

iii. The service provider bundle is updated while the consumer bundle was bound to the
service.

For scenarios (i) and (ii) let’s consider the instants Ix and Iy to represent the installation
timestamps of bundles X and Y, correspondingly, and that t1 and t2 determine valid timestamps,
where t1 < t2. For the sake of simplicity, instead of precisely mentioning that an object from a given
bundle provides or requires a service we will rather say that a bundle provides or requires a service.

25 http://download.oracle.com/javase/6/docs/technotes/guides/jni/
26 http://jna.java.net

http://download.oracle.com/javase/6/docs/technotes/guides/jni/
http://jna.java.net/

91

In Figure 6.1, which illustrates scenario (i), the bundle Y is installed before the bundle X and
also has registered (step 1) a FooService instance before the bundle X has been installed. After being
installed, the bundle X retrieves (step 2) that service from the service registry, and then binds (step 3)
to it. This is one of the simplest scenarios, where we just verify that an installed bundle correctly
retrieves the service(s) it needs, if they are available. No dynamism handling is involved in this case.

Figure 6.1. Bundle X retrieves a service that was already registered at instant t1, before that bundle’s installation at

instant t2.

A more illustrative example is depicted in Figure 6.2, representing scenario (ii). The bundle X is
installed at t1, and subscribes (step 1) to service events that are notified by the service registry. After
bundle Y is installed at t2, it will register (step 2) the FooService it provides. The bundle X will be
notified (step 3) of the service arrival, and will be able to retrieve the required service so it can bind
(step 4) to that service instance and use it. Now we see a scenario where dynamism is involved and
requires bundles to handle events. If the bundle X did not subscribe to the service events, it would
need to use a polling mechanism in order to get a reference to the service. In both examples (i) and
(ii), as well as in any OSGi service binding, it is necessary to listen to the service unregistration event
and appropriately handle it by releasing the references (i.e., unbinding) to that service. This is the case
of the scenario proposed in (iii).

Figure 6.2. Bundles with different installation timestamps I. Bundle x retrieves a service instance after receiving

its registration notification.

Figure 6.3 represents a more elaborate illustration of OSGi’s dynamism that comprises the
scenario described in (iii). In this example we explicitly detail in the figure the objects that represent
the service consumer and the service provider. In that case, a bundle is updated and a reconfiguration

JVMJVM

Bundle YBundle X

FooService

OSGi

Service
Registry

3. bind

1. register

2. retrieve

Iy = t1Ix = t2

JVMJVM

Bundle YBundle X

FooService

OSGi

Service
Registry

4. bind

3. asynchronously notifies

2. register

1. subscribe

Ix = t1 Iy = t2

92

at the service level must take place. When a bundle goes under an update transition in its lifecycle, it is
stopped, reloaded and restarted. During the stop process the framework automatically unregisters all
services provided by that bundle. Therefore, any other bundle consuming those services must release
references to them. The correct handling is represented in (a) on that figure. However, if the
unregistration notification is ignored and the references to the service are not release, as in the case of
(b), the service object becomes a dangling object that cannot be garbage collected.

The OSGi specification refers to such cases as stale references which in general, are not only
limited to services, but to any reference to any object that belongs to the class loader of a stopped or
uninstalled bundle. The utilization of such objects after the provider bundle being stopped leads to
inconsistencies such as (1) incoherent operation results (e.g., stale services returning old data from
stale caches) or erroneous behavior due to the stale object’s context which may have been released or
de-initialized (e.g., closed network connections, closed binary streams, unreachable device); (2)
garbage collection obstruction of the retained object, its class loader, and the class loader’s loaded
types, leading to a memory leak.

Besides service unregistration mishandling, bundles that have been incorrectly developed may
also leave threads still executing. This behavior was characterized in [Geoffray09] under the security
threat pattern of a hanging thread. The correct stopping of a bundle consists of shared responsibilities
between the OSGi platform and the bundle code. The platform notifies the stopping bundle via its
BundleActivator.stop() method, where it should perform any de-initialization code that may be
necessary. In addition, the framework performs the unregistration of services. Therefore, there are no
guarantees that a stopped bundle will release the resources it has allocated (e.g., spawned threads,
open streams, network connections). The de-initialization is mostly based on good programming
practices. Although component uninstallation is possible in OSGi, the components are not actually
purged from memory these error scenarios are likely to exist. In the long run, applications may
accumulate inconsistencies due to dynamicity mishandling. As pointed out in [Geoffray09] such lack
of bundle termination support, can also represent a security threat when uninstalling a bundle that
contains code that malicious code that keeps executing after uninstallation.

Figure 6.3. A bundle update correctly handled in (a) and incorrectly handled in (b), where a stale reference points

to an unregistered service from a bundle that should no longer be used.

Bundle YBundle X
FooService

Bundle YBundle X

FooService

Bundle Y’

FooService

Update bundle Y
(correct event

handling)

FooService

Bundle Y’

FooService

Update bundle Y
(incorrect event

handling)

Reference to a stale

service object

(a) (b)

Bundle YBundle X
FooService

Bundle YBundle X
FooService

93

A similar problem can be found in the Eclipse platform’s plugin system. Although Eclipse is
built on top of OSGi, it has its own plugin system which relies on the concept of extensions and
extension points [Gamma04]. A plugin that defines an extension point allows other plugins to provide
extensions that can contributed to it. A plugin can query the extension registry to verify providers of
extensions that fit its extension points. While it is possible to retrieve service instances from the OSGi
service registry, in the extension registry one may retrieve only metadata. It is up to the plugin that
queries the extension registry to instantiate the objects. Therefore we see a similar problem to the stale
references in OSGi. In the case of the stale objects originated from third-party components, tracking
the creation of objects that are based on extension points is much harder than in OSGi’s service layer.

6.3 Division of Work

To address these issues in the OSGi platform, we have performed an implementation of our
propositions by employing two isolation containers. Although the proposed approach suggests the
usage of multiple isolation containers, our realization was implemented one container for executing
the trusted components of the application and another one for executing untrustworthy components.
These platforms are referred, respectively, as main platform and sandbox platform.

The implementation we performed uses a sandbox for hosting component dynamically loaded
during application execution. This untrustworthy part of the sandboxed OSGi does not propagate
faults to the main environment and uses a recovery-oriented approach for re-establishing its service
in case of failures.

In general, the work performed to implement the proof-of-concept is in this manuscript as
three distinct parts, which are enumerated below, and are detailed in the same sequence from
chapters 7 to 9.

1. Make an OSGi application execute with a subset of its components isolated from the main
components. This step was divided into three parts: (i) the isolation mechanism; (ii) the
reconfigurable isolation policy and (iii) a transparent communication mechanism between
the platforms;

2. Transform the sandbox in a managed element with self-diagnosis and self-healing
capabilities;

3. Employ the separation of concerns principle for removing the dependability concerns out
of the target OSGi implementation.

6.4 Clarification of Terms

In order to remove ambiguity from some terms used throughout the implementation chapters,
we present a brief explanation on what it is meant on each of the selected terms that may have an
ambiguous meaning:

Local. Local is merely a perspective in terms of isolation boundary since our isolation
approach takes place in the same machine. It would mean the platform of the current
execution code or example being described. Local will be the opposite of isolated (e.g., a
local service versus an isolated service), instead of being the opposite of remote (e.g., a
remote machine or process). The term local may refer either to the trusted or the sandbox,
depending on the context (e.g., an untrustworthy bundle that uses a local service instead
of using an isolated service hosted in the trusted platform).

Sandbox. As previously described, in our approach a sandbox will refer to a fault-
contained environment where untrustworthy components are executed. Again, we stress
the fact that although the same term is used in other approaches, the principles are
different from the one use in Wahbe’s sandbox [Wahbe93] and from the approach used in
the Java Applet sandbox security model [Fritzinger96]. From a general perspective, we

94

use the term sandboxed OSGi approach when referring to the approach as a whole. From an
implementation point of view, we also may refer to the sandbox as the sandbox OSGi
platform for untrustworthy components.

Main or trusted platform. Since we use the concept of untrustworthy components, which
are executed in the sandbox, our solution will also refer to the concept of a trusted platform,
where the trusted components execute. The implementation of such concept presented
here is referred as the main OSGi platform. Therefore, both terms may be used
interchangeably.

Component. Under a deployment point of view, an OSGi bundle can be seen as a
component although it is commonly referred also as a module since it may be seen just as a
module that bundles different resources (e.g., classes, descriptors, pictures, libraries).
Because bundles do not present any explicit composition logic, one may argue that OSGi
components are actually constructed on top of a higher abstraction layer that use services
as the elements of composition in service-oriented component models such as Declarative
Service [OSGi11], Service Binder [Cervantes03], iPOJO [Escoffier07] or Blueprint Services
[OSGi09]. Since our implementation focuses on OSGi infrastructure we will use the terms
module, bundle and component as synonyms. Whenever referring to those higher-level
components we will use terms such as iPOJO component or Declarative Services component to
avoid an ambiguous usage of the term component.

OSGi internal component. Since the realization of our approach affects OSGi
frameworks, we needed to change OSGi implementation code. Whenever mentioning to
an OSGi internal component we mean component as a logical part of the core OSGi
specification or its implementation. The term would rather refer to a conceptual
component and not to a bundle deployed on OSGi or to any other unit of deployment. For
instance, under the point of view presented here, the Service Registry is considered as an
OSGi internal component.

Application. This is another term used with an overloaded meaning. We may refer to an
OSGi application as the whole OSGi platform as well as a bundle or a set of bundles that
embed the logic of an application. In practice, an OSGi platform may host several
components that act as individual applications (e.g., a Servlet container, a GUI
application) sharing the same runtime.

6.5 Summary

This chapter briefly explained the motivations for using the OSGi platform as the component
framework for implementing and validating our propositions, followed by a discussion on issues that
concern the quality of components and that may affect OSGi applications, especially when dealing
with untrustworthy third-party code. The chapter also provided the clarification of some terms that
may be ambiguous to the reader of this manuscript.

A division of the work performed in our implementation of the proposed approach was also
presented and that same order is preserved in the chapters to come. Therefore, the next chapter will
present details on the architecture and the strategies taken for implementing the component isolation
mechanism. The chapter that follows gives details about the self-healing mechanisms for the sandbox.
After that, the last implementation chapter explains the approach used for keeping the dependability
code as a separate concern that does not directly affect the target source code of OSGi
implementations.

PART III

IMPLEMENTATION

Chapter 7

Component Isolation Approach

“There's something to be said in favor of working in isolation

in the real world”.

Archie Randolph AMMONS

Contents

7.1 VIRTUALIZED PERSPECTIVE .. 98

7.1.1 RELATED TECHNIQUES IN OSGI ... 98

7.1.2 TRUSTED AND SANDBOX PLATFORMS .. 99

7.2 ARCHITECTURE .. 100

7.2.1 CORE COMPONENT ... 101

Sandbox Dependencies Resolution .. 101

Bundles Cache and Synchronization ... 102

7.2.2 ISOLATION POLICY MANAGER .. 104

Isolation Levels .. 105

Isolation Policy .. 106

7.2.3 SERVICE REGISTRY ... 110

Standard Mechanism... 110

Isolated Service Lookup ... 112

7.2.4 PLATFORM PROXY ... 114

Communication Principles .. 116

Layered Components ... 116

Message Abstractions .. 118

Inter-Platform Communication ... 119

Implementation Limitations .. 120

7.3 ISOLATION CONTAINERS... 120

7.3.1 JAVA ISOLATES... 121

7.3.2 JAVA VIRTUAL MACHINES .. 122

7.3.3 PLATFORM LAUNCHERS .. 123

7.4 SUMMARY ... 124

Our propositions to enhance dependability in dynamic component-based platforms are
divided into three main topics: the dynamic isolation of components, a self-healing approach for the
isolation containers, and the handling of dependability as a separate concern. This chapter focuses on

98

the first one, where we describe the architectural choices and the implementation of the mechanisms
that enable the dynamic isolation of components in the OSGi platform, in a mechanism that we refer
to as the Sandboxed OSGi approach, introduced in [Gama09a] and later [Gama10b]

The next sessions provide an architectural overview, and details about the components that
comprise the solution, exploring the implementation of this approach, the architectural choices that
were made and the current limitations of the solution. We also discuss about the different isolation
containers that were employed by our implementation.

7.1 Virtualized Perspective

The propositions described in Chapter 5 present a concept of isolation boundaries for safely
executing a component or a group of components considered untrustworthy, without risks of failure
propagation that can harm the execution of the application as a whole. As a possibility for
implementing such propositions in the OSGi service platform, we have envisioned the utilization of
multiple OSGi platform instances for separating the execution of untrustworthy components.

In the OSGi platform, a component needs a runtime providing important infrastructure such as
the lifecycle, service and module layers. The lifecycle gives the flexibility of loading, undloading and
updating components without needing application restart. The module layer takes care of the
dependency wiring among components and all the class loading. The service layer gives a good level
of decoupling between components, allowing them to communicate without having direct
dependencies.

As an initial possibility we have envisioned, as an ideal mechanism, a lightweight container that
mimics much of OSGi functionality, and that would transparently delegate parts of the tasks (e.g.,
class loading, bundle caching) to a central OSGi container. This central point would provide a virtual
perspective as if the platform was a single application. The containers would resemble the Windows
dllhost surrogate process that serves as an isolated container for COM components.

However, we decided to concentrate on the central theme of the thesis (isolation and recovery-
oriented mechanisms) where our contributions would be of more value, instead of focusing on
functionality that is already available in the OSGi platform. The chosen approach was rather the
usage of multiple OSGi platforms, each one running a different set of components but all platforms
interconnected giving the virtual impression that only one application is running. The next subsection
illustrates existing techniques that use similar approaches, followed by more details about our choice.

7.1.1 Related Techniques in OSGi

Different approaches have used very similar virtualization strategies for different purposes,
but all of them increasing the level of isolation in OSGi, as presented in Chapter 4. In Virtual OSGi (V-
OSGi) [Royon06], their context is that of multiple service providers, each one with its own OSGi
instance but sharing the same underlying OSGi platform that runs in the same JVM. The attempt
“RFC 0138 Multiple Frameworks In One JVM” was present in an early draft of the OSGi specification
version 4.3 [OSGi10a], however the version that was published as a final document [OSGi11] did not
include that section.

Dependable distributed OSGi [Matos08] is based on that approach, but with a few
enhancements and a variant that employs several virtualized OSGi platforms in different network
nodes. Their goal is to allowing the migration of bundles to be executed in distant platforms that have
more resources available.

The Virtual OSGi framework [Papageorgiou08] is another effort that employs virtualization
techniques. It runs in a distributed context, allowing bundles to execute in different nodes but giving
the impression that there exists only one OSGi framework. A distributed service registry allows
bundles to transparently locate and invoke services that are located in other machines. Its goal is to
provide different applications to run their own OSGi instance on top of another OSGi platform.

99

7.1.2 Trusted and Sandbox Platforms

Our sandboxed OSGi strategy allowed us to make a preliminary evaluation of the component
isolation feasibility using multiple isolation containers. However, due to time constraints we were not
allowed to continue evaluating the scalability of the implemented solution as a multi-container
approach, therefore the solution presented here uses only two containers: one for the trustworthy
components (e.g., the components that have been previously tested together) and another one for the
untrustworthy components (e.g., unknown origin, lack of testing, known bugs).

In fact, no matter how many isolated containers are being used, the virtualization principle
remains the same. Although they are separated in different execution environments, virtually the
application runs as if all of the containers together behaved as a single application. In Figure 7.1 we
can illustrate the two platforms of our solution, each one running different components.

Figure 7.1. Virtualization approach for separating execution of untrustworthy bundles from the trusted part of the

application

A virtualization layer can give the impression that both OSGi platforms that are running are
actually the same application. If the sandbox fails, the mainOSGi platform running is not affected.
What will happen is that while the sandbox is being recovered, the application would be in degraded
mode since services that are available in the sandbox will be temporarily unavailable. However, we
do take into account a gracious degradation, since this virtualization layer introduced would notify
the main platform about the departure of services that are hosted in the sandbox.

Changes we have introduced in the OSGi framework allow such virtualization to be
performed. Based on the component isolation policy, the startup of a component would determine if
it should execute in the sandbox or in the trusted platform. This layer also introduces transparent

OSGi

Virtual Perspective

Bundle A Bundle DBundle B Bundle C

Main
OSGi

Sandbox
OSGi

Sandbox Platform

Bundle A Bundle B Bundle DBundle C

? ?

Trusted Platform

Fault Contained Environments

100

communication between services located in isolated platforms. For instance, code from an OSGi
bundle running in the trusted platform can transparently retrieve and use a service that is hosted in
an isolated bundle on the sandbox. Details on the OSGi internal components that realize this
virtualization layer are provided in the sections that follow.

7.2 Architecture

Just like the terms component and service, there are several ways for defining what is a software
architecture. Clements and Northrop [Clements96] analyze different definitions, and draw a bottom
line saying that software architecture is about a system’s structural properties, which can be in terms
of components and their interrelationships. Therefore, under that prism we present a high level view of
the components involved in our approach and their interconnections, that is, the architecture of our
solution. This high level perspective is followed by detailed subsections on each of the main
components identified in this solution.

The implementation of the virtualization layer of our solution is applicable to the internals of
any OSGi implementation, since most of the characteristics we propose are centered on the general
functioning of the OSGi platform without specificities concerning any particular OSGi
implementation. We have changed the behavior of some OSGi internal components, and also have
added new components that realize part of our propositions. In terms of OSGi layers, the work
presented here focuses mostly on the life cycle and service layers.

Both trusted and sandbox platforms use the same code, but their runtime behavior is different.
Figure 7.2 shows a UML component diagram that contains the parts of the OSGi framework that are
involved in our solution. It is rather a simple perspective of logical components ― in contrast to
physical components, which we rather see as deployable units ― that after compiled and built are all
part of the same binary file that consists in the OSGi framework. In the perspective that we give in the
figure, the OSGi original framework internals only distinguishes the Service Registry from the rest of
the OSGi core functionality. These two components are represented in gray color on the figure. They
had to be changed in order to add the behavior enabling the sandbox approach.

Our approach also introduced two new internal components, represented in white color on
Figure 7.2. The Platform Proxy component is responsible for the communication between the
platforms, acting as a proxy that forwards calls to the sibling platform ― details on this mechanism
are presented further in this chapter. The other component is the isolation policy manager, which
handles the engine that interprets and manages the isolation policy. As it can be seen in the figure, the
isolation policy manager component is not used in the sandbox platform, since the isolation decisions
are taken in the trusted platform. Therefore, the component is not executed at all in the sandbox.
Concerning the other three components (Core, Service Registry and Platform Proxy), their behavior
may change depending on the platform where they execute. The core component behavior, for
instance, performs several verifications during life cycle events in the trusted platform. However, in
the sandbox such verifications need not be performed and the behavior rather resembles the
functioning of a regular OSGi implementation.

Figure 7.2. Perspective of the solution in terms of logical components. The original OSGi internal components that

we have changed are in gray, while components introduced by our solution are in white.

Trusted Platform Sandbox Platform

PlatformProxy
Core

Isolation

Policy Manager

<<use>>

PlatformProxy

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

<<use>>

Service

Registry

Service

Registry

<<use>>
<<use>>

<<use>>

<<use>>

Core

<<use>>
<<use>>

<<use>>

101

The next subsections get into more detail on each one of the components, providing more
precise information about design decisions that had to be taken, as well as each component’s goal and
how they were implemented.

7.2.1 Core Component

The main changes aggregated to this pre-existing part of OSGi concerned bundle life cycle
operations (install, start, stop, update, uninstall). Although the core component executes in both
platforms, the lifecycle changes apply only to the trusted platform. With the code that has been
added, when any OSGi bundle installation takes place the core installs the same bundle in the trusted
platform and also in the sandbox so the same dependencies are present in both platforms.

Sandbox Dependencies Resolution

This duplication approach was chosen in order to simplify the bundle dependency
management in the sandbox. Since a bundle usually needs types provided by other bundles, it relies
on a dynamic type dependency resolution in order to be able to execute. In fact, there is no explicit
dependency on Bundle X depends on Bundle Y. Actually it is calculated at runtime, based on the
information of a bundles’ Import-Package manifest header intersected with others bundles’ Export-
Package manifest header. Taking that into account, the importer’s type dependencies can be
calculated. In an initial approach we were installing in the sandbox only the direct dependencies of a
bundle, by using a naïve algorithm for calculating the dependency resolution only taking into
consideration a shallow dependency depth.

As an example we can take two bundles A and B suppose that bundle A depends on resources
(e.g., types) provided by B. Consider a dependency that denotes “A depends on B” to be represented

by the expression A B . The initial algorithm we have used for determining the existence of a

bundle dependency can be represented by the expression , () ()A B iif IP A EP B

where ()IP x is a function whose return value corresponds to the set of type packages (e.g., org.foo)

imported by a bundle x and ()EP x is a function with a return value that represents the set of type

packages exported by a bundle x .

A bundle dependency is not necessarily reflexive ― i.e. the property of both dependencies

A B and B Abeing true at the same time ― but it is transitive. If we have a bundle C and a

bundle dependency B C , therefore A B C is also valid. However the shallow dependency
resolution we initially used would not be enough in cases of such transitivity dependency. In that
case, not only B, but both bundles B and C would also have to be installed in the sandbox so A could
have its dependencies resolved.

A full implementation of our dependency resolution approach would have additional
performance penalties since dependency recalculations are necessary in different situations. For
instance, in the above example, suppose B and A are installed in the sandbox. After the uninstallation
of B, we would have to recalculate the dependencies of A based on the set of bundles from the main
platform. Similarly, in another example, B was not yet available but A was installed without resolving
its dependencies. Whenever a new bundle is installed in the main platform, verifications against the
new bundle would have to be made in order to check if it fulfills bundle A’s dependencies.

The limitations of our naïve dependency resolution approach and the inherent complexity of
the problem itself, such as several dependency levels as well as cycles, led us to choose another
approach. Since all the dependency resolution is ready and working in OSGi implementations, we
preferred to use it by just replicating all components in both platforms, instead of trying to deploy
only untrustworthy components and its dependencies. Therefore the dependency resolution in the
sandbox would be just the same of the trusted platform.

However, not all components would be active in the two platforms. At least the framework
bundle is active in both platforms. The ones considered as trustworthy would be activated just on the
Sandbox, and the ones considered as trustworthy would run only in the trusted platform, as
illustrated in Figure 7.3. In that example, bundles A and C are considered trustworthy and therefore

102

run in the trusted platform, while bundles B and D are untrustworthy bundles that execute in the
sandbox. This replication may be seen as a heavy solution in terms of memory footprint. Though, in
OSGi an installed component is not necessarily loaded in memory. Like a bundle in other states, a
resolved bundle is represented at runtime by an instance of org.osgi.framework.Bundle. However the
types contained in such bundles are not necessarily loaded in memory. The OSGi framework would
instantiate a class loader for such inactive bundles only when needed. For instance, when the types
provided by a bundle under resolved state are being used by active code from another bundle.

Figure 7.3. Illustration of the same application split into two isolation containers on the top (dashed bundles are

inactive.), but giving a virtual perspective of a single application on the bottom.

Bundles Cache and Synchronization

According to the OSGi specification, bundles must be cached along with their runtime state.
When a bundle is installed in an OSGi runtime, it is persisted in a cache typically placed in the local
filesystem. Since the OSGi framework consists in one bundle, persisting information about what other
bundles have been deployed, as well as their state, in important when stopping an OSGi application
and starting it again. Without such functionality, in such scenario all bundles would have to be
installed again.

As we have not changed anything concerning the bundle caching, our approach duplicates the
bundles putting them in both caches. However the state for each bundle would differ in these caches.
This drawback, however, can be minimized by changing the framework’s code for using one single
cache for both platforms, since they use the same set of components. However such solution must
provide distinct information concerning the bundles state in each platform.

STARTED

OSGi

Virtual Perspective

Bundle A Bundle DBundle B Bundle C

STARTED

STARTED RESOLVED RESOLVED STARTED STARTED

Main
OSGi

Sandbox
OSGi

Sandbox Platform

Bundle A Bundle B Bundle DBundle ABundle DBundle B

RESOLVED

Bundle C

STARTED

?? ? ?

Bundle C

RESOLVED

Trusted Platform

Fault Contained Environment

STARTEDSTARTED

?

Trustworthy

Untrustworthy

Legend

103

The sets of bundles from both platforms are kept synchronized, by also replicating on the
sandbox the life cycle operations performed on the trusted platform. Figure 7.4 shows the state
diagram with the possible states and transitions of an OSGi bundle. The transitions that are in bold
concern parts of the OSGi framework where we had to introduce additional behavior in order to keep
the set of bundles synchronized in both platforms. The resolve transition is transparently handled by
regular OSGi framework behavior, for that reason we have not changed it. The other lifecycle calls
performed on the main OSGi are all forwarded to the sandbox after being executed locally, except for
the start transition. It has a special verification step which concerns checking the isolation policy and
verifying if the bundle needs to run in isolation, as detailed further in this manuscript. If it is the case,
the bundle is not started in the main platform, but rather in the sandbox. In a special case, a bundle
may need to be activated on both platforms. This is necessary, for instance, for OSGi component
models like iPOJO and Declarative Service which have a bundle that provides the component model
runtime. The stop transition could also have a verification to check in which platform the target
bundle is running, but we simply forward the call to the sandbox. This is useful in the case where a
bundle is active in both platforms, though useless if it is active only in the trusted platform.

Figure 7.4. OSGi bundle state transitions. The ones in bold font are affected by our solution.

An important issue around the synchronization of bundle sets concerns their unique identities.
A bundle is assigned with a unique and persistent sequential number when installed. However there
is no guarantee that the same IDs are going to be used in both platforms, even though by default our
solution uses independent numbering. The reason for this uncertainty is that if anything goes wrong
during installation in the sandbox, the unique number is lost and the next bundle identifier available
will be that lost number incremented by one, while in the sandbox the current ID was not
incremented. Therefore an installation error in the trusted platform would desynchronize the bundle
identifiers of the two platforms. We have tackled this problem by keeping a correspondence map,
which is also persisted, illustrated in Figure 7.5. Whenever a bundle lifecycle operation is invoked in a
given bundle, our code checks the corresponding bundle ID of the same bundle in the sandbox and
then forwards the call to the sandbox platform using that ID.

INSTALLED

RESOLVED

UNINSTALLED

ACTIVE

STOPPING

STARTING

install
update
refresh

stop

start

re
s
o
lv

e

r
e
fr

e
s
h

u
p

d
a
te

u
n

in
s
ta

ll

u
n

in
s
ta

ll

104

Figure 7.5. Identifiers of the same bundle may differ from one platform to another. A correspondence list is kept

persisted and in memory in order to correctly apply the mirrored life cycle transitions.

A downside of the current implementation is that the object instances of type
org.osgi.framework.Bundle, used for representing bundles in the OSGi runtime, do not reflect the
virtual perspective. For instance, if a bundle on the main OSGi platform programmatically retrieves
the Bundle B (Bundle 2) instance and calls the getState method of that object, it will provide the actual
state (resolved) of the bundle in that platform not the virtual state (started) that corresponds to its
execution state in the sandbox.

Other shortcomings already described, such as the cache replication and the numbering
scheme could have alternative solutions. However their original behavior was kept for the sake of
portability. It allows to easily apply these isolation techniques to any OSGi implementation without
needing to change the caching approach in use. Since the realization of the caching mechanism is
implementation dependent, we would need different customizations for each OSGi implementation,
thus creating difficulties concerning the maintainability of the code.

7.2.2 Isolation Policy Manager

The logic that is behind the dynamic component isolation mechanism is implemented in the
form of a policy that defines rules that should be evaluated during application execution. The isolation
policy manager (IPM) is responsible for interpreting the policy and enforcing it during execution. It is
instantiated and used only by the trusted platform. Relative to our propositions, this implementation
introduces an additional level of granularity by allowing a more fine grained software entity to be
isolated. In addition to the isolation of OSGi bundles, we provide the possibility to isolate services
that run in the trusted platform. The goal of introducing this softer isolation option is to prevent
minor faults related to stale references, which can be tolerable depending on the application. Hence,
as a form of clarification throughout the text, we will refer to this softer isolation of services as a weak

form of isolation, while a strong isolation will refer to a component (as well as the services it
publishes) isolated across an isolation boundary.

Services are an important concept in the OSGi platform, but the mishandling of the dynamism
concerning their arrival and departure may introduce dangling objects referred as stale references in
the OSGi specification. This is a problem that can be easily identified in the service layer [Gama08b],
but it is not tracked by the OSGi framework. Since the communication between bundles in OSGi is
performed in a loosely coupled way through services, if we introduce a proxy layer between service
consumer and provider it is possible to minimize such dangling references from preventing servant
objects to be released [Gama08c].

STARTED RESOLVED RESOLVED STARTED STARTED

Main
OSGi

Sandbox
OSGi

Sandbox Platform

Bundle A Bundle B Bundle DBundle ABundle DBundle B

RESOLVED

Bundle C

STARTED

?? ? ?

Bundle C

RESOLVED

Trusted Platform

11 22 33 4455 7711 22

1-1
2-2
5-3
7-4

Bundle ID
correspondence

105

Isolation Levels

The three different levels of isolation we use in this solution are presented on Figure 7.6. The
small boxes inside the components (bundles) illustrate objects which may consume or provide
services. The binding illustrated in (I) shows an object from a bundle consuming a service provided
by another bundle, with no isolation between them. This direct binding is the standard communication
mechanism in OSGi. The middle part (II) of the figure shows local service isolation where a proxy
between the service consumer and provider provide weak isolation. This is the service-level isolation
we have previously described. The example in (III) shows the level of component isolation, which was
the initial target of our propositions for providing strong isolation. In that case, the untrustworthy
component runs in a fault contained environment boundary isolated from the trusted application.
Since the communication is performed by means of services, the communication over the isolation
boundaries is made through services that use the IPC mechanism described further in this chapter.

Besides the absence of fault containment in the local service isolation, there is a small difference
in the isolation principles used in both approaches. In the component isolation strategy, whatever
task the component performs it will be done in isolation. In relation to a component in the main
platform, the isolated component can play the role of a service consumer or that of a service provider
(the example given above). In the case of the local service isolation strategy, we want to prevent the
direct usage of certain services. Therefore the isolated entity in that case is always the service
provider, as illustrated in Figure 7.6.

Figure 7.6. Illustration of different isolation levels in OSGi. The one in the bottom is the regular direct binding
provided by OSGi. The middle and top ones are provided in our solution and refer to service and component

isolation, respectively.

The two types of software entities we deal with—bundle and service — are represented as
specializations of an IsolatedEntity in the model of Figure 7.7, which slightly refines the one
previously presented in Figure 5.8. At runtime, the IPM maintains instances of the objects abstracted
in that model. This runtime information is centered in the policy. The actual service objects and
runtime representations of bundles (org.osgi.framework.Bundle instances) are not affected by those
abstractions since they are a sort of metadata of those entities. In fact, the policy metadata instantiated
at runtime makes reference to those objects. For instance, in our implementation, a Rule object holds a
map of the IsolatedEntity objects it affects. It is useful for visualizing the affected entities and
performing runtime reconfigurations of the policy.

The component level isolation has been already illustrated, taking the form of a bundle that
runs in the sandbox platform, isolated from the main platform. In our approach, if the service needs
to be locally isolated, we provide a proxy to it, using the approach illustrated in [Gama08c]. The
implementation of such isolation strategy could have been possible with OSGi service hooks,

Trusted Platform Sandbox Platform

Service Proxy
ProviderConsumer

Consumer

Consumer

Provider

Provider

Service Proxy

Service Proxy

(III) Component Isolation(III) Component Isolation

(II) Local Service
Isolation

(II) Local Service
Isolation

(I) No Isolation
(direct referencing)

(I) No Isolation
(direct referencing)

106

introduced in the specification 4.2. It would work in a decentralized way because the proxy
generation would be managed by a separate bundle that would provide service hooks that intercept
service retrieval, where they could generate a proxy to the actual service, which is the mechanism
used for proxy generation of OSGi remote services as provided in the Apache CXF27 project, for
instance. However, we preferred to maintain our approach mainly for two reasons: firstly, the
isolation policy manager is a mechanism that we have embedded in the OSGi framework, and we
want to deal with it in a centralized way; therefore, using a separate bundle would be contrary to our
design principle. Secondly, because it is introduced in since the OSGi specification version 4.2, the
service hooks mechanism is not backwards compatible. Consequently, we would not be capable of
providing such isolation mechanism in OSGi frameworks that implement previous specification
versions. Such focus on portability across versions is further detailed in Chapter 9.

Isolation Policy

The isolation policy used by a platform is defined as a separate file written in an XML-based
Domain-Specific Language (DSL) that we have created for that purpose. The scope of the domain is
limited to the model presented in Figure 7.7, which can be seen as our DSL domain model. It is a
specialization of the general isolation model provided in the propositions chapter (Figure 5.8).

Figure 7.7. A model that represents the two types of isolated entities used in our implementation.

An aspect to be noted is that this model mixes concepts that are represented at design time and
runtime. While the IsolationPolicy, Level, Condition, Rule and its subtypes can be represented both as
runtime objects and definitions written in the policy file (example in Listing 7.1), the IsolatedEntity
concept and its specializations are not visible in the policy file. They are actually represented by
runtime objects that are metadata associated to the corresponding rule that determined their isolation.

Besides the representation of such abstract concepts in its grammar, our DSL (its XML Schema
Definition is listed in Appendix B) specifies the possible types of rules and the condition syntax
(illustrated in Listing 7.2 and Listing 7.3) that are supported by the policy. The conditions are match
expressions that compare metadata about the entity (bundle or service) to be isolated. The operations
are based on the equals (the character “=”) and like operators, with both of them accepting negation
(the character “!”). When using the like operator, the match criteria will be evaluated as a regular
expression. The accepted metadata syntax is based on the attributes a mapping of some of the keys
used in the bundle manifest headers (e.g., Bundle-Vendor, Bundle-Name, Export-Package, Import-
Package).

27 http://cxf.apache.org/distributed-osgi.html

http://cxf.apache.org/g

107

The manifest headers are used for criteria in both bundle and service isolation rules. In the case
of services, the bundle metadata taken into account is the providing bundle (i.e., the bundle that
publishes the service). In addition, local service isolation uses operators for comparing information on
typing: interface, which compares the match expression to the service interface name, class, using the
class name of the service object for comparison and superclass, which traverses the hierarchy
comparing the names of the superclasses with the match expression. The service typing information
is based on String comparison to avoid class loading errors during execution. The runtime values for
checking bundle isolation can be obtained from bundle metadata (manifest headers), used for both
component and service isolation, and on type information in the case of service isolation.

<?xml version="1.0" encoding="ISO-8859-1"?>

<isolationpolicy name="sample">

<components>

 <!-- Blocked points of access. Defines which services must not be

 retrieved from an isolated component (used for service interfaces only)-->

 <blocked-poa>interface like org.osgi.*;</blocked-poa>

 <!-- Components where no isolation rules apply (trustworthy components)-->

 <skip>bundle-name=Beanshell;bundle-vendor=Apache;</skip>

 <!-- Components with mirrorred state (must be active on both platforms) -->

 <mirror>bundle-name= .* Log Service;</mirror>

 <!-- General isolation rules for the components.

 Implicit semantics of the match-criteria is a logical AND while the

 previous blocked-poa, skip and mirror use a logical OR implicitly.

 -->

 <rule>

 <name>foobar</name>

 <match-criteria>import-package=foo;export-package!=bar;</match-criteria>

 </rule>

 <rule>

 <name>unknown components</name>

 <match-criteria>bundle-vendor !like org.ow2.aspirerfid;</match-criteria>

 </rule>

</components>

<services>

 <!-- Services that should not be locally isolated -->

 <skip>bundle-name=MyBundle;</skip>

 <!-- General isolation rules for locally proxying services -->

 <rule>

 <name>foobar2</name>

 <match-criteria>interface=foo.Bar;</match-criteria>

 </rule>

</services>

</isolationpolicy>

Listing 7.1. Example of a policy file using the isolation DSL

((import-package|export-package|bundle-activator|bundle-category|

bundle-name|bundle-symbolicname|bundle-updatelocation|bundle-vendor|

bundle-version)

(\s*)(!?)(=|like\s)([^;|^=]+;))*

Listing 7.2. Regular expression for the component isolation criteria syntax (part of the DSL shown in the
appendix).

((interface|class|superclass|import-package|export-package|

bundle-activator|bundle-category|bundle-name|bundle-symbolicname|

bundle-updatelocation|bundle-vendor|bundleversion)

(\s*)(!?)(=|like\s)([^;|^=]+;))*

Listing 7.3. Regular expression for the service isolation criteria syntax (part of the DSL shown in the appendix).

An example shown in Listing 7.1 illustrates an isolation file that uses our DSL, and that uses all
the types of rule we define. The <blocked-poa> element represents a blocked point-of-access to the
isolated platform. It contains a list of conditions for blocking the retrieval of isolated services that

108

match the condition(s) defined in this rule. The main platform checks that rule before retrieving a
service reference in the isolated platform. In the case the call is originated from the sandbox, the
query is received in the main platform and the verification is performed. If the requested service is
provided in the main platform but it is black-listed in the blocked-poa list, the main platform will
return null as a response. We preferred to centralize this verification in the main platform, even
though a unnecessary IPC call will be performed in case the service is a blocked-poa. Although it is
defined only within the <components> element, its granularity concerns the usage of services.
However, since we have categorized the levels as component isolation and service isolation, the
blocked-poa concerns component isolation since it will allow communication between isolated
components.

We do not have a systematic way of identifying the bundles that are infrastructure bundles,
which are those that should not be isolated like a bundle that provides a logging service that should
be used by both main and sandbox platforms. We could specify conditions for allowing components
to be active in both platforms, through the <mirror> element. It is verified upon start up of bundles. An
exception for that would be the bundle 0 which is the framework bundle. In this case no policy needs
to be applied to it. In situations where an entity is not to be isolated, it will end up being tested
against all isolation rules. We introduced a <skip> option, as seen in the example of Listing 7.1. It is a
sort of inversed isolation rule that describes the entities against which isolation should not be
performed. A slight difference between a skip and a rule is that it does not support the logical and. It
rather supports the “or” implicitly by using a semicolon separated list of conditions, skipping the
entity that matches any of the enumerated conditions.

The usage of the skip option helps to make explicit where isolation should not take place, and
may in some cases help minimizing the performance overhead impact of evaluation rules one by one,
for each entity. However, if too many conditions are added to a <skip> clause, the performance

penalty would increase in other cases. The time complexity being ()O n for evaluations of skipped

entities, where n concerns the total skip conditions declared for an entity type, we would therefore

have ()O n m for the worst scenario in other cases where the evaluated entity is neither skipped

nor isolated, with m denoting the total of isolation conditions declared in the policy for an entity
type.

So far the isolation exceptions have been described. The isolation conditions themselves are
actually provided in the <rule> elements. Multiple <rule> elements are allowed, while the other three
have at most one node per policy. Each node definition can carry multiple conditions. A slight
difference concerns semantics of the conditions. While multiple conditions in a blocked-poa, a skip or
mirror element are evaluated using an OR implicit semantics, the conditions of an individual rule use
an AND semantics. Among these elements, only the <skip> and <rule> are allowed to be declared
within a <service> element.

The isolation policy is loaded and parsed at platform startup. The verifications take place in
distinct moments depending on the entity to be isolated. A bundle is checked against the isolation
policy upon startup, while local service isolation is verified upon service retrieval. As shown in
Algorithm 1, the verification of an isolatable entity (i.e., a bundle or a service) against the part of the
policy that applies to that type (line 4) is performed inside a loop that traverses all policy rules (lines 3
through 8) under the category of that entity. That is, a service instance is not checked against rules
that target bundles. During the verification, the first rule that matches the entity causes the algorithm
to stop. Although not illustrated, the loop can also be aborted in line 6 in case a clause such as skip is
found to be true for the entity being evaluated.

Figure 7.8, show the realization of that algorithm in the case of bundles, showing the steps
involved when a bundle needs to be isolated. The equivalent bundle ID of the sandbox needs to be
retrieved and then a message is sent to the sandbox indicating that the bundle with the given ID
needs to be started up. In case a bundle does not need to be isolated, the regular OSGi behavior will
start the bundle in the trusted platform.

109

 Algorithm 1. Pseudocode illustrating the logic used in the policy checker

1 function checkIsolation(entity)
2 boolean isIsolationApplied= false
3 list rules = IPM.getRulesForEntityType(entity)
4 Do
5 rule = rules.next()
6 isIsolationApplied = checkRule(entity, rule)
7 while rule != null and not isIsolationApplied
11 return isIsolationApplied

Figure 7.8. Sequence diagram showing the component isolation steps.

We modeled the isolation policy to be changed dynamically, during application execution and
be directly reflected to isolated entities in a reflective model where changes on the objects would
directly affect the model and vice-versa. The decision of changing the policy can be taken based, for
instance, after system observation. The reconfigurations necessary to update the set of isolated
entities would require that the affected parts of the policy be applied to all isolatable entities again.
Changes could cause entities that are already isolated to be no longer isolated (i.e. promoted) and
vice-versa.

Currently the implemented functionality has limitations. At the time of writing of this
document, it is partially implemented. The goal is to provide an administrative tool implemented as a
plugin of the VisualVM28 tool, which targets the runtime monitoring and profiling of Java
applications. The isolation policy API is exposed as JMX probes accessible by the tool (either this one
or another one that uses JMX), which can read the information about the policy and send edited
information to be updated at runtime.

28 VisualVM http://visualvm.java.net/

:org.osgi.framework.Bundle :IsolationPolicyManager

start()

:PolicyChecker

getPolicyChecker()

checkIsolation(bundle)

:PlatformProxy:BundleIDMap

alt

regular start

Proceed with original
OSGi framework code

for local start up

getSandboxID(id)

[isolate bundle]

[else]

startBundle(sandboxID)

110

Figure 7.9. Administrative tool for editing the isolation policy at runtime.

To counterbalance the potential impact of such reconfigurations, we have limited the set of
possibilities for changing the policy at runtime. Given a set I of isolated entities, the reconfigurations

triggered by a policy change will generate a set 'I . We want to ensure that 'I I , so the policy

changes can be applied only to the currently isolated entities; without generating major verifications
and reconfigurations in the rest of the system (considering that most of the components and services
are not isolated). In order to be coherent with that limitation, the reconfiguration mechanism had to
support only the threes possibilities for changing a policy during application execution: (1) inclusion
of new skip clauses; (2) exclusion of rules and (3) inclusion of condition in an existing rule.

 As a reflex of the above changes on rules and conditions of the isolation policy the system
reconfigures itself by “promoting” services or components that were affected by the rule change.
Other possibilities such as adding a new rule or relaxing the policy by removing a condition from an
existing rule would require the policy to be applied against all system entities. We preferred not to
provide such behavior in order to avoid runtime misconfigurations that could unnecessarily isolate
entities by mistake, which are still possible, for instance, when a condition is accidentally excluded
from a rule. In such case, it is not possible to undo the change, except if the application is stopped and
the policy file manually edited>

7.2.3 Service Registry

The Service Registry is an OSGi internal component that has been changed as part of our effort
to make the sandboxing mechanism work. Although the internal architecture of the OSGi
implementation is not service based, it provides the infrastructure of a Service-oriented architecture,
wher bundles

Standard Mechanism

OSGi bundles have access to the Service Registry through the BundleContext interface.
Although there is no explicit class or interface representing the Service Registry, the BundleContext
provides the necessary methods for registering and retrieving services. In OSGi, a service is registered

111

under an interface, with the possibility to add registration properties that can be used for service
lookup. The example below shows an object being instantiated (BarImpl) that will be registered in
OSGi ‘s registry as a service under the interface foo.Bar:

package foo.impl;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import java.util.Properties;

import java.util.Dictionary;

import foo.Bar;

public class BarActivator implements BundleActivator {

 private ServiceRegistration registration;

 public void start(BundleContext context) {

 BarImpl bar = new BarImpl();

 Dictionary props = new Properties();

 props.put("color", "black");

 registration = context.registerService(Bar.class.getName(),

bar, props);

 }

 public void stop(BundleContext context) {

 registration.unregister();

 }

}

Listing 7.4. Example of service registration in OSGi

The BarImpl class implements the Bar interface (both of them omitted for the sake of brevity),
so this registration can be performed without type errors. The registerService method takes the
name of the service interface, the service object and a key-value properties object as parameters. The
properties used in the registration are used for filtering when retrieving a service, as illustrated in the
second example of Listing 7.5. In fact, the service lookup process is a two-step mechanism which is
illustrated in both examples (I) and (II) shown on Listing 7.5. In the first step, a ServiceReference
is looked up based on the desired service interface. Then, the corresponding service instance is
retrieved using that ServiceReference through the getService method. The difference in the
two examples of Listing 7.5 lies in the first step for retrieving a service reference. The example (II)
uses the complete form which uses filtering, and returns an array of ServiceReference objects that
match the filtering criteria. Example (I) uses a convenience method that internally queries the Service
Registry using a null filter, and retrieves the service with the best service ranking in case of multiple
results, as specified by the OSGi documentation.

...

//Example (I) without filtering

Bar barService = null;

ServiceReference ref = context.getServiceReference("foo.Bar");

if (ref != null) {

 barService = (Bar)context.getService(ref);

}
...

//Example (II) where the results are based on a filter

Bar barService = null;

ServiceReferences[] refs = context.getServiceReferences("foo.Bar","color=black");

if (ref != null && ref.length !=0) {

 barService = (Bar)context.getService(refs[0]);

}

Listing 7.5. Code for a service lookup in OSGi

112

Isolated Service Lookup

These two last examples concerned the regular functioning of OSGi. Since our mechanism
affects the code of the OSGi framework, not the bundles’ code, both examples would still work if
using an OSGi platform that includes our approach. Applications that run on OSGi platforms
changed by sandboxing approach should keep the same code for registering and retrieving services,
since our attempt is to provide transparent mechanisms. The main changes we have performed on the
service layer are on the getService and getServiceReference method. We have simplified the two
methods and merged them for illustrative purposes in the getService function illustrated in
Algorithm 2, which uses a pseudo language. This function gives a general view on how the service
lookup should work in the presence of a component sandbox. The principle presented here is to
lookup for a service in the local registry, but in case it is not found locally (line 3) the service lookup is
forwarded to the platform proxy (line 4), which delegates the call to the adjacent isolated platform.

The current algorithm is limited in a sense that if a given service interface is provided in the
both platforms, references to servant objects coming from the isolated platform will not be returned
unless the local lookup does not find one (i.e., returns null). A possible workaround would be always
performing the lookup in the isolated platform, and merging the result with the query on the local
registry. However, with such integration we should also evaluate how the utilization of separate
service registries can impact service ranking mechanisms [Bottaro07a].

Algorithm 2. General service lookup algorithm taking into account the isolated platforms

1 function getService(String interface)
2 service = lookup(interface)
3 if service == null then
4 service = platformProxy.lookup(interface)
5 else if thisPlatform is MainPlatform and checkIsolation(service) then
6 service = getProxy(service)
7 end if
8 return service
9 end function

The service lookup mechanism works the same way in the trusted and sandbox platforms, with
no additional step to be performed in the trusted platform. As illustrated in lines 5 and 6 of the
Algorithm 2, services that are local to the trusted platform need to be checked against the isolation
police in order to verify if it is necessary to use weak isolation on them. In such case, the platform will
return a local object proxy to the service instance, so the service provider is not directly referenced by
the consumer code. By doing so, garbage collection of the actual servant object is possible even if the
consumer code keeps referencing its service instance, which in this case is a proxy to the actual object.

The steps presented in the algorithm are useful for giving an overview of the mechanism, but
in reality its logic is split in the getServiceReference and getService methods, from the BundleContext
interface. Getting into more detail, the lookup is an intermediary step for getting a ServiceReference.
If it is not found in the sandbox, an IsolatedServiceReference instance is provided as a result of the
call. This process is represented in Figure 7.10, where we illustrate the communication that crosses the
isolation boundaries. We do not specify in the figure which OSGi platform is the sandbox or the
trusted platform because this mechanism works the same way in both platforms, independently of
the origin of the query. By observing the return of method call we can notice that a ServiceReference
instance is retrieved from the isolated Service Registry and then becomes an instance of
IsolatedServiceReference in the platform that originated the lookup. The transformation happens in
the communication layer between the two platforms. A ServiceReference holds a property map,
whose values are serialized when constructing the protocol message to be sent. When the protocol
message that responds to a call to getServiceReference is received back, an instance of
IsolatedServiceReference is created and the serialized properties are used to populate that new object
which is returned to the method caller. A service reference also holds information about its

113

containing bundle through the getBundle() method, and the list of component bundles that use it in
the getUsingBundles() method. However, the IsolatedServiceReference instance has some issues
concerning that information, as described in section 7.2.4.

Figure 7.10. A service lookup that needs to query the isolated platform

A distinction between the types of ServiceReference is necessary in order to make a distinction
between a local and an isolated ServiceReference. This is important for the getService method, which
is the actual place where the service instance is retrieved. By making this distinction it is easier to
identify when a proxy to an isolated service needs to be used, as depicted in the sequence diagram of
Figure 7.11. The initial alt fragment shows two alternatives, the first one being the case of an
IsolatedServiceReference which as a result provides a proxy to a service provided by a component
hosted in another isolation boundary. The other alternative is to get the service instance in the local
registry, which is the OSGi standard behavior. However, since we add the weak isolation level where
local services may be proxied the service instance must be verified against the policy. If it does not
require any isolation, the instance can be directly returned. But if the local service requires isolation,
the call described in the opt fragment of the diagram is executed and a proxy to a service running in
the same platform is returned. During this process it is important to retrieve the appropriate
classloader instance, otherwise the namespace visibility used in OSGi will not allow linking to the
appropriate types at runtime.

A slight difference can be verified in the sequence diagram between the getServiceProxy
methods calls on the IsolatedProxyStore and the LocalProxyStore. While the
IsolatedProxyStore.getServiceProxy method receives a bundle and a ServiceReference object, the
same method on the LocalProxyStore receives the servant object itself and the ServiceReference. The
creation of proxies relies on Java’s dynamic proxy mechanism which allows the creation of proxies at
runtime. A dynamic proxy is created based on an interface type, a class loader instance and an
InvocationHandler, which is the place where the additional behavior of the proxy is introduced and
in our case concerns the delegation of the calls to the actual service instance.

The execution of the method illustrated in the sequence diagram occurs in the OSGi
framework, which is not aware (i.e., does not import) of the types that will be dynamically deployed.
Therefore, in order to make the proxy correctly work, it is necessary to use the class loader that allows
the resolution of the service interface type as well as the types it depends on; otherwise we will end
up with a ClassNotFoundException. The LocalProxyStore uses the class loader of the service object
passed as a parameter so the proxy can resolve the types when called. In the case of the
IsolatedProxyStore, its code uses the bundle object of the caller for performing a workaround that
gets the class loader object the framework provided to that bundle. This is necessary because a call to
Bundle.getClass loader is useless since it would return the class loader that loaded the
org.osgi.framework.Bundle class (the class loader of the framework bundle) instead of getting the
class loader provided to load the classes of that bundle.

Service
Registry

P
la

tf
o
rm

 P
ro

x
y

Service
Registry

P
la

tf
o
rm

 P
ro

x
y

STARTED RESOLVED RESOLVED RESOLVED STARTED STARTED

foo.Bar

Call to
getServiceReference("foo.Bar")

return ServiceReference instancereturn IsolatedServiceReference instance

Call to
getServiceReference("foo.Bar")

OSGi OSGi

Fault Contained Environment Fault Contained Environment

Bundle 1 Bundle 2 Bundle nBundle 1Bundle nBundle 2

114

Figure 7.11. Service isolation steps.

When a service consumer gets a proxy to an isolated service, all method calls are forwarded to
the service object. The proxy object does not hold any state of the service object. There is a convention
in Java saying that object state in made accessible through getters and setters methods, therefore
accessing the state of an isolated service has to be a method call forwarded by the proxy in both weak
and strong isolation cases. The overhead would be especially high on the case of strong isolation
where calls are forwarded through the communication layer to the actual service provider. Design
patterns such as the Transfer Object (a.k.a. Value Object) [Alur03] target Java enterprise distributed
systems, helping to reduce requests over the network by sending objects containing state instead of
paying the cost of distant method calls for retrieving that information. We have not provided such
optimizations because services tend to be stateless [Erl05], being typically used to perform
computations or functions [Papazoglou03].

The current approach for coordinating the usage of both service registries is not sophisticated,
and would had to be adapted for scalability if more than two isolated platforms have to be used
simultaneously. The lookups on the Service Registry, for instance, would have to be coordinated
between the local registry and two or more remote ones. An alternative could be the usage of a
technique resembling a distributed registry approach, as the one presented in the Virtual OSGi
framework [Papageorgiou08].

7.2.4 Platform Proxy

Service lookup and retrieval across isolation boundaries have already been exemplified in this
manuscript through different perspectives and representations: as a high-level algorithm (Algorithm
2), as a high-level diagram (Figure 7.10) illustrating the “paths” taken by a lookup, and as a more
detailed representation in a sequence diagram (Figure 7.11). Either implicitly or explicitly, all of those
perspectives involve the Platform Proxy component and the communication mechanism on top of
which it is built. This section provides more information on the communication mechanisms and the
architecture of this component.

:IsolatedProxyStore:org.osgi.framework.BundleContext

getService(serviceRef)

:PolicyChecker :LocalProxyStore

getServiceProxy(bundle,serviceRef)

:ServiceRegistry

getService(bundle,serviceRef)

service

service

alt

service

[else]

[serviceRef instanceof
IsolatedServiceReference]

:IsolationPolicyManager

getPolicyChecker()

checkIsolation(serviceObject)

getServiceProxy(service,serviceRef)

service

opt

[needs
local isolation]

115

The communication between the two isolated platforms is done through the Platform Proxy,
which is a proxy to the adjacent isolated platform. Since the trusted and sandbox platforms are
separated by strong isolation boundaries, they need to exchange messages in an Inter-Process
Communication (IPC) fashion. We found necessary to use a transparent mechanism in order to avoid
changes in existing applications as well as not needing to develop custom code that would couple
components to our API. Changes should be necessary only in OSGi framework code. We want to be
able to use this approach seamlessly in OSGi applications, by only configuring the isolation policy
which is external to the platform thus not affecting the application code.

Solutions like OSGi Remote Services [OSGi11] or R-OSGi [Rellermeyer07], which enable OSGi
to be used in distributed contexts, could have been chosen for providing the communication between
our isolated platforms. However, we found that these mechanisms are not fully transparent since
service publication needs to include additional information for indicating that distribution is in use.
We have decided to go for an ad hoc approach that is self-contained in the OSGi framework and does
not require existing applications to be changed in order to use the isolation boundaries. The only
thing to create and make available to the platform is the isolation policy.

Existing protocols for Java IPC (e.g., Java RMI29, Hessian30) rely on extending classes and
implementing specific interfaces of such APIs. In order to enable an object to be used with RMI, for
example, an object must implement an interface that extends the java.rmi.Remote and all methods
must throw a java.rmi.RemoteException. We wanted to seamlessly enable the sandbox approach,
therefore we have implemented a transparent mechanism for enabling communication between the
trusted platform and the sandbox without forcing the classes of service objects to be changed.
Nevertheless, as emphasized in the Remote Services section of the OSGi specification [OSGi11],
previous efforts for providing such transparent communication in distributed systems have faced
problems because of the eight fallacies of distributed computing, attributed to Peter Deutsch and
described in [Rotem06]:

The network is reliable.

Latency is zero.

Bandwidth is infinite.

The network is secure.

Topology doesn't change.

There is one administrator.

Transport cost is zero.

The network is homogeneous.

[Rotem06]

The communication mechanisms we use are based in same IPC principles, but we can partially
eliminate from our context some of the issues among these eight fallacies. This is possible in our case
because the platforms are in the same machine and that there is no network involved.

This implementation of the protocol is loosely based on R-OSGi31 [Rellermeyer07] but with a
simpler objective since our approach does not concern distributed systems. Writing such a protocol is
not part of the objectives of this thesis, but it was a means to enabling the isolated platforms to
communicate with each other. Although it is a minor contribution of our work, the design of the
communication protocol that we have developed is briefly described in the next paragraphs.

29 http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
30 http://hessian.caucho.com/
31 http://r-osgi.sourceforge.net

http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://hessian.caucho.com/
http://r-osgi.sourceforge.net/

116

Communication Principles

The idea behind this layer is to allow method calls on the PlatformProxy to be transparently
translated into the appropriate protocol messages when the main platform has to invoke functionality
from the other platform and vice-versa. The code we introduce to OSGi platforms explicitly makes
reference to that component; however service invocation code (i.e., code provided by bundles) is not
changed and is not aware of the PlatformProxy when isolated services are used, since we introduce a
proxy that hides the call delegation. Therefore, in our proposition bundles can continue to use
services without any change. If the service is hosted in the isolated adjacent platform, it is
transparently sent across the isolation boundary. However, as explained later, the realization of this
approach has some limitations on that transparency.

In Figure 7.12 we illustrate the types of exchanged messages into two distinct categories based
on the direction of the messages. The one way arrow represents bundle lifecycle method invocations,
which are performed only in one direction – from the main platform toward the sandbox platform.
The two way arrow shows that messages that are common to both directions are centered on the
service layer: service lookup, service invocation, service events (e.g., registration, unregistration).

Figure 7.12. The arrows in the middle illustrate the directions in which distinct types of messages are sent.

Layered Components

We have use a modular design in the Platform Proxy component for better code maintenance
and evolution. Layers [Buschmann96] are a widely used architectural pattern for grouping different
levels of abstraction in a system. If we consider a purist design, a layer should only communicate
with its adjacent layers, reducing coupling among parts of the system and facilitating maintenance.
Since we provided an experimental solution that would likely be changed, we developed it using
such a layered approach for easily changing the layers responsible for communication if necessary.
This has proven to be effective when changing from JSR-121 Links to Java sockets, as detailed later in
this chapter.

In Figure 7.13 the different logical components that represent each layer abstraction levels can
be identified in the internal organization of the Platform Proxy. The IsolatedPlatform component is a
high level representation of the operations available in the isolated platform (e.g.,
getServiceReference, getService, installBundle) that are called by the code we introduce in the OSGi
framework. There are two different IsolatedPlatform implementations instantiated on each executing
OSGi platform: one IsolatedPlatformClient and one IsolatedPlatformServer. While the client one
receives calls from the OSGi layer and forwards them to the message layer, the server one works the
other way round. The Message Layer handles the protocol message abstractions for the available
operations as well as the message handling (requests and responses) between isolated platforms. The
Communication Layer hides the details of the IPC in use.

The point of access between the IsolatedPlatform and the Message Layer is illustrated by their
respective ports that contain the MessageDispatcher and RequestHandler interfaces. The former is
responsible for sending messages from the local to the isolated platform, that is, the requester platform

P
la

tf
o
rm

 P
ro

x
y

Main
OSGi

Sandbox
OSGi

Fault Contained Environment Fault Contained EnvironmentFault Contained Environment

Bundle 1 Bundle 2 Bundle nBundle 1Bundle nBundle 2

...

P
la

tf
o
rm

 P
ro

x
y

Lifecycle methodsLifecycle methods

...
Service lookup

Service invocation
Service events

Service lookup
Service invocation

Service events

117

when it plays a client role in the communication. The latter handles requests originated from the
isolated platform when playing a server role. Likewise, the ports on the Message and Communication
layers illustrate the point of access between theses two components. Calls from the Message Layer to
the Communication Layer are sent through the AsyncPipe interface, while the calls that arrive from
the adjacent isolated platform are notified asynchronously via the AsyncPipeReader interface.

Figure 7.13. White-box view of the PlatformProxy component.

The communication between the isolated platforms is performed through the IsolatedPlatform
facet, except when isolated service objects are invoked. The local platform provides a proxy
(IsolatedServiceProxy) that receives the calls on its methods through as a Java dynamic proxy
through the InvocationHandler interface. However, in both cases the communication happens almost
the same way, differing only in the entry points being used. To better understand the flow of
communication between two isolated platforms, we take the same example previously used of a
getServiceReference method invocation in the isolated platform.

As illustrated with UML in the communication diagram of Figure 7.14, sequence (1) shows an
internal call (i.e., not coming from a service) originated from our custom code on OSGi framework
(BundleContext) toward the IsolatedPlatformClient. It is transformed to the protocol request message
representation (2.1) and forwarded (2.2) to the Message Layer. The layer handles the message,
verifying if it is a request or a response, and proceeds forwarding the message (3.1, 3.2) to the
Communication Layer. The call blocks (3.3) and waits for the result notification. The isolated platform
receives the call (4, 5), performs the reconstruction and forwarding of the message that is transformed
in a call to the OSGi API (8). When the message is back (11, 12) to the local platform and the response
result is extracted it can be sent through the callback (13.3) and the waiting call (3.3) can be woken up,
continuing the execution on (14) and (15) and returning the result to the caller.

PlatformProxy

IsolatedPlatform

AsyncPipe

Communication
Layer

IsolatedServiceProxy

Message
Layer

AsyncPipeReader

RequestHandler

MessageDispatcher

RequestHandler

AsyncPipeReader

java.lang.reflect.InvocationHandler

IPC

OSGi API

IsolatedPlatform,
java.lang.reflect.InvocationHandler

118

Figure 7.14. Communication diagram illustrating the steps of a method call redirected to the adjacent isolated

platform.

Message Abstractions

The protocol used different message abstractions (Figure 7.15), each one representing a
different interaction with the isolated platform, similar to R-OSGi’s protocol. A difference from that
approach is that besides having messages for controlling bundle lifecycle in an isolated platform, we
use the MessageHeader.type attribute for differentiating response and request messages instead of
usage of distinct abstractions like R-OSGi. Almost all messages concerning life cycle operations
(update, start, stop, uninstall) in isolated bundles where generalized in a LifeCycleMessage class, that
carries an attribute for identifying the lifecycle transition. Only the bundle install lifecycle transition
was modeled as a separate class, since it needs a file path of the bundle to be installed while the other
events only need the id of the corresponding bundle already installed.

Service lookup, already illustrated in the communication diagram of Figure 7.14, was also
abstracted with a protocol message. However, there are no getService messages since the proxy to an
isolated service is built on the requesting platform. Instead, we have individual method invocations
sent over which are represented by the MethodInvocationMessage class. It provides information on
which service operation has to be called as well information concerning the operation parameters.
Events are represented by the corresponding. Asynchronous bundle and service events are also sent
by an isolated framework to its adjacent platform.

BundleContext
(OSGi API)

IsolatedPlatformClient

Message Layer

Communication Layer

Communication Layer

1: getServiceReference()

IsolatedPlatformServer

Message LayerBundleContext
(OSGi API)

2.2: sendRequest(message)

3.2: write(bytes)

4: write(bytes)

5:receive(bytes)

7:getServiceReference()

1.1: getServiceReference()

8: getServiceReference() 10.2: write(bytes)

11: write(bytes)

12: receive(bytes)

14: return result

15: return result

6.1: buildMessage()
6.2: process(message)

10.1: getMessageBytes()

2.1: buildRequestMessage()

3.1: getMessageBytes()
3.3: waitForCallback()

13.1: buildMessage()
13.2: process(message)
13.3: callback(result)

Isolation boundary

9: buildResponseMessage()

119

Figure 7.15. Classes and the corresponding attributes of the protocol message abstractions

Messages concerning event notifications when demarshalled are transformed into OSGi events
on the local platform, which are notified by the framework. This process involves the creation of the
appropriate event object (ServiceEvent or BundleEvent) that must give access, directly or indirectly,
to a bundle object. The messages carry only the bundle id, which is retrieved locally according to the
equivalent local id found in the bundle correspondence map. Instead of pointing to the isolated
bundle, it will point to the bundle of the local platform, therefore not providing the same information
concerning the state and services of the original bundle.. For instance, a call to the method
Bundle.getServicesInUse() would not work since the bundle is locally inactive, but active in the
isolated platform.

Upon communication disruption with the isolated platform, the Communication Layer notifies
such event to the Message Layer, which informs the IsolatedPlatform. Such disconnection will trigger
higher level events that identify service departure. The local platform creates an unregistration event
for each of the proxied services being used.

Inter-Platform Communication

Figure 7.16 illustrates the type hierarchy around the I/O abstraction in the Communication
Layer that we have created as the lowest layer of our protocol. The AsyncPipe defines an interface for
a two-way pipe that should work asynchronously, as the interface name already suggests. Writing on
the pipe is done synchronously while reading on it is performed by a notification through a listener
interface called AsyncPipeReader. Whenever the pipe has data available, it is sent to its listeners.

This layer helps abstracting the IPC mechanism in use, and easily allowed us to switch between
the Link API, used in the initial solution, to Java sockets. The instantiation of the appropriate pipe is
done through a simplified implementation of the factory pattern [Gamma95], which returns either a
LinkBasedPipe (on top of the Isolate API), or a SocketBasedPipe (based on Java sockets) depending
on the command line parameters used to start the isolated framework. Therefore, our mechanism was
abstracted in a way that it is decoupled from the underlying IPC mechanism. As it is today, it can be
switched to implementations on top of shared memory, RMI, etc. As long as the transparent
communication principles are kept, this mechanism could be changed either partially or completely.

+id

+type

MessageHeader

«abstract»

Message

+bundlePath

BundleInstallMessage

+serviceProperties

+serviceClass

+bundleID

+eventType

ServiceEventMessage

+properties

+className

+isFound

+bundleID

GetServiceRefMessage

+bundleID

+lifecycleEvent

LifeCycleMessage

+serviceID

+serviceInterface

+methodName

+argClasses

+arguments

+result

+resultType

MethodInvocationMessage

1 1

+eventType

+bundleID

BundleEventMessage

120

Figure 7.16. Class hierarchy around the asynchronous pipe solution we implemented for low level

communication

It is in this level where the communication is established between the two platforms must take
place. However, in the current implementation a sort of handshake protocol only happens in the
socket implementation. The Java Isolate approach uses Link objects passed as parameters on the
construction of the Java Isolate that instantiates each OSGi platform. In the socket implementation,
the trusted platform is the one that starts up before and waits in accept mode until the isolated
platform connects. Since it is the framework bundle that contains such code, it is not necessary to wait
for other bundles to be loaded or started.

Implementation Limitations

In this proof-of-concept there are a few drawbacks that limit the range of OSGi applications
that can take advantage of the current isolation infrastructure provided by our approach. However,
by taking this implementation further, or by adapting this approach to alternative mechanism some
of these issues can be solved or minimized. The main limitations that we can summarize here
concern:

 Isolated services limitation: The fact of only being able to call methods using the supported
set of types can be considered as the major limitation of the protocol. Since there is no
guarantee that the objects used in the service method signatures would be serializable (e.g.,
implement the Serializable interface) as well as potential issues with class loading when
demarshalling types in the isolate OSGi framework. An alternative to this mechanism could
be, for instance, the usage of an Object Request Broker (ORB) that supports complex objects.

 Isolated bundle abstraction: the getBundle method on service notifications and isolated
service references would return the bundle of the local platform, which would provide the
actual information of corresponding isolated bundle (e.g., the list of provided services). This
problem could be tackled by adding a proxy layer on top of the bundle object that represents
an isolated bundle in the local platform.

 OSGi component models: Our approach had some incompatibilities with the
IsolatedServiceReference interface were used as services used by OSGi component models.
Most of the errors concerned the unbinding process. It relies in the
BundleContext.ungetService method which typecasts the ServiceReference parameter to
specific implementations of that interface in all three OSGi implementations that were tested.

7.3 Isolation Containers

Custom mechanisms that sit on top of the JVM, like JavaSeal [Vitek98] and Object Spaces
[Bryce00], provide stronger isolation of objects, but at the Java level (i.e., above the JVM). They
propose the isolation of objects in containers that are on the same level of abstraction of class loaders.
With such a mechanism, “purging” a bundle and its objects from memory would be possible.
However, because OSGi makes extensive use of class loaders and needs objects to be shared among
them, using such approaches for isolating each bundle would require major changes in OSGi’s
implementation therefore making these models incompatible with its principles. Approaches like
[Geoffray09] use VM-level customizations that add fine-grained control on class loader isolation and

AbstractPipe

SocketBasedPipe

AsyncPipeReader

LinkBasedPipe

AsyncPipe

PipeFactory

<<create>>

<<use>>

121

resource accounting mechanisms that are directly applicable to OSGi, which can still use class loader
based isolation and still be executed without changing its code. In this approach it is possible, for
instance, identifying and “killing” a misbehaving bundle.

As already presented in our architecture, we decided not to go for individual isolation of
bundles, but rather isolate groups of bundles – a group containing one bundle is possible, although
costly in terms of memory. An important consideration for choosing the isolation container concerns
the use of standardized Java technology in order to provide a general purpose and self-contained
solution that is not coupled with any library or custom virtual machine. After analyzing the
possibilities we ended up with two possible approaches: Domain-based isolation and process-based
isolation; by means of Java Isolates (JSR-121) and a multi-JVM approach respectively. The next
subsections provide more details on the utilization of each one of these approaches.

7.3.1 Java Isolates

The implementation of our propositions was initiated using domain-based isolation. It was
performed on top of the Multi-tasking Virtual Machine (MVM), which implements the Java
Application Isolation API specification (JSR-121). This implementation used a MVM-specific IPC
approach for constructing the communication layer. We have later implemented a socket mechanism
on the same layer, which could be used by both domain-based and process-based isolation.

We have chosen Java Isolates as the initial implementation for the isolation boundaries mainly
for two reasons. Firstly, they come from an official Java specification (JSR-121). Secondly, its concepts
seemed to be a trend for isolation and multitasking approaches being incorporated to other Java
technologies, like CLDC JVMs where a subset of the JSR-121 has already been applied to, allowing
lightweight multitasking and saving memory footprint [Sun07, Sun08].

The isolation of the platforms was possible by using one Java Isolates instance for each OSGi
platform. If anything goes wrong in the sandbox platform, it would only affect the execution of its
own Isolate, while the trusted platform’s Isolate would not be affected. The chosen isolation container
can also be individually killed or restarted without affecting the execution of the main platform. They
were used as our isolation containers, where each OSGi platform is started in its own isolate. Figure
7.17 shows each platform running in separate Isolates but both of them run in the same JVM.

The communication layer was implemented using the Link API as the inter-isolate (instead of
inter-process) communication mechanism. An Isolate Link works between a pair of isolates as a
unidirectional application-level communication channel. Therefore, to realize our approach at least
two links are necessary for an Isolate to write and read information from another Isolate. Links can
exchange information between them by wrapping data in a LinkMessage object that is passed
between two links. It is possible through the send() and receive() methods in the respective Link ends.

Figure 7.17. Approach using Java Isolates as isolation containers on the Multitasking Virtual Machine.

Main
OSGi

Sandbox
OSGi

Bundle A Bundle B Bundle DBundle ABundle DBundle B Bundle C

?? ? ?

Bundle C

JVM

(MVM)

Communication
via

Sockets or
Link API

(JSR-121)

Java Isolate Java Isolate

122

The creation of the links is performed by the application launcher during Isolate (i.e., OSGi
platform) startup. However, a new Link object can be sent to an Isolate at any time via the Link.send
method, by using as a parameter a Link instance wrapped in a LinkMessage. In case of a reboot or
crash of the sandbox platform Isolate, the communication between the trusted platform and the new
sandbox instance can be reestablished by the parent isolate, which can create two new links between
the trusted and the new sandbox platform instance and send them to both platform Isolates.

The generalization of the communication layer allowed us to easily change the underlying IPC
mechanism from Isolate Links to Java Sockets. The major difference of both approaches is that,
instead of receiving a ready-to-use IPC object (i.e., a Link object), the communication channel had to
be obtained via accept and connect socket primitives.

7.3.2 Java Virtual Machines

Although providing fault containment and a lightweight isolation approach, isolation
concerning JNI code in the Java Isolate API is implementation dependent. Since some
implementations may provide that isolation level other may not. Therefore, there is no guarantee on
full isolation in the presence of native code and consequently, this isolation approach may not be
appropriate as a sandbox for safely executing native code.

The JVM we have used is an experimental approach, even though this API is standardized and
some of its principles have already been applied to production software. By limiting our approach to
using only such API, there would be not much portability of our solution across other Virtual
Machines. In addition, a significant advantage of the multi-JVM approach against Java Isolates
concerns security permissions. In the case of Java Isolates, there is no individual security policy
configuration at the domain level, as it exists in .NET Application Domains, for instance. When
switching to a multiple JVM mode, we are capable of using individual Java policy files for each JVM.
Therefore, besides the fault isolation the sandbox could also have restricted security permissions. This
could be the case, for instance, of limiting the sandbox access to the file system (e.g., writing to the file
system), to the network (e.g., downloading malicious code, sending data without authorization), and
so forth.

By using sockets for the communication between the isolated platforms, we were no longer
using a VM-specific mechanism. Therefore, it became possible to use that approach in other VMs and,
start multiple JVMs that can communicate. Instead of using Java Isolates as the isolation container, we
have used multiple JVM instances for hosting the OSGi platforms. No major changes were performed
on the solution in order to enable the usage of multiple JVMs. The launcher application had to be
customized to launch two JVMs with the appropriate command line parameters for OSGi framework
initialization, instead of launching a class that instantiated and configured the Java Isolates.

Figure 7.18 illustrates distinct JVMs as the isolation containers being used. In terms of code, the
isolation container of the Java Isolate approach was abstracted as a javax.isolate.Isolate instance that
give access to the underlying Java Isolate that executes, in the multi-JVM approach our isolation
container was abstracted as a java.lang.Process, instantiated through a java.lang. ProcessBuilder.

Figure 7.18. Approach using Java Virtual Machines as the isolation containers.

Main
OSGi

Sandbox
OSGi

Bundle A Bundle B Bundle DBundle ABundle DBundle B Bundle C

?? ? ?

Bundle C

Communitation
via

Sockets

JVM JVM

123

By having two flavors of isolation containers, it is important to measure and compare
characteristics such as the memory footprint of each approach, as well as the differences, if any, on
communication overhead. Therefore, as part of our validations that are presented further in this
thesis we provide such an experiment.

7.3.3 Platform Launchers

Since the application resultant from our approach is a virtual perspective which is actually
comprised of two OSGi platforms, the platform bootstrap had to be adapted in order to
simultaneously start both platforms. It was necessary also to take into account the different
combinations of isolation container and OSGi implementation. We deal with two possible isolation
containers approaches (Java Isolates and multiple JVMs) and different OSGi implementations
(Apache Felix, Knopflerfish and Equinox). A custom application launcher had to be created in order
to centralize and simplify the configuration and simultaneous startup of the isolated platforms.

The launcher mechanism is illustrated in Figure 7.19. Step (1) shows a call to the
MultiPlatformLauncher, which takes different startup parameters: the isolated container to be used,
the communication mode and what OSGi implementation will be used. Based on that information it
instantiates in (2) the appropriate OSGiLauncher implementation. It is then responsible to start the
trusted platform (3) and the sandbox platform (4), passing the respective parameters. Other
parameters that are platform specific, are used differently being present in all OSGi implementations
(i.e., cache configuration), requires different ways for instantiating each OSGi implementation.

We created a common interface (OSGiLauncher) that has three different implementations, each
one dealing with the particularities of the OSGi frameworks used, namely Apache Felix, Knopflerfish
and Equinox. This was necessary because each one of them have different initialization parameters.
Each launcher passes different command line parameters mostly related with cache options, and in
some cases. The launcher also takes as command line parameters the options that indicate the
communication mode in use (Link API or Java Sockets).

Figure 7.19. Startup steps of the isolated platform

The launcher application keeps running after the two platforms are launched. It displays a
multi-console window (Figure 7.20) that communicates with both OSGi platforms (trusted and
sandbox). The output of both OSGi platforms is redirected to the multi-console window, while the
input typed in that window is sent in the inverse way to the corresponding platform. When using the
Isolate approach, the console sockets are set using the javax.Isolate.StreamBindings object of the
Isolate objects that host, each one, an OSGi platform. In the caso of multiple JVMs, the launcher
redirects the stream objects retrieved from the java.lang.Process instances used for launching the two
platforms.

MultiPlatformLauncher

OSGiLauncher
Trusted
Platform

Sandbox
Platform

Communication mode

OSGi impl specific info

(e.g. cache info,

properties file)

Isolation container [isolate|jvm]

Communication mode [link|socket]

OSGi framework

[felix|equinox|knopflerfish]

Communication mode

Application startup

Communication mode

sandbox flag

OSGi impl specific info

(e.g. cache info,

properties file)

1

2 3

4

124

Figure 7.20. Prototype’s multi-console GUI.

7.4 Summary

The propositions we presented in this thesis include the isolation of untrustworthy components
in fault contained environments. This chapter presents the sandboxing approach for realizing our
propositions. Although the envisioned architecture involves several isolation containers, the
implementation we have performed is limited to one trusted platform and an untrusted platform
which we have called a sandbox. In this implementation services can also be isolated locally,
providing and additional level of isolation that is weaker than the component isolation, since in this
newer level components share the same memory space. The isolation of components is governed by a
runtime reconfigurable policy that defines the rules for isolating components and services.

Since the sandbox hosts untrustworthy components, it is possible that the environment
becomes unstable. It is necessary to provide mechanisms that allow that environment to
automatically recover in case of abnormal behavior. The next chapter provides an architectural
overview and some details on the implementation of the autonomic manager that was created for that
purpose. The infrastructure we provide gives self-healing capabilities to the sandbox, that is able to
recover in case of crashes or when it is affected by a certain range of faults.

Chapter 8

Self-healing Mechanism

“Don't find fault, find a remedy”

Henry FORD

Contents

8.1 EXTERNAL CONTROL LOOP ... 126

8.2 DETAILED ARCHITECTURE .. 126

8.2.1 SANDBOX COMPONENTS ... 127

Service Registry ... 128

Touchpoints ... 128

8.2.2 AUTONOMIC MANAGER ... 129

Watchdog ... 129

Script Interpreter ... 129

Control Loop .. 129

8.3 FAULT MODEL ... 133

8.4 FAULT DETECTION AND RECOVERY .. 134

8.5 GENERAL CONSIDERATIONS .. 135

8.5.1 ASSUMPTIONS .. 135

8.5.2 MICROREBOOT CONSIDERATIONS .. 135

8.6 DISCUSSION AND LIMITATIONS... 136

8.6.1 REPLACING FAULTY COMPONENTS .. 136

8.6.2 RESOURCE ACCOUNTING .. 137

8.6.3 EVALUATION OF TRUST ... 138

8.7 SUMMARY ... 139

This chapter presents the approach used for adding self-healing behavior to the sandbox
isolated container. It starts with a section explaining the motivations for using an external control
loop. It is followed by the detailed architecture, illustrating the sandbox components that participate
in that mechanism as well as the internal structure of the autonomic manager responsible for the self-
healing behavior. Another section presents the fault model used to present our hypotheses of
potential problems that are handled by the autonomic manager. The section that follows it explains
some fault detection and recovery strategies put in practice by the scripts that are used by the
autonomic manager. Then, the chapter closes with a section presenting general considerations on the
approach and another section with discussion and limitations of the approach. A higher level view of
the contents of this chapter can be found in [Gama10b].

126

8.1 External Control Loop

The sandbox platform has a self-healing capability thanks to an external autonomic manager
that monitors it and takes appropriate action when abnormal situations are detected, according to the
fault model in use. The general architecture in Figure 8.1 illustrates the three coarse-grained elements
of our approach that are all executed in distinct isolation boundaries, which means that the control
loop is external to the sandbox. We have found different reasons for developing the autonomic
manager as an application that will run outside the isolation boundary of the sandbox platform. As
already discussed in literature, the realization of self-adaptive software involves several issues
[Salehie09]. For instance, the adaptation approach has to be chosen between external or internal
adaptation, and the decision making between static or dynamic.

Figure 8.1. Blackbox view of the solution architecture.

In [Müller06] the authors talk about spatial and temporal separability of the controller from the
controlled element and also about controller evolvability. These two requirements can be seen as forces
that drive solutions toward an externalization of the adaptation mechanisms. However, we can see
cases where self-adaptive mechanisms are hardwired in applications and are very specific to their
context, being difficult to generalize, as detailed in [Cheng05]. Besides that fact, we want to allow
recovery mechanisms that are able to deal with failures that need quick responsiveness.

For instance, if there is too much CPU or memory consumption, the application performance
can be severely degraded. This may cause unresponsiveness of the application, and the self-adaptive
mechanisms would have difficulties to execute and diagnose such problem if sharing the same
process as the managed application. Also, in the case of sudden failures from a native library, an
internal mechanism for crash recovery would not be effective since it would crash with the managed
element as well. Therefore, an external agent would be more appropriate to enable recovery in case of
crashes.

Concerning static and dynamic decision making, according to [Salehie09], the former is hard-
coded (e.g., decision trees) and its modification implies the recompilation and redeployment of the
adaptation mechanisms. The latter is externally defined and managed (e.g., rules, policies), being able
to be changed at runtime.

8.2 Detailed Architecture

A more detailed view of the architecture including the autonomic manager is depicted in
Figure 8.2. This component diagram is an incremented version of the one presented in the previous
chapter (Figure 7.2), with the addition of the components involved in the self-healing mechanism:

 The Monitoring and Effector probes, which are the equivalent of a sensor and an effector,
respectively, in an autonomic element. They providing interfaces to external
components gather runtime information and possibly perform actions to reconfigure
the system.

KM

A P

E

Autonomic Manager

Main
OSGi

Sandbox
OSGi

127

 The Autonomic Manager, an external component that interacts with these probes for
providing the self-healing adaptations.

The next subsections detail the internal components of the sandbox platform, focusing on the
ones that provide self-healing related mechanisms. Nevertheless, the others that are left out (Core,
Isolation Policy Manager and Platform Proxy) have been already detailed in the previous chapter.
After the sandbox details, we provide an overview of the autonomic manager architecture and its
adaptation mechanisms.

 Figure 8.2. Detailed perspective of the main components involved in the architecture of our solution.

8.2.1 Sandbox Components

Although the set of components in each of the illustrated OSGi platforms (trusted and
sandbox) in the diagram are different, it is just a perspective that represents the respective sets of
logical components of the OSGi framework that will be active at runtime. In reality, the
implementation of the trusted and sandbox platforms are actually the same OSGi framework base
code, but an initialization option indicating if it should execute in sandbox mode or not will
determine which components will be used, as previously detailed. In addition, the behavior of certain
components would change depending on the initialization mode that was used.

The gray components in the diagram of Figure 8.2 represent internal OSGi components that we
had to change for including code targeting our isolation and recovery approach, while the other
components (white ones) have been introduced as part of that solution. The core and platform proxy
components did not contain any code related to the self-healing, while the other sandbox components
illustrated above are related to that mechanism. The components that represent the touchpoints of the

Watchdog
Strategy
Executor

Knowledge

Monitor
Policy

Evaluator

Script
Interpreter

Trusted Platform Sandbox Platform

Autonomic Manager

<<use>><<use>>

<<delegate>>

<<use>>

<<delegate>>

<<use>>

<<use>>

HeartbeatProbe SensorProbe EffectorProbe

Monitoring
Probe

Effector
Probe

<<delegate>>

<<use>>

<<delegate>>

Platform
Proxy

Core

Isolation
Policy Manager

<<use>>

<<delegate>>

<<delegate>>

<<delegate>>

<<use>>

Service
Registry

Service
Registry

<<delegate>><<delegate>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Core
<<use>>

<<use>>

<<use>>

<<use>>

Platform
Proxy

<<delegate>>

128

sandbox were implemented as JMX Managed Beans (MBeans), which are Java objects that represent
managed resources32 that can be remotely accessible through standard protocols.

Service Registry

 This component contains mainly monitoring capability, which is only active if the OSGi
platform is running with the sandbox mode turned on. The monitored information will allow the
autonomic manager to analyze and identify potential faults that may take place in the service layer.
The additional functionality that exists in the sandbox service registry relates mainly to three points
concerning the proxies that point to services of the trusted platform:

 Logging of service calls: Each service invocation towards the main platform is logged
so it can be used for problem diagnosis. Information is stored in a per service basis and
as well as in a general basis in the form of a simple counter that stores total amount of
calls performed.

 Invalidation of proxies: If the sandbox has a proxy to a service running in the trusted
platform and that service becomes unregistered, the sandbox is notified and the proxy
invalidated. By doing this it is possible to throw an exception whenever an invalid
proxy is used, allowing to identify if a component (and which one) is using it.

 Stale services: We track each service instance using Java weak references, in order to
know if unregistered services are still referenced by other objects. A weak reference is a
special type of object that does not prevent the referenced object to be garbage
collected. When a weak reference object provides a null value, one can be sure that the
object it points to has been garbage collected.

Touchpoints

The touchpoints were implemented using Java Management Extensions (JMX), which is a
technology that is part of the core Java platform and that allows the management and monitoring of
Java applications. Besides providing default probes (e.g., threading, memory), the JMX infrastructure
lets developers construct and provide their own probes with custom functionality. Such custom
probes can take advantage of the remotely accessible capability that is available by default with JMX.
Therefore, the touchpoints can be easily accessed by the autonomic manager (or other applications)
using the Java built-in support for communication through JMX interfaces. The two probes consisted
of one monitoring probe, which provides runtime data about the sandbox and its components, and
one effector probe providing methods that allow certain actions to be performed on the sandbox.

Monitoring Probe. This touchpoint is a sort of data collection point used by the autonomic manager
for gathering runtime information about the sandbox. It provides information concerning CPU
consumption, memory usage, number of allocated threads, list of bundles, list of proxied services,
service calls per minute (per service basis), stale service count and potential bundles that are retainers
of a stale service. Certain events produce asynchronous notifications, providing data on bundle and
service events. The bundle events consist of default OSGi events (install, update, uninstall, start and
stop) and the service events concern the three default events (registration, unregistration and update)
and the invocation of a stale service, which we can detect thanks to the proxy invalidation strategy we
used in the service layer. The monitoring probe also has another facet that presents it as a heartbeat
probe for verifying the responsiveness of the sandbox. The heartbeat consists only of one
parameterless method with no implementation in its body and with no return type.

Effector Probe. The effector probe is also implemented as an MBean, making available a set of
operations that can be used by the autonomic manager for performing actions on the sandbox at
runtime. Through this probe it is possible to stop the framework (graceful shutdown), to reset the

32 It has no direct relation with the concept of managed element used in the autonomic computing point of view. In the

context of JMX it is rather a network perspective equivalent to what is done with SNMP (Simple Network Management

Protocol).

129

sandbox, to invalidate a given service proxy, to stop and to start a given bundle, to perform a garbage
collection on the sandbox (just a convenience method since it is already available in the Hotspot JVM
through the default Java Memory MBean).

8.2.2 Autonomic Manager

The autonomic manager is responsible for monitoring the sandbox and taking action to fix
faulty scenarios when anomalies are detected according to our fault model. Although we presented a
logical division of its components, the autonomic manager is implemented as a monolithic Java
application. The monitoring, analysis and adaptations are performed by a MAPE-K control loop,
which is the most common approach for self-adaptive systems [Cheng08]. A minor part of the
monitoring role is also present in a watchdog component, while a significant part of the analysis and
adaptation code was externalized from the control loop, and maintained as separate script files that
could be changed during execution.

Watchdog

Although separated from the monitoring component of the control loop, the watchdog has a
monitoring role also, however it does use the data analyzed in the control loop. The watchdog
component is responsible for restarting the sandbox platform in case the process is crashed or hung. A
process is considered as crashed if its image is no longer in the system, and as hung if the process
image is alive, but the process is not making any progress from a user's point of view [Huang95b].

The watchdog has its own execution thread where it keeps sending heartbeat messages in a
regular interval to the sandbox JVM process and depending on the time taken for the response it can
be inferred that the process is hung and then the autonomic manager can restart it. If a sudden crash
also happens, the watchdog can recover the process and reestablish the connections as well as
restarting the control loop, which is aborted in case of sandbox crash. The watchdog relies on the
java.lang.Process API for starting up the sandbox process as well as for killing it. The instantiation of
the monitor component is made right after the sandbox is launched or restarted.

Script Interpreter

The policy evaluation and the adaptation code used by the control loop are externalized from
the components and take the forms of script files. Since scripts are interpreted, they could be easily
changed without needing to recompile the whole application. Indeed, the OSGi platform could have
been used for modularizing the control loop, but our implementation evolved from an ad hoc solution
which was thought to be sufficient for achieving the desired goal of a simple autonomic manager. We
considered that the level of flexibility provided by scripts editable at runtime would be enough.

The script interpreter is a mere abstraction layer that wraps access to the underlying scripting
engine, which can either be a script compliant with the Java scripting API or a custom scripting
engine. This approach allows changing the scripts during application execution. In the work
performed during this thesis we have implemented the scripts using the Beanshell33 scripting engine,
which is used as a library but invoked through the Java scripting34 API. The main reason for choosing
it instead of the default Rhino (Javascript) scripting engine that comes with the Java 6 platform, is that
Beanshell is Java code that is interpreted at runtime. Therefore, there would be no need for learning a
script language in order to code such externalized behavior.

Control Loop

We simplified the control loop by merging the analysis and planning phases into one component
that we have called policy evaluator. The whole MAPE cycle was implemented as a chain of
responsibility pattern [Gamma95]. The knowledge based is persisted in the local file system and

33 Beanshell - http://www.beanshell.org
34 Not to confound the Java scripting API with Javascript (a script language with its syntax loosely based on Java)

http://www.beanshell.org/

130

provides a runtime abstraction that can be locally accessed and queried by any element of the control
loop. The adaptation code is separated in scripts that are external to the control loop, and that can be
changed while the autonomic manager is execution.

Chain of responsibility. The chain of responsibility is composed by ControlLoopAction objects
chained together. This abstract class is composed of two methods that are necessary for implementing
that pattern: one for setting the next object in the chain, and another one for executing the task (i.e., as
in a Command [Gamma95] pattern). After an element is done processing, it passes the control to the
next object in the chain. Figure 8.3 illustrates the flexibility introduced by using that pattern for the
implementation of the control loop. The boxes with the ellipsis are not part of the actual chain, but
they illustrate place holders where new objects could be easily added if necessary for configuring the
chain (for instance, if the analysis had to be separated from the planning element).

Each phase of the cycle can pass information ahead in a loosely coupled way, through a l.oopContext
object that is sent across the chain of responsibility. This is a short-lived object that must exist only
during a loop cycle. It contains a key-value map that can hold whatever object is necessary to be used
during any control loop phase. It is a way for indirectly sending data from one loop phase to another.
For instance, the MonitorAction is not aware of the PolicyEvaluator existence and vice-versa. Those
two classes are responsible for the M and AP phases of the control loop, respectively.

Figure 8.3. Illustration of the control loop implemented as a chain of responsibility.

Monitor. This is the first component in the chain that comprises the control loop. It is responsible for
(1) periodically collecting information from the managed element (i.e., the sandbox platform); (2)
persisting the current loop event in the knowledge base and (3) storing the information on the
LoopContext object of that cycle, and (4) delegating the execution to the next object that is part of the
chain, next to the policy evaluator component. Although the monitor component keeps polling the
sensor of the sandbox in a periodic poll (e.g., memory, CPU, threads, stale service count), it is also
capable of receiving events in push mode (e.g., method call on invalidated proxy, bundle update).

Knowledge. From a control flow perspective, the knowledge base is not part of the loop. Indeed it is
part of the control loop abstraction but rather as a repository of information that is shared by the
components that constitute the control loop. They can perform analysis and inferences on the
platform behavior based on the data stored in the knowledge base. In the IBM autonomic computing
blueprint [IBM06], one of the ways for obtaining the knowledge from an autonomic manager (AM) is
to let the AM itself produce that knowledge, instead of using external sources. The monitor part,
using the information collected through sensors might create knowledge by logging the notifications

M … AP E

Collects and store data

Script Repository
K

Executes policy script Executes action(s) script(s)

…

Legend
Control flow
Uses/references

Policy script

131

that it receives from a managed resource. The other components of the control loop may also update
the knowledge base with information on actions that were taken as a result of the analysis¸ planning
and execute phases.

Our implementation uses that strategy of having the autonomic manager to produce its own
knowledge, storing historical events that are shared with the other control loop components. The
control loop components generate information in the form of events that are persisted in the
knowledge base. These events were classified according to the diagram of Figure 8.4, which illustrates
the types of event that we have considered for modeling the information of the knowledge base. Two
classes are introduced only for generalization purposes (BasicEvent and CausalEvent) and are not
explicitly stored or instantiated, since they are implemented as abstract classes. The LoopCycle class
represents the periodic events for gathering information that is verified in the control loop. For
modeling the GeneralFailure class is instantiated by the Watchdog component under two situations
that were taken into account: if the sandbox is crashed or if it is hung. Although conceptually they
may suggest two classes that would be specializations of GeneralFailure, we distinguish these events
only by the anomaly that originated the event (crash or application hang). Since there are no
additional attributes we did not see any reason for such specialization.

We have also modeled a family of events that capture causality, that is, there is an association with
the event object that represents the event that has provoked it. ActionTaken events represent actions
that were performed in the end of the control loop cycle, as a result of the analysis and plan phases.
These events store their cause and the behavior diagnosis. The cause is the event during which the
action was triggered, which can be a GeneralFailure event but usually concerns a LoopCycle event
(when it is performed during the regular cycles that poll the sandbox). The behavior diagnosis
consists of the abnormal behavior, mapped by the fault model. The autonomic manager is also
asynchronously notified of service and bundle events, which are translated into the knowledge base
event objects to be stored.

As an example, consider the scenario where an analysis performed during a loop cycle identifies that
a bundle has to be submitted to a sort of microreboot (i.e., stopped and started), the LoopCycle event
representing the cycle where that decision took place will be associated with the ActionTaken event
created. After receiving the corresponding action through its effector probe, the sandbox will notify
the autonomic manager of two service events (stopped and started). The causality of events received
asynchronously is discovered through a heuristic mechanism used by the knowledge base for finding
out if there is any correlation with previous events that were recorded recently (a time frame of a few
seconds).

Figure 8.4. Class diagram that models the information stored in the Knowledge Base.

The historical information is essential not only for inferring such micro-vision of related events in
small time intervals, but also for longer observations where anomalies of the sandbox behavior could
correlated to the event(s) that potentially may have caused such abnormal behavior. As an example, it
should be possible to verify that after the installation of a given bundle the CPU usage has

BasicEventBasicEvent

CausalEventCausalEvent LoopCycleLoopCycle

ActionTakenActionTaken ServiceEventServiceEvent BundleEventBundleEvent

GeneralFailureGeneralFailure

causecause

132

significantly increased. The information contained in this historic, however, is limited and is
restricted to a range of problems that are mostly related with implications of dynamism.

Investigations of the correlations between events in a wider time-frame could be inferred with some
level of automation, but it may be a “man-in-the-loop” issue where an administrator or specialist can
intervene. This user would verify the historic information looking for a correspondence between
events, either by developing ad hoc queries or scripts, or manually verifying the events looking for
possible causes. For the latter case, one may use graphical interface such as the one we have
developed and is presented in Figure 8.5. This GUI is a VisualVM35 plugin that connects to the JMX
probe that we have developed for the autonomic manager, so an administrative tool such as this one
could have access to it. It provides a rudimentary view of the historic, allowing the visualization of
event details and their causal relations, when applicable.

Figure 8.5. Monitoring GUI of the sandbox as a VisualVM plugin

The administration functionality provided by this plugin was planned to include a scripting console
where the user could use historic information in predefined scripts or in ad hoc functions for querying
that data set. However it was not developed due to time restrictions on the thesis.

Policy Evaluator. This is the second component in the sequence of the responsibility chain. It plays
the role of the analysis and plan phases in the MAPE-K control loop. This component evaluates the
analysis script in each cycle, and depending on the analysis one or more scripts may be executed
during the execute phase of the control loop. This practice of merging the analysis and plan phases is
not unusual, and can be found also in other approaches, such as [Montani08] and [Dubus06]. For
instance, the approach from [Montani08] presents a MAPE-K control loop where the analysis and
plan phases are handled by a single component which they have called self-healing engine.

We have chosen to merge the analysis and plan components because a significant part of these
components’ logic is externalized from the components and stored in the policy script, therefore not
leaving too much of analysis and planning to be performed within those two components. The code
contained in the policy script may use the knowledge base during the analysis. As a result of the
analysis, a list of scripts to be executed is generated, stored in the LoopContext object. The control
flow is handed over the StrategyExecutor, which is next ControlLoopAction in the chain.

Strategy Executor. The strategy executor is the last control loop component executed in a cycle. It is
responsible for retrieving from the LoopContext the list of scripts to be executed. If the list is empty,

35 VisualVM http://visualvm.java.net/

http://visualvm.java.net/

133

the current loop iteration ends. Otherwise, the LoopContext continues its steps by loading the scripts
from the script repository (a local folder in the current implementation), retrieving the
ScriptInterpreter and running them one by one as well as logging the appropriate information in case
of exceptions. The code kept as beanshell scripts outside the application gives flexibility and leaves
the possibility of customizing the behavior without needing to recompile code.

During the execution of this phase, the scripts may gather information (e.g., which bundles are the
potential retainers of a stale service) from the knowledge component in order to take a decision. The
monitored data is made available to the scripting execution context, so the policy can have access to
the current loop cycle values. Since the code is not compiled, errors are found only when the script is
interpreted. An alternative to avoid errors when editing script objects could be the parallel utilization
of mock implementations of the Knowledge base and touch points that would be passed to the
LoopContext for testing the scripts that have been changed, before they are effectively whenever the
script repository changed.

8.3 Fault Model

The hypotheses on potential sources of error in an application can be specified in a fault model
[Binder99], which is useful for testing and for fault detection mechanisms. In Chapter 6 we discussed
about the inconsistencies that we want to address in OSGi applications, divided into three categories:
resource consumption, library crashes and dangling objects. These bug hazards are the basis of our
fault model. Although not required when designing a fault model, we can illustrate our model with a
hierarchy represented as a UML class diagram, depicted in Figure 8.6. The root of that hierarchy
generalizes the category of the covered problems as a faulty behavior (i.e., behavior that is not
expected), which would be a denomination that groups faults, errors and failures. We wanted to avoid
an overloaded usage of the term fault in places where error or failure would me more appropriate.
The higher level class and its two direct subclasses are abstract classes used for generalization
purposes, but they do not represent concrete cases of faulty behavior that we have modeled.

Crashes and Application hangs were considered as possible cases of application unresponsiveness.
According to the definitions found in [Huang95b], a system is considered as hung if it is
unresponsive. This is different from a crashed system which characterizes a system whose process is
abruptly stopped and is no longer in memory. Resource usage was divided into CPU and memory
categories. Both of them correspond to the excessive usage of the respective resource, but they can
have specialized categories. Excessive thread allocation demands much more CPU usage for thread
scheduling and context switching. Denial-of-Service (DoS) constitutes the excessive usage of a given
resource in such a way that it is not able to serve other requesters, making the resource unavailable.
We introduce the category of stale services in the diagram because it is the type of dangling object that
we are able to detect and deal with in our mechanisms. Since it concerns a very specific type of
memory inconsistency, we have considered it as a subcategory of memory issues, which is also true
for other types of dangling objects that are not part of our fault model.

Figure 8.6. Illustration of the sandbox fault model as a hierarchy in a class diagram.

Faulty
Behavior

Resource Usage

Unresponsiveness

Excessive
Thread

Allocation
CPU

MemoryStale Service

Denial of
Service

Crash

Application
Hang

134

One may argue that some of the behaviors classified in this hierarchy can be categorized
differently, like excessive thread allocation which could have also been considered as a memory problem
and even be seen under the unresponsiveness category. This model is not a strict view but only a
hierarchical classification view for illustrative purposes and that considers a single parent per node.

8.4 Fault Detection and Recovery

Self-healing systems should be able to recover from failed components, by detecting the faults
and fixing the faulty behavior. Based on that fault model that was just presented, we are able to
provide mechanisms for detecting such anomalies, but with current technology it is not possible to
detect all of them at the component level. Component-based platforms do not provide features for
individually measuring resource consumption of components. Therefore, we lack precision on some
of the employed detection techniques. Because of these limitations we were able to identify the actual
sources of faulty behavior only for the case of stale services, and denial of service because we could
insert monitoring mechanisms in the OSGi service layer, which allowed us to track those problems.
The rest of the faulty behaviors described in the fault model could be only identified in a general
basis, without being able to exactly point out the objects or classes where the problem comes from.
This limitation represents a major drawback for a sandbox that is shared with other components since
the reboot penalty is for all sandbox, and therefore all of the components running there.

The detection of stale services has a particular mechanism that allows the identification of the
problem at the component level, because it can be triggered by notifications when an unregistered
service is invoked. Therefore, the detection of stale services is performed in two ways: by verifying it
during each cycle of the control loop, or by receiving such notifications asynchronously. The former
works as a fault forecast mechanism, but the current implementation involves imprecise heuristics for
guessing the potential retainer of the service reference among the importers of the service interface
package. The latter case would consist of fault detection and allows a more precise identification. The
strategy found for fixing this behavior is more precise when the asynchronous notifications on stale
service calls are sent. The exception thrown when invoking an invalidated proxy provides a stack
trace that can be parsed, so the class name of the invoker can be identified. Finding the bundle that
contains that class consists of a linear search of each bundle’s set of bundle entries (the list of
contents) that match the name of the class. After identifying it, we perform a call to the update
method in the bundle, performing a sort of microreboot. The bundle would be started and stopped,
thus releasing the references to other services and recreating its bindings to a consistent state.
However, this would not guarantee that the problem will not happen again, since the code of the
bundle was not changed. There are attempts to avoid such problem in the OSGi platform, the
proposition of the OSGi Micro Edition (ME) [Bottaro10] describes the fact of not having stale
references as one of the requirements in the specification.

The verification of denial of service behavior also relies on information captured in the OSGi
service layer. The sandbox monitors that information by counting and logging service calls towards
the main platform. In each control loop cycle of the autonomic manager, the corresponding
verification in the policy will use the current value of total services invocation count and compare it
with the last cycle. If it is greater than the maximum value configured, the policy script checks the
sandbox log to verify if there is a particular service that is being overused or if this is just a overusage
of the main platform through various services being called by the sandbox platform. If a single
service is identified as the bottleneck for the excessive invocation, the policy verifies in the knowledge
base for ActionEvents that have a DoS behavior diagnosis containing that same service as a target. If
it has already happened with that service, the strategy used is a script for invalidating that service. If
it has never happened before, we perform a microreboot in the sandbox. Possible refinements on the
diagnosis mechanism in the former case would be: (1) temporary invalidation of the overused service,
which would be a temporary solution that could take place again; or (2) invalidate the proxy to that

135

service, and provide a mechanism that would provide individual proxies per bundle36, allowing to
identify the misbehaving bundle next time the excessive usage of that service causes a DoS.

The other faulty behaviors mapped by the fault model cannot be precisely mapped to the
“guilty” component. As already discussed, the information logged in the knowledge base can help
making inferences of potential causers of a given anomaly, but is not enough for precisely identifying
the origin of the problem. In case of detecting such behavior anomalies without knowing from which
component it comes from, the technique Microreboots are still used as a resort for resetting the
system state as an attempt to leave the faulty state. However, the granularity level of the microreboot
is increased. Instead of an individual component, a subset of components (the ones that are active in
the sandbox) is rebooted simultaneously. We can still consider the reboot as “micro” because part of
the application keeps executing.

Concerning the unresponsiveness, its detection is performed by the watchdog component,
outside the regular control loop as a separate surveillance mechanism. The other anomalies specified
in the fault model are identified in the control loop during the analysis phase of the cycle. The script
that contains the logic of the policy is executed and evaluates the read values against the policy. The
resource usage class in the diagram represents an abstract concept for generalization, thus not having
any code that directly deals with it as a general mechanism. When checking resource usage such as
CPU or memory, the verifications in the script are done based on the established thresholds, however
a decision for performing a microreboot must not be based on the information of a single loop cycle.
The knowledge base is used for verifying past loop cycles (e.g., during the last minute) and check if
the threshold in question has been surpassed continuously.

8.5 General Considerations

Although our approach was implemented on top of OSGi, which is a production-ready
platform for running dynamic component-based applications, our solution is an experimental
approach that provides a proof of concept. Therefore, it has limitations and needs to execute in
environments were a few assumptions are used in order to enable our approach to be used.

8.5.1 Assumptions

Experimental approaches make different assumptions, which sometimes do not reflect actual
software usage but that are necessary to validate the preliminary concepts put in practice. The self-
healing engine from [Montani08], for instance, makes the assumption that transient faults and
intermittent faults should never happen. In our case, in order to enable the appropriate functioning of
our solution, a set of assumptions must be true:

 The set of components that coexist in the trusted platform has already been tested and
has a minimal probability of bugs.

 Based on one of the microreboot conditions, services that will run on the sandbox are
stateless otherwise they risk having state corruption in case of reboots.

 The communication between platforms will be done through services with simple
interfaces (String and primitive values as well as arrays of those types).

8.5.2 Microreboot Considerations

We enumerate some of the considerations that must be taken into account concerning the
microreboots performed by the platform:

36 Such an approach is possible in OSGi through a ServiceFactory interface, which allows a service provider to implement

that interface and offer different services instances (or proxies) per requesting bundle.

136

 There is a significant difference between bundle microreboot and sandbox
microreboot. Bundles in the sandbox are actually purged from memory when it is
rebooted, since the sandbox platform goes through a shutdown and its isolated
container (JVM process or Java Isolate, depending on the approach) is removed from
memory, so another instance is started again. In the case of a bundle microreboot, there
is no guarantee that its allocated resources (e.g., threads, streams, sockets) will be
released; or that the services provided by that bundle will no longer be referenced.
Both of these issues depend on good programming practices.

 The state of service instances is not maintained (services are stateless, as previously
assumed). Service providers may use their own mechanisms for that.

 The state of the sandboxed bundles (e.g., started, stopped) is managed by the OSGi
platform and it is maintained across reboots.

 The microreboots may lead to an undesired effect. Depending on the configuration of
the policy, continuous restarts of bundles or even the whole platform. This would
generate continuous notification of events to the main platform, and would actually
worsen the application performance and responsiveness. Such undesirable situation
may continue until the origin of the fault is neutralized (e.g., component stopped,
threshold reconfigured).

8.6 Discussion and Limitations

This section discusses some issues and limitations concerning the replacement of faulty
components, resource accounting and evaluation of trust in isolated components. The previous
subsection ended up with a point that leads to a discussion about the effectiveness of the
microreboots. Non-deterministic faults that would cause abnormal behavior can be removed by
performing microreboots in bundles or in the sandbox. Another point that is very important to be
discussed concerns precise resource accounting at the component level would help identifying issues
that would allow a fine granularity of microreboots. Finally, we discuss about the criteria on how we
could evaluate if a component is trustworthy, so it could be promoted to be executed outside
confinement.

8.6.1 Replacing Faulty Components

The fact of performing microreboots as an attempt to reestablish correct behavior concerning
deterministic faults may not be effective all times. Except if we replace a faulty component by another
one which provides a correction for the detected fault, a microreboot cannot guarantee to
permanently remove a fault. Replacing a faulty (or suspicious) component with an alternative version
(e.g., newer version, other component that provides the same functionality) would be more
appropriate because another component will equivalent functionality would likely not have the same
faults. This problem could be minimized and potentially solved if the target component platform is
able to access a component repository and query it for equivalent functionality (e.g., query based on
the provided interface of the component component).

In the case of OSGi, that would also be possible if implementing a search mechanism accessing
and using metadata of OSGi Bundle Repositories (OBR), which are federated bundle repositories
described by XML files. In order to have such bundle replacement mechanism one would need to
query an OBR using its capability metadata (e.g., metadata about provided packages and services) as
a filter for finding a bundle that would provide the same services as the faulty bundle does.

In other work [Gama11b] we have started the development of a probe-oriented deployment
mechanism based on the OBR, but in that approach we use previously known sets of probes that are
looked up in OBRs and deployed in the application. In the context of the sandboxed OSGi, we would
have to query the OBR looking for a bundle that provides the same services of a bundle that has to be
replaced (i.e., the faulty bundle). The bundle manifest attribute providing metadata about imported

137

and exported services has been deprecated in OSGi. Therefore, we would have to provide equivalent
information for representing the required and provided services of a bundle. In this case, the service
interface names could be exposed as capabilities (extensible metadata) in the OBR.

8.6.2 Resource Accounting

One of the challenges in providing mechanisms for detecting the issues presented in our fault
model lies in the fact of not having precise monitoring tools and infrastructure that can give
information at the component level. In environments where components come from different sources,
liability is an important issue to be dealt with. It concerns who is responsible for faults, but it is harder
to detect anomalies when there is no fine-grained control on resource allocation or usage, which
includes, for instance, CPU, memory and thread allocation. Resource accounting at the component level
is not trivial. [Miettinen08] raises the question if the resource usage should be accounted to the
provider or to the component that executing a given computation. Also, depending on the
perspective, the information may be misleading. In the case of DoS, the causer of the problem is the
service consumer, which is invoking it excessively. However, if the monitoring only takes into
account the CPU processing; the service provider is going to be the one to be blamed of the
malfunctioning.

This perspective is discussed in [Miettinen08], where the authors preferred to take into
consideration the direct accounting (the provider is responsible for the resources it uses) of resources.
Their approach is an attempt to provide resource monitoring in the OSGi platform, giving a bundle
consumption perspective. They map OSGi bundles to threads, combining changes on OSGi code and
the addition of JVMTI37 agents developed in C that are plugged to the JVM. The resource
consumption of the threads spawned by a bundle would be accounted as that bundle’s resource
consumption. Other projects [Ferreira09] [Wang10] employed the same techniques, but they are all
based on assumptions that limit the precision of the resource accounting. As this approach needs to
perform changes at the application level and at VM level, it makes the maintenance more complex
besides the fact that portability is compromised because the JVMTI approach is not mandatory in
JVMs.

Temporary CPU bursts in the sandbox due to some processing that is consuming too much of
resources may be misjudged by the autonomic manager. It would be necessary that the component
inform the runtime that extra resources are going to be needed, in order to avoid such situations. For
instance, the KaffeOS introduces the concept of process in a Java Virtual Machine, providing an
isolation container that can have its resources precisely accounted independently of the other
processes hosted in the same JVM. JRes [Czajkowski98] provides a solution based on a Java interface
for monitoring resources consumed by threads or thread groups. It allows setting limits on resources
available to thread instances and to be notified back in case the resource limits are exceeded. In order
to work this approach performs bytecode rewriting and also relies on native code for accounting
resource usage. The contract-based approach for resource consumption described in [Guidec02] uses
resource brokers as intermediary entities between components and the JVM for providing resource
permissions, quotas and reservations. They are used for granting access to resources, allowing access to
resources and assuring the necessary quantity of resources, respectively.

In the Microsoft .NET platform, resource consumption information can be easily retrieved
through a built-in package, thanks to the tight integration of that platform with the Windows OS. The
.NET CLR exposes a set of built-in performance counters in the System.Diagnostics namespace that
provide information such as networking usage, memory, threads and locks, exceptions thrown by the
application, among other information. However, that information concerns only the process level.
Although the .NET platform provides application domains, which act as separate isolation containers,
there is no resource accounting at that level, neither at the assembly (i.e., component) level. Therefore,
in a scenario with multiple components and multiple application domains one cannot be sure about
the application assembly responsible for situations where excessive resource consumption take place.

37 Java Virtual Machine Tool Interface - http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/

138

In the ROBOCOP component model we can find an approach [Jonge03] that tries to address
resource usage at the component level. It is actually focused on the resource consumption in a per
operation basis. Each component defines services, and their respective operations which need to
specify the amount and the type of resource (e.g., CPU, memory) to be allocated. They use a
prediction mechanism that takes into account that specified value in order to estimate resource usage.
If a service is a composition involving other services, the estimation mechanism for it will take into
account all operations to be called indirectly. Still, this is another approach that does not provide a
perspective of actual resource usage by a component.

In the case of the Java platform, standardized mechanisms concerning resource consumption
are not yet available and currently there exists limited monitoring capability in utility classes
scattered over the API. The official specification of the Resource Consumption Management API
[JCP09] at the time of writing of this manuscript was in its final version for more than two years,
without any available implementation, which according to the documentation would be constructed
on top of the Isolate API. Meanwhile, fine-grained control on resource monitoring would have to be
limited to mechanisms that are built over non-standard JVMs, as detailed in this subsection.

8.6.3 Evaluation of Trust

The evaluation of component trust is a difficult task especially if this is to be done during
application execution. The purpose of this platform is not just hosting components in the sandbox ad
vitam æternam. This mechanism is necessary for protecting the main application from the potential
malfunctioning of other components. It is desired in some cases that the isolated component be
promoted to a trustworthy status so they can execute as part of the main application.

We have not found a specific model or approach for automatically doing it at runtime. Injection
of faults into interfaces between components, as used in [Voas97], allows simulating the propagation
of errors across components and how they behave on such scenarios. However, approaches like that
are appropriate to testing environments while our target scenario consists of a production environment
where components can be dynamically deployed at anytime, either by a system administrator or
through an automatic mechanism.

As an appropriate strategy to the sandboxed OSGi approach, we support the idea of runtime
observation of the component. During a sort of quarantine period, the interaction between the
component and the system (i.e., other components) can be analyzed. After having enough historical
information (e.g., Knowledge base) to be verified, the level of trust could be evaluated based on that
analysis. The verification of historical data from the knowledge base can help to tell if the evaluated
component introduced anomalies or undesired behavior in the system.

An obstacle to a precise evaluation, as discussed in the end of previous section, concerns the
lack of fine grained resource monitoring at the component level. Without that information, one
cannot be sure about the resource consumption of a component. A second problem would concern
the code coverage of these interactions. Part of our hypotheses considers the potential
incompatibilities in compositions. Therefore, the historical data should also provide information that
makes possible to take into account if, (1) all the methods of the services provided by the evaluated
bundle have been invoked, and (2) if the services consumed by the evaluated bundle were already
invoked. However, there are no guarantees that all of these interactions will take place during
execution. Therefore, the minimal degree of coverage could be a criterion to be specified in this case.

If we take into account the cohesion principle of hosting as a group in the sandbox all
components that interact together, the decision of promotion would have to involve the whole set of
cohesive components that are involved in related computations, otherwise by promoting one
component only we would be generating performance penalties since the component would now
have to interact through IPC mechanisms.

Once the criteria are reasonably defined as well as the verification mechanisms, it would be
possible to automatically promote components (if the fine-grained monitoring was available, of
course). For now, the component promotion performed in our approach lies in human observation
and decision before changing the policy for dynamically.

139

8.7 Summary

This chapter presented the approach taken to construct the self-healing mechanism of the OSGi
sandbox. We developed an autonomic manager that connects to the sandbox through management
probes. The autonomic manager uses a feedback control loop for monitoring the sandbox and
performing corrective actions in case the interpretation of the monitored data indicates abnormal
behavior of the sandbox. The structure of control loop that was implemented is based on the MAPE-K
(Monitor, Analysis, Plan, Execute, Knowledge) reference architecture from IBM, however the actual
adaptation logic was kept as separate scripts that are loaded during execution, and can be changed
while the application is running.

The chapter also provides the fault model taken into account for mapping the potential faulty
behavior that would be triggered. It also presented some techniques that were employed for detecting
and recovering from these behaviors. A major limitation concerned the lack of functionality that
allows fine-grained monitoring of component resource consumption. Such information would be
helpful for indentifying guilty components, in case of faulty behavior detected. This is of utmost
importance in a context of several component providers. It forced the strategies to take general
considerations and perform restarts in the whole sandbox, when it should be used just as a last resort
in case individual component microreboots did not handle the problem.

Although the autonomic manager is modeled and developed as a separate component, the
OSGi framework code still had to be changed in order to add more dependability-related code, this
time for the monitoring functionality used by the control loop. The next chapter discusses structural
improvements in this approach by appropriately handling dependability as a separate concern
instead of trying to have it entangle with the code target platform.

Chapter 9

Dependability as a Crosscutting
Concern

"Serendipity is the faculty of finding things we did not know

we were looking for"

Glauco ORTOLANO

Contents

9.1 SEPARATION OF CONCERNS FOR ADAPTIVE DEPENDABLE MECHANISMS 142

9.2 ASPECT-ORIENTED PROGRAMMING ... 143

9.2.1 NON-FUNCTIONAL REQUIREMENTS AS ASPECTS ... 144

9.2.2 AUTONOMIC COMPUTING AND AOP ... 144

9.2.3 AOP IN THE OSGI PLATFORM .. 144

9.3 REPRESENTING LAYERS AS ASPECTS .. 145

9.3.1 SOFTWARE REENGINEERING ... 146

9.3.2 LAYERS ASPECTIZATION ... 147

9.3.3 PROPOSED REENGINEERING PATTERN ... 149

Intent ... 149

Problem .. 149

Solution ... 149

Tradeoffs .. 150

9.4 OSGI CASE .. 150

9.4.1 OSGI LAYERS AS ASPECTS .. 151

Lifecycle ... 151

Service ... 152

Module... 153

Layer Aspects Reuse by Composition .. 153

9.4.2 DEPENDABILITY ASPECTS .. 154

Component Isolation ... 155

Service Isolation .. 155

Stale Services Monitoring ... 155

Autonomic Management ... 157

9.5 WEAVING DIFFERENT OSGI VERSIONS .. 157

9.6 SUMMARY ... 158

142

The last two chapters concerned the implementation of the mechanisms proposed in this thesis,
which are detailed in Chapter 5. Our solution was initially implemented as a set of patches to Apache
Felix version 1.4, which is an open source implementation of the OSGi specification. This chapter
focuses on how we have treated dependability as a crosscutting concern and how we better
modularized the solution by using Aspect-oriented Programming (AOP) for separating dependability
code (non-functional) from the OSGi platform runtime (functional code). We also observed that in
OSGi the architecture layers have a representation gap when translated from the specification to the
API. As an unexpected side finding, we have created an abstraction for representing software layers
as aspects which helped to better visualize the OSGi layers and how they are crosscut by the
dependability concerns. This abstraction, which we generalized as a reengineering pattern, also
avoided some redundancies when applying aspects to the OSGi platform.

The fact of having the dependability code separated from the OSGi implementation minimized
the burden of manually applying the dependability code to other OSGi implementations. Aspect-
orientation provided a good choice for modularizing the dependability concerns. In our case, it
allows us to easily apply the extracted crosscutting concerns over two dimensions: across different
versions of a given OSGi implementation; and across different OSGi implementations (i.e., different
vendors), thus enhancing the maintainability of our solution and its applicability. The
implementation of the aspects was performed using Aspect-J, an aspect-oriented extension to the Java
programming language.

The chapter is partly based on [Gama11a]. It starts with motivations for employing separation
of concerns for adaptive dependable mechanisms. It is followed by a section that gives a brief
overview on AOP, including aspect usage in autonomic computing and in the OSGi platform. Next,
we detail the generalization of the reengineering pattern we propose for capturing layered design by
using aspects. After that, the process is of applying that pattern in OSGi is illustrated together with
the implementation of dependability as aspects in that platform.

9.1 Separation of Concerns for Adaptive Dependable Mechanisms

A discussion in [Taïani09] points out that one of the key challenges for adaptive fault-tolerant
computing is related to the coupling between functional code and the non-functional code introduced
by the adaptation mechanisms. According to the authors, an ideal solution for adaptive fault
tolerance should focus on three characteristics: separation of concerns, programmability and scope control.
The first one suggests a clear separation between the functional level, the fault tolerance, and the
adaptation itself. The second characteristic advocates that a declarative approach would allow
developers and fault tolerance experts to express the dependencies and requirements in an
appropriate DSL which should cover fault tolerance assumptions and needs (fault model, fault unit,
levels of confinements). The third characteristic refers to the ability of operating small changes with a
small effort, where only the parts to be adapted in a fault-tolerant mechanism would be impacted.

Our approach addresses all of these three characteristics to some extent. The proposed scope
control encourages the use of fine-grained adaptation units, which is what we do in the autonomic
manager through the scripting approach. The scripts can be individually updated, thus keeping a
limited scope that does not affect the running system. The programmability is focused by means of the
isolation DSL that we propose. In a declarative way, as suggested in [Taïani09], it is possible to
configure the levels of confinement – component or service— in use by specifying if and which
services or components need to be isolated. The proposed separation of concerns is three-tiered:
functional level, fault-tolerance and adaptation itself. In our approach this separation is partly true. What
we consider as the functional level on the sandbox is the ability to provide an execution environment
for components. A significant part of the fault-tolerant and adaptation code is kept independent from
the functional level. The adaptation code is kept in the scripts of the autonomic manager, while the
fault-tolerant mechanisms are divided between these scripts and the autonomic manager, which is
responsible for watching and monitoring the sandbox. However, the code that performs the isolation
of components and services was embedded in the OSGi implementation. Therefore, the separation is
not complete.

143

The package diagram in Figure 9.1 presents a code perspective on how the solution was
structured. Although the isolation code was well structured, we had to customize the Apache Felix
implementation by inserting in several places calls to the isolation code. The autonomic manager code
was kept separate but it only depends on the probes provided by our customization. In summary, the
adaptation code resided in the isolation, autonomic manager and scripts packages.

Figure 9.1. Package diagram illustrating the static dependencies

This chapter presents the structuration on how we have used AOP for separating the
dependability code (non-functional) from the OSGi platform runtime (functional code). This
approach allowed us to reuse this solution in different OSGi implementations, facilitating the
maintenance of the dependability code independently of the OSGi implementation code.

9.2 Aspect-oriented Programming

The principle of Aspect-oriented Programming (AOP) [Kiczales97] is a paradigm that improves
the modularity of applications by employing the principle of Separation of Concerns38 (SoC)
[Dijkstra74] advocated by Dijkstra. In SoC, one should focus on one aspect of a problem at a time, as
a way to have a better reasoning on a specific aspect of a system. An aspect should be studied in
isolation from the other aspects but without ignoring them.

Putting these concepts into practice, AOP allows the separation of concerns (e.g., logging,
transactions, distribution) that crosscut different parts of an application. These crosscutting concerns
are kept separate from the main application code, instead of being scattered over different parts of the
system. A source file (e.g. module, class) may also have code that accumulates different
responsibilities not necessarily related, giving an impression of tangled code.

As Figure 9.2 illustrates, code that crosscuts the application and is separated from application
source code into different source files, in the form of aspects. An aspect weaver mixes the aspect code
with the application code in a stage that is performed typically at compile time but sometimes also
done at runtime. This separation improves modularity and readability, and, as a consequence of
those, the maintainability of applications.

Figure 9.2. Aspects are maintained outside the target application code, and then are intermixed with it after the

weaving process.

38 It is not to be confounded with SOC, with a capital “O”, which stands for Service-Oriented Computing

Custom OSGi

Autonomic
ManagerIsolation

Scripts
<<use>> <<use>>

Aspect Weaver

Application
code

Woven code

Aspects

144

AOP employs its own terminology, from which we briefly clarify some of the commonly used
expressions that are going to be frequently cited throughout the chapter. Join points are constructs that
capture specific parts of program flow (e.g., method call, constructor call). Since join points refer to
parts of the program that are evaluate during execution, one may also use the term join point shadows
[Hilsdale04] to refer to the corresponding part of the join point in the static part of the code. For the
sake of simplicity we will refer simply to join points unless explicitly differentiated. Pointcuts are
elements that pick one or more specific join points in the program flow. The code that is injected into
pointcuts during the weaving process is called advice in AOP terminology. The portions of code
defined in the advices are executed during method interception during application execution when
the corresponding pointcuts are reached. In AspectJ, as in most AOP technologies, an aspect is
comprised39 by pointcuts (which pick out join points) and advices.

9.2.1 Non-functional Requirements as Aspects

AOP is complementary to other approaches like object-oriented and component-based
programming. It allows to keep crosscutting concerns separate from the main application, avoiding
the code scattering phenomena that is typical when implement certain non-functional requirements.
Aspects have already been successfully used for keeping non-functional requirements like persistence
[Rashid03], distribution [Soares02] and QoS [Loyall98] separate from the functional code. [Duclos02]
uses this separation adapted to component-based development, and [Seinturier06b] provides a
Fractal component model implementation using AspectJ for separating the development of
application-level functionality from the development of supervision functionality and technical
services.

Although other approaches use aspects for handling dependability-related cross-cutting
concern, we have not found approaches targeting dependability by employing of aspects for isolating
components and services in dynamic applications. The strategies were rather different, and targeting
other execution platforms. Error handling [Filho07] [Lippert00] is one the most addressed
dependability-related concerns using AOP. Other approaches like [Rouvoy09] try to handle more
general mechanisms, by using AOP to combine dependability concerns with self-adaptive
applications.

9.2.2 Autonomic Computing and AOP

In general, several efforts have used AOP to address dynamic adaptation, such as
[Redmond02] [Yang02]. By narrowing down the vision to autonomic computing we can still find
works that take advantage of AOP for introducing autonomic managers and monitoring capabilities
into systems. Autonomic computing principles are handled as crosscutting concerns in [Engel05],
where a self-adaptation mechanism (self-optimization, self-configuration, self-healing and self-
protection) based on resource usage is integrated into the operating system kernel level by means of
AOP.

[Chan03] focuses on the monitoring function as a crosscutting concern, describing an approach
for building autonomic managers in legacy systems by using AOP techniques for weaving them.
[Alonso08]presents what was have called AOP-monitoring framework, where they inject monitoring
probes into the system by means of AOP in order to verify resource consumption. In [Greenwood04]
aspects that monitor requests on a server application are dynamically woven in case response time
thresholds being reached, allowing a caching aspect for enhancing response time.

9.2.3 AOP in the OSGi Platform

The service-based component models that target the OSGi platform allow separating non-
functional code concerning dynamism handling (service dependencies, registration, unregistration,
etc), from the functional code itself that is provided by the components. The iPOJO component model

39 An AspectJ aspect may also contain inter-type declarations (e.g., field declaration), but those were not used in our solution,

therefore they are out of the scope of this thesis.

145

takes a step further with a more flexible mechanism. It employs strategies extensively used by AOP
frameworks, such as method interception and bytecode manipulation. Non-functional code can be
provided by means of handlers. Besides the predefined handlers already implementing non-functional
requirements such as service provisioning and dependency management, the mechanism permits
developers to provide their own custom handlers for dealing with other non-functional requirements.

We have found different approaches explicitly using AOP in OSGi. While we have focused on
introducing non-functional requirements as crosscutting concerns into the OSGi framework by means
of aspects, the majority of the other approaches focused on the usage of aspects at the bundle level.
The only approach we have found targeting the framework itself was the one from [Singh07], where
they have focused on refactoring existing crosscutting concerns (e.g., security) in the Equinox OSGi
implementation. Frei and Alonso [Frei05] adapted an OSGi framework implementation in order to
register services for using AOP through an AOPContext object instead of a BundleContext object,
allowing service proxies to intercept calls before and after method execution.

Other mechanisms concentrate on enabling the usage of AOP in OSGi bundles, providing load-
time weaving like the Equinox Aspects project [Lippert08], where aspects can be deployed either with
the bundles that would be woven, or as separate bundles. Keuler and Kornev [Keuler08] also use
Equinox’s class loader hook mechanism for manipulating the class loading performed in bundles.
They replace the base class loader of all bundles by an intermediary one that allows the aspects to be
loaded. Irmert et al [Irmert08] combine JBoss AOP with the classloading hook mechanism from
Equinox for building a mechanism that deploys aspects as OSGi bundles. All three approaches rely
on Equinox’s the class loader hooks which are specific to the Equinox OSGi implementation and are
not part of the OSGi specification, therefore not being portable to other implementations like Apache
Felix or Knopflerfish.

9.3 Representing Layers as Aspects

Our sandboxed OSGi implementation was initially an OSGi Apache Felix version 1.4, patched
with the code that enables our propositions on the isolation approach and some monitoring features
that are used by the self-healing mechanism. Attempts to port that solution to a more recent version
of Apache Felix would require manual work of copying and pasting the patches that are scattered
across different classes. Migrating to another OSGi implementation (e.g., Eclipse Equinox,
Knopflerfish) requires a deep analysis of the target implementation source code and migration of the
patches. To ease the burden of applying such patches manually, we have extracted and refactored
them into aspects, which was a good choice for modularizing the dependability crosscutting
concerns. This refactoring approach enables better code evolution, since the aspects are kept
independent of the target application which can evolve separately as well as have different versions
that combine different sets of aspects. For instance, an OSGi framework could be woven only with the
isolation aspects without using the self-healing approach. Such strategy for different combinations of
aspectized features is common in software product lines [Alves07].

During that process we have identified the points of interest of the OSGi API where our
dependability aspects should be applied to, instead of directly applying them to specific classes
which are implementation dependent. Because the API is standardized and is the common point to
all OSGi implementations, the aspects targeting the API are applicable to any of the implementations.
However, during the restructuring we have noticed that useful concepts described in the OSGi
specification are not well represented in its API, making it difficult to distinguish abstract concepts in
the specification from their counterparts in the API. For instance, the software layers specified by
OSGi are scattered over different interfaces, which accumulate roles from different layers. There are
no single entities to describe individual layers neither there is a single access point for accessing the
services of each layer. Software layers are abstractions to enhance modular design. Therefore, if such
layer concept is lost when a specification is translated into an API, we lose modularity as well.

We have analyzed the OSGi API and used aspects to reify these abstract software layers,
distributing the resulting code in the form of an aspects library. Layers can be crosscut by different
concerns which are aspects of more specific purpose (e.g. logging, transactions). In this case, instead

146

of applying the specific aspects directly to the OSGi API, we add another level of indirection through
layers that are “aspectized”. The specific aspects can reuse the pointcut definitions of these layer
aspects, giving us two advantages: better readability with a clear understanding of which layers are
crosscut by which aspects; and reuse of pointcut definitions, which need be define only once in the
layer aspect thus avoiding redundancy. We demonstrate such reuse by refactoring our OSGi
dependability patches as aspects that reuse these new layer abstractions. Although we concentrate on
dependability concerns, this approach could use the same strategy for introducing any crosscutting
concern addressing the OSGi framework by means of the layer aspects. We have found a related
approach [Saraiva10] that also deals with software layers and aspects, but under a different
perspective from our proposition. Their work consists rather in the assessment of the impact (e.g.,
verification of layer violations) of using AOP on layered software architectures. In our case, we have
provided reusable abstractions for these concepts in order to improve modularity and to allow better
comprehension of an API from an architectural point of view.

Software layers are an architectural pattern extensively used for grouping different levels of
abstraction in a system [Buschmann96]. By employing such pattern for layered architectures, it is a
good practice to design a flat interface that offers all services from a given layer. In a purist layer
design, a layer of a system should only communicate with its adjacent layers, via such flat interfaces.
Such type of design gives a commonly used architectural view of systems. We find cases where the
system is well designed in terms of layering, but the corresponding implemented code does not
represent explicitly such architecture. In other (worst) cases, the system lacks good abstraction during
design and the result when developing it is a monolithic architecture, being difficult to understand.
Since this is an issue that is not limited to the OSGi platform, we have decided to generalize the
approach as a software reengineering pattern. The next subsection provides a brief overview on
software reengineering, followed by another one describing the pattern that generalizes our
abstraction approach.

9.3.1 Software Reengineering

Reverse engineering, Reengineering and Restructuring are close terms, with subtle differences.
Definitions from [Chikofsky90] indicate reengineering as the examination and alteration of a system
to reconstitute it to a new form, while restructuring consists on transforming the system code keeping
it at the same relative abstraction level, and preserving its functionality. Reverse engineering would
consist of analyzing a system in order to identify its components and to create abstract
representations of it.

Recovering lost abstractions such as design and facilitating reuse are important reasons for
reengineering [Chikofsky90]. Duplicated code and functionality; insufficient documentation;
improper layering; and lack of modularity are among the coarse-grained problems [Demeyer02] that
may lead to reengineering a software system. As a part of the reengineering process one may employ
techniques like refactoring [Fowler99] as a form of code restructuring. Refactoring consists on the
process of changing a software system to improve its internal structure without altering the external
behavior of the code.

As already seen in this chapter, AOP can be very useful paradigm when restructuring and
reengineering systems. It allows keeping cross-cutting concerns separate from code at development
time, performing their integration by “weaving” them to the target application either in compile time
or at runtime. By means of aspects we can either refactor systems by extracting crosscutting concerns
(e.g. logging) and putting them out of the code transforming them into aspects, or by introducing
crosscutting concerns that were not present in the system before (e.g. distribution). However, aspects
are typically used in a straightforward manner where the main goal is basically the separation of
concerns, in order to avoid code with a specific purpose (a concern) to be scattered over different
parts of the system. An aspect is usually applied directly to a system’s codebase without intermediary
reusable abstractions like the ones we propose. Therefore aspects are a place that can potentially code
duplicated in other aspects.

By reengineering the code, it is possible to arrive at a system whose architecture is more
transparent, and easier to understand. In [Demeyer02], extracting the design is considered as a first

147

step for performing new implementations. Either if re-implementing the system or just applying the
required changes, this step is very important. AOP is useful in the context of reengineering either to
apply changes to code by introducing new crosscutting concerns, or by refactoring out from code
existing crosscutting concerns into aspects. When in such AOP usage, we propose to give more
semantics to pointcuts in a way that it is possible to represent part of the system design, by grouping
the pointcuts in meaningful abstractions (e.g. layers) that could be reused. Our proposition does not
involve changes in the aspect language level, but rather relies on existing constructs for building such
abstract representations.

9.3.2 Layers Aspectization

In a typical utilization of aspects we define pointcuts using join points that directly reference
the code of the target the system, without any intermediary abstractions. This may end up with
redundant pointcut definitions, especially in larger systems or in systems where aspects represent a
significant part of the code. This redundancy is illustrated Figure 9.3 by the pointcuts B, H, I and M
which are used by more than one aspect. If each definition involves several join points (e.g., method
calls, method executions, instantiations), it may be difficult to give some reusable semantics to it. In
addition, if the same set of join points is to be used in another aspect, we end up with redundant
code. Indeed, we can give aliases to pointcuts for better expressiveness and reuse within the same
aspect as we illustrate further.

At large, what we propose is to logically group pointcuts in general purpose aspect definitions
that do not provide advices but only pointcut definitions. That gives more semantics to the aspects,
allowing us to logically represent software layers that were not correctly (or not at all) represented in
the original system. In the case of our example, the monolithic design of the target system is now
represented by aspect layers (e.g., data access layer, GUI layer) that capture the previously
nonexistent system design concept. We also avoid redundant definitions of pointcuts. For instance,
instead of aspects A2 and A3 having to write pointcut B twice, such pointcut is going to be logically
grouped together with G in an aspect layer (AL2). The code from A2 and A3 can then reuse the
pointcuts from AL2. After this change we now know explicitly that aspects A2 and A3 crosscut the
layer represented by AL2. Another conclusion that can be drawn is that there is that layer AL4 is
crosscut by all aspects.

To clarify this proposition, we provide some code illustrating our approach. By taking the
example of Figure 9.3 (a), the origin of the links toward the pointcuts (A through M, in the figure)
denotes where the corresponding pointcut definitions are located. In such approach it is normal to
have the same pointcut definitions that may be present in different aspects, which represents
redundant code as exemplified in Listing 9.1. The anonymous pointcut definition in A2 is the same
used in A4 but cannot be reused, working as a sort of ad hoc pointcut. In contrast, the pointcut X of
aspect A4 can be used by different advices just by referring to its name. Based on that reuse
possibility we suggest reusable pointcut definitions that represent a logically grouped concept,
providing the semantics of a software layer.

In Figure 9.3 (b) our approach proposes the introduction of an intermediary abstraction that
uses aspects for gathering cohesive pointcuts that would refer to join point in the same software layer.
We can use these groupings to represent software layers and also to reuse the pointcut definitions
with more semantics. Whenever reusing a pointcut, one would know to which layer it refers to. In the
example, each aspect layer (AL) illustrated will just group pointcut definitions (A to M) that belong to
the same software layer, thus providing a representation of that layer as an aspect. The actual
crosscutting concerns should be coded in aspects that refer to the pointcut definitions of these layer
aspects, instead of repeating them in their code.

148

Figure 9.3. The upper part of the figure shows aspects defining pointcuts (circles) on the reengineered system. The

lower figure introduces aspectized system layers grouping such pointcuts.

public aspect A2 {

 void around(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo)){

 //advice code

 }

}

...

public aspect A4 {

 pointcut X(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo));

 void around(): X() {

 //advice code

 }

}

Listing 9.1. The example shows the same pointcut definition in the form of an anonymous pointcut in aspect A4
and as a named pointcut in aspect A5.

A

B
CD

E

J

G H

I

F

K

L

A

B

CD

E

J

G
H

I

F

K

L

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

AL1

AL2

AL3

AL4

Aspects Target system

Layers as Aspects

(a)

(b)

M

M

149

public aspect AL3 {

 pointcut J(): /* */

 pointcut M(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo));

}

...

public aspect A2 {

 void around(): AL3.M() {

 //code

 }

}

...

public aspect A4 {

 void around(): AL3.M() || AL4.K(){

 //code

 }

}

Listing 9.2. Layer aspect AL3 defines the redundant pointcut of previous example

The code in Listing 9.2 that illustrates the layers is presented in Figure 9.3 (b) where we provide
the example of the aspect layer AL3 which represents an architectural layer (e.g., data access layer)
that was “captured” using two pointcuts. The other two aspects of the example, A2 and A4, reuse the
definition of the pointcut M. It is clear that both aspects A2 and A4 crosscut the layer represented by
AL3. In the case of aspect A4, one can easily identify just by reading the code that it also crosscuts the
layer represented by AL4. The illustrated advice of AL4 will be used whenever the program flow
reaches the join points defined by pointcuts AL3.M or AL4.K.

9.3.3 Proposed Reengineering Pattern

As a generalization of that approach, we propose an aspect-oriented reengineering pattern that
is useful for understanding and capturing the layered architecture, when applicable, in systems of
poor design or with discrepancies concerning the translation of specification into implementation,
which is the case with the OSGi framework. We document this pattern by employing an organization
(intent, problem, solution, tradeoffs) for describing our “Aspectized” Software Layers pattern similar to
the one used by the OO reengineering patterns book [Demeyer02].

Intent

Utilizing reusable aspects for extracting the layered design of a system and clarifying where
(and which) are such software layers.

Problem

Common usages of AOP are basically employed in two ways. The first one consists of
refactoring out crosscutting concerns out of the system code. The second case consists of introducing
previously inexistent crosscutting concerns into the system, in the form of aspects. Both cases
typically employ straightforward solutions that do not use intermediary abstractions. It is not clear
which system layers are being affected (i.e. crosscut), especially in systems with weak design (e.g.
monolithic systems) or where design has been badly translated from the specification during its
implementation. In larger solutions, pointcuts tend to be repeated where reuse could be possible. An
extra level of indirection could introduce more semantics and pointcut reuse.

Solution

Introduce general purpose aspects (i.e. without advices) logically grouping correlated pointcuts
that represent software layers used in the system. The pointcuts now aspectized in software layers
can be reused with better semantics than previously. Before actually executing the necessary steps, it

150

is important to understand the system being refactored. Applying the reverse engineering patterns
below, which are defined in [Demeyer02], can help identifying the design in order to properly apply
the aspects:

 Speculate about design. It will allow making hypotheses about existing design so we are
able to understand which ones are the existing layers.

 Refactor to understand. This is important to understand the code even if these performed
refactorings are not taken into account later. Discarding such changes may be the case
when it is not desired to modify existing code.

 Look for the contracts. The proposed intent of this pattern is to infer the usage of class
interfaces by observing how client code uses it. In the context of our pattern, this may be
the case when contracts are not explicit.

After identifying which are the layers and which ones have to be abstracted, it is necessary to
create their corresponding aspects. Each aspect will define the pointcuts that represent the services
provided by a layer. The granularity level depends on the usage or what is necessary to be
represented. For example, a data access layer abstraction could include pointcuts defining the general
CRUD (create, read, update, delete) operations as the layer’s services.

The layer aspects themselves do not have to provide any code for advices; therefore alone they
are useless at runtime. The layer aspects should be reused by advices from other aspects that apply
crosscutting concerns (e.g., logging, transactions, distribution) to the target system. In the case where
such crosscutting concerns already exist in the form of aspects, it is necessary to apply the look for the
contracts pattern in order to understand how theses aspects use the target system in order to be able to
extract the concept of the layers that should be aspectized.

Tradeoffs

Pros

 Higher level abstractions

 Possibility of giving a new perspective on the design, without needing to change source
code

 Clarification of the existing architecture through the extracted design

 Reusable pointcut definitions

Cons

 Depending on the coverage of the aspects (e.g. crosscuts only parts of the system) the
resultant design that was extracted may not completely describe the system architecture

 Poor knowledge of the system may also result in an incomplete representation

9.4 OSGi Case

A relaxed layered system, also mentioned in [Buschmann96], is less restrictive than a pure
layered system in the sense that a layer may directly use all layers below it, which is the case in the
OSGi platform where the bundles layer freely accesses the other three layers, as illustrated in Figure
1. But in practice such access in OSGi is not done through a single interface per layer. Actually, there
is no such flat interface for explicitly representing layers in OSGi’s API. The functionality of each
layer is scattered over different interfaces which may accumulate roles from other layers.

To illustrate this, we analyze how the bundle layer accesses the other layers. The
BundleContext interface has responsibilities in the service and lifecycle layers. The OSGi API
centralizes operations in the BundleContext, where we find code concerning different layers

151

entangled and several non-related responsibilities. The BundleContext is an interface that works as a
sort of Façade that exposes varied framework functionality to a bundle. Through its BundleContext
instance, a bundle directly accesses operations of the service layer and part of the lifecycle layer. A
bundle is represented by an instance of the Bundle interface, which provides lifecycle transitions (not
all of them, though), and gives access to other two layers: service and module layers. An important
principle described in [Buschmann96] says that layers should be separated from each other, having
no component spread over more than one layer. However, in OSGi a bundle has different points of
access to each layer, and each point of access does not work in a per-layer basis since they are
entangled with code from different layers.

We use aspects to create a flat interface vision for each layer, as illustrated in Figure 9.4,
making explicit a sort of central weaving point of access to the services of a given layer. These
layering abstractions are fundamental for adding crosscutting concerns in a more structured way,
providing a clear architectural vision of the layers affected by aspects that crosscut one or more layers
and may need to reuse such abstractions.

Figure 9.4. Aspects help simulating a layer’s single point of access.

As mentioned before, the pointcuts that define the layers can be reused. For example, if two
different aspects need to intercept lifecycle transitions the pointcut definitions need not be repeated. If
a developer needs to think in terms of OSGi layers for applying aspects (e.g., service layer
monitoring), the task becomes easier by using our approach. The principles documented here serve as
a contribution to others needing this form of abstraction for adding crosscutting concerns to
application frameworks, like the OSGi framework, in the same structured way as we did.

9.4.1 OSGi Layers as Aspects

In OSGi, our approach focuses on code that lies in-between the interaction of the bundle layer
(the components deployed at runtime) with the lower layers. The aspects would use the OSGi
framework as the point of interception. Code that concerns the internals of bundles implementation
does not interest us. Therefore, pointcuts are defined using join points of the OSGi API. For that
reason we weave only the framework and not the OSGi bundles.

We have left the security layer out of our scope since it is an optional layer according OSGi’s
specification. Besides clearly crosscutting all layers (visible in Figure 9.4), the join points related to
security are easily identifiable in the OSGi specification, which details all methods and corresponding
interfaces that need to perform security verifications in each of the layers. In addition, existing work
[Singh07] already has contributions handling security as aspects in OSGi.

Lifecycle

The methods and transitions that concern bundle lifecycle are scattered across four interfaces
(Bundle, BundleContext, BundleActivator, PackageAdmin) that already have roles other than
lifecycle management. Figure 9.5 shows the states and their respective transitions concerning a
bundle’s lifecycle in OSGi. The install state transition is actually fired in the BundleContext (BC in the
figure) interface. The resolve transition is defined in the PackageAdmin (PA) service interface, while
the update and uninstall can be found in the Bundle (B) interface. The refresh transition is part of the
package admin, which is not part of the core API but rather declared in the PackageAdmin (PA). The
start and stop transitions are both located in the Bundle and BundleActivator (BA) interfaces. In case

Hardware/OS

Execution Environment

Module

S
e
c
u
ri
tyLife Cycle

Service
Bundles

152

of a Bundle having a BundleActivator, those calls are delegated to the activator. In the LifeCycle
aspect we have rather called it as activation and deactivation, respectively.

Figure 9.5. Illustration of OSGi bundle lifecycle state transitions scattered over several interfaces: BundleContext

(BC), Bundle (B), BundleActivator (BA), PackageAdmin (PA).

The code of the LifeCycle aspect containing the corresponding pointcuts can be found in
Appendix B. Most of the pointcuts defined there have used join point definitions that concerned
interfaces whose implementations are provided by any OSGi framework. Therefore, in such cases it
was possible to apply execution join points. Call join points have been used only in the activate and
deactivate pointcuts, which represent, respectively, the state transitions from resolved to active and from
active to resolved. This happens due to the fact that an OSGi framework implementation itself does not
provide implementors of the BundleActivator interface. BundleActivators are rather provided by
bundles that will be loaded by the framework. Calls to start and stop lifecycle transitions are done
toward the framework, which performs its work and then delegates the calls to the start and stop
methods of the BundleActivator from the corresponding bundle that will then execute the start or
stop methods. Because we weave only the framework, not applying aspects to a bundle’s code, we
cannot apply execution join points in such transition. Instead, we use a call join point on the OSGi
framework part that calls those methods.

Service

According to its specification, the service model in OSGi is based on a publish, find and bind
model. All of these operations are centered around the service registry, which actually does not have
a standard class or interface representing it in the API. The methods that give access to the service
registry can be found scattered in different interfaces. In addition, implementations of a service
registry may be completely different from one OSGi implementation to another. We reified the
service registry as the aspect that represents the OSGi service layer, since we are mostly interested in
the methods that concern the three operations of the OSGi’s service model. The pointcuts that group
the join points giving access to the service layer were grouped in the ServiceRegistry aspect, which is
detailed in Appendix B.

Most of the pointcuts were defined using execution join points. However, similar to the join
points used in the activate and deactivate pointcuts of the lifecycle layer, the join points concerning
the ServiceFactory were declared as call join points since a ServiceFactory is an interface whose
implementations are provided by bundles that are dynamically deployed instead of being provided
by OSGi implementations. As a practical example for using the service layer aspect, we could

B

B

Installed

Starting

Active

Stopping

Resolved

Uninstalled
uninstall

re
s
o
lv

e

u
n
in

s
ta

ll

re
fr

e
s
h

u
p
d
a
te

st
ar

t

stop

install

update
refresh

B

BA

BA

B

PA

B

PA

B

B

153

implement a service interception mechanism more powerful than the standard service hooks
[OSGi11] provided by the OSGi framework, which are limited (for instance, we cannot intercept
directly the retrieval of a service).

Module

Although scattered in different interfaces that accumulate roles from different layers, the
functionality of both service and lifecycle layers can be well identified in the OSGi API. However, we
cannot say the same concerning the module layer. All the classloading and package visibility
requirements are well defined in the OSGi core specification, but they are not explicit in the API.
Also, most of the runtime behavior concerns implementation specific code, which may differ from
one implementation to another. For example, the classloading mechanism of the Module Loader
[Hall04], used in both Oscar40 and Felix OSGi implementations, differs from those of Equinox and
Knopflerfish, but they must all comply with the OSGi specification.

One of the few methods of the module layer that are explicit in the API can be found in the
Bundle.loadClass method. However, typical code does not necessarily use that method explicitly. It
rather relies on Java’s transparent classloading mechanism (e.g., automatically performed when
instantiating a class for the first time). We have only defined three classloading related pointcuts, as
detailed in Appendix B. Given that a bundle is the unit of modularization in OSGi, we also have
included a pointcut that uses a join point for bundle construction.

The OSGi Package admin service stores metadata concerning packages and their bundle
dependencies, which are related to the module layer. The module layer aspect is useful, for example,
for tracking bundle creation or as an alternative mechanism for intercepting class loading for
performing custom bytecode manipulations on classes known only at runtime (the typical case in a
dynamic platform such as OSGi). Other less intrusive usages could be fine grained tracing of the
classloading process (an alternative to the general command line –verbose:class option); tracking the
creation of new classloaders provided to bundles; and so forth.

Layer Aspects Reuse by Composition

Hanenberg et al. propose the separate pointcut [Hanenberg03] aspect-oriented refactoring for
avoiding redundant anonymous pointcut declarations. Indeed, separate pointcut declarations are a
good practice for reusability. The typical solution proposed in [Hanenberg01] is to inherit from an
abstract aspect and to provide the advice code referring to the inherited pointcuts. However, we have
chosen to use the design principle of favoring composition instead of inheritance, taken from object-
oriented design [Gamma95]. This choice was mainly due to inheritance limitations in AspectJ. Instead
of creating an abstract aspect to be extended so it can be reused, we rather defined the pointcuts in
reusable library aspects that map the points of interest of each of the corresponding target OSGi
layers (i.e., lifecycle, service and module layers), reusing them in the advices of our aspects, as shown
in Figure 9.6.

If we analyze the semantics of an is-a relationship – which legitimates inheritance – between
one concrete aspect and the library aspect that represents a layer, we do not have a 1 to 1 cardinality,
which would justify single inheritance in most of the cases. We rather have a concrete aspect that may
crosscut multiple layers. As some concrete aspects may crosscut layers and layers have been
abstracted as aspects, a concrete aspect may need to use code – in this case, pointcuts– inherited from
different layers. In an illustrative example we can consider that a given concrete aspect (e.g., service
monitoring) may affect two layers, (e.g., module and service layers) which are represented as aspects
as well. In cases like this we could see the single inheritance provided by AspectJ as a limitation,
since we can only inherit from one aspect at a time. If AspectJ provided multiple inheritance it could
be solved in a straightforward manner. However, by using composition we could easily workaround
this issue, thus making possible to create aspects reusing pointcuts from different origins (i.e., the
layer aspects).

40 http://oscar.ow2.org

http://oscar.ow2.org/

154

Figure 9.6. Package diagram illustrating how the aspects are independently applied to different OSGi

implementations

9.4.2 Dependability Aspects

We have already discussed how AOP can help dealing with non-functional code by separating
them into aspects and keeping the functional code of the application cleaner and easier to maintain.
In the same way, the maintenance of the non-functional aspects becomes easier. In this section we
present how we have extracted into aspects the dependability concerns that we have introduced in
the Apache Felix OSGi implementation. The solution became implementation independent, and its
aspects reused the pointcuts abstractions of the OSGi layers that we have created.

The layer aspects by themselves do not provide advices. This section is a showcase for
illustrating the reuse of such abstractions in the creation of specific aspects that are concerned with
dependability and monitoring. In our proposition we patch the OSGi framework to provide our
sandboxed OSGi solution proposed in this thesis. This is done by transparently providing
infrastructure that would (a) deploy and execute untrustworthy third-party code in a fault contained
environment, and (b) enable the automatic recovery of applications in case of faults or failures.

The code in our precedent solution was manually introduced as a patch on the implementation
of Apache Felix v.1.4.0. We refactored these cross-cutting concerns into fine grained aspects, reusing
our layer aspects abstraction. Figure 9.7 illustrates the reuse of the layer aspects in the creation of
specific aspects concerned with dependability and monitoring. The layers avoided redundant
pointcut definitions and allowed to explicitly identify which layers were being affected by an aspect.
For example, the use stereotype clearly shows which aspects crosscut which layers. All of the
instances of the dependability aspects did not need to have any particular association with classes,
objects or control flow. Therefore, they have been implemented with the default issingleton()
association.

We implemented two groups of cross-cutting concerns: isolation and monitoring. Because the
isolation approach is detailed in Chapter 7 and monitoring mechanisms are explained in Chapter 8,
the next subsections will rather focus on the aspectization perspective without worrying about the
implementation details of the non-functional concerns we address.

OSGi API Knopflerfish

Apache Felix

Equinox

Weaver

Specific
Aspects

Layer
Aspects

<<realize>>

<<realize>>

<<realize>>

<<use>>

<<crosscut>>
<<crosscut>>

<<use>>

<<weave>>

<<weave>>

<<weave>>

<<use>>

155

Figure 9.7. The aspects on the left side are the layer abstractions that are reused by the specific aspects that are

illustrated on the right side.

Component Isolation

The component isolation aspect crosscuts the different lifecycle transitions, and also the service
registry for allowing services running in one isolated platform to be used in the other, across the
isolation boundary. All of these adaptations are encapsulated in aspects that target the OSGi
platform. The dynamically deployed components are not changed; therefore, from the components
perspective, our approach provides seamless component isolation and communication. When a
component is installed in the main (trusted) platform the ComponentIsolation aspect installs it in the
sandbox. At component startup, the corresponding advice verifies the policy and if necessary starts
the component in the sandbox, as shown in the first advice described in Listing 9.3.

We also had to avoid reentrant calls on the advices of some pointcuts. For instance, the
implementations of Bundle.start() typically call Bundle.start(int), caught by the same pointcut. We
simply added a cflowbelow construct, which is how AspectJ avoids the reentrant execution of an
aspect. Local queries to the service registry that bring no match are re-routed to the isolated platform.
If a match is then found, the aspect would return an IsolatedServiceReference. Retrieval of service
objects using such references generate a proxy that transparently handles the communication
between the two platforms, as depicted in the second advice of Listing 9.3. Every component isolation
patch we made in the Felix implementation could be easily migrated to the ComponentIsolation
aspect, except for one. The notification of service events from one platform to the other was
implemented directly in the EventDispatcher class, which is specific to Felix. In this case we had to
adapt a dispatcher that was registered as a ServiceListener in OSGi and was responsible for filtering
and propagation of service events to the other platform. Listener registration is done on the
initialization of the isolation library, done via a ModuleLayer.bundleInstantiation pointcut.

Service Isolation

This aspect is responsible for replacing service objects by service proxies (when the isolation
policy applies) that delegate the calls to the wrapped service object, which is actually the process
already described in Chapter 8. As shown in Listing 9.4, the pointcut used here targets the service
layer represented by the ServiceRegistry layer aspect.

Stale Services Monitoring

We had previously used Aspect-oriented Programming (AOP) for monitoring in the
ServiceCoroner tool [Gama08a] [Gama08d], which is used for the diagnosis of stale references, but in
a less structured manner if compared to the approach presented here. The effectiveness of using
aspects combined with weak references for finding stale services has been detailed in the experiments
presented in [Gama08a]. That solution has been refactored and integrated to the OSGi dependability
enhancements described here. Listing 9.5 shows a simplified example of the aspect that forwards the
service instance tracking to the ServiceCoroner API.

156

In the case of both component isolation and service monitoring aspects being used together, it
is necessary to explicitly define the order of precedence so we can be sure that the service monitoring
will track always the actual servant object instead of tracking a proxy to a service..

public aspect ComponentIsolation {

...

void around(Bundle b): LifeCycle.start()

 && !cflowbelow(LifeCycle.start())&& this(b){

 if (!PlatformProxy.isSandbox() &&

 PolicyChecker.checkIsolation(b)){

 PlatformProxy.start(b.getBundleId());

 } else {

 proceed();

 }

 }

 Object around(ServiceReference ref): ServiceRegistry.retrieval()

 && args(ref) {

 Object service = null;

 if (ref instanceof IsolatedServiceReference) {

 Bundle b = ref.getBundle();

 service = getIsolatedProxyService(b, ref);

 } else {

 service = proceed(ref);

 }

 return service;

 }

...

}

Listing 9.3. Advices reusing pointcuts of different layer aspects.

public aspect ServiceIsolation {

...

 Object around(ServiceReference ref):

 ServiceRegistry.retrieval() && args(ref){

 Object s = proceed(ref);

 if (!PlatformProxy.isSandbox()

 && PolicyChecker.checkIsolation(s)) {

 s = ProxyServiceStore.getProxy(s,ref);

 }

 return s;

 }

...

Listing 9.4. Main advice of the ServiceIsolation aspect

public aspect ServiceMonitoring {

...

 Object around(ServiceReference ref):

 ServiceRegistry.retrieval() && args(ref) {

 Object result = proceed();

 ServiceCoroner coroner =

 ServiceCoroner.getInstance();

 coroner.trackService(ref, result);

 return result;

 }

...

Listing 9.5. Aspect for monitoring services garbage collection.

157

Autonomic Management

The self-healing capability of the sandbox is achieved via autonomic management which is
actually provided by an external application that provides a control loop. It collects information from
the sandbox via monitoring probes, analyzes the data and takes appropriate action (e.g., stopping a
bundle, rebooting the sandbox) through effector probes implemented as Java MBean. The insertion of
such probes is done by the sandbox monitoring aspect on the creation of the first bundle through the
module layer, as depicted in the simplified example of Listing 9.6.

The service layer is also used by this aspect, but in quite a similar way to the approach for
service isolation based on proxies. The proxy enables, for instance, calculating service usage. A
particular difference on this aspect is that it also weaves our own classes in order to monitor the
interactions with the isolated platform via their proxies. The probe information also depends on our
ServiceCoroner API (fed by the service monitoring previously describe), in order to take action
against stale services. The fault prediction mechanisms are available for a set of patterns of errors:
CPU hogging, stale service, excessive memory allocation; excessive thread instantiation; excessive
invocation of services (Denial of Service); stale reference retention. The detection and handling of
such faults was provided as customizable scripts that are loaded and executed by the sandbox
autonomic manager.

Although AOP can be used through dynamic run-time adaptation, our approach relies rather
on compile time weaving just for introducing the code that provides the monitoring mechanisms. The
actual adaptation code takes place in the external autonomic manager that uses that monitoring data,
as described in Chapter 8.

public aspect SandboxMonitoring {

...

 void around(Bundle bundle) : ModuleLayer.bundleInstantiation()&& this(bundle){

 if (bundle.getBundleId() == 0) {

 ObjectName name = new

 ObjectName("fr.imag.adele:type=Touchpoint");

 Touchpoint mbean=new Touchpoint();

 mbean.setSystemBundle(bundle);

ManagementFactory.getPlatformMBeanServer().registerMBean(mbean, name);

 }

}

...

}

Listing 9.6. Creation of the sandbox monitoring probe aspect.

9.5 Weaving Different OSGi Versions

Although one may consider this solution invasive because of the changes performed in OSGi
implementations, the approach has the advantage to be portable across different implementations
because it targets the OSGi API. The dependability aspects were successfully woven and tested into
different versions of three OSGi implementations (Apache Felix, Equinox, Knopflerfish) that are
widely used in software industry. The weaving of layers and aspects happened with no problems,
and the dependability aspects correctly worked, as detailed further. As part of our evaluation, we
extracted some metrics presented in Table 9.1 concerning the layer abstraction through aspects, for
each tested implementation. We verified how many join point shadows have been found in the
classes affected by each of the layer aspects, so we could have a perspective of the scattering
phenomena in the analyzed OSGi implementations. Although the number of affected classes may
seem small, we want to illustrate that there is no single point of access for layers. We also show that
the layer concepts are lost in the API, since the classes that contain the join point shadows have other
responsibilities than exposing layer services. Likewise, we find classes whose responsibilities overlap
different layers. We collect such scattered concepts, and expose as an entity that contains the entry
points to a given layer. Another observation that can be made is that Felix and Knopflerfish join point
shadows remain stable across different versions, while Equinox shows a significant increase from one
version to another.

158

Table 9.1. Layer scattering over OSGi API: total join point shadows (JPS), affected classes (C) and packages (P)

Concerning woven OSGi frameworks execution, two adjustments had to be done. First, to
avoid issues with type visibility in OSGi, we embedded the AspectJ runtime classes in each one of the
woven OSGi implementations. The second issue concerned the Equinox OSGi framework jar file
which stores in its manifest an SHA1-Digest for each class present in the jar. After the weaving
process, the woven classes had their hashes no longer valid and we had security verification errors at
OSGi startup. The workaround was to remove such information from the framework bundle manifest
file so it could be started up. However, the fact of having the OSGi framework bundle without SHA1
hashes does not influence in the verification process of any other loaded bundles that contains SHA1
hash information. It only means that the framework will not perform that verification against itself at
startup, but other bundles will be verified. To illustrate that, the other two implementations (Felix
and Knopflerfish) do not provide SHA1 hashes in their manifests but they are able to verify digitally
signed jars that are loaded by the framework.

9.6 Summary

We have identified that this solution crosscut different parts of the OSGi implementation used
for the base implementation of our approach. This chapter presented our approach for handling
dependability as a separate concern in the OSGi platform. By using the Separation of Concerns
principle we could better modularize the dependability-related code (non functional), keeping it
separated from the OSGi implementation code (functional code). We used an AOP approach for
doing it, keeping the extracted dependability code in aspects developed using Aspect-J.

In this chapter we also proposed the usage of aspects as an abstraction for capturing layered
design. This was the case with OSGi, which uses the layering abstraction extensively in the platform’s
specification, but in its API and implementations is scattered over classes and interfaces that
accumulate roles from different layers. This approach was generalized as a reengineering pattern that
can be useful for better understand the design of systems that have some specification-to-
implementation discrepancies, like OSGi, or also in systems with poor design.

The next chapter presents the validation of this approach in different experiments that tested
the sandboxed OSGi and its self-healing mechanisms. It closes the practical work that concerns this
thesis, and is followed by the conclusions and perspectives.

JPS C P JPS C P JPS C P

Felix 1.4 22 5 2 15 4 1 10 4 2

Felix 2.0.4 22 5 2 14 3 1 7 3 1

Felix 3.0.3 22 5 2 14 3 1 8 3 1

Knopflerfish 2.3.1 17 4 1 15 6 1 7 3 1

Knopflerfish 3.0 18 5 2 18 7 2 12 5 2

Equinox 3.4 18 4 1 16 5 1 17 9 5

Equinox 3.6.1 38 9 4 20 9 4 33 16 9

Lifecycle Service Module

PART IV

EXPERIMENTS AND

CONCLUSIONS

Chapter 10

Experimental Results

“Machines take me by surprise with great frequency”

Alan TURING

Contents

10.1 CONSULTING SERVICES .. 161

10.2 ASPIRE PROJECT ... 162

10.2.1 DEPENDABILITY REQUIREMENTS .. 163

10.2.2 TEST SETTING... 164

10.3 COMPARISON BETWEEN ISOLATION CONTAINERS .. 164

10.4 FAULT INJECTION TECHNIQUE EMPLOYED .. 167

10.5 TESTING THE SELF-HEALING MECHANISMS .. 167

10.5.1 DETECTION OF STALE REFERENCE RETAINERS ... 168
10.5.2 CAUSALLY RELATED EVENTS .. 169
10.5.3 MEAN TIME TO REPAIR .. 170

10.6 SUMMARY ... 171

The last three chapters focused on diverse technical aspects in different directions (e.g.,
isolation, self-healing, and separation of concerns). This chapter puts everything into practice, by
presenting the description of our work in experiments with the resulting platform, and discussing
about the possibilities, realizations and limitations of the solution.

10.1 Consulting Services

The work we presented in [Gama09a] was used as the basis of a presentation [Gama09b] made
at the OSGi users group France41. During that meeting, one of the members of the audience
established contact and initiated a discussion on possible collaborations around the utilization of our
approach in the construction of a data exchange server. The goal by using our approach would be to
guarantee the functioning of a platform constituted by components from different providers. The
isolation would be a key factor to avoid the risk of an application crash due to the malfunctioning of a
third-party component. The idea of using multiple fault-contained component containers and

41 http://france.osgiusers.org

http://france.osgiusers.org/

162

handling the application as if it was just one (e.g., the proposed “virtual layer”) seemed reasonable
even though it would mean high communication costs between the containers.

Because of the high availability requirements of their data exchange server, the core platform of
the PSEM2M server must not stop to serve requesting applications. In order to avoid problems
originated from third-party code, the isolation approach shields the core functionality of the server
from such potential failures. Since the handling of messages is synchronous, failed components
would lose messages while recovering. The core part of the server stores messages while the
consumers are unavailable, similar to a Message-oriented middleware (MOM) approach but with a
main difference concerning the synchronous communication, instead of the typical asynchronous
mode of MOM.

Although the architecture of PSEM2M is compliant with the architectural propositions
presented in this thesis, the implementation is being made from scratch (potentially with some parts
from the proof of concept to be integrated with it), therefore it is natural to take decisions for adapting
the approach to be more appropriate to an industrial scenario. Some technical aspects differ from our
implementation, like (1) the number of simultaneous JVMs as isolation containers, which is not
limited to two as in our approach; (2) the multiple JVM technique based on a JVM fork (currently
limited to Linux OS), resembling the Cloneable JVM [Kawachiya07] approach; and (3) the usage of
OSGi Remote Services as the IPC mechanism for making the isolated platforms communicate. Also,
the variability of the environment and possible reconfigurations are limited. All players that deploy
components are previously known, and there is no discovery of new services during the operating
phase. However, partners may update their components at their own will.

This technology transfer was made possible through a startup company, named Isandlatech42,
that will incorporate into their product in question ― PSEM2M (Platform for Secure Execution for
Machine-to-Machine) ― the isolation and self-healing design we propose. The contract consisted of
technical counseling that included joint modeling of the architecture and discussions on the
implications of the proposed design. The implementation efforts are the responsibility of Isandlatech,
with a minor participation from our side in terms of prototyped code. The joint work was conducted
through e-mails and on-demand meetings in the Laboratoire d’Informatique de Grenoble43, at the
premises of the Adèle44 research team, where this PhD thesis was conducted.

This opportunity of performing this exchange with an industry partner meant that this PhD
thesis has succeeded to provide contributions that are directly applicable to industry, in the form of
design and techniques that can be used to provide more dependable component-based applications.
At the time of writing of this thesis, the contract was still being conducted in phase two (from a total
of three) of the collaboration project. Therefore, since this is an ongoing work whose implementation
is still under development, we consider this as a partial validation of the approach.

10.2 Aspire Project

The ASPIRE Project (Advanced Sensors and lightweight Programmable middleware for
Innovative Rfid Enterprise applications) [Aspire08] is a European Union funded45 project, targeting
RFID middleware and applications. It involved participants from ten institutions spread over seven
countries. Its goal is to boost a shift towards royalty-free RFID middleware, while also placing the
middleware at the heart of RFID infrastructures targeting small and medium enterprises (SMEs).
Hence, the RFID middleware can integrate with low-cost hardware, as well as with legacy IT and
networking infrastructures of the networked enterprise.

42 http://www.isandlatech.com
43 http://www.liglab.fr
44 http://www-adele.imag.fr
45 Funded by the European Commission in the scope of the Seventh Framework Programme (FP7) under contract no. 215417

http://www.isandlatech.com/
http://www.liglab.fr/
http://www-adele.imag.fr/

163

Among the activities that involved the University Joseph Fourier (Grenoble 1), represented by
the LIG laboratory, were the creation of end-to-end management infrastructure and the utilization of
dynamic environments that allow the integration of devices (readers and sensors) at application
runtime. With the SME context of low-cost solutions in mind, we have envisioned a dynamic
platform based on OSGi technology. The related research activities that involved the work presented
in this thesis involved the utilization of techniques for providing a more dependable environment for
executing applications that host third-party code. The next subsections present the general
dependability requirements envisaged, followed by the tests and results that we have performed in
that platform.

10.2.1 Dependability Requirements

Figure 10.1 shows a simplified architecture view of a network of machines that constitute the
RFID supply chain application we presented in [Kefalakis08], and that represents an initial effort on
the Aspire project. It illustrates the network infrastructure behind a supply chain where the
information on products can come from multiple places. Elements with distinct roles constitute this
network: edge servers, premises servers, EPCIS (Electronic Product Code Information Services) and ONS
(Object Naming Service). In the context of our work, we are interested in the edge servers, which are
small computers that are connected to sensors and RFID readers for capturing context data (e.g.,
temperature, vehicle weight, weather) and reading RFID tags, respectively. That data is captured by
the application deployed in the edge, and sent to other servers. It can be sent either to an
intermediary premise server (e.g., a warehouse), which filters data and possibly stores some
information, or directly to the EPCIS which centralizes the information on all RFID tags that have
been scanned by the enterprise allowing that data to be shared with other applications and with
different organizations, and located anywhere with the help of an ONS.

Figure 10.1. The scenario illustrates high availability requirements in the edge computers (circled) that collect data

and also need to autonomously react to failures.

The edge servers may be located in relatively distant places (e.g., an entrance gate, a truck weigh
station, a warehouse) where the physical access by systems administrators is difficult, and where the
people surrounding it (if anybody) may not be familiar with IT systems. Minimal human intervention
is required, and in case of failure, the application must be able to recover from it autonomously.
Applications could be remotely administered, however, manual surveillance of the systems may be
time consuming, error prone and most of the times, unnecessary if the number of failures is relatively
low (e.g., once a week). In addition, remote sites may have limited connectivity in terms of
bandwidth and cost which can be limited especially in developing countries.

As example scenarios, checkpoints equipped with an edge server can scan RFID-tagged
products and keep sending information to other systems (i.e., premises and EPCIS). In another

EPC IS
Premise

Edge

Edge

RFID Readers +
Sensors

ONS
Edge

EPC IS

164

scenario, during harvest (e.g., grains, sugar cane) trucks and trailers tagged with RFIDs can be
scanned in weigh stations close to the fields. Stations equipped with an edge server can send, via a
cellular network, the tag identifier, and sensor info such as the weight of the load and weather data.

Despite the usage scenario, the integration of sensor devices and RFID readers into applications
developed with Java (the technology used for that middleware) involves importing or wrapping
native libraries (e.g., a device driver). The potential risks of failure are increased, but the system must
be available and ready to scan RFID tags as well as capturing sensor data. Since third-party and
native code is running in the application, the risks increase and a recovery mechanism must be put in
place, so administrators have minimal intervention in such systems. Such human involvement should
be kept to a minimal level, like distant software updates. Even in cases where the cost of connectivity
is high, a remote update is more appropriate than sending technical personnel to perform that task.
However, as we discussed in this thesis, such runtime updates can introduce undesired consequences
to the application (e.g., incompatibilities involving drivers, device, and system components).

Therefore, by taking into account these dependability requirements, where applications need a
high level of availability, mechanisms for reliability, reducing mean time to fail, and maintainability, by
reducing mean time to repair are of fundamental importance in these types of system. Our work
simulated faulty scenarios that are presented in the next subsection.

10.2.2 Test Setting

Because we are focused in abnormal behavior, the tests had to be done in a controlled
environment where we could manipulate the variables in order to reproduce the expected faulty
behavior in accordance to our fault model. The scenario consisted of an OSGi application where the
core components (e.g., reporting components, data filtering and gathering) of the edge need to
provide high availability are in the main (trustworthy) part of the platform. The untrustworthy
components are hosted in the sandbox part of the edge computer. Sensors and RFID reader simulator
components were hosted in the sandbox. One the motivating scenarios concerns applications that
collect RFID and sensor data. The application illustrates a scenario where we typically use native
drivers wrapped in Java components to access physical devices. Devices may be plugged and
detected at runtime, as are their respective drivers. The interaction between the application
components that consume data provided by the untrustworthy code is done through OSGi’s service
layer. In case of an illegal operation or a severe fault in the native code, the whole application is
compromised. In this use case the application must also run non-stop and be able to recover in case of
such severe faults and for doing so we employ, as a single solution, the different dependability
aspects woven in the OSGi framework.

The assumptions previously mentioned have to be true in this environment, so our approach
can work correctly. Considering the recovery-oriented design principle, components and services
used in the application are stateless. The external devices contain the data (e.g., temperature,
humidity, RFID tags), which is read by the components installed in the application. The way they
store the data or how they guarantee that it will not be corrupted is out of the scope of our discussion.
Service interfaces used in the communication across isolation boundaries use primitive types, String,
or arrays of these two categories.

The rest of this section focuses on the experiments themselves. The first one makes a
comparison between isolation approaches: domain-based and process-based, offered by the MVM.

10.3 Comparison between Isolation Containers

This section provides a comparison between the sandboxing mechanism using two isolation
approaches, namely domain isolation and OS-based isolation. The experiments were executed on a
Pentium 1.7 GHz 2GB RAM running OpenSolaris release 2008.11. Three different Java Virtual
Machines were used: Multitask Virtual Machine (a JVM 1.5 implementation that provides the Isolate
API); Sun HotSpot Server Virtual Machine versions 1.5.0_21 and 1.6.0_10. Except for the
microbenchmark, all experiments were performed in a simulation of an OSGi application for

165

collecting RFID and sensor data with a total of 14 bundles (common API, RFID and sensor reader
simulator). We compared the two approaches in order to verify what would be the gains, if any, of
using domain-based isolation. The following aspects were verified:

 The overhead of method calls across isolation boundaries.

 The memory footprint of OSGi applications using our isolated sandbox

 Sandbox microreboot time

The first measurement consisted on evaluating if the communication overhead between the
isolated platforms. On the MVM, we have evaluated it in two ways. On the first way, trusted and
sandbox platforms were running in the same VM but in different Isolates, thus having domain-
isolation. On the second one, we have used two MVM instances like an ordinary JVM (i.e. not using
Isolates) so we could use the whole process as a fault-contained boundary, providing us OS-based
isolation.

We have adapted the benchmark suite used in [Seinturier06a]. Our microbenchmark consisted
in measuring the time taken to perform method call from the trusted platform to a service which is
isolated in the sandbox. Three methods with different signatures were evaluated: a parameterless
method; a method with a String parameter; and a method with an integer array with 128 elements so
we could see the impact of parameter serialization and deserialization. All methods were void, so not
returning any value. Since RMI is the standard Java Inter-Process protocol, we have benchmarked our
approach against it. Table 10.1 presents the result of our microbenchmark. The experiment data had
acceptable precision since each set of measured data had a coefficient of variation (ratio of the
standard deviation to the mean) inferior to 1% in most of the cases and rarely over 1%.

The results on the Custom Protocol column group concern the calls on the isolated service
running in the sandbox as previously described. The RMI column group results actually did not
execute in an OSGi application. We have taken the same interface as the tested service and changed
its code to add what was necessary to enable RMI. Then it was tested on two non-OSGi applications
(an RMI client and a server, respectively) coded exclusively for the benchmark. The usage of RMI in a
non-OSGi application which used 35% less threads than the OSGi application also gives RMI a slight
advantage. But it would still be more performing since our protocol was 2 to 3 times slower. Our
protocol uses dynamic Java proxies in both ends, which is likely one reason for its low performance
comparing to local RMI.

The usage of domain-based isolation concerns only the first result line. The second result line
also uses the MVM but in an OS-based fashion. We can notice that two MVM Isolates (domain
isolation) perform slightly better than using two MVM instances (OS-based isolation). This is due to
the fact of a faster context switching since the Isolates run in the same process (the JVM instance). The
third and second result lines performed slightly better which is most likely due to JVM optimizations
since they are more recent versions. If running with the JVM configured as interpreted mode (-Xint
option), without JIT optimizations, the performance reduction was relatively similar in all cases
ranging from 3 to 6 times slower than in the optimized mode (-server option), which is the mode used
for collecting the results.

Isolation Container

Methods called using Custom Protocol
(Sandboxed OSGi application)

Methods called using Local Java
RMI

(non-OSGi application)

m() m(String) m (int[128]) m() m(String) m (int[128])

MVM 1.5
(Multi Isolate)

178.72 225.22 277.56 75.68 80.93 103.36

MVM 1.5
(Multi JVM)

182.74 231.23 284.49 82.19 87.62 110.33

JVM 1.5

162.58 203.71 241.39 63.58 67.40 87.14

JVM 1.6

129.12 161.49 190.67 53.46 55.24 66.83

Table 10.1. Microbenchmark in microseconds (μs) on a void method m with different signatures between isolated
platforms.

166

Another comparison we have performed concerned memory footprint, as shown in Figure 4.
We have used the Solaris pmap command for verifying the resident and private memory of the tested
combinations. The experiment consisted of measuring the total footprint of the OSGi test application
(trusted platform + sandbox platform). In the OS-based approach used with two JVMs 1.5 and two
JVMs 1.6 we have added the footprint of each JVM. In the case of domain-based approach a single
MVM instance contained both OSGi platforms. The resident memory of the MVM running two
isolates was inferior to the sum of sandbox and trusted platform running on the JVM 1.5. However,
the two JVM 1.6 together performed with less footprint. If we consider just private memory the MVM
performs better than the other ones.

Figure 10.2. Resident memory footprint of sandbox solution using different VM combinations

The third and last comparison made consisted on the time taken to perform application startup
and a sandbox microreboot. Although we did not use a full autonomic manager on the domain-based
approach for this experiment, we could provide a watchdog that is able to restart the sandbox in case
of crashes. Table 2 presents the time taken in each VM combination. By using Isolates we can
significantly reduce the mean time to repair of the sandbox. The major difference is probably because
the watchdog monitors directly the Link objects that are responsible for the communication of the
two platforms. Since the watchdog resides in the same process, the crash detection is immediate upon
the disruption of the Link object.

Based on these experiments we can verify that the main advantage of using domain-based
isolation over an OS-based isolation implementation of our sandbox approach concerns the
application startup time and, especially, sandbox microreboot time. The memory footprint (resident
memory) differences were not very significant, at least for the evaluated application. Communication
overhead across process boundaries is minimized in more recent and optimized JVM versions.
Therefore, an OS-based approach seems to be a reasonable option for the realization of the sandbox.

Isolation Containers
Application Startup

time (ms)
Sandbox Crash

detection time (ms)
Sandbox Reboot

time (ms)

MVM (Multi-Isolate) 3186 32 303

MVM 1.5 (Multi-JVM) 3449 697 3064

JVM 1.5 3945 660 3047

JVM 1.6 3859 658 2537

Table 10.2. Average start up time and sandbox MTTR

0

10

20

30

40

50

60

70

80

90

MVM (2 Isolates) 2 x JVM 1.5 2 x JVM 1.6

Single JVM (Domain-based)

Sandbox

Trusted platform

MB

167

10.4 Fault Injection Technique Employed

The set of tests concerning the validation of the recovery mechanisms consisted in simulating
scenarios using our fault model. In order to perform the tests it would be necessary to use a technique
for fault injection. However such a technique may not be appropriate for a component-based
approach. The behavior of systems tested with faults injected in the interface level (e.g., passing
invalid parameters) significantly differs when faults are injected in the component level (e.g.
emulation of internal component errors), not representing actual application usage [Moraes06].

Therefore, for testing the recovery mechanism we rather focused on test cases resembling
component fault injection that could reflect possible faults happening in a realistic scenario. In our
case, the term fault deployment would be more appropriate, since the dynamic platform allows
components to be deployed and started at runtime. When the faulty components used in our
approach are deployed, their faults are dormant. Through a remotely accessible interface, available as
a JMX MBean, we can activate these faults, so the abnormal behavior can be presented and the
diagnosis and recovery mechanisms can take action.

 Figure 10.3 illustrates an example scenario of our test application. The bundles deployed with
the faulty behavior publish the test probes as JMX MBeans in the MBeanServer, which allows external
applications to access it through different connectors, in this case the default RMI connector. Through
such management consoles it is possible to inspect the MBeans available and call the method that
triggers the faulty behavior. We accessed the MBeans through the VisualVM tool, which has a plugin
available for exploring MBeans, as depicted in Figure 10.4.

Figure 10.3. The test probes are responsible for activating the faulty behavior in the components.

10.5 Testing the Self-healing Mechanisms

Although profiling and monitoring suites are fundamental for tasks like tuning-up application
performance, finding application bottlenecks and memory leaks, most of these tools do not take
automatic administration decisions (e.g., performance adjustment, the detection of problems) during
execution. Indeed, such tooling sets are powerful and some of them provide good levels of flexibility,
allowing to easily using their infrastructure. In our experiments we have developed plugins for the
VisualVM, in order to help us managing and monitoring sandboxed OSGi applications.

The two platforms that comprise the sandboxed OSGi were also controlled through VisualVM
plugins that we have developed: one for knowledge base (Figure 10.5 through Figure 10.7), and the
VisualVM OSGi Plugin (see appendix) presented in [Gama11b] and now part of the OW2

MBeanServer

Sandbox OSGi

Report
Generator

Sensor X
Core

Interfaces
Sensor

Aggregator

JVM

Management and
Monitoring Console

(JConsole, VisualVM)

JVM

Reader
Simulator B

Reader
Simulator A

Sensor Y

Test

Probe

Test

Probe

Test

Probe

Test

Probe

RMI
Connector

168

Chameleon46 open source project. Although the ideal tool should be centralized, we monitor three
different processes individually. We intended to provide a perspective that virtualizes the two
platforms as a single view, but like the plugin for runtime reconfiguration of the policy it could not be
finished due to time limitations.

The MBeans that are illustrated Figure 10.4, provide the test cases concerning most of the
problems that were specified in the fault model that we propose. Our fault model was also used as a
reference for implementing the test cases which consisted of bundles providing the following faulty
behaviors, after triggering the faults: Overutilization of CPU; application crash; excessive memory
location; excessive thread instantiation; excessive invocation of services (Denial of Service) and
application hang. The retention of stale services currently is tested manually through lifecycle
operations (install, update, stop, etc).

Figure 10.4. MBeans used for testing.

The monitoring functionality that allowed identifying some basic resource usage such as
memory allocation, CPU and thread instantiation were based on the ones provided by the Java
platform, but without the component granularity level and without much precision about the data
monitoring, which significantly differs from the process. Because there is not much control about how
much data a bundle is using, the policy implemented in the control loop is to simply reboot the whole
sandbox in case the threshold in exceeded.

10.5.1 Detection of Stale Reference Retainers

As already discussed in this manuscript, there is not enough information in component
execution platforms that allow us to precisely identify which components are consuming more
resources than others. Proxy layers allow intercepting and having more monitoring control, although
introducing communication overhead. A good example that we can present concerns the detection of
Denial of Service (DoS). We were able to detect excessive calls from the sandbox toward the main
platform, thanks to the proxy layer between the two. We logged information counting the total of
service calls that were made. In a situation where a DoS takes place, the control loop verifies that the
last cycles were excessive, queries the sandbox touchpoint to retrieve information on the service that
is being mostly called and sends a command to invalidate the proxy. Subsequent calls on the proxy
would throw an exception, allowing the proxy to inspect the stack trace (in this case, the verification
was in the sandbox, outside the control loop) as illustrated in Listing 10.1. The touchpoint forwards

46 chameleon.ow2.org

169

the notification to the managing platform, which automatically takes the decision of microrebooting
the bundle. The process of locating the bundle consists in searching for the class identified in the stack
trace, and rebooting the bundle that contains it. This process is not completely precise. There are cases
where the stack may show where the code is located in the superclass, instead of pointing out the
actual class that is instantiated.

Exception in thread "Thread-12" java.lang.RuntimeException: Stale Service call

 at

fr.imag.adele.iosgi.proxy.DynamicServiceProxyGenerator.invoke(DynamicServicePro

xyGenerator.java:72)

 at $Proxy0.receive(Unknown Source)

 at org.ow2.aspirerfid.simulation.faults.repository.DoS.run(DoS.java:14)

Listing 10.1. Runtime Exception thrown upon a call to an invalid proxy.

Although we may not have fine grained resource monitoring for components, in platforms
such as OSGi we can monitor the usage of the service layer where we are able to intercept
components and evaluate if their behavior is adequate or not, so we can ultimately promote them to a
safer container where communication should not be penalized.

10.5.2 Causally Related Events

Causal events are interconnected, and as discussed in Chapter 8, there are some inferences for
establishing correlations among events that have a temporal proximity. In the case of events related
to errors originated from the usage of stale services, we look back in recent history (e.g., last 10 cycles)
if there was any reason for a proxy invalidation (e.g., explicit proxy invalidation, a service
unregistration. The previous example of Listing 10.1 is the responsible for the causal relation between
the chain of events that is shown in Figure 10.5, the other two, with IDs 15 and 16 are most likely the
continuation of the same event, but the heuristics we use does not take into account the process that
must coincide with new components arriving (RESOLVED and STARTED), however if we take into
account the previous state or event that uses the same bundle ID that correlation could have been
established in that case.

Figure 10.5. Correlation that chained together a series of events.

Establishing a policy or a method for creating this correlation is important, because they are
mostly received asynchronously. However, the information stored in the knowledge base is not only
for automatic inference, but also could be manually linked. It is important to keep such information of
causality in order to understand potential component incompatibilities or mismatches (e.g., an
anomaly that happens typically after a given update takes place).

170

10.5.3 Mean time to Repair

As already detailed in the experiment with the MVM, the mean time to repair can be
significantly improved in with domain-based isolation. Although we have not evaluated other
platforms, such as .NET, where domain-based isolation is also present, we believe that the MTTR
should also be quicker in relation to starting a whole virtual machine. The restart of a whole isolation
container may be unacceptable in some critical applications, and perhaps this approach is not
appropriate. Although the effect of restarts in certain applications may seem negligible (three seconds
Figure 10.6 and Figure 10.7 in less than two seconds) constant reboots may be a limited technique,
besides being very annoying to any user. Indeed, for larger applications this may not be adequate if a
container shared by several components is constantly rebooted.

Figure 10.6. Correlation of a sandbox restart with a loop cycle having excessive usage of CPU

Figure 10.7. A sandbox reboot triggered by excessive thread allocation

171

10.6 Summary

This chapter presented the work that validates in practical experiments the techniques used in
our approach. Although the goal is to provide more dependable applications for components, we still
lack important information for determining component trustworthiness at runtime. One of the
missing data concerns resource consumption, which we can only verify at the process level, but not at
the component level. In our approach it was possible to use fine grained information on the service
layer where in our approach we can use a sort of inference to find out who are the retainers of stale
services, and point out the components where they come from. If similar fine grained information
becomes available concerning component resource consumption, the identification of some of the
problems we addressed in a general manner would become easier to be spotted.

The next chapter concludes this manuscript and draws conclusions about our work as well as
perspectives for future work in this domain.

Chapter 11

Conclusions and Perspectives

“As we advance in life we learn the limits of our abilities”

Henry FORD

“Once we accept our limits, we go beyond them”

Albert EINSTEIN

Contents

11.1 CONCLUSIONS ... 173

11.1.1 SELF-HEALING COMPONENT SANDBOX ... 174

11.1.2 DEPENDABILITY AS A SEPARATE CONCERN .. 174

11.2 PERSPECTIVES .. 175

11.2.1 RESOURCE ACCOUNTING AT THE COMPONENT LEVEL .. 175

11.2.2 AUTOMATED COMPONENT PROMOTION ... 176

Correlation of Historical Events .. 176

Rating Component Trustworthiness ... 177

11.2.3 DIVERSITY OF ISOLATION ENVIRONMENTS .. 177

Embedded Devices ... 177

Cloud Computing .. 178

11.1 Conclusions

Applications demanding more uptime must be able to avoid unavailability caused by runtime
updates. We have shown that this is especially true for those with critical availability requirements
such as banking systems and air traffic control. We also showed that, although end user applications
such as web browsers may not have the same requirements concerning criticality, they have
undesired effects caused by third-party plugins that may be considered untrustworthy due to the
potential risk of faults when executing them.

Software that needs to evolve during runtime, by adding or updating components, may face
problems when such dynamic updates introduce or cause errors. This may be due to inconsistencies
in the update process, or due to faulty behavior from components installed during application
execution. The latter case typically takes place when untrustworthy components are introduced in the
application. However, untrustworthy does not necessarily means malicious. There are cases where
running an untrustworthy component is needed, for instance, when no other available component
provides the desired functionality.

174

In order to minimize risks from untrustworthy components it is important to provide
mechanisms that can protect the application from potential faults that may be originated from such
code. In the work presented here, we were interested in reducing the impact that can be brought by
untrustworthy components, typically third-party code, deployed at runtime that would potentially
compromise application stability. An important point taken into account was to provide mechanisms
that can avoid the propagation of faults from one component to another, so the system can still
execute even if one of its components crash. The identification of the faulty component was also of
significant importance. In the same way, we considered the need to automatically react to possible
faults and reestablish normal system execution and behavior upon component faults.

11.1.1 Self-healing Component Sandbox

As an attempt to fulfill such requirements we proposed the utilization of strong isolation
boundaries between components, providing a sort of fault-contained component sandbox. Crashes,
restarts or faults that take place in our isolated component sandbox could not disturb the main
application that runs in a separate isolation boundary. We have implemented, tested and compared
the isolation container using two approaches: domain-based isolation and process-based isolation.
Besides the isolation between containers, we also propose a lighter level of isolation within the main
platform by means of local dynamic proxies for isolating services. By doing so, we minimize the
impact of dangling services in memory.

These two levels of isolation are backed by a runtime reconfigurable policy mechanism that is
responsible for defining the isolation criteria that evaluated at runtime and performed dynamically.
However, the purpose of our mechanism is not to isolate components permanently. The idea is to
keep a component in isolation during a “quarantine” period. If after observing that an isolated
component behaves correctly and that it does not represent any risk to the application, the policy can
be changed for such component. As a result the appropriate reconfiguration could be performed to
“promote” an isolated component to a trustworthy level. Our approach currently supports the
manual reconfiguration (i.e., by the system administrator) for such promotion, although an automatic
mechanism would be ideal.

This constant component observation is also necessary to support a self-healing approach to
the sandbox. By employing Recovery-oriented Computing (ROC) techniques, the sandbox is able to
autonomously recover from a certain range of component faults and failures by applying
microreboots in components. As a part of that process, it is necessary to provide monitoring
capabilities for detecting such faulty behavior. We employed the principles of Autonomic Computing
(AC), which suggests the creation of autonomic elements that are capable to manage themselves. As
in the typical AC solution we implemented it in the form of a feedback control loop for verifying the
monitored data, analyzing it and taking proper action if the system needs. Our implementation uses
the chain of responsibility pattern for organizing the elements of the control loop, and also
externalizes the main logic of policy, analysis and decisions into scripts that may be changed or
added during execution.

In short, our contributions concerned an approach for the dynamic isolation of components
using a self-healing component sandbox. Although its mechanisms have proven to be effective, the
ones concerning decisions about resource consumption are still rudimentary due to a lack of
information from underlying platforms. On the other hand, we were able to provide more fine
grained diagnosis with concerning the OSGi service layer, where we could add different dynamic
monitoring mechanisms through an interception layer by means of proxies.

11.1.2 Dependability as a Separate Concern

As already identified by other researchers, Aspect-oriented Programming (AOP) can help in
the separation of functional code from non-functional code, especially when developing self-adaptive
mechanisms, in order to keep the fault tolerant code separate from functional code. In our approach
for enhancing dependability in dynamic component-based platforms we had to introduce new
concerns (i.e., dependability) into a component framework that did not take such requirement into
account. The solution ended up scattered over different parts of the code, with difficulties for

175

maintaining it and accompanying the evolution of the target framework to newer versions. By
separating the code into aspects, we could have a better modularization of our approach and even
apply it to different implementations of the same API, having a sort of horizontal (across different
implementations) and vertical (versions of the same implementation) portability of code. For these
reasons, we believe that the “aspectized” solution of the dependability concerns was better than the
version patched by-hand.

During that process we identified that the aspects crosscut different OSGi layers, and in
addition, in the API these layers did no represent exactly the same thing as in the specifications. We
proposed the usage of aspects for abstracting software layers, providing a different form of aspects
reuse that carried more semantics than it would have in a typical AOP usage. We documented this
layering approach thinking of reuse in other scenarios and thinking about that generality. We have
extracted an aspect-oriented reengineering pattern that is applicable to applications or frameworks
other than OSGi that have similar needs as we had. The usage of aspects for abstracting layers
allowed to improve the understanding of the API and to give a better architectural perspective of
which layers are being affected by a given crosscutting concern.

11.2 Perspectives

Dependability is a rather relative concept that talks about “service failures that are more
frequent and more severe than is acceptable” [Avižienis04]. Based on the system requirements one
may ask what is more important: a dependable application, a dependable execution environment or both
of them? In this thesis we were mostly concerned with the second one. A dependable execution
environment is a requirement for dependable applications, and isolation can guarantee that in such
scenario other applications will not disturb those that behave correctly.

We presented in this manuscript an approach that adds to a component platform some
behaviors that were not taken into account when that execution environment was modeled and
specified. Providing a dependable execution environment for dynamic component platforms is a
challenging task. We believe that there is still much that can be done in the context of our work since
there are still many gaps to be filled. The next subsections discuss the open points that can be taken
further as a continuation of this work:

 Fine grained resource accounting at the component level

 Infrastructure for providing automated component promotion

 Other environments for isolation

11.2.1 Resource Accounting at the Component Level

Existing mechanisms that provide resource accounting (e.g., memory allocation, live threads,
CPU usage) provide information about the whole OS process, without any distinction on what
components are using which resources. In our approach for monitoring we consider the whole
sandbox process, which is a rather imprecise measure since many components can be sharing the
same environment. One of the drawbacks of the approach presented in this thesis is that a component
that is behaving appropriately may be affected by a sandbox reboot if other components sharing the
same environment are consuming too many resources.

Fine grained resource accounting that is capable of individually providing resource accounting
for each component would enable more precise monitoring mechanisms. This precision gives the
possibility to find out which components present excessive resource consumption, which would
potentially characterize faulty or undesired behavior. This capability is an important feature that is
related to liability. For instance, in multiple provider environments components can be supplied by
different customers or partners sharing the same runtime. If such environments provided fine
grained resource accounting, the liable party (i.e., the component provider) responsible for abnormal
behavior concerning resource usage could be identified and potentially notified (e.g., automated
creation of tickets in an issue tracking system) so they can take proper action to fix the problem.

176

Current software infrastructure does not allow per component resource accounting “out of the
box”. Perhaps the existing component abstractions used at runtime in programming languages and
execution environments are not adequate for individually measuring resource usage for components.
In object-oriented languages like Java, which is used in our proof-of-concept implementation,
components are represented at runtime by abstractions that are in fact ordinary objects. Component
abstractions are not provided by the Java language, which needs additional layers in the application
level (i.e., Java code) in order to provide such abstractions.

Isolation containers such as .NET application domains and Java isolates seem to be appropriate
for providing such representation since they provide containers that allow a clear separation of
objects in distinct spaces. As an example we can cite the specification of the Resource Consumption
Management API [JCP09], which according to its documentation is supposed to be built on the
abstraction of an isolate [JCP06a]. This evidence reinforces the idea that application domains are
abstractions that can lead to a finer grained level of resource accounting, although there are not many
advances on resource accounting for such containers. In an approach [Geoffray09] inspired by
isolates, Java classloaders have been used as the abstraction that represents a component. Besides
being a unit of isolation, the classloaders also provided also a modularity abstraction. In that
approach, with the help of some customizations on an experimental VM it was possible to identify
resource usage per classloader (i.e., per component).

The desired granularity of resource accounting at the component level can provide information
that is fundamental for precisely managing component platforms, either manually or autonomously.
The technological limitations mentioned here remain a topic that is still a barrier that needs further
investigation and represents a research path that could help improving our self-healing mechanism.

11.2.2 Automated Component Promotion

Promoting a component from the status of untrustworthy to trustworthy is currently a manual
task to be performed by the system administrator, but our intention was to provide an automated
mechanism that based on historical data of the component could take that decision without human
intervention. If after a certain period of time the component has been used and kept a “clean record”
without being involved in any type of fault, the system should take the component out of its sort of
quarantine and promote it to the status of trustworthy, allowing its execution in the trusted platform.

In order to take a component out of its quarantine, many issues are involved. The fine grained
resource accounting, discussed in the previous section, is an enabler for precise monitoring but it
concerns just raw data that has to be monitored and reasoned about. Historical data about events –
be it fault-related or not – is also generated and needs to be analyzed to extract knowledge from it
and have higher level information about component quality. The next subsections detail these
research directions that would help leading our approach towards automated component promotion.

Correlation of Historical Events

The correlation of monitored events can provide information to be used for detecting the
possible origin of problems. The heuristics that we have employed in our approach are limited and
concentrate on events that belong to a small time interval, allowing a correlation of recent events. A
longer observation of the system would be more appropriate for trying to establish potential
relationships between fault-originating events (e.g., resource consumption thresholds exceeded, stale
service calls) and other events (e.g., component lifecycle, service (un)registration).

Another research path can be taken concerning the reasoning agents that could perform the
analysis of events outside the autonomic manager (e.g., an external process, a background thread) so
they doe not interfere in the control loop execution. This analysis would be made on historical data
stored in the knowledge base (KB) but in a wider interval backwards in the historical data, no longer
being restricted to small timeframes, looking for potential causes of faults that have been detected.
The agents could utilize more formal approaches like Bayesian networks and Markov chains for
analyzing certain events found in the KB and verifying the probability of being the cause of the fault.
By correctly identifying the source of problems, we can find the actual cause and exempt the
component where the fault took place.

177

Rating Component Trustworthiness

The current manual approach for component promotion is based on the principle of having a
human administrator that observes the historical data of components and promotes them to a
trustworthy level if no faults related to that component are found in the historic. Other mechanisms
could also be put into practice for gathering more information about the component. Method
coverage, for instance, could be used as a metric that would identify which services provided by a
component have already been executed. Based on logged information one could consider as a criteria
the percentage of the component’s service methods that have been invoked. But other information
from external sources could also be used to support the decision for promoting a component to a
trustworthy status.

Whatever criteria are used for analyzing components, the external sources need to use a
common model to store the trustworthiness level that was rated by other applications and persist that
information. These shared repositories can be later used by other applications as well as system
administrators that want to either store new information about components or to use existing
component quality information for taking decisions about the runtime promotion of components.
Since existing quality models [Alvaro05] do not deal directly with trustworthiness and dependability,
an evaluation mechanism could use existing attributes (e.g., reliability) from such models as a start
point, but introducing additional information such as the criteria used for classifying the components;
the set of components that was in use with the rated components; the list of incompatibilities or
problems found when combined with other components. In these repositories system administrators
could also rate components employing a similar model to the current one used in Web links sharing
and social networks. For instance, the usage of rating features such as “like” and “+1” which are
popular in the Internet in the beginning of the 2010’s and have become intuitive. However, providing
additional data on the components is fundamental since this rating model of a mere “like” or “+1” is
too shallow.

We see the construction of a trustworthiness model as something that not only depends on
exhaustive testing information in a pre-deployment phase but also from actual component usage as
more appropriate criteria for dynamic component-based applications. The construction of such model
as well as the repositories and the rating system remain as a possible path that can be taken for
helping constructing reusable knowledge about components.

11.2.3 Diversity of Isolation Environments

We also envision the utilization of the proposed isolation approach in embedded devices,
which would require several adaptations and enhancements to be made in our solution. In another
perspective we also envision the field of Cloud Computing as another environment where the
isolation approach could be used. Each one of these perceptions is discussed in the next subsections.

Embedded Devices

In embedded systems, like home gateways, where applications, components and services from
different providers (e.g., partner service providers, device manufacturers) need to share the same
platform. The OSGi platform initially targeted that sort of environment; however the fact that there
are no guarantees that functionality from a provider will not disturb code from other providers
becomes an obstacle for OSGi adoption in that context. Efforts like [Royon06] tried to provide private
gateways in a per-provider basis, by employing a virtualized environment where multiple OSGi
framework instances (one for each provider) run on top of another OSGi framework. However, since
they share the same JVM, there is no fault containment. Providers are still unprotected from bad
utilization of resources or any other faults that may, for instance, crash or hang the whole JVM.

A sandboxed platform as the one we propose is appropriate for hosting third party
components and preventing faults from a provider to affect another. However our solution may not
be appropriate yet for embedded systems. The sandboxed OSGi approach as it is today becomes
impractical since it is not adequate for running in memory-constrained devices. This happens due to a
few reasons like our strategy for cache duplication and, mostly, because of the need to spawn an

178

additional OSGi framework (either in a JVM or in another isolate) for the sandbox, which runs in
parallel with the framework that hosts the trustworthy components. Performing adaptations or
developing alternative isolation solutions is fundamental in order to enable the usage of the
sandboxing solution in embedded environments, because memory footprint is still an issue for
popular devices.

The sandbox platform hosts the same set of components (i.e., OSGi bundles) of the trusted part
of the application. However, not all of them are active. Only the ones considered as untrustworthy
according to the policy in the policy, the component framework (an OSGi bundle itself), and bundles
that provide auxiliary services like logging. The whole sandbox infrastructure could be reduced to a
minimal runtime with the minimal environment necessary for hosting a component in isolation. It
would basically consist of communication with the isolated platforms and a new dependency
resolving mechanism, which would allow avoiding the cache duplication.

Using multiple JVMs may not be appropriate in such scenarios. The usage of such an approach
in embedded devices would have to rely on the Isolate API, which already has a reduced API
available in JVMs that multitasking for Java applications in embedded devices, as described in
[Sun07][Sun08]. A more general issue that is related to the functioning of the OSGi platform itself
concerns the classloading limitations in such VMs. This issue is partially solved in OSGi ME
[Bottaro10], where under certain restrictions the application can download bundles at runtime.
Therefore, there is evidence for feasible research paths concerning the usage of our proposed
approach in embedded devices.

Cloud Computing

Finally, we see emerging fields with a commercial appeal like Cloud Computing having
already achieved a significant advance in application isolation, by employing transparent distribution
and virtualization for that. With a move towards distributed environments that provide applications
with scalability we are walking towards a more flexible isolation infrastructure, but with a coarser
granularity (e.g., applications, virtual machines) than the types of components we deal with in this
thesis. In contrast to the embedded devices limitations concerning memory, it is possible to allocate
more resources; therefore the multi-JVM approach would not be a limitation.

By considering the flexibility and scalability promised by cloud computing, this approach can
host applications that isolate components based on top of its distributed infrastructure. This can be
more appropriate to platforms such as OSGi where components communicate in a loose coupled way
through services that could be isolated similar to our approach, but using standard communication
protocols instead. Specialists in the OSGi also point out the potential use of that component platform
combined with Clod Computing, as described in [OSGi10b]. Standardization attempts [OSGi10c]
around that topic have already appeared in the OSGi Alliance, and research efforts like the one
presented in [Schmidt09] are already providing infrastructure for the OSGi platform to take
advantage of the cloud computing scenario. In our context targeting isolation, untrusted services or
components could be hosted remotely in another node “in the cloud”, where our concept of
promotion would mean that the component will be hosted in the same node, and possibly the same
VM as the running application.

179

Résumé en Français

Introduction

Les logiciels ont de plus en plus besoin d’être à jour mis à jour ou complétés par de nouvelles
fonctionnalités alors qu’ils sont déployés et en cours d’exécution dans les environnements de
production. Il est donc nécessaire que ces logiciels aient la capacité d’évoluer en cours d'exécution
avec le minimum d'interruptions en raison des besoins grandissants pour limiter la gêne des
utilisateurs causés par le redémarrage des logiciels utilisés [Taylor09] ou pour fournir des systèmes
sans arrêt (non-stop), également appelé systèmes à disponibilité critique [Coyle10].

L’évolution du logiciel est motivée par des différentes raisons telles que des changements sur le
cahier de charges du client, de nouvelles fonctionnalités ajoutées, des corrections de bugs ou
d’optimisation. Des applications non critiques peuvent également présenter des exigences pour faire
évoluer le logiciel pendant son exécution, comme dans le cas des utilisateurs des applications telles
que les navigateurs Web, les suites d'applications bureautiques et les applications mobiles qui ont
besoin d'avoir une expérience utilisateur améliorée avec la possibilité d'ajouter facilement de
nouvelles fonctionnalités (par exemple, les plugins) sans l’interruption des applications. Cependant,
dans le cas des systèmes critiques, le logiciel doit être mis à jour être mis à jour avec la moindre
interruption d'exécution, ou même sans aucune interruption. L’indisponibilité qui pourrait être causé
par la mise à jour conduirait à des conséquences comme la perte de clients ou de potentielles ventes,
du dommage de données, etc.

De nos jours, les logiciels sont de plus en plus produits par assemblage des composants
logiciels dont une partie grandissante est récupérée ou achetée « sur étagère » auprès de tierce parties
qui sont des éditeurs ou des communautés open-source. Les paradigmes de la programmation par
composants et à services sont désormais très populaires pour la production des logiciels. Les
composants et services tiers sont généralement d’une qualité inégale et généralement mal connue. Or
quand les composants et services sont combinés ensemble, il n'existe aucun moyen simple de garantir
que les attributs de qualité observés individuellement dans chaque composant sont conservés dans
l’assemblage [Crnkovic02]. En conséquence, l'utilisation de composants sur étagère (COTS pour
Component off-the-shelves) "tels quels" conduit à la production de logiciels comportant des erreurs et
moins fiables [Fox05]. Dans le contexte dans lequel les pannes sont inévitables, l’approche du
recovery-oriented computing (ROC) suggère de faire face aux défauts en récupérant le logiciel vers une
exécution normale malgré l’occurrence de pannes. Cette approche recherche la propriété de sûreté (en
anglais, dependability), qui concerne un concept large incluant plusieurs propriétés tels que la
maintenabilité, la disponibilité, la fiabilité, entre autres.

L'objectif de cette thèse est de fournir des mécanismes qui peuvent rendre plus fiables les
applications à composant dynamiquement reconfigurables. Nous voulons minimiser certains impacts
que les mises à jour en temps d'exécution peuvent introduire, en particulier celles liées à l'exécution
des composants de fiable qualité. Nous proposons des approches distinctes qui combinées ensemble
nous conduisent vers notre objectif:

I. L'isolement dynamique des composants, régi par une politique reconfigurable en temps
d'exécution.

II. Un conteneur autoréparable pour l’isolation de composants.

III. La séparation des préoccupations autour de la fiabilité (non-fonctionnelle) du code
fonctionnel de la plateforme à composants.

Nous voulons être en mesure d'isoler dynamiquement les composants peu fiables du reste de
l’application. Cependant, nous souhaitons offrir la possibilité de promouvoir un composant du statut
faible vers fiable après son évaluation pendant une période de « quarantaine ». Dans le cas de

180

défaillance interne d'un composant faible, le conteneur d’isolement doit être en mesure de rétablir
l'exécution de la plateforme ainsi que celle du composant. De plus, nous souhaitons identifier les
comportements anormaux qui sont à l’origine ces défaillances. Enfin, l’infrastructure des mécanismes
proposés doit être faiblement couplée à la plateforme d’exécution cible afin de garantir les propriétés
de portabilité et de maintenabilité car le logiciel des plateformes est lui-même en constante évolution.

Sûreté Logicielle

Une des motivations de la sûreté logicielle est de produire des logiciels dans lesquels
l’utilisateur et le fournisseur peuvent avoir confiance. Le concept général de sûreté de fonctionnement
est étendu et englobe des différentes propriétés telles que : la fiabilité, la disponibilité, la
maintenabilité, la sécurité, l’intégrité ou bien la confidentialité. Les mécanismes de tolérance aux
pannes ciblent l’obtention de la sûreté de fonctionnement en évitant des problèmes, typiquement au
moyen de techniques basées sur la redondance matérielle ou logicielle. D’un autre côté, les
mécanismes orientés vers la reprise du fonctionnement (Recovery-Oriented Computing - ROC) sont
plutôt destinés à des situations où le système doit se remettre de défauts, de défaillances ainsi de
dégradations progressives de service.

Parmi les techniques utilisées par le ROC, nous pouvons citer le micro-redémarrage
(microreboot) de composants. Son objectif de est d'employer des techniques de récupération rapide,
avec lesquelles, les composants défectueux sont individuellement redémarrés et les restaurés dans un
état cohérent. Le temps moyen de remise en service peut être ainsi réduit. Cette approche a été
montrée efficace pour des défauts non-déterministes avec un coût beaucoup moins important qu’un
redémarrage complet de l’application. La décision de réparer une application peut être rendue
autonome, c’est-à-dire sans l’intervention d’un opérateur humain. L’autoréparation d’un logiciel est
l'une des principales propriétés de l'informatique autonomique, qui a pour objectif la construction de
systèmes autogérés.

Techniques d’Isolation des Applications

L’isolation des applications s’exécutant sur une plateforme d’exécution partagée poursuit
généralement deux objectifs : garantir la confidentialité et contingenter les fautes. Des différentes
techniques autour de ces concepts qui s’appuient sur l’isolation matérielle (grâce à l'infrastructure
sous-jacente de l’OS) tandis que d’autres implémentent l’isolation au niveau de la plateforme
logicielle. Ces techniques d'isolation peuvent être cataloguées dans des sous-groupes distincts.
Cependant, celles-ci peuvent être combinées entre elles pour obtenir le niveau d'isolation requis.

Les techniques matérielles isolent la mémoire entre des processus du système d’exploitation ne
permettant pas qu’un processus puisse accéder la mémoire d’un autre. Dans ce cas, en plus d’une
application ne pas pouvoir accéder la mémoire d’une autre application exécutant en parallèle, ses
erreurs ne sont pas propagés en dehors de son processus. Pourtant, l’isolation basée sur le
« hardware » fourni facilement ces deux aspects de confidentialité et contingentement de fautes.

Pour les applications qui sont hébergées dans le même processus, des techniques logicielles
peuvent être mises en place pour arriver à un certain degré d’isolation qui peut varier. Des espaces de
nommage, comme ces qui sont fournis par des chargeurs de classe dans Java, permettent une
isolation plus souple, avec de la confidentialité mais sans contingentement des fautes. Cette limitation
peut être contournée dans d’autres approches comme des domaines d’applications qui sont utilisés
dans la plateforme .NET et aussi en Java, mais de manière expérimentale dans cette dernière.

Isolation des Composants

L'isolation des composants est normalement faite en s’appuyant sur des techniques logicielles,
mais nous pouvons également trouver des approches basées sur l’isolation des processus, qui profite

181

de l’isolation matérielle. Le support à l’isolation de composant peut se donner dans plusieurs
niveaux. Dans des extensions de langages de programmation (e.g., Oz/K), dans des systèmes
d’exploitation (e.g., Singularity), ou même dans des plateformes à composants comme COM, .NET,
Java EE et OSGi. Cette dernière est d'un intérêt particulier dans cette thèse, qui traite plusieurs
questions liées à l'isolation de composants dans cette plateforme. Des approches expérimentales
d’isolation sont trouvées autour d’OSGi, en arrivant au contingentement de fautes plutôt dans des
environnements distribués, tandis que dans des approches locaux (des applications exécutées sur une
même plateforme) sont plutôt liées à la confidentialité.

Propositions

Quand des composants sont combinés ensembles nous ne pouvons pas garantir que les
attributs de qualité de cette composition seront les mêmes de quand ils sont observés
individuellement. Si on n’est pas sûr de la fiabilité de la composition résultante, pour des diverses
raisons (quantité insuffisante de tests avec le composant donné, peu d’information sur l’origine d’un
composant, etc.), il est plus judicieux d’exécuter le composant concerné derrière une barrière
d’isolement. En cas de son défaillance, l'application peut continuer son exécution pendant que le
composant isolé est rétabli de la panne, en augmentant la maintenabilité. Cela permet aussi
l’application de fournir une meilleure disponibilité vu que juste une partie du système est défaillante.

Nous proposons des conteneurs de composants, capables de fournir ces barrières d’isolation.
Un mécanisme d’autoréparation est aussi proposé, pour effectuer le micro-redémarrage d’un
composant diagnostiqué avec des erreurs ou des potentielles erreurs. La même procédure est
exécutée sur le conteneur isolé lui-même en cas d’une erreur qui persiste même après le redémarrage
d’un composant. L’architecture proposée pour ce mécanisme utilise une boucle de contrôle issue de
l’informatique autonomique.

Plateforme à Composants Ciblée

Les principes et les efforts d’implémentation décrits dans cette thèse visent augmenter la sûreté
dans des plateformes (et par conséquent) à composant dynamiques. En raison de ses caractéristiques
concernant le dynamisme ainsi que son acceptation par les communautés académiques et
industrielles, nous voyons un intérêt en valider notre approche dans la plateforme OSGi. Bien que
notre mise en œuvre et la validation de l'approche ciblent une plateforme spécifique, les propositions
sont d'usage général et pourraient être appliquées à d’autres plates-formes dynamiques à
composants.

Approche d’Isolation des Composants

Nos propositions suggèrent l’usage de plusieurs conteneurs d’isolation, par contre,
l’implémentation de notre approche comporte juste un conteneur additionnel, appelé bac à sable
(sandbox) qui héberge les composants de faible qualité ou dont la qualité est méconnue. Donc,
l’application exécute dans deux plateformes OSGi distinctes: la plateforme principale (composants
fiables) et le bac à sable (composants peu ou pas fiables). La communication entre les deux
plateformes a été possible de façon transparente, c'est-à-dire, un composant n’est pas au courant que
l’autre est isolé. Nous avons réalisé un protocole qui permet cette communication, dont les
composants et les services n’ont pas besoin d’implémenter des interfaces de communication
additionnelles. Par contre, pour avoir cette transparence, le protocole résultant a des limitations,
comme par exemple les types de données utilisés dans les signatures des méthodes doivent être de
type primitif, String ou un tableau qui comporte un des types mentionnés précédemment.

En plus d’une isolation de composants dans des conteneurs séparés, dans notre
implémentation nous utilisons aussi un niveau supplémentaire d’isolement qui est plus souple et

182

sans contingentement de faute, avec le but d’isoler des services en utilisant des mandataires (proxies).
Cette technique évite l’occurrence de références éventées quand les consommateurs ne relâchent pas
des références lors de la désinstallation d’un service. L'isolement des composants est régi par une
politique d’exécution reconfigurable qui définit les règles pour isoler les composants et services.
L’implémentation du conteneur d’isolation a été faite sur deux approches différentes : des isolates Java
(domaines d’applications définis dans la JSR-121 [JCP06a]) et des JVM multiples. L’infrastructure de
communication entre les plateformes isolées a été développée sur deux mécanismes. Le premier a été
construit sur des Links, qui sont partie de l’API de la JSR-121 et qui fonctionne juste sur les isolates. Le
deuxième a été construit sur des sockets Java et peut fonctionner avec les deux approches d’isolation
fournies.

Mécanisme d’Autoréparation

Dans le bac à sable qui héberge les composants peu fiables, il est possible que l'environnement
devienne instable. Il est nécessaire de prévoir des mécanismes qui permettent le rétablissement
automatique de l'environnement, en cas de comportement anormal. Nous avons développé un
gestionnaire autonomique qui se connecte au bac à sable par des sondes de gestion. Le gestionnaire
autonomique utilise une boucle de contrôle pour la surveillance de ce bac à sable, permettant
d’effectuer des actions correctives, si les données collectées indiquent un comportement anormal. La
structure de la boucle de contrôle qui a été mise en œuvre est basée sur l’architecture de référence
MAPE-K (Moniteur, Analyse, Planifier, Exécuter, connaissances), proposé par IBM [IBM06].
Cependant, la logique d'adaptation réelle a été conservée comme des scripts distincts qui sont chargés
pendant l'exécution de la boucle, et qui peuvent être changés pendant l'exécution de l’application.

La Sûreté comme Préoccupation Transversale

Nous avons identifié que notre solution recoupait des différentes parties de l’implémentation
d’OSGi utilisée. Pour faciliter la maintenance et la portabilité de cette solution sur des différentes
versions et implémentations d’OSGi, nous avons utilisé le principe de séparation des préoccupations.
En utilisant la programmation orientée aspects (AOP) nous avons pu mieux modulariser le code lié à
la sûreté (non fonctionnel), et le garder séparé du code métier de la plateforme OSGi (code
fonctionnel). Pour ce faire, le code non-fonctionnel a été maintenu dans des fichiers qui représentaient
des aspects, en utilisant Aspect-J, qui est une extension du langage Java pour donner du support à
l’AOP.

Les aspects ont été aussi utilisés comme des abstractions pour capturer des concepts
architecturaux des couches logicielles. Dans le cas d’OSGi, sa spécification proposait une architecture
en couche qui n’était pas respecté dans l'API. Cela a été constaté dû au fait des fonctionnalités d’une
couche être dispersées sur des classes et des interfaces qui accumulent des rôles de différentes
couches. Cette abstraction de couches a été généralisée et proposée aussi comme un patron de
réingénierie logicielle.

Résultats Expérimentaux

L’implémentation de l’approche proposée a été validée dans le contexte de l’intergiciel RFID
du projet européen ASPIRE. Dans cet intergiciel basé sur la plateforme OSGi, les pilotes des lecteurs
RFID et des capteurs sont de qualités très inégales et utilisent parfois du code natif, entrainant
fréquemment des pannes franches dans l’application.

Dans la validation, les pilotes considérés comme peu fiables sont hébergés dans le bac à sable
(sandbox), en raison du risque introduit par l’usage des bibliothèques natives qui permettent l’accès à
ces dispositifs. Nous avons comparé l’implémentation basés sur des isolates Java [JCP06a] et
l’implémentation qui utilise plusieurs machines virtuelles. Nous avons fait une comparaison entre ces

183

deux approches par rapport à la consommation de mémoire, au temps de démarrage de l’application
et au temps de micro-redémarrage du bac à sable. La grande différence entre les deux approches
consistait au temps de redémarrage du bac à sable, qui était beaucoup plus vite dans l’approche qui
utilise les isolates. Les autres deux critères ne montraient pas de différences significatives.

Cependant, il manque encore des informations importantes pour déterminer si un composant
est fiable pendant son exécution. Vu que la consommation de ressources ne peut être mesurée qu’à la
granularité du processus hébergeant la JVM et non pas au niveau des composants, une surveillance
précise ne peut pas encore être facilement réalisée. Ce grain fin de précision serait utile dans des
situations comme celle d’un composant qui consommerait une quantité excessive de mémoire. Dans
le cas de la couche de service d’OSGi, nous avons pu avoir une certaine précision concernant
l’invocation de méthodes et d’identifier des appels aux services éventés (stale references). Notre
technique a utilisé une sorte d'inférence pour trouver quels consommateurs utilisaient des services de
façon erronée.

Conclusions et Perspectives

Afin d'atteindre nos objectifs, nous avons utilisé des frontières pour créer des conteneurs
d’isolement de composants qui permettent d’avoir du contingentement de fautes. En effet, une faute
intervenant à l’exécution dans un conteneur isolé, n’est pas propagée au reste de l’application. Si
nécessaire, le conteneur peut être vidé de la mémoire, sans interrompre l’exécution du reste de
l'application. De plus, les conteneurs isolés ont une capacité d'autoréparation. Ils peuvent détecter le
moment où ils présentent des comportements anormaux, comportements décrit par un modèle de
pannes, et ainsi être capable de se corriger automatiquement pendant l'exécution.

Nous utilisons le principe de séparation des préoccupations pour dissocier le code qui concerne
la sûreté du code de la plateforme à composants. Une telle séparation facilite la maintenance de la
solution. Les applications ainsi que la plateforme peuvent évoluer indépendamment du code de notre
solution. En effet, a l’aide de la programmation orientée aspects (Aspect-Oriented Programming - AOP),
il est possible de maintenir dans des unités modulaires (appelées aspects) toutes ces préoccupations
transversales concernant la sûreté. Une seconde proposition autour de l’AOP a consisté en la création
d’un patron de réingénierie orienté aspect qui contribue à abstraire les aspects des couches logicielles
et ajoute plus de sémantique dans la réutilisation des aspects.

Parmi les perspectives de cette thèse, nous distinguons trois axes de travail principaux qui
peuvent être développé dans de futurs travaux :

(i) La création de mécanismes de surveillance plus précis qui permettent de mesurer la
consommation de ressources au niveau composant.

(ii) Le développement d’une infrastructure et de techniques permettant la promotion
automatique des composants non fiables. En particulier des techniques tels que la
corrélation des événements sauvegardés dans l’historique, l’utilisation d’approches
formelles comme les réseaux Bayésiennes et les chaînes de Markov pour vérifier
l’impact d’une mise à jour et des possibles pannes rapportées, la classification du
dégrée de fiabilité d’un composant, etc.

Des solutions d’isolation de composants dans d’autres domaine où l’isolation serait approprié
(e.g., systèmes embarqués, l’informatique en nuage).

References

[Agarwala06] S. Agarwala, Yuan Chen, D. Milojicic, and K. Schwan. 2006. QMON: QoS- and
Utility-Aware Monitoring in Enterprise Systems. In Proceedings of the 2006 IEEE
International Conference on Autonomic Computing (ICAC '06). IEEE Computer
Society, Washington, DC, USA, 124-133.

[Ahn06] Ahn, H., Oh, H. and Sung, C. O.. “Towards Reliable OSGi Operating Framework
and Applications,” Jornal of Information Science and Engineering, Vol. 23, 2007,
pp.1379-1390

[Aiken06] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Galen Hunt, and James Larus.
2006. Deconstructing process isolation. In Proceedings of the 2006 workshop on
Memory system performance and correctness (MSPC '06). ACM, New York, NY,
USA, 1-10.

[Allamaraju01] Allamaraju, S. et al. Professional: Java Server Programming J2EE, Wrox Press
(2001)

[Alonso08] Alonso, J., Torres, J. Grith, R., Kaiser, G. and Silva, L. Towards self-adaptable
monitoring framework for self-healing. In Proc. of the 3rd CoreGrid Workshop on
Middleware, June 2008.

[Alur03] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices and Design
Strategies. 2nd ed. 2003: Sun Microsystem Press.

[Alvaro05] A. Alvaro, E.S. Almeida, S.L. Meira, “Quality Attributes for a Component Quality
Model”, 10th WCOP / 19th ECCOP, Glasgow, Scotland, 2005

[Alves07] Alves, V., Matos, P., Cole, L., Vasconcelos, A., Borba, P., and Ramalho, G. 2007.
Extracting and evolving code in product lines with aspect-oriented programming.
In Transactions on Aspect-Oriented Software Development IV, Lecture Notes In
C. S., vol. 4640. Springer-Verlag, Berlin, Heidelberg, pp. 117-142.

[Archives10] The JSR 294 modularity observer archives.
http://altair.cs.oswego.edu/pipermail/jsr294-modularity-observer/2010-
September.txt
Retrieved in May 23, 2011

[Armstrong03] Joe Armstrong. “Making reliable distributed systems in the presence of software
errors”, PhD dissertation, The Royal Institute of Technology, Stockholm, Sweden,
December 2003

[Arsanjani04] A. Arsanjani. “Service-oriented Modeling and Architecture”, IBM
developerworks, November 2004, http://www-
106.ibm.com/developerworks/library/ws-soa-design1/
Retrieved June 1, 2011

[Aspire08] ASPIRE Project (Advanced Sensors and lightweight Programmable middleware
for Innovative Rfid Enterprise applications). http://www.fp7-aspire.eu/

http://altair.cs.oswego.edu/pipermail/jsr294-modularity-observer/2010-September.txt
http://altair.cs.oswego.edu/pipermail/jsr294-modularity-observer/2010-September.txt
http://www-106.ibm.com/developerworks/library/ws-soa-design1/
http://www-106.ibm.com/developerworks/library/ws-soa-design1/
http://www.fp7-aspire.eu/

186

[Avižienis85] Avižienis, A., "The N-Version Approach to Fault-Tolerant Software", IEEE
Transactions of Software Engineering, Vol. SE-11, No. 12 (December 1985), pp.
1491-1501

[Avižienis04] Avižienis, A., Laprie, J., Randell, B., and Landwehr, C. 2004. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing 1, 1 (Jan. 2004), 11-33

[Bachman00] Bachman, F., et al., Technical Concepts of Component-Based Software
Engineering, Technical Report No. CMU/SEI-2000-TR-008, Software Engineering
Institute, Carnegie Mellon University, May 2000.

[Back00] Godmar Back, Wilson C. Hsieh, and Jay Lepreau. 2000. Processes in KaffeOS:
isolation, resource management, and sharing in java. In Proceedings of the 4th
conference on Symposium on Operating System Design \& Implementation -
Volume 4 (OSDI'00), Vol. 4. USENIX Association, Berkeley, CA, USA, 23-23.

[Barham03] Paul Barham et al. 2003. Xen and the art of virtualization. In Proceedings of the
nineteenth ACM symposium on Operating systems principles (SOSP '03). ACM,
New York, NY, USA, 164-177.

[Bertoa02] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS Components”, In the
Proceedings of the 6th International ECOOP Workshop on Quantitative
Approaches in ObjectOriented Software Engineering (QAOOSE), Spain, 2002

[Bhose10] Rajarshi Bhose and Kiran C Nair. Integrating Composite Applications on the
Cloud Using SCA. March, 2010. http://drdobbs.com/architecture-and-
design/223800269
Retrieved May 29, 2011

[Binder99] Robert V. Binder. 1999. Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Bottaro07a] A. Bottaro and R.S. Hall. Dynamic contextual service ranking. In Software
Composition, volume 4829 of Lecture Notes in Computer Science, pages 129–143.
Springer, ²Berlin, Germany, 2007.

[Bottaro07b] Andre Bottaro, Anne Gerodolle, and Philippe Lalanda. 2007. Pervasive Service
Composition in the Home Network. In Proceedings of the 21st International
Conference on Advanced Networking and Applications (AINA '07). IEEE
Computer Society, Washington, DC, USA, 596-603.

[Bottaro10] Andre Bottaro, Fred Rivart. OSGi ME An OSGi Profile for Embedded Devices.
http://www.osgi.org/wiki/uploads/CommunityEvent2010/Bottaro-Rivard-
OSGiCommunityEvent-2010-London-v06-final.pdf

[Bourcier07] J. Bourcier, C. Escoffier, and P. Lalanda. Implementing home-control applications
on service platform. In Consumer Communications and Networking Conference,
2007. CCNC 2007. 4th IEEE, pages 925--929, Jan. 2007

[Boudreau07] Boudreau, T., Tulach, J., Wielenga, G.. Rich Client Programming: Plugging into
the NetBeans Platform. Prentice Hall, 1st edition, 2007

http://drdobbs.com/architecture-and-design/223800269
http://drdobbs.com/architecture-and-design/223800269
http://www.osgi.org/wiki/uploads/CommunityEvent2010/Bottaro-Rivard-OSGiCommunityEvent-2010-London-v06-final.pdf
http://www.osgi.org/wiki/uploads/CommunityEvent2010/Bottaro-Rivard-OSGiCommunityEvent-2010-London-v06-final.pdf

187

[Brada06] Premysl Brada and Lukas Valenta. 2006. Practical Verification of Component
Substitutability Using Subtype Relation. In Proceedings of the 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO
'06). IEEE Computer Society, Washington, DC, USA, 38-45.

[Brumley10] Brumley, D. Introduction to Security course slides. Electrical and Computer
Engineering. Carnegie Mellon University. Fall 2010.
http://www.ece.cmu.edu/~dbrumley/courses/18487-f10/files/isolation-
separation-sandboxing.pdf
Retrieved March 03, 2011)

[Bryce00] Ciarán Bryce and Chrislain Razafimahefa. 2000. An approach to safe object
sharing. In Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA '00). ACM, New
York, NY, USA, 367-381

[Bruneton04] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B. (2004) “An open
component model and its support in Java”, 7th International Symposium on
Component-Based Software Engineering (CBSE), LNCS 3054, pp 7-22, May 2004.

[Buschmann96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[Buxton69] Buxton, J.N, Randell, B., editors, Software Engineering Techniques. Report on a
Conference Sponsored by the NATO Science Committee, Rome, Italy, 1969.

[CA10a] CA Technologies. The Avoidable Cost of Downtime . Research Report, September
2010.
http://www.ca.com/files/supportingpieces/acd_report_100908_244254.pdf
Retrieved April 10, 2011

[CA10b] CA Technologies. The Avoidable Cost of Downtime . Research Report, November
2010
http://arcserve.com/us/~/media/Files/SupportingPieces/ARCserve/avoidable
-cost-of-downtime-summary.pdf
Retrieved April 10, 2011

[CA11] CA Technologies. The Avoidable Cost of Downtime . The impact of IT downtime
on employee productivity. Research Report, January 2011.
http://www.ca.com/~/media/Files/SupportingPieces/acd_report_110110.ashx
Retrieved April 10, 2011

[Candea03] Candea, G., Fox, A. 2003. Crash-only software. In Proceedings of the 9th
conference on Hot Topics in Operating Systems - Volume 9 (HOTOS'03), Vol. 9.
USENIX Association, Berkeley, CA, USA, 12-12.

[Candea04a] Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot — A
technique for cheap recovery. In: 6th Conference on Symposium on Operating
Systems Design & Implementation (2004)

[Candea04b] Candea, G., Brown, A. B., Fox, A., Patterson, D. 2004. Recovery-Oriented
Computing: Building Multitier Dependability. Computer 37, 11 (November 2004),
60-67

http://www.ece.cmu.edu/~dbrumley/courses/18487-f10/files/isolation-separation-sandboxing.pdf
http://www.ece.cmu.edu/~dbrumley/courses/18487-f10/files/isolation-separation-sandboxing.pdf
http://www.ca.com/files/supportingpieces/acd_report_100908_244254.pdf
http://arcserve.com/us/~/media/Files/SupportingPieces/ARCserve/avoidable-cost-of-downtime-summary.pdf
http://arcserve.com/us/~/media/Files/SupportingPieces/ARCserve/avoidable-cost-of-downtime-summary.pdf
http://www.ca.com/~/media/Files/SupportingPieces/acd_report_110110.ashx

188

[Candea06] Candea, G., Kiciman, E., Kawamoto, S., Fox, A.: Autonomous recovery in
componentized Internet applications. Cluster Computing 9, 2, pp. 175--190 (2006)

[Carzaniga98] A. Carzaniga, A. Fuggetta, R. S. Hall, A. van der Hoek, D. Heimbigner, A. L. Wolf.
“A Characterization Framework for Software Deployment Technologies,”
Technical Report CU-CS-857-98, Dept. of Computer Science, University of
Colorado, April 1998

[Cervantes03] Cervantes, H., Hall, R. S.: Automating Service Dependency Management in a
Service-Oriented Component Model. In: Proceedings of the 6th International
Workshop on Component-Based Software Engineering, Portland, USA (2003)

[Chan03] Chan, H. and Chieu, T. C. 2003. An approach to monitor application states for self-
managing (autonomic) systems. In Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Anaheim, CA, USA, October 26 - 30, 2003). OOPSLA '03. ACM,
New York, NY, 312-313.

[Chappel07a] David Chappel. SCA vs. SOA? May, 22, 2007
http://www.davidchappell.com/blog/2007/05/sca-vs-soa.html
Retrieved May 29, 2011

[Chappel07b] David Chappel. Introducing SCA. White paper.
http://www.davidchappell.com/articles/Introducing_SCA.pdf
Retrieved May 29, 2011

[Chen01] Peter M. Chen, Brian D. Noble, "When Virtual Is Better Than Real," HOTOS, p.
0133, Eighth Workshop on Hot Topics in Operating Systems, 2001

[Cheng05] Cheng, S.W., Garlan, D., Schmerl, B.: Making self-adaptation an engineering
reality. In: Self-Star Properties in Complex Information Systems, eds. O.
Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel, and
M. van Steen, vol. 3460, ,pp. 158–173, Springer-Verlag, 2005.

[Cheng08] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and R. de Lemos. 08031 –
Software engineering for self-adaptive systems: A research road map. In Software
Engineering for Self-Adaptive Systems, volume 08031 of Dagstuhl Seminar
Proceedings, 2008

[Chikofsky90] Chikofsky, E. and Cross II, J. 1990. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Softw. 7, 1 (January 1990), 13-17

[Clements96] P. C. Clements and L. M. Northrup, "Software Architecture: An Executive
Overview," Technical Report No. CMU/SEI-96-TR-003, Software Engineering
Institute, Carnegie Mellon University, February, 1996.

[Collet07] Philippe Collet, Thierry Coupaye, Hervé Chang, Lionel Seinturier, Guillaume
Dufrêne, "Components and Services: A Marriage of Reason", Technical Report
I3S/RR-2007-17-FR, May 2007

[Coyle10] Coyle, L., Hinchey, M., Nuseibeh, B., and Fiadeiro, J.L. Guest Editors'
Introduction: Evolving Critical Systems. In Proceedings of IEEE Computer. 2010,
28-33.

http://www.davidchappell.com/blog/2007/05/sca-vs-soa.html
http://www.davidchappell.com/articles/Introducing_SCA.pdf

189

[Crnkovic02] Ivica Crnkovic and Magnus Larsson (Editors). Building Reliable Component-
Based Software Systems, Artech House Publishers, July, 2002

[Crnkovic05] Crnkovic I., Larsson, M., Preiss, O., Concerning predictability in dependable
component-based systems: classification of quality attributes. Architecting
Dependable Systems III, Lecture Notes in Computer Science 3549, Springer, 2005;
257-278.

[Czajkowski98] Grzegorz Czajkowski and Thorsten von Eicken. 1998. JRes: a resource accounting
interface for Java. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications (OOPSLA
'98). ACM, New York, NY, USA, 21-35.

[Czajkowski01] Czajkowski, G., Daynès, L.:. Multitasking without Compromise: a Virtual
Machine Evolution. In: the 16th conference on Object-oriented programming,
systems, languages, and applications (OOPSLA), pp 125--138, New York, USA
(2001)

[Dai09] Andrew Dai, “Exploring the .NET Framework 4 Security Model”, MSDN
Magazine, November 2009.

[Demeyer02] Demeyer, S., Ducasse, S., and Nierstrasz, O. 2002. Object Oriented Reengineering
Patterns. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

[Desertot06] Desertot, M., Donsez, D., Lalanda, P. A Dynamic Service-Oriented
Implementation for Java EE Servers, 3th IEEE International Conference on Service
Computing, pp. 159--166. Chicago, USA, 2006

[Dijkstra74] Edsger W. Dijkstra, “On the role of scientific thought”, EWD 447, 1974, appears in
E.W.Dijkstra, Selected Writings on Computing: A Personal Perspective, Springer
Verlag, 1982.

[DiNitto08] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M. & Pohl, K. (2008) A journey
to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering, 15:313-341

[Duclos02] Frédéric Duclos, Jacky Estublier, and Philippe Morat. 2002. Describing and using
non functional aspects in component based applications. In Proceedings of the 1st
international conference on Aspect-oriented software development (AOSD '02).
ACM, New York, NY, USA, 65-75.

[Eder94] J. Eder, G. Kappel, M. Schrefl, “Coupling and Cohesion in Object-Oriented
Systems”, Technical Report, University of Klagenfurt, 1994.

[Engel05] Engel, M. and Freisleben, B. 2005. Supporting autonomic computing functionality
via dynamic operating system kernel aspects. In Proc. of the 4th international
Conference on Aspect-Oriented Software Development (AOSD). Chicago, Illinois,
March 14 - 18, 2005. ACM, New York, NY, 51-62.

[Erl05] Erl, T. "Service-Oriented Architecture. Concepts, Technology, and Design",
Prentice Hall International, Upper Saddle River, 2005

[Escoffier06] Escoffier, C., Donsez, D., Hall, R. S.: Developing an OSGi-like service platform for
.NET. In; Consumer Communications and Networking Conference, pp. 213--217.
Las Vegas, USA, 2006

190

[Escoffier07] Escoffier, C., Hall, R. S., Lalanda, P.: iPOJO: An extensible service-oriented
component framework. In: IEEE International Conference on Service Computing,
pp. 474--481. Salt Lake City, USA (2007)

[Fähndrich06] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J. R., and
Levi, S. 2006. Language support for fast and reliable message-based
communication in singularity OS. In: Proceedings of the 2006 EuroSys conference,
pp 177 -- 190. Leuven, Belgium, 2006

[Ferreira09] Ferreira, J. Leitao, J., Rodrigues, L.: A-OSGi: A framework to support the
construction of autonomic OSGi-based applications. In: Autonomics 2009, Cyprus
(2009)

[Fielding02] Fielding, R. T., Taylor, R. N. Principled design of the modern Web architecture.
ACM Trans. Internet Technology 2002; 22:115-150

[Filho07] Filho, F. C., Garcia, A., and Rubira, C. M. 2007. Error handling as an aspect. In
Proc. of the 2nd Workshop on Best Practices in Applying Aspect-Oriented
Software Development. vol. 211. ACM, New York, NY

[Fowler99] Fowler, M., Beck, K, Brant, J. Opdyke, W. and Roberts, D. Refactoring: Improving
the Design of Existing Code. Addison Wesley, 1999

[Fowler03] Martin Fowler and Kendall Scott. 2003. UML Distilled (3rd Ed.): A Brief Guide to
the Standard Object Modeling Language. Addison-Wesley

[Fox05] Fox, A., Patterson, D.: Guest Editors' Introduction: Approaches to Recovery-
Oriented Computing. IEEE Internet Computing, vol. 9, no. 2, 14--16 (2005)

[Frei05] Frei, A. and Alonso, G. 2005. A Dynamic Lightweight Platform for Ad-Hoc
Infrastructures. In Proc. of the Third IEEE international Conference on Pervasive
Computing and Communications (March 08 - 12, 2005). PERCOM. IEEE
Computer Society, Washington, DC, 373-382.

[Fritzinger96] J. S. Fritzinger and M. Mueller, “Java security,” Tech. Rep., Sun Microsystems,
Inc., Palo Alto, CA, 1996.

[Ganek03] Ganek, A.G., Korbi, T.A.: The Dawning of the Autonomic Computing Era. IBM
Systems Journal, vol. 42, no. 1, 5--18 (2003).

[Gama08a] Kiev Gama and Didier Donsez. 2008. Service Coroner: A Diagnostic Tool for
Locating OSGi Stale References. In Proceedings of the 2008 34th Euromicro
Conference Software Engineering and Advanced Applications (SEAA '08). IEEE
Computer Society, Washington, DC, USA, 108-115.

[Gama08b] Gama, K., Donsez, D.: A Practical Approach for Finding Stale References in a
Dynamic Service Platform. In: CBSE 2008. LNCS, vol. 5282, pp. 246--261. Springer
Berlin/Heidelberg (2008)

[Gama08c] Kiev Gama, Walter Rudametkin, and Didier Donsez. 2008. Using fail-stop proxies
for enhancing services isolation in the OSGi service platform. In Proceedings of
the 3rd workshop on Middleware for service oriented computing (MW4SOC '08).
ACM, New York, NY, USA, 7-12.

191

[Gama08d] Kiev Gama and Didier Donsez. 2008. Using the service coroner tool for diagnosing
stale references in the OSGi platform. In Proceedings of the ACM/IFIP/USENIX
Middleware '08 Conference Companion (Companion '08). ACM, New York, NY,
USA, 58-61.

[Gama09a] Kiev Gama and Didier Donsez. 2009. Towards Dynamic Component Isolation in a
Service Oriented Platform. In Proceedings of the 12th International Symposium on
Component-Based Software Engineering (CBSE '09), Grace A. Lewis, Iman
Poernomo, and Christine Hofmeister (Eds.). Springer-Verlag, Berlin, Heidelberg,
104-120.

[Gama09b] Kiev Gama and Didier Donsez. Towards Dynamic Component Isolation in a
Service Oriented Platform. Meeting of the OSGi users group France. October 16,
2009. http://france.osgiusers.org/wiki/uploads/Meeting/ougf-gama.pdf

[Gama10a] Gama, K., Donsez, D. A survey on approaches for addressing dependability
attributes in the OSGi service platform. SIGSOFT Softw. Eng. Notes 35, 3 (May
2010)

[Gama10b] Gama, K. and Donsez, D. 2010. A Self-healing Component Sandbox for
Untrustworthy Third-party Code Execution. In Proc. of the 13th Intl. Symposium
on Component-Based Software Engineering (CBSE 2010). Lecture Notes In C.S.,
vol. 6092. Springer-Verlag, Berlin, Heidelberg

[Gama11a] Kiev Gama and Didier Donsez. 2011. Applying dependability aspects on top of
"aspectized" software layers. In Proceedings of the tenth international conference
on Aspect-oriented software development (AOSD '11). ACM, New York, NY,
USA, 177-190.

[Gama11b] Kiev Gama, Gabriel Pedraza, Thomas Lévêque and Didier Donsez. Application
Management Plug-ins through Dynamically Pluggable Probes. In: 1st Workshop
on Developing Tools as Plug-ins (TOPI 2011), ICSE Workshops, May 28, 2011,
Honolulu, Hawaii, USA.

[Gamma95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995 Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc.

[Gamma04] Gamma, E., Beck, K. Contributing to Eclipse: Principles, Patterns, and Plug-Ins.
Addison-Wesley, 2004

[Geoffray09] Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frénot, S. and Folliot, B. “I-JVM:
a Java Virtual Machine for Component Isolation in OSGi,” In Proc. 39th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN'09), 2009,
pp. 544-553.

[Ghosh07] Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S. 2007. Self-healing systems -
survey and synthesis. Decis. Support Syst. 42, 4 (January 2007), 2164-2185.

[Goonasekera09] Goonasekera, N.A, Caelli, W.J., Sahama, T. 2009. 50 Years of Isolation. In
Proceedings of the 2009 Symposia and Workshops on Ubiquitous, Autonomic and
Trusted Computing (UIC-ATC '09). IEEE Computer Society, Washington, DC,
USA, 54-60.

http://france.osgiusers.org/wiki/uploads/Meeting/ougf-gama.pdf

192

[Gorton06] Ian Gorton. 2006. Essential Software Architecture. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

[Grassi07] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. 2007. A model-driven
approach to performability analysis of dynamically reconfigurable component-
based systems. In Proceedings of the 6th international workshop on Software and
performance (WOSP '07). ACM, New York, NY, USA, 103-114.

[Gray86] Gray, J: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems, pp. 3--12. (1986)

[Gray93] Gray, J., Reuter, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

[Greenwood04] Greenwood, P. and Blair, L. Using Dynamic AOP to Implement an Autonomic
System. In: Dynamic Aspects Workshop. 2004. Lancaster, UK

[Grottke07] Grottke, M. and Trivedi, K.S. 2007. Fighting Bugs: Remove, Retry, Replicate, and
Rejuvenate. Computer 40, 2 (February 2007), 107-109.

[Gruber05] Gruber, O., Hargrave, B. J., McAffer, J., Rapicault, P., Watson, T.: The Eclipse 3.0
platform: Adopting OSGi technology. IBM Systems Journal 44(2), pp 289--300,
2005

[Gruen04] Rob Gruen. XP SP2 Issues – Using the System Provided Surrogate (dllhost.exe).
August 18, 2004.
http://blogs.msdn.com/b/robgruen/archive/2004/08/18/216685.aspx
Retrieved June 02, 2011

[Gu04] Tao Gu, Hung Keng Pung, and Da Qing Zhang. 2004. Toward an OSGi-Based
Infrastructure for Context-Aware Applications. IEEE Pervasive Computing 3, 4
(October 2004), 66-74.

[Guidec02] Frédéric Guidec, Nicolas Le Sommer. Towards Resource Consumption
Accounting and Control in Java: a Practical Experience. In Workshop on Resource
Management for Safe Language, ECOOP 2002, Málaga, Spain, June 2002.

[Hall04] Hall, R.S. A Policy-Driven Class Loader to Support Deployment in Extensible
Frameworks. In Proc. of the International Working Conference on Component
Deployment, pp 81--96. Springer, May 2004.

[Hanenberg01] Hanenberg, S. and Unland, R. Using and reusing aspects in AspectJ. In Workshop
on Advanced Separation of Concerns in Object-Oriented Systems, OOPSLA '2001,
Oct. 2001.

[Hanenberg03] Hanenberg, S., C. Oberschulte and R. Unland, Refactoring of aspect-oriented
software. In Proc. of Net.ObjectDays Conference (NODe'03), 2003

[Harauz09] Harauz, J.; Voas, J.; Hurlburt, G.F.; , "Trustworthiness in Software Environments"
IT Professional , vol.11, no.5, pp.35-40, Sept.-Oct. 2009

[Heineman01] George T. Heineman and William T. Councill (Eds.). 2001. Component-Based
Software Engineering: Putting the Pieces Together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

http://blogs.msdn.com/b/robgruen/archive/2004/08/18/216685.aspx

193

[Hilsdale04] Erik Hilsdale and Jim Hugunin. 2004. Advice weaving in AspectJ. In Proceedings
of the 3rd international conference on Aspect-oriented software development
(AOSD '04). ACM, New York, NY, USA, 26-35.

[Hinchey09] Hinchey, M., Coyle, L. Evolving Critical Systems. Lero Technical Report Lero-TR-
2009-00. http://www.lero.ie/sites/default/files/Lero-TR-2009-00-20090727.pdf

[Hirschfeld08] Robert Hirschfeld, Pascal Costanza, Oscar Nierstrasz: "Context-oriented
Programming", in Journal of Object Technology, vol. 7, no. 3, March-April 2008,
pp. 125-151, http://www.jot.fm/issues/issue_2008_03/article4/

[Schmidt09] Holger Schmidt, Jan-Patrick Elsholz, Vladimir Nikolov, Franz J. Hauck, and
Rüdiger Kapitza. 2009. OSGi4C: enabling OSGi for the cloud. In Proceedings of
the Fourth International ICST Conference on COMmunication System softWAre
and middlewaRE (COMSWARE '09). ACM, New York, NY, USA

[Huang95a] Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D., "Software Rejuvenation:
Analysis, Module and Applications," Fault-Tolerant Computing, International
Symposium on, p. 0381, Twenty-Fifth International Symposium on Fault-Tolerant
Computing, 1995

[Huang95b] Huang, Y., Kintala, C.: Software Fault Tolerance in the Application Layer.
Software Fault Tolerance, John Wiley (1995)

[Huebscher08] Huebscher, M., McCann, J.: A survey of autonomic computing—degrees, models,
and applications. ACM Computing Survey, 40(3):1—28, 2008

[Hunt05] Galen Hunt et al: An Overview of the Singularity Project. Technical Report MSR-
TR-2005-135, Microsoft Research, 2005

[Hunt07] Galen C. Hunt and James R. Larus. 2007. Singularity: rethinking the software
stack. SIGOPS Oper. Syst. Rev. 41, 2 (April 2007), 37-49.

[IBM06] IBM. An architectural blueprint for autonomic computing. Autonomic computing
whitepaper, 4th edition. (2006)

[Irmert08] Irmert, F., Lauterwald, F., Bott, M., Fischer, T., and Meyer-Wegener, K. Integration
of dynamic AOP into the OSGi service platform. In Proc. of the 2nd Workshop on
Middleware-Application Interaction, vol. 306. ACM, 2008, New York, NY, 25-30.

[IFIP11] International Federation For Information Processing WG 10.4 on Dependable
Computing And Fault Tolerance. http://www.dependability.org/wg10.4/

[JCP06a] Java Community Process. Java Specification Request 121: Application Isolation
API Specification. 2006.

[JCP06b] Java Community Process. Java Specification Request 277: Java Module System.
2006.

[JCP07] Java Community Process. Java Specification Request 294: Improved Modularity
Support in the Java Programming Language. 2007.

[JCP09] Java Community Process. Java Specification Request 284: Resource Consumption
Management API. 2009.

http://www.lero.ie/sites/default/files/Lero-TR-2009-00-20090727.pdf
http://www.jot.fm/issues/issue_2008_03/article4/
http://www.dependability.org/wg10.4/

194

[Jonge03] M. de Jonge, J. Muskens, and M. Chaudron. Scenario-Based Prediction of Run-
Time Resource Consupmption in Component-Based Software Systems. In
Proceedings of the 6th International Workshop on Component-Based Software
Engineering, May 2003. Portland, Oregon, USA.

[Jordan06] Jordan, M., Daynès, L., Jarzab, M., Bryce, C., and Czajkowski, G. : Scaling J2EE™
application servers with the Multi-tasking Virtual Machine. Softw. Pract. Exper. 36
(6) May. 2006, pp. 557—580 (2006)

[Kaffe11] The Kaffe Virtual Machine. http://www.kaffe.org/
Retrieved June 26, 2011

[Kalaigamal08] Kalaimagal, S.,Srinivasan, R.: A retrospective on software component quality
models. SIGSOFT Software Engineering Notes 33, 6 Oct. 2008, pp. 1--10 (2008)

[Kamp00] Kamp, P. H., Watson, R. N. M.: Jails: Confining the omnipotent root. In:
Proceedings of the 2nd International SANE Conference (2000)

[Kawachiya07] Kiyokuni Kawachiya, Kazunori Ogata, Daniel Silva, Tamiya Onodera, Hideaki
Komatsu, and Toshio Nakatani. 2007. Cloneable JVM: a new approach to start
isolated java applications faster. In Proceedings of the 3rd international conference
on Virtual execution environments (VEE '07). ACM, New York, NY, USA, 1-11.

[Kefalakis08] Nikos Kefalakis, Nektarios Leontiadis, John Soldatos, Kiev Gama, and Didier
Donsez. 2008. Supply chain management and NFC picking demonstrations using
the AspireRfid middleware platform. In Proceedings of the ACM/IFIP/USENIX
Middleware '08 Conference Companion (Companion '08). ACM, New York, NY,
USA, 66-69.

[Kephart03] Kephart, J., Chess, D. The Vision of Autonomic Computing, Computer, vol. 36, 41-
-50, (2003)

[Kephart04] Kephart, Jeffrey O. & Walsh, William E. “An Artificial Intelligence Perspective on
Autonomic Computing Policies,” 3-12. Proceedings of the Fifth IEEE International
Workshop on Policies for Distributed Systems and Networks (Policy 2004).
Yorktown Heights, NY, June 7-9, 2004. Los Alamitos, CA: IEEE Computer Society

[Keuler08] Keuler, T. and Kornev, Y. 2008. A light-weight load-time weaving approach for
OSGi. In Proc. of the 2008 Workshop on Next Generation Aspect-oriented
Middleware (Brussels, Belgium, 2008). NAOMI '08. ACM, New York, NY, 6-10.

[Kiczales97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J. M.,
Irwin, J.: Aspect-Oriented Programming. In: European Conference on Object-
Oriented Programming (ECOOP), LNCS 1241, Finland (1997)

[Kon00] Kon, F. and Campbell, R.H. 2000. Dependence Management in Component-Based
Distributed Systems. IEEE Concurrency 8, 1 (January 2000), 26-36

[Kramer90] Jeff Kramer and Jeff Magee, “The Evolving Philosophers Problem:Dynamic
Change Management,” IEEE Trans. Software Eng., vol. 16, no. 11, pp. 1293-1306,
Nov. 1990.

[Lampson74] Lampson, B.W, 1974. Protection. SIGOPS Oper. Syst. Rev. 8, 1 (January 1974), 18-
24. DOI=10.1145/775265.775268

http://www.kaffe.org/

195

[Laprie90] Laprie, J. C., Béounes, C., and Kanoun, K. 1990. Definition and Analysis of
Hardware- and Software-Fault-Tolerant Architectures. Computer 23, 7 (July 1990),
39-51.

[Laprie96] Laprie, J.C., and Kanoun, K. 1996. Software reliability and system reliability. In
Handbook of software reliability engineering, Michael R. Lyu (Ed.). McGraw-Hill,
Inc., Hightstown, NJ, USA 27-69.

[Laprie08] Laprie, J.C.. From dependability to resilience. In 38th IEEE/IFIP Int. Conf. On
Dependable Systems and Networks, 2008

[Lau07] Kung-Kiu Lau, Zheng Wang, "Software Component Models," IEEE Transactions
on Software Engineering, pp. 709-724, October, 2007

[Lehman85] M. M. Lehman and L. A. Belady (Eds.). 1985. Program Evolution: Processes of
Software Change. Academic Press Prof., Inc., San Diego, CA, USA.

[Lehman96] M. M. Lehman. 1996. Laws of Software Evolution Revisited. In Proceedings of the
5th European Workshop on Software Process Technology (EWSPT '96), Carlo
Montangero (Ed.). Springer-Verlag, London, UK, 108-124.

[Liang98] Liang, S., Bracha, G.: Dynamic Class Loading in the Java Virtual Machine. In:
OOPSLA‘98, pp. 36--44 (1998)

[Lienhard07] Lienhard M., Schmitt A. and Stefani J.-B., Oz/K: A Kernel Language for
Component-Based Open Programming. In Sixth International Conference on
Generative Programming and Component Engineering (GPCE'07), Oct. 2007.

[Lippert00] Lippert, M. and Lopes, C. V. 2000. A study on exception detection and handling
using aspect-oriented programming. In Proc. of the 22nd international Conference
on Software Engineering. ICSE '00. ACM, New York, NY, 418-427.

[Lippert08] Lippert, M. 2008. Aspect weaving for OSGi. In Companion To the 23rd ACM
SIGPLAN Conference on Object-Oriented Programming Systems Languages and
Applications (Nashville, TN, USA, October 19 - 23, 2008). OOPSLA Companion
'08. ACM, New York, NY, 717-718.

[Loyall98] Joseph P. Loyall et al. 1998. QoS Aspect Languages and Their Runtime Integration.
In Selected Papers from the 4th International Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers (LCR '98), David R. O'Hallaron
(Ed.). Springer-Verlag, London, UK, 303-318.

[Martín09] Martín, J., Seepold, R., Madrid, N.M., Alvarez, J.A., Fernandez-Montez, A.,
Ortega, J.A. “A home e-Health System for Dependent people based on OSGi,”
Intelligent Technical Sys-tems, 2009, Vol. 38, part III, Springer, ch. 9

[Matos08] Matos, M. and Sousa, A. “Dependable Distributed OSGi Environment,” In Proc.
4th Middleware for Service Oriented Computing (MW4SOC’08), 2008, pp. 1--6, doi:
10.1145/1462802.1462803

[MDN11] Mozilla Developer Network. Multi-process plugin architecture.
https://developer.mozilla.org/en/Plugins/Multi-Process_Plugin_Architecture
Retrieved April 28, 2011

196

[Menasce02] Menasce, Daniel. A. (2002), QoS issues in Web Services, In IEEE Internet
Computing, pp 72–75, IEEE

[Miettinen08] Tuukka Miettinen, Daniel Pakkala, and Mika Hongisto. 2008. A Method for the
Resource Monitoring of OSGi-based Software Components. In Proceedings of the
2008 34th Euromicro Conference Software Engineering and Advanced
Applications (SEAA '08). IEEE Computer Society, Washington, DC, USA, 100-107.

[Dubus06] Jérémy Dubus and Philippe Merle. 2006. Applying OMG D&C specification and
ECA rules for autonomous distributed component-based systems. In Proceedings
of the 2006 international conference on Models in software engineering
(MoDELS'06), Thomas Kühne (Ed.). Springer-Verlag, Berlin, Heidelberg, 242-251.

[Meyer03] Bertrand Meyer. 2003. The grand challenge of Trusted Components. In
Proceedings of the 25th International Conference on Software Engineering (ICSE
'03). IEEE Computer Society, Washington, DC, USA, 660-667

[MSDN11a] Microsoft Developer Network. COM Clients and Servers.
http://msdn.microsoft.com/en-us/library/ms683835(v=vs.85).aspx
Retrieved June 02, 2011

[MSDN11b] Microsoft Developer Network. DLL Surrogates. http://msdn.microsoft.com/en-
us/library/ms695225(v=vs.85).aspx
Retrieved June 02, 2011

[Montani08] Stefania Montani and Cosimo Anglano. 2008. Achieving self-healing in service
delivery software systems by means of case-based reasoning. Applied Intelligence
28, 2 (April 2008), 139-152.

[Moraes06] Moraes, R., Barbosa, R., Duraes, J., Mendes, N., Martins, E., Madeira, H.: Injection
of faults at component interfaces and inside the component code: are they
equivalent? In: European Dependable Computing Conference, EDCC '06, pp.53--
64 (2006)

[Mozilla11] Mozilla Wiki. Electrolysis. https://wiki.mozilla.org/Electrolysis
Retrieved April 28, 2011

[Mozillazine11] MozillaZine. Plugin-container and out-of-process plugins.
http://kb.mozillazine.org/Plugin-container_and_out-of-process_plugins
Retrieved April 28, 2011

[Müller06] H. A. Müller, L. O’Brien, M. Klein, and B. Wood, “Autonomic computing,”
Carnegie Mellon Univeristy and Software Engineering Institute, Tech. Rep., April
2006.

[Nagel10] Nagel, C., Evjen, B., Glynn, J., Watson, K., Skinner, M.: Professional C# 4 and
.NET 4. Wiley Publishing (2010)

[Nelson90] Nelson, V.P.: Fault-Tolerant Computing: Fundamental Concepts. In: IEEE
Computer, 23(7): pp 19--25 (1990)

[Nierstrasz95] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software
Technology,” Object-Oriented Software Composition, O. Nierstrasz and D.
Tsichritzis (Eds.), pp. 3-28, Prentice Hall, 1995 Nierstrasz and D. Tsichritzis (Eds.),
pp. 3-28, Prentice Hall, 1995.

http://msdn.microsoft.com/en-us/library/ms683835(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms695225(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms695225(v=vs.85).aspx
https://wiki.mozilla.org/Electrolysis
http://kb.mozillazine.org/Plugin-container_and_out-of-process_plugins

197

[OASIS07] OASIS. Service Component Architecture (SCA). http://www.oasis-
opencsa.org/sca
Retrieved May 29, 2011

[Oreizy98a] P. Oreizy, N. Medvidovic, and R.N. Taylor, “Architecture-Based Runtime
Software Evolution”, Proceedings of the International Conference on Software
Engineering. (ICSE ’98), 1998, pp. 117--18

[Oreizy98b] P. Oreizy, “Decentralized Software Evolution”, In Proceedings of International
Conference on the Principles of Software Evolution (IWPSE 1), 1998

[Oreizy99] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., and Wolf, A.L. 1999. An Architecture-Based
Approach to Self-Adaptive Software. IEEE Intelligent Systems 14, 3 (May 1999),
54-62

[Oreizy08] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. 2008. Runtime
software adaptation: framework, approaches, and styles. In Companion of the
30th international conference on Software engineering (ICSE Companion '08).
ACM, New York, NY, USA, 899-910.

[OSGi07] OSGi Alliance. About the OSGi Service Platform, Technical Whitepaper Revision
4.1, 7 June 2007,
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf

[OSGi09] OSGi Service Platform Release 4, Version 4.2 Service Compendium.
http://www.osgi.org/download/r4v42/r4.cmpn.pdf Retrieved in July 2011

[OSGi10a] OSGi Service Platform Release 4, Version 4.3 – Core Early Draft 1, April 2010.
http://www.osgi.org/download/osgi-core-4.3-early-draft1.pdf

[OSGi10b] OSGi & Cloud Computing. http://www.osgi.org/blog/2010/02/osgi-cloud-
computing.html Retrieved in August 2011

[OSGi10c] OSGi Alliance. Request for Proposal 133 – Cloud Computing. Proposed final draft.
http://www.osgi.org/wiki/uploads/Design/rfp-0133-Cloud_Computing.pdf
Retrieve in August 2011

[OSGi11] OSGi Service Platform Release 4, Version 4.3 Core Specification.
http://www.osgi.org/Download/Release4V43 Retrieved in May 2011

[OSOA07] Open SOA. Service Component Architecture Home, 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

[Parhami97] Parhami, B. Defect, Fault, Error, . . . , or Failure. IEEE Transactions on Reliability,
December 1997, pp. 450—45

[Parnas94] David Lorge Parnas. 1994. Software aging. In Proceedings of the 16th international
conference on Software engineering (ICSE '94). IEEE Computer Society Press, Los
Alamitos, CA, USA, 279-287.

[Parrend08] Parrend, P., Frénot, S.: Classification of Component Vulnerabilities in Java Service
Oriented Programming (SOP) Platforms. In: CBSE 2008. LNCS, vol. 5282, pp.80--
96, Springer Berlin/Heidelberg (2008)

http://www.oasis-opencsa.org/sca
http://www.oasis-opencsa.org/sca
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/download/r4v42/r4.cmpn.pdf
http://www.osgi.org/download/osgi-core-4.3-early-draft1.pdf
http://www.osgi.org/blog/2010/02/osgi-cloud-computing.html
http://www.osgi.org/blog/2010/02/osgi-cloud-computing.html
http://www.osgi.org/wiki/uploads/Design/rfp-0133-Cloud_Computing.pdf
http://www.osgi.org/Download/Release4V43
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

198

[Parrend09] Parrend, P. and Frénot, S. “Security benchmarks of OSGi platforms: toward
Hardened OSGi”. Software. Practice and Experience. Vol. 39, issue 5, Apr. 2009, pp-
471-499, doi: 10.1002/spe.v39:5

[Papageorgiou08] Papageorgiou, D. “The Virtual OSGi Framework”. Masters thesis, ETH Zurich,
2008

[Papazoglou03] Papazoglou, M. P. Service-Oriented Computing: Concepts, Characteristics and
Directions, 4th International Conference on Web Information Systems
Engineering (WISE'03) , Rome, Italy, 2003

[Papazoglou08] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented
computing: a research roadmap,” Int. J. Cooperative Inf. Syst., vol. 17, no. 2, pp.
223–255, 2008.

[Papazoglou11] Michael P. Papazoglou, Vasilios Andrikopoulos, Salima Benbernou, "Managing
Evolving Services," IEEE Software, pp. 49-55, May/June, 201

[Patterson02] D. A. Patterson., A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P.
Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W.
Tetzlaff, J. Traupman, N. Treuhaft. Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies. UC Berkeley Computer
Science Technical Report UCB//CSD-02-1175, 2002.

[Pham99] Pham, H. Software Reliability. 1999, Springer-Verlag, New York, Inc

[Plasil98] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: architecture for component trading
and dynamic updating. In: 4th Intl. Conf. on Configurable Distributed Systems,
pp.43--51 (1998)

[Randell75] B. Randell. 1975. System structure for software fault tolerance. In Proceedings of
the international conference on Reliable software. ACM, New York, NY, USA,
437-449

[Rashid03] Awais Rashid and Ruzanna Chitchyan. 2003. Persistence as an aspect. In
Proceedings of the 2nd international conference on Aspect-oriented software
development (AOSD '03). ACM, New York, NY, USA, 120-129

[Redmond02] Redmond, B. and Cahill, V. 2002. Supporting Unanticipated Dynamic Adaptation
of Application Behavior. In Proc. of the 16th European Conference on Object-
Oriented Programming (2002). Lecture Notes In Computer Science, vol. 2374.
Springer-Verlag, London, 205-230

[Reinhold08] Mark Reinhold. Mark Reinhold’s Blog: Project Jigsaw. 2008/12/03
http://mreinhold.org/blog/jigsaw
Retrieved in May 23,2011

[Reis09] Charles Reis and Steven D. Gribble. 2009. Isolating web programs in modern
browser architectures. In Proceedings of the 4th ACM European conference on
Computer systems (EuroSys '09). ACM, New York, NY, USA, 219-232.

http://mreinhold.org/blog/jigsaw

199

[Rellermeyer07] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. 2007. R-OSGi:
distributed applications through software modularization. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware (Middleware
'07), Roy H. Campbell and Renato Cerqueira (Eds.). Springer-Verlag New York,
Inc., New York, NY, USA, 1-20.

[Richardson07] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, May 2007

[Rosenberg09] Florian Rosenberg. QoS-Aware Composition of Adaptive Service-Oriented
Systems. PhD dissertation, Technical University of Vienna, Austria, 2009

[Rotem06] Arnon Rotem-Gal-Oz . Fallacies of Distributed Computing Explained. May, 2006
http://www.rgoarchitects.com/Files/fallacies.pdf Retrieved May 13, 2011

[Rouvoy09] Rouvoy, R., Eliassen, F., and Beauvois, M. 2009. Dynamic planning and weaving
of dependability concerns for self-adaptive ubiquitous services. In Proc. of the
2009 ACM Symposium on Applied Computing (Honolulu, Hawaii). SAC '09.
ACM, New York, NY, 1021-1028

[Royon06] Royon, Y., Frénot, S. and Mouel, F. L. “Virtualization of Service Gateways in
Multi-provider Environments,” In Proc. Component Based Software Engineering,
2006, pp. 385-392, doi: 10.1007/11783565_31

[Rudametkin10] Walter Rudametkin, Lionel Touseau, Didier Donsez, François Exertier. A
framework for managing dynamic service-oriented component architectures. In:
5th IEEE Asia-Pacific Services Computing Conference, December 6 - 10, 2010,
Hangzhou, China

[Salehie09] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May
2009)

[Saltzer75] Jerome H. Saltzer and Michael D. Schroeder, The Protection of Information in
Computer Systems, Proceedings of the IEEE, 63(9), 1975

[Sametinger97] Johannes Sametinger. 1997. Software Engineering with Reusable Components.
Springer-Verlag New York, Inc., New York, NY, USA.

[Saraiva10] Saraiva, J., Castor, F., and Soares, S. 2010. Assessing the Impact of AOSD on
Layered Software Architectures. In ECSA 2010, LNCS 6285, pp. 344–351. DOI=
10.1007/978-3-642-15114-9_27

[Schmidt03] Schmidt, H.: Trustworthy components-compositionality and prediction. Journal of
Systems Software. 65, 3 (Mar. 2003), pp. 215-225

[Schneider01] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. 2001. A Language-
Based Approach to Security. In Informatics - 10 Years Back. 10 Years Ahead.,
Reinhard Wilhelm (Ed.). Springer-Verlag, London, UK, 86-101.

[Schroeder71] Michael D. Schroeder and Jerome H. Saltzer. 1971. A hardware architecture for
implementing protection rings. In Proceedings of the third ACM symposium on
Operating systems principles (SOSP '71). ACM, New York, NY, USA, 42-

http://www.rgoarchitects.com/Files/fallacies.pdf

200

[Seinturier06a] Seinturier, L., Pessemier, N., Escoffier, C., Donsez, D.: Towards a Reference Model
for Implementing the Fractal Specifications for Java and the .NET Platform. In 5th
Fractal Workshop at ECOOP'06 (2006)

[Seinturier06b] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Coupaye.
(2006). 'A component model engineered with components and aspects', CBSE '06:
Proceedings of the 9th International SIGSOFT Symposium on Component-based
Software Engineering, Springer-Verlag, Vasteras, Sweden, LNCS 4063, pp. 139-156

[Seinturier09] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Valerio
Schiavoni, and Jean-Bernard Stefani. 2009. Reconfigurable SCA Applications with
the FraSCAti Platform. In Proceedings of the 2009 IEEE International Conference
on Services Computing (SCC '09). IEEE Computer Society, Washington, DC, USA,
268-275

[Singh07] Singh, A. and Kiczales, G. 2007. The scalability of AspectJ. In Proc. of the 2007
Conference of the Center For Advanced Studies on Collaborative Research
(Richmond Hill, Ontario, Canada, October 22 - 25, 2007). CASCON '07. ACM,
New York, NY, 203-214.

[Smedberg09] Benjamin Smedberg. Electrolysis: Making Mozilla Faster and More Stable Using
Multiple Processes. 16 June 2009. http://benjamin.smedbergs.us/blog/2009-06-
16/electrolysis-making-mozilla-faster-and-more-stable-using-multiple-processes/
Retrieved April 27, 2011

[Smith05] Jim Smith, Ravi Nair. Virtual Machines: Versatile Platforms for Systems and
Processes, Morgan Kaufmann, 2005. pp.1--26

[Smolka95] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

[Soares02] Soares, S., Laureano, E., and Borba, P. 2002. Implementing distribution and
persistence aspects with AspectJ. In Proc. of the 17th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications (Seattle,
Washington, USA, November 04 - 08, 2002). OOPSLA '02. ACM, New York, NY,
174-190

[Stutz03] Stutz, D., Neward, T., and Shilling, G. Shared Source Cli Essentials. O'Reilly,
March 2003

[Spring09] Spring Source. Spring Dynamic Modules for OSGiService Platforms. April 2009.
http://www.springsource.org/osgi
Retrieved May 29, 2011

[Sun07] Sun Microsystems. CLDC HotSpot™ Implementation Architecture Guide - CLDC
HotSpot Implementation, Version 2.0. May, 2007.
http://download.oracle.com/javame/config/cldc/cldc-opt-impl/cldc-hi-2.0-
web/doc/architecture/pdf/CLDC-Hotspot-Architecture.pdf

[Sun08] Sun Microsystems. Multitasking Guide-Sun Java Wireless Client Software,
Version 2.1, Java Platform Micro Edition. April 2008,
http://java.sun.com/javame/reference/docs/sjwc-2.1/pdf-
html/multitasking.pdf

http://benjamin.smedbergs.us/blog/2009-06-16/electrolysis-making-mozilla-faster-and-more-stable-using-multiple-processes/
http://benjamin.smedbergs.us/blog/2009-06-16/electrolysis-making-mozilla-faster-and-more-stable-using-multiple-processes/
http://www.springsource.org/osgi
http://download.oracle.com/javame/config/cldc/cldc-opt-impl/cldc-hi-2.0-web/doc/architecture/pdf/CLDC-Hotspot-Architecture.pdf
http://download.oracle.com/javame/config/cldc/cldc-opt-impl/cldc-hi-2.0-web/doc/architecture/pdf/CLDC-Hotspot-Architecture.pdf
http://java.sun.com/javame/reference/docs/sjwc-2.1/pdf-html/multitasking.pdf
http://java.sun.com/javame/reference/docs/sjwc-2.1/pdf-html/multitasking.pdf

201

[Szyperski02] Szyperski, C, Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, second edition (2002)

[Szyperski03] Clemens Szyperski. 2003. Component technology: what, where, and how? In
Proceedings of the 25th International Conference on Software Engineering (ICSE
'03). IEEE Computer Society, Washington, DC, USA, 684-693.

[Taïani09] François Taïani, Jean-Charles Fabre. Some Challenges in Adaptive Fault-tolerant
Computing. 12th European Workshop on Dependable Computing (EWDC 2009),
Toulouse (France), 14-15 May 2009

[Taylor09] Richard N. Taylor, Nenad Medvidovic, Peyman Oreizy. Architectural styles for
runtime software adaptation. In 3rd European Conference on Software
Architecture (ECSA) (September 2009), pp. 171-180

[Thomsen06] Thomsen, J. “OSGi-based Gateway Replication”. In: Proc. IADIS Applied Computing
Conference, 2006, pp. 123-129.

[Torrao09] Torrão, C., Carvalho, N.A., Rodrigues, L. 2009. “FT-OSGi: Fault-tolerant
Extensions to the OSGi Service Platform”. pp. 653-670 OTM Conferences (1)
http://dx.doi.org/10.1007/978-3-642-05148-7_47

[Touseau08] Lionel Touseau, Didier Donsez, and Walter Rudametkin. 2008. Towards a SLA-
based Approach to Handle Service Disruptions. In Proceedings of the 2008 IEEE
International Conference on Services Computing - Volume 1 (SCC '08), Vol. 1.
IEEE Computer Society, Washington, DC, USA, 415-422.

[Tian05] Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. Wiley-IEEE Computer Society Press (2005)

[Vandewoude07] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D'Hondt. 2007.
Tranquility: A Low Disruptive Alternative to Quiescence for Ensuring Safe
Dynamic Updates. IEEE Trans. Softw. Eng. 33, 12 (December 2007), 856-868

[Viswanathan11] Viswanathan, A., Neuman, B.C., A survey of isolation techniques. Draft paper.
University of Southern California, Information Sciences Institute. Retrieved April
02, 2011

[Vitek98] J. Vitek, C. Bryce, and W. Binder. Designing JavaSeal or How to Make Java Safe
for Agents. In D. Tsichritzis, editor, Electronic Commerce Objects, pages 105-126,
University of Geneva, July 1998.

[Voas97] J. Voas, “Error propagation analysis for COTS systems,” IEEE Comput. Control
Eng. J., vol. 8, no. 6, pp. 269–272, Dec. 1997.

[Wahbe93] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.: Efficient software-based
fault isolation. In: the 14th ACM Symposium on Operating Systems Principles.
SOSP '93. pp. 203--216. ACM, New York, NY (1993)

[Waldo99] Waldo, J. “The Jini architecture for network-centric computing”, Communications
of the ACM, vol. 42, no. 7, pp. 76-82, 1999.

[Wang10] Tao Wang; Xiaowei Zhou; Jun Wei; Wenbo Zhang; Xin Zhu; , "Component
Monitoring of OSGi-Based Software," e-Business Engineering (ICEBE), 2010 IEEE
7th International Conference on , vol., no., pp.250-255, 10-12 Nov. 2010

http://dx.doi.org/10.1007/978-3-642-05148-7_47

202

[Weiser91] Weiser, M. The computer for the 21st century. Scientific American (September
1991).

[Wen-Wei08] Wen-Wei Lin, Yu-Hsiang Sheng, "Using OSGi UPnP and Zigbee to Provide a
Wireless Ubiquitous Home Healthcare Environment," International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies, pp. 268-273,
2008

[Yang02] Yang, Z., Cheng, B. H., Stirewalt, R. E., Sowell, J., Sadjadi, S. M., and McKinley, P.
K. 2002. An aspect-oriented approach to dynamic adaptation. In Proc. of the First
Workshop on Self-Healing Systems (Charleston, South Carolina, November 18 -
19, 2002). D. Garlan, J. Kramer, and A. Wolf, Eds. WOSS '02. ACM, New York, NY,
85-92

[Zeigler11] Andy Zeigler. IE8 and Loosely-Coupled IE (LCIE).
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-
lcie.aspx
Retrieved April 27, 2011

[Ziegler96] Ziegler, J. et al. IBM experiments in soft fails in computer electronics. IBM Journal
of Research and Development, 40(1):3-18, Jan. 1996.

http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

203

Glossary

AOP ― Aspect-oriented Programming
CBD ― Component-based Development
CBSE ― Component-based Software Engineering
CLDC ― Connected Limited Device Configuration
CLR ― Common Language Runtime
DLL ― Dynamic Link Library
DSL ― Domain Specific Language
GUI ― Graphical User Interface
IPC ― Inter-Process Communication
JSR ― Java Specification Request
JMX ― Java Management Extensions
JVM ― Java Virtual Machine
OLE ― Object Linking and Embedding
OS ― Operating System
QoS ― Quality of Service
RCP ― Rich-Client Platform
RFID ― Radio-frequency Identification
RMI ― Remote Method Invocation
RMI-IIOP ― RMI over Internet Inter-Orb Protocol
SOAP ― Simple Object Access Protocol
UI ― User Interface
UML ― Unified Modeling Language
URL ― Uniform Resource Locator
VM ― Virtual Machine
XML ― eXtensible Markup Language

Appendix A

Publications

This section enumerates the author’s publications that are related to the work presented in this
PhD thesis.

1. “Application Management Plug-ins through Dynamically Pluggable Probes”.
Kiev Gama, Gabriel Pedraza, Thomas Lévêque and Didier Donsez. In: 1st Workshop on
Developing Tools as Plug-ins (TOPI 2011), ICSE Workshops, May 28, 2011, Honolulu,
Hawaii, USA.

2. “Applying Dependability Aspects on top of ‘Aspectized’ Software Layers”.
Kiev Gama and Didier Donsez. In: 10th International Conference on Aspect-Oriented
Software Development (AOSD 2011), March 21-25, 2011, Porto de Galinhas, Pernambuco,
Brazil.

3. “A Self-healing Component Sandbox for Untrustworthy Thid-party Code Execution”.
Kiev Gama and Didier Donsez. In: 13th International Symposium on Component Based
Software Engineering (CBSE 2010), June 23-25, 2010, Prague, Czech Republic.

4. “A Survey on Approaches for Addressing Dependability Attributes in the OSGi
Service Platform”. x
Kiev Gama and Didier Donsez. In: ACM SIGSOFT Software Engineering Notes, Vol. 35,
Issue 3 (May 2010).

5. “Developing Adaptable Components using Dynamic Languages”.
Didier Donsez, Kiev Gama and Walter Rudametkin. In: 35th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEEA 2009), SCBSE Track, August 27-
29th, 2009, Patras, Greece.

6. “Towards Dynamic Component Isolation in a Service Oriented Platform”.
Kiev Gama and Didier Donsez. In: 12th International Symposium on Component Based
Software Engineering (CBSE 2009), June 24-26, 2009, East Stroudsburg University,
Pennsylvania, USA.

7. “A Practical Approach for Finding Stale References in a Dynamic Service Platform”.
Kiev Gama and Didier Donsez. In: Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE 2008) 14-17 October 2008, Karlsruhe,
Germany.

8. “Service Coroner: A Diagnostic Tool for Locating OSGi Stale References”.
Kiev Gama and Didier Donsez. In: Proceedings of the 34th EUROMICRO Conference on
Software Engineering and Advanced Applications, CBSE Track, Parma, Italy, September
3-5, 2008.

9. “Using Fail-stop Proxies for Enhancing Services Isolation in the OSGi Service
Platform”.
Kiev Gama, Walter Rudametkin and Didier Donsez. 3rd Middleware for Service Oriented
Computing (MW4SOC Workshop of the 9th International Middleware Conference 2008),
December 1, 2008, Leuven, Belgium.

206

We presented two demonstrations at the 2008 Middleware Conference: one concerning the
Aspire RFID application described in the experiments section, and another one regarding the
diagnosis approach of stale references in the OSGi platform:

10. “Supply chain management and NFC picking demonstrations using the AspireRfid
middleware platform“. Nikos Kefalakis, Nektarios Leontiadis, John Soldatos, Kiev Gama
and Didier Donsez. In: Proceedings of the ACM/IFIP/USENIX Middleware '08
Conference Companion, December 01-05, 2008, Leuven, Belgium.

11. “Using the service coroner tool for diagnosing stale references in the OSGi platform”.
Kiev Gama and Didier Donsez. In: Proceedings of the ACM/IFIP/USENIX Middleware
'08 Conference Companion, December 01-05, 2008, Leuven, Belgium.

The above approach was also presented in the 2008 OSGi community event (non-academic),
which gathers industrial practices and research results around OSGi technology:

12. “Runtime Diagnosis of Stale References in the OSGi Services Platform”.
Kiev Gama and Didier Donsez. OSGi Community Event, Berlin, Germany, June 10-11,
2008.

Items 7, 8, 11 and 12 reflect work for the Master’s thesis that was carried on during the PhD
and used for the diagnosis of stale references. Other work, which is enumerated next, has also been
published in the context of the Aspire project; however they are not directly to the thesis (although
isolation is certainly needed for item 15):

13. “Towards a Dynamic and Extensible Middleware for Enhancing Exhibits”.
Walter Rudametkin, Kiev Gama, Lionel Touseau and Didier Donsez. In: Proceedings of
the 7th Annual IEEE Consumer Communications & Networking Conference, (CCNC
2010). January 9-12, 2010, Las Vegas, USA.

14. “Towards a Monitoring System for High Altitude Objects”.
Sébastien Jean, Kiev Gama, Didier Donsez and André Lagrèze. In: Proceedings of the 6th
international Conference on Mobile Technology, Applications, and Systems (ACM
Mobility Conference 2009). September 2-4, 2009, Nice, France.

15. “Developing Adaptable Components using Dynamic Languages”.
Didier Donsez, Kiev Gama and Walter Rudametkin. In: 35th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEEA 2009), SCBSE Track, August 27-
29th, 2009, Patras, Greece.

207

Appendix B

Implementation Details

public aspect ServiceRegistry {

 pointcut registration():
 execution(ServiceRegistration

 BundleContext+.registerService(..));

 pointcut unregistration():
 execution(void

 ServiceRegistration+.unregister());

 pointcut retrieval():
 execution(Object

 BundleContext+.getService(

 ServiceReference))

 || call(Object

 ServiceFactory+.getService(Bundle,

 ServiceRegistration));

 pointcut release():
 execution(boolean BundleContext+.ungetService(ServiceReference))
 || call(void

 ServiceFactory+.ungetService(Bundle,

 ServiceRegistration,

 Object));

 pointcut referenceQuery():
 execution(ServiceReference[]

BundleContext+.getAllServiceReferences(..))

 || execution(ServiceReference

 BundleContext+.getServiceReference*(..));

 pointcut bundleServices():
 execution(ServiceReference[]

 Bundle+.getRegisteredServices());

 pointcut usageQuery():
 execution(ServiceReference[]

 Bundle+.getServicesInUse());

 pointcut addListener():
 execution(void

 BundleContext+.addServiceListener(

 ServiceListener));

 pointcut removeListener():
 execution(void

 BundleContext+.removeServiceListener(
 ServiceListener));

}

Service Layer represented by the ServiceRegistryAspect

208

public aspect LifeCycle {

 pointcut install():
 execution(Bundle BundleContext+.installBundle(String,..));

 pointcut stop():
 execution(void Bundle+.stop(..));

 pointcut start():
 execution(void Bundle+.start(..));

 pointcut uninstall():
 execution(void Bundle+.uninstall());

 pointcut update():
 execution(void Bundle+.update(..));

 pointcut resolve():
 execution(boolean

 PackageAdmin+.resolveBundles(Bundle[]));

 pointcut refresh():
 execution(void

 PackageAdmin+.refreshPackages(Bundle[]));

 pointcut activate():
 call(void

 BundleActivator+.start(BundleContext));

 pointcut deactivate():
 call(void

 BundleActivator+.stop(BundleContext));

}

LifeCycle Aspect

public aspect ModuleLayer {

 pointcut bundleInstantiation():
 execution(Bundle+.new(..));

 pointcut classLoaderInstantiation():
 execution(ClassLoader+.new(..));

 pointcut getResource():
 execution(* Bundle+.getResource*(String));

 pointcut loadClass():
 execution(Class

 Bundle+.loadClass(String))

 || execution(Class

 ClassLoader+.loadClass(String));

}

Module Layer Aspect

209

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="isolationpolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="components" />
 <xs:element ref="services" />
 </xs:sequence>
 <xs:attribute name="name" use="required" type="xs:NCName" />
 </xs:complexType>
 </xs:element>
 <xs:element name="components">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="blocked-poa" />
 <xs:element ref="skip" />
 <xs:element ref="mirror" />
 <xs:element maxOccurs="unbounded" ref="rule" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="services">
 <xs:complexType><xs:sequence>
 <xs:element ref="skip" />
 <xs:element maxOccurs="unbounded" ref="rule" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="blocked-poa">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="((interface|class|superclass)(\s*)(!?)(=|like\s)([^;|^=]+;))*">
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="skip">
 <xs:simpleType> <xs:restriction base="xs:string">
 <xs:pattern
 value="((interface|class|superclass|import-package|export-
package|bundle-activator|bundle-category|bundle-name|bundle-symbolicname|bundle-
updatelocation|bundle-vendor|bundle-version)(\s*)(!?)(=|like\s)([^;|^=]+;))*">
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="mirror">
 <xs:simpleType><xs:restriction base="xs:string">
 <xs:pattern
 value="((import-package|export-package|bundle-activator|bundle-
category|bundle-name|bundle-symbolicname|bundle-updatelocation|bundle-vendor|bundle-
version)(\s*)(!?)(=|like\s)([^;|^=]+;))*">
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="rule">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element ref="name" />
 <xs:element ref="match-criteria" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="name" type="xs:string" />
 <xs:element name="match-criteria">
 <xs:simpleType> <xs:restriction base="xs:string">
 <xs:pattern
 value="((interface|class|superclass|import-package|export-
package|bundle-activator|bundle-category|bundle-name|bundle-symbolicname|bundle-
updatelocation|bundle-vendor|bundle-version)(\s*)(!?)(=|like\s)([^;|^=]+;))*">
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
</xs:schema>

XML Schema definition used for the isolation policy

210

VisualVM plugin used as a control panel of OSGi applications.

211

Project Source Files SLOC

Autonomic Manager

 Autonomic Manager code 42 1802

 Beanshell scripts 5 86

AOP Solution

 Aspects (AspectJ) 8 366

 Dependability Concerns 107 6006

Administration Plugins (VisualVM)

 OSGi platform administration 16 1560

Autonomic Manager

(Knowledge base visualizer) 4 310

TOTAL 182 10130

Source lines of code (SLOC) metrics of the different projects that constitute our approach.

 Object[] o = null;

 while (true) {

 o = new Object[] {o};

 }

Code snippet used for crashing the HotSpot JVM

	ABSTRACT
	Agarwala06
	Ahn06
	Aiken06
	Allamaraju01
	Alonso08
	Alur03
	Alvaro05
	Alves07
	Archives10
	Armstrong03
	Arsanjani04
	Aspire08
	Avižienis85
	Avižienis04
	Bachman00
	Back00
	Barham03
	Bertoa02
	Bhose10
	Binder99
	Bottaro07a
	Bottaro07b
	Bottaro10
	Bourcier07
	Boudreau07
	Brada06
	Brumley10
	Bryce00
	Bruneton04
	Buschmann96
	Buxton69
	CA10a
	CA10b
	CA11
	Candea03
	Candea04a
	Candea04b
	Candea06
	Carzaniga98
	Cervantes03
	Chan03
	Chappel07a
	Chappel07b
	Chen01
	Cheng05
	Cheng08
	Chikofsky90
	Clements96
	Collet07
	Coyle10
	Crnkovic02
	Crnkovic05
	Czajkowski98
	Czajkowski01
	Dai09
	Demeyer02
	Desertot06
	Dijkstra74
	DiNitto08
	Duclos02
	Eder94
	Engel05
	Erl05
	Escoffier06
	Escoffier07
	Fähndrich06
	Ferreira09
	Fielding02
	Filho07
	Fowler99
	Fowler03
	Fox05
	Frei05
	Fritzinger96
	Ganek03
	Gama08a
	Gama08b
	Gama08c
	Gama08d
	Gama09
	Gama09b
	Gama10a
	Gama10b
	Gama11a
	Gama11b
	Gamma95
	Gamma04
	Geoffray09
	Ghosh07
	Goonasekera09
	Gorton06
	Grassi07
	Gray86
	Gray93
	Greenwood04
	Grottke07
	Gruber05
	Gruen04
	Gu04
	Guidec02
	Hall04
	Hanenberg01
	Hanenberg03
	Harauz09
	Heineman01
	Hilsdale04
	Hinchey09
	Hirschfeld08
	Schmidt09
	Huang95a
	Huang95b
	Huebscher08
	Hunt05
	Hunt07
	IBM06
	Irmert08
	IFIP11
	JCP06a
	JCP06b
	JCP07
	JCP09
	Jonge03
	Jordan06
	Kaffe11
	Kalaigamal08
	Kamp00
	Kawachiya07
	Kefalakis08
	Kephart03
	Kephart04
	Keuler08
	Kiczales97
	Kon00
	Kramer90
	Lampson74
	Laprie90
	Laprie96
	Laprie08
	Lau07
	Lehman85
	Lehman96
	Liang98
	Lienhard07
	Lippert00
	Lippert08
	Loyall98
	Martín09
	Matos08
	MDN11
	Menasce02
	Miettinen08
	Dubus06
	Meyer03
	MSDN11a
	MSDN11b
	Montani08
	Moraes06
	Mozilla11
	Mozillazine11
	Müller06
	Nagel10
	Nelson90
	Nierstrasz95
	OASIS07
	Oreizy98a
	Oreizy98b
	Oreizy99
	Oreizy08
	OSGi07
	OSGi09
	OSGi10
	OSGi10b
	OSGi10c
	OSGi11
	OSOA07
	Parhami97
	Parnas94
	Parrend08
	Parrend09
	Papageorgiou08
	Papazoglou03
	Papazoglou08
	Papazoglou11
	Patterson02
	Pham99
	Plasil98
	Randell75
	Rashid03
	Redmond02
	Reinhold08
	Reis09
	Rellermeyer07
	Richardson07
	Rosenberg09
	Rotem06
	Rouvoy09
	Royon06
	Rudametkin10
	Salehie09
	Saltzer75
	Sametinger97
	Saraiva10
	Schmidt03
	Schneider01
	Schroeder71
	Seinturier06a
	Seinturier06
	Seinturier09
	Singh07
	Smedberg09
	Smith05
	Smolka95
	Soares02
	Stutz03
	Spring09
	Sun07
	Sun08
	Szyperski02
	Szyperski03
	Taïani09
	Taylor09
	Thomsen06
	Torrao09
	Touseau08
	Tian05
	Vandewoude07
	Viswanathan11
	Vitek98
	Voas97
	Wahbe93
	Waldo99
	Wang10
	Weiser91
	WenWei08
	Yang02
	Zeigler11
	Ziegler96

