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ABSTRACT 

Software is moving towards evolutionary architectures that are able to easily accommodate 
changes and integrate new functionality. This is important in a wide range of applications, from 
plugin-based end user applications to critical applications with high availability requirements. 
Dynamic component-based platforms allow software to evolve at runtime, by allowing components 
to be loaded, and executed without forcing applications to be restarted. However, the flexibility of 
such mechanism demands applications to cope with errors due to inconsistencies in the update 
process, or due to faulty behavior from components introduced during execution. This is mainly true 
when dealing with third-party components, making it harder to predict the impacts (e.g., runtime 
incompatibilities, application crashes) and to maintain application dependability when integrating 
such third-party code into the application. Components whose origin or quality attributes are 
unknown could be considered as untrustworthy since they can potentially introduce faults to 
applications when combined with other components, even if unintentionally. The quality of 
components is harder to evaluate when components are combined together, especially if it happens 
on-the-fly. We are interested in reducing the impact that can be brought by untrustworthy 
components deployed at runtime and that would potentially compromise application dependability. 

This thesis focuses on applying techniques for moving a step forward towards dependable 
dynamic component-based applications by addressing different dependability attributes namely 
reliability, maintainability and availability. We propose the utilization of strong component isolation 
boundaries, by providing a fault-contained environment for separately running untrustworthy 
components. Our solution combines three approaches: (i) the dynamic isolation of components, 
governed by a runtime reconfigurable policy; (ii) a self-healing component isolation container; and 
(iii) the usage of aspects for separating dependability concerns from functional code. 

Keywords: Dependability, Component-based development, Self-healing, Application isolation, 
Aspect-oriented Programming, Dynamic component-based applications 

 

 

RÉSUMÉ 

Les logiciels s'orientent de plus en plus vers des architectures évolutives, capables de s'adapter 
facilement aux changements et d'intégrer de nouvelles fonctionnalités. Ceci est important pour 
plusieurs classes d'applications qui ont besoin d‘évoluer sans que cela implique d’interrompre leur 
exécution. 

Des plateformes dynamiques à composants autorisent ce type  d'évolution à l'exécution, en 
permettant aux composants d'être chargés et exécutés sans requérir le redémarrage complet de 
l’application en service. Toutefois, la flexibilité d'un tel mécanisme introduit de nouveaux défis qui 
exigent de gérer les possibles erreurs dues à des incohérences dans le processus de mise à jour, ou en 
raison du comportement défectueux de composants survenant pendant l'exécution de l’application. 
Des composants tiers dont l'origine ou la qualité sont inconnus peuvent être considérées a priori 
comme peu fiables, car ils peuvent potentiellement introduire des défauts d'applications lorsqu'il est 
combiné avec d'autres composants. Nous sommes intéressés à la réduction de l'impact de ces 
composants considérés comme non fiables et qui sont susceptibles de compromettre la fiabilité de 
l’application en cours d’exécution. 

Cette thèse porte sur l'application de techniques pour améliorer la fiabilité des applications 
dynamiques à composants. Pour cela, nous proposons l'utilisation des frontières d'isolation pouvant 
fournir du contingentement de fautes. Le composant ainsi isolé ne perturbe pas le reste de 
l’application  quand il est défaillant. Une telle approche peut être vu sous trois perspectives 
présentées: (i)  l'isolement des composants dynamiques, régi par une politique d'exécution 
reconfigurable, (ii)  l'autoréparation de conteneurs d‘isolement, et (iii) l'utilisation des aspects pour 
séparer les préoccupations de fiabilité à partir du code fonctionnel. 

Mots-clés : Fiabilité, Développement basé sur des composants, Autoréparation, Isolation des 
applications, Programmation orientée aspects, Plateforme dynamiques à composants.  
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Chapter 1  
 
Introduction 

“If we knew what it was we were doing, it would not be called 

research, would it? “ 

Albert EINSTEIN 
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1.1 Motivations 

Increasingly, software needs to accommodate new features after being already in use in 
production environments. It requires the ability to evolve at runtime with minimal interruptions 
because of a true need for providing non-stop systems, or simply for avoiding users to be annoyed by 
application restarts [Taylor09].  

Some applications with critical availability requirements (the so-called critical systems 
[Coyle10]) need to be updated with little perceived execution interruption because application 
unavailability would lead to consequences such as loss of business, data, infrastructure, etc. These 
updates may be for different reasons such as changes on business requirements, new functionality 
added or even bug fixes. Non-critical applications may also present requirements for evolving 
software at runtime. For instance, end-user applications such as Web browsers, office application 
suites and mobile applications that need to have the user experience improved with the possibility to 
easily add new functionality (i.e., plugins) without interrupting application usage.  

In domains such as ubiquitous computing [Weiser91], systems and applications must adapt to 
continuously changing contexts in an opportunistic manner. Devices, services, and connectivity may 
appear and disappear at anytime. In such highly dynamic scenarios, applications should be able to 
adapt their behavior autonomously, being ready to handle failures and unavailability, as well as the 
appearance of new services, performing the necessary configurations at runtime [DiNitto08]. 
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All of these requirements lead towards architectures that are able to support runtime software 
evolution [Oreizy98a][Taylor09] by allowing new components to be located, loaded, and executed at 
application runtime, thus accommodating changes and integrating new functionality during 
execution. However, the ability to introduce components during application execution without 
application disruption or without introducing any errors is a challenging task. Besides the potential 
problems (e.g., dependency resolution errors, type incompatibilities, interruption of ongoing 
operations) of the runtime update process, there is also the possibility of introducing components 
with faults that can be activated later during execution. 

Components are typically tested individually with unit testing, and as a group by means of 
integration testing. It is not easy to detect in advance all the incompatibilities or application errors 
that may arise when (and after) introducing a component into a running system. Nevertheless, 
preventing the occurrence of such problems is fundamental in component-based development. If a 
component fails during execution, the whole composition that depends on it could fail, and 
depending on the failure, the whole application may also be taken down. 

If the components involved in a composition are known ahead of application execution, formal 
methods used in static code analysis can be effective ways for testing and detecting errors. Indeed, 
there are drawbacks such as the size of software that such approaches are able to analyze (i.e., state 
explosions in larger software analysis) and the limited amount of people that master these techniques, 
which are not trivial. However, if components are not known ahead of execution, the task of 
integration testing becomes more difficult. Combinatorial explosions may be faced if we try to predict 
combinations by validating a component against all possible system configurations [Szyperski02]. 
This is something very difficult to achieve in an open Commercial Off-The-Shelf (COTS) components 
market where new components are periodically released. Possible combinations still grow if other 
components can still be integrated after deployment of the system. 

When combining COTS components together, there is no straightforward way to tell if the 
resultant composition is strong or if the quality attributes of the original components are preserved. 
Even if two components are individually reliable, there is no guarantee that when combined together 
they will still present that characteristic [Crnkovic02]. The usage of COTS components “as-is” has 
lead to more error-prone and less dependable applications [Fox05]. A recovery-oriented approach 
must be considered to cope with faults (instead of avoiding them) in order to achieve dependability, a 
concept that involves attributes such as maintainability, availability, reliability, among others. By 
acknowledging that hardware fails, that software has bugs and that human operators make mistakes, 
recovery-oriented computing tries to reduce application recovery time (maintainability) thus 
increasing availability (directly influenced by maintainability), and consequently dependability 
which involves such attributes.  

Fault tolerance and containment are useful for systems that may face unanticipated events at 
runtime that are difficult or impossible to test during development [Tian05]. By establishing barriers 
for containment, we can minimize component failure impact in the application. If a new component 
deployed into the system introduces a problem, it is desired that the application does not stop 
working. Components can be used as units of failure and replacement, giving the impression of 
having instantaneous repair [Gray86]. Therefore, with a tiny mean time to repair (MTTR) the failure 
can be perceived as a delay instead of a failure.   

By taking all of these considerations into account, we want to enable the execution of 
untrustworthy (but not necessarily malicious) third-party code without compromising application 
stability. An application’s core functionality must be separated from untrustworthy third-party code. 
Code of poor quality or not exhaustively tested, resource consuming code, and component 
incompatibilities, among others reasons, may bring a program down or significantly degrade 
application performance and responsiveness. It is important to provide mechanisms that can avoid 
the propagation of faults from one component to another (either untrustworthy or not), so the system 
can still execute even if one of its components crash. The identification of the faulty component is also 
an important issue that concerns liability (i.e., who is responsible for causing the fault). In the same 
way, it is also important to automatically react to possible faults and reestablish normal system 
behavior and execution upon component faults. 
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1.2 Objectives 

The general goal of this thesis is to provide mechanisms that can make dynamic component-
based applications more dependable. We want to minimize some of the impacts that runtime updates 
may introduce, especially those related to executing untrustworthy components. We propose distinct 
approaches that combined together can lead us towards the construction of more dependable 
applications in dynamic component-based platforms:  

i. The dynamic isolation of components, governed by a runtime reconfigurable policy  

ii. A self-healing component isolation container  

iii. The clear separation of dependability concerns from functional code 

We want to be able to dynamically isolate untrustworthy components from the rest of the 
application, with the ability to monitor the component behavior at runtime and after the appropriate 
evaluation, be able to promote it to be executed in the same environment as the other components. In 
case of internal failure of a component, its component container must be able to reestablish execution 
automatically as well as identifying and recovering from abnormal behavior. All of the infrastructure 
that enables such mechanisms should be separated from the component platform code. It should be 
configurable to a level that, for instance, allows the isolation solution to be used without the 
monitoring or the recovery mechanism.  

In order to reach our objectives, we utilize strong component isolation boundaries that provide 
fault-contained boundaries for separately running untrustworthy components. A failure inside the 
container is not propagated to the rest of the application. If necessary, the container can be purged 
from memory without disruption of the application. The isolated containers have a self-healing 
capability, that is, they are able to detect when they present abnormal behavior and are capable of 
automatically restore themselves to correct execution.  

We propose the separation of the dependability concerns to be implemented by means of 
aspect-oriented programming (AOP). By using AOP, such crosscutting concerns can be maintained 
outside the target application code, being kept in modular units called aspects. A secondary 
proposition of our work consists of an aspect-oriented reengineering pattern that helps using aspects 
for abstracting software layers and enabling more semantics in aspects reuse. 

As a high-level objective, we want to raise a discussion on what characteristics would have to 
be changed, as well as what features would have to be added, in order to reach these objectives. By 
doing so, we can do an actual move towards more dependable dynamic component-based platforms 
and consequently more dependable applications. 

1.3 What this Thesis is not about 

Being clear about the objectives in the previous section, this section clarifies some points 
concerning what this thesis is not about; therefore we can avoid expectations as well as confusions 
that may rise during the reading: 

 The work performed in this thesis is of pragmatic nature. This thesis does not present 
formal or theoretical validation on fault tolerance, dependability or other domains. 

 Although we have developed a custom protocol for transparent communication between 
isolated platforms, we do not claim it as a part of the thesis contributions.  

 An aspect-oriented reengineering pattern is among our propositions, and it is based on 
existing language abstractions. We do not propose or create any new aspect-oriented 
construct. 

 The resulting prototype is not a production framework. It is experimental work. We 
patched and changed existing implementations of a component platform used in software 
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industry, but our proof of concept was not constrained to keep compliance with that 
platform’s specification. The behavior of certain actions when using our approach does 
not completely mimic the behavior expected by the original platform specification.  

1.4 Diagrams Notation 

As the adage says, “a picture is worth a thousand words”, we have used several diagrams for 
conveying our ideas even though the diagrams alone may sometimes be not enough, thus needing 
some auxiliary text for clarification. The UML 2 notation was used in most of the diagrams, while 
some of them (the ones with gradients and shades) do not necessarily follow any norm but sometimes 
are loosely based on UML 2 elements.  

Diagrams like the component and communication diagrams are far from being the most 
popular types of UML diagrams, as opposed to the class and sequence diagrams that were also used. 
If needed, as a quick reference, the reader may want to use Scott Ambler’s Agile Modeling Website1, 
or the UML 2 distilled book [Fowler03]. The official UML specifications can be found in its website2. 

1.5 Document Structure 

The remainder of this document has four parts. This chapter section presents an overview in 
each of them, and gives some hints to the readers that want to focus their reading in the key parts of 
this thesis. The first one comprises the state of the art and includes basic concepts and terminology 
used throughout this manuscript, as well as related approaches. It is divided into three chapters: 

 Chapter 2 presents concepts around software dependability, including software fault-
tolerance and system recovery. The sections that focus on techniques used in our 
approach are concentrated on sections 2.1.2 and 2.3. 

 Chapter 3 concerns an overview of application isolation techniques (classified as 
hardware-enforced and software-based) and provides a section dedicated to isolation in 
the Java platform. For those that want to skim over the chapter it is suggested to give 
special attention to section 3.4. 

 Chapter 4 focuses on isolation techniques applied to components. Some modular 
paradigms are presented before getting into detail on a non-exhaustive list of component 
technologies that provide means of isolation. For readers who are familiar with the 
paradigms presented and may want to skip section 4.2, it may be interesting to see the 
isolation perspective on each of the presented paradigms. Section 4.3 is more technology 
specific, with its last subsection presenting research efforts that are closely related with the 
approach proposed here. For readers that are not familiar with OSGi technology (used in 
the implementation and validation), we suggest them to carefully read the introductory 
part of section 4.3.6, which introduces some OSGi “jargons” and common terms around 
that will be used in this manuscript. 

The second part of the manuscript presents our proposed approach target it is divided into two 
chapters: 

 Chapter 5 contains the proposed approach itself. We suggest the complete reading of the 
chapter, but a reader focusing only on section 5.2 would be able to grasp the concepts of 
the proposed design. 

 Chapter 6 explains the motivations for choosing the target platform used for validation. 

                                                 
 
1 http://www.agilemodeling.com 
2 http://www.omg.org/spec/UML/2.0/ 

http://www.agilemodeling.com/
http://www.omg.org/spec/UML/2.0/
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The third part concentrates on the implementation and, inevitably, some sections gets into 
much more technical details concerning the changes performed in the component platform that was 
used.  However, for the sake of brevity details considered irrelevant for the comprehension of the 
approach had to be left out of this manuscript. 

 Chapter 7 concentrates on the isolation approach, providing architectural details of the 
isolation containers, implementation details concerning the isolation policy, IPC and 
changes that were performed on the target component platform. Technical details are also 
provided about details on the implementation differences involved in the two isolation 
container approaches that were used, namely domain-based and process-based. 

 Chapter 8 presents the autonomic approach for providing a self-healing capability to the 
isolation container. It shows how this solution is placed on top of the isolation approach 
and how the fault detection and recovery mechanisms were employed. Section 8.6 gets 
into a general discussion on the limitations of monitoring mechanisms in component-
based platforms. 

 Chapter 9 shows how we kept the dependability concerns separated from the component 
platform code by means of aspect-oriented programming. This chapter also presents a 
serendipitous finding concerning a reengineering pattern that we documented for using 
aspects to capture layered design and provide more semantics to aspects reuse. Readers 
already acquainted with AOP may want to skip sections 9.1 and 9.2, but we encourage 
them to rather read section 9.1 and skim over section 9.2. 

The fourth and last part concerns the experiments used to validate our approach and the 
conclusions drawn from our work. 

 Chapter 10 deals with the experiments that validate of our approach. We describe the 
consulting services done with a Grenoble start up company that needed counseling in 
application isolation, followed by detail about the experiments that we have performed in 
the context of the Aspire FP7 project. 

 Chapter 11 draws conclusions and envisions perspectives for future advances on this 
topic. 
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Chapter 2  
 
Software Dependability 

“A refund for defective software might be nice, except it would 

bankrupt the entire software industry in the first year” 

Andrew S. TANEMBAUM 
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The concepts behind dependable computing are related to the idea of providing systems in 
which we can depend on. Effective mechanisms for handling and recovering from faults are of major 
importance to achieve that. Different requirements on today’s software are conducting us to 
environments where changes are more frequent, and required to be performed during application 
execution. The dependability concept has evolved to a broader idea, called resilience, which is related 
to the ability to correctly accommodate such continuous changes without affecting dependability. 
This chapter provides basic concepts around dependability and resilience, as well as other related 
principles that concern some widely used fault-tolerant mechanisms for automatic recovery and 
handling of faults. The purpose of this chapter is not to provide an exhaustive list of dependability 
concepts, but rather to give an overview of the most important concepts in that domain that were 
used in the work of this thesis. 
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2.1 Dependability 

Although they do not exactly share the same definition, different terms such as high 
confidence, survivability, and trustworthiness, are used to qualify systems that are robust, resistant to 
faults and that allows users to trust that it will always work as expected. Dependability is an umbrella 
term that encompasses such correlated concepts for describing systems that we can depend on. The 
Working Group on Dependable Computing and Fault Tolerance, of the International Federation for 
Information Processing, defines dependability as: 

“the trustworthiness of a computing system which allows reliance to be 
justifiably placed on the service it delivers.” 

[IFIP11] 

 Based on different sources, an attempt to document a consensus on several concepts around 
dependable computing provides another definition of dependability: 

“the ability to avoid service failures that are more frequent and more severe 
than is acceptable.” 

[Avižienis04] 

In the context of this definition, the service delivered by a system concerns its behavior as it is 
perceived by its user(s), which could be also another system. The failure occurs when a delivered 
service deviates from correct service state. Still in [Avižienis04], we can find the definition of failure to 
be causally related with error and fault which are all three considered as threats to dependability. 
Figure 2.1 illustrates that causal relation, where a fault may lead to an error, which may itself lead to a 
failure. A failure occurs when the delivered service deviates from correct service such deviation is 
called an error. The hypothesized cause of a deviation is called a fault. An illustrative example is given 
in [Laprie96] concerning a programming error (in the sense of a mistake) that is a dormant fault in the 
software. When executing the faulty instruction, the fault is activated and an error generated. A 
service failure occurs if the erroneous data produced affects delivered service. 

   
Figure 2.1 The threats to dependability, illustrated with their causal relationship 

The occurrence of a fault does not necessarily mean that an error is triggered, and, likewise, an 
error not always causes failures. A fault that is not active is said to be dormant. A fault may also be 
active but not cause any error. An error that is not detected (e.g., error signal, error message) is called 
a latent error. In order to produce a service failure, the error must reach and alter the system’s external 
state in order to interfere in correct service being delivered.  

Other models around the concept of fault exist, such as the one from [Parhami97] as presented 
in Figure 2.2. It provides a more detailed view of the transition from an ideal (i.e. correct service) to a 
failed stated. However in what was called reliability multi-level model, we find slight differences 
from the model used by [Avižienis04] that end up as similarities. In this case defects can be seen as a 
specific case of faults, while a malfunction is a term used for failure.  

FAULT ERROR FAILURE
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Figure 2.2.  State transitions in a reliability multi-level model 

2.1.1 Dependability Attributes 

According to [Avižienis04], the dependability concept encompasses a set of attributes: 
availability, reliability, safety, integrity, maintainability and confidentiality. The latter is taken into 
account when addressing security (confidentiality, integrity and availability) in addition to 
dependability. The definitions of these attributes are as follows: 

 Availability: the readiness for correct service. 

 Reliability: continuity of correct service. It concerns the continuity of service without 
having any failure. 

 Safety: absence of catastrophic consequences on users and environments. It concerns the 
handling of possible hazards (e.g. endangered lives) that can be brought by application 
usage. 

 Integrity: absence of improper ― or unauthorized if we take security into account ― 
system alterations (e.g. corrupted data). 

 Maintainability: ability to undergo modifications. 

 Confidentiality: the absence of unauthorized disclosure of information. 

Some of these attributes (reliability, availability and maintainability) can be measured while 
others are rather of subjective evaluation. [Pham99] mentions reliability as a property coupled to the 
concept of mean time to failure (MTTF), which is the expected failure time where a component or a 
system is expected to perform with success. In other words, reliability can be seen as an average that 
says how long the system will take to fail. Maintainability is the probability of isolating and repairing 
a fault in a system within a period of time, being related to the concept of mean time to repair (MTTR) 
or the mean downtime. This may involve preventive or corrective maintenance, or could also go 
beyond that involving adaptive maintenance performed automatically by the system [Avižienis04].  

 
Figure 2.3. Illustration of MTTR and MTTF over time 

 When dealing with MTTR, we are talking about a repairable system, which can have its 
availability (A) measured (Non-repairable systems actually have their reliability equals to their 
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availability [Pham99]). Availability can be said to be the probability of calling a system service and 
having it ready to answer. The availability is the MTTF divided by the sum of MTTF and MTTR: 

 

In addition to the availability, systems that are repairable can have the additional measure of 
mean time between failures (MTBF), which is often and incorrectly substituted by MTTF [Pham99]. 
Therefore, the MTBF is the sum of MTTF and MTTR: 

 

Availability is an attribute constantly measured in critical systems (e.g., mission-critical, 
business-critical). It is presented in the form of a percentage of time over the year. The ideal 
availability is 100% (i.e. a system that is always available) but it is usually classified how close they 
get to 100% in terms of “nines”. A system with 5 nines of availability means that it has a measured 
availability of 99.999%, as illustrated in Table 2.1, taken from [Gray93]. Under that classification, for 
instance, a system to be considered well-managed has 3 nines of availability which means an average 
of 526 minutes (8.75 hours) of downtime in a year. 

 

Class System type Availability  
Unavailability 
(min/year) 

1 Unmanaged 90% 52560 

2 Managed 99 5256 

3 Well-managed 99.9 526  

4 Fault-tolerant 99.99 52 

5 High-availability 99.999 5 

6 Very-high-availability 99.9999 0.5 

7 Ultra-high-availability 99.99999 0.05 

Table 2.1. System classes and types according to their availability in terms of “nines” 

2.1.2 Software Fault Tolerance 

Although there exists formal techniques that can help to significantly reduce the occurrence of 
software faults, we are not yet able to guarantee that software will be free of faults during its 
execution. As already stated decades ago by Dijkstra [Buxton69], testing shows the presence, not the 
absence of bugs. In fact, systems should prevent failures from happening by breaking the causal 
relations between faults and the resulting failures [Tian05]. Fault tolerance is considered in 
[Avižienis04] as a means to attain dependability. It is aimed to use error detection and system 
recovery to cope with faults, in order to avoid failures. Such recovery process consists of bringing the 
system back to normal operation in the case of faults. This section focuses on fault tolerance specific 
to software, rather than hardware related fault tolerance. The next subsections briefly introduces the 
concept of soft fail and the types of software faults in regards to their determinism, followed by a 
subsection on general software fault tolerance techniques based on design diversity. 

Types of Software Faults 

While the term hard fail concerns permanent hardware failures when a device or part of it 
ceases to function, the term soft fail, which is also called soft error, refers to a spontaneous error or 
change that changes (i.e., corrupts) data which cannot be reproduced.  Such errors are caused mostly 
by electronic noise, but also in rarer situations can be even caused by energetic nuclear particles that 
can be originated either by natural decay of atoms in hardware material or, although it may sound 
like science fiction, by galactic cosmic rays that constantly bombard the Earth, as pointed out in 
research performed by IBM [Ziegler96]. 

MTTF
A

MTTF MTTR

MTBF MTTF MTTR
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Gray [Gray86] uses the terms Heisenbugs and Bohrbugs for characterizing different types of 
software faults. Heisenbugs (named after the Heisenberg Uncertainty Principle in Physics) are the 
type of fault that has a transient nature, and when one is trying to see what is incorrect the problem 
goes away. This type of fault is typically originated in limited conditions, such as a race condition or 
even due to a soft fail. Debugging or tracing will cause the environment to slightly differ and the 
conditions that led to the fault will no longer take place. 

Differently, Bohrbugs (named after the Bohr atom, due its simple model) are solid bugs that 
will always cause the same error under the same circumstances. This sort of fault is easily detected by 
standard techniques. While attempts to debug a Heisenbug, or even a simple application reset, would 
make the fault disappear, a Bohrbug will remain in the system until it is fixed. Since Bohrbugs have a 
more consistent behavior, they are easier to be identified during the development and testing phases. 
Therefore, applications tend to present [Gray86] more Heisenbugs than Borhbugs. Although other 
literature [Grottke07] presents the concept of Mandelbugs as a more general type of bug that 
encompasses Heisenbugs. Mandelbugs as being considered chaotic and hard to be reproduced, are 
rather of non-deterministic nature. Throughout this manuscript, for the sake of clarity we will rather 
use a generalized perspective of these abnormal behaviors, by considering them as either deterministic 
or non-deterministic. 

Fault Models 

A fault model [Binder99] works as a hypothetical predictor of faults by explicitly specifying the 
potential sources of error. It is important to ensure that the fault-tolerant behavior is met, being useful 
while developing fault-tolerant strategies. It helps to predict the abnormal behavior from which the 
system needs to provide recovery techniques. Fault models are mainly used for guiding the testing 
strategies since it helps to build tests that target specific scenarios. 

Two general categories are considered in [Binder99]: specific and non-specific fault models. A 
specific fault model uses a fault-directed testing strategy that seeks to reveal faults. In this case, they 
need to be designed in a fault efficient way, so they can have a high probability of revealing a fault. A 
non-specific fault model involves conformance-directed testing, which targets the conformance of 
requirements and specifications. The details of the implementation faults are not very relevant in this 
category, which rather needs a test suite that is sufficiently representative of the system requirements 
instead of a fault-specific testing approach. 

Because specific fault models are fault-oriented, they need to have a high probability of 
revealing faults. When creating such category of a fault model, one should think of bug hazards, which 
concern a potential risk that increases the chances of a bug. Fault models are based on assumptions of 
the these bug hazards, that should be based on convincing arguments or strong evidence that a 
particular type of fault specified in the model has a good chance of being found. These assumptions 
are based on error-guessing and suspicions. The former relies on developer knowledge, imagining what 
could go wrong (e.g., type coercion is a potential source of errors in C++). The latter assumption is 
based on common-sense inference (e.g., a novice programmer is more likely to produce faults). 

Fault-tolerant Techniques 

Fault-tolerance in hardware is typically implemented by means of strict replication of 
components. Replicated elements can work in a consensus approach where each component 
processes the same instructions and a voter chooses the correct value. This allows to be sure of the 
correct value that is expected and also allows identifying faulty components where the results deviate 
from the other components. Redundancy is another form of replication, where a failed component is 
switched by a replica.  

In software fault tolerance, Tian [Tian05] distinguishes the techniques between duplication and 
backup, which are respectively equivalent to the two techniques previously presented. In duplication 
multiple programs run in parallel using some kind of consensus while backup implies a primary 
program that is replaced by an equivalent one in case of faults. In general such techniques for 
software fault tolerance rather employ a different type of redundancy based on design diversity 
[Laprie90]. In this approach, two or more software variants are compared. These variants are 
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produced from a common service specification therefore they perform the same tasks. However, since 
they have different design they would not share similar failure modes. In a diversified design we find 
at least, two software variants of the element (e.g., a system, a subsystem) that needs fault tolerance, 
and a decider which monitors the result of the variants’ execution. The three most known techniques 
of design diversity are N-version programming [Avižienis85], recovery blocks [Randell75] and N self-
checking programming [Laprie90], which are detailed next: 

 N-version programming: This technique is equivalent to the N-Modular redundancy 
(NMR) technique used in hardware fault tolerance. In the case of NVP, N different 
implementations of the same system module are used. Each variant realizes the same task 
in a different way, and sends its answer to a voter (i.e., a decider) which analyzes all the 
answers and determines which one is correct. In NMR we should always use N as an odd 
number. For example, if we have 3 modules doing the same task and the result of one of 
differs from the rest, the voter can be sure that the module producing the different value is 
faulty, and thus use the value that was produced by the other two modules. The main 
conjecture in NVP is that the independence of programming efforts for developing each of 
the functionally equivalent systems greatly reduces the probability of identical software 
faults in different systems.  

 
Figure 2.4. Illustration of the N-version programming technique 

 Recovery blocks: A stand-by sparing approach is used in this technique, based on a similar 
approach from hardware fault tolerance.  A recovery block is a system block (e.g., a 
module, a procedure) with an acceptance test that works as a means of error detection. The 
primary block also contains one or more stand-by spares called alternates (i.e. variants).  
Instead of using a parallel approach like in NVP, the recovery blocks technique is rather 
linear.  If an alternate does not pass the acceptance test and a further alternate exists, it is 
entered. If the test is passed, the subsequent alternates are ignored, and the execution 
continues. But in the case the last alternate fails, the recovery block fails. In all cases, before 
entering any alternate, the recovery block saves the current state in a checkpoint so a 
rollback can be performed if the alternate’s execution fails. 

 
Figure 2.5. Structure of the recovery blocks technique 
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 N self-checking programming:  In this technique the self-checking component itself is 
responsible for determining whether its result is acceptable. At least two self-checking 
components are necessary to be in parallel execution. A self-checking component is able to 
check its own dynamic behavior during execution, and it consists of either a variant with 
an acceptance test (the lower part of Figure 2.6, similar to a recovery block) or two variants 
with a comparison algorithm (the upper part of Figure 2.6, resembling the technique of N-
version programming). In N self-checking programming, at each execution one acting 
component serves the application, while the other components remain idle, as if they were 
hot spares. If the serving component fails, a spare starts to deliver service. If a spare fails, 
the acting component continues delivering service.   

 

 
Figure 2.6. Two styles of N Self-checking programming 

Design diversity has proven to be effective in domains such as avionics and railway systems 
[Laprie90]. However, this type of technique entails higher costs of development when it involves 
different pieces of software, implying more development and testing time. The usage of such 
techniques may depend on the requirements of the application. The definition of dependability is 
subjective, since it talks about “…service failures that are more frequent and more severe than is 
acceptable”. Also, what dependability attributes are the most important according to the system’s 
requirements? Indeed, in the above example of avionics and railway systems the safety requirement 
is essential since lives may be endangered in the case of faults in the system. However, a web server 
with high availability requirements may employ less expensive fault-tolerant techniques like simple 
replication of components, instead of a design diversity choice. Therefore, an analysis of the 
dependability related non-functional requirements of the system are crucial for defining which fault-
tolerant techniques should be employed to develop a dependable system. 
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Fault Containment 

Another technique tolerating faults, not necessarily involving redundant mechanisms, is the 
isolation of the faulty element. By establishing barriers between the system and the environment, it is 
possible to reduce the severity of failures [Tian05]. Fault containment is seen as a strategy for fault 
tolerance, by preventing error propagation across defined system boundaries [Nelson90].. Errors 
must be confined to the module which they were originated in order to protect critical resources and 
to minimize recovery time. 

2.2 Software Resilience 

The term resilience has been used in dependable computing as a synonym of fault tolerance 
[Laprie08].  However, in other fields like psychology, ecology or business administration the notion 
of resilience is related to the capacity of accommodating unforeseen changes. The definition given to 
resilience in the context of dependable computing is: 

 “The persistence of the avoidance of failures that are unacceptably frequent 
or severe, when facing changes.”   

[Laprie08] 

It presents a complementary definition to that of dependability. However, resilience can be 
seen a sort of scalable dependability, where the goal is continuous dependability when facing 
changes.  This need for resilience is a growing requirement of today’s applications that increasingly 
need to run non-stop. Eventually, such applications need to be fixed to accommodate new features or 
introduce changes in its current behavior.  This ability to successfully accommodate changes is 
referred in [Laprie08] as the evolvability property of a system and it is crucial for systems that have to 
be resilient.  

Self-adaptive software is able to provide such desired evolvability, since it is a capable of 
modifying its own behavior when facing changes in its environment [Oreizy99]. A system can be 
closed-adapted, where the predefined adaptive behavior is embedded in the system. In this case the 
system has a limited number of adaptations and does not allow new behaviors to be introduced at 
runtime. Systems that permit such runtime flexibility, where new adaptation plans can be added 
during execution are said to be open-adapted. [Taylor09] refers to runtime software evolution (RSE), as 
an alternative term to dynamic adaptation, which constitutes the ability of a software system’s 
functionality to be changed during runtime, without requiring a system reload or restart.  

The current trend of ubiquitous computing and critical applications with high availability 
requirements lead to ever changing scenarios where applications need to constantly adapt. 
Dependability is always necessary in such contexts, but upon eventual adaptations systems must 
ensure that they continue to be dependable. Therefore, resilience can be seen today as the ultimate 
objective of dependable applications that take adaptivity into account. 

2.3 System Recovery 

The recovery mechanisms of typical fault-tolerant techniques employ redundancy. By using 
such approach, when a component fails, a backup component or procedure can replace the failed 
component providing the correct computations without losing service. However, in the case of a 
failure due to external factors (e.g., hardware) that are not covered by the employed fault-tolerant 
mechanisms, the system may enter an inconsistent or unstable state. There is also a need for 
mechanisms that can restore system to its normal state. Recovery-oriented approaches try to tackle 
such issues by providing mechanisms that deal with a post-fault (or even post-failure) scenario. The 
next subsections provide an overview of two major techniques for handling those issues: self-healing 
systems and recovery-oriented computing. 
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2.3.1 Self-healing Systems 

With systems becoming more and more complex, different research communities in computer 
science have concentrated on approaches that can minimize human intervention for system 
maintenance. One of the motivations to attain is a reduction of costs concerning installation, 
configuration, tuning up and maintenance of software applications. Self-adaptation or self-adaptive 
systems [Oreizy99] is perhaps a more general term systems to denote systems employing 
autonomous mechanisms that generally do not involve direct human decision. We can find many 
related techniques usually under the self-* (“self star”) flag for grouping them together (e.g., self-
adaptation, self-configuration, etc).  

There are three major types of conditions enumerated in [Cheng05]to identify when systems 
would need to employ self-adaptation mechanisms:  system errors, changes in the target system 
environment and changes in user preferences. Targeting the first scenario we can find self-healing 
systems, which are those that are able to detect when they are not operating correctly and 
automatically perform the necessary adjustments to restore themselves [Ghosh07]. As stated before, 
the objective is to have no human intervention but if this is not the case, we can say that the system 
has assisted self-healing. In [Ghosh07], the authors observe that while some scholars consider self-
healing systems as an independent research branch, others include it as a subclass of fault-tolerant 
systems. 

The implementation of a self-healing system may follow different architectural schemes, 
having several possibilities to be implemented [Ghosh07]. But in general, such systems must be able 
to recover from a failed component by detecting and isolating it, taking it off line, fixing or isolating 
it, and reintroducing the fixed or replacement component into service without any apparent 
application disruption [Ganek03]. 

Autonomic Computing 

Following the self-* trend targeting adaptive mechanisms and less maintenance costs, a new 
research initiative called autonomic computing was started by IBM in the 2000’s. The term was coined 
inspired by the autonomic nervous system, for describing systems that are self-manageable. 
According to IBM’s vision [Kephart03], self-healing is one of the four main aspects of autonomic-
computing, which also include self-configuration, self-optimization and self-protection. Their 
definitions are as follows: 

 Self-healing. Automatic detection, diagnosis and repair of software and hardware problems. 

 Self-configuration. Based on high-level policies, the system transparently reacts to internal or 
external events and adjusts its own configuration automatically.  

 Self-optimization. The system is able to improve continuously its performance. 

 Self-protection. Automatic anticipation and reaction of system wide failures due to malicious 
attacks or cascading failures which were not self-healed. 

Self-healing is just one of the four characteristics that are desired in autonomic computing. 
Although that property may have overlapping objectives with self-protection, there may be systems 
with autonomic computing principles that do not provide all four characteristics.  

Autonomic Managers. Under the design proposed by IBM, these characteristics can be realized with 
the help of one or more autonomic managers. An autonomic manager is implemented using an 
intelligent control loop, based on feedback control theory. A managed element or managed resource 
consists of hardware (e.g., a processor, an electronic device) or software (e.g., a component, a 
subsystem, a remote service). A managed element exposes manageability endpoints (also known as 
touchpoints) which provide sensors and effectors [Kephart03]. The sensors provide data (e.g., memory 
consumption, current load) from the element and the effectors allow performing operations such as 
reconfiguring. An autonomic element consists of one or more managed elements controlled by an 
autonomic manager that accesses the managed elements via their touchpoints. 
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Policies. In order to perform the adaptations upon state changes, an autonomic system needs to put 
some mechanism in practice for doing that without user intervention. At least three types of policies 
are useful for autonomic computing in that sense, according to Kephart [Kephart04]: action policies, 
goal policies and utility functions. Action policies specify what to do when the system enters a given 
state. This is usually found as a policy that define several directives in the form of IF(Condition) 
THEN(Action). Goal policies and utility functions provide more indirection by providing a higher 
level approach. When the system enters a state, a goal policy defines what is the next desired state or 
the set of desired states. A utility function uses a goal function to associate each state with a 
numerical value, rather than classifying the different states between desired/undesired or 
acceptable/unacceptable. This numerical value is the degree of optimality of the state concerned. The 
higher the value, the greater the corresponding state of optimal functioning.  

MAPE-K Control Loop 

Control loops, taken from control theory and control engineering, are important elements for 
building self-adaptive systems. They allow automated reasoning which involves a feedback loop with 
four key activities: collect, analyze, decide, and act [Cheng08]. IBM proposes a MAPE-K (Monitor, 
Analyze, Plan, Execute, Knowledge) control loop model (Figure 2.7) for constructing autonomic 
managers. Their model is used as a one of the main references for autonomic control loops. Basically, 
the control loop monitors data (e.g., the inspection of system performance or current state) from a 
managed element; interprets them verifying if any changes need to be made; if it is the case, the 
action needed is planned and executed by accessing the managed element’s effectors. Knowledge is a 
representation of live system information (e.g., an architectural model, reified entities) that may be 
used and updated by any of the MAPE components, thus influencing decision taking.   

 
Figure 2.7 A control loop (a) and the MAPE-K loop proposed by IBM for autonomic elements (b) 

An autonomic manager can also have just portions of its control loop to be automated 
[IBM06][IBM06]. Functionalities that are potentially automated could also be under manual 
supervision (e.g., decision taking upon certain events) of IT professionals. The administrators are also 
responsible for configuration, which can ideally [Huebscher08] be done by means of high-level goals, 
which are usually expressed by means of event-condition-action (ECA) policies, goal policies or 
utility function policies. 

2.3.2 Recovery-Oriented Computing 

The Recovery-Oriented Computing (ROC) research project3, conducted by Stanford University 
and the University of Berkeley, employs principles that are similar to those of self-healing for 
improving system dependability of Internet services. Under the perspective of ROC [Patterson02], 

                                                 
 
3 http://roc.cs.berkeley.edu/ 
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errors originated from people, hardware or software are considered as something that will eventually 
happen during application execution and no matter what was the error’s cause; an application must 
recover from such errors. By acknowledging that hardware fails, that software has bugs and that 
human operators make mistakes, the ROC effort aims to enhance applications dependability by 
reducing application recovery time (maintainability) thus increasing availability (directly influenced 
by maintainability) [Fox05].  

[Avižienis04] points out ROC as a fault tolerance approach to achieve overall system 
dependability. However, as its idealizers emphasize, the purpose of ROC is dealing with failure 
instead of trying not to fail.  While typical research efforts try to avoid applications from failing, that 
is, they concentrate on increasing MTTF, ROC focuses on reducing MTTR with automated recovery 
mechanisms, avoiding the delays when human intervention is necessary. In the equation of 
availability (MTTR/MTTF) having a small value for MTTR or a big value for MTTF provides a 
similar result.  

Process Aging and Rejuvenation 

The term software aging has been used by Parnas [Parnas94] to describe software that becomes 
obsolete due to lack of modifications or software that becomes complex and with a compromised 
performance because of a bad management on changes.  In a sense more appropriate the context of 
ROC, software aging is also referred by [Huang95b] as process aging, which is the result of 
performance degradation or complete failure after software systems executing for a long time (e.g. 
hours, days). 

ROC employs techniques that are related to Software Rejuvenation [Huang95b], which is a cost 
effective solution to avoid unanticipated software failures related with process aging. In order to 
prevent application failures from happening due to process aging, software rejuvenation works as a 
sort of pre-emptive rollback mechanism. It introduces proactive repairs that can be carried at the 
discretion of the user (e.g., when few or no users are connected to the application). The mechanism 
consists of gracefully terminating an application when it is idle, and immediately restarting it at a 
clean internal state. However, it is important to keep the application’s permanent state before 
terminating it. The goal is to clean up only inconsistent state resulted from non-deterministic faults 
without losing the correct application state, a principle that is also followed in ROC. 

General Design Principles 

According to the principles of ROC, software has to be developed taking into account that it 
will eventually fail, and it should facilitate its recovery. Some design principles are proposed in ROC: 

 Recovery experiments to test repair mechanisms 

 Diagnosing the causes of errors in live systems;  

 Partitioning to fault containment and fast recovery from faults  

 Reversible systems to handle undo and provide a safety margin;  

 Defense in depth in case the first line of defense does not contain an error;  

 Redundancy to survive faults and failing fast to reduce MTTR. 

ROC introduces the concept of crash-only software [Candea03], which advocates that crash-
only programs should be able to crash safely so they can recover quickly. It suggests the usage of fine 
grained components (crash-only components), state segregation, decoupling between components, 
retryable requests and leases. An important idea to retain is that this design admits that most failures 
are originated from non-deterministic faults and can be recovered by reboots. Therefore every 
suspicious component is “microrebooted”. By employing such technique, components will be 
rebooted before the system fails.  Also, by developing crash-only components the recovery process 
becomes very cheap. Being a technique that is fundamental to the work we present in this thesis, 
microreboots are describe with more detail in the next section.  
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Microreboots 

Systems that run continuously for a long time tend to present performance degradation as well 
as an increase in failure occurrence rate [Grottke07].  Normally, hard to identify faults could be 
caused by diverse sources that are difficult to track such as race conditions, resource leaks or 
intermittent hardware errors. In such cases reboots are the only solution for reestablishing correct 
application execution and bring the system back to an acceptable state [Candea2007]. Several studies 
suggest that many failures can be recovered by rebooting, even when their cause is not known 
[Candea04a]. In [Huang95b], the authors show evidence that a significant amount of software errors 
are a consequence of peak conditions in workload, exception handling and timing. Such errors 
typically disappear upon software re-execution after clean-up and re-initialization. These are typical 
examples of non-deterministic faults, which we often face in our day-to-day experience as users of 
desktop and server applications as well as embedded systems.  If we take the example of embedded 
systems of ordinary devices (e.g., portable phones, ADSL modems), in the presence of unattended 
behavior (e.g. unresponsiveness, freezing) the common user reaction to that is rebooting the device. 
After the restart is complete the device’s behavior comes back to normality.  

Techniques such as Software Rejuvenation may be employed to avoid such scenarios in 
continuously running software that starts to degrade. However, while the software rejuvenation 
approach is of preventive nature, ROC proposes a mechanism that can act in a corrective way (after 
failing) as well as in a preventive way (before failing) like that other strategy. A practical recovery 
technique called Microreboot [Candea04a] [Candea06] for the individual reboot of fine-grained 
components, achieves benefits similar to full application restarts but at much lower costs. Such 
approach increases application availability, because only one part of the application is restarted while 
the rest of the application is still executing.  By employing this approach on individual components, 
one introduces a significant delay avoiding a full application reboot, which can be employed as a last 
resort for recovering from non-deterministic faults when microreboots are no longer being effective. 

In order to achieve safe microreboots, the crash-only principles must be taken into account. 
Applications should be designed with fine-grained components that are well-isolated and stateless. 
The microreboot design suggests the usage of a state store for keeping the state of components 
outside of them. By doing so, the process of state recovery is completely independent of application 
(i.e. component) recovery thus avoiding any state corruption when microrebooting components. 

2.4 Summary 

One of the motivations behind software dependability is to make users rely on the services a 
system delivers, that is, to provide applications in which we trust. The concept of dependability is 
broad, and encompasses different attributes:   reliability, availability, maintainability, safety, integrity 
and confidentiality. Although faults, errors and failures are considered as threats to dependability, 
dependable applications can be realized by means of fault-tolerant software, whose goal is to detect 
and recover from faults without presenting service failures. 

While fault-tolerant mechanisms try to attain dependability by employing techniques typically 
based on redundancy, recovery-oriented mechanisms rather deal with situations where the system 
should recover from faults or even from degraded scenarios of service failures. A recovery-oriented 
mechanism tries to bring systems back to their normal state in such situations. Approaches such as 
self-healing and recovery-oriented computing (ROC) are able to deal with post-fault scenarios where 
applications can recover from failures.  

Self-healing is one of the key properties of autonomic computing, which targets the 
construction of self-manageable systems. Techniques such as control loops, used for building 
autonomic managers, are able to provide self-healing characteristics. ROC makes the realistic 
assumption that systems will fail, no matter what was the cause, and prompt recovery is mandatory 
for reducing the MTTR. The goal of that approach is to employ techniques that allow fast recovery. 
By using the concept of crash-only software applications can be ready to deal with faults and recover 
from them. An important principle behind crash-only software is to break down the application into 
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smaller and loosely coupled components that can be individually rebooted. In such microreboot 
approach, faulty components can be individually rebooted and have their state restored to a 
consistent value. This approach has proven to be effective against non-deterministic faults and works 
at a much lower cost than full application reboots.  

With the evolution of applications to ever changing scenarios where adaptivity is necessary, 
systems have now the need to persist their dependable characteristics upon changes. Resilience is a 
concept that consists in the persistence of dependability when facing changes. Recovery-oriented 
mechanisms with adaptive capabilities such as self-healing are fundamental for providing resilience 
to applications.  

Our work employs recovery techniques presented in this chapter for presenting some level of 
dependability when facing changes at runtime (i.e., some level of resilience) in dynamic component-
based applications, which are presented further in the next chapters.  





Chapter 3  
 
Application Isolation 
Techniques 

“No man is an island” 

John DONNE 
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Application isolation can be seen as a strategy that employs protection mechanisms to achieve 
privacy and fault containment. Privacy consists on isolation mechanisms that prevent resources (e.g., 
data, devices, runtime objects) from being improperly accessed. By providing fault containment, the 
system can be protected from errors coming from another process. Isolation also contributes to 
system resilience by providing failure boundaries permitting part of a system to fail without 
compromising the whole [Aiken06].  

In modern software that uses multitasking, a common technique for isolating programs is to 
put them in separate process and rely on hardware-enforced techniques providing proper isolation 
between them. Although this is an effective way of isolation, there are different requirements and 



 

36 

different grains of isolation that can be achieved. This chapter presents diverse techniques that rely on 
both hardware-enforced and software-based approaches for achieving different isolation levels. 
Although these techniques are presented individually, they are not mutually exclusive and can be 
combined together to construct different isolation solutions. 

We initially discuss some background around the term isolation as a means of protection. We 
continue the discussion around requirements defining the isolation needs of an application. The 
subsequent section focuses on the different isolation techniques we categorize as: hardware-enforced 
isolation, software-based isolation and virtualization. We present a diversity of strategies that ensure 
isolation in different levels, focusing on privacy, fault containment or both of them. That overview is 
followed by a summary of isolation approaches used in the Java platform, which is an important 
background for the implementation and validation of the propositions of this thesis. The next chapter 
will rather concentrate on application isolation focusing a finer grain, in the form of software 
components. 

3.1 Background 

Isolation is a broad term that in the next paragraphs we delimit under our perspectives. Such 
concept is far from being a recent concern. Work from the 70’s [Saltzer75] already discusses about 
information protection by means of isolation and mentions mechanisms such as isolation of users, of 
virtual machines and programs. It also gives examples of complete isolation systems where no 
sharing of information can happen.  Isolation techniques may have been initially employed targeting 
information disclosure in systems. However, that concept started to be linked with protection 
mechanisms in a wider sense. 

Lampson [Lampson74] used the word “protection” as a general term for mechanisms 
controlling the access of a program to any system resource. The motivation behind such protection 
mechanisms is to avoid errors of one user from harming other users, which in this context may 
denote an actual user or another program. Under this point of view, “harm” can be inflicted in 
different ways, such as: 

 Destroying or modifying another user’s data 

 Reading or copying another user’s data without permission. 

 Degrading the service another user gets, having a system crash as an ultimate form of 
degradation. 

A correspondence between these harms and dependability attributes, detailed in the previous 
chapter, can be made. The first item of the above list is related to the integrity attribute, and the 
second one concerns confidentiality, while the last one refers to reliability, which impacts availability. 
We can generalize these attributes by grouping them under two major goals: privacy and fault 
containment. Privacy would concern protection in terms of integrity and confidentiality; while fault 
containment relates to isolation of faults in order to avoid errors from propagating across modules.  

Lampson underlines that we should head to a direction where mechanisms must guarantee 
that errors in one module do not affect another one.  By isolating applications from one another it is 
possible to provide effective ways to create barriers that avoid applications from retrieving 
information that they are not supposed to have access, as well as preventing faults from propagating 
throughout the system. In order to avoid such propagation, fault containment mechanisms should be 
provided. Fault isolation may be seen as physical and logical exclusion of faulty components from the 
system [Avižienis04].  However, under the point of view used in this thesis, fault isolation is used as a 
general term whose aim is to achieve fault containment. Fault-tolerant mechanisms should ensure a 
way to avoid the propagation of faults by confining them in boundaries that do not allow the 
propagation of faults to the rest of the system. A sound fault-tolerant strategy should include such 
design that confines faults. 
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3.2 Requirements 

Throughout this chapter we mention different techniques for providing application isolation in 
different levels. However, each one of them is motivated by different requirements. The granularity 
and the degree of isolation are two important requirements that need to be taken into account when 
defining an isolation technique (i.e., the solution provider point of view); and when choosing an 
appropriate one (i.e., the perspective of the user of such technique).  In both cases it should also be 
considered what goal is more important: privacy, fault isolation or both, when needed. 

In terms of granularity, it is necessary to specify what is going to be isolated or shared. There 
are two extremes: no isolation or complete isolation. With no isolation, all resources are fully shared, 
while in the case of complete isolation the applications are not aware of each other. Other levels of 
granularity can be more flexible like binary sharing, where resources should be either public or 
private, or another form of limited sharing where fine-grained control mechanisms are used. 

The desired degree of isolation concerns what is going to be isolated: only parts of an 
application (e.g., modules, components); one application isolated from another; or a set of 
applications isolated from another set; and so forth. 

3.3 Techniques 

Isolation is a concept tightly coupled with security. One of the objectives of isolation is to 
provide robustness by ensuring that applications that do not behave correctly (e.g., execution of 
malicious code, excessive consumption of system resources like CPU or memory) would not interfere 
or bring any harm to other applications running simultaneously in the same environment (e.g. 
operating system, virtual machine). The environment should be able, for example, to abort an 
application with such unexpected behavior and reclaim system resources without affecting other 
applications.  

Different isolation categorizations can be found [Brumley10] [Viswanathan11]  
[Goonasekera09], but they do not have any consensus although they present a few overlapping 
categories. In [Viswanathan11]  we find five categories (language-based, sandbox-based, virtual 
machine based, OS-kernel based and hardware-based) that in part overlap to the five categories 
presented in [Goonasekera09] (hardware isolation, binary code level isolation, integration into OS 
kernel isolation facilities, language support and application level isolation). Three high level 
categories are reported in [Brumley10]: hardware-based, software-based and hardware + software. 
Similar to those used in this last classification, we choose only to group a non-exhaustive list of 
isolation mechanisms under two groups: hardware-enforced isolation and software-based isolation. 
Isolation solutions may potentially combine techniques from both groups.  

This is not a strict classification since implementing an isolation approach in a system may 
potentially combine different mechanisms (either from the same category or from different 
categories), therefore they are not mutually exclusive. Another fact that can be pointed out is that the 
techniques employed for isolation typically try to address both privacy and fault containment, but 
some of them may only reach one of these goes.  

3.3.1 Hardware-Enforced Isolation 

This type of isolation consists of memory protection mechanisms that allow a strong form of 
isolation based on hardware infrastructure. In its basic form, it concerns raw and strict separation of 
memory spaces, relying on the Memory Management Unit (MMU) to perform the verifications (e.g., 
proper privileges, memory address range) when a program attempts to access memory.  Memory 
protection uses techniques such as memory paging and segmentation for keeping programs running 
in separate address spaces, which does not allow a process to access another process’ memory. Even 
though some of the below categories (e.g., process-based isolation) may be considered rather as 
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software-based isolation instead of hardware-based, we consider as hardware-enforced the 
techniques that take advantage of memory isolation, which is a hardware resource. 

OS-level Protection Domains 

This basic form of isolation is inspired on the protection rings concept [Schroeder71] of the 
Multics OS. It is based on privilege levels that determine the different protection domains (also called 
rings).  The lowest ring is the most privileged one, which typically is the one that accesses underlying 
hardware. Operating systems implement such technique in their kernels.  This concept has been 
employed by most operating systems, which usually employ a two-level rings protection mechanism 
[Goonasekera09]. In such cases the OS kernel executes at a higher privilege ring (kernel mode) where 
it can perform any instruction, including direct access to hardware resources, while most of the 
applications execute in a lower privilege level (user mode) with hardware enforcing that high 
privilege instructions should not be performed. Performance is a major obstacle when using such 
approach for isolating processes, since a context switch from user mode to kernel mode usually is 
much more expensive than a context switch between processes running in the same protection level.  

Process-based isolation 

In general, a process can also be seen as a fault-contained protection domain, although not in 
terms of privileges, as presented in the previous section. For instance, two processes running in user 
mode also take advantage of fault-containment. Therefore, a crash in a process would not affect the 
other processes running. By simply executing processes in parallel, we take advantage of such 
memory protection mechanism and achieve a sort of process-based isolation that is provided by the 
OS. However, the utilization of separate address spaces for isolation requires using Inter-Process 
Communication (IPC) in order to allow communication between the isolated processes. The overhead 
of such mechanism comes together with processor context switches. Therefore, this isolation 
approach incurs significant overhead if processes need to communicate. 

Virtualization 

In computer science the term virtualization has been used to describe a technique that consists 
of creating an abstraction layer for emulating a given resource (e.g., a file system, an operating 
system) in order to transparently share the resource among many users. Such virtual layer is 
perceived by users (e.g., a program, a person that uses a system) as if it they were the only ones 
accessing a real instance of the resource. Virtualization is useful for sharing resources or also as a form 
of isolation towards a more secure environment. In the former case, virtualized hardware can be used, 
for instance, by multiple operating systems. The latter possibility would consist of emulating an 
environment for isolating applications that can safely execute in a sort of sandbox. Virtual machines, 
for instance, can provide an environment for running untrusted applications in isolated sandboxes. 

Approaches like Jails [Kamp00] provide a sort of virtual machine environment in the FreeBSD 
OS that works as isolated compartments where a user has access only to processes and files from its 
own “jail” without having access to resources from other jails. The focus of the Jails mechanism is to 
increase privacy, since processes either from the same jail or from different ones have fault 
containment thanks to the process-based isolation that the OS provides by default. 

System Virtual Machines [Smith05] can be used, for example, to emulate access to hardware 
resources and to host applications in a virtualized operating system that would work as a sandbox for 
applications. It allows the virtualization of full operating-systems, also being an option for isolation. 
An untrusted application may, for instance, execute in a virtualized OS to avoid possible damages to 
the actual host OS. 

Even though it provides a strong degree of isolation, the utilization of virtual machines hurts 
performance because of the virtualization overhead introduced, where the instructions sent to the VM 
have to be trapped by its software layer (the Virtual Machine Monitor or hypervisor) and redirected 
to the underlying operating system that hosts the VM [Chen01]. The case of full OS virtualization as a 
means of isolating programs demands much more resources than running individual processes, both 
in terms of initialization and memory [Barham03]. 
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Although we see virtualization mostly implemented through isolated processes, similar 
virtualization principles may be used without hardware-enforced protection, as it will be presented 
by some of the techniques in the next chapter where component isolation approaches are discussed. 

3.3.2 Software-based Isolation 

Different techniques provide isolation by means of software. Probably one of the most cited 
works on this approach is the sandboxing introduced in software-based fault isolation [Wahbe93]. It 
prevents code from accessing memory addresses it has no authorization. Software-isolated processes 
from the Singularity operating system are also a good example, which will be detailed in the next 
chapter. The term sandboxing has an overloaded meaning, and is often used to refer to mechanisms 
that introduce some sort of software confinement or mechanisms that reduce the access level of a 
process to its environment. 

Security Managers 

Security policies can provide means of isolation enforced by security managers, which are used 
in platforms like Java and .NET. For example, Java applets rely on a sandbox [Fritzinger96] that is 
constructed based on security manager and class loaders. The security manager enforces the 
boundaries around the sandbox, providing a sort of isolation that restricts it from accessing certain 
features of the environment such as file system and network connections. The security manager will 
not allow an applet to read or to write to the local system, neither to execute native code.  The 
isolation provided by security managers is rather focused on privacy instead of fault containment, 
which would need to be enforced by other means. 

Application-level Domains 

We refer to application-level domain as the technique that employs a domain abstraction that 
creates a separate memory spaces within the same process. It differs from the OS-level protection 
domains previously detailed, since they are implemented rather in the application level. The domain 
described here acts as a sort of lightweight process that hosts applications and that has its own virtual 
address space within a process. Instead of executing in separate processes, applications run in the 
same process but with memory boundaries enforced by software.  

Besides the existence of such separate virtual address spaces, when comparing this approach to 
standard multithreading provided by the OS one can observe that threads do not provide an actual 
isolation mechanism.  Therefore, a crash in a thread may compromise its whole application. The 
strategy behind application-level domains provides fault containment, using software for providing 
memory protection techniques inside a process. An application domain is not able to directly access 
the address space of another application domain, even though both of them execute in the same 
process. In addition, since the domains reside in the same process there is no process context switch 
at the CPU level, which is an expensive task. The context switch between applications running in 
different domains happens only at software level. Depending on the runtime implementation other 
resource sharing mechanisms (e.g., libraries, file descriptors) can be provided. In case applications 
isolated in different domains need to communicate, an IPC mechanism would have to be used. 

As an example of application-level domain we can cite KaffeOS [Back00], which is a JVM that is 
based on the open source Kaffe JVM [Kaffe11], and introduces an architecture that supports the OS 
abstraction of a process in a JVM, which is in fact a sort of application domain. A process executes as if 
it were run in its own virtual machine, including isolated memory spaces, possibility of direct sharing 
objects between process and process-based resource accounting. Examples of other application-level 
domains, which will be detailed further in this thesis, are .NET application domains [Nagel10] and 
Java Isolates [JCP06a]. They are provided by managed runtimes, respectively, by the .NET CLR and 
experimental JVMs.  
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Language-based Isolation 

Language-based isolation is identified in [Goonasekera09] and [Viswanathan11]  as a form of 
software isolation. It is provided by some programming languages, compilers, assemblers and 
runtime environments. The isolation is achieved with the help of type-safe programming languages, 
such as Modula and Java. Schneider [Schneider01] points out the fact that such types of languages can 
guarantee some safety properties such as memory safety and control safety. With memory safety 
programs can only access appropriate memory locations while in the case of control safety programs 
can only transfer control to appropriate program points.  

Although there are such verifications, programs written in these languages do not ensure fault 
containment since the code to be executed will usually share the same memory space, unless strong 
isolation mechanisms are enforced in the language level. As an example, the Erlang [Armstrong03] 
programming language takes isolation as one of the main characteristics for its programming model. 
It uses a concurrent-oriented programming paradigm where language based processes are executed 
concurrently. There is no data sharing between processes, so they do not affect one another and 
therefore fault isolation is ensured. The only way to send data between processes is through 
asynchronous message passing. As presented here, depending on the employed techniques, 
language-based isolation can provide different levels of isolation which may involve or not the ability 
to provide fault containment. 

3.3.3 Summary 

The classification we have chosen for presenting different isolation techniques was focused on 
a general perspective on hardware-enforced isolation and software-based isolation. Hardware-based 
mechanisms provide strong isolation boundaries that allow fault containment. Software-based 
isolation is more flexible, but does not necessarily provide fault containment, which is possible with 
application-level domains and in programming languages like Erlang. The implementation of a 
virtualization approach can be particularly considered, since it may vary depending on the objective, 
which may employ different techniques (hardware or software) as well as combining them. The next 
section focuses on the perspective of these isolation levels targeting a specific development and 
execution platform. 

3.4 Isolation in the Java Platform 

The Java Platform targets a wide range of devices, from smart cards to enterprise servers. In 
order to cope with the diversity of target environments and the inherent resource limitations of more 
modest hardware platforms, Java is divided into different editions (standard, enterprise and micro 
editions, and JavaCard). They provide distinct application models (e.g., applet, servlet, Xlet, MIDlet) 
that are suited for different contexts.  Each application model deals with different environments and 
constraints, which may influence the isolation mechanisms of choice. Although they all rely on the 
namespace-based isolation mechanism achieved by means Java class loaders, we describe two other 
types of isolation that are possible in the Java platform. Their usage can be motivated by different 
needs, and depending on the environment they can be better suited than the default namespace-
based approach. 

While research projects like JavaSeal [Vitek98] and Object Spaces [Bryce00] targeting isolation 
in the Java platform can be found, in the context of the work performed in this thesis we are 
interested in isolation mechanisms that are rather based on Java Platform standards. Then next 
sections provide an overview on the default namespace-based isolation, followed by process-based 
isolation and domain-based isolation, which are both compliant with Java standards. These three 
approaches can be seen as different “flavors” of software-based isolation, memory protection and 
application-level domains, respectively. 
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3.4.1 Namespace Isolation 

The class loader mechanism [Liang98] in Java provides the ability to dynamically load classes 
during application execution, enabling features such as lazy loading, unloading of classes, multiple 
namespaces and extensibility through user defined class loading policies. These multiple namespaces 
are the standard form for achieving isolation in Java, where a class type is uniquely determined by 
the combination of class name and class loader. To better illustrate namespaces with class loaders, 
consider that two class loaders A and B co-existing in the same running application can load different 
versions of a foo.Bar class. Each class loader can apparently provide instances of the same class but in 
fact the provided foo.Bar objects are of different classes. By considering a fully qualified name 
notation to differentiate each class, as the one used in [Liang98], we have two classes <foo.Bar, A> 
and <foo.Bar, B> which visibly do not correspond to the same class. 

The basic loading mechanism is based on a delegation principle inside a class loader hierarchy. 
Before loading a given class, a child class loader asks its parent for that class. If the immediate parent 
can not find the class, this delegation continues until the top of the hierarchy. The hierarchy of class 
loaders defines that children can “see” the classes loaded by their parent, but not the contrary. 
Following that principle, sibling class loaders can not share class definitions. Although this 
mechanism isolates code in different namespaces, it does not ensure object instances living in isolated 
address spaces. Thus, this software-based mechanism concerns only privacy and does not provide 
fault containment since faults in code loaded by a class loader can affect other parts of the application. 

3.4.2 Process-based Isolation 

In Java this can be done with a combination of techniques by breaking a single application into 
multiple pieces running on different VMs (i.e. different processes) allowing application to be located 
in separate address spaces managed by the OS. Such type of isolation enables fault containment, thus 
a crash in a component would not bring the whole system down. However, using separate address 
spaces requires using relatively expensive inter-process communication in order to allow 
collaboration between the isolated components. In the case of Java it can be achieved either through 
sockets or higher level protocols such as RMI-IIOP. A significant disadvantage of this approach is 
exactly the cross-boundary communication overhead, as well as the memory footprint for each VM 
instance. Also, in the case of a component bringing a part of the application down, the restart of the 
crashed part would need to wait for the whole bootstrap of the VM and the component 
container/runtime. Since this solution may incur a large memory footprint, it is more appropriate to 
servers than to small devices. 

3.4.3 Domain-based Isolation 

The JSR 121 [JCP06a] is a relatively recent standardization effort for application isolation in 
Java. It defines the notion of isolate, a first class representation of a strong isolation container with an 
API to control their lifecycle. The model proposed by the Isolate API does not specify how isolates 
should be implemented. The strategy is implementation specific and could range, for example, from a 
per-isolate operating system process (e.g. using a standalone JVM) approach, to all-isolates in one 
process (i.e. same JVM) approach. The first approach is used in the IBM Research’s Cloneable JVM 
[Kawachiya07] project, which implements the JSR-121, while the latter is used in the reference 
implementation provided by SunLabs in the Multitasking Virtual Machine (MVM) [Czajkowski01], 
which realizes isolates using a multitasking approach. The MVM allows several Java applications to 
run in the same OS process, where each isolate is a logical instance of the JVM, with logically 
separated heaps, and no objects that can be directly shared. A basic set of resources, like runtime 
classes and shared libraries, is shared by all isolates but applications run in complete isolation. In case 
of an application failure, only that application is impacted, not the JVM. Other applications are 
completely shielded from that application failure. Besides isolation, the MVM has optimized memory 
footprint when running multiple applications in the same VM and quick application startup. 

The isolation provided by isolates is completely transparent. Legacy Java applications can be 
executed in isolates without needing any additional changes. However, applications can be aware of 
the existence of isolates and explicitly use the API. Although isolated, Java applications can achieve 
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collaboration through previously existing mechanisms such as sockets and Remote Method 
Invocation (RMI), or through Links, which are part of the Isolate API. They provide a low-level layer 
for communication through basic data types such as byte arrays, buffers, serialized objects and 
sockets. The usage of isolates can make applications more robust by adding fault containment and 
clean application termination. 

3.4.4 Comparison 

The predominant way for isolation in Java is by means of class loaders, which allow separate 
namespaces that give less robust isolation. However two other possible approaches are possible: 
process-based and domain-based isolation. As summarized in the table, strong isolation boundaries 
that provide fault containment between applications imply simpusing IPC mechanisms for 
establishing communication between isolated parts of the application.  

Considering the two generalized protection goals (privacy and fault containment) that we have 
classified in the beginning of this chapter, we provide a brief comparison of these three isolation 
approaches. Process-based isolation is a practical way to provide strong isolation boundaries, 
although it implies more memory footprint because of multiple VMs involved, as well as the IPC 
overhead involving the communication between VMs. Domain-based isolation is possible through a 
standardized approach, although experimental,  that uses an application container that transparently 
provides strong isolation, enabling fault containment and a much more robust isolation mechanism 
than the one provided by class loaders. However, like the process-based approach, the isolated 
applications need to communicate through IPC. 

 

Isolation Approach Privacy Fault containment  IPC 

Namespace-based (Class loaders) x 

Process-based (Multiple JVMs) x x x 

Domain-based (Isolates) x x x 

Table 3.1. Comparison of the approaches in relation to the two protection goals and the need of IPC. 

3.5 Summary 

Application isolation is fundamental to prevent failures from being propagated from one part 
of the application to another. Privacy and fault containment can be seen as two distinct goals of 
isolation mechanisms. In this chapter we provided an overview on different isolation techniques that 
range from hardware-based approaches to software-based approaches. Although we have 
categorized isolation techniques under distinct groups, isolation solutions may combine techniques 
from different categories in order to provide the desired levels of isolation. 

Hardware-enforced techniques take advantage of the underlying OS infrastructure for 
providing privacy and fault containment by using separate processes for executing applications. A 
process failure does not affect other processes running in parallel and that a process does not access 
memory areas outside its allocated range. Software-based isolation relies on different approaches that 
can provide privacy with some of them being able to provide fault containment as well. The Java 
platform, which is going to be used in the implementation of this thesis’ propositions, provides 
namespace-based isolation by default. It can be achieved by means of different class loaders thanks to 
the class loading hierarchy used in Java. Without needing to go after custom isolation approaches, it 
is still possible to provide increased levels of application by means of process-based and domain-
based isolation that are part of the Java platform standards. 

 The next chapter continues the discussion on application isolation techniques but with a more 
specific focus, where we outline component-based development and related paradigms and how 
isolation is placed in each of them. It is followed by an overview of different component-based 
technologies that employ component isolation principles.  



Chapter 4  
 
Component Isolation 

“The production of too many useful things results in too 

many useless people”. 

Karl MARX 
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The previous chapter provided an overview of different strategies for application isolation. 
Among them, some techniques are able to provide a strong isolation boundary that provides fault 
containment. This chapter provides a perspective on those techniques targeting component-based 
development. The chapter starts with a section discussing the need for component isolation 
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boundaries.  It is followed by an overview of the component-based development paradigm and two 
others that are related to it but that use a service-based approach, namely service-oriented computing 
and service component architecture. Finally, the chapter provides an overview of component 
isolation on different component technologies. In particular, that section provides a deeper analysis 
on other approaches around component-isolation in the OSGi platform, which is a technology 
employed in this thesis. 

4.1 Isolation Boundaries 

The common notion of using a process as a unit of error encapsulation provides protection 
domains with fault-isolation [Armstrong03]. Using this simple approach, an error in one process 
cannot affect the operation of other processes, providing strong isolation.  In the case of components, 
isolating them is sufficient for protecting a system from the consequences of a software error, but it is 
not sufficient in the event of some kind of failure to determine which component has failed.  

Isolating components is useful for constructing individual units of failure. As pointed out by 
[Gray86], the recovery of individual parts of the system can give the impression that there was no 
failure. However, there is the risk of failures that may take the whole application down. Fault 
contained boundaries between component is key for ensuring that the execution of untrustworthy 
code does not bring any harm to the execution of other components, or the whole application. 
However, using such strong isolation boundaries imply system overhead for performing IPC. The 
price of such hardware enforced protection is high, but can be tolerated if there are not many 
switches per second [Szyperski02]. However, if inter-component communication across isolation 
boundaries is frequent and a synchronous communication model is required, there is indeed more 
cost. 

What types of protection domains are adequate for components and which ones are mostly 
used? Different paradigms provide different levels of abstraction and different technology 
perspectives, which may have different isolation needs. The next session provides an overview of 
modular paradigms that provide some discussion on these reflections over component isolation 
needs. 

4.2 Paradigms 

The efforts around software modularity date from the early days of software engineering, and 
still is an actively explored subject that has been employed by diverse techniques. New modular 
techniques are continuously being developed like Aspect-oriented Programming (AOP) [Kiczales97] 
and Context-oriented Programming (COP)[Hirschfeld08], which are used as complementary 
approaches that try to fill the gap of existing technology.  

In order to keep the discussion focused on the modular approaches that are more closely 
related to the isolation subject, which is a topic explored in this thesis, we will limit the approaches to 
be described in this section to those that we find related with that topic. We provide an overview on 
component-based development and other correlated techniques that involve modularity and isolation 
concepts, which will serve as the basis of our point of view in each of the enumerated approaches. 

4.2.1 Component-based Development 

Software Engineering (SE) is a young domain, when compared to other engineering disciplines 
like Civil Engineering or Mechanical Engineering. Since this new discipline involves so many abstract 
concepts, which are constantly evolving, sometimes it is difficult to find a consensus on definitions 
and terminology. This is the case in Component-based Software Engineering (CBSE) – a subdomain 
of SE – when trying to find an agreement on the concept of software component (component for short), 
which holds several definitions.  
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Because it is a key concept to be studied before continuing in this chapter, it is important to 
define what a component is4. In general, we can say that a component is a modular and reusable unit 
of software. It can be seen as a black box entity, whose implementation details are encapsulated but 
the functionalities are accessible through contracts. However, a discussion around the nuances of a 
“complete” definition of component would conduct to a long discussion. Szyperski’s book 
[Szyperski02] on component software, which is one of the most used references in the field, already 
gathered fourteen other component definitions as of 2002. This section presents three component 
definitions and discusses similarities among them. We use one of those fourteen definitions, as well 
as Szyperski’s one, and then a third definition that dates of 2003.  

The first definition presented here concerns an early book on software composition that uses a 
simple definition: 

…a component is a “static abstraction with plugs” 

[Nierstrasz95] 

By saying “static”, the authors explain that they refer to a long-lived entity that is independent 
of the applications in which it is used. The term “abstraction” concerns the opaque boundary that 
encapsulates the piece of software, while “plugs” refers to the ways of interaction and 
communication with the component ―  like messages, ports or contracts ― therefore allowing it to be 
(re)used. A more elaborate definition enumerates some conditions to be satisfied so a piece of 
software can be considered as a component: 

A component is a software element (modular unit) satisfying the following 
three conditions: 

1. It can be used by other software elements, its “clients”. 

2. It possesses an official usage description, which is sufficient for a client 
author to use it. 

3. It is not tied to any fixed set of clients. 

[Meyer03] 

We can notice again that reuse, explicit contracts (i.e., “plugs”) and independence of the target 
application are mentioned. The same principles are also present in Szyperski’s definition of 
component, which is the more widely accepted: 

A software component is a unit of composition with contractually specified 
interfaces and explicit context dependencies only. A software component 
can be deployed independently and is subject to composition by third 
parties. 

[Szyperski02] 

The success of component technologies does not necessarily depend on the component 
abstractions themselves, but actually on the surrounding infrastructure concerning the design, 
development, deployment and execution of components. By simply developing components and 
making them communicate by means of their predefined interfaces can be seen as a rudimentary 
form of a component-based approach. The usage of component models and component frameworks 
differentiates a well structure CBD approach from such rudimentary solutions, and has a significant 
impact in technology adoption. Although these concepts may be sometimes considered as intermixed 
[Crnkovic02], we provide distinct discussion concerning these two notions. 

                                                 
 
4 This section provides a brief clarification that may not be sufficient to the reader. More complete discussions around the 

component definition can be found in [Szyperski02] (chapters 04 and 11) and [Crnkovic02] (chapter 01) 



 

46 

Component Models 

Component technology is usually implemented with object-oriented programming (OOP), 
providing higher levels of encapsulation based on the OOP abstractions themselves. A component 
model specifies the component types (e.g., classes, interfaces) and the patterns of interaction between 
them [Bachmann00]. For instance, these types define how components can plug to the component 
framework5 so their functionality can be accessed by other components. Besides interaction, 
[Heineman01] also mentions composition standards as part of a component model. Under his point of 
view, a component model implementation consists of a dedicated set of executable software elements 
required to support the execution of components that conform to the model. This complement on his 
definition would rather be more appropriate to that of a component framework. 

Another perspective [Lau07] considers that a component model should define the syntax, the 
semantics and the composition of components. The syntax defines the rules on how components are 
constructed, which is usually in the form of a programming language. The semantics concerns what 
the components are meant to be, which in most component models take the form of software units 
consisting of a name, an interface and code that is implemented usually in an object-oriented 
language. The composition of components should be specified through a composition language, 
however the widely used component models have no such language and rather use programming 
languages for writing the glue code necessary for performing the compositions. 

Component Frameworks 

Another term not as much discussed as the component definition concerns the concept of 
component framework, which has also different definitions. A component framework is seen as a 
support infrastructure for component models [Bachmann00]. This is a common point in most of the 
definitions. As stated previously, what we may find sometimes is the concept of component model 
and framework being intermixed, as in the following: 

A component framework is a collection of software components and 
architectural styles that determines the interfaces that components may have 
and the rules governing their composition. 

[Schneider99] 

If considering a component model as a distinct concept, its notion (i.e., the interfaces that 
components may have and the rules governing composition) is mixed with that of a framework. In 
[Szyperski02] we find two definitions for component framework, using different perspectives: 

A component framework is a dedicated and focused architecture, usually 
around a few key mechanisms, and a fixed set of policies for mechanisms at 
the component level. 

… 

A component framework is a software entity that supports components 
conforming to certain standards and allows instances of these components to 
be “plugged” into the component framework. 

[Szyperski02] 

That definition gives a high level perspective (i.e., architecture and mechanisms) on the 
description of a framework. The second definition provides a more operational point of view, goes to 
a less abstract notion, where it involves the realization of components when talking about instances 
and standards conformance (i.e., component models). Another pair of definitions on component 
frameworks can be found in [Crnkovic02]: 

                                                 
 
5 The term framework also holds several definitions, as highlighted in the introductory chapter of [Crnkovic02]. 
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A component framework describes a “circuit board” with empty slots into 
which components can be inserted to create a working instance. 

… 

We define a component framework as an application or part of an 
application in which components can be plugged to specialize the behavior. 

 [Crnkovic02] 

Like the definitions from [Szyperski02], these two provide different perspectives. The first one 
gives a metaphorical perspective, while the second one talks of a more practical aspect. In general, the 
concept of framework is related with execution infrastructure. [Heineman01] mentions software 
component infrastructure as a set software components. That is, infrastructure itself is also made by 
means of components. Therefore, a framework can be a component made of other components.  A 
key contribution of frameworks according to [Crncovik02] is that a framework forces components to 
use its mechanisms, enforcing that architectural principles are observed. As practical examples, 
component frameworks can be seen as a sort of component containers, like the Enterprise Java Beans 
(EJB) container and the CORBA Component Model (CCM) container. 

Component Platforms 

The notion of component platform can also be intermixed to that of component framework. We 
have found rather ambiguous notions of what a component platform is. When discussing about 
context dependencies, [Szyperski02] mentions component platform as something that defines the 
rules of deployment, installation, and activation of components. But from an architectural 
perspective, their definition gives a broader view: 

A platform is the substrate that allows for installation of components and 
component frameworks, such that these can be instantiated and activated. 

[Szyperski02] 

They also mention that a platform can be concrete, providing direct physical support in 
hardware, or virtual, in the case of a platform abstraction that emulates a platform on top of another. 
Under our perspective, a component platform is a notion that encompasses concepts (e.g., 
specifications, component models) and runtime infrastructure (e.g., component frameworks, 
deployment mechanisms, protocols). To illustrate that, we can consider an example in Java, where the 
EJB container (business components) and the Servlet container (web components) are part of the Java 
EE platform. 

Non-functional Requirements 

The functional requirements in CBD concern the services that are expected by those that will 
(re)use a component, while non-functional requirements are the constraints under which a 
component has to operate [Sametinger97].  Non-functional requirements can be seen divided in three 
areas [Gorton06]: technical constraints (e.g., using a language already mastered by the development 
team), business constraints (e.g., usage of open source software) and quality attributes. Such 
attributes comprise a vast set of characteristics: performance, reliability, availability, scalability, and 
security, to cite a few.  

A major obstacle to a wider utilization of component-based technologies in dependable 
systems concerns the inability to precisely deal with quality attributes [Crnkovic05]. In that domain, 
these non-functional requirements are as important as the functions provided by the systems. 
Predicting the value of quality attributes on component compositions is not a straightforward task, as 
indicated in [Crnkovic05]. The authors present a distinction between different types of attributes in 
order to be able to predict them after composition. Attributes can be directly composable, e.g., 
memory footprint, but can also depend on factors that are external to the component, like architecture 
or system context.  
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Dependability is a non-functional requirement that involves several other quality attributes 
(reliability, availability, maintainability, safety, security, confidentiality), as presented previously. 
Components must provide these attributes in order to the construction of dependable component-
based systems be possible, however the component platform can also help in that process by 
providing a certain level of dependability if the system is seen as a whole. With the support of 
underlying mechanisms (e.g., frameworks, protocols, protection mechanisms), component-based 
applications can tolerate a certain level of individual component problems. This is possible if such 
problems happen in a minor scale and not very frequently so system functionality cannot be 
compromised. 

Component-based systems usually employ a centralized approach where all components share 
the same memory space (i.e., same process). Fault containment mechanisms are necessary for 
preventing the propagation of errors that may affect the quality of other components that are 
involved in a composition, as well as the whole system that uses the faulty component. This chapter 
discusses component isolation as a specific feature that can improve dependability in component-based 
systems. The stronger the level of isolation, the closer to fault containment and the better the 
resistance to component faults. Before discussing on component technologies that support some level 
of component isolation, this chapter outlines some other paradigms that are related to component-
based development and that also present some degree of component isolation. 

4.2.2 Service-oriented Computing 

Service-oriented Computing (SOC) [Papazoglou03] is a paradigm where applications are 
constructed using services as building blocks. Like components, services also put in practice 
modularity principles and provide a good level of encapsulation. Nevertheless, a service has a much 
broader sense than components, ranging from abstract concepts of the real world (e.g., a waiter 
provides services to restaurant customers) to a more concrete meaning in terms of software (e.g., a 
printer spooler service). This broad conceptual nature gives services a potentially ambiguous 
meaning that, as usual in Software Engineering, leads to many definitions of the term. The definition 
provided by [Papazoglou03] gives a perspective on what services are and what they are supposed to 
do:  

Services are self-describing, platform-agnostic computational elements that 
support rapid, low-cost composition of distributed applications. Services 
perform functions, which can be anything from simple requests to 
complicated business processes.  

[Papazoglou03] 

With services, organizations are able to expose programmatically accessible functionality over 
a network using open standards technology (e.g., languages, protocols), and invokable through a self-
describing interface, also using standardized technologies. Implementation details (e.g., language 
used, executing platform) are not important for the consumer as long as open standards for 
communication and interface description are being used. Another definition gives a better 
perspective concerning the functioning and interaction of services, focusing on service description 
and how it can be used: 

A service is a software resource (discoverable) with an externalized service 
description. This service description is available for searching, binding, and 
invocation by a service consumer. 

[Arsanjani04] 

Although this definition mentions searching, it fails to describe the prior step of publishing 
services descriptions in a catalog before they can be searched. If we take this additional information 
into account, the vision given in this definition provides the essence of a basic architecture employed 
in SOC. The basic interactions that take place in a service-oriented approach are illustrated in Figure 
4.1. They are centered around the service description, which contains the service’s operations 
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description and, depending on the technology being used, it may also contain additional details such 
as supported types, binding information, communication protocol, and so forth.  

The main actors involved in service-based approaches are shown in Figure 4.1: service catalog 
(also called service registry), service consumer and service provider. The sequence of their 
interactions is illustrated in the picture. In (1) the service provider publishes a service according to a 
service description. At any time a client can query the catalog looking up for a service, based on its 
description. In the case of success, the step (3) can be performed and the two entities (consumer and 
provider) be bound, so the consumer can invoke (4) the provider’s services. 

 
Figure 4.1. The basic actors in Service-oriented Computing 

The service catalog introduces a layer of indirection that augments the decoupling between 
consumer and provider. In general, this basic architecture allows enforcing important characteristics 
employed by SOC:  

 Loose coupling: The service interface is the only common point between service 
consumer and provider. They need not know implementation details about each other. 

 Late binding: The binding between service consumer and provider is performed only 
at runtime, after a service lookup has been performed in the catalog. 

 Location transparency: The location is stored in the catalog, and it is known only at 
runtime. 

Service-oriented Architecture 

Perhaps service-oriented architectures (SOA) are the most widely known approach based on 
SOC. SOA is a logical way of designing a software system to provide services to either end-user 
applications or to other services distributed in a network, via published and discoverable interfaces 
[Papazoglou08].   

A service-oriented architecture is viewed as layers that provide different abstraction levels, as 
presented in Figure 4.2 adapted from [Arsanjani04]. Software components abstract the underlying 
systems (lowest layer in the figure) and provide higher level functionality by exposing service 
interfaces that form the service layer. This layer is used by business processes that construct 
composite applications based on those services.  

Other characteristics such as quality of service (QoS), service management and monitoring are 
also taken into account in all layers of SOA. As in CBD, the quality attributes are also an important 
issue to deal with in SOA [Menasce02, Rosenberg09]. Since SOA concerns a distributed environment, 
QoS is of special interest because of network issues that can influence attributes like service 
availability, throughput, response time, security and so on. Because SOA integrates functionality 
coming from different environments and systems, potential variations in QoS need to be monitored 
especially when there are service-level agreements (SLA) dictating the quality attributes that service 
consumers expect from service providers. Although this topic is of important value, further 
discussions on it are out of the context of this thesis. 
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Figure 4.2. Overview of the SOA layers, adapted from [Arsanjani04] 

SOA is technology agnostic. The technology used for implementing the services remains 
transparent in the architecture. A service can be provided by a structured program running in a 
mainframe, or it can be an object-oriented and component-based system. It is necessary, however, 
that the service be capable of performing the communication in compliance with the chosen 
technologies. For instance, SOAP Web Services are usually employed in SOA. However, other 
technologies may be used as well for constructing an SOA. 

Service-based Technologies 

SOAP Web Services are the most used technology for the development of services, and is 
usually confused with SOA due to its extensive utilization in that approach. This section enumerates 
and briefly discusses some service-oriented technologies. 

SOAP Web Services. This has been by far the most common service technology used in SOA. It 
facilitates the integration of legacy systems, and is an effective way to exposing the existing 
functionality of systems as services. This is an umbrella term that involves several technologies and 
standards, referred as WS-*, that are controlled by the W3C6 and OASIS7 consortiums. Since there are 
many WS-* specifications, we briefly mention three specifications that allow, respectively, service 
description; service publication and discovery; and service invocation. 

The service descriptions are represented with the XML-based Web Services Description Language 
(WSDL), which allows the service to describe operations, bindings, communication ports and 
complex types being used. The representation of a service catalog is achieved through the Universal 
Description Discovery and Integration (UDDI).  The Simple Object Access Protocol (SOAP), also 
based on XML, is used for exchanging messages. Usually that protocol is used on top of HTTP, which 
facilitates communication over firewalls and gives a good alternative for performing RPC on a distant 
network.  

RESTful Web Services. This is a lightweight option to what was called “Big Web Services” in 
[Richardson07], which refers to the WS-* specifications stack that include WSDL, SOAP, WS-
Notification, WS-Security, etc. The RESTful Web Services approach is based on the REpresentational 
State Transfer (REST) [Fielding02] architectural style that is proposed on top of the HTTP 1.0 protocol. 

                                                 
 
6 World Wide Web Consortium. http://w3.org 
7 Organization for the Advancement of Structured Information Standards. http://www.oasis-open.org 
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RESTful Web Services are viewed as resources that are identified by their URLs. Instead of using the 
RPC-style communication proposed by Big Web Services, the RESTful approach is based on the 
HTTP protocol methods. This approach is very useful for CRUD (Create, Read, Update, Delete) 
operations ― managing products and purchase orders, for instance― that can be mapped to PUT, 
GET, POST and DELETE methods of HTTP. 

Jini. Jini8 is a Java-based service platform originally developed by Sun Microsystems in 1999 
[Waldo99] for designing dynamic distributed applications without having to deal with the 
underlying network layer. The Jini specification targets dynamic local area networks. It relies on 
service-orientation principles to bring flexibility into distributed applications where devices and 
machines (i.e., network nodes) can be discovered dynamically. When a service provider publishes its 
service, it sends a Java object that implements the service interface to a lookup service (the Jini service 
registry). The provider can also optionally publish attributes (service properties) along with the 
service interface. 

OSGi. The OSGi Service Platform9 is a module system and service-based platform for the 
development of modular Java applications, combining SOC and CBD principles in the same platform. 
The basic concepts of SOC are used through a service registry that allows loose coupling between 
modules that communicate through their published services. A significant difference between OSGi 
and the regular SOA is that OSGi’s service registry provides notifications on the arrival and 
departure of services, which can be registered and unregistered at any time. Although OSGi is a 
centralized platform where modules and services are in the same JVM, communicating with remote 
services is possible as well as exposing services to be remotely accessed. This communication mode is 
technology independent, and is specified in the Remote Services section of the OSGi specification 
[OSGi11]. Therefore, besides the fact that SOC principles are internally used in an OSGi platform, by 
means of remote services it can also be part of an SOA in a distributed environment. 

Components and Services 

The differences between the service-oriented and component-based approaches already start 
with the analogy they use. In the “real world” a service is an abstract concept (e.g., policemen provide 
a service to their community), being intangible, while components are rather concrete objects (e.g., a 
component of a circuit board). Despite the abstraction level differences, CBD and SOA are in fact seen 
as complementary approaches. In [Collet07] the authors visualize the coexistence of these two 
approaches describing a typical scenario where CBD is typically used for business components 
implementation while SOA is used for component and systems integration. This can be illustrated in 
the typical SOA layered view of Figure 4.2, where the underlying implementation of services is 
provided by business components. They are integrated into an SOA through the published service 
interfaces that can be used for service invocation and composition. 

A succinct comparison on components versus services can be found in [Papazoglou11], 
presented under different dimensions: coupling, invocation, binding and composition. For instance, 
components usually use other components by name search or by instantiation so they can invoke 
operations through method calls on the component object (strong typing). In the case of services, a 
lookup based on the service interface is performed in a service registry, and then, after the binding, 
the service provider can be invoked through messages that are translated to the underlying protocol. 
This style of invocation does not require the same types on both ends of the communication because 
the interface and operation parameters are platform agnostic. As long as the data representations are 
correctly translated, the operations can be invoked with no problems.  

While in CBD the compositions depend on the component model being used, in typical SOA as 
presented in Figure 4.2, the composition of services can take either the form of an orchestration or a 
choreography [Erl05]. An orchestration consists of a series of activities that require services. The 
composition logic is at the level of the orchestrator, which is a central coordinator, responsible for 

                                                 
 
8 Now Apache River (http://river.apache.org), a project that continues the development of Jini technology.  
9 http://www.osgi.org 

http://river.apache.org/
http://www.osgi.org/


 

52 

invoking and combining the services that are part of the composition. The choreography of services 
consists of collaborations between participants. Composition logic is embedded in the service. There 
is no central coordinator but rather a set of tasks executed by each participant. 

In service-oriented platforms such as OSGi, where component-based principles are also used, it 
is possible to provide service-oriented component models. In such models the entities being 
composed are services. Different OSGi component models put that principle in practice, such as 
Apache Felix iPOJO10 [Escoffier07] and the OSGi standardized Declarative Services (based on the 
ServiceBinder [Cervantes03]) and Blueprint Container (derived from Spring Dynamic Modules 
[Spring09]). These models have a high level of interoperability between them because the 
compositions they perform remain in the same abstraction level of the service layer. For instance, an 
iPOJO component can combine services provided by both Declarative Services and Spring DM. 

Isolation 

Since a typical SOA is of distributed nature, the participant applications would be located in 
distinct machines. Therefore, a strong degree of isolation between the parts that compose the 
architecture can be achieved. However if we look into the underpinnings of each application that 
exposes or consumes services, they are most likely component containers (e.g., .NET framework, EJB 
container) where we can make no assumptions around component isolation. Nevertheless, this is a 
granularity level below the service layer (Figure 4.2), being hidden from other participants of the 
architecture.  

Although a service consumer can use a service hosted by the same application, it is likely that 
instead of having the overhead (e.g., communication protocols, message translations) of passing 
through the SOA service layer  it is preferable to circumvent that and directly call the component that 
provides the required service. In such scenario below the service layer, we fall again in the same 
discussion of the previous paragraph, which is also the case with the OSGi when taking into account 
its original design of components and their services sharing the same VM. Further details on OSGi 
and its isolation model can be found later in this chapter. 

In general, in the case of SOA, the “unit of failure” should not be in the component level, but 
rather in the service level. A failure in a remote service is isolated and is not propagated to the 
system. Therefore, this model inherently provides fault containment. However, there is still a need to 
cope with failure, which would cause service unavailability. For instance, providers may put in 
practice recovery mechanisms to deal with failure and consumers may reselect equivalent services to 
replace the failed provider. 

4.2.3 Service Component Architecture 

As already illustrated, there is no equivalent of a component model for providing composition 
of services in a typical SOA. Compositions are rather oriented by business processes that are able to 
use multiple services through techniques like orchestration and choreography of services. As an effort 
to fulfill this gap, the Service Component Architecture (SCA) [OSOA07] provides a set of 
specifications that describes a structural model for building applications using an SOA. The purpose 
of SCA is to simplify the writing of application regardless of the technologies used for 
implementation (e.g., Java, BPEL, EJB, C).  The SCA specifications were initially established by the 
Open SOA11 and since 2007 has been standardized [OASIS07] by the OASIS organization.  

Although extensively advocated by their creators as specifications that target SOA, SCA just 
provides a general way to create components as well as a mechanism for describing how they work 
together [Chappel07b]. They give a technology agnostic approach for building components from 
heterogeneous technologies, and are not necessarily bound to service-oriented architectures or SOA-

                                                 
 
10 http://felix.apache.org/site/apache-felix-ipojo.html 
11 An informal collaboration group of industrials (e.g., IBM, Oracle, Red Hat, SAP) interested in SCA. http://www.osoa.org  

http://www.osoa.org/
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related technologies. The specifications propose the construction of service-oriented architectures 
from components. 

Assembly Model 

The SCA assembly model defines the composition model and how SCA systems are 
configured. The basic concepts of the assembly models are component, composite and domain. A 
component is a container consisting of three parts:  

 Services. The features a component offers to other components. SCA is technology 
agnostic, but services specifications are mapped to the technology being used (often 
WSDL descriptors and Java interfaces).  

 References. They express the services required by the component to ensure its 
operation. These required services may be either provided by SCA components or by 
thid-party systems (exposing Web Services or communicating via JMS, for example). 
This is expressed through bindings (e.g., SOAP / HTTP, JMS, JCA, IIOP).  

 Properties. They correspond to the configuration of the component and are configured 
at the component construction, being used when instantiating the SCA component. 

A composite is a higher level representation that is deployed in a domain. Composites contain 
components and wire them together. Composites can be seen as components as well. Besides 
containing components, they can also provide properties, services and references (to services or other 
components), allowing thus a hierarchical composition approach.  

Domains are a sort of execution runtime for composites. A domain, which was called system in 
the early versions of the specification, is usually related to a given business functionality or 
organization. As exemplified in the assembly model specification, a domain representing the accounts 
department of an organization can contain composites dealing with specific functionality (e.g., 
customers, accounts payable).  

The technological independence of SCA allows many platforms to take advantage of its 
strengths, especially the easy integration with the services approach. However, [Chappel07a] points 
out a problem concerning interoperability because the specifications do not define what is necessary 
to create composites that can cross domain vendor boundaries. A possible workaround for that issue 
is to expose the functionality of an SCA composite as a service so it can be referenced by composites 
on other vendors’ runtime. This approach is demonstrated for cross domain communication in 
[Bhose10], but not in a multivendor context although it may be feasible with such approach. 

SCA implementations can be backed by regular component models, which is the case of the 
FraSCAti [Seinturier09] platform for Java-based SCA applications. Its implementation is constructed 
using the Fractal component model [Bruneton04]. Implementations of the SCA specification can be 
found freely (Apache Tuscany12, OW2 FraSCAti13) and commercially, usually integrated to products 
such as IBM Websphere14 and the Service Fabric by Paremus15, who used to freely provide the 
Newton SCA platform which is now archived and no longer available. 

Isolation 

Since SCA involves the transparent utilization of services, typically in an SOA, services may be 
located in remote machines. SCA composites can run in a single process on a single computer or be 
distributed across multiple processes on multiple computers [Chappel07b]. Because they are just a 
logical construct, it is too uncertain to make assumptions if the services being used are in the same 
process or not. It depends if the providing SCA implementation also provides services. For instance, 

                                                 
 
12 http://tuscany.apache.org 
13 http://frascati.ow2.org 
14 http://www-01.ibm.com/software/websphere/ 
15 http://www.paremus.com 
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it can be an OSGi application that uses local services as well as distant services in their SCA 
components. However, in the general case of SOA one may consider that services are distant, and that 
the SCA platform merely binds these distant services to their components and composites. In such 
scenario, there is fault containment in the service providers. The same service unavailability issue 
described in the SOA section applies to SCA. The composites and components must be able to cope 
with service unavailability in case of a providing failing or becoming inaccessible. 

4.3 Component Technology Support 

This section provides a non-exhaustive of different technologies that provide support to 
component isolation. In order to show the diversity of the levels in which component isolation 
techniques are used, this section starts presenting a programming language extension (Oz/K), 
followed by an operating system. The subsections that follow comprise widely adopted industrial 
component technologies. 

4.3.1 Oz/K 

Oz/K [Lienhard07] is an extension to enhance modularity of the Oz programming language 
[Smolka95], a concurrent language providing for functional, object-oriented, and constraint 
programming targeting UNIX-based platforms.  

The ability to deal with unknown and potentially malicious components is among their 
motivations for such enhancements. They propose a primitive form of component, called kell,which is 
a first-class unit of modularity and isolation that fails independently. A kell can act as a sandbox for 
its subkells, i.e. for kells that it contains). A kell encapsulates activity in the form of threads and sub-
kells and state, in the form of a private data store. 

Communication between kells is restricted to messages through gates, which are named 
interaction points that allow bidirectional communication, working as a sort of synchronous channel. 
Any form of shared state between kells is avoided, to guarantee isolation. Variables and memory cells 
are private to a kell and cannot be shared with other kells.  

The kell construct offers basic component principles like encapsulation behind well defined 
interfaces (gates), separation between interface and implementation, and connectors for interactions 
between components. The component-based programming can be mapped to follow the Fractal 
component model [Bruneton04], as illustrated by the authors. A Fractal component is interpreted as 
an OZ/K kell, whose interfaces are mapped onto gates. Sub-kells are mapped as the sub-components 
of a Fractal component, while the membrane of a component is modeled as a record of attributes and 
processes. Fractal controllers (e.g., component, binding, attribute, content, lifecycle) could be 
developed with the Oz/K extension as well. 

4.3.2 Singularity 

Singularity [Hunt05] is a Microsoft research micro-kernel OS built with managed code written 
in a C# language extension called Sing#. Its kernel is sealed off, and all code runs above the kernel. 
The three main architectural features of Singularity are [Hunt07]: software-isolated processes, 
contract-based channels and manifest-based programs. 

Instead of having processes isolation ensured by hardware, Singularity uses the concept of 
software-isolated processes (SIPs) which have a communication overhead smaller than hardware 
isolated processes. Instead of having physical address spaces, processes have object spaces. SIPs 
consist of safe code, which is submitted to compiler verification of source and intermediate code. 
Code needs to be verified ahead of execution in Singularity. Features like run-time code generation 
are not allowed. Singularity relies is a similar mechanism called compile-time reflection (CTR) which 
produces code when a file is compiled. 

Communication between SIPs is done through channel-based contracts, which are bidirectional 
and strongly typed channels defined by a contract [Fähndrich06]. If communicating processes ned to 
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exchange objects, it implies transferring the ownership of data. The OS ensures that processes do not 
have simultaneous access to the same object.  Instead of using copy or marshalling strategies to pass 
objects across processes, Singularity passes them by reference achieving a higher efficiency. However, 
the reference passing implies changing the ownership of blocks of memory. No two processes can 
have simultaneous access to the same object. Each process has its private heap, but a separate heap 
called exchange heap must be used when objects have to be moved from one process to another. All 
processes can point to objects in the exchange heap but every block of memory in that heap is 
accessible by one process at a time. 

Singularity has the concept of manifest-based programs (MBP), where all programs need a 
static manifest [Hunt07]. Instead of invoking an executable, the user invokes a manifest, which 
contains a MBP’s code resources, its required system resources, its capabilities, and its dependencies 
on other programs. Upon installation of an MBP, the manifest is used for verifying if the MBP meets 
the required safety properties and if its dependencies are met. Every component in Singularity is 
described by a manifest, including the kernel, device drivers, and user applications. 

4.3.3 COM 

The Component Object Model (COM) is a component model created by Microsoft, and used as 
the basis for different technologies of that same vendor such as OLE (Object Linking and 
Embedding), ActiveX and DCOM (Distributed COM). 

In COM, the interactions are usually referred under a perspective of COM clients and servers 
[MSDN11a]. A COM client denotes any code that uses functionality provided COM server, which is a 
component that implements interfaces compliant with COM. A COM server can be of one of three 
different kinds [Szyperski02]: In-process servers are objects living in the same process as the client. 
Local servers are objects in a separate process on the same machine. Remote servers are objects on a 
different machine, which characterizes DCOM. These last two can be generalized as out-of-process 
servers. 

In-process servers are implemented as dynamic link libraries (DLL16) or OLE control extensions 
(OCX), while out-of-process servers are provided as an executable file (EXE). An in-process 
component runs in the same process as the client. This is the fastest way to access objects from 
another component because there is no need of marshaling objects or invocation of methods across 
process boundaries.  Inversely, out-of-process servers reside on different processes. In this case, the 
communication between client and server involves RPC, which enforces marshaling and 
unmarshalling of parameters. As described in [Szyperski02], COM provides transparent 
communication across process boundaries (either local or remote). It creates proxy and stub objects 
on the client and server sides, respectively. 

Because a DLL consists of a library, it is not executable code. It concerns only classes that can be 
loaded and instantiated by executable files. It is possible, though, to use a surrogate executable to 
wrap a DLL so a library can work as an out-of-process server. This surrogate process can be the 
default system-supplied surrogate or a custom surrogate [MSDN11b]. The same surrogate instance 
can load one or more DLL servers. The main advantages of using a surrogate process are fault isolation 
and the ability to service multiple clients simultaneously. This approach also allows a DLL server 
implementation to be used by remote clients, through DCOM. However, a major disadvantage of 
using the system default surrogate process concerns security. This is mainly due to the fact that 
whenever giving security permissions to the dllhost executable [Gruen04], any wrapped DLL server 
could take advantage of that, introducing a risk to malware that can hide behind dllhost.exe, which is 
a typical Windows exploit17. An alternative to minimize that risk is to create custom surrogates that 
could have their individual permissions independently of the system’s default surrogate. 

                                                 
 
16 Not all DLLs provide   COM   components.   DLLs   can   also   just   provide   functions   (   “plain   vanilla   DLL”)   that   are   called  

directly. 
17 Using  the  keyword  “dllhost”  combined  with  keywords  like  “virus”  or  “malware”  in  search  engines  will  bring  thousands  of  

examples on that issue. 
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4.3.4 .NET Platform 

The Microsoft .NET platform presents the concept of application domains, which are referred to 
as “lightweight address spaces” [Stutz03]. An application domain can be seen as a form of 
lightweight process which can isolate applications that run inside the same Common Language 
Runtime (CLR). A single CLR process can run several .NET applications by loading them in separate 
application domains. It is possible to have a multi-application environment without the overhead of 
process context switching. Application domains are isolated but they reside in the same CLR process 
space, so they share some lower level engines such as the garbage collector and just-in-time (JIT) 
compiler. 

Faults in one application domain are also isolated and do not affect the other applications. This 
is useful in environments such as web servers, where each web application is deployed in a separate 
application domain. In case of presenting problems, a web application can be removed or restarted 
without affecting the CLR process or other application domains. The CLR creates three application 
domains by default: System Domain; Shared Domain and Default Domain.  The first one works as a 
bootloader for system types that are shared with all domains, the second one is responsible for 
loading non-system types that are shared. The Default Domain is an instance of an application 
domain where application code is executed and from where other application domains can be loaded. 

Although isolated from each other, it is possible to achieve communication between 
application domains. Objects can be passed across application domains via marshalling using .NET 
Remoting, which is the inter-process communication approach of the .NET platform. Application 
Domains bring flexibility such as the ability to load assemblies (e.g., DLL) dynamically (i.e, at 
runtime). However, there is no individual unloading of assemblies. The process of unloading an 
assembly has to be performed by unloading its containing application domain. Therefore, if other 
assemblies co-exist in the same application domain they would have to be unloaded as well. As 
verified in [Escoffier2006], this limitation is one of the major drawbacks for providing a dynamic 
component-based platform where components may be installed and uninstalled frequently. 

The .NET framework 4 provides the Managed Add-In Framework (MAF) [Nagel10] which is a 
programming model allowing to create and to host add-ins, typically third-party code that needs to 
be used without compromising the host application stability. To achieve that, the MAF allows an add-
in to be hosted in a separate Application Domain or in a separate process. A MAF’s architecture 
comprises a pipeline of seven assemblies (Host, Host View, Host Adapter, Contract, Add-in Adapter, 
Add-in View, Add-in) which need to be provided if an add-in is to be used. Although they provide a 
robust approach with isolation in mind for loading and using third-party code, realizing managed 
add-ins is overly complex considering the number of assemblies to be provided and maintained for 
isolating an add-in. 

The security model provided by the.NET framework 4 targets the execution of partially trusted 
code [Dai09]. Application domains are used as the units of isolation.  Each partially trusted 
application domain has a permission grant set. An enforcement mechanism called Level 2 Security 
Transparency separates trusted from non-trusted code by drawing barriers between code that can do 
security-sensitive things (critical), as file operations, and code that can’t (transparent). 

4.3.5 Java Enterprise Edition 

Isolation of Java EE is usually done in two flavors: either through class loaders namespaces or 
by isolating components in different JVMs. In the former case, isolation fits in the class loading 
delegation principle previously described. Although there is no fixed structure for class loaders in 
Java EE, each vendor has its own implementation that follows the same principles. The figure, based 
on an illustration from [Allamaraju01], clarifies a class loader hierarchy in Java EE. 

The white boxes on the top of the illustrated hierarchy represent the standard Java class loaders 
provided by the platform. The other class loaders represent a general Java EE class loading scheme. 
Each Enterprise Application Archive (EAR) will have its own class loader that will provide each 
application with its own namespace [Allamaraju01]. All EJBs of the EAR will be loaded by the same 
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class loader, thus sharing the same namespace. Each Web Application Archive (WAR) is deployed 
with its own class loader and will not have class visibility to sibling applications. 

 
Figure 4.3. Class loader hierarchy in Java EE server.  

The whole EJB component model was conceived taking distribution into consideration. 
Consequently, the component container supports remote communication, which is based on the RMI-
IIOP protocol. Thus EJBs can also be isolated by separating them in different VMs. A crash in one 
component would not directly affect components hosted in other VMs. However, this choice leads to 
problems such as scalability and memory footprint. The cost of isolating components in separate VMs 
hosting heavyweight runtimes such as EJB containers would be expensive in terms of resources; 
communication overhead and coordination. 

An experimental approach [Jordan06] uses the Isolate API and the MVM for improving 
isolation in a J2EE server.  They evaluate different grains of isolation, like fine grained individual 
servlet isolation, and coarse grained isolation where they introduce J2EE application domains. 
Restructuring the code for isolating servlets individually was difficult, which lead them to discard the 
implementation of other fine grained isolation cases (e.g. EJBs). Coarse grain isolation of application 
domains combining the isolation of whole J2EE applications with the isolation of sub-servers (e.g. 
WebServer, Database, JMS) seemed to be a feasible choice for production servers. 

4.3.6 OSGi  

The OSGi Service Platform was briefly presented on section 4.2.2, where a perspective on the 
service-oriented features that are provided by OSGi’s service layer was presented.  The current section 
focuses on the component-based characteristics ― especially the ones concerning component isolation 
― of OSGi that are related to its lifecycle layer and module layer. 

These different layers are a logical division of functionality provided by the OSGi framework, 
as illustrated in Figure 4.4, from OSGi’s specification [OSGi11]. The module layer provides rules for 
sharing type packages between bundles (i.e., modules); the lifecycle layer provides a runtime model for 
bundles; the service layer specifies the programming model that ensures loose decoupling between 
bundles; and the bundles layer are the actual OSGi modules to be deployed on the framework. The 
security layer is based on Java mechanisms with some extensions (e.g., bundle-level permissions), 
however it is an optional layer in OSGi. 
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Figure 4.4. Colored forms represent OSGi’s layered perspective of its architecture [OSGi11].  

The OSGi modules are bundles in OSGi terminology. They can be dynamically deployed in an 
OSGi framework during execution. In fact, there are a set of possible states in a bundle’s lifecycle: a 
bundle can be installed, started, stopped, updated or uninstalled, as depicted in the state diagram of 
Figure 4.5 based on the one provided in OSGi’s specification [OSGi11]. All state transitions are 
performed at runtime without needing to halt application execution. 

An OSGi bundle is an ordinary compressed jar file containing classes, resources and a manifest 
file. The main difference of an OSGi jar file and a regular jar file lies in the manifest attributes, which 
are read by the OSGi runtime. The bundle manifest contains OSGi specific attributes providing 
metadata that include general information (e.g., version, provider and name) and bundle 
dependencies (e.g., a list of imported and exported class packages). Optionally, the metadata can 
specify the bundle activator class, native libraries information, embedded jar files, etc. If we take into 
account Szyperski’s component definition, a bundle may be referred as a component, since it defines 
its explicit context dependencies; it can be deployed independently and is subject to composition by 
third parties. However the provided interfaces are sort of hidden in the code it provides. The only 
explicit interface a bundle typically provides is the optional bundle activator class, which is the entry 
point of a bundle that must implement the org.osgi.framework.BundleActivator interface. Other 
explicit definitions or more elaborate component models are built as seamless pluggable extensions of 
the OSGi platform. 

 
Figure 4.5. The state diagram illustrates the states and transitions of an OSGi’s bundle lifecycle. 

A bundle can be dynamically loaded or unloaded on the OSGi framework and can optionally 
provide or consume services, which are ordinary Java objects. Services need to be registered in the 
OSGi service registry as providers of the specified interfaces. Service-oriented principles provide 
strong decoupling between components in OSGi. As described in this chapter, the three basic 
elements in SOC are the service provider, the service registry and the service consumer.  In OSGi they 
take the form of a bundle that provides a service, the OSGi service registry and a bundle that requests 
a service, respectively. As in a regular SOA, their interactions involve publish, find and bind 
operations and are centered on the service registry which in the case of OSGi notifies interested 
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parties about service publications or withdrawals. As mentioned in the section 4.2.2, dynamic 
composition mechanisms in OSGi rely on a service-oriented composition approach. Different service-
based component models have been constructed on top of the OSGi service registry helping manage 
the complexity and minimize the burden of service registration and unregistration that govern the 
service dependencies and bindings.  

Enhanced Namespace-based Isolation 

The framework provides each bundle with its own class loader instance. The class loading 
mechanism follows some policies for loading types, basically considering the information provided 
by the Import-Package and Export-Package manifest attributes. The default isolation level that exists 
in OSGi is by means of multiple class loader instances. These individual class loaders introduce a 
basic level of isolation between bundles, which have distinct namespaces that provide a sort of 
enhanced namespace-based isolation. Instead of fault isolation and containment, the goal of this isolation 
mechanism is rather towards encapsulation and type visibility. 

Usually Java applications rely on a straightforward hierarchy while in OSGi the custom class 
loader mechanism allows a bundle class loader to query other bundles asking for the classes they 
export. Instead of a simple child-to-parent visibility in a tree hierarchy, the class loading in OSGi is 
rather a graph that follows a class loading delegation hierarchy where sibling class loaders may 
provide classes between them, as presented in Figure 4.6 which is based on material from [OSGi11]. 

When code from bundles is executing, an object loaded by a given bundle references directly 
the objects whose classes were loaded from other bundles. This direct referencing is also the case 
when a bundle retrieves a service provided by another bundle. Such isolation model does not provide 
any communication channel that can be closed upon bundle departure or that can have security 
verifications performed (e.g., communication via proxy objects where access verifications may take 
place). There is no protection domain (i.e., individual object spaces in memory) that enforces 
communication restrictions or any other forms of application isolation by default. Although it can be 
seen as a disadvantage, this communication model is one of the strong characteristics in OSGi 
because objects are directly referenced and therefore, no performance overhead is introduced by 
additional layers. 

 
Figure 4.6. Example class loader graph in OSGi [OSGi11]. 

Other mechanism that can be seen also as isolation enforcement is the utilization of optional 
framework security permissions (AdminPermission, PackagePermission and ServicePermission) 
defined in the optional security layer which can provide a fine grained control to grant authority to 
other bundles perform certain actions, for example to retrieve a given service instance. 
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Isolation-related Efforts 

In [Gama10a] we provide a brief survey around research projects that address dependability in 
the OSGi Service Platform, either directly (i.e., as a primary goal) or indirectly (i.e., as a consequence 
of a primary goal). Our attempt was to identify which research efforts employed fault-tolerant 
techniques targeting the OSGi platform.  

In this section we use a subset of the projects studied in that work, and focus on a discussion on 
those that provide isolation-related approaches that somehow improve the existing namespace-based 
isolation used in OSGi. We append to the list used here two OSGi standardization efforts that are 
related to component-isolation in OSGi, namely “Remote Services” and “Multiple Frameworks in 
One JVM”. 

V-OSGi. The technique of virtualization is applied in the OSGi platform by Virtual OSGi (V-OSGi) 
[Royon06] where services are isolated in virtual OSGi platforms. The V-OSGi implementation is 
based on the Apache Felix OSGi implementation and consists of a base OSGi framework (the core 
service gateway) which hosts several instances of virtualized OSGi frameworks (virtual service 
gateways). 

By using virtualization customers has the impression that they have exclusive access to the 
underlying platform. The idea behind V-OSGi is to isolate entire service gateways providing the users 
with independent platforms. A virtualized gateway would be available for each service vendor, 
avoiding the communication between services from different vendors, as well as the propagation of 
events from one gateway to another. Services are restricted to interact only with the services in the 
same gateway, that is, a service from a virtual gateway (i.e. gateway that serves a vendor) is not able 
to use a service from another virtual gateway (i.e. a gateway that serves another vendor). A service 
from a vendor is not able to access information from services of another vendor. 

Although the services from different gateways are isolated, the core service gateway gives a 
restricted and controlled means of service cooperation. A static list of shared services (which are 
common to all gateways) is passed from the core gateway to the virtual gateways. Each virtualized 
gateway works as a regular OSGi platform, being able to achieve the normal component collaboration 
through services. Since all virtualized frameworks share the same platform, there is no strong 
isolation boundary that provides fault containment. 

Hardened OSGi. [Parrend09] provides a taxonomy of security threats due to maliciously 
programmed components (bundles) targeting the OSGi platform. The authors describe attacks that 
may bring consequences such as undue access, erroneous output, performance breakdown and 
denial-of-service. They propose a set of recommendations for building hardened OSGi 
implementation that can resist to those types of threats. 

They also provide an experimental implementation of a hardened OSGi that implements some 
of those recommendations is evaluated in order to see the overhead introduced by those techniques. 
Their study does not directly focus on component isolation itself, but they point out security flaws 
that are related with the lack of isolation, such as memory exhaustion or excessive CPU consumption 
where the misbehaving component cannot be identified. Like the previous approach, the changes 
proposed by Hardened OSGi do not introduce any fault containment boundary. 

Virtual OSGi Framework. The Virtual18 OSGi Framework [Papageorgiou08] provides an 
infrastructure of distributed OSGi platforms that transparently act as a single one. It is constructed on 
a structured peer-to-peer network that connects different OSGi frameworks. However, the platform’s 
awareness (transparent to the user) of other frameworks is limited to a few nodes, not being 
necessary that a node knows all other nodes that participate in the same distributed Virtual 
framework. 

The service registry is distributed, and services in one node are available to any node that 
participates in the Virtual framework. Fault tolerance is handled in the Virtual OSGi framework using 

                                                 
 
18 Not to be confounded with V-OSGi [Royon06] 
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replication techniques. If a service is not available in a given node, the call is delegated to the 
successor node in its distributed hash table. The fact that bundles are running in distinct OSGi 
platforms allows strong isolation boundaries between components, providing fault containment in 
case of failure because of a remote bundle. In that case only one of host platforms would become 
unavailable. 

Dependable Distributed OSGi. The approach presented in [Matos08] uses virtualization combined 
with replication techniques for providing a dependable OSGi platform. As a basis, they use the idea 
presented in V-OSGi [Royon06] where the technique of virtualization is used as a way for isolating 
different customer platforms. The text that describes that work is not clear if any intervention on the 
OSGi framework was necessary, which was the case in V-OSGi, however the diagrams that describe 
the architecture show their approach as additional layers on top of the OSGi framework, constructed 
as bundles. 

They combine the virtualization approach with the replication and migration of modules in a 
distributed environment, trying to improve the reliability of OSGi applications in a scalable manner. 
Each customer or provider would host their components and services in its own virtualized platform 
without accessing other providers’ environment, thus addressing confidentiality between different 
providers. Similar to V-OSGi, the virtualization happens in the same JVM where multiple OSGi 
platform instances execute.  

Several customers can have their services running in the same JVM, but the proposed 
architecture allows the measuring of some resources so the application can do the migration of 
modules to other nodes that are idle or consuming fewer resources. Also, it is possible to have the 
recovery of failed nodes, by restarting the services of a failed node in another node. An autonomic 
module is also able to do this migration based on resource usage.  

Just like V-OSGi, the isolation that exists between service providers (i.e., “customers”) in the 
same service gateway does not provide fault containment. A malfunctioning component crashing in 
one platform would bring down all virtualized OSGi instances. However, if the customer services 
execute in a remote node, fault containment can be achieved.  

iJVM. This is the only approach we have found that goes down to the Virtual Machine level. The 
mechanism of iJVM [Geoffray09] describes a customized Java Virtual Machine (JVM), which 
according to the authors is suited for enhancing the robustness of OSGi applications. They provide a 
combination of an extensible virtual machine with concepts of the Java Isolation API (JSR 121). The 
iJVM implements Isolates working as domains that allow lightweight object isolation and also giving 
the possibility to identify to what domain (i.e. a bundle) an object belongs to. They took the design 
decision of keeping direct object referencing as a way to keep the fast communication that exists in 
OSGi, however boundaries for fault containment are not mentioned. 

Their work describes possible code threats (e.g. memory exhaustion, recursive thread creation, 
standalone infinite loop, hanging thread) and how iJVM helps to detect and to handle these threats. 
However, handling such problems requires manual intervention of a system administrator since 
under most of these threats the system may hang or have limited performance until the administrator 
takes a decision. However due to the repairing not being automated the time for taking proper action 
may vary. The fault containment in this case is partial. For instance, a failure on a native library 
would crash the whole VM, however there is fine grained control (bundle level) on excessive resource 
consumption. 

Reliable OSGi. An attempt to provide a reliable OSGi platform uses a proxy-based solution 
[Ahn2007] for providing fault tolerance in the services level. They try to address service reliability 
issues by adding a proxy based layer for accessing services. The proxy implementation is responsible 
for dynamically locating the best service implementation. In case of faults it isolates the failed service, 
by not allowing any calls to it, and tries to locate another service that provides the same functionality. 
This solution customizes an OSGi framework implementation. Apparently, the migration of service 
state is partially addressed, hence giving the impression of optimally working with stateless services. 
As in the majority of the other centralized approaches, Reliable OSGi does not provide strong 
isolation boundaries for fault containment. 
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OSGi Replication. Another approach [Thomsen06] proposes replication as a means to avoid having a 
single point of failure in OSGi-based gateways for home automation systems. A replication manager, 
which takes a form of an OSGi bundle that listens to events of the framework, is responsible for 
performing the replications. They use passive replication, where a primary gateway has backup 
gateways (sub-gateways). These sub-gateways would not have the full functionality of the primary 
gateway, but they would allow the system to keep running with fewer functionality. 

Replication of code, data and application state is partially performed. For instance, since they 
consider that some actions are event-driven (e.g. a new value of a sensor reading) they do not do full 
state replication. With their replication strategy they enhance application uptime, augmenting its 
reliability, consequently affecting the system’s availability. 

FT-OSGi. The FT-OSGi approach [Torrao09] proposes an architecture and implementation of a set of 
extensions to the OSGi platform for handling faults in the OSGi service layer. The authors try to 
improve availability and reliability of services by employing replication techniques (active and 
passive replication) for services fault tolerance. The mechanisms are deployed as OSGi bundles so the 
employed techniques remain transparent to the underlying framework. 

The techniques are employed in a distributed scenario where replication is done in different 
nodes that run OSGi platforms with the appropriate FT-OSGi extensions. All the distribution and 
replication is done transparently from the point of view of the deployed client applications. The 
architecture utilizes a group communication protocol for establishing groups of service replicas. In 
case of a replica failing, it is removed from the group membership. 

Remote Services. This standardization effort has been incorporated in OSGi’s core specification 4.3 
[OSGi11]. It deals with the publication of OSGi services to be remotely accessed as well as the 
representation of distant services to be transparently invoked locally. The specification does not 
provide any technological guidelines or implementation details on how the communication should be 
done. It specifies only what properties must be provided and which ones must be expected when 
dealing with Remote Services.  

Since the service provider and consumer are running in distinct processes, failures are not 
propagate to the remote consumers, which need only to deal with service availability. Since OSGi is a 
dynamic platform, the specification suggests that failures in the communication layer should be 
mapped to the unregistration of imported remote services.   

Multiple applications in One JVM. The standardization attempt called “RFC 0138 Multiple 
Frameworks In One JVM” was present in an early draft of the OSGi specification version 4.3 
[OSGi10a] . It proposes the utilization of multiple frameworks running on the same JVM, in a similary 
way to what is done by V-OSGi. There are different motivations behind this approach such as: 

 Sharing JVM singleton objects (e.g., standard input and output) between multiple OSGi 
instances; 

 How to share packages and services between multiple OSGi frameworks in the same JVM; 

 Hosting several framework instances from different vendors (i.e. different OSGi 
implementations); 

 Isolating different applications in separate OSGi frameworks that have to run in the same 
JVM (e.g., JVM memory footprint issues on embedded devices).  

As stated in the specification proposal, embedding OSGi frameworks in the same JVM is a way 
to provide a private scope mechanism for OSGi applications by means of strong isolation 
characteristics. However, by the term strong isolation we rather see fault contained boundaries, 
which is not the case here, where multiple frameworks share the same JVM. 

Discussion 

Different isolation-related efforts were presented in the form of eight independent research 
projects and two standardization efforts by the OSGi Alliance. We have come up with an analysis 
detailed in Table 4.1. We identified the styles of the approaches as distributed (i.e., working in 
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multiple nodes in a network) and centralized (i.e. targeting stand-alone applications), where the 
distributed approach inherently provides fault containment between distant components. Dealing 
with service departure is still necessary in order to avoid errors when accessing unavailable services. 
Some of them target a centralized solution, which is usually the nature of OSGi applications, and 
others have applied distributed techniques for enhancing dependability. 

In addition we see that the implementation of each one of the studied approaches may be 
placed at one of three different levels:  

 In the highest level the solutions are developed as OSGi bundles achieving a 
transparent layer on top of OSGi;  

 In an intermediate level, but still as pure Java code, by changing the OSGi 
implementation;  

 In the lowest level by using a custom JVM that takes into account the addressed issues. 

Similar techniques have been found among some of the projects. This is particularly true for all 
distributed approaches, which focus on replication strategies on the service level for transparently 
increasing service availability. Although the OSGi platform was conceived as a centralized 
architecture that takes modularity and SOA principles into a JVM for enhancing decoupling, the idea 
of distribution is being used in research on top of OSGi, as we can identify on these approaches. 
Virtualization is another technique used by four different approaches that can be either distributed or 
centralized. 

 

Approach Name Style Fault containment  Implementation 

V-OSGi Centralized No OSGi customization 

Hardened OSGi Centralized No OSGi customization 

Virtual OSGi Framework Distributed Yes Transparent OSGi layer 

Dependable Distributed OSGi Distributed Yes Transparent OSGi layer 

iJVM Centralized Partial JVM customization 

Reliable OSGi Centralized No OSGi customization 

OSGi Replication Distributed Yes Transparent OSGi layer 

Fault-tolerant OSGi Distributed Yes Transparent OSGi layer 

Remote Services Distributed Yes Transparent OSGi layer 

Multiple Applications Centralized No Transparent OSGi layer 

Table 4.1.  Comparative of each isolation-related effort around OSGi technology 

In the other mentioned approaches, fault containment is possible only in the distributed 
contexts (although the network would introduce additional concerns) where service consumer and 
provider run in separate processes. This strong isolation is almost automatic when components reside 
on physically separated machines [Armstrong03]. Among the centralized platforms, the iJVM 
approach provides an enhanced level of isolation in comparison to the standard namespace-based 
mechanism, but limited if we want to consider a fault contained environment. In general, we can say 
that in centralized approaches the level of fault containment is weak. However, the distributed 
techniques could be used locally through multiple processes. This may be resource consuming, but its 
feasibility depends on the target environment: in a server scenario it may not be a problem, while in 
embedded applications such solution does not seem to be adequate. 

Only the Dependable Distributed OSGi approach has shown explicit concern with recovery (of 
failed nodes in their case). However they focus on a distributed context. We combine a related 
approach but targeting a centralized solution for isolation where modules will also be able to migrate 
between environments, rather focused on the goal of isolation as it is going to be detailed in the next 
chapter. 
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4.4 Summary 

This chapter has focused on component isolation. It presented three correlated approaches for 
modular development: component-based development, service-oriented computing and service 
component architecture. While these last two provided a subsection with a brief discussion on 
isolation in each of the two approaches, a section was exclusively dedicated to component isolation, 
focusing on the practical aspects of different component-related technologies.  

A special emphasis was given to the OSGi Service Platform, which of particular interest in this 
thesis, as it is explained in Chapter 6. It also provided the state of the art for isolation-related issues 
around OSGi technology. The most used approaches for isolation were OSGi frameworks in 
distributed environments as well as virtualization techniques. Chapter 5 comes up next, providing a 
broad view on the issues that we target, followed by the propositions of the work conducted in this 
thesis. 
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PROPOSED APPROACH 





Chapter 5  
 
Propositions 

“The ultimate task of the architect is to dream.  

Otherwise nothing happens.” 

Oscar NIEMEYER 
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The previous chapters have focused on conceptual and technological background around the 
work conducted in this thesis. In the current chapter we describe the main motivations for our work, 
the problem we address, and what are our propositions. We briefly discuss the component quality 
characteristics that are common to the dependability attributes we want to address, followed by an 
overview on software evolution and the dependability issues around different types of applications 
that rely on runtime software evolution.  After that, we get into more detail about the techniques to be 
employed. It is followed by a high level view of the envisioned architecture we want to provide, 
consisting of a combination of different techniques that leads to an approach for reducing some of the 
negative impacts brought by component updates performed during application execution. An 
implementation of the proposed approach is described in the Part III of the manuscript. 
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5.1 Motivations 

Software is moving towards architectures that should easily accommodate changes and 
integrate new functionality. Different requirements may demand such evolutionary architectures. 
They can concern mere extensibility requirements for adding new functionality in non-critical end 
user applications such as Web browsers (e.g., Chrome, Internet Explorer) and office application suites 
(e.g., Microsoft Office, OpenOffice), or they can concentrate on critical server applications with high 
availability requirements such as e-commerce and banking systems.  

In order to easily apply changes to such systems, a modular approach is necessary for dividing 
applications in pieces that can be easily developed, integrated and maintained. Component-Based 
Development (CBD) provides such possibility, allowing the construction of applications assembled 
from software components that may involve the integration of different components off-the-shelf 
(COTS), typically coming from a third-party vendor. 

Dynamic component-based platforms allow software to evolve at runtime, that is, components 
that can be located, loaded, and executed during runtime. Such dynamic update mechanism provides 
flexibility but introduces new challenges. This is especially true when dealing with third-party 
components, which make hard to predict the impacts (e.g., runtime incompatibilities, errors leading 
to application crashes) when integrating such third-party code into an application. Component 
quality is something hard to be evaluated and even harder when components are combined together. 
Third-party components whose origin or quality attributes are unknown may be considered as 
untrustworthy since they may potentially introduce faults to applications, although unintentionally. 

We see at least two different scenarios that motivate the creation of stronger component 
isolation boundaries so fault containment between components can be provided. The first one 
concerns third-party components that may compromise application stability in case of misbehaving 
functionality. The second one concerns availability also, but in a different context, where high 
availability applications may maintain components with critical tasks or core functionality running 
apart from the rest of the system, preventing other components from compromising core application 
functionality.  

5.1.1 Component Quality 

Meyer [Meyer03] draws attention to the idea of trusted component, which is a concept centered 
on component quality. He envisions a framework for component quality model, the ABCDE of 
component quality, dividing the properties of interest as Acceptance, Behavior, Constraints, Design 
and Extension (ABCDE). Other more concrete research efforts [Bertoa02, Alvaro05] have proposed to 
use the ISO/IEC 9126 Software Quality Model19 for component quality assessment. However, by 
claiming that the ISO model is too general they have performed either refinements or customizations 
in order to fit that model to a COTS reality. However COTS quality models are difficult to be used 
due to the large quantity of attributes to be measured and the lack of information provided by 
component vendors. 

From a general software perspective, the original ISO 9126 proposes measuring a set of 
attributes in order to assess quality in an Information Technology context: functionality, reliability, 
usability, efficiency, maintainability, portability. If we take these attributes and do an intersection 
with the dependability attributes (availability, reliability, safety, integrity, maintainability and 
confidentiality) from [Avižienis04], presented in Chapter 2, we can find two attributes (reliability and 
maintainability) in common and that are related with this thesis. The next subsections provide some 
considerations on these two attributes, and clarify the concept of trustworthiness under the 
perspective of our work, which tries to ensure such attributes not individually in the component 
level, but rather in the application level as a whole. 

                                                 
 
19 The ISO/IEC 9126 has been superseded by ISO/IEC 25000: Software engineering: Software product Quality Requirements 

and Evaluation (SQuaRE): Guide to SQuaRE  
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Maintainability 

Maintainability may cause confusion concerning the granularity or what part of the software 
development life cycle we refer to. It can refer to the ability of applying changes in the application 
code (e.g., modular design to facilitate code maintenance), applying changes to an application already 
deployed (e.g., applying patches during application execution) and so forth. In a broader sense, it can 
be seen as a property that allows identifying the degree in which software is capable to go under 
maintenance. Under our perspective we are interested in maintainability in the form of MTTR, as 
focused by the view provided by [Avižienis04], so quick recoveries can be performed and the 
downtime minimized in case of failures. By applying this perspective into component technology, we 
can verify that component platforms capable of dynamic updates can improve maintainability, 
although this can be seen just a matter of component technology (the platform), and not a 
characteristic of the component itself [Crnkovic05]. 

Reliability and Trustworthiness 

Terms like dependability, robustness and trustworthiness may cause confusion with the term 
reliability. Some definitions around dependability have already been detailed in Chapter 2.  
Robustness is referred in [Avižienis04] as a secondary attribute of dependability with respect to a 
specific class of faults.  In the ISO/IEC 9126 quality model, the reliability characteristic has fault-
tolerance, recoverability and maturity as its sub-characteristics. Fault-tolerant and recovery-oriented 
techniques are therefore fundamental to make applications compliant with such quality models. 

Despite our considerations, reliability and trustworthiness remain ambiguous since the words 
reliable and trustworthy are synonyms. Trustworthiness is an important concept in a COTS context 
because applications may be composed out of third-party components, which one can rely on or not. 
In [Schmidt03] we find an extensive discussion around component trustworthiness, where they 
mention the word trustworthy as a mix of fuzzy notions that include the terms reliable, dependable, 
faithful, trusty, responsible, credible, believable, loyal, unselfish and true. Their definition, though, 
refers to trustworthiness simply by “measured and perceived dependability”. 

Defining if a component is trustworthiness is not a precise task. In this thesis, the term 
untrustworthy, as its etymology already says by itself, will be used several times to refer to 
components that are not trustworthy. Under the point of view used here, trustworthiness takes into 
account not only the component itself as an individual entity but how the component fits in an 
application (i.e., a composition) in terms of compatibility.  

Untrustworthy Components 

A common criteria to classify a component as untrustworthy is the presence of malicious code, 
which could compromise security. Such issues have been explored in [Parrend09], which enumerates 
different types of possible attacks and risks in dynamic component platforms. Although we do not 
ignore such risks, under perspective of our work we rather see scenarios where a component may 
present non-intentional risks to applications that use it. The considerations taken into account in this 
thesis for considering a component as untrustworthy would lie on: 

(i) Lack of information about the component (e.g., quality attributes, origin). For instance, 
a component that comes from a questionable or unknown provider. 

(ii) Lack of testing with the target application that uses the component. This means that 
the component was not sufficiently tested or not tested at all with the target 
application. Even there is significant information about a component it is hard to 
predict the quality of a composition with another component. 

(iii) Known potential risks. This is the case in which components are known to be unstable 
but are required to be executed, mostly due to a lack of alternatives. This can happen, 
to name a few cases, with a component that uses experimental communication 
protocols; components that are poorly coded but remain as the only option for a given 
functionality; or components that wrap native libraries in managed environments 
(e.g., Java, .NET). 
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Third-party components are typically the ones considered as untrustworthy. However, in-
house components can also be considered likewise, but in such cases they are limited to the cases 
described in (ii) and (iii).  Throughout this manuscript, the concept of (un)trustworthiness will be 
used toward components while reliability will concern a broader characteristic referring to the 
application as a whole. Maintainability will also be seen under an application perspective, although 
the unit of software to be maintained would be a component. Our objective is to work on these two 
attributes, and indirectly with the availability attribute, having the ultimate goal of enhancing 
dependability in dynamic component-based applications.  

5.1.2 Software Evolution 

Most of today’s software needs to continuously evolve and adapt. Intensive use in software 
leads to changes [Lehman85, Oreizy08], which become unavoidable in most systems. Software that is 
used needs to evolve according to its users needs. However, software changes if not appropriately 
managed can conduct to continuously increasing problems. Critical systems and other types of 
software with high availability requirements demand new approaches for reducing, and even 
eliminating the costs and risks of evolving these systems, preferably without incurring downtime. 

Parnas [Parnas94] talks about impacts of software maintenance in a degrading process that he 
called software aging (not to be confused with process aging, already explained in Chapter 2), which is 
observed in the long run as a consequence of inappropriate maintenance. He indicates three 
symptoms of software aging: inability to keep up; reduced performance and decreasing reliability. The first 
symptom consists in the inability to keep up with changes in requirements. The second one, reduced 
performance, is a consequence of changes that will keep software size increasing and the structure 
gradually deteriorating. The third symptom is a result of typical maintenance that keeps introducing 
bugs. 

Lehman calls E-type systems [Lehman85] those that solve a problem or implement a computer 
application in the real world, intrinsically demanding constant evolution since they are governed by 
user needs and satisfaction rather than compliance to a specification. E-type systems have to be 
adapted to a changing environment, changing needs as well as constant and technologies that keep 
developing and advancing. He presented eight software evolution laws in [Lehman96], enumerated 
in the table that follows: 

 

(1) Continuing Change. An E-type program that is used must be 
continually adapted else it becomes progressively less satisfactory. 

(2) Increasing Complexity. As a program is evolved, its complexity 
increases unless work is done to maintain or reduce it. 

(3) Self Regulation. The program evolution process is self regulating 
with close to normal distribution of measures of product and process 
attributes. 

(4) Conservation of Organizational Stability (invariant work rate). The 
average effective global activity rate on an evolving system is 
invariant over the product life time. 

(5) Conservation of Familiarity. During the active life of an evolving 
program, the content of successive releases is statistically invariant. 

(6) Continuing Growth. Functional content of a program must be 
continually increased to maintain user satisfaction over its lifetime. 

(7) Declining Quality. E-type programs will be perceived as of declining 
quality unless rigorously maintained and adapted to a changing 
operational environment. 

(8) Feedback System. E-type Programming Processes constitute Multi-
loop, Multi-level Feedback systems and must be treated as such to be 
successfully modified or improved. 

[Lehman96] 
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Among these laws, continuing change, increasing complexity, continuing growth and declining 
quality are all directly related with the software aging symptoms presented by Parnas. Requirements 
related to such laws as well as the increasing need around continuous application availability have 
motivated software evolution approaches to advance towards runtime software evolution (RSE). 
Systems that provide features supporting RSE are able to change software system’s functionality 
during runtime, without recompilation, by allowing new components to be located, loaded, and 
executed during runtime [Oreizy98a, Taylor09]. Such ability is one of the pillars that enable building 
self-adaptive systems [Oreizy99] that can autonomously adapt and evolve in reaction to 
environmental changes, new requirements or dealing with application errors.  

5.1.3 Plugin-based Applications 

Plugin mechanisms provide a way to easily incorporate new features in applications, working 
as a place holder for third-party components.  The usage of plugins as an extension mechanism has 
become very popular in different types of application. It has been used in different Internet browsers 
like Netscape, Firefox and Internet Explorer; as well as in Rich-Client Platforms (RCP) such as the 
Eclipse Platform [Gamma04] and the Netbeans Platform [Boudreau07].  

Under a software evolution perspective, such mechanism can be seen as a sort of design-time 
evolution, since a plugin provides implementations for behaviors anticipated by the developers of the 
plugin-based application [Oreizy98b]. Since then, plugin platforms have evolved and introduced 
more flexibility to plugin architectures.  Such an example is Eclipse RCP’s extensions and extension 
points mechanism [Gamma04] where a plugin can define an extension point, and other plugins can 
contribute their extensions that fit such extension points. 

Although plugins are an easy way to add new functionality to applications, they can introduce 
an unbound number of errors. A faulty plugin may put at risk the stability of a plugin-based 
application, and even crash it. The main reason of such failures lies on the fact of having different 
plugins running on the same memory space, without any isolation enforcement. Trying to tackle such 
problem, the .NET framework 4.0, provides the Managed Add-In Framework (MAF) [Nagel10] which 
is a programming model allowing to create and to host add-ins (a sort of plugin). They are typically 
third-party code that needs to be used without any risks to the host application. To achieve that, the 
MAF allows an add-in to be hosted in a separate Application Domain or in a separate process.  

Plugins are also a frequent source of instability and crashes for browser users [MDN11]. Web 
browsers are a popular example of applications that support the incorporation of plugins, and also a 
good example of such risks. Most browsers have evolved to the Graphical User Interface (GUI) 
concept of multi-tabbed navigation, which allows users to open and navigate through multiple Web 
pages in the same browser instance. The user has several tabs open, displaying pages from distinct 
URLs. A plugin (e.g., Flash player) malfunction in one of the tabs may crash the browser, closing the 
application and consequently all other tabs. In order to avoid that, plugin-based browsers are using 
separate processes for fault-confinement. 

Google Chrome is one of the first browsers to use the concept of multi-process browser 
architecture [Reis09], where separate processes are used for different components. Each plugin and the 
rendering engine instance for each Web site run in their own processes. The browser kernel runs in its 
own process as well. Although fault tolerance, accountability, memory management, performance 
and security as the robustness are enumerated as the benefits that multi-process browser architecture 
can bring, this multi-process approach introduces significant memory overhead. This separation is 
explicit to the user. Through a menu option, the user can access the list of processes spawned by the 
browser, as detailed in Figure 5.1. The three last processes listed in the figure are plugins that are 
isolated in their own process, while the other processes represent the application tabs. 

Internet Explorer 8 (IE8) is another browser whose process model [Zeigler11] uses a concept 
very similar to Google Chrome’s multi-process architecture. As depicted in Figure 5.2, IE8 uses one 
tab per process and the main iexplore process instance has base GUI elements, while the other 
processes host each tab instance. 
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Figure 5.1. Google Chrome’s task manager lists all processes spawned by the browser, and allows to get 

information as well as terminating them. 

 
Figure 5.2. Multi-process architecture used by Intenet Explorer 8, where each tab is hosted as a separate process 

[Zeigler11] 

Following that trend, the Firefox browser started to move towards the usage of process-based 
isolation strategies [Smedberg09]. This will help preventing application failure due to third-party 
plugin errors. It started with the concept of crash protection (out-of-process plugins) [Mozillazine11], 
by separating plugin execution from the process in which the browser executes [MDN11]. Figure 5.3 
shows a crashed Flash player in Firefox 4. Instead of crashing the browser, the plugin region in the UI 
displays an error message concerning the plugin crash. After the release of the out-of-process plugins 
mechanism, the project roadmap announces out-of-process tabs as the next effort [Mozilla11].  
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Figure 5.3. Error message of a plugin crash in Firefox 4 

5.1.4 Critical Applications Availability 

Research reports show that IT downtime and data recovery represent major revenue losses for 
organizations in Europe [CA10a] and in the United States (U.S.) [CA10b]. They report in [CA10b] an 
amount of losses that surpasses $23.5 billion in Europe (calculated as €17.7 billion in [CA10a]) while 
in the U.S. they are over $26.5 billion dollars. Besides the revenue losses, IT downtime was found to 
have significant effect productivity in European organizations [CA11], where staff would only work 
63% of their usual level when critical systems are compromised [CA11]. 

According to a research report [CA10b], the average annual downtime in 2009 was of 14.2 
hours in Europe and 10 hours in North America American organizations, respectively. In terms of 
availability measured by “nines”, we can calculate 99% in the former case and 99.9% in the latter. In 
terms of revenues, the numbers presented in Figure 5.4 (a) precise the estimated losses due to IT 
downtime in organizations from Europe, where France has losses significantly higher than the other 
assessed countries as shown in part (b) of Figure 5.4. 

Either due to outages because of failures or because software had to go under maintenance 
(e.g., module updates, bug fixes), these numbers demonstrate the importance of keeping critical 
systems up and running without interruption as much as possible. Criticality can be of different types 
― safety-critical, business-critical, mission-critical or security-critical ― but in general, systems are 
considered as critical when failure or malfunction will lead to significant negative consequence 
[Coyle10]. The increasing complexity and ubiquity on software are transforming critical software into 
software that is designed to be easily changed, extended and reconfigured [Hinchey09]. 
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Country 
Annual Revenue 

Loss  (€) 

France        6 406 000 000   

Germany        4 236 000 000   

Spain        2 906 000 000   

UK        2 681 000 000   

Sweden          754 000 000    

Finland          443 000 000    

Italy          428 000 000    

Norway          377 000 000    

Netherlands          329 000 000    

Denmark          281 000 000    

Belgium          194 000 000    
  

(a) (b) 

Figure 5.4. Annual revenue loss by country due to IT downtime in Europe [CA10a] 

Runtime software evolution (RSE) is appropriate for such types of systems with high 
availability requirements. The principles behind RSE are of key importance when autonomous critical 
systems encounter errors during operation, as they must be capable of identifying, detecting, and 
recovering from errors, potentially without human assistance (error processing) [Hinchey09]. Fault 
treatment and error processing are priority tasks in critical systems. Even though eventual 
operational errors that may be originated during application execution, the frameworks or 
applications that support RSE also carry potential problems that are inherent of the dynamic update 
process performed during runtime. 

5.1.5 Runtime Update Challenges 

When dealing with RSE, the typical units of replacement are components which are 
interconnected to form an application. Indeed, the possibility of dynamically performing updates on 
parts of the application while it is still running brings a lot of flexibility. Component-based software 
development and service-oriented computing offer replaceable building blocks for realizing the goal 
of runtime software evolution. These approaches can be employed in different techniques for 
constructing adaptive components and services for constructing flexible and evolvable applications. 
However, this flexibility comes at a cost since such dynamic reconfigurations have a significant 
impact in application execution. Different considerations concerning this dynamism have to be taken 
into account [Rudametkin10] when developing software infrastructure and components targeting an 
approach where runtime software evolution is possible.  

Dynamic updates20 may be overlooked by others but there is a complex series of events that are 
involved with such mechanism. Despite different perspectives on component deployment lifecycle 
(e.g., install, start, install, update) [Carzaniga98][OSGi11][Szyperski03], for the sake of simplicity we 
utilize a general and temporal perspective on the phases that are present in a lifecycle state transition. 
These phases consist on stages before, during and after a transition, which we will generally refer to as 
an update. The possibility of updates performed during application execution introduces a myriad of 
consequences which are of different nature and impact for each of those stages, being a potential risk 
to application dependability. Some of these issues, grouped by the corresponding phase, are briefly 
discussed next. 

 

                                                 
 
20 The terms runtime update and dynamic update will be interchangeably used concerning system updates performed 

dynamically (i.e., at runtime).  
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Before. As component-based applications are comprised by a set of components with 
interrelated dependencies, inter-component dependency asks for a verification of the 
requirements (e.g. required hardware) ― also called prerequisites ― in order to check if a 
component can be installed in the runtime [Kon00].  If a component is to be replaced, 
verification mechanisms should ensure type versioning consistency by not allowing type 
compatibility to be broken [Brada06]. The fact of adding or removing components during 
application execution may change (or refresh) the set of interconnected dependencies. 
Therefore the system is lead to a reconfiguration that can impact other components in the 
application. This raises questions around the cost of an update: how many components will be 
affected? How long would the update take? 

During. An update should not avoid interruptions of on-going operations that would be directly 
or indirectly related to such update. Some systems disregard such issue while others try to put 
constraints regarding updates. As an example, [Kramer90] and [Vandewoude07], respectively, 
propose the criteria of quiescence and tranquillity as safe update states where the node (i.e., 
component) to be updated should not be engaged in transactions fired by the node itself or by 
nodes that may call it. This sort of safe update state may not be certain in environments where 
the application provider is not able to control all the components, such as in a service-oriented 
architecture. In such cases the system must cope with temporary unavailability [Touseau08] of 
services in case of updates. Maintaining component state is another issue when components are 
updated and their state needs to be preserved while its behavior is updated to a new version. A 
transactional update mechanism should ensure restoration of a previous component version in 
the case of unsuccessful updates, so the system is able to perform a rollback and restore 
component’s behavior and state as it was before the update. 

After. The process of a component update can be successful but after it takes place, there may 
be inconsistencies such as dangling objects left or executing tasks belonging to the component 
that were not properly terminated. Concerning the inter-component dependencies, the system 
at this stage must verify the dynamic dependencies among loaded components in a running 
system [Kon00]. In some dynamic platforms, the fact of loading a component does not mean 
that it is ready to execute. Other issues are rather related with regular application execution, 
but may be directly affected after the update of a component that eventually introduces faulty 
behavior. Fine-grained resource monitoring allows the application to keep monitoring 
component performance in order to identify which components are consuming resources (e.g., 
CPU, memory) more than expected. By identifying which component is responsible for that, 
corrective measures can be directly addressed to it. Besides excessive resource consumption, 
other errors (e.g. programming errors, non-deterministic faults) may be caused by components 
updated at runtime. Fault containment mechanisms should prevent errors introduced by one 
component from being propagated to others. The continuous verification of non-functional 
attributes conformance can be seen as another issue to be considered after dynamic updates. In 
SOA they typically take the form of quality of service (QoS) attributes (e.g., performance, 
availability) represented in a service-level agreement (SLA). If the monitored QoS diverge from 
expected values the system should perform dynamic optimizations [Argwala06, Grassi07] 
which could also include the update or selection of other components or services. 

This section illustrated, through a non-exhaustive list, some of the issues related to runtime 
updates that may compromise application stability. Besides verifying if the runtime update process is 
possible, an update can end up introducing faulty behavior in the application as a side-effect that 
reduces application reliability. 

Although the work performed in this thesis does not strictly focus on any of the three 
presented phases (after, during and before updates), we are concerned with the continuous 
observation of dynamic applications and their components, in a context that would present some 
form of runtime evolution. Most of the problems we tackle, listed in the next subsection, may be 
originated after runtime updates. 
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5.1.6 Target Problems 

Components can be individually tested during development (e.g., unit testing), but when 
integrating them in a system it is also important to test how different components will interact. It 
helps to detect in advance any incompatibilities or application errors that may arise at runtime.  It is 
hard to predict system trustworthiness when such a system is a result of components (or services) 
composition. For instance, if two components A and B are considered as reliable but they were both 
tested individually, it does not mean that a composition of A and B will be reliable as well 
[Crnkovic02]. But in the case only one of the components of a composition is unreliable, the whole 
composition becomes unreliable as well. Whenever a component fails during execution, the whole 
composition that depends on it can fail, and depending on the failure, the whole application may also 
go down. Awkwardly, there may also be cases where no components are observed to fail, but the 
system still does not work as expected [Armstrong03]. Different causes may contribute to system 
failure, according to [Crnkovic02]:  

 defective software components,  

 problems with interfaces between components,  

 problems with assumptions (contractual requirements) between components, and  

 hidden interfaces and non-functional component behaviors that cannot be detected at 
the component level 

In part, the first two problems could be detected by testing. Formal methods used in static code 
analysis are effective ways for testing and detecting errors in scenarios where components that are 
involved in a composition are known ahead of application execution. Indeed, there are drawbacks 
such as the size of software that such approaches are able to analyze (i.e. state explosions in larger 
software analysis) and the limited amount of people that master these techniques, which are not 
trivial. Either using formal methods or not, combinatorial explosions are a major problem if we try to 
predict combinations by validating a component against all possible compositions and system 
configuration [Szyperski02]. However, in case components can still be integrated after deployment of 
the system, the amount of possible combinations grows. If the target component platform has an 
open COTS market, where new components are periodically released, the set of combination 
possibilities keeps growing. 

By not knowing the components ahead of their deployment (e.g., only the interfaces are 
known, but not the implementations), the task of integration testing becomes more difficult besides 
being costly to be performed at runtime. Fault tolerance and containment are useful for systems that 
may face unanticipated events at runtime that are difficult or impossible to test during development 
[Tian05]. As also remarked in [Szyperski02], fault isolation is of essential importance in component-
based systems since “a component system is only as strong as its weakest component”. The 
application shown in Figure 5.5, which will be used as a reference example throughout the rest of the 
chapter, illustrates components that are not completely isolated from each other in a centralized 
component platform (i.e., not distributed). In case an untrustworthy component is dynamically 
introduced at runtime, application stability may be compromised since it is not possible to provide 
guarantees that faults from such unknown component will not propagate to other components. It is 
important to provide mechanisms that can avoid the propagation of faults from one component to 
another, so the system can still execute even if one of its components crash. The identification of the 
faulty component is also an important issue. In the same way, there is a need to automatically react to 
possible faults and re-establish normal system execution and correct behavior upon component 
faults. 
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Figure 5.5. Dependencies between different components that share the same isolation boundary in an application. 

From a general perspective, our objective is to enhance dependability in dynamic component-
based applications in scenarios where untrustworthy components can be loaded at runtime. We 
address a subset of dependability attributes [Avižienis04], namely reliability, maintainability and 
availability. Under specific objectives, our propositions use resource monitoring and fault 
containment to tackle issues mostly originated after dynamic updates, but that can also take place 
during application execution even though no dynamic updates were performed. We also take into 
consideration some issues observed during updates (interruptions of on-going operations and 
component state). The origins of such concerns are particularly around instability accidentally 
introduced by untrustworthy components, typically originated from a third-party. 

5.2 Proposed Approach 

In dynamic component platforms (e.g., OSGi [OSGi11], SOFA/DCUP [Plasil98], DynamicTAO 
[Kon00], .NET [Nagel10]), that support runtime software evolution, where it is possible to load 
components during application execution.  That flexibility results in different problems among which 
some have been discussed here. Possibly, untrustworthy components may execute in the platform 
and augment the risk of faults. In order to minimize such risks and to provide some degree of 
autonomy to applications whenever facing unexpected errors from components, we propose the 
utilization of mechanisms that take into account some of the enumerated issues concerning dynamic 
updates. Such techniques are put together in an architecture that aims to enhance the dependability 
of dynamic component-based applications. The objective is not to introduce fault-tolerance in 
components, but rather make the component platform more fault-tolerant with the ability to 
automatically recover from errors. 

Our main motivations lie in the possibility of enabling the execution of untrustworthy third-
party code without compromising application stability. We believe the core functionality of an 
application must be separated from untrustworthy third-party code, thus minimizing the possibility 
of error propagation and reducing application disruption. Therefore, we propose the usage of 
component isolation techniques combined with recovery-oriented computing in order to enhance existing 
dynamic component platforms. 

Web browsers have already proven that putting third-party components in isolation can 
improve overall robustness. The component isolation techniques we propose must provide stronger 
isolation boundaries between components but also must provide some degree of transparency and 
flexibility, therefore having the following requirements:  

 Fault contained component isolation boundaries to protect other components and 
underlying application from faults 

 Transparent communication mechanisms across isolation boundaries 
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 Dynamic (i.e., performed at runtime) isolation of components 

 Runtime reconfigurable component isolation levels 

The recovery-oriented computing principles enable application or component recovery in case of 
faults. These techniques need to be backed up by monitoring and diagnosis in order to detect which 
components need to be recovered. By taking that into account, we propose the following to be 
expected for a solution that employs such principles: 

 Mechanisms for monitoring the application and its components 

 Techniques for diagnosing component faults and malfunctioning 

 Self-recovery mechanisms to recover from a faulty state 

 Recovery-oriented approach toward crashed components 

Our goal is to put together such techniques for providing a general solution that does not 
require changing existing applications in order to take advantage of the proposed mechanisms. We 
want to be able to execute untrustworthy third-party components in isolation so they can not harm 
the system. However, the objective is not to put the components in isolation forever since it means 
IPC overhead. After observing that they do not present any harm to the system they should be 
promoted during application execution, ideally through an automated mechanism.   

The subsections that follow provide more details concerning the propositions around the 
proposed fault-contained component barriers, as well as the techniques concerning self-recovery. 

5.2.1 Fault-contained Boundaries 

Different reasons for considering components as untrustworthy have been cited, such as lack of 
testing or lack of information about a component. Being untrustworthy does not mean that a 
component is harmful. However, dynamically loaded code may inadvertently bring a program down 
or significantly degrade application performance and responsiveness. This is an existing risk despite 
the component developers intended to provide malicious code or not. By establishing barriers for 
fault containment, we can minimize such impact in the application and also facilitate the recovery of 
components. If a new component deployed into the system introduces a problem, the application 
should not stop working nor be completely reset. If a component with code of poor quality or not 
exhaustively tested runs behind a fault-contained barrier, the underlying application is not harmed in 
case of faults in that component. It also becomes easier to purge a component from the system 
without disrupting the application. 

We propose the utilization of stronger isolation boundaries for components so fault 
containment can be possible, providing a sort of sandbox for untrustworthy components. Throughout 
this manuscript we will use the term sandbox as a simple way for describing such a component 
isolation container. The term is not to be confused with the sandboxing technique proposed in 
[Wahbe93].   

Figure 5.6 takes the application previously illustrated in Figure 5.5 and adds isolation 
boundaries to it, that is, two component sandboxes. In this new example, there are different 
possibilities of isolation.  Components A, B and C, which have dependencies towards them, are 
individually isolated according to the application presented in the left side (a) of the figure. Another 
approach is the possibility of grouping different components inside the same isolation boundary, 
which is the case of components B and C of the application configuration presented in the right side 
(b) of the figure. The latter case is useful in scenario where different component providers can deploy 
their components in an application. As an illustrative example we can take a Web server that is a 
common application for different clients (i.e. a component provider) that can use their own isolated 
domains for deploying their components, which could also be seen as Web applications. A failure in a 
component from a given provider is not propagated to components outside its isolation boundary 
therefore other Web applications are not penalized. 
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Figure 5.6. Isolation boundaries added to application components individually (a) or in groups (b) 

Component Grouping Criteria 

Both illustrations contained in Figure 5.6 shows only the components A, B and C within 
isolation boundaries while the remaining components are residing in the same isolation boundary as 
the rest of the application. In the figure, set of untrustworthy components A, B and C are the untrusted 
part of the application, while the other components are the trusted part of the application.  

Different approaches such as process-based and domain-based isolation can provide containers 
with the desired strong isolation boundaries. As already presented in Chapter 3 such boundaries 
imply communication costs. Therefore, the communication performed by components B and D, for 
instance, would likely involve some sort of IPC. In the proposed architecture design we do not 
specify how the isolation boundary is to be implemented. It could be an in-process facility, separate 
local processes, software enforced isolation, distributed processes, and so forth. Providing one 
isolation container per component is the ideal mechanism in terms of protection. With this 
granularity, a failure in any component is contained in its isolation boundary and is not propagated 
to the rest of the system. However, this introduces prohibitive communication costs and performance 
overhead, since the communication across strong isolation boundaries typically implies IPC. 

This communication cost between components is discussed in [Szyperski02] where it is said 
that such overhead can be tolerated if the switching between isolated environments is not frequent. 
However, in the case of inter-component communications happening at a higher frequency and in a 
synchronous way (i.e., the caller has to wait for a response), the communication cost is high, having 
an impact in overall performance of the application. This may influence the decision of how to group 
components for isolating them. We suggest cohesion, coupling and trustworthiness as three grouping 
criteria for choosing which components should share the same isolation container. While the first two 
criteria can play a role in minimizing the communication overhead that may be incurred by isolation, 
the last criterion cannot say much about it in advance and may also be combined with the other two. 
The next paragraphs discuss them into more detail. 

Cohesion. It is related to connectivity between elements of a single module. A module has 
strong cohesion when it represents a task of a problem domain and its elements contribute to 
that task [Eder94]. Although it is a quality parameter that focuses on intra-module correlation 
of elements, cohesion can also be considered for groups of components that perform related 
tasks in the form of a subsystem or an application. Modules of that form can be deployed in a 
component platform and co-exist with other subsystems or applications. For instance, a Web 
application deployed in a Web server, a persistence module deployed in a middleware and a 
set of correlated plugins deployed to an RCP application can all be seen as cohesive modules, 
either physically or logically grouped. We can find platforms that allow components to be 
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deployed at runtime without establishing any explicit grouping or delimitation for identifying 
a cohesive application or subsystem. By using cohesion as a criterion for isolating components 
we are able to make these “hidden” subsystems or applications explicit. In addition, isolating 
groups of components together would minimize communication costs between components of 
the same group, which would not need to use IPC. Also, in case of failures in the cohesive 
group it would present a sort of modular functionality failure (e.g., the application is 
temporarily running without a persistence engine). 

Coupling. This concept explicitly relates to inter-module relationship. It measures the strength 
of the associations between modules [Eder94]. In this case, one should consider the case where 
a component has too many components coupled to it. There may be cases where it is more 
appropriate to host highly coupled components in the same isolation boundary. For instance, if 
several components are coupled to a component A, faults on that component would 
compromise the application. Hosting it in an isolated component container would protect the 
rest of the system. However, by isolating A the components that are coupled to it would have 
the performance penalty of IPC. Components that communicate frequently with A can be 
moved to the same isolation boundary in order to avoid that IPC cost. In that case the 
components that co-exist with it would fail as well but the rest of the application is shielded 
from failures originated in A. 

Trustworthiness. This type of grouping would be based on trustworthiness of components. 
Different characteristics can be used for evaluating the trustworthiness level of components, 
and, for instance, hosting them in different isolation containers. For instance, components of 
unknown origin could be hosted in one container, while native components would be hosted in 
another one, and components from the same provider would be placed in their respective 
containers in a per-provider basis. A straightforward approach for an isolation container that 
takes trustworthiness into account would be taking no levels into consideration, and host all 
untrustworthy components in the same isolation container, separated from the rest of the 
system. In that case, we can say that there are actually two levels of trustworthiness: 
trustworthy and untrustworthy. IPC could also be taken into account by combining this 
criterion with one of the previous two. This could be the case, for instance, of using an isolation 
container for untrustworthy components that perform interrelated tasks (i.e., cohesion). 

Dynamic Isolation Policy 

The proposed approach keeps information about component isolation separate from the 
application. A separate file must contain the rules that represent isolation policy, as shown in Figure 
5.7. The component platform is aware of the utilization of such policy file but it remains completely 
transparent to existing components and applications that need not perform changes on existing 
component or application code. Another important characteristic that must be taken into account 
concerns the functioning of the isolation mechanism. Since dynamic component-based platforms 
enable reconfigurations to be performed at runtime, the isolation mechanism should work likewise. 
During start up or installation of a component, the information in the policy file must be used in 
order to determine if such component needs to run in isolation or not.  
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Figure 5.7. Usage of an isolation policy at runtime 

The model presented in Figure 5.8 generalizes the idea around an isolation policy according to 
the basic concepts we expect. An application represents a component-based application and should 
have one isolation policy, which has at least one isolation level. An isolation level is implementation 
dependent since it can be interpreted in different ways, especially if in an isolation approach that 
allows different components to be hosted within the same isolation boundary. For instance, a level 
can be seen as a level of trust, or as group of components according to the grouping criteria 
previously discussed. It can also be seen as a group of correlated components (e.g., implement the 
same service, the same API), and so on. 

  
Figure 5.8. Base model that represents the isolation concepts 

Each level is comprised by a set of rules, which are a group of conditions. A condition can be, for 
example, an expression that determines the criteria for identifying an untrustworthy component. For 
instance, a component provided by company X, or a component that implements a given API. The 
isolated entities (e.g., component, module) result from applying the policy to the application during 
start up as well as to new components dynamically loaded into the application. The same rule can be 
responsible for the isolation of more than one component instance. 

The model described here is of general purpose but it can be specialized according to the needs 
of a particular solution. For instance, one may want to customize the isolation level by taking into 
account security considerations such as distinct permissions (e.g., file system permissions, 
object/component instantiation permission) for each isolation level.  

Runtime Reconfigurable Isolation 

If after observing the activity of an isolated component, it is verified that it has never caused 
any harm to the application, one may want to “promote” that component to a less restrictive isolation 
level. A justifiable reason to do so is to avoid the communication costs when a component needs to 
communicate with other components outside its isolation boundary and vice-versa. Therefore, 
running components within the same isolation boundary is important in terms of performance. 
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Since the isolation mechanism is governed by the policy, changes in the isolation must reflect in 
the policy. Therefore, the isolation policy must be synchronized with what is happening at runtime. 
To illustrate that, consider a component that the policy dictates that it should run isolated from the 
main application. After using all necessary functionality from the untrustworthy component, it is 
observed that its execution apparently brings no harm to the application. The component can then be 
promoted, either automatically or by an administrator, to execute in the same isolation boundary as 
the main application. If due to any reason the whole application is restarted, that component that was 
promoted will be brought back to execute within its original isolated boundary because the policy file 
was not updated. 

Figure 5.9 provides a three-step simplified view of the runtime promotion of a component. In 
step (1), the component C enters the reconfiguration stage because of its promotion from its current 
isolation boundary to another one, which in this case is the trusted part of the application. In step (2) 
the isolation policy is updated to reflect the promotion of C. If the application is restarted the policy 
will be interpreted again and the information about C will be persisted. The third step (3) shows the 
component C residing within its new isolation boundary. The communication that exists between 
components C and I implied in higher communication costs. In the new scenario, it is not necessary to 
do so since the calls between components need not to cross isolation boundaries. 

 
Figure 5.9. Illustration of a reconfiguration fired by a runtime promotion of a component 

5.2.2 Monitoring and Self-recovery 

Although different techniques propose design diversity as a fault-tolerant approach, this is 
something unsuitable to our context. Since the target dynamic applications are open environments 
that can be reconfigured by adding and removing components, we cannot ensure that a new 
component will internally have such redundant design or that compositions will rely in redundant 
components. We rather try to enhance dependability by taking the approach proposed by ROC in 
which we must cope with faults instead of trying to avoid them.   

Fox and Patterson [Fox05] mention that a recovery-oriented approach must be considered to 
achieve dependability since the usage of COTS “as-is” has lead to more error-prone and less 
dependable applications. A significant monitoring and management component is fundamental for 
dependable systems [Harauz09]. As part of our propositions, we use ROC in a self-recovery approach 
that employs monitoring and management techniques in order to improve dependability in dynamic 
component-based applications. 

The ROC approach proposes to quickly recover from faults, helping to reduce application 
recovery time (MTTR). By affecting MTTR, this technique helps addressing maintainability and 
consequently availability. From ROC, we employ principles taken from crash-only software and 
microreboot techniques [Candea03].  These techniques are used for performing resets isolated faulty 
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components in order to purge them from memory and bring them back to execution without needing 
to reset the whole application. Targeting the recovery of individual component is a very good 
strategy that impact in maintainability and availability as we can verify in [Gray86]. They mention 
modularization as a good way for providing high availability in systems since modules can be the 
unit of failure and replacement. When replacing a module, the application can give the impression of 
having instantaneous repair. With such significant reduction in the MTTR, a failure recovery can be 
perceived as a delay.  

Reliability is also addressed by reducing MTTF. This is possible through monitoring 
mechanisms that can help identifying potential faulty behavior in components before any error is 
produced or any failure takes place. The detection gives information that can be used for performing 
microreboots in such components before the fault is propagated to other components. In case of an 
individual microreboot not being effective against a component, the whole sandbox should be 
microrebooted. Also, if a component sandbox crashes or hangs, it can be automatically recovered to 
normal activity without affecting the other isolation boundaries. 

Autonomic Manager 

In order to provide the desired autonomous functionality, we propose each component 
isolation container to be wrapped as an autonomic element being capable of detecting faulty behavior 
and performing self-recovery upon faults (e.g., component faults) or failures (e.g., container crash). 
Figure 5.10 shows our example application that uses two additional isolation containers (one hosts 
component A and the other hosts components B and C) for untrustworthy components. In the figure, 
each isolation container has its own autonomic manager instance connected to it.  

 
Figure 5.10. Autonomic managers for the isolation containers that host untrustworthy components 

 As already detailed in Chapter 2, the concept of an autonomic element is taken from 
autonomic computing (AC), consisting of a managed element and an autonomic manager. In our case, the 
component isolation container is the element to be managed autonomously. Autonomic systems are 
comprised by sets of interconnected autonomic elements capable of self-management, self-
configuration, self-optimization and self-healing. IBM’s AC architectural blueprint [IBM06] suggests 
that a resource may have one or more autonomic managers, each implementing a self-* control loop. 

Our proposition of autonomic element is currently limited to providing self-healing 
characteristics to the component sandbox. Quoting Ganek03, we can describe exactly the objective of 
our propositions concerning self-healing: 

 

“The self-healing objective must be to minimize all outages in order to keep 
enterprise applications up and available at all times.” 

[Ganek03] 
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Closed control loops are the typical implementation suggested for the realization of autonomic 
managers [IBM06]. The MAPE-K (monitor, analyze, plan, execute and knowledge) approach provides 
separation of concerns, with good modularization of the tasks to be executed in a control loop. In 
Figure 5.11 we show the usual architecture of a MAPE-K control loop, which is used in the autonomic 
manager of the component isolation container. The figure depicts the isolation container touchpoints to 
be used by the autonomic manager: the sensor, used for gathering monitoring data, and the effector, 
used for performing operations on the sandbox. 

 

   
Figure 5.11. Autonomic manager’s control loop architecture to be used with the self-healing component sandbox. 

Continuous Analysis 

Whatever decision is taken concerning the isolation, if temporary or permanent, the continuous 
observation of the sandbox is important in both cases. Recovering from crashes and malfunctioning if 
fundamental for both choices. The continuous monitoring and analysis provided by feedback control 
loops allows doing that, taking proper action whenever necessary.  

Under a temporal perspective, one may use essentially two approaches: quarantine and 
permanent isolation. In the case of quarantine, the intention is to temporarily host the component in an 
isolation container. After observation and analysis of the component, if it is verified that it presents no 
risks to the application, it can be promoted (automatically or manually, by an administrator) to be 
hosted with other components, thus minimizing IPC costs. The case of permanent isolation can be 
intentional or unintentional. The former would consist in cases where it is desired to permanently 
isolate components, either because of potential dangers for application stability (e.g., native library, 
unstable code) or for other reasons (e.g., individual reboot from the rest of the system). The latter case 
of permanent isolation would concern components that are not able to leave the quarantine because 
observations show that they are unstable or present potential threats to system stability.  

All isolation, monitoring and recovery mechanisms proposed here should not have direct 
impacts in target applications. A key point to be considered in the implementation of our 
propositions is that existing applications would not have to be changed in order to execute 
components in isolation or to enable monitoring. The mechanisms should reside in the component 
platform, and the isolation information about the components should be separate from the 
application by means of a policy file. The monitoring and recovery mechanisms should also be 
located outside the application in order to minimize performance impacts, and also not to be affected 
by possible failures of the monitored environment.  

Applications are not intended to be changed in order to make them run in component 
platforms that provide the mechanisms that we propose. However, they can take more advantage of 
our approach if some considerations are taken into account when developing components or when 
deciding to isolate components. For instance, stateless components would be more appropriate for 
the recovery mechanism, and component grouping criteria must also be taken into account if less IPC 
overhead is desired. 
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5.3 Summary 

Different motivations were presented in this chapter, aiming mechanisms for the construction 
of more dependable dynamic component-based applications. It discussed about the issues in 
platforms that allow runtime software evolution, which bring flexibility but also risks because of 
dynamic updates. The motivations for using such types of platforms can vary from plugin-based 
applications that just want more flexibility without needing to stop during updates; to critical 
applications that have high availability requirements and need to be continuously running even 
during software updates. The installation of third-party components during runtime also can bring 
potential risks when quality attributes are not known in advance or cannot be precisely evaluated 
when combined with the components that comprise the running environment.  

We have presented our propositions that address problems that can take place after dynamic 
updates take place. Our proposed solution concerned the general architecture of a self-healing 
component sandbox with the purpose of providing stronger isolation boundaries that prevent fault 
propagation. While chapter provided a general view from an architectural perspective, the next 
chapter will provide a more practical perspective by presenting the dynamic component-based 
platform of choice for implementing and validating our approach, and what particular issues we 
want to address. That chapter is followed by the implementation part of this thesis, subdivided into 
three chapters. 

  

. 





Chapter 6  
 
Target Component Platform 

“We can't solve problems by using the same kind of thinking 

we used when we created them.” 

Albert EINSTEIN 
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In the last chapter we presented a broad view on problems concerning the quality and stability 
of components and their resulting compositions. It was followed by our propositions to minimize the 
impacts of using untrustworthy components in a dynamic component-based scenario. In this chapter, 
we map these problems to a more specific scenario and materialize the proposed solution having the 
OSGi Service Platform as our target dynamic component-based platform. 

Before delving into the implementation details, this chapter describes the motivations behind 
the choice of OSGi as the target of our implementations for validating our approach. We enumerate 
the concrete issues targeted by our solution that will be used as the base hypotheses for our fault 
model. We also provide a brief overview on the division of the implementation work that gives the 
structure of the chapters that comprise the implementation part of this document.  Some ambiguous 
or unknown terms to be used throughout the implementation chapters are briefly explained in the 
end of this chapter. 

The implementation we performed uses a sandbox for hosting component dynamically loaded 
during application execution. This untrustworthy part of the platform does not propagate faults to 
the main environment and uses a recovery-oriented approach for re-establishing its service in case of 
failures.  

Our goal is to implement techniques for conducting us to the objectives presented in this thesis, 
without being too strict about OSGi specification compliance. This is an experimental approach that 
performs changes in the default behavior of OSGi frameworks. Therefore, adaptations should be 
necessary due to limitations of the platform in use. In general, one of this thesis’ goals is to conduct to 
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a discussion on how (i.e., what design changes are necessary) these characteristics could be 
incorporated in dynamic component-based platforms ― not being limited to the OSGi platform ― in 
order to have more dependable applications. 

6.1 OSGi as the Target Component Platform 

The implementation of our approach focused on the OSGi Service Platform, which was 
presented in Chapter 4. The OSGi technology was originally targeted to home gateways, which is the 
reason for its original acronym, Open Services Gateway Initiative (now an obsolete term). Its 
increased adoption in different software industry contexts, such as the Eclipse IDE [Gruber05] and 
Java application servers [Desertot06] (JOnAS21, Glassfish22, WebSphere23), shows evidence that the 
OSGi platform seems to be de facto dynamic module system for Java applications. At the time of 
writing of this thesis, standardization efforts around Java modularity have been under inactive status 
in the Java Community Process (JCP) website. These specifications concern a Java Module System 
[JCP06b] and improved modularity support [JCP07]. While the former has been halted [Reinhold08], 
the latter was postponed [Archives10] to future versions of the Java Platform.  

OSGi has also been extensively used in different domains of academic research24, especially in 
dynamic domains like pervasive computing, where a variety of topics orthogonal to that area are 
covered, such as context-awareness [Gu04], home automation [Bottaro07b, Bourcier07], healthcare 
[Wen-Wei08, Martin09], to cite a few examples. Due to the widespread adoption of OSGi technology 
in software – either industrial or academic – that needs to be based on platforms that support runtime 
software evolution, and the continuous growth in utilization, we found of significant value to 
implement and validate our approach in a platform that has such a long reach. Since a COTS market 
around that platform is emerging [OSGi07] and third-party components are increasingly becoming 
available, we believe that in OSGi there are several scenarios and a real need concerning the ability to 
execute dynamically deployed untrustworthy third-party code isolated from other components. 

The principles and implementation efforts described here aiming dependability in dynamic 
component-based applications applied to the OSGi technology can also reach a wide spectrum of 
applications, both in industrial and academic projects. Although our implementation and validation 
of the approach target the OSGi platform, the propositions are of general purpose and could be 
applied to other component platforms. 

The goal with our implementation is not to completely transform the OSGi platform into a fully 
dependable component platform. We rather focus in validating the proposed techniques so we can 
verify if they can really help into moving a step further toward more dependable dynamic 
component-based platforms. Therefore, this proof of concept works as feasibility study for evaluating 
the effectiveness as well as the impacts when implementing our proposed approach and perhaps in 
the future employ these techniques in different contexts. 

6.2 Issues 

The OSGi platform does not provide fault-tolerant mechanisms for bundles running on top of 
it. This responsibility is rather delegated to the bundles themselves, which must behave correctly 
ensuring the well-functioning of the application. However, one cannot assure that third-party code 
behaves correctly. Besides risks that are present in other component-based platforms, OSGi also has 
some specific issues that may compromise application’s stability. This section enumerates problems 

                                                 
 
21 http://jonas.ow2.org/ 
22 http://glassfish.java.net/ 
23 http://ibm.com/software/webservers/appserv/was/ 
24 http://www.osgi.org/Research/HomePage 

http://jonas.ow2.org/
http://glassfish.java.net/
http://ibm.com/software/webservers/appserv/was/
http://www.osgi.org/Research/HomePage
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that our approach helps to solve or to reduce. While some of them are common to most centralized 
component-based platforms, others are applicable to OSGi and similar platforms. 

Both Java and .NET platforms run managed and type safe code, having features such as 
bounds checking and garbage collection (preventing errors such as buffer overflows and memory 
leaks, respectively). It minimizes a range of errors, but applications and components are not free from 
naïve or malicious programming errors that under certain circumstances could lead to problems like 
excessive memory or CPU consumption. Although sources of errors due to direct memory allocation 
and handling pointer variables are not present in the Java platform, applications are not free of 
memory leaks neither completely exempt of other types of faults that may crash or hang the 
application. 

There are also more general issues that concern most component platforms, such as 
components that consume too much resources (e.g., CPU, memory), or that may perform illegal 
operations that can crash the application. The former is very difficult to identify without proper 
isolation and resource monitoring functionality. The latter is difficult to avoid when it is necessary 
native code in OSGi applications. Running native code does not necessarily incur these penalties, but 
it introduces non-negligible chances of such crashes taking place. Therefore, isolating the potentially 
harmful component in its own fault contained environment is a good strategy for safely using its 
functionality. 

The dynamicity adds another variant to the behavior of components. When testing an OSGi 
bundle, one must take into account the arrival and departure of services consumed by the bundle. 
OSGi service-based component models (e.g., iPOJO, Declarative Services) help minimizing the error-
prone task of handling such dynamism. However they are not enough to guarantee that a bundle will 
behave correctly upon dynamic events. 

The next subsections describe the issues that can be introduced by components in the OSGi 
platform and that are addressed by our approach and will serve as the basis for our fault model: 
excessive resource consumption, native libraries crashes and dangling objects. 

6.2.1 Excessive Resource Consumption 

An analysis [Parrend08] on component vulnerabilities in OSGi shows that some of these 
problems are caused by the lack of CPU and memory isolation between components, which is 
fundamental for fault isolation. The namespace-based isolation used in OSGi is not robust enough for 
a multiple component vendor scenario where one cannot assure that third-party code behaves 
correctly. Since all components and objects coexist in the same memory space without any 
mechanism that ensures object domains or other elaborate ways of isolation, components may 
introduce faults in applications. As we already emphasized in this manuscript, if a component 
crashes, the whole application is compromised. 

The authors of the iJVM [Geoffray09] consider as a motivation for their isolation approach a 
range of possible attacks from third-party components that can be seen as a sort of security threat 
patterns: memory exhaustion, standalone infinite loop, excessive object creation, excessive thread 
creation, hanging thread. We rather see these issues as potential errors because of bad programming 
practices. 

In OSGi and most component-based platforms we do not find too many options concerning 
restrictions or configurations on resource consumption, especially in the component level. This is an 
important aspect which can affect non-functional requirement such as performance, reliability, 
availability, and in general, dependability. Isolation mechanisms can help in the recovery process, but 
a fine-grained control on component resource consumption can help identifying the origin of the 
problem. 

6.2.2 Native Libraries Crashes 

The Java platform provides a robust execution environment that prevents some basic 
programming errors from happening like memory de-allocation, typing errors, etc. However, the 
need to load native libraries into such managed environments opens breaches that can lead to JVM 
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crashes in case of severe errors caused by the underlying native library.  When executing native code, 
such verifications are no longer possible since the environment has no control on the execution 
outside the managed runtime. 

In Java, it is possible to load native code by using the Java Native Interface25 (JNI) API which 
allows Java code to interoperate with code (applications and libraries) written in other languages 
such as C and C++. It is sometimes necessary that applications reuse native code for a variety of 
reasons: platform-dependent features of an application that are not supported by Java; reuse of a 
library written in another language; or time-critical code that needs to be written in lower level 
languages.  

The Java Native Access26 (JNA) API is a library that can be used as an alternative to JNI. It is 
simples than JNI but introduces more overhead. A significant advantage of JNA over JNI is the 
optional feature of VM crash protection. If this feature is activated, native memory accesses are 
protected from invalid accesses. However, the utilization of this feature is suggested only when 
testing or debugging applications since it is not robust enough to support multi-threading 
applications. 

Centralized component-based frameworks like OSGi do not provide isolation boundaries that 
ensure fault containment, rendering an application vulnerable to such threats, which usually are not 
of intentional nature (i.e., malicious code). Therefore, by using a strong isolation boundary that 
separates a bundle from the others is a good alternative to guarantee that an eventual crash would 
not compromise application stability. This issue is also applicable to other component-based 
approaches on top of Java, as well as other based on managed environments like .NET.  

6.2.3 Dangling Objects 

In another study [Gama08b] we have verified that inconsistencies originated from dangling 
objects can be found in applications tested in a scenario of continuous bundle updates. The 
conclusions point out that it is very hard to construct dynamic applications that are able to cope with 
a truly dynamic environment. 

The service-based composition that is possible in OSGi permits a bundle to consume a service 
from another bundle without being aware of the existence of that provider. This loose coupling gives 
good flexibility to components and applications, but this leaves the possibility of any provider being 
used during runtime. As already discussed, the process of component testing as individual units does 
not guarantee that they will behave the same way when used together in a composition. In the case of 
dynamic platforms such as OSGi, besides testing a bundle’s functionality as an individual black-box 
unit, it is important to verify how the bundle code reacts to the dynamic arrival and departure of 
services in OSGi applications.  

To give an idea about the possibilities of different scenarios, we can illustrate at least three 
different situations for a simple service composition where a bundle consumes a service provided by 
another bundle. It must be kept in mind that these possibilities keep growing when more bundles are 
involved in the same composition. 

i. A consumer bundle is started after the service provider bundle is started; 

ii. A consumer bundle is started before the service provider bundle is started; 

iii. The service provider bundle is updated while the consumer bundle was bound to the 
service. 

For scenarios (i) and (ii) let’s consider the instants Ix and Iy to represent the installation 
timestamps of bundles X and Y, correspondingly, and that t1 and t2 determine valid timestamps, 
where t1 < t2. For the sake of simplicity, instead of precisely mentioning that an object from a given 
bundle provides or requires a service we will rather say that a bundle provides or requires a service. 

                                                 
 
25 http://download.oracle.com/javase/6/docs/technotes/guides/jni/ 
26 http://jna.java.net 

http://download.oracle.com/javase/6/docs/technotes/guides/jni/
http://jna.java.net/
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In Figure 6.1, which illustrates scenario (i), the bundle Y is installed before the bundle X and 
also has registered (step 1) a FooService instance before the bundle X has been installed. After being 
installed, the bundle X retrieves (step 2) that service from the service registry, and then binds (step 3) 
to it. This is one of the simplest scenarios, where we just verify that an installed bundle correctly 
retrieves the service(s) it needs, if they are available. No dynamism handling is involved in this case. 

 
Figure 6.1. Bundle X retrieves a service that was already registered at instant t1, before that bundle’s installation at 

instant t2. 

A more illustrative example is depicted in Figure 6.2, representing scenario (ii). The bundle X is 
installed at t1, and subscribes (step 1) to service events that are notified by the service registry. After 
bundle Y is installed at t2, it will register (step 2) the FooService it provides. The bundle X will be 
notified (step 3) of the service arrival, and will be able to retrieve the required service so it can bind 
(step 4) to that service instance and use it. Now we see a scenario where dynamism is involved and 
requires bundles to handle events. If the bundle X did not subscribe to the service events, it would 
need to use a polling mechanism in order to get a reference to the service. In both examples (i) and 
(ii), as well as in any OSGi service binding, it is necessary to listen to the service unregistration event 
and appropriately handle it by releasing the references (i.e., unbinding) to that service. This is the case 
of the scenario proposed in (iii). 

 
Figure 6.2. Bundles with different installation timestamps I. Bundle x retrieves a service instance after receiving 

its registration notification. 

Figure 6.3 represents a more elaborate illustration of OSGi’s dynamism that comprises the 
scenario described in (iii). In this example we explicitly detail in the figure the objects that represent 
the service consumer and the service provider. In that case, a bundle is updated and a reconfiguration 
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at the service level must take place. When a bundle goes under an update transition in its lifecycle, it is 
stopped, reloaded and restarted. During the stop process the framework automatically unregisters all 
services provided by that bundle. Therefore, any other bundle consuming those services must release 
references to them. The correct handling is represented in (a) on that figure. However, if the 
unregistration notification is ignored and the references to the service are not release, as in the case of 
(b), the service object becomes a dangling object that cannot be garbage collected. 

The OSGi specification refers to such cases as stale references which in general, are not only 
limited to services, but to any reference to any object that belongs to the class loader of a stopped or 
uninstalled bundle. The utilization of such objects after the provider bundle being stopped leads to 
inconsistencies such as (1) incoherent operation results (e.g., stale services returning old data from 
stale caches) or erroneous behavior due to the stale object’s context which may have been released or 
de-initialized (e.g., closed network connections, closed binary streams, unreachable device); (2) 
garbage collection obstruction of the retained object, its class loader, and the class loader’s loaded 
types, leading to a memory leak. 

Besides service unregistration mishandling, bundles that have been incorrectly developed may 
also leave threads still executing. This behavior was characterized in [Geoffray09] under the security 
threat pattern of a hanging thread. The correct stopping of a bundle consists of shared responsibilities 
between the OSGi platform and the bundle code. The platform notifies the stopping bundle via its 
BundleActivator.stop() method, where it should perform any de-initialization code that may be 
necessary. In addition, the framework performs the unregistration of services. Therefore, there are no 
guarantees that a stopped bundle will release the resources it has allocated (e.g., spawned threads, 
open streams, network connections). The de-initialization is mostly based on good programming 
practices. Although component uninstallation is possible in OSGi, the components are not actually 
purged from memory these error scenarios are likely to exist. In the long run, applications may 
accumulate inconsistencies due to dynamicity mishandling. As pointed out in [Geoffray09] such lack 
of bundle termination support, can also represent a security threat when uninstalling a bundle that 
contains code that malicious code that keeps executing after uninstallation. 

      
Figure 6.3. A bundle update correctly handled in (a) and incorrectly handled in (b), where a stale reference points 

to an unregistered service from a bundle that should no longer be used. 
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A similar problem can be found in the Eclipse platform’s plugin system. Although Eclipse is 
built on top of OSGi, it has its own plugin system which relies on the concept of extensions and 
extension points [Gamma04]. A plugin that defines an extension point allows other plugins to provide 
extensions that can contributed to it. A plugin can query the extension registry to verify providers of 
extensions that fit its extension points. While it is possible to retrieve service instances from the OSGi 
service registry, in the extension registry one may retrieve only metadata. It is up to the plugin that 
queries the extension registry to instantiate the objects. Therefore we see a similar problem to the stale 
references in OSGi. In the case of the stale objects originated from third-party components, tracking 
the creation of objects that are based on extension points is much harder than in OSGi’s service layer. 

6.3 Division of Work 

To address these issues in the OSGi platform, we have performed an implementation of our 
propositions by employing two isolation containers. Although the proposed approach suggests the 
usage of multiple isolation containers, our realization was implemented one container for executing 
the trusted components of the application and another one for executing untrustworthy components. 
These platforms are referred, respectively, as main platform and sandbox platform.  

The implementation we performed uses a sandbox for hosting component dynamically loaded 
during application execution. This untrustworthy part of the sandboxed OSGi does not propagate 
faults to the main environment and uses a recovery-oriented approach for re-establishing its service 
in case of failures.  

In general, the work performed to implement the proof-of-concept is in this manuscript as 
three distinct parts, which are enumerated below, and are detailed in the same sequence from 
chapters 7 to 9. 

1. Make an OSGi application execute with a subset of its components isolated from the main 
components. This step was divided into three parts: (i) the isolation mechanism; (ii) the 
reconfigurable isolation policy and (iii) a transparent communication mechanism between 
the platforms; 

2. Transform the sandbox in a managed element with self-diagnosis and self-healing 
capabilities; 

3. Employ the separation of concerns principle for removing the dependability concerns out 
of the target OSGi implementation. 

6.4 Clarification of Terms 

In order to remove ambiguity from some terms used throughout the implementation chapters, 
we present a brief explanation on what it is meant on each of the selected terms that may have an 
ambiguous meaning:  

Local. Local is merely a perspective in terms of isolation boundary since our isolation 
approach takes place in the same machine. It would mean the platform of the current 
execution code or example being described. Local will be the opposite of isolated (e.g., a 
local service versus an isolated service), instead of being the opposite of remote (e.g., a 
remote machine or process). The term local may refer either to the trusted or the sandbox, 
depending on the context (e.g., an untrustworthy bundle that uses a local service instead 
of using an isolated service hosted in the trusted platform). 

Sandbox. As previously described, in our approach a sandbox will refer to a fault-
contained environment where untrustworthy components are executed. Again, we stress 
the fact that although the same term is used in other approaches, the principles are 
different from the one use in Wahbe’s sandbox [Wahbe93] and from the approach used in 
the Java Applet sandbox security model [Fritzinger96]. From a general perspective, we 
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use the term sandboxed OSGi approach when referring to the approach as a whole. From an 
implementation point of view, we also may refer to the sandbox as the sandbox OSGi 
platform for untrustworthy components. 

Main or trusted platform. Since we use the concept of untrustworthy components, which 
are executed in the sandbox, our solution will also refer to the concept of a trusted platform, 
where the trusted components execute. The implementation of such concept presented 
here is referred as the main OSGi platform. Therefore, both terms may be used 
interchangeably. 

Component. Under a deployment point of view, an OSGi bundle can be seen as a 
component although it is commonly referred also as a module since it may be seen just as a 
module that bundles different resources (e.g., classes, descriptors, pictures, libraries). 
Because bundles do not present any explicit composition logic, one may argue that OSGi 
components are actually constructed on top of a higher abstraction layer that use services 
as the elements of composition in service-oriented component models such as Declarative 
Service [OSGi11], Service Binder [Cervantes03], iPOJO [Escoffier07] or Blueprint Services 
[OSGi09]. Since our implementation focuses on OSGi infrastructure we will use the terms 
module, bundle and component as synonyms. Whenever referring to those higher-level 
components we will use terms such as iPOJO component or Declarative Services component to 
avoid an ambiguous usage of the term component. 

OSGi internal component. Since the realization of our approach affects OSGi 
frameworks, we needed to change OSGi implementation code. Whenever mentioning to 
an OSGi internal component we mean component as a logical part of the core OSGi 
specification or its implementation. The term would rather refer to a conceptual 
component and not to a bundle deployed on OSGi or to any other unit of deployment. For 
instance, under the point of view presented here, the Service Registry is considered as an 
OSGi internal component.  

Application. This is another term used with an overloaded meaning. We may refer to an 
OSGi application as the whole OSGi platform as well as a bundle or a set of bundles that 
embed the logic of an application. In practice, an OSGi platform may host several 
components that act as individual applications (e.g., a Servlet container, a GUI 
application) sharing the same runtime. 

6.5 Summary 

This chapter briefly explained the motivations for using the OSGi platform as the component 
framework for implementing and validating our propositions, followed by a discussion on issues that 
concern the quality of components and that may affect OSGi applications, especially when dealing 
with untrustworthy third-party code. The chapter also provided the clarification of some terms that 
may be ambiguous to the reader of this manuscript. 

A division of the work performed in our implementation of the proposed approach was also 
presented and that same order is preserved in the chapters to come.  Therefore, the next chapter will 
present details on the architecture and the strategies taken for implementing the component isolation 
mechanism. The chapter that follows gives details about the self-healing mechanisms for the sandbox. 
After that, the last implementation chapter explains the approach used for keeping the dependability 
code as a separate concern that does not directly affect the target source code of OSGi 
implementations. 



PART III 
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Chapter 7  
 
Component Isolation Approach 

“There's something to be said in favor of working in isolation 

in the real world”. 

Archie Randolph AMMONS 
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Our propositions to enhance dependability in dynamic component-based platforms are 
divided into three main topics: the dynamic isolation of components, a self-healing approach for the 
isolation containers, and the handling of dependability as a separate concern. This chapter focuses on 
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the first one, where we describe the architectural choices and the implementation of the mechanisms 
that enable the dynamic isolation of components in the OSGi platform, in a mechanism that we refer 
to as the Sandboxed OSGi approach, introduced in [Gama09a] and later [Gama10b] 

The next sessions provide an architectural overview, and details about the components that 
comprise the solution, exploring the implementation of this approach, the architectural choices that 
were made and the current limitations of the solution. We also discuss about the different isolation 
containers that were employed by our implementation. 

7.1 Virtualized Perspective 

The propositions described in Chapter 5 present a concept of isolation boundaries for safely 
executing a component or a group of components considered untrustworthy, without risks of failure 
propagation that can harm the execution of the application as a whole. As a possibility for 
implementing such propositions in the OSGi service platform, we have envisioned the utilization of 
multiple OSGi platform instances for separating the execution of untrustworthy components.  

In the OSGi platform, a component needs a runtime providing important infrastructure such as 
the lifecycle, service and module layers. The lifecycle gives the flexibility of loading, undloading and 
updating components without needing application restart. The module layer takes care of the 
dependency wiring among components and all the class loading. The service layer gives a good level 
of decoupling between components, allowing them to communicate without having direct 
dependencies. 

As an initial possibility we have envisioned, as an ideal mechanism, a lightweight container that 
mimics much of OSGi functionality, and that would transparently delegate parts of the tasks (e.g., 
class loading, bundle caching) to a central OSGi container. This central point would provide a virtual 
perspective as if the platform was a single application. The containers would resemble the Windows 
dllhost surrogate process that serves as an isolated container for COM components. 

However, we decided to concentrate on the central theme of the thesis (isolation and recovery-
oriented mechanisms) where our contributions would be of more value, instead of focusing on 
functionality that is already available in the OSGi platform. The chosen approach was rather the 
usage of multiple OSGi platforms, each one running a different set of components but all platforms 
interconnected giving the virtual impression that only one application is running. The next subsection 
illustrates existing techniques that use similar approaches, followed by more details about our choice. 

7.1.1 Related Techniques in OSGi 

Different approaches have used very similar virtualization strategies for different purposes, 
but all of them increasing the level of isolation in OSGi, as presented in Chapter 4. In Virtual OSGi (V-
OSGi) [Royon06], their context is that of multiple service providers, each one with its own OSGi 
instance but sharing the same underlying OSGi platform that runs in the same JVM. The attempt 
“RFC 0138 Multiple Frameworks In One JVM” was present in an early draft of the OSGi specification 
version 4.3 [OSGi10a], however the version that was published as a final document [OSGi11] did not 
include that section. 

Dependable distributed OSGi [Matos08] is based on that approach, but with a few 
enhancements and a variant that employs several virtualized OSGi platforms in different network 
nodes. Their goal is to allowing the migration of bundles to be executed in distant platforms that have 
more resources available.  

The Virtual OSGi framework [Papageorgiou08] is another effort that employs virtualization 
techniques. It runs in a distributed context, allowing bundles to execute in different nodes but giving 
the impression that there exists only one OSGi framework. A distributed service registry allows 
bundles to transparently locate and invoke services that are located in other machines. Its goal is to 
provide different applications to run their own OSGi instance on top of another OSGi platform. 
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7.1.2 Trusted and Sandbox Platforms 

Our sandboxed OSGi strategy allowed us to make a preliminary evaluation of the component 
isolation feasibility using multiple isolation containers. However, due to time constraints we were not 
allowed to continue evaluating the scalability of the implemented solution as a multi-container 
approach, therefore the solution presented here uses only two containers: one for the trustworthy 
components (e.g., the components that have been previously tested together) and another one for the 
untrustworthy components (e.g., unknown origin, lack of testing, known bugs). 

In fact, no matter how many isolated containers are being used, the virtualization principle 
remains the same. Although they are separated in different execution environments, virtually the 
application runs as if all of the containers together behaved as a single application. In Figure 7.1 we 
can illustrate the two platforms of our solution, each one running different components.  

 
Figure 7.1. Virtualization approach for separating execution of untrustworthy bundles from the trusted part of the 

application 

A virtualization layer can give the impression that both OSGi platforms that are running are 
actually the same application. If the sandbox fails, the mainOSGi platform running is not affected. 
What will happen is that while the sandbox is being recovered, the application would be in degraded 
mode since services that are available in the sandbox will be temporarily unavailable. However, we 
do take into account a gracious degradation, since this virtualization layer introduced would notify 
the main platform about the departure of services that are hosted in the sandbox. 

Changes we have introduced in the OSGi framework allow such virtualization to be 
performed. Based on the component isolation policy, the startup of a component would determine if 
it should execute in the sandbox or in the trusted platform. This layer also introduces transparent 
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communication between services located in isolated platforms. For instance, code from an OSGi 
bundle running in the trusted platform can transparently retrieve and use a service that is hosted in 
an isolated bundle on the sandbox. Details on the OSGi internal components that realize this 
virtualization layer are provided in the sections that follow. 

7.2 Architecture 

Just like the terms component and service, there are several ways for defining what is a software 
architecture. Clements and Northrop [Clements96] analyze different definitions, and draw a bottom 
line saying that software architecture is about a system’s structural properties, which can be in terms 
of components and their interrelationships. Therefore, under that prism we present a high level view of 
the components involved in our approach and their interconnections, that is, the architecture of our 
solution. This high level perspective is followed by detailed subsections on each of the main 
components identified in this solution. 

The implementation of the virtualization layer of our solution is applicable to the internals of 
any OSGi implementation, since most of the characteristics we propose are centered on the general 
functioning of the OSGi platform without specificities concerning any particular OSGi 
implementation. We have changed the behavior of some OSGi internal components, and also have 
added new components that realize part of our propositions. In terms of OSGi layers, the work 
presented here focuses mostly on the life cycle and service layers.  

Both trusted and sandbox platforms use the same code, but their runtime behavior is different. 
Figure 7.2 shows a UML component diagram that contains the parts of the OSGi framework that are 
involved in our solution. It is rather a simple perspective of logical components ―   in contrast to 
physical components, which we rather see as deployable units ― that after compiled and built are all 
part of the same binary file that consists in the OSGi framework. In the perspective that we give in the 
figure, the OSGi original framework internals only distinguishes the Service Registry from the rest of 
the OSGi core functionality. These two components are represented in gray color on the figure. They 
had to be changed in order to add the behavior enabling the sandbox approach.  

Our approach also introduced two new internal components, represented in white color on 
Figure 7.2. The Platform Proxy component is responsible for the communication between the 
platforms, acting as a proxy that forwards calls to the sibling platform ― details on this mechanism 
are presented further in this chapter. The other component is the isolation policy manager, which 
handles the engine that interprets and manages the isolation policy. As it can be seen in the figure, the 
isolation policy manager component is not used in the sandbox platform, since the isolation decisions 
are taken in the trusted platform. Therefore, the component is not executed at all in the sandbox. 
Concerning the other three components (Core, Service Registry and Platform Proxy), their behavior 
may change depending on the platform where they execute. The core component behavior, for 
instance, performs several verifications during life cycle events in the trusted platform. However, in 
the sandbox such verifications need not be performed and the behavior rather resembles the 
functioning of a regular OSGi implementation. 

 
Figure 7.2. Perspective of the solution in terms of logical components. The original OSGi internal components that 

we have changed are in gray, while components introduced by our solution are in white. 
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The next subsections get into more detail on each one of the components, providing more 
precise information about design decisions that had to be taken, as well as each component’s goal and 
how they were implemented. 

7.2.1 Core Component 

The main changes aggregated to this pre-existing part of OSGi concerned bundle life cycle 
operations (install, start, stop, update, uninstall). Although the core component executes in both 
platforms, the lifecycle changes apply only to the trusted platform. With the code that has been 
added, when any OSGi bundle installation takes place the core installs the same bundle in the trusted 
platform and also in the sandbox so the same dependencies are present in both platforms.  

Sandbox Dependencies Resolution 

This duplication approach was chosen in order to simplify the bundle dependency 
management in the sandbox. Since a bundle usually needs types provided by other bundles, it relies 
on a dynamic type dependency resolution in order to be able to execute. In fact, there is no explicit 
dependency on Bundle X depends on Bundle Y. Actually it is calculated at runtime, based on the 
information of a bundles’ Import-Package manifest header intersected with others bundles’ Export-
Package manifest header. Taking that into account, the importer’s type dependencies can be 
calculated.  In an initial approach we were installing in the sandbox only the direct dependencies of a 
bundle, by using a naïve algorithm for calculating the dependency resolution only taking into 
consideration a shallow dependency depth.  

As an example we can take two bundles A and B suppose that bundle A depends on resources 
(e.g., types) provided by B. Consider a dependency that denotes “A depends on B” to be represented 

by the expression A B . The initial algorithm we have used for determining the existence of a 

bundle dependency can be represented by the expression   ,  ( ) ( )A B iif IP A EP B  

where ( )IP x is a function whose return value corresponds to the set of type packages (e.g., org.foo) 

imported by a bundle x  and ( )EP x  is a function with a return value that represents the set of type 

packages exported by a bundle x . 

A bundle dependency is not necessarily reflexive ― i.e. the property of both dependencies

A B and B Abeing true at the same time ― but it is transitive. If we have a bundle C and a 

bundle dependency B C , therefore A B C  is also valid. However the shallow dependency 
resolution we initially used would not be enough in cases of such transitivity dependency. In that 
case, not only B, but both bundles B and C would also have to be installed in the sandbox so A could 
have its dependencies resolved.  

A full implementation of our dependency resolution approach would have additional 
performance penalties since dependency recalculations are necessary in different situations. For 
instance, in the above example, suppose B and A are installed in the sandbox. After the uninstallation 
of B, we would have to recalculate the dependencies of A based on the set of bundles from the main 
platform. Similarly, in another example, B was not yet available but A was installed without resolving 
its dependencies. Whenever a new bundle is installed in the main platform, verifications against the 
new bundle would have to be made in order to check if it fulfills bundle A’s dependencies. 

The limitations of our naïve dependency resolution approach and the inherent complexity of 
the problem itself, such as several dependency levels as well as cycles, led us to choose another 
approach. Since all the dependency resolution is ready and working in OSGi implementations, we 
preferred to use it by just replicating all components in both platforms, instead of trying to deploy 
only untrustworthy components and its dependencies. Therefore the dependency resolution in the 
sandbox would be just the same of the trusted platform. 

However, not all components would be active in the two platforms. At least the framework 
bundle is active in both platforms. The ones considered as trustworthy would be activated just on the 
Sandbox, and the ones considered as trustworthy would run only in the trusted platform, as 
illustrated in Figure 7.3. In that example, bundles A and C are considered trustworthy and therefore 
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run in the trusted platform, while bundles B and D are untrustworthy bundles that execute in the 
sandbox.  This replication may be seen as a heavy solution in terms of memory footprint. Though, in 
OSGi an installed component is not necessarily loaded in memory. Like a bundle in other states, a 
resolved bundle is represented at runtime by an instance of org.osgi.framework.Bundle. However the 
types contained in such bundles are not necessarily loaded in memory. The OSGi framework would 
instantiate a class loader for such inactive bundles only when needed. For instance, when the types 
provided by a bundle under resolved state are being used by active code from another bundle. 

 
Figure 7.3. Illustration of the same application split into two isolation containers on the top (dashed bundles are 

inactive.), but giving a virtual perspective of a single application on the bottom. 

Bundles Cache and Synchronization 

According to the OSGi specification, bundles must be cached along with their runtime state. 
When a bundle is installed in an OSGi runtime, it is persisted in a cache typically placed in the local 
filesystem. Since the OSGi framework consists in one bundle, persisting information about what other 
bundles have been deployed, as well as their state, in important when stopping an OSGi application 
and starting it again. Without such functionality, in such scenario all bundles would have to be 
installed again. 

As we have not changed anything concerning the bundle caching, our approach duplicates the 
bundles putting them in both caches. However the state for each bundle would differ in these caches. 
This drawback, however, can be minimized by changing the framework’s code for using one single 
cache for both platforms, since they use the same set of components. However such solution must 
provide distinct information concerning the bundles state in each platform. 
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The sets of bundles from both platforms are kept synchronized, by also replicating on the 
sandbox the life cycle operations performed on the trusted platform. Figure 7.4 shows the state 
diagram with the possible states and transitions of an OSGi bundle. The transitions that are in bold 
concern parts of the OSGi framework where we had to introduce additional behavior in order to keep 
the set of bundles synchronized in both platforms. The resolve transition is transparently handled by 
regular OSGi framework behavior, for that reason we have not changed it. The other lifecycle calls 
performed on the main OSGi are all forwarded to the sandbox after being executed locally, except for 
the start transition. It has a special verification step which concerns checking the isolation policy and 
verifying if the bundle needs to run in isolation, as detailed further in this manuscript. If it is the case, 
the bundle is not started in the main platform, but rather in the sandbox. In a special case, a bundle 
may need to be activated on both platforms. This is necessary, for instance, for OSGi component 
models like iPOJO and Declarative Service which have a bundle that provides the component model 
runtime.  The stop transition could also have a verification to check in which platform the target 
bundle is running, but we simply forward the call to the sandbox. This is useful in the case where a 
bundle is active in both platforms, though useless if it is active only in the trusted platform. 

 
Figure 7.4. OSGi bundle state transitions. The ones in bold font are affected by our solution. 

An important issue around the synchronization of bundle sets concerns their unique identities. 
A bundle is assigned with a unique and persistent sequential number when installed. However there 
is no guarantee that the same IDs are going to be used in both platforms, even though by default our 
solution uses independent numbering. The reason for this uncertainty is that if anything goes wrong 
during installation in the sandbox, the unique number is lost and the next bundle identifier available 
will be that lost number incremented by one, while in the sandbox the current ID was not 
incremented. Therefore an installation error in the trusted platform would desynchronize the bundle 
identifiers of the two platforms. We have tackled this problem by keeping a correspondence map, 
which is also persisted, illustrated in Figure 7.5. Whenever a bundle lifecycle operation is invoked in a 
given bundle, our code checks the corresponding bundle ID of the same bundle in the sandbox and 
then forwards the call to the sandbox platform using that ID.  
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Figure 7.5. Identifiers of the same bundle may differ from one platform to another. A correspondence list is kept 

persisted and in memory in order to correctly apply the mirrored life cycle transitions.  

A downside of the current implementation is that the object instances of type 
org.osgi.framework.Bundle, used for representing bundles in the OSGi runtime, do not reflect the 
virtual perspective. For instance, if a bundle on the main OSGi platform programmatically retrieves 
the Bundle B (Bundle 2) instance and calls the getState method of that object, it will provide the actual 
state (resolved) of the bundle in that platform not the virtual state (started) that corresponds to its 
execution state in the sandbox.  

Other shortcomings already described, such as the cache replication and the numbering 
scheme could have alternative solutions. However their original behavior was kept for the sake of 
portability. It allows to easily apply these isolation techniques to any OSGi implementation without 
needing to change the caching approach in use. Since the realization of the caching mechanism is 
implementation dependent, we would need different customizations for each OSGi implementation, 
thus creating difficulties concerning the maintainability of the code. 

7.2.2 Isolation Policy Manager  

The logic that is behind the dynamic component isolation mechanism is implemented in the 
form of a policy that defines rules that should be evaluated during application execution. The isolation 
policy manager (IPM) is responsible for interpreting the policy and enforcing it during execution. It is 
instantiated and used only by the trusted platform. Relative to our propositions, this implementation 
introduces an additional level of granularity by allowing a more fine grained software entity to be 
isolated. In addition to the isolation of OSGi bundles, we provide the possibility to isolate services 
that run in the trusted platform. The goal of introducing this softer isolation option is to prevent 
minor faults related to stale references, which can be tolerable depending on the application. Hence, 
as a form of clarification throughout the text, we will refer to this softer isolation of services as a weak 

form of isolation, while a strong isolation will refer to a component (as well as the services it 
publishes) isolated across an isolation boundary. 

Services are an important concept in the OSGi platform, but the mishandling of the dynamism 
concerning their arrival and departure may introduce dangling objects referred as stale references in 
the OSGi specification. This is a problem that can be easily identified in the service layer [Gama08b], 
but it is not tracked by the OSGi framework. Since the communication between bundles in OSGi is 
performed in a loosely coupled way through services, if we introduce a proxy layer between service 
consumer and provider it is possible to minimize such dangling references from preventing servant 
objects to be released [Gama08c].  
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Isolation Levels 

The three different levels of isolation we use in this solution are presented on Figure 7.6. The 
small boxes inside the components (bundles) illustrate objects which may consume or provide 
services. The binding illustrated in (I) shows an object from a bundle consuming a service provided 
by another bundle, with no isolation between them. This direct binding is the standard communication 
mechanism in OSGi. The middle part (II) of the figure shows local service isolation where a proxy 
between the service consumer and provider provide weak isolation. This is the service-level isolation 
we have previously described. The example in (III) shows the level of component isolation, which was 
the initial target of our propositions for providing strong isolation. In that case, the untrustworthy 
component runs in a fault contained environment boundary isolated from the trusted application. 
Since the communication is performed by means of services, the communication over the isolation 
boundaries is made through services that use the IPC mechanism described further in this chapter.  

Besides the absence of fault containment in the local service isolation, there is a small difference 
in the isolation principles used in both approaches. In the component isolation strategy, whatever 
task the component performs it will be done in isolation. In relation to a component in the main 
platform, the isolated component can play the role of a service consumer or that of a service provider 
(the example given above). In the case of the local service isolation strategy, we want to prevent the 
direct usage of certain services. Therefore the isolated entity in that case is always the service 
provider, as illustrated in Figure 7.6.  

  
Figure 7.6. Illustration of different isolation levels in OSGi. The one in the bottom is the regular direct binding 
provided by OSGi. The middle and top ones are provided in our solution and refer to service and component 

isolation, respectively. 

The two types of software entities we deal with—bundle and service — are represented as 
specializations of an IsolatedEntity in the model of Figure 7.7, which slightly refines the one 
previously presented in Figure 5.8. At runtime, the IPM maintains instances of the objects abstracted 
in that model. This runtime information is centered in the policy. The actual service objects and 
runtime representations of bundles (org.osgi.framework.Bundle instances) are not affected by those 
abstractions since they are a sort of metadata of those entities. In fact, the policy metadata instantiated 
at runtime makes reference to those objects. For instance, in our implementation, a Rule object holds a 
map of the IsolatedEntity objects it affects. It is useful for visualizing the affected entities and 
performing runtime reconfigurations of the policy.  

The component level isolation has been already illustrated, taking the form of a bundle that 
runs in the sandbox platform, isolated from the main platform. In our approach, if the service needs 
to be locally isolated, we provide a proxy to it, using the approach illustrated in [Gama08c]. The 
implementation of such isolation strategy could have been possible with OSGi service hooks, 
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introduced in the specification 4.2. It would work in a decentralized way because the proxy 
generation would be managed by a separate bundle that would provide service hooks that intercept 
service retrieval, where they could generate a proxy to the actual service, which is the mechanism 
used for proxy generation of OSGi remote services as provided in the Apache CXF27 project, for 
instance. However, we preferred to maintain our approach mainly for two reasons: firstly, the 
isolation policy manager is a mechanism that we have embedded in the OSGi framework, and we 
want to deal with it in a centralized way; therefore, using a separate bundle would be contrary to our 
design principle. Secondly, because it is introduced in since the OSGi specification version 4.2, the 
service hooks mechanism is not backwards compatible. Consequently, we would not be capable of 
providing such isolation mechanism in OSGi frameworks that implement previous specification 
versions. Such focus on portability across versions is further detailed in Chapter 9. 

Isolation Policy 

The isolation policy used by a platform is defined as a separate file written in an XML-based 
Domain-Specific Language (DSL) that we have created for that purpose. The scope of the domain is 
limited to the model presented in Figure 7.7, which can be seen as our DSL domain model. It is a 
specialization of the general isolation model provided in the propositions chapter (Figure 5.8). 

 
Figure 7.7. A model that represents the two types of isolated entities used in our implementation. 

An aspect to be noted is that this model mixes concepts that are represented at design time and 
runtime. While the IsolationPolicy, Level, Condition, Rule and its subtypes can be represented both as 
runtime objects and definitions written in the policy file (example in Listing 7.1), the IsolatedEntity 
concept and its specializations are not visible in the policy file. They are actually represented by 
runtime objects that are metadata associated to the corresponding rule that determined their isolation.  

Besides the representation of such abstract concepts in its grammar, our DSL (its XML Schema 
Definition is listed in Appendix B) specifies the possible types of rules and the condition syntax 
(illustrated in Listing 7.2 and Listing 7.3) that are supported by the policy. The conditions are match 
expressions that compare metadata about the entity (bundle or service) to be isolated. The operations 
are based on the equals (the character “=”) and like operators, with both of them accepting negation 
(the character “!”). When using the like operator, the match criteria will be evaluated as a regular 
expression. The accepted metadata syntax is based on the attributes a mapping of some of the keys 
used in the bundle manifest headers (e.g., Bundle-Vendor, Bundle-Name, Export-Package, Import-
Package).  

                                                 
 
27 http://cxf.apache.org/distributed-osgi.html 

http://cxf.apache.org/g
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The manifest headers are used for criteria in both bundle and service isolation rules. In the case 
of services, the bundle metadata taken into account is the providing bundle (i.e., the bundle that 
publishes the service). In addition, local service isolation uses operators for comparing information on 
typing: interface, which compares the match expression to the service interface name, class, using the 
class name of the service object for comparison and superclass, which traverses the hierarchy 
comparing the names of the superclasses with the match expression. The service typing information 
is based on String comparison to avoid class loading errors during execution. The runtime values for 
checking bundle isolation can be obtained from bundle metadata (manifest headers), used for both 
component and service isolation, and on type information in the case of service isolation. 

 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<isolationpolicy name="sample"> 

<components>  

 <!-- Blocked points of access. Defines which services must not be 

 retrieved from an isolated component (used for service interfaces only)--> 

 <blocked-poa>interface like org.osgi.*;</blocked-poa> 

 <!-- Components where no isolation rules apply (trustworthy components)--> 

 <skip>bundle-name=Beanshell;bundle-vendor=Apache;</skip> 

 <!-- Components with mirrorred state (must be active on both platforms) --> 

 <mirror>bundle-name= .* Log Service;</mirror> 

 <!-- General isolation rules for the components. 

          Implicit semantics of the match-criteria is a logical AND while the 

          previous blocked-poa, skip and mirror use a logical OR implicitly. 

  --> 

 <rule> 

         <name>foobar</name> 

         <match-criteria>import-package=foo;export-package!=bar;</match-criteria> 

 </rule> 

 <rule> 

         <name>unknown components</name> 

         <match-criteria>bundle-vendor !like org.ow2.aspirerfid;</match-criteria> 

 </rule> 

</components> 

<services> 

 <!-- Services that should not be locally isolated --> 

 <skip>bundle-name=MyBundle;</skip> 

 <!-- General isolation rules for locally proxying services --> 

 <rule> 

         <name>foobar2</name> 

         <match-criteria>interface=foo.Bar;</match-criteria> 

 </rule> 

</services> 

</isolationpolicy>  

Listing 7.1. Example of a policy file using the isolation DSL 

 
((import-package|export-package|bundle-activator|bundle-category| 

bundle-name|bundle-symbolicname|bundle-updatelocation|bundle-vendor| 

bundle-version) 

(\s*)(!?)(=|like\s)([^;|^=]+;))* 

Listing 7.2. Regular expression for the component isolation criteria syntax (part of the DSL shown in the 
appendix). 

((interface|class|superclass|import-package|export-package| 

bundle-activator|bundle-category|bundle-name|bundle-symbolicname| 

bundle-updatelocation|bundle-vendor|bundleversion) 

(\s*)(!?)(=|like\s)([^;|^=]+;))* 

Listing 7.3. Regular expression for the service isolation criteria syntax (part of the DSL shown in the appendix). 

An example shown in Listing 7.1 illustrates an isolation file that uses our DSL, and that uses all 
the types of rule we define. The <blocked-poa> element represents a blocked point-of-access to the 
isolated platform. It contains a list of conditions for blocking the retrieval of isolated services that 
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match the condition(s) defined in this rule. The main platform checks that rule before retrieving a 
service reference in the isolated platform. In the case the call is originated from the sandbox, the 
query is received in the main platform and the verification is performed. If the requested service is 
provided in the main platform but it is black-listed in the blocked-poa list, the main platform will 
return null as a response. We preferred to centralize this verification in the main platform, even 
though a unnecessary IPC call will be performed in case the service is a blocked-poa. Although it is 
defined only within the <components> element, its granularity concerns the usage of services. 
However, since we have categorized the levels as component isolation and service isolation, the 
blocked-poa concerns component isolation since it will allow communication between isolated 
components. 

We do not have a systematic way of identifying the bundles that are infrastructure bundles, 
which are those that should not be isolated like a bundle that provides a logging service that should 
be used by both main and sandbox platforms. We could specify conditions for allowing components 
to be active in both platforms, through the <mirror> element. It is verified upon start up of bundles. An 
exception for that would be the bundle 0 which is the framework bundle. In this case no policy needs 
to be applied to it. In situations where an entity is not to be isolated, it will end up being tested 
against all isolation rules. We introduced a <skip> option, as seen in the example of Listing 7.1. It is a 
sort of inversed isolation rule that describes the entities against which isolation should not be 
performed. A slight difference between a skip and a rule is that it does not support the logical and. It 
rather supports the “or” implicitly by using a semicolon separated list of conditions, skipping the 
entity that matches any of the enumerated conditions.  

The usage of the skip option helps to make explicit where isolation should not take place, and 
may in some cases help minimizing the performance overhead impact of evaluation rules one by one, 
for each entity. However, if too many conditions are added to a <skip> clause, the performance 

penalty would increase in other cases. The time complexity being ( )O n  for evaluations of skipped 

entities, where n  concerns the total skip conditions declared for an entity type, we would therefore 

have ( )O n m  for the worst scenario in other cases where the evaluated entity is neither skipped 

nor isolated, with m  denoting the total of isolation conditions declared in the policy for an entity 
type.  

So far the isolation exceptions have been described. The isolation conditions themselves are 
actually provided in the <rule> elements. Multiple <rule> elements are allowed, while the other three 
have at most one node per policy. Each node definition can carry multiple conditions. A slight 
difference concerns semantics of the conditions. While multiple conditions in a blocked-poa, a skip or 
mirror element are evaluated using an OR implicit semantics, the conditions of an individual rule use 
an AND semantics. Among these elements, only the <skip> and <rule> are allowed to be declared 
within a <service> element. 

The isolation policy is loaded and parsed at platform startup. The verifications take place in 
distinct moments depending on the entity to be isolated. A bundle is checked against the isolation 
policy upon startup, while local service isolation is verified upon service retrieval. As shown in 
Algorithm 1, the verification of an isolatable entity (i.e., a bundle or a service) against the part of the 
policy that applies to that type (line 4) is performed inside a loop that traverses all policy rules (lines 3 
through 8) under the category of that entity. That is, a service instance is not checked against rules 
that target bundles. During the verification, the first rule that matches the entity causes the algorithm 
to stop. Although not illustrated, the loop can also be aborted in line 6 in case a clause such as skip is 
found to be true for the entity being evaluated.  

Figure 7.8, show the realization of that algorithm in the case of bundles, showing the steps 
involved when a bundle needs to be isolated. The equivalent bundle ID of the sandbox needs to be 
retrieved and then a message is sent to the sandbox indicating that the bundle with the given ID 
needs to be started up. In case a bundle does not need to be isolated, the regular OSGi behavior will 
start the bundle in the trusted platform.  
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 Algorithm 1. Pseudocode illustrating the logic used in the policy checker  

1 function checkIsolation(entity) 
2      boolean isIsolationApplied= false 
3      list rules = IPM.getRulesForEntityType(entity) 
4   Do 
5     rule = rules.next() 
6     isIsolationApplied = checkRule(entity, rule) 
7   while rule != null and not isIsolationApplied   
11   return isIsolationApplied 

 

   
Figure 7.8. Sequence diagram showing the component isolation steps. 

We modeled the isolation policy to be changed dynamically, during application execution and 
be directly reflected to isolated entities in a reflective model where changes on the objects would 
directly affect the model and vice-versa. The decision of changing the policy can be taken based, for 
instance, after system observation. The reconfigurations necessary to update the set of isolated 
entities would require that the affected parts of the policy be applied to all isolatable entities again. 
Changes could cause entities that are already isolated to be no longer isolated (i.e. promoted) and 
vice-versa.   

Currently the implemented functionality has limitations. At the time of writing of this 
document, it is partially implemented. The goal is to provide an administrative tool implemented as a 
plugin of the VisualVM28 tool, which targets the runtime monitoring and profiling of Java 
applications. The isolation policy API is exposed as JMX probes accessible by the tool (either this one 
or another one that uses JMX), which can read the information about the policy and send edited 
information to be updated at runtime. 

                                                 
 
28 VisualVM http://visualvm.java.net/ 
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Figure 7.9. Administrative tool for editing the isolation policy at runtime. 

To counterbalance the potential impact of such reconfigurations, we have limited the set of 
possibilities for changing the policy at runtime. Given a set I of isolated entities, the reconfigurations 

triggered by a policy change will generate a set 'I . We want to ensure that 'I I , so the policy 

changes can be applied only to the currently isolated entities; without generating major verifications 
and reconfigurations in the rest of the system (considering that most of the components and services 
are not isolated). In order to be coherent with that limitation, the reconfiguration mechanism had to 
support only the threes possibilities for changing a policy during application execution: (1) inclusion 
of new skip clauses; (2) exclusion of rules and (3) inclusion of condition in an existing rule. 

 As a reflex of the above changes on rules and conditions of the isolation policy the system 
reconfigures itself by “promoting” services or components that were affected by the rule change. 
Other possibilities such as adding a new rule or relaxing the policy by removing a condition from an 
existing rule would require the policy to be applied against all system entities. We preferred not to 
provide such behavior in order to avoid runtime misconfigurations that could unnecessarily isolate 
entities by mistake, which are still possible, for instance, when a condition is accidentally excluded 
from a rule. In such case, it is not possible to undo the change, except if the application is stopped and 
the policy file manually edited> 

7.2.3 Service Registry  

The Service Registry is an OSGi internal component that has been changed as part of our effort 
to make the sandboxing mechanism work. Although the internal architecture of the OSGi 
implementation is not service based, it provides the infrastructure of a Service-oriented architecture, 
wher bundles  

Standard Mechanism 

OSGi bundles have access to the Service Registry through the BundleContext interface. 
Although there is no explicit class or interface representing the Service Registry, the BundleContext 
provides the necessary methods for registering and retrieving services. In OSGi, a service is registered 
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under an interface, with the possibility to add registration properties that can be used for service 
lookup. The example below shows an object being instantiated (BarImpl) that will be registered in 
OSGi ‘s registry as a service under the interface foo.Bar: 

 
package foo.impl; 

 

import org.osgi.framework.BundleActivator; 

import org.osgi.framework.BundleContext; 

import org.osgi.framework.ServiceRegistration; 

import java.util.Properties; 

import java.util.Dictionary; 

import foo.Bar; 

 

public class BarActivator implements BundleActivator { 

    private ServiceRegistration registration; 

  

    public void start(BundleContext context) { 

        BarImpl bar = new BarImpl(); 

        Dictionary props = new Properties(); 

        props.put("color", "black"); 

        registration = context.registerService(Bar.class.getName(), 

bar, props); 

    } 

  

    public void stop(BundleContext context) { 

        registration.unregister(); 

    } 

} 

Listing 7.4. Example of service registration in OSGi 

The BarImpl class implements the Bar interface (both of them omitted for the sake of brevity), 
so this registration can be performed without type errors. The registerService method takes the 
name of the service interface, the service object and a key-value properties object as parameters. The 
properties used in the registration are used for filtering when retrieving a service, as illustrated in the 
second example of Listing 7.5.  In fact, the service lookup process is a two-step mechanism which is 
illustrated in both examples (I) and (II) shown on Listing 7.5. In the first step, a ServiceReference 
is looked up based on the desired service interface. Then, the corresponding service instance is 
retrieved using that ServiceReference through the getService method. The difference in the 
two examples of Listing 7.5 lies in the first step for retrieving a service reference. The example (II) 
uses the complete form which uses filtering, and returns an array of ServiceReference objects that 
match the filtering criteria. Example (I) uses a convenience method that internally queries the Service 
Registry using a null filter, and retrieves the service with the best service ranking in case of multiple 
results, as specified by the OSGi documentation.  

 
... 

//Example (I) without filtering 

Bar barService = null; 

ServiceReference ref = context.getServiceReference("foo.Bar"); 

if (ref != null) { 

   barService = (Bar)context.getService(ref); 

} 
... 

//Example (II) where the results are based on a filter 

Bar barService = null; 

ServiceReferences[] refs = context.getServiceReferences("foo.Bar","color=black"); 

if (ref != null && ref.length !=0) { 

   barService = (Bar)context.getService(refs[0]); 

} 
 

Listing 7.5. Code for a service lookup in OSGi 
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Isolated Service Lookup 

These two last examples concerned the regular functioning of OSGi. Since our mechanism 
affects the code of the OSGi framework, not the bundles’ code, both examples would still work if 
using an OSGi platform that includes our approach. Applications that run on OSGi platforms 
changed by sandboxing approach should keep the same code for registering and retrieving services, 
since our attempt is to provide transparent mechanisms. The main changes we have performed on the 
service layer are on the getService and getServiceReference method. We have simplified the two 
methods and merged them for illustrative purposes in the getService function illustrated in 
Algorithm 2, which uses a pseudo language. This function gives a general view on how the service 
lookup should work in the presence of a component sandbox. The principle presented here is to 
lookup for a service in the local registry, but in case it is not found locally (line 3) the service lookup is 
forwarded to the platform proxy (line 4), which delegates the call to the adjacent isolated platform.  

The current algorithm is limited in a sense that if a given service interface is provided in the 
both platforms, references to servant objects coming from the isolated platform will not be returned 
unless the local lookup does not find one (i.e., returns null). A possible workaround would be always 
performing the lookup in the isolated platform, and merging the result with the query on the local 
registry. However, with such integration we should also evaluate how the utilization of separate 
service registries can impact service ranking mechanisms [Bottaro07a]. 

 

Algorithm 2. General service lookup algorithm taking into account the isolated platforms 

1 function getService(String interface) 
2   service = lookup(interface) 
3   if service == null then 
4     service  = platformProxy.lookup(interface) 
5   else if thisPlatform is MainPlatform and checkIsolation(service) then 
6     service = getProxy(service) 
7   end if 
8   return service 
9 end function 

 

The service lookup mechanism works the same way in the trusted and sandbox platforms, with 
no additional step to be performed in the trusted platform. As illustrated in lines 5 and 6 of the 
Algorithm 2, services that are local to the trusted platform need to be checked against the isolation 
police in order to verify if it is necessary to use weak isolation on them. In such case, the platform will 
return a local object proxy to the service instance, so the service provider is not directly referenced by 
the consumer code. By doing so, garbage collection of the actual servant object is possible even if the 
consumer code keeps referencing its service instance, which in this case is a proxy to the actual object. 

The steps presented in the algorithm are useful for giving an overview of the mechanism, but 
in reality its logic is split in the getServiceReference and getService methods, from the BundleContext 
interface. Getting into more detail, the lookup is an intermediary step for getting a ServiceReference. 
If it is not found in the sandbox, an IsolatedServiceReference instance is provided as a result of the 
call. This process is represented in Figure 7.10, where we illustrate the communication that crosses the 
isolation boundaries. We do not specify in the figure which OSGi platform is the sandbox or the 
trusted platform because this mechanism works the same way in both platforms, independently of 
the origin of the query. By observing the return of method call we can notice that a ServiceReference 
instance is retrieved from the isolated Service Registry and then becomes an instance of 
IsolatedServiceReference in the platform that originated the lookup. The transformation happens in 
the communication layer between the two platforms. A ServiceReference holds a property map, 
whose values are serialized when constructing the protocol message to be sent. When the protocol 
message that responds to a call to getServiceReference is received back, an instance of 
IsolatedServiceReference is created and the serialized properties are used to populate that new object 
which is returned to the method caller. A service reference also holds information about its 
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containing bundle through the getBundle() method, and the list of component bundles that use it in 
the getUsingBundles() method. However, the IsolatedServiceReference instance has some issues 
concerning that information, as described in section 7.2.4. 

 
Figure 7.10. A service lookup that needs to query the isolated platform 

A distinction between the types of ServiceReference is necessary in order to make a distinction 
between a local and an isolated ServiceReference. This is important for the getService method, which 
is the actual place where the service instance is retrieved. By making this distinction it is easier to 
identify when a proxy to an isolated service needs to be used, as depicted in the sequence diagram of 
Figure 7.11. The initial alt fragment shows two alternatives, the first one being the case of an 
IsolatedServiceReference which as a result provides a proxy to a service provided by a component 
hosted in another isolation boundary. The other alternative is to get the service instance in the local 
registry, which is the OSGi standard behavior. However, since we add the weak isolation level where 
local services may be proxied the service instance must be verified against the policy. If it does not 
require any isolation, the instance can be directly returned. But if the local service requires isolation, 
the call described in the opt fragment of the diagram is executed and a proxy to a service running in 
the same platform is returned. During this process it is important to retrieve the appropriate 
classloader instance, otherwise the namespace visibility used in OSGi will not allow linking to the 
appropriate types at runtime. 

A slight difference can be verified in the sequence diagram between the getServiceProxy 
methods calls on the IsolatedProxyStore and the LocalProxyStore. While the 
IsolatedProxyStore.getServiceProxy method receives a bundle and a ServiceReference object, the 
same method on the LocalProxyStore receives the servant object itself and the ServiceReference. The 
creation of proxies relies on Java’s dynamic proxy mechanism which allows the creation of proxies at 
runtime. A dynamic proxy is created based on an interface type, a class loader instance and an 
InvocationHandler, which is the place where the additional behavior of the proxy is introduced and 
in our case concerns the delegation of the calls to the actual service instance.  

The execution of the method illustrated in the sequence diagram occurs in the OSGi 
framework, which is not aware (i.e., does not import) of the types that will be dynamically deployed. 
Therefore, in order to make the proxy correctly work, it is necessary to use the class loader that allows 
the resolution of the service interface type as well as the types it depends on; otherwise we will end 
up with a ClassNotFoundException. The LocalProxyStore uses the class loader of the service object 
passed as a parameter so the proxy can resolve the types when called. In the case of the 
IsolatedProxyStore, its code uses the bundle object of the caller for performing a workaround that 
gets the class loader object the framework provided to that bundle. This is necessary because a call to 
Bundle.getClass loader is useless since it would return the class loader that loaded the 
org.osgi.framework.Bundle class (the class loader of the framework bundle) instead of getting the 
class loader provided to load the classes of that bundle. 
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Figure 7.11. Service isolation steps. 

When a service consumer gets a proxy to an isolated service, all method calls are forwarded to 
the service object. The proxy object does not hold any state of the service object. There is a convention 
in Java saying that object state in made accessible through getters and setters methods, therefore 
accessing the state of an isolated service has to be a method call forwarded by the proxy in both weak 
and strong isolation cases. The overhead would be especially high on the case of strong isolation 
where calls are forwarded through the communication layer to the actual service provider. Design 
patterns such as the Transfer Object (a.k.a. Value Object) [Alur03] target Java enterprise distributed 
systems, helping to reduce requests over the network by sending objects containing state instead of 
paying the cost of distant method calls for retrieving that information. We have not provided such 
optimizations because services tend to be stateless [Erl05], being typically used to perform 
computations or functions [Papazoglou03]. 

The current approach for coordinating the usage of both service registries is not sophisticated, 
and would had to be adapted for scalability if more than two isolated platforms have to be used 
simultaneously. The lookups on the Service Registry, for instance, would have to be coordinated 
between the local registry and two or more remote ones. An alternative could be the usage of a 
technique resembling a distributed registry approach, as the one presented in the Virtual OSGi 
framework [Papageorgiou08]. 

7.2.4 Platform Proxy 

Service lookup and retrieval across isolation boundaries have already been exemplified in this 
manuscript through different perspectives and representations: as a high-level algorithm (Algorithm 
2), as a high-level diagram (Figure 7.10) illustrating the “paths” taken by a lookup, and as a more 
detailed representation in a sequence diagram (Figure 7.11). Either implicitly or explicitly, all of those 
perspectives involve the Platform Proxy component and the communication mechanism on top of 
which it is built. This section provides more information on the communication mechanisms and the 
architecture of this component. 
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The communication between the two isolated platforms is done through the Platform Proxy, 
which is a proxy to the adjacent isolated platform. Since the trusted and sandbox platforms are 
separated by strong isolation boundaries, they need to exchange messages in an Inter-Process 
Communication (IPC) fashion. We found necessary to use a transparent mechanism in order to avoid 
changes in existing applications as well as not needing to develop custom code that would couple 
components to our API. Changes should be necessary only in OSGi framework code. We want to be 
able to use this approach seamlessly in OSGi applications, by only configuring the isolation policy 
which is external to the platform thus not affecting the application code.  

Solutions like OSGi Remote Services [OSGi11] or R-OSGi [Rellermeyer07], which enable OSGi 
to be used in distributed contexts, could have been chosen for providing the communication between 
our isolated platforms. However, we found that these mechanisms are not fully transparent since 
service publication needs to include additional information for indicating that distribution is in use. 
We have decided to go for an ad hoc approach that is self-contained in the OSGi framework and does 
not require existing applications to be changed in order to use the isolation boundaries. The only 
thing to create and make available to the platform is the isolation policy.  

Existing protocols for Java IPC (e.g., Java RMI29, Hessian30) rely on extending classes and 
implementing specific interfaces of such APIs. In order to enable an object to be used with RMI, for 
example, an object must implement an interface that extends the java.rmi.Remote and all methods 
must throw a java.rmi.RemoteException. We wanted to seamlessly enable the sandbox approach, 
therefore we have implemented a transparent mechanism for enabling communication between the 
trusted platform and the sandbox without forcing the classes of service objects to be changed. 
Nevertheless, as emphasized in the Remote Services section of the OSGi specification [OSGi11], 
previous efforts for providing such transparent communication in distributed systems have faced 
problems because of the eight fallacies of distributed computing, attributed to Peter Deutsch and 
described in [Rotem06]: 

The network is reliable. 

Latency is zero. 

Bandwidth is infinite. 

The network is secure. 

Topology doesn't change. 

There is one administrator. 

Transport cost is zero. 

The network is homogeneous. 

[Rotem06] 

The communication mechanisms we use are based in same IPC principles, but we can partially 
eliminate from our context some of the issues among these eight fallacies. This is possible in our case 
because the platforms are in the same machine and that there is no network involved.  

This implementation of the protocol is loosely based on R-OSGi31 [Rellermeyer07] but with a 
simpler objective since our approach does not concern distributed systems. Writing such a protocol is 
not part of the objectives of this thesis, but it was a means to enabling the isolated platforms to 
communicate with each other. Although it is a minor contribution of our work, the design of the 
communication protocol that we have developed is briefly described in the next paragraphs. 

                                                 
 
29 http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html 
30 http://hessian.caucho.com/ 
31 http://r-osgi.sourceforge.net 

http://download.oracle.com/javase/6/docs/technotes/guides/rmi/index.html
http://hessian.caucho.com/
http://r-osgi.sourceforge.net/
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Communication Principles 

The idea behind this layer is to allow method calls on the PlatformProxy to be transparently 
translated into the appropriate protocol messages when the main platform has to invoke functionality 
from the other platform and vice-versa. The code we introduce to OSGi platforms explicitly makes 
reference to that component; however service invocation code (i.e., code provided by bundles) is not 
changed and is not aware of the PlatformProxy when isolated services are used, since we introduce a 
proxy that hides the call delegation. Therefore, in our proposition bundles can continue to use 
services without any change. If the service is hosted in the isolated adjacent platform, it is 
transparently sent across the isolation boundary. However, as explained later, the realization of this 
approach has some limitations on that transparency. 

In Figure 7.12 we illustrate the types of exchanged messages into two distinct categories based 
on the direction of the messages. The one way arrow represents bundle lifecycle method invocations, 
which are performed only in one direction – from the main platform toward the sandbox platform. 
The two way arrow shows that messages that are common to both directions are centered on the 
service layer: service lookup, service invocation, service events (e.g., registration, unregistration). 

 
Figure 7.12. The arrows in the middle illustrate the directions in which distinct types of messages are sent. 

Layered Components 

We have use a modular design in the Platform Proxy component for better code maintenance 
and evolution. Layers [Buschmann96] are a widely used architectural pattern for grouping different 
levels of abstraction in a system. If we consider a purist design, a layer should only communicate 
with its adjacent layers, reducing coupling among parts of the system and facilitating maintenance. 
Since we provided an experimental solution that would likely be changed, we developed it using 
such a layered approach for easily changing the layers responsible for communication if necessary. 
This has proven to be effective when changing from JSR-121 Links to Java sockets, as detailed later in 
this chapter. 

In Figure 7.13 the different logical components that represent each layer abstraction levels can 
be identified in the internal organization of the Platform Proxy. The IsolatedPlatform component is a 
high level representation of the operations available in the isolated platform (e.g., 
getServiceReference, getService, installBundle) that are called by the code we introduce in the OSGi 
framework. There are two different IsolatedPlatform implementations instantiated on each executing 
OSGi platform: one IsolatedPlatformClient and one IsolatedPlatformServer. While the client one 
receives calls from the OSGi layer and forwards them to the message layer, the server one works the 
other way round. The Message Layer handles the protocol message abstractions for the available 
operations as well as the message handling (requests and responses) between isolated platforms. The 
Communication Layer hides the details of the IPC in use.  

The point of access between the IsolatedPlatform and the Message Layer is illustrated by their 
respective ports that contain the MessageDispatcher and RequestHandler interfaces. The former is 
responsible for sending messages from the local to the isolated platform, that is, the requester platform 
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when it plays a client role in the communication. The latter handles requests originated from the 
isolated platform when playing a server role. Likewise, the ports on the Message and Communication 
layers illustrate the point of access between theses two components. Calls from the Message Layer to 
the Communication Layer are sent through the AsyncPipe interface, while the calls that arrive from 
the adjacent isolated platform are notified asynchronously via the AsyncPipeReader interface. 

 
Figure 7.13. White-box view of the PlatformProxy component. 

 

The communication between the isolated platforms is performed through the IsolatedPlatform 
facet, except when isolated service objects are invoked. The local platform provides a proxy 
(IsolatedServiceProxy) that receives the calls on its methods through as a Java dynamic proxy 
through the InvocationHandler interface. However, in both cases the communication happens almost 
the same way, differing only in the entry points being used. To better understand the flow of 
communication between two isolated platforms, we take the same example previously used of a 
getServiceReference method invocation in the isolated platform. 

As illustrated with UML in the communication diagram of Figure 7.14, sequence (1) shows an 
internal call (i.e., not coming from a service) originated from our custom code on OSGi framework 
(BundleContext) toward the IsolatedPlatformClient. It is transformed to the protocol request message 
representation (2.1) and forwarded (2.2) to the Message Layer. The layer handles the message, 
verifying if it is a request or a response, and proceeds forwarding the message (3.1, 3.2) to the 
Communication Layer. The call blocks (3.3) and waits for the result notification. The isolated platform 
receives the call (4, 5), performs the reconstruction and forwarding of the message that is transformed 
in a call to the OSGi API (8). When the message is back (11, 12) to the local platform and the response 
result is extracted it can be sent through the callback (13.3) and the waiting call (3.3) can be woken up, 
continuing the execution on (14) and (15) and returning the result to the caller. 
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Figure 7.14. Communication diagram illustrating the steps of a method call redirected to the adjacent isolated 

platform. 

Message Abstractions 

The protocol used different message abstractions (Figure 7.15), each one representing a 
different interaction with the isolated platform, similar to R-OSGi’s protocol. A difference from that 
approach is that besides having messages for controlling bundle lifecycle in an isolated platform, we 
use the MessageHeader.type attribute for differentiating response and request messages instead of 
usage of distinct abstractions like R-OSGi. Almost all messages concerning life cycle operations 
(update, start, stop, uninstall) in isolated bundles where generalized in a LifeCycleMessage class, that 
carries an attribute for identifying the lifecycle transition. Only the bundle install lifecycle transition 
was modeled as a separate class, since it needs a file path of the bundle to be installed while the other 
events only need the id of the corresponding bundle already installed.  

Service lookup, already illustrated in the communication diagram of Figure 7.14, was also 
abstracted with a protocol message. However, there are no getService messages since the proxy to an 
isolated service is built on the requesting platform. Instead, we have individual method invocations 
sent over which are represented by the MethodInvocationMessage class. It provides information on 
which service operation has to be called as well information concerning the operation parameters. 
Events are represented by the corresponding. Asynchronous bundle and service events are also sent 
by an isolated framework to its adjacent platform.  
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Figure 7.15. Classes and the corresponding attributes of the protocol message abstractions  

Messages concerning event notifications when demarshalled are transformed into OSGi events 
on the local platform, which are notified by the framework. This process involves the creation of the 
appropriate event object (ServiceEvent or BundleEvent) that must give access, directly or indirectly, 
to a bundle object. The messages carry only the bundle id, which is retrieved locally according to the 
equivalent local id found in the bundle correspondence map. Instead of pointing to the isolated 
bundle, it will point to the bundle of the local platform, therefore not providing the same information 
concerning the state and services of the original bundle.. For instance, a call to the method 
Bundle.getServicesInUse() would not work since the bundle is locally inactive, but active in the 
isolated platform.  

Upon communication disruption with the isolated platform, the Communication Layer notifies 
such event to the Message Layer, which informs the IsolatedPlatform. Such disconnection will trigger 
higher level events that identify service departure. The local platform creates an unregistration event 
for each of the proxied services being used. 

Inter-Platform Communication 

Figure 7.16 illustrates the type hierarchy around the I/O abstraction in the Communication 
Layer that we have created as the lowest layer of our protocol. The AsyncPipe defines an interface for 
a two-way pipe that should work asynchronously, as the interface name already suggests. Writing on 
the pipe is done synchronously while reading on it is performed by a notification through a listener 
interface called AsyncPipeReader. Whenever the pipe has data available, it is sent to its listeners.  

This layer helps abstracting the IPC mechanism in use, and easily allowed us to switch between 
the Link API, used in the initial solution, to Java sockets. The instantiation of the appropriate pipe is 
done through a simplified implementation of the factory pattern [Gamma95], which returns either a 
LinkBasedPipe (on top of the Isolate API), or a SocketBasedPipe (based on Java sockets) depending 
on the command line parameters used to start the isolated framework. Therefore, our mechanism was 
abstracted in a way that it is decoupled from the underlying IPC mechanism. As it is today, it can be 
switched to implementations on top of shared memory, RMI, etc. As long as the transparent 
communication principles are kept, this mechanism could be changed either partially or completely. 
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Figure 7.16. Class hierarchy around the asynchronous pipe solution we implemented for low level 

communication 

It is in this level where the communication is established between the two platforms must take 
place. However, in the current implementation a sort of handshake protocol only happens in the 
socket implementation. The Java Isolate approach uses Link objects passed as parameters on the 
construction of the Java Isolate that instantiates each OSGi platform. In the socket implementation, 
the trusted platform is the one that starts up before and waits in accept mode until the isolated 
platform connects. Since it is the framework bundle that contains such code, it is not necessary to wait 
for other bundles to be loaded or started. 

Implementation Limitations 

In this proof-of-concept there are a few drawbacks that limit the range of OSGi applications 
that can take advantage of the current isolation infrastructure provided by our approach. However, 
by taking this implementation further, or by adapting this approach to alternative mechanism some 
of these issues can be solved or minimized. The main limitations that we can summarize here 
concern: 

 Isolated services limitation: The fact of only being able to call methods using the supported 
set of types can be considered as the major limitation of the protocol. Since there is no 
guarantee that the objects used in the service method signatures would be serializable (e.g., 
implement the Serializable interface) as well as potential issues with class loading when 
demarshalling types in the isolate OSGi framework. An alternative to this mechanism could 
be, for instance, the usage of an Object Request Broker (ORB) that supports complex objects. 

 Isolated bundle abstraction: the getBundle method on service notifications and isolated 
service references would return the bundle of the local platform, which would provide the 
actual information of corresponding isolated bundle (e.g., the list of provided services). This 
problem could be tackled by adding a proxy layer on top of the bundle object that represents 
an isolated bundle in the local platform. 

 OSGi component models: Our approach had some incompatibilities with the 
IsolatedServiceReference interface were used as services used by OSGi component models. 
Most of the errors concerned the unbinding process. It relies in the 
BundleContext.ungetService method which typecasts the ServiceReference parameter to 
specific implementations of that interface in all three OSGi implementations that were tested. 

7.3 Isolation Containers 

Custom mechanisms that sit on top of the JVM, like JavaSeal [Vitek98] and Object Spaces 
[Bryce00], provide stronger isolation of objects, but at the Java level (i.e., above the JVM). They 
propose the isolation of objects in containers that are on the same level of abstraction of class loaders. 
With such a mechanism, “purging” a bundle and its objects from memory would be possible. 
However, because OSGi makes extensive use of class loaders and needs objects to be shared among 
them, using such approaches for isolating each bundle would require major changes in OSGi’s 
implementation therefore making these models incompatible with its principles. Approaches like 
[Geoffray09] use VM-level customizations that add fine-grained control on class loader isolation and 
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resource accounting mechanisms that are directly applicable to OSGi, which can still use class loader 
based isolation and still be executed without changing its code. In this approach it is possible, for 
instance, identifying and “killing” a misbehaving bundle. 

As already presented in our architecture, we decided not to go for individual isolation of 
bundles, but rather isolate groups of bundles – a group containing one bundle is possible, although 
costly in terms of memory. An important consideration for choosing the isolation container concerns 
the use of standardized Java technology in order to provide a general purpose and self-contained 
solution that is not coupled with any library or custom virtual machine. After analyzing the 
possibilities we ended up with two possible approaches: Domain-based isolation and process-based 
isolation; by means of Java Isolates (JSR-121) and a multi-JVM approach respectively. The next 
subsections provide more details on the utilization of each one of these approaches. 

7.3.1 Java Isolates 

The implementation of our propositions was initiated using domain-based isolation. It was 
performed on top of the Multi-tasking Virtual Machine (MVM), which implements the Java 
Application Isolation API specification (JSR-121). This implementation used a MVM-specific IPC 
approach for constructing the communication layer. We have later implemented a socket mechanism 
on the same layer, which could be used by both domain-based and process-based isolation.  

We have chosen Java Isolates as the initial implementation for the isolation boundaries mainly 
for two reasons. Firstly, they come from an official Java specification (JSR-121). Secondly, its concepts 
seemed to be a trend for isolation and multitasking approaches being incorporated to other Java 
technologies, like CLDC JVMs where a subset of the JSR-121 has already been applied to, allowing 
lightweight multitasking and saving memory footprint [Sun07, Sun08].  

The isolation of the platforms was possible by using one Java Isolates instance for each OSGi 
platform. If anything goes wrong in the sandbox platform, it would only affect the execution of its 
own Isolate, while the trusted platform’s Isolate would not be affected. The chosen isolation container 
can also be individually killed or restarted without affecting the execution of the main platform. They 
were used as our isolation containers, where each OSGi platform is started in its own isolate. Figure 
7.17 shows each platform running in separate Isolates but both of them run in the same JVM.  

The communication layer was implemented using the Link API as the inter-isolate (instead of 
inter-process) communication mechanism. An Isolate Link works between a pair of isolates as a 
unidirectional application-level communication channel. Therefore, to realize our approach at least 
two links are necessary for an Isolate to write and read information from another Isolate. Links can 
exchange information between them by wrapping data in a LinkMessage object that is passed 
between two links. It is possible through the send() and receive() methods in the respective Link ends. 

 

 
Figure 7.17. Approach using Java Isolates as isolation containers on the Multitasking Virtual Machine. 
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The creation of the links is performed by the application launcher during Isolate (i.e., OSGi 
platform) startup. However, a new Link object can be sent to an Isolate at any time via the Link.send 
method, by using as a parameter a Link instance wrapped in a LinkMessage. In case of a reboot or 
crash of the sandbox platform Isolate, the communication between the trusted platform and the new 
sandbox instance can be reestablished by the parent isolate, which can create two new links between 
the trusted and the new sandbox platform instance and send them to both platform Isolates. 

The generalization of the communication layer allowed us to easily change the underlying IPC 
mechanism from Isolate Links to Java Sockets. The major difference of both approaches is that, 
instead of receiving a ready-to-use IPC object (i.e., a Link object), the communication channel had to 
be obtained via accept and connect socket primitives.  

7.3.2 Java Virtual Machines 

Although providing fault containment and a lightweight isolation approach, isolation 
concerning JNI code in the Java Isolate API is implementation dependent. Since some 
implementations may provide that isolation level other may not. Therefore, there is no guarantee on 
full isolation in the presence of native code and consequently, this isolation approach may not be 
appropriate as a sandbox for safely executing native code.  

The JVM we have used is an experimental approach, even though this API is standardized and 
some of its principles have already been applied to production software. By limiting our approach to 
using only such API, there would be not much portability of our solution across other Virtual 
Machines. In addition, a significant advantage of the multi-JVM approach against Java Isolates 
concerns security permissions. In the case of Java Isolates, there is no individual security policy 
configuration at the domain level, as it exists in .NET Application Domains, for instance. When 
switching to a multiple JVM mode, we are capable of using individual Java policy files for each JVM. 
Therefore, besides the fault isolation the sandbox could also have restricted security permissions. This 
could be the case, for instance, of limiting the sandbox access to the file system (e.g., writing to the file 
system), to the network (e.g., downloading malicious code, sending data without authorization), and 
so forth. 

By using sockets for the communication between the isolated platforms, we were no longer 
using a VM-specific mechanism. Therefore, it became possible to use that approach in other VMs and, 
start multiple JVMs that can communicate. Instead of using Java Isolates as the isolation container, we 
have used multiple JVM instances for hosting the OSGi platforms. No major changes were performed 
on the solution in order to enable the usage of multiple JVMs. The launcher application had to be 
customized to launch two JVMs with the appropriate command line parameters for OSGi framework 
initialization, instead of launching a class that instantiated and configured the Java Isolates. 

Figure 7.18 illustrates distinct JVMs as the isolation containers being used. In terms of code, the 
isolation container of the Java Isolate approach was abstracted as a javax.isolate.Isolate instance that 
give access to the underlying Java Isolate that executes, in the multi-JVM approach our isolation 
container was abstracted as a java.lang.Process, instantiated through a java.lang. ProcessBuilder. 

 
Figure 7.18. Approach using Java Virtual Machines as the isolation containers. 
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By having two flavors of isolation containers, it is important to measure and compare 
characteristics such as the memory footprint of each approach, as well as the differences, if any, on 
communication overhead. Therefore, as part of our validations that are presented further in this 
thesis we provide such an experiment. 

7.3.3 Platform Launchers 

Since the application resultant from our approach is a virtual perspective which is actually 
comprised of two OSGi platforms, the platform bootstrap had to be adapted in order to 
simultaneously start both platforms. It was necessary also to take into account the different 
combinations of isolation container and OSGi implementation. We deal with two possible isolation 
containers approaches (Java Isolates and multiple JVMs) and different OSGi implementations 
(Apache Felix, Knopflerfish and Equinox). A custom application launcher had to be created in order 
to centralize and simplify the configuration and simultaneous startup of the isolated platforms.  

The launcher mechanism is illustrated in Figure 7.19. Step (1) shows a call to the 
MultiPlatformLauncher, which takes different startup parameters: the isolated container to be used, 
the communication mode and what OSGi implementation will be used. Based on that information it 
instantiates in (2) the appropriate OSGiLauncher implementation. It is then responsible to start the 
trusted platform (3) and the sandbox platform (4), passing the respective parameters. Other 
parameters that are platform specific, are used differently being present in all OSGi implementations 
(i.e., cache configuration), requires different ways for instantiating each OSGi implementation.  

We created a common interface (OSGiLauncher) that has three different implementations, each 
one dealing with the particularities of the OSGi frameworks used, namely Apache Felix, Knopflerfish 
and Equinox. This was necessary because each one of them have different initialization parameters. 
Each launcher passes different command line parameters mostly related with cache options, and in 
some cases. The launcher also takes as command line parameters the options that indicate the 
communication mode in use (Link API or Java Sockets). 

 
Figure 7.19. Startup steps of the isolated platform 

 

The launcher application keeps running after the two platforms are launched. It displays a 
multi-console window (Figure 7.20) that communicates with both OSGi platforms (trusted and 
sandbox). The output of both OSGi platforms is redirected to the multi-console window, while the 
input typed in that window is sent in the inverse way to the corresponding platform. When using the 
Isolate approach, the console sockets are set using the javax.Isolate.StreamBindings object of the 
Isolate objects that host, each one, an OSGi platform. In the caso of multiple JVMs, the launcher 
redirects the stream objects retrieved from the java.lang.Process instances used for launching the two 
platforms. 
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Figure 7.20. Prototype’s multi-console GUI. 

7.4 Summary 

The propositions we presented in this thesis include the isolation of untrustworthy components 
in fault contained environments. This chapter presents the sandboxing approach for realizing our 
propositions. Although the envisioned architecture involves several isolation containers, the 
implementation we have performed is limited to one trusted platform and an untrusted platform 
which we have called a sandbox. In this implementation services can also be isolated locally, 
providing and additional level of isolation that is weaker than the component isolation, since in this 
newer level components share the same memory space. The isolation of components is governed by a 
runtime reconfigurable policy that defines the rules for isolating components and services.  

Since the sandbox hosts untrustworthy components, it is possible that the environment 
becomes unstable. It is necessary to provide mechanisms that allow that environment to 
automatically recover in case of abnormal behavior. The next chapter provides an architectural 
overview and some details on the implementation of the autonomic manager that was created for that 
purpose. The infrastructure we provide gives self-healing capabilities to the sandbox, that is able to 
recover in case of crashes or when it is affected by a certain range of faults.  



Chapter 8  
 
Self-healing Mechanism 

“Don't find fault, find a remedy” 

Henry FORD 
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This chapter presents the approach used for adding self-healing behavior to the sandbox 
isolated container. It starts with a section explaining the motivations for using an external control 
loop. It is followed by the detailed architecture, illustrating the sandbox components that participate 
in that mechanism as well as the internal structure of the autonomic manager responsible for the self-
healing behavior. Another section presents the fault model used to present our hypotheses of 
potential problems that are handled by the autonomic manager. The section that follows it explains 
some fault detection and recovery strategies put in practice by the scripts that are used by the 
autonomic manager. Then, the chapter closes with a section presenting general considerations on the 
approach and another section with discussion and limitations of the approach. A higher level view of 
the contents of this chapter can be found in [Gama10b]. 
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8.1 External Control Loop 

The sandbox platform has a self-healing capability thanks to an external autonomic manager 
that monitors it and takes appropriate action when abnormal situations are detected, according to the 
fault model in use. The general architecture in Figure 8.1 illustrates the three coarse-grained elements 
of our approach that are all executed in distinct isolation boundaries, which means that the control 
loop is external to the sandbox. We have found different reasons for developing the autonomic 
manager as an application that will run outside the isolation boundary of the sandbox platform. As 
already discussed in literature, the realization of self-adaptive software involves several issues 
[Salehie09]. For instance, the adaptation approach has to be chosen between external or internal 
adaptation, and the decision making between static or dynamic.  

 
Figure 8.1. Blackbox view of the solution architecture. 

In [Müller06] the authors talk about spatial and temporal separability of the controller from the 
controlled element and also about controller evolvability. These two requirements can be seen as forces 
that drive solutions toward an externalization of the adaptation mechanisms. However, we can see 
cases where self-adaptive mechanisms are hardwired in applications and are very specific to their 
context, being difficult to generalize, as detailed in [Cheng05]. Besides that fact, we want to allow 
recovery mechanisms that are able to deal with failures that need quick responsiveness.  

For instance, if there is too much CPU or memory consumption, the application performance 
can be severely degraded. This may cause unresponsiveness of the application, and the self-adaptive 
mechanisms would have difficulties to execute and diagnose such problem if sharing the same 
process as the managed application. Also, in the case of sudden failures from a native library, an 
internal mechanism for crash recovery would not be effective since it would crash with the managed 
element as well. Therefore, an external agent would be more appropriate to enable recovery in case of 
crashes. 

Concerning static and dynamic decision making, according to [Salehie09], the former is hard-
coded (e.g., decision trees) and its modification implies the recompilation and redeployment of the 
adaptation mechanisms. The latter is externally defined and managed (e.g., rules, policies), being able 
to be changed at runtime. 

8.2 Detailed Architecture 

A more detailed view of the architecture including the autonomic manager is depicted in 
Figure 8.2. This component diagram is an incremented version of the one presented in the previous 
chapter (Figure 7.2), with the addition of the components involved in the self-healing mechanism: 

 The Monitoring and Effector probes, which are the equivalent of a sensor and an effector, 
respectively, in an autonomic element. They providing interfaces to external 
components gather runtime information and possibly perform actions to reconfigure 
the system. 
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 The Autonomic Manager, an external component that interacts with these probes for 
providing the self-healing adaptations. 

The next subsections detail the internal components of the sandbox platform, focusing on the 
ones that provide self-healing related mechanisms. Nevertheless, the others that are left out (Core, 
Isolation Policy Manager and Platform Proxy) have been already detailed in the previous chapter. 
After the sandbox details, we provide an overview of the autonomic manager architecture and its 
adaptation mechanisms. 

 
 Figure 8.2. Detailed perspective of the main components involved in the architecture of our solution. 

8.2.1 Sandbox Components 

Although the set of components in each of the illustrated OSGi platforms (trusted and 
sandbox) in the diagram are different, it is just a perspective that represents the respective sets of 
logical components of the OSGi framework that will be active at runtime. In reality, the 
implementation of the trusted and sandbox platforms are actually the same OSGi framework base 
code, but an initialization option indicating if it should execute in sandbox mode or not will 
determine which components will be used, as previously detailed. In addition, the behavior of certain 
components would change depending on the initialization mode that was used. 

The gray components in the diagram of Figure 8.2 represent internal OSGi components that we 
had to change for including code targeting our isolation and recovery approach, while the other 
components (white ones) have been introduced as part of that solution. The core and platform proxy 
components did not contain any code related to the self-healing, while the other sandbox components 
illustrated above are related to that mechanism. The components that represent the touchpoints of the 
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sandbox were implemented as JMX Managed Beans (MBeans), which are Java objects that represent 
managed resources32 that can be remotely accessible through standard protocols. 

Service Registry 

 This component contains mainly monitoring capability, which is only active if the OSGi 
platform is running with the sandbox mode turned on. The monitored information will allow the 
autonomic manager to analyze and identify potential faults that may take place in the service layer. 
The additional functionality that exists in the sandbox service registry relates mainly to three points 
concerning the proxies that point to services of the trusted platform: 

 Logging of service calls: Each service invocation towards the main platform is logged 
so it can be used for problem diagnosis. Information is stored in a per service basis and 
as well as in a general basis in the form of a simple counter that stores total amount of 
calls performed. 

 Invalidation of proxies: If the sandbox has a proxy to a service running in the trusted 
platform and that service becomes unregistered, the sandbox is notified and the proxy 
invalidated. By doing this it is possible to throw an exception whenever an invalid 
proxy is used, allowing to identify if a component (and which one) is using it. 

 Stale services: We track each service instance using Java weak references, in order to 
know if unregistered services are still referenced by other objects. A weak reference is a 
special type of object that does not prevent the referenced object to be garbage 
collected. When a weak reference object provides a null value, one can be sure that the 
object it points to has been garbage collected. 

Touchpoints 

The touchpoints were implemented using Java Management Extensions (JMX), which is a 
technology that is part of the core Java platform and that allows the management and monitoring of 
Java applications. Besides providing default probes (e.g., threading, memory), the JMX infrastructure 
lets developers construct and provide their own probes with custom functionality. Such custom 
probes can take advantage of the remotely accessible capability that is available by default with JMX. 
Therefore, the touchpoints can be easily accessed by the autonomic manager (or other applications) 
using the Java built-in support for communication through JMX interfaces. The two probes consisted 
of one monitoring probe, which provides runtime data about the sandbox and its components, and 
one effector probe providing methods that allow certain actions to be performed on the sandbox. 

Monitoring Probe. This touchpoint is a sort of data collection point used by the autonomic manager 
for gathering runtime information about the sandbox. It provides information concerning CPU 
consumption, memory usage, number of allocated threads, list of bundles, list of proxied services, 
service calls per minute (per service basis), stale service count and potential bundles that are retainers 
of a stale service. Certain events produce asynchronous notifications, providing data on bundle and 
service events. The bundle events consist of default OSGi events (install, update, uninstall, start and 
stop) and the service events concern the three default events (registration, unregistration and update) 
and the invocation of a stale service, which we can detect thanks to the proxy invalidation strategy we 
used in the service layer. The monitoring probe also has another facet that presents it as a heartbeat 
probe for verifying the responsiveness of the sandbox. The heartbeat consists only of one 
parameterless method with no implementation in its body and with no return type.  

Effector Probe. The effector probe is also implemented as an MBean, making available a set of 
operations that can be used by the autonomic manager for performing actions on the sandbox at 
runtime. Through this probe it is possible to stop the framework (graceful shutdown), to reset the 

                                                 
 
32 It has no direct relation with the concept of managed element used in the autonomic computing point of view. In the 

context of JMX it is rather a network perspective equivalent to what is done with SNMP (Simple Network Management 

Protocol). 
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sandbox, to invalidate a given service proxy, to stop and to start a given bundle, to perform a garbage 
collection on the sandbox (just a convenience method since it is already available in the Hotspot JVM 
through the default Java Memory MBean). 

8.2.2 Autonomic Manager 

The autonomic manager is responsible for monitoring the sandbox and taking action to fix 
faulty scenarios when anomalies are detected according to our fault model. Although we presented a 
logical division of its components, the autonomic manager is implemented as a monolithic Java 
application. The monitoring, analysis and adaptations are performed by a MAPE-K control loop, 
which is the most common approach for self-adaptive systems [Cheng08]. A minor part of the 
monitoring role is also present in a watchdog component, while a significant part of the analysis and 
adaptation code was externalized from the control loop, and maintained as separate script files that 
could be changed during execution. 

Watchdog 

Although separated from the monitoring component of the control loop, the watchdog has a 
monitoring role also, however it does use the data analyzed in the control loop. The watchdog 
component is responsible for restarting the sandbox platform in case the process is crashed or hung. A 
process is considered as crashed if its image is no longer in the system, and as hung if the process 
image is alive, but the process is not making any progress from a user's point of view [Huang95b]. 

The watchdog has its own execution thread where it keeps sending heartbeat messages in a 
regular interval to the sandbox JVM process and depending on the time taken for the response it can 
be inferred that the process is hung and then the autonomic manager can restart it. If a sudden crash 
also happens, the watchdog can recover the process and reestablish the connections as well as 
restarting the control loop, which is aborted in case of sandbox crash. The watchdog relies on the 
java.lang.Process API for starting up the sandbox process as well as for killing it. The instantiation of 
the monitor component is made right after the sandbox is launched or restarted. 

Script Interpreter 

The policy evaluation and the adaptation code used by the control loop are externalized from 
the components and take the forms of script files. Since scripts are interpreted, they could be easily 
changed without needing to recompile the whole application. Indeed, the OSGi platform could have 
been used for modularizing the control loop, but our implementation evolved from an ad hoc solution 
which was thought to be sufficient for achieving the desired goal of a simple autonomic manager. We 
considered that the level of flexibility provided by scripts editable at runtime would be enough. 

The script interpreter is a mere abstraction layer that wraps access to the underlying scripting 
engine, which can either be a script compliant with the Java scripting API or a custom scripting 
engine. This approach allows changing the scripts during application execution. In the work 
performed during this thesis we have implemented the scripts using the Beanshell33 scripting engine, 
which is used as a library but invoked through the Java scripting34 API. The main reason for choosing 
it instead of the default Rhino (Javascript) scripting engine that comes with the Java 6 platform, is that 
Beanshell is Java code that is interpreted at runtime. Therefore, there would be no need for learning a 
script language in order to code such externalized behavior. 

Control Loop 

We simplified the control loop by merging the analysis and planning phases into one component 
that we have called policy evaluator. The whole MAPE cycle was implemented as a chain of 
responsibility pattern [Gamma95]. The knowledge based is persisted in the local file system and 

                                                 
 
33 Beanshell - http://www.beanshell.org 
34 Not to confound the Java scripting API with Javascript (a script language with its syntax loosely based on Java) 

http://www.beanshell.org/
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provides a runtime abstraction that can be locally accessed and queried by any element of the control 
loop. The adaptation code is separated in scripts that are external to the control loop, and that can be 
changed while the autonomic manager is execution.  

Chain of responsibility.  The chain of responsibility is composed by ControlLoopAction objects 
chained together. This abstract class is composed of two methods that are necessary for implementing 
that pattern: one for setting the next object in the chain, and another one for executing the task (i.e., as 
in a Command [Gamma95] pattern). After an element is done processing, it passes the control to the 
next object in the chain. Figure 8.3 illustrates the flexibility introduced by using that pattern for the 
implementation of the control loop. The boxes with the ellipsis are not part of the actual chain, but 
they illustrate place holders where new objects could be easily added if necessary for configuring the 
chain (for instance, if the analysis had to be separated from the planning element). 

Each phase of the cycle can pass information ahead in a loosely coupled way, through a l.oopContext 
object that is sent across the chain of responsibility. This is a short-lived object that must exist only 
during a loop cycle. It contains a key-value map that can hold whatever object is necessary to be used 
during any control loop phase. It is a way for indirectly sending data from one loop phase to another. 
For instance, the MonitorAction is not aware of the PolicyEvaluator existence and vice-versa. Those 
two classes are responsible for the M and AP phases of the control loop, respectively. 

  
Figure 8.3. Illustration of the control loop implemented as a chain of responsibility.  

Monitor.  This is the first component in the chain that comprises the control loop. It is responsible for 
(1) periodically collecting information from the managed element (i.e., the sandbox platform); (2) 
persisting the current loop event in the knowledge base and (3) storing the information on the 
LoopContext object of that cycle, and (4) delegating the execution to the next object that is part of the 
chain, next to the policy evaluator component. Although the monitor component keeps polling the 
sensor of the sandbox in a periodic poll (e.g., memory, CPU, threads, stale service count), it is also 
capable of receiving events in push mode (e.g., method call on invalidated proxy, bundle update). 

Knowledge. From a control flow perspective, the knowledge base is not part of the loop. Indeed it is 
part of the control loop abstraction but rather as a repository of information that is shared by the 
components that constitute the control loop. They can perform analysis and inferences on the 
platform behavior based on the data stored in the knowledge base. In the IBM autonomic computing 
blueprint [IBM06], one of the ways for obtaining the knowledge from an autonomic manager (AM) is 
to let the AM itself produce that knowledge, instead of using external sources. The monitor part, 
using the information collected through sensors might create knowledge by logging the notifications 
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that it receives from a managed resource. The other components of the control loop may also update 
the knowledge base with information on actions that were taken as a result of the analysis¸ planning 
and execute phases.  

Our implementation uses that strategy of having the autonomic manager to produce its own 
knowledge, storing historical events that are shared with the other control loop components. The 
control loop components generate information in the form of events that are persisted in the 
knowledge base. These events were classified according to the diagram of Figure 8.4, which illustrates 
the types of event that we have considered for modeling the information of the knowledge base. Two 
classes are introduced only for generalization purposes (BasicEvent and CausalEvent) and are not 
explicitly stored or instantiated, since they are implemented as abstract classes. The LoopCycle class 
represents the periodic events for gathering information that is verified in the control loop. For 
modeling the GeneralFailure class is instantiated by the Watchdog component under two situations 
that were taken into account: if the sandbox is crashed or if it is hung. Although conceptually they 
may suggest two classes that would be specializations of GeneralFailure, we distinguish these events 
only by the anomaly that originated the event (crash or application hang). Since there are no 
additional attributes we did not see any reason for such specialization. 

We have also modeled a family of events that capture causality, that is, there is an association with 
the event object that represents the event that has provoked it. ActionTaken events represent actions 
that were performed in the end of the control loop cycle, as a result of the analysis and plan phases. 
These events store their cause and the behavior diagnosis. The cause is the event during which the 
action was triggered, which can be a GeneralFailure event but usually concerns a LoopCycle event 
(when it is performed during the regular cycles that poll the sandbox). The behavior diagnosis 
consists of the abnormal behavior, mapped by the fault model. The autonomic manager is also 
asynchronously notified of service and bundle events, which are translated into the knowledge base 
event objects to be stored. 

As an example, consider the scenario where an analysis performed during a loop cycle identifies that 
a bundle has to be submitted to a sort of microreboot (i.e., stopped and started), the LoopCycle event 
representing the cycle where that decision took place will be associated with the ActionTaken event 
created. After receiving the corresponding action through its effector probe, the sandbox will notify 
the autonomic manager of two service events (stopped and started). The causality of events received 
asynchronously is discovered through a heuristic mechanism used by the knowledge base for finding 
out if there is any correlation with previous events that were recorded recently (a time frame of a few 
seconds).  

 
Figure 8.4. Class diagram that models the information stored in the Knowledge Base. 

The historical information is essential not only for inferring such micro-vision of related events in 
small time intervals, but also for longer observations where anomalies of the sandbox behavior could 
correlated to the event(s) that potentially may have caused such abnormal behavior. As an example, it 
should be possible to verify that after the installation of a given bundle the CPU usage has 
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significantly increased. The information contained in this historic, however, is limited and is 
restricted to a range of problems that are mostly related with implications of dynamism.  

Investigations of the correlations between events in a wider time-frame could be inferred with some 
level of automation, but it may be a “man-in-the-loop” issue where an administrator or specialist can 
intervene. This user would verify the historic information looking for a correspondence between 
events, either by developing ad hoc queries or scripts, or manually verifying the events looking for 
possible causes. For the latter case, one may use graphical interface such as the one we have 
developed and is presented in Figure 8.5. This GUI is a VisualVM35 plugin that connects to the JMX 
probe that we have developed for the autonomic manager, so an administrative tool such as this one 
could have access to it. It provides a rudimentary view of the historic, allowing the visualization of 
event details and their causal relations, when applicable. 

 
Figure 8.5. Monitoring GUI of the sandbox as a VisualVM plugin 

The administration functionality provided by this plugin was planned to include a scripting console 
where the user could use historic information in predefined scripts or in ad hoc functions for querying 
that data set. However it was not developed due to time restrictions on the thesis. 

Policy Evaluator. This is the second component in the sequence of the responsibility chain. It plays 
the role of the analysis and plan phases in the MAPE-K control loop. This component evaluates the 
analysis script in each cycle, and depending on the analysis one or more scripts may be executed 
during the execute phase of the control loop. This practice of merging the analysis and plan phases is 
not unusual, and can be found also in other approaches, such as [Montani08] and [Dubus06]. For 
instance, the approach from [Montani08] presents a MAPE-K control loop where the analysis and 
plan phases are handled by a single component which they have called self-healing engine.  

We have chosen to merge the analysis and plan components because a significant part of these 
components’ logic is externalized from the components and stored in the policy script, therefore not 
leaving too much of analysis and planning to be performed within those two components. The code 
contained in the policy script may use the knowledge base during the analysis. As a result of the 
analysis, a list of scripts to be executed is generated, stored in the LoopContext object. The control 
flow is handed over the StrategyExecutor, which is next ControlLoopAction in the chain.  

Strategy Executor. The strategy executor is the last control loop component executed in a cycle. It is 
responsible for retrieving from the LoopContext the list of scripts to be executed. If the list is empty, 

                                                 
 
35 VisualVM http://visualvm.java.net/ 
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the current loop iteration ends. Otherwise, the LoopContext continues its steps by loading the scripts 
from the script repository (a local folder in the current implementation), retrieving the 
ScriptInterpreter and running them one by one as well as logging the appropriate information in case 
of exceptions. The code kept as beanshell scripts outside the application gives flexibility and leaves 
the possibility of customizing the behavior without needing to recompile code.  

During the execution of this phase, the scripts may gather information (e.g., which bundles are the 
potential retainers of a stale service) from the knowledge component in order to take a decision. The 
monitored data is made available to the scripting execution context, so the policy can have access to 
the current loop cycle values. Since the code is not compiled, errors are found only when the script is 
interpreted. An alternative to avoid errors when editing script objects could be the parallel utilization 
of mock implementations of the Knowledge base and touch points that would be passed to the 
LoopContext for testing the scripts that have been changed, before they are effectively whenever the 
script repository changed. 

8.3 Fault Model 

The hypotheses on potential sources of error in an application can be specified in a fault model 
[Binder99], which is useful for testing and for fault detection mechanisms. In Chapter 6 we discussed 
about the inconsistencies that we want to address in OSGi applications, divided into three categories: 
resource consumption, library crashes and dangling objects. These bug hazards are the basis of our 
fault model. Although not required when designing a fault model, we can illustrate our model with a 
hierarchy represented as a UML class diagram, depicted in Figure 8.6. The root of that hierarchy 
generalizes the category of the covered problems as a faulty behavior (i.e., behavior that is not 
expected), which would be a denomination that groups faults, errors and failures. We wanted to avoid 
an overloaded usage of the term fault in places where error or failure would me more appropriate. 
The higher level class and its two direct subclasses are abstract classes used for generalization 
purposes, but they do not represent concrete cases of faulty behavior that we have modeled. 

Crashes and Application hangs were considered as possible cases of application unresponsiveness. 
According to the definitions found in [Huang95b], a system is considered as hung if it is 
unresponsive. This is different from a crashed system which characterizes a system whose process is 
abruptly stopped and is no longer in memory. Resource usage was divided into CPU and memory 
categories. Both of them correspond to the excessive usage of the respective resource, but they can 
have specialized categories. Excessive thread allocation demands much more CPU usage for thread 
scheduling and context switching. Denial-of-Service (DoS) constitutes the excessive usage of a given 
resource in such a way that it is not able to serve other requesters, making the resource unavailable. 
We introduce the category of stale services in the diagram because it is the type of dangling object that 
we are able to detect and deal with in our mechanisms. Since it concerns a very specific type of 
memory inconsistency, we have considered it as a subcategory of memory issues, which is also true 
for other types of dangling objects that are not part of our fault model. 

 
Figure 8.6. Illustration of the sandbox fault model as a hierarchy in a class diagram. 
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One may argue that some of the behaviors classified in this hierarchy can be categorized 
differently, like excessive thread allocation which could have also been considered as a memory problem 
and even be seen under the unresponsiveness category. This model is not a strict view but only a 
hierarchical classification view for illustrative purposes and that considers a single parent per node. 

8.4 Fault Detection and Recovery 

Self-healing systems should be able to recover from failed components, by detecting the faults 
and fixing the faulty behavior. Based on that fault model that was just presented, we are able to 
provide mechanisms for detecting such anomalies, but with current technology it is not possible to 
detect all of them at the component level. Component-based platforms do not provide features for 
individually measuring resource consumption of components. Therefore, we lack precision on some 
of the employed detection techniques. Because of these limitations we were able to identify the actual 
sources of faulty behavior only for the case of stale services, and denial of service because we could 
insert monitoring mechanisms in the OSGi service layer, which allowed us to track those problems. 
The rest of the faulty behaviors described in the fault model could be only identified in a general 
basis, without being able to exactly point out the objects or classes where the problem comes from. 
This limitation represents a major drawback for a sandbox that is shared with other components since 
the reboot penalty is for all sandbox, and therefore all of the components running there. 

The detection of stale services has a particular mechanism that allows the identification of the 
problem at the component level, because it can be triggered by notifications when an unregistered 
service is invoked. Therefore, the detection of stale services is performed in two ways: by verifying it 
during each cycle of the control loop, or by receiving such notifications asynchronously. The former 
works as a fault forecast mechanism, but the current implementation involves imprecise heuristics for 
guessing the potential retainer of the service reference among the importers of the service interface 
package. The latter case would consist of fault detection and allows a more precise identification. The 
strategy found for fixing this behavior is more precise when the asynchronous notifications on stale 
service calls are sent. The exception thrown when invoking an invalidated proxy provides a stack 
trace that can be parsed, so the class name of the invoker can be identified. Finding the bundle that 
contains that class consists of a linear search of each bundle’s set of bundle entries (the list of 
contents) that match the name of the class. After identifying it, we perform a call to the update 
method in the bundle, performing a sort of microreboot. The bundle would be started and stopped, 
thus releasing the references to other services and recreating its bindings to a consistent state. 
However, this would not guarantee that the problem will not happen again, since the code of the 
bundle was not changed. There are attempts to avoid such problem in the OSGi platform, the 
proposition of the OSGi Micro Edition (ME) [Bottaro10] describes the fact of not having stale 
references as one of the requirements in the specification. 

The verification of denial of service behavior also relies on information captured in the OSGi 
service layer. The sandbox monitors that information by counting and logging service calls towards 
the main platform. In each control loop cycle of the autonomic manager, the corresponding 
verification in the policy will use the current value of total services invocation count and compare it 
with the last cycle. If it is greater than the maximum value configured, the policy script checks the 
sandbox log to verify if there is a particular service that is being overused or if this is just a overusage 
of the main platform through various services being called by the sandbox platform. If a single 
service is identified as the bottleneck for the excessive invocation, the policy verifies in the knowledge 
base for ActionEvents that have a DoS behavior diagnosis containing that same service as a target. If 
it has already happened with that service, the strategy used is a script for invalidating that service. If 
it has never happened before, we perform a microreboot in the sandbox. Possible refinements on the 
diagnosis mechanism in the former case would be: (1) temporary invalidation of the overused service, 
which would be a temporary solution that could take place again; or (2) invalidate the proxy to that 
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service, and provide a mechanism that would provide individual proxies per bundle36, allowing to 
identify the misbehaving bundle next time the excessive usage of that service causes a DoS. 

The other faulty behaviors mapped by the fault model cannot be precisely mapped to the 
“guilty” component.  As already discussed, the information logged in the knowledge base can help 
making inferences of potential causers of a given anomaly, but is not enough for precisely identifying 
the origin of the problem. In case of detecting such behavior anomalies without knowing from which 
component it comes from, the technique Microreboots are still used as a resort for resetting the 
system state as an attempt to leave the faulty state. However, the granularity level of the microreboot 
is increased. Instead of an individual component, a subset of components (the ones that are active in 
the sandbox) is rebooted simultaneously. We can still consider the reboot as “micro” because part of 
the application keeps executing.   

Concerning the unresponsiveness, its detection is performed by the watchdog component, 
outside the regular control loop as a separate surveillance mechanism. The other anomalies specified 
in the fault model are identified in the control loop during the analysis phase of the cycle. The script 
that contains the logic of the policy is executed and evaluates the read values against the policy. The 
resource usage class in the diagram represents an abstract concept for generalization, thus not having 
any code that directly deals with it as a general mechanism. When checking resource usage such as 
CPU or memory, the verifications in the script are done based on the established thresholds, however 
a decision for performing a microreboot must not be based on the information of a single loop cycle. 
The knowledge base is used for verifying past loop cycles (e.g., during the last minute) and check if 
the threshold in question has been surpassed continuously.  

8.5 General Considerations 

Although our approach was implemented on top of OSGi, which is a production-ready 
platform for running dynamic component-based applications, our solution is an experimental 
approach that provides a proof of concept. Therefore, it has limitations and needs to execute in 
environments were a few assumptions are used in order to enable our approach to be used. 

8.5.1 Assumptions 

Experimental approaches make different assumptions, which sometimes do not reflect actual 
software usage but that are necessary to validate the preliminary concepts put in practice. The self-
healing engine from [Montani08], for instance, makes the assumption that transient faults and 
intermittent faults should never happen. In our case, in order to enable the appropriate functioning of 
our solution, a set of assumptions must be true: 

 The set of components that coexist in the trusted platform has already been tested and 
has a minimal probability of bugs.  

 Based on one of the microreboot conditions, services that will run on the sandbox are 
stateless otherwise they risk having state corruption in case of reboots. 

 The communication between platforms will be done through services with simple 
interfaces (String and primitive values as well as arrays of those types). 

8.5.2 Microreboot Considerations 

We enumerate some of the considerations that must be taken into account concerning the 
microreboots performed by the platform: 

                                                 
 
36 Such an approach is possible in OSGi through a ServiceFactory interface, which allows a service provider to implement 

that interface and offer different services instances (or proxies) per requesting bundle. 
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 There is a significant difference between bundle microreboot and sandbox 
microreboot. Bundles in the sandbox are actually purged from memory when it is 
rebooted, since the sandbox platform goes through a shutdown and its isolated 
container (JVM process or Java Isolate, depending on the approach) is removed from 
memory, so another instance is started again. In the case of a bundle microreboot, there 
is no guarantee that its allocated resources (e.g., threads, streams, sockets) will be 
released; or that the services provided by that bundle will no longer be referenced. 
Both of these issues depend on good programming practices. 

 The state of service instances is not maintained (services are stateless, as previously 
assumed). Service providers may use their own mechanisms for that. 

 The state of the sandboxed bundles (e.g., started, stopped) is managed by the OSGi 
platform and it is maintained across reboots. 

 The microreboots may lead to an undesired effect. Depending on the configuration of 
the policy, continuous restarts of bundles or even the whole platform. This would 
generate continuous notification of events to the main platform, and would actually 
worsen the application performance and responsiveness. Such undesirable situation 
may continue until the origin of the fault is neutralized (e.g., component stopped, 
threshold reconfigured). 

8.6 Discussion and Limitations 

This section discusses some issues and limitations concerning the replacement of faulty 
components, resource accounting and evaluation of trust in isolated components. The previous 
subsection ended up with a point that leads to a discussion about the effectiveness of the 
microreboots. Non-deterministic faults that would cause abnormal behavior can be removed by 
performing microreboots in bundles or in the sandbox. Another point that is very important to be 
discussed concerns precise resource accounting at the component level would help identifying issues 
that would allow a fine granularity of microreboots. Finally, we discuss about the criteria on how we 
could evaluate if a component is trustworthy, so it could be promoted to be executed outside 
confinement. 

8.6.1 Replacing Faulty Components 

The fact of performing microreboots as an attempt to reestablish correct behavior concerning 
deterministic faults may not be effective all times. Except if we replace a faulty component by another 
one which provides a correction for the detected fault, a microreboot cannot guarantee to 
permanently remove a fault. Replacing a faulty (or suspicious) component with an alternative version 
(e.g., newer version, other component that provides the same functionality) would be more 
appropriate because another component will equivalent functionality would likely not have the same 
faults. This problem could be minimized and potentially solved if the target component platform is 
able to access a component repository and query it for equivalent functionality (e.g., query based on 
the provided interface of the component component). 

In the case of OSGi, that would also be possible if implementing a search mechanism accessing 
and using metadata of OSGi Bundle Repositories (OBR ), which are federated bundle repositories 
described by XML files. In order to have such bundle replacement mechanism one would need to 
query an OBR using its capability metadata (e.g., metadata about provided packages and services) as 
a filter for finding a bundle that would provide the same services as the faulty bundle does.  

In other work [Gama11b]  we have started the development of a probe-oriented deployment 
mechanism based on the OBR, but in that approach we use previously known sets of probes that are 
looked up in OBRs and deployed in the application. In the context of the sandboxed OSGi, we would 
have to query the OBR looking for a bundle that provides the same services of a bundle that has to be 
replaced (i.e., the faulty bundle). The bundle manifest attribute providing metadata about imported 
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and exported services has been deprecated in OSGi. Therefore, we would have to provide equivalent 
information for representing the required and provided services of a bundle. In this case, the service 
interface names could be exposed as capabilities (extensible metadata) in the OBR. 

8.6.2 Resource Accounting 

One of the challenges in providing mechanisms for detecting the issues presented in our fault 
model lies in the fact of not having precise monitoring tools and infrastructure that can give 
information at the component level. In environments where components come from different sources, 
liability is an important issue to be dealt with. It concerns who is responsible for faults, but it is harder 
to detect anomalies when there is no fine-grained control on resource allocation or usage, which 
includes, for instance, CPU, memory and thread allocation. Resource accounting at the component level 
is not trivial. [Miettinen08] raises the question if the resource usage should be accounted to the 
provider or to the component that executing a given computation. Also, depending on the 
perspective, the information may be misleading. In the case of DoS, the causer of the problem is the 
service consumer, which is invoking it excessively. However, if the monitoring only takes into 
account the CPU processing; the service provider is going to be the one to be blamed of the 
malfunctioning.  

This perspective is discussed in [Miettinen08], where the authors preferred to take into 
consideration the direct accounting (the provider is responsible for the resources it uses) of resources. 
Their approach is an attempt to provide resource monitoring in the OSGi platform, giving a bundle 
consumption perspective. They map OSGi bundles to threads, combining changes on OSGi code and 
the addition of JVMTI37 agents developed in C that are plugged to the JVM. The resource 
consumption of the threads spawned by a bundle would be accounted as that bundle’s resource 
consumption. Other projects [Ferreira09] [Wang10] employed the same techniques, but they are all 
based on assumptions that limit the precision of the resource accounting. As this approach needs to 
perform changes at the application level and at VM level, it makes the maintenance more complex 
besides the fact that portability is compromised because the JVMTI approach is not mandatory in 
JVMs. 

Temporary CPU bursts in the sandbox due to some processing that is consuming too much of 
resources may be misjudged by the autonomic manager. It would be necessary that the component 
inform the runtime that extra resources are going to be needed, in order to avoid such situations. For 
instance, the KaffeOS introduces the concept of process in a Java Virtual Machine, providing an 
isolation container that can have its resources precisely accounted independently of the other 
processes hosted in the same JVM. JRes [Czajkowski98] provides a solution based on a Java interface 
for monitoring resources consumed by threads or thread groups. It allows setting limits on resources 
available to thread instances and to be notified back in case the resource limits are exceeded. In order 
to work this approach performs bytecode rewriting and also relies on native code for accounting 
resource usage. The contract-based approach for resource consumption described in [Guidec02] uses 
resource brokers as intermediary entities between components and the JVM for providing resource 
permissions, quotas and reservations. They are used for granting access to resources, allowing access to 
resources and assuring the necessary quantity of resources, respectively.  

In the Microsoft .NET platform, resource consumption information can be easily retrieved 
through a built-in package, thanks to the tight integration of that platform with the Windows OS. The 
.NET CLR exposes a set of built-in performance counters in the System.Diagnostics namespace that 
provide information such as networking usage, memory, threads and locks, exceptions thrown by the 
application, among other information. However, that information concerns only the process level. 
Although the .NET platform provides application domains, which act as separate isolation containers, 
there is no resource accounting at that level, neither at the assembly (i.e., component) level. Therefore, 
in a scenario with multiple components and multiple application domains one cannot be sure about 
the application assembly responsible for situations where excessive resource consumption take place. 

                                                 
 
37 Java Virtual Machine Tool Interface - http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/ 

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/
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In the ROBOCOP component model we can find an approach [Jonge03] that tries to address 
resource usage at the component level. It is actually focused on the resource consumption in a per 
operation basis. Each component defines services, and their respective operations which need to 
specify the amount and the type of resource (e.g., CPU, memory) to be allocated. They use a 
prediction mechanism that takes into account that specified value in order to estimate resource usage. 
If a service is a composition involving other services, the estimation mechanism for it will take into 
account all operations to be called indirectly. Still, this is another approach that does not provide a 
perspective of actual resource usage by a component.  

In the case of the Java platform, standardized mechanisms concerning resource consumption 
are not yet available and currently there exists limited monitoring capability in utility classes 
scattered over the API. The official specification of the Resource Consumption Management API 
[JCP09] at the time of writing of this manuscript was in its final version for more than two years, 
without any available implementation, which according to the documentation would be constructed 
on top of the Isolate API.  Meanwhile, fine-grained control on resource monitoring would have to be 
limited to mechanisms that are built over non-standard JVMs, as detailed in this subsection. 

8.6.3 Evaluation of Trust 

The evaluation of component trust is a difficult task especially if this is to be done during 
application execution. The purpose of this platform is not just hosting components in the sandbox ad 
vitam æternam. This mechanism is necessary for protecting the main application from the potential 
malfunctioning of other components. It is desired in some cases that the isolated component be 
promoted to a trustworthy status so they can execute as part of the main application. 

We have not found a specific model or approach for automatically doing it at runtime. Injection 
of faults into interfaces between components, as used in [Voas97], allows simulating the propagation 
of errors across components and how they behave on such scenarios. However, approaches like that 
are appropriate to testing environments while our target scenario consists of a production environment 
where components can be dynamically deployed at anytime, either by a system administrator or 
through an automatic mechanism.  

As an appropriate strategy to the sandboxed OSGi approach, we support the idea of runtime 
observation of the component. During a sort of quarantine period, the interaction between the 
component and the system (i.e., other components) can be analyzed. After having enough historical 
information (e.g., Knowledge base) to be verified, the level of trust could be evaluated based on that 
analysis. The verification of historical data from the knowledge base can help to tell if the evaluated 
component introduced anomalies or undesired behavior in the system.  

An obstacle to a precise evaluation, as discussed in the end of previous section, concerns the 
lack of fine grained resource monitoring at the component level. Without that information, one 
cannot be sure about the resource consumption of a component. A second problem would concern 
the code coverage of these interactions. Part of our hypotheses considers the potential 
incompatibilities in compositions. Therefore, the historical data should also provide information that 
makes possible to take into account if, (1) all the methods of the services provided by the evaluated 
bundle have been invoked, and (2) if the services consumed by the evaluated bundle were already 
invoked. However, there are no guarantees that all of these interactions will take place during 
execution. Therefore, the minimal degree of coverage could be a criterion to be specified in this case.  

If we take into account the cohesion principle of hosting as a group in the sandbox all 
components that interact together, the decision of promotion would have to involve the whole set of 
cohesive components that are involved in related computations, otherwise by promoting one 
component only we would be generating performance penalties since the component would now 
have to interact through IPC mechanisms. 

Once the criteria are reasonably defined as well as the verification mechanisms, it would be 
possible to automatically promote components (if the fine-grained monitoring was available, of 
course). For now, the component promotion performed in our approach lies in human observation 
and decision before changing the policy for dynamically.  
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8.7 Summary 

This chapter presented the approach taken to construct the self-healing mechanism of the OSGi 
sandbox. We developed an autonomic manager that connects to the sandbox through management 
probes. The autonomic manager uses a feedback control loop for monitoring the sandbox and 
performing corrective actions in case the interpretation of the monitored data indicates abnormal 
behavior of the sandbox. The structure of control loop that was implemented is based on the MAPE-K 
(Monitor, Analysis, Plan, Execute, Knowledge) reference architecture from IBM, however the actual 
adaptation logic was kept as separate scripts that are loaded during execution, and can be changed 
while the application is running.  

The chapter also provides the fault model taken into account for mapping the potential faulty 
behavior that would be triggered. It also presented some techniques that were employed for detecting 
and recovering from these behaviors. A major limitation concerned the lack of functionality that 
allows fine-grained monitoring of component resource consumption. Such information would be 
helpful for indentifying guilty components, in case of faulty behavior detected. This is of utmost 
importance in a context of several component providers. It forced the strategies to take general 
considerations and perform restarts in the whole sandbox, when it should be used just as a last resort 
in case individual component microreboots did not handle the problem. 

Although the autonomic manager is modeled and developed as a separate component, the 
OSGi framework code still had to be changed in order to add more dependability-related code, this 
time for the monitoring functionality used by the control loop. The next chapter discusses structural 
improvements in this approach by appropriately handling dependability as a separate concern 
instead of trying to have it entangle with the code target platform. 





Chapter 9  
 
Dependability as a Crosscutting 
Concern 

"Serendipity is the faculty of finding things we did not know 
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The last two chapters concerned the implementation of the mechanisms proposed in this thesis, 
which are detailed in Chapter 5.  Our solution was initially implemented as a set of patches to Apache 
Felix version 1.4, which is an open source implementation of the OSGi specification. This chapter 
focuses on how we have treated dependability as a crosscutting concern and how we better 
modularized the solution by using Aspect-oriented Programming (AOP) for separating dependability 
code (non-functional) from the OSGi platform runtime (functional code). We also observed that in 
OSGi the architecture layers have a representation gap when translated from the specification to the 
API. As an unexpected side finding, we have created an abstraction for representing software layers 
as aspects which helped to better visualize the OSGi layers and how they are crosscut by the 
dependability concerns. This abstraction, which we generalized as a reengineering pattern, also 
avoided some redundancies when applying aspects to the OSGi platform. 

The fact of having the dependability code separated from the OSGi implementation minimized 
the burden of manually applying the dependability code to other OSGi implementations. Aspect-
orientation provided a good choice for modularizing the dependability concerns. In our case, it 
allows us to easily apply the extracted crosscutting concerns over two dimensions: across different 
versions of a given OSGi implementation; and across different OSGi implementations (i.e., different 
vendors), thus enhancing the maintainability of our solution and its applicability. The 
implementation of the aspects was performed using Aspect-J, an aspect-oriented extension to the Java 
programming language. 

The chapter is partly based on [Gama11a]. It starts with motivations for employing separation 
of concerns for adaptive dependable mechanisms. It is followed by a section that gives a brief 
overview on AOP, including aspect usage in autonomic computing and in the OSGi platform. Next, 
we detail the generalization of the reengineering pattern we propose for capturing layered design by 
using aspects. After that, the process is of applying that pattern in OSGi is illustrated together with 
the implementation of dependability as aspects in that platform.  

9.1 Separation of Concerns for Adaptive Dependable Mechanisms 

A discussion in [Taïani09] points out that one of the key challenges for adaptive fault-tolerant 
computing is related to the coupling between functional code and the non-functional code introduced 
by the adaptation mechanisms. According to the authors, an ideal solution for adaptive fault 
tolerance should focus on three characteristics: separation of concerns, programmability and scope control. 
The first one suggests a clear separation between the functional level, the fault tolerance, and the 
adaptation itself. The second characteristic advocates that a declarative approach would allow 
developers and fault tolerance experts to express the dependencies and requirements in an 
appropriate DSL which should cover fault tolerance assumptions and needs (fault model, fault unit, 
levels of confinements). The third characteristic refers to the ability of operating small changes with a 
small effort, where only the parts to be adapted in a fault-tolerant mechanism would be impacted. 

Our approach addresses all of these three characteristics to some extent. The proposed scope 
control encourages the use of fine-grained adaptation units, which is what we do in the autonomic 
manager through the scripting approach. The scripts can be individually updated, thus keeping a 
limited scope that does not affect the running system. The programmability is focused by means of the 
isolation DSL that we propose. In a declarative way, as suggested in [Taïani09], it is possible to 
configure the levels of confinement – component or service— in use by specifying if and which 
services or components need to be isolated. The proposed separation of concerns is three-tiered: 
functional level, fault-tolerance and adaptation itself. In our approach this separation is partly true. What 
we consider as the functional level on the sandbox is the ability to provide an execution environment 
for components. A significant part of the fault-tolerant and adaptation code is kept independent from 
the functional level.  The adaptation code is kept in the scripts of the autonomic manager, while the 
fault-tolerant mechanisms are divided between these scripts and the autonomic manager, which is 
responsible for watching and monitoring the sandbox. However, the code that performs the isolation 
of components and services was embedded in the OSGi implementation. Therefore, the separation is 
not complete.  
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The package diagram in Figure 9.1 presents a code perspective on how the solution was 
structured. Although the isolation code was well structured, we had to customize the Apache Felix 
implementation by inserting in several places calls to the isolation code. The autonomic manager code 
was kept separate but it only depends on the probes provided by our customization. In summary, the 
adaptation code resided in the isolation, autonomic manager and scripts packages.  

   
Figure 9.1. Package diagram illustrating the static dependencies  

This chapter presents the structuration on how we have used AOP for separating the 
dependability code (non-functional) from the OSGi platform runtime (functional code). This 
approach allowed us to reuse this solution in different OSGi implementations, facilitating the 
maintenance of the dependability code independently of the OSGi implementation code. 

9.2 Aspect-oriented Programming 

The principle of Aspect-oriented Programming (AOP) [Kiczales97] is a paradigm that improves 
the modularity of applications by employing the principle of Separation of Concerns38 (SoC) 
[Dijkstra74] advocated by Dijkstra.  In SoC, one should focus on one aspect of a problem at a time, as 
a way to have a better reasoning on a specific aspect of a system. An aspect should be studied in 
isolation from the other aspects but without ignoring them.  

Putting these concepts into practice, AOP allows the separation of concerns (e.g., logging, 
transactions, distribution) that crosscut different parts of an application. These crosscutting concerns 
are kept separate from the main application code, instead of being scattered over different parts of the 
system. A source file (e.g. module, class) may also have code that accumulates different 
responsibilities not necessarily related, giving an impression of tangled code.  

As Figure 9.2 illustrates, code that crosscuts the application and is separated from application 
source code into different source files, in the form of aspects. An aspect weaver mixes the aspect code 
with the application code in a stage that is performed typically at compile time but sometimes also 
done at runtime. This separation improves modularity and readability, and, as a consequence of 
those, the maintainability of applications. 

 
Figure 9.2. Aspects are maintained outside the target application code, and then are intermixed with it after the 

weaving process. 

                                                 
 
38 It  is  not  to  be  confounded  with  SOC,  with  a  capital  “O”,  which  stands for Service-Oriented Computing 
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AOP employs its own terminology, from which we briefly clarify some of the commonly used 
expressions that are going to be frequently cited throughout the chapter. Join points are constructs that 
capture specific parts of program flow (e.g., method call, constructor call). Since join points refer to 
parts of the program that are evaluate during execution, one may also use the term join point shadows 
[Hilsdale04] to refer to the corresponding part of the join point in the static part of the code. For the 
sake of simplicity we will refer simply to join points unless explicitly differentiated. Pointcuts are 
elements that pick one or more specific join points in the program flow.  The code that is injected into 
pointcuts during the weaving process is called advice in AOP terminology. The portions of code 
defined in the advices are executed during method interception during application execution when 
the corresponding pointcuts are reached. In AspectJ, as in most AOP technologies, an aspect is 
comprised39 by pointcuts (which pick out join points) and advices.  

9.2.1 Non-functional Requirements as Aspects 

AOP is complementary to other approaches like object-oriented and component-based 
programming. It allows to keep crosscutting concerns separate from the main application, avoiding 
the code scattering phenomena that is typical when implement certain non-functional requirements. 
Aspects have already been successfully used for keeping non-functional requirements like persistence 
[Rashid03], distribution [Soares02] and QoS [Loyall98] separate from the functional code. [Duclos02] 
uses this separation adapted to component-based development, and [Seinturier06b] provides a 
Fractal component model implementation using AspectJ for separating the development of 
application-level functionality from the development of supervision functionality and technical 
services. 

Although other approaches use aspects for handling dependability-related cross-cutting 
concern, we have not found approaches targeting dependability by employing of aspects for isolating 
components and services in dynamic applications. The strategies were rather different, and targeting 
other execution platforms. Error handling [Filho07] [Lippert00] is one the most addressed 
dependability-related concerns using AOP. Other approaches like [Rouvoy09] try to handle more 
general mechanisms, by using AOP to combine dependability concerns with self-adaptive 
applications. 

9.2.2 Autonomic Computing and AOP 

In general, several efforts have used AOP to address dynamic adaptation, such as 
[Redmond02] [Yang02]. By narrowing down the vision to autonomic computing we can still find 
works that take advantage of AOP for introducing autonomic managers and monitoring capabilities 
into systems. Autonomic computing principles are handled as crosscutting concerns in [Engel05], 
where a self-adaptation mechanism (self-optimization, self-configuration, self-healing and self-
protection) based on resource usage is integrated into the operating system kernel level by means of 
AOP. 

[Chan03] focuses on the monitoring function as a crosscutting concern, describing an approach 
for building autonomic managers in legacy systems by using AOP techniques for weaving them. 
[Alonso08]presents what was have called AOP-monitoring framework, where they inject monitoring 
probes into the system by means of AOP in order to verify resource consumption. In [Greenwood04] 
aspects that monitor requests on a server application are dynamically woven in case response time 
thresholds being reached, allowing a caching aspect for enhancing response time. 

9.2.3 AOP in the OSGi Platform 

The service-based component models that target the OSGi platform allow separating non-
functional code concerning dynamism handling (service dependencies, registration, unregistration, 
etc), from the functional code itself that is provided by the components. The iPOJO component model 

                                                 
 
39 An AspectJ aspect may also contain inter-type declarations (e.g., field declaration), but those were not used in our solution, 

therefore they are out of the scope of this thesis. 
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takes a step further with a more flexible mechanism. It employs strategies extensively used by AOP 
frameworks, such as method interception and bytecode manipulation. Non-functional code can be 
provided by means of handlers. Besides the predefined handlers already implementing non-functional 
requirements such as service provisioning and dependency management, the mechanism permits 
developers to provide their own custom handlers for dealing with other non-functional requirements. 

We have found different approaches explicitly using AOP in OSGi. While we have focused on 
introducing non-functional requirements as crosscutting concerns into the OSGi framework by means 
of aspects, the majority of the other approaches focused on the usage of aspects at the bundle level. 
The only approach we have found targeting the framework itself was the one from [Singh07], where 
they have focused on refactoring existing crosscutting concerns (e.g., security) in the Equinox OSGi 
implementation. Frei and Alonso [Frei05] adapted an OSGi framework implementation in order to 
register services for using AOP through an AOPContext object instead of a BundleContext object, 
allowing service proxies to intercept calls before and after method execution.  

Other mechanisms concentrate on enabling the usage of AOP in OSGi bundles, providing load-
time weaving like the Equinox Aspects project [Lippert08], where aspects can be deployed either with 
the bundles that would be woven, or as separate bundles. Keuler and Kornev [Keuler08] also use 
Equinox’s class loader hook mechanism for manipulating the class loading performed in bundles. 
They replace the base class loader of all bundles by an intermediary one that allows the aspects to be 
loaded. Irmert et al [Irmert08] combine JBoss AOP with the classloading hook mechanism from 
Equinox for building a mechanism that deploys aspects as OSGi bundles. All three approaches rely 
on Equinox’s the class loader hooks which are specific to the Equinox OSGi implementation and are 
not part of the OSGi specification, therefore not being portable to other implementations like Apache 
Felix or Knopflerfish. 

9.3 Representing Layers as Aspects 

Our sandboxed OSGi implementation was initially an OSGi Apache Felix version 1.4, patched 
with the code that enables our propositions on the isolation approach and some monitoring features 
that are used by the self-healing mechanism. Attempts to port that solution to a more recent version 
of Apache Felix would require manual work of copying and pasting the patches that are scattered 
across different classes. Migrating to another OSGi implementation (e.g., Eclipse Equinox, 
Knopflerfish) requires a deep analysis of the target implementation source code and migration of the 
patches. To ease the burden of applying such patches manually, we have extracted and refactored 
them into aspects, which was a good choice for modularizing the dependability crosscutting 
concerns. This refactoring approach enables better code evolution, since the aspects are kept 
independent of the target application which can evolve separately as well as have different versions 
that combine different sets of aspects. For instance, an OSGi framework could be woven only with the 
isolation aspects without using the self-healing approach. Such strategy for different combinations of 
aspectized features is common in software product lines [Alves07]. 

During that process we have identified the points of interest of the OSGi API where our 
dependability aspects should be applied to, instead of directly applying them to specific classes 
which are implementation dependent. Because the API is standardized and is the common point to 
all OSGi implementations, the aspects targeting the API are applicable to any of the implementations. 
However, during the restructuring we have noticed that useful concepts described in the OSGi 
specification are not well represented in its API, making it difficult to distinguish abstract concepts in 
the specification from their counterparts in the API. For instance, the software layers specified by 
OSGi are scattered over different interfaces, which accumulate roles from different layers. There are 
no single entities to describe individual layers neither there is a single access point for accessing the 
services of each layer.  Software layers are abstractions to enhance modular design. Therefore, if such 
layer concept is lost when a specification is translated into an API, we lose modularity as well. 

We have analyzed the OSGi API and used aspects to reify these abstract software layers, 
distributing the resulting code in the form of an aspects library. Layers can be crosscut by different 
concerns which are aspects of more specific purpose (e.g. logging, transactions). In this case, instead 
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of applying the specific aspects directly to the OSGi API, we add another level of indirection through 
layers that are “aspectized”. The specific aspects can reuse the pointcut definitions of these layer 
aspects, giving us two advantages: better readability with a clear understanding of which layers are 
crosscut by which aspects; and reuse of pointcut definitions, which need be define only once in the 
layer aspect thus avoiding redundancy. We demonstrate such reuse by refactoring our OSGi 
dependability patches as aspects that reuse these new layer abstractions. Although we concentrate on 
dependability concerns, this approach could use the same strategy for introducing any crosscutting 
concern addressing the OSGi framework by means of the layer aspects. We have found a related 
approach [Saraiva10] that also deals with software layers and aspects, but under a different 
perspective from our proposition. Their work consists rather in the assessment of the impact (e.g., 
verification of layer violations) of using AOP on layered software architectures. In our case, we have 
provided reusable abstractions for these concepts in order to improve modularity and to allow better 
comprehension of an API from an architectural point of view. 

Software layers are an architectural pattern extensively used for grouping different levels of 
abstraction in a system [Buschmann96]. By employing such pattern for layered architectures, it is a 
good practice to design a flat interface that offers all services from a given layer. In a purist layer 
design, a layer of a system should only communicate with its adjacent layers, via such flat interfaces. 
Such type of design gives a commonly used architectural view of systems. We find cases where the 
system is well designed in terms of layering, but the corresponding implemented code does not 
represent explicitly such architecture. In other (worst) cases, the system lacks good abstraction during 
design and the result when developing it is a monolithic architecture, being difficult to understand. 
Since this is an issue that is not limited to the OSGi platform, we have decided to generalize the 
approach as a software reengineering pattern. The next subsection provides a brief overview on 
software reengineering, followed by another one describing the pattern that generalizes our 
abstraction approach. 

9.3.1 Software Reengineering 

Reverse engineering, Reengineering and Restructuring are close terms, with subtle differences. 
Definitions from [Chikofsky90] indicate reengineering as the examination and alteration of a system 
to reconstitute it to a new form, while restructuring consists on transforming the system code keeping 
it at the same relative abstraction level, and preserving its functionality. Reverse engineering would 
consist of analyzing a system in order to identify its components and to create abstract 
representations of it. 

Recovering lost abstractions such as design and facilitating reuse are important reasons for 
reengineering [Chikofsky90]. Duplicated code and functionality; insufficient documentation; 
improper layering; and lack of modularity are among the coarse-grained problems [Demeyer02] that 
may lead to reengineering a software system. As a part of the reengineering process one may employ 
techniques like refactoring [Fowler99] as a form of code restructuring. Refactoring consists on the 
process of changing a software system to improve its internal structure without altering the external 
behavior of the code.  

As already seen in this chapter, AOP can be very useful paradigm when restructuring and 
reengineering systems. It allows keeping cross-cutting concerns separate from code at development 
time, performing their integration by “weaving” them to the target application either in compile time 
or at runtime. By means of aspects we can either refactor systems by extracting crosscutting concerns 
(e.g. logging) and putting them out of the code transforming them into aspects, or by introducing 
crosscutting concerns that were not present in the system before (e.g. distribution). However, aspects 
are typically used in a straightforward manner where the main goal is basically the separation of 
concerns, in order to avoid code with a specific purpose (a concern) to be scattered over different 
parts of the system. An aspect is usually applied directly to a system’s codebase without intermediary 
reusable abstractions like the ones we propose. Therefore aspects are a place that can potentially code 
duplicated in other aspects. 

By reengineering the code, it is possible to arrive at a system whose architecture is more 
transparent, and easier to understand. In [Demeyer02], extracting the design is considered as a first 
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step for performing new implementations. Either if re-implementing the system or just applying the 
required changes, this step is very important.  AOP is useful in the context of reengineering either to 
apply changes to code by introducing new crosscutting concerns, or by refactoring out from code 
existing crosscutting concerns into aspects. When in such AOP usage, we propose to give more 
semantics to pointcuts in a way that it is possible to represent part of the system design, by grouping 
the pointcuts in meaningful abstractions (e.g. layers) that could be reused. Our proposition does not 
involve changes in the aspect language level, but rather relies on existing constructs for building such 
abstract representations. 

9.3.2 Layers Aspectization 

In a typical utilization of aspects we define pointcuts using join points that directly reference 
the code of the target the system, without any intermediary abstractions. This may end up with 
redundant pointcut definitions, especially in larger systems or in systems where aspects represent a 
significant part of the code. This redundancy is illustrated Figure 9.3 by the pointcuts B, H, I and M 
which are used by more than one aspect. If each definition involves several join points (e.g., method 
calls, method executions, instantiations), it may be difficult to give some reusable semantics to it. In 
addition, if the same set of join points is to be used in another aspect, we end up with redundant 
code. Indeed, we can give aliases to pointcuts for better expressiveness and reuse within the same 
aspect as we illustrate further.  

At large, what we propose is to logically group pointcuts in general purpose aspect definitions 
that do not provide advices but only pointcut definitions.  That gives more semantics to the aspects, 
allowing us to logically represent software layers that were not correctly (or not at all) represented in 
the original system. In the case of our example, the monolithic design of the target system is now 
represented by aspect layers (e.g., data access layer, GUI layer) that capture the previously 
nonexistent system design concept. We also avoid redundant definitions of pointcuts. For instance, 
instead of aspects A2 and A3 having to write pointcut B twice, such pointcut is going to be logically 
grouped together with G in an aspect layer (AL2). The code from A2 and A3 can then reuse the 
pointcuts from AL2. After this change we now know explicitly that aspects A2 and A3 crosscut the 
layer represented by AL2. Another conclusion that can be drawn is that there is that layer AL4 is 
crosscut by all aspects. 

To clarify this proposition, we provide some code illustrating our approach. By taking the 
example of Figure 9.3 (a), the origin of the links toward the pointcuts (A through M, in the figure) 
denotes where the corresponding pointcut definitions are located. In such approach it is normal to 
have the same pointcut definitions that may be present in different aspects, which represents 
redundant code as exemplified in Listing 9.1. The anonymous pointcut definition in A2 is the same 
used in A4 but cannot be reused, working as a sort of ad hoc pointcut.  In contrast, the pointcut X of 
aspect A4 can be used by different advices just by referring to its name. Based on that reuse 
possibility we suggest reusable pointcut definitions that represent a logically grouped concept, 
providing the semantics of a software layer. 

In Figure 9.3 (b) our approach proposes the introduction of an intermediary abstraction that 
uses aspects for gathering cohesive pointcuts that would refer to join point in the same software layer. 
We can use these groupings to represent software layers and also to reuse the pointcut definitions 
with more semantics. Whenever reusing a pointcut, one would know to which layer it refers to. In the 
example, each aspect layer (AL) illustrated will just group pointcut definitions (A to M) that belong to 
the same software layer, thus providing a representation of that layer as an aspect. The actual 
crosscutting concerns should be coded in aspects that refer to the pointcut definitions of these layer 
aspects, instead of repeating them in their code. 
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Figure 9.3. The upper part of the figure shows aspects defining pointcuts (circles) on the reengineered system. The 

lower figure introduces aspectized system layers grouping such pointcuts. 

   
public aspect A2 { 

 

 void around(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo)){ 

    //advice code 

 } 

} 

 

... 

 

public aspect A4 { 

  

 pointcut X(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo)); 

  

 void around(): X() { 

    //advice code 

  } 

} 

Listing 9.1. The example shows the same pointcut definition in the form of an anonymous pointcut in aspect A4 
and as a named pointcut in aspect A5.  
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public aspect AL3 { 

  pointcut J(): /* ... ... */ 

  pointcut M(): execution(void Foo+.set*(..)) || execution(void Bar.setFoo(Foo)); 

} 

... 

 

public aspect A2 { 

 

 void around():  AL3.M() { 

  //code 

  } 

} 

... 

 

public aspect A4 { 

 

 void around():  AL3.M() || AL4.K(){ 

  //code 

  } 

 

} 

Listing 9.2. Layer aspect AL3 defines the redundant pointcut of previous example 

The code in Listing 9.2 that illustrates the layers is presented in Figure 9.3 (b) where we provide 
the example of the aspect layer AL3 which represents an architectural layer (e.g., data access layer) 
that was “captured” using two pointcuts. The other two aspects of the example, A2 and A4, reuse the 
definition of the pointcut M. It is clear that both aspects A2 and A4 crosscut the layer represented by 
AL3. In the case of aspect A4, one can easily identify just by reading the code that it also crosscuts the 
layer represented by AL4. The illustrated advice of AL4 will be used whenever the program flow 
reaches the join points defined by pointcuts AL3.M or AL4.K. 

9.3.3 Proposed Reengineering Pattern 

As a generalization of that approach, we propose an aspect-oriented reengineering pattern that 
is useful for understanding and capturing the layered architecture, when applicable, in systems of 
poor design or with discrepancies concerning the translation of specification into implementation, 
which is the case with the OSGi framework. We document this pattern by employing an organization 
(intent, problem, solution, tradeoffs) for describing our “Aspectized” Software Layers pattern similar to 
the one used by the OO reengineering patterns book [Demeyer02]. 

Intent 

Utilizing reusable aspects for extracting the layered design of a system and clarifying where 
(and which) are such software layers. 

Problem 

Common usages of AOP are basically employed in two ways. The first one consists of 
refactoring out crosscutting concerns out of the system code. The second case consists of introducing 
previously inexistent crosscutting concerns into the system, in the form of aspects. Both cases 
typically employ straightforward solutions that do not use intermediary abstractions. It is not clear 
which system layers are being affected (i.e. crosscut), especially in systems with weak design (e.g. 
monolithic systems) or where design has been badly translated from the specification during its 
implementation. In larger solutions, pointcuts tend to be repeated where reuse could be possible. An 
extra level of indirection could introduce more semantics and pointcut reuse. 

Solution 

Introduce general purpose aspects (i.e. without advices) logically grouping correlated pointcuts 
that represent software layers used in the system. The pointcuts now aspectized in software layers 
can be reused with better semantics than previously. Before actually executing the necessary steps, it 
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is important to understand the system being refactored. Applying the reverse engineering patterns 
below, which are defined in [Demeyer02], can help identifying the design in order to properly apply 
the aspects:  

 Speculate about design. It will allow making hypotheses about existing design so we are 
able to understand which ones are the existing layers. 

 Refactor to understand. This is important to understand the code even if these performed 
refactorings are not taken into account later. Discarding such changes may be the case 
when it is not desired to modify existing code. 

 Look for the contracts. The proposed intent of this pattern is to infer the usage of class 
interfaces by observing how client code uses it. In the context of our pattern, this may be 
the case when contracts are not explicit. 

After identifying which are the layers and which ones have to be abstracted, it is necessary to 
create their corresponding aspects. Each aspect will define the pointcuts that represent the services 
provided by a layer. The granularity level depends on the usage or what is necessary to be 
represented. For example, a data access layer abstraction could include pointcuts defining the general 
CRUD (create, read, update, delete) operations as the layer’s services. 

The layer aspects themselves do not have to provide any code for advices; therefore alone they 
are useless at runtime. The layer aspects should be reused by advices from other aspects that apply 
crosscutting concerns (e.g., logging, transactions, distribution) to the target system. In the case where 
such crosscutting concerns already exist in the form of aspects, it is necessary to apply the look for the 
contracts pattern in order to understand how theses aspects use the target system in order to be able to 
extract the concept of the layers that should be aspectized. 

Tradeoffs 

Pros 

 Higher level abstractions 

 Possibility of giving a new perspective on the design, without needing to change source 
code 

 Clarification of the existing architecture through the extracted design 

 Reusable pointcut definitions 

Cons 

 Depending on the coverage of the aspects (e.g. crosscuts only parts of the system) the 
resultant design that was extracted may not completely describe the system architecture 

 Poor knowledge of the system may also result in an incomplete representation 

9.4 OSGi Case 

A relaxed layered system, also mentioned in [Buschmann96], is less restrictive than a pure 
layered system in the sense that a layer may directly use all layers below it, which is the case in the 
OSGi platform where the bundles layer freely accesses the other three layers, as illustrated in Figure 
1. But in practice such access in OSGi is not done through a single interface per layer. Actually, there 
is no such flat interface for explicitly representing layers in OSGi’s API. The functionality of each 
layer is scattered over different interfaces which may accumulate roles from other layers. 

To illustrate this, we analyze how the bundle layer accesses the other layers. The 
BundleContext interface has responsibilities in the service and lifecycle layers. The OSGi API 
centralizes operations in the BundleContext, where we find code concerning different layers 
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entangled and several non-related responsibilities. The BundleContext is an interface that works as a 
sort of Façade that exposes varied framework functionality to a bundle. Through its BundleContext 
instance, a bundle directly accesses operations of the service layer and part of the lifecycle layer. A 
bundle is represented by an instance of the Bundle interface, which provides lifecycle transitions (not 
all of them, though), and gives access to other two layers: service and module layers. An important 
principle described in [Buschmann96] says that layers should be separated from each other, having 
no component spread over more than one layer. However, in OSGi a bundle has different points of 
access to each layer, and each point of access does not work in a per-layer basis since they are 
entangled with code from different layers.  

We use aspects to create a flat interface vision for each layer, as illustrated in Figure 9.4, 
making explicit a sort of central weaving point of access to the services of a given layer. These 
layering abstractions are fundamental for adding crosscutting concerns in a more structured way, 
providing a clear architectural vision of the layers affected by aspects that crosscut one or more layers 
and may need to reuse such abstractions.  

 
Figure 9.4. Aspects help simulating a layer’s single point of access. 

As mentioned before, the pointcuts that define the layers can be reused. For example, if two 
different aspects need to intercept lifecycle transitions the pointcut definitions need not be repeated. If 
a developer needs to think in terms of OSGi layers for applying aspects (e.g., service layer 
monitoring), the task becomes easier by using our approach. The principles documented here serve as 
a contribution to others needing this form of abstraction for adding crosscutting concerns to 
application frameworks, like the OSGi framework, in the same structured way as we did. 

9.4.1 OSGi Layers as Aspects 

In OSGi, our approach focuses on code that lies in-between the interaction of the bundle layer 
(the components deployed at runtime) with the lower layers. The aspects would use the OSGi 
framework as the point of interception. Code that concerns the internals of bundles implementation 
does not interest us. Therefore, pointcuts are defined using join points of the OSGi API. For that 
reason we weave only the framework and not the OSGi bundles.  

We have left the security layer out of our scope since it is an optional layer according OSGi’s 
specification. Besides clearly crosscutting all layers (visible in Figure 9.4), the join points related to 
security are easily identifiable in the OSGi specification, which details all methods and corresponding 
interfaces that need to perform security verifications in each of the layers. In addition, existing work 
[Singh07] already has contributions handling security as aspects in OSGi. 

Lifecycle 

The methods and transitions that concern bundle lifecycle are scattered across four interfaces 
(Bundle, BundleContext, BundleActivator, PackageAdmin) that already have roles other than 
lifecycle management. Figure 9.5 shows the states and their respective transitions concerning a 
bundle’s lifecycle in OSGi. The install state transition is actually fired in the BundleContext (BC in the 
figure) interface. The resolve transition is defined in the PackageAdmin (PA) service interface, while 
the update and uninstall can be found in the Bundle (B) interface. The refresh transition is part of the 
package admin, which is not part of the core API but rather declared in the PackageAdmin (PA). The 
start and stop transitions are both located in the Bundle and BundleActivator (BA) interfaces. In case 
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of a Bundle having a BundleActivator, those calls are delegated to the activator. In the LifeCycle 
aspect we have rather called it as activation and deactivation, respectively. 

 
Figure 9.5. Illustration of OSGi bundle lifecycle state transitions scattered over several interfaces: BundleContext 

(BC), Bundle (B), BundleActivator (BA), PackageAdmin (PA). 

The code of the LifeCycle aspect containing the corresponding pointcuts can be found in 
Appendix B. Most of the pointcuts defined there have used join point definitions that concerned 
interfaces whose implementations are provided by any OSGi framework. Therefore, in such cases it 
was possible to apply execution join points. Call join points have been used only in the activate and 
deactivate pointcuts, which represent, respectively, the state transitions from resolved to active and from 
active to resolved. This happens due to the fact that an OSGi framework implementation itself does not 
provide implementors of the BundleActivator interface. BundleActivators are rather provided by 
bundles that will be loaded by the framework. Calls to start and stop lifecycle transitions are done 
toward the framework, which performs its work and then delegates the calls to the start and stop 
methods of the BundleActivator from the corresponding bundle that will then execute the start or 
stop methods. Because we weave only the framework, not applying aspects to a bundle’s code, we 
cannot apply execution join points in such transition. Instead, we use a call join point on the OSGi 
framework part that calls those methods. 

Service 

According to its specification, the service model in OSGi is based on a publish, find and bind 
model. All of these operations are centered around the service registry, which actually does not have 
a standard class or interface representing it in the API. The methods that give access to the service 
registry can be found scattered in different interfaces. In addition, implementations of a service 
registry may be completely different from one OSGi implementation to another. We reified the 
service registry as the aspect that represents the OSGi service layer, since we are mostly interested in 
the methods that concern the three operations of the OSGi’s service model. The pointcuts that group 
the join points giving access to the service layer were grouped in the ServiceRegistry aspect, which is 
detailed in Appendix B. 

Most of the pointcuts were defined using execution join points. However, similar to the join 
points used in the activate and deactivate pointcuts of the lifecycle layer, the join points concerning 
the ServiceFactory were declared as call join points since a ServiceFactory is an interface whose 
implementations are provided by bundles that are dynamically deployed instead of being provided 
by OSGi implementations. As a practical example for using the service layer aspect, we could 
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implement a service interception mechanism more powerful than the standard service hooks 
[OSGi11] provided by the OSGi framework, which are limited (for instance, we cannot intercept 
directly the retrieval of a service). 

Module 

Although scattered in different interfaces that accumulate roles from different layers, the 
functionality of both service and lifecycle layers can be well identified in the OSGi API. However, we 
cannot say the same concerning the module layer. All the classloading and package visibility 
requirements are well defined in the OSGi core specification, but they are not explicit in the API. 
Also, most of the runtime behavior concerns implementation specific code, which may differ from 
one implementation to another. For example, the classloading mechanism of the Module Loader 
[Hall04], used in both Oscar40 and Felix OSGi implementations, differs from those of Equinox and 
Knopflerfish, but they must all comply with the OSGi specification. 

One of the few methods of the module layer that are explicit in the API can be found in the 
Bundle.loadClass method. However, typical code does not necessarily use that method explicitly. It 
rather relies on Java’s transparent classloading mechanism (e.g., automatically performed when 
instantiating a class for the first time).  We have only defined three classloading related pointcuts, as 
detailed in Appendix B. Given that a bundle is the unit of modularization in OSGi, we also have 
included a pointcut that uses a join point for bundle construction. 

The OSGi Package admin service stores metadata concerning packages and their bundle 
dependencies, which are related to the module layer. The module layer aspect is useful, for example, 
for tracking bundle creation or as an alternative mechanism for intercepting class loading for 
performing custom bytecode manipulations on classes known only at runtime (the typical case in a 
dynamic platform such as OSGi). Other less intrusive usages could be fine grained tracing of the 
classloading process (an alternative to the general command line –verbose:class option); tracking the 
creation of new classloaders provided to bundles; and so forth. 

Layer Aspects Reuse by Composition 

Hanenberg et al. propose the separate pointcut [Hanenberg03] aspect-oriented refactoring for 
avoiding redundant anonymous pointcut declarations. Indeed, separate pointcut declarations are a 
good practice for reusability. The typical solution proposed in [Hanenberg01] is to inherit from an 
abstract aspect and to provide the advice code referring to the inherited pointcuts. However, we have 
chosen to use the design principle of favoring composition instead of inheritance, taken from object-
oriented design [Gamma95]. This choice was mainly due to inheritance limitations in AspectJ. Instead 
of creating an abstract aspect to be extended so it can be reused, we rather defined the pointcuts in 
reusable library aspects that map the points of interest of each of the corresponding target OSGi 
layers (i.e.,  lifecycle, service and module layers), reusing them in the advices of our aspects, as shown 
in Figure 9.6.  

If we analyze the semantics of an is-a relationship – which legitimates inheritance – between 
one concrete aspect and the library aspect that represents a layer, we do not have a 1 to 1 cardinality, 
which would justify single inheritance in most of the cases. We rather have a concrete aspect that may 
crosscut multiple layers. As some concrete aspects may crosscut layers and layers have been 
abstracted as aspects, a concrete aspect may need to use code – in this case, pointcuts– inherited from 
different layers. In an illustrative example we can consider that a given concrete aspect (e.g., service 
monitoring) may affect two layers, (e.g., module and service layers) which are represented as aspects 
as well.  In cases like this we could see the single inheritance provided by AspectJ as a limitation, 
since we can only inherit from one aspect at a time. If AspectJ provided multiple inheritance it could 
be solved in a straightforward manner. However, by using composition we could easily workaround 
this issue, thus making possible to create aspects reusing pointcuts from different origins (i.e., the 
layer aspects).  

                                                 
 
40 http://oscar.ow2.org 

http://oscar.ow2.org/
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Figure 9.6.  Package diagram illustrating how the aspects are independently applied to different OSGi 

implementations 

9.4.2 Dependability Aspects 

We have already discussed how AOP can help dealing with non-functional code by separating 
them into aspects and keeping the functional code of the application cleaner and easier to maintain. 
In the same way, the maintenance of the non-functional aspects becomes easier. In this section we 
present how we have extracted into aspects the dependability concerns that we have introduced in 
the Apache Felix OSGi implementation. The solution became implementation independent, and its 
aspects reused the pointcuts abstractions of the OSGi layers that we have created. 

The layer aspects by themselves do not provide advices. This section is a showcase for 
illustrating the reuse of such abstractions in the creation of specific aspects that are concerned with 
dependability and monitoring. In our proposition we patch the OSGi framework to provide our 
sandboxed OSGi solution proposed in this thesis. This is done by transparently providing 
infrastructure that would (a) deploy and execute untrustworthy third-party code in a fault contained 
environment, and (b) enable the automatic recovery of applications in case of faults or failures.  

The code in our precedent solution was manually introduced as a patch on the implementation 
of Apache Felix v.1.4.0. We refactored these cross-cutting concerns into fine grained aspects, reusing 
our layer aspects abstraction. Figure 9.7 illustrates the reuse of the layer aspects in the creation of 
specific aspects concerned with dependability and monitoring. The layers avoided redundant 
pointcut definitions and allowed to explicitly identify which layers were being affected by an aspect. 
For example, the use stereotype clearly shows which aspects crosscut which layers. All of the 
instances of the dependability aspects did not need to have any particular association with classes, 
objects or control flow. Therefore, they have been implemented with the default issingleton() 
association. 

We implemented two groups of cross-cutting concerns: isolation and monitoring. Because the 
isolation approach is detailed in Chapter 7 and monitoring mechanisms are explained in Chapter 8, 
the next subsections will rather focus on the aspectization perspective without worrying about the 
implementation details of the non-functional concerns we address. 
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Figure 9.7. The aspects on the left side are the layer abstractions that are reused by the specific aspects that are 

illustrated on the right side. 

Component Isolation 

The component isolation aspect crosscuts the different lifecycle transitions, and also the service 
registry for allowing services running in one isolated platform to be used in the other, across the 
isolation boundary. All of these adaptations are encapsulated in aspects that target the OSGi 
platform. The dynamically deployed components are not changed; therefore, from the components 
perspective, our approach provides seamless component isolation and communication. When a 
component is installed in the main (trusted) platform the ComponentIsolation aspect installs it in the 
sandbox. At component startup, the corresponding advice verifies the policy and if necessary starts 
the component in the sandbox, as shown in the first advice described in Listing 9.3. 

We also had to avoid reentrant calls on the advices of some pointcuts. For instance, the 
implementations of Bundle.start() typically call Bundle.start(int), caught by the same pointcut. We 
simply added a cflowbelow construct, which is how AspectJ avoids the reentrant execution of an 
aspect. Local queries to the service registry that bring no match are re-routed to the isolated platform. 
If a match is then found, the aspect would return an IsolatedServiceReference. Retrieval of service 
objects using such references generate a proxy that transparently handles the communication 
between the two platforms, as depicted in the second advice of Listing 9.3. Every component isolation 
patch we made in the Felix implementation could be easily migrated to the ComponentIsolation 
aspect, except for one. The notification of service events from one platform to the other was 
implemented directly in the EventDispatcher class, which is specific to Felix. In this case we had to 
adapt a dispatcher that was registered as a ServiceListener in OSGi and was responsible for filtering 
and propagation of service events to the other platform. Listener registration is done on the 
initialization of the isolation library, done via a ModuleLayer.bundleInstantiation pointcut. 

Service Isolation 

This aspect is responsible for replacing service objects by service proxies (when the isolation 
policy applies) that delegate the calls to the wrapped service object, which is actually the process 
already described in Chapter 8.  As shown in Listing 9.4, the pointcut used here targets the service 
layer represented by the ServiceRegistry layer aspect. 

Stale Services Monitoring  

We had previously used Aspect-oriented Programming (AOP) for monitoring in the 
ServiceCoroner tool [Gama08a] [Gama08d], which is used for the diagnosis of stale references, but in 
a less structured manner if compared to the approach presented here. The effectiveness of using 
aspects combined with weak references for finding stale services has been detailed in the experiments 
presented in [Gama08a]. That solution has been refactored and integrated to the OSGi dependability 
enhancements described here. Listing 9.5 shows a simplified example of the aspect that forwards the 
service instance tracking to the ServiceCoroner API. 
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In the case of both component isolation and service monitoring aspects being used together, it 
is necessary to explicitly define the order of precedence so we can be sure that the service monitoring 
will track always the actual servant object instead of tracking a proxy to a service.. 

 
  

public aspect ComponentIsolation { 

... 

void around(Bundle b): LifeCycle.start() 

     && !cflowbelow(LifeCycle.start())&& this(b){ 

 if (!PlatformProxy.isSandbox() &&        

     PolicyChecker.checkIsolation(b)){ 

     PlatformProxy.start(b.getBundleId()); 

  } else { 

    proceed(); 

  } 

 } 

 

 Object around(ServiceReference ref): ServiceRegistry.retrieval()  

                                     && args(ref) { 

   Object service = null; 

   if (ref instanceof IsolatedServiceReference) { 

    Bundle b = ref.getBundle(); 

    service = getIsolatedProxyService(b, ref); 

   } else { 

    service = proceed(ref); 

  } 

  return service; 

 } 

... 

} 

Listing 9.3. Advices reusing pointcuts of different layer aspects. 

 
public aspect ServiceIsolation { 

... 

 Object around(ServiceReference ref):       

      ServiceRegistry.retrieval() && args(ref){ 

   Object s = proceed(ref); 

   if (!PlatformProxy.isSandbox()  

       && PolicyChecker.checkIsolation(s)) { 

    s = ProxyServiceStore.getProxy(s,ref); 

   } 

     return s; 

   } 

... 

Listing 9.4. Main advice of the ServiceIsolation aspect 

 
public aspect ServiceMonitoring { 

... 

 Object around(ServiceReference ref):   

   ServiceRegistry.retrieval() && args(ref) { 

     Object result = proceed();          

     ServiceCoroner coroner =   

           ServiceCoroner.getInstance();    

     coroner.trackService(ref, result); 

     return result; 

   } 

... 

Listing 9.5. Aspect for monitoring services garbage collection.  



 

157 

Autonomic Management 

The self-healing capability of the sandbox is achieved via autonomic management which is 
actually provided by an external application that provides a control loop. It collects information from 
the sandbox via monitoring probes, analyzes the data and takes appropriate action (e.g., stopping a 
bundle, rebooting the sandbox) through effector probes implemented as Java MBean. The insertion of 
such probes is done by the sandbox monitoring aspect on the creation of the first bundle through the 
module layer, as depicted in the simplified example of Listing 9.6. 

The service layer is also used by this aspect, but in quite a similar way to the approach for 
service isolation based on proxies. The proxy enables, for instance, calculating service usage. A 
particular difference on this aspect is that it also weaves our own classes in order to monitor the 
interactions with the isolated platform via their proxies. The probe information also depends on our 
ServiceCoroner API (fed by the service monitoring previously describe), in order to take action 
against stale services. The fault prediction mechanisms are available for a set of patterns of errors: 
CPU hogging, stale service, excessive memory allocation; excessive thread instantiation; excessive 
invocation of services (Denial of Service); stale reference retention. The detection and handling of 
such faults was provided as customizable scripts that are loaded and executed by the sandbox 
autonomic manager. 

Although AOP can be used through dynamic run-time adaptation, our approach relies rather 
on compile time weaving just for introducing the code that provides the monitoring mechanisms. The 
actual adaptation code takes place in the external autonomic manager that uses that monitoring data, 
as described in Chapter 8. 

public aspect SandboxMonitoring { 

... 

 void around(Bundle bundle) : ModuleLayer.bundleInstantiation()&& this(bundle){ 

 if (bundle.getBundleId() == 0) {          

  ObjectName name = new  

     ObjectName("fr.imag.adele:type=Touchpoint"); 

  Touchpoint mbean=new Touchpoint(); 

  mbean.setSystemBundle(bundle); 

ManagementFactory.getPlatformMBeanServer().registerMBean(mbean, name); 

 } 

} 

... 

} 

Listing 9.6. Creation of the sandbox monitoring probe aspect. 

9.5 Weaving Different OSGi Versions 

Although one may consider this solution invasive because of the changes performed in OSGi 
implementations, the approach has the advantage to be portable across different implementations 
because it targets the OSGi API. The dependability aspects were successfully woven and tested into 
different versions of three OSGi implementations (Apache Felix, Equinox, Knopflerfish) that are 
widely used in software industry. The weaving of layers and aspects happened with no problems, 
and the dependability aspects correctly worked, as detailed further. As part of our evaluation, we 
extracted some metrics presented in Table 9.1 concerning the layer abstraction through aspects, for 
each tested implementation. We verified how many join point shadows have been found in the 
classes affected by each of the layer aspects, so we could have a perspective of the scattering 
phenomena in the analyzed OSGi implementations. Although the number of affected classes may 
seem small, we want to illustrate that there is no single point of access for layers. We also show that 
the layer concepts are lost in the API, since the classes that contain the join point shadows have other 
responsibilities than exposing layer services. Likewise, we find classes whose responsibilities overlap 
different layers. We collect such scattered concepts, and expose as an entity that contains the entry 
points to a given layer. Another observation that can be made is that Felix and Knopflerfish join point 
shadows remain stable across different versions, while Equinox shows a significant increase from one 
version to another. 
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Table 9.1. Layer scattering over OSGi API: total join point shadows (JPS), affected classes (C) and packages (P) 

Concerning woven OSGi frameworks execution, two adjustments had to be done. First, to 
avoid issues with type visibility in OSGi, we embedded the AspectJ runtime classes in each one of the 
woven OSGi implementations. The second issue concerned the Equinox OSGi framework jar file 
which stores in its manifest an SHA1-Digest for each class present in the jar. After the weaving 
process, the woven classes had their hashes no longer valid and we had security verification errors at 
OSGi startup. The workaround was to remove such information from the framework bundle manifest 
file so it could be started up. However, the fact of having the OSGi framework bundle without SHA1 
hashes does not influence in the verification process of any other loaded bundles that contains SHA1 
hash information. It only means that the framework will not perform that verification against itself at 
startup, but other bundles will be verified. To illustrate that, the other two implementations (Felix 
and Knopflerfish) do not provide SHA1 hashes in their manifests but they are able to verify digitally 
signed jars that are loaded by the framework. 

9.6 Summary 

We have identified that this solution crosscut different parts of the OSGi implementation used 
for the base implementation of our approach. This chapter presented our approach for handling 
dependability as a separate concern in the OSGi platform. By using the Separation of Concerns 
principle we could better modularize the dependability-related code (non functional), keeping it 
separated from the OSGi implementation code (functional code).  We used an AOP approach for 
doing it, keeping the extracted dependability code in aspects developed using Aspect-J. 

In this chapter we also proposed the usage of aspects as an abstraction for capturing layered 
design. This was the case with OSGi, which uses the layering abstraction extensively in the platform’s 
specification, but in its API and implementations is scattered over classes and interfaces that 
accumulate roles from different layers. This approach was generalized as a reengineering pattern that 
can be useful for better understand the design of systems that have some specification-to-
implementation discrepancies, like OSGi, or also in systems with poor design. 

The next chapter presents the validation of this approach in different experiments that tested 
the sandboxed OSGi and its self-healing mechanisms. It closes the practical work that concerns this 
thesis, and is followed by the conclusions and perspectives. 

JPS C P JPS C P JPS C P

Felix 1.4 22 5 2 15 4 1 10 4 2

Felix 2.0.4 22 5 2 14 3 1 7 3 1

Felix 3.0.3 22 5 2 14 3 1 8 3 1

Knopflerfish 2.3.1 17 4 1 15 6 1 7 3 1

Knopflerfish 3.0 18 5 2 18 7 2 12 5 2

Equinox 3.4 18 4 1 16 5 1 17 9 5

Equinox 3.6.1 38 9 4 20 9 4 33 16 9
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Experimental Results 

“Machines take me by surprise with great frequency” 

Alan TURING 
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The last three chapters focused on diverse technical aspects in different directions (e.g., 
isolation, self-healing, and separation of concerns). This chapter puts everything into practice, by 
presenting the description of our work in experiments with the resulting platform, and discussing 
about the possibilities, realizations and limitations of the solution. 

10.1 Consulting Services 

The work we presented in [Gama09a] was used as the basis of a presentation [Gama09b] made 
at the OSGi users group France41. During that meeting, one of the members of the audience 
established contact and initiated a discussion on possible collaborations around the utilization of our 
approach in the construction of a data exchange server. The goal by using our approach would be to 
guarantee the functioning of a platform constituted by components from different providers. The 
isolation would be a key factor to avoid the risk of an application crash due to the malfunctioning of a 
third-party component. The idea of using multiple fault-contained component containers and 

                                                 
 
41 http://france.osgiusers.org 

http://france.osgiusers.org/
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handling the application as if it was just one (e.g., the proposed “virtual layer”) seemed reasonable 
even though it would mean high communication costs between the containers. 

Because of the high availability requirements of their data exchange server, the core platform of 
the PSEM2M server must not stop to serve requesting applications. In order to avoid problems 
originated from third-party code, the isolation approach shields the core functionality of the server 
from such potential failures. Since the handling of messages is synchronous, failed components 
would lose messages while recovering. The core part of the server stores messages while the 
consumers are unavailable, similar to a Message-oriented middleware (MOM) approach but with a 
main difference concerning the synchronous communication, instead of the typical asynchronous 
mode of MOM.  

Although the architecture of PSEM2M is compliant with the architectural propositions 
presented in this thesis, the implementation is being made from scratch (potentially with some parts 
from the proof of concept to be integrated with it), therefore it is natural to take decisions for adapting 
the approach to be more appropriate to an industrial scenario. Some technical aspects differ from our 
implementation, like (1) the number of simultaneous JVMs as isolation containers, which is not 
limited to two as in our approach; (2) the multiple JVM technique based on a JVM fork (currently 
limited to Linux OS), resembling the Cloneable JVM [Kawachiya07] approach; and (3) the usage of 
OSGi Remote Services as the IPC mechanism for making the isolated platforms communicate. Also, 
the variability of the environment and possible reconfigurations are limited. All players that deploy 
components are previously known, and there is no discovery of new services during the operating 
phase. However, partners may update their components at their own will.  

This technology transfer was made possible through a startup company, named Isandlatech42, 
that will incorporate into their product in question ― PSEM2M (Platform for Secure Execution for 
Machine-to-Machine) ― the isolation and self-healing design we propose. The contract consisted of 
technical counseling that included joint modeling of the architecture and discussions on the 
implications of the proposed design. The implementation efforts are the responsibility of Isandlatech, 
with a minor participation from our side in terms of prototyped code. The joint work was conducted 
through e-mails and on-demand meetings in the Laboratoire d’Informatique de Grenoble43, at the 
premises of the Adèle44 research team, where this PhD thesis was conducted. 

This opportunity of performing this exchange with an industry partner meant that this PhD 
thesis has succeeded to provide contributions that are directly applicable to industry, in the form of 
design and techniques that can be used to provide more dependable component-based applications. 
At the time of writing of this thesis, the contract was still being conducted in phase two (from a total 
of three) of the collaboration project.  Therefore, since this is an ongoing work whose implementation 
is still under development, we consider this as a partial validation of the approach. 

10.2 Aspire Project 

The ASPIRE Project (Advanced Sensors and lightweight Programmable middleware for 
Innovative Rfid Enterprise applications) [Aspire08] is a European Union funded45 project, targeting 
RFID middleware and applications. It involved participants from ten institutions spread over seven 
countries. Its goal is to boost a shift towards royalty-free RFID middleware, while also placing the 
middleware at the heart of RFID infrastructures targeting small and medium enterprises (SMEs). 
Hence, the RFID middleware can integrate with low-cost hardware, as well as with legacy IT and 
networking infrastructures of the networked enterprise. 

                                                 
 
42 http://www.isandlatech.com 
43 http://www.liglab.fr 
44 http://www-adele.imag.fr 
45 Funded by the European Commission in the scope of the Seventh Framework Programme (FP7) under contract no. 215417 

http://www.isandlatech.com/
http://www.liglab.fr/
http://www-adele.imag.fr/
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Among the activities that involved the University Joseph Fourier (Grenoble 1), represented by 
the LIG laboratory, were the creation of end-to-end management infrastructure and the utilization of 
dynamic environments that allow the integration of devices (readers and sensors) at application 
runtime. With the SME context of low-cost solutions in mind, we have envisioned a dynamic 
platform based on OSGi technology. The related research activities that involved the work presented 
in this thesis involved the utilization of techniques for providing a more dependable environment for 
executing applications that host third-party code. The next subsections present the general 
dependability requirements envisaged, followed by the tests and results that we have performed in 
that platform. 

10.2.1 Dependability Requirements 

Figure 10.1 shows a simplified architecture view of a network of machines that constitute the 
RFID supply chain application we presented in [Kefalakis08], and that represents an initial effort on 
the Aspire project. It illustrates the network infrastructure behind a supply chain where the 
information on products can come from multiple places. Elements with distinct roles constitute this 
network: edge servers, premises servers, EPCIS (Electronic Product Code Information Services) and ONS 
(Object Naming Service). In the context of our work, we are interested in the edge servers, which are 
small computers that are connected to sensors and RFID readers for capturing context data (e.g., 
temperature, vehicle weight, weather) and reading RFID tags, respectively. That data is captured by 
the application deployed in the edge, and sent to other servers. It can be sent either to an 
intermediary premise server (e.g., a warehouse), which filters data and possibly stores some 
information, or directly to the EPCIS which centralizes the information on all RFID tags that have 
been scanned by the enterprise allowing that data to be shared with other applications and with 
different organizations, and located anywhere with the help of an ONS. 

 
Figure 10.1. The scenario illustrates high availability requirements in the edge computers (circled) that collect data 

and also need to autonomously react to failures. 

The edge servers may be located in relatively distant places (e.g., an entrance gate, a truck weigh 
station, a warehouse) where the physical access by systems administrators is difficult, and where the 
people surrounding it (if anybody) may not be familiar with IT systems. Minimal human intervention 
is required, and in case of failure, the application must be able to recover from it autonomously. 
Applications could be remotely administered, however, manual surveillance of the systems may be 
time consuming, error prone and most of the times, unnecessary if the number of failures is relatively 
low (e.g., once a week). In addition, remote sites may have limited connectivity in terms of 
bandwidth and cost which can be limited especially in developing countries.   

As example scenarios, checkpoints equipped with an edge server can scan RFID-tagged 
products and keep sending information to other systems (i.e., premises and EPCIS). In another 
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scenario, during harvest (e.g., grains, sugar cane) trucks and trailers tagged with RFIDs can be 
scanned in weigh stations close to the fields. Stations equipped with an edge server can send, via a 
cellular network, the tag identifier, and sensor info such as the weight of the load and weather data.  

Despite the usage scenario, the integration of sensor devices and RFID readers into applications 
developed with Java (the technology used for that middleware) involves importing or wrapping 
native libraries (e.g., a device driver).  The potential risks of failure are increased, but the system must 
be available and ready to scan RFID tags as well as capturing sensor data. Since third-party and 
native code is running in the application, the risks increase and a recovery mechanism must be put in 
place, so administrators have minimal intervention in such systems. Such human involvement should 
be kept to a minimal level, like distant software updates. Even in cases where the cost of connectivity 
is high, a remote update is more appropriate than sending technical personnel to perform that task. 
However, as we discussed in this thesis, such runtime updates can introduce undesired consequences 
to the application (e.g., incompatibilities involving drivers, device, and system components). 

Therefore, by taking into account these dependability requirements, where applications need a 
high level of availability, mechanisms for reliability, reducing mean time to fail, and maintainability, by 
reducing mean time to repair are of fundamental importance in these types of system. Our work 
simulated faulty scenarios that are presented in the next subsection. 

10.2.2 Test Setting 

Because we are focused in abnormal behavior, the tests had to be done in a controlled 
environment where we could manipulate the variables in order to reproduce the expected faulty 
behavior in accordance to our fault model. The scenario consisted of an OSGi application where the 
core components (e.g., reporting components, data filtering and gathering) of the edge need to 
provide high availability are in the main (trustworthy) part of the platform. The untrustworthy 
components are hosted in the sandbox part of the edge computer. Sensors and RFID reader simulator 
components were hosted in the sandbox. One the motivating scenarios concerns applications that 
collect RFID and sensor data. The application illustrates a scenario where we typically use native 
drivers wrapped in Java components to access physical devices. Devices may be plugged and 
detected at runtime, as are their respective drivers. The interaction between the application 
components that consume data provided by the untrustworthy code is done through OSGi’s service 
layer. In case of an illegal operation or a severe fault in the native code, the whole application is 
compromised. In this use case the application must also run non-stop and be able to recover in case of 
such severe faults and for doing so we employ, as a single solution, the different dependability 
aspects woven in the OSGi framework. 

The assumptions previously mentioned have to be true in this environment, so our approach 
can work correctly. Considering the recovery-oriented design principle, components and services 
used in the application are stateless. The external devices contain the data (e.g., temperature, 
humidity, RFID tags), which is read by the components installed in the application. The way they 
store the data or how they guarantee that it will not be corrupted is out of the scope of our discussion. 
Service interfaces used in the communication across isolation boundaries use primitive types, String, 
or arrays of these two categories. 

The rest of this section focuses on the experiments themselves. The first one makes a 
comparison between isolation approaches: domain-based and process-based, offered by the MVM. 

10.3 Comparison between Isolation Containers 

This section provides a comparison between the sandboxing mechanism using two isolation 
approaches, namely domain isolation and OS-based isolation. The experiments were executed on a 
Pentium 1.7 GHz 2GB RAM running OpenSolaris release 2008.11. Three different Java Virtual 
Machines were used: Multitask Virtual Machine (a JVM 1.5 implementation that provides the Isolate 
API); Sun HotSpot Server Virtual Machine versions 1.5.0_21 and 1.6.0_10. Except for the 
microbenchmark, all experiments were performed in a simulation of an OSGi application for 
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collecting RFID and sensor data with a total of 14 bundles (common API, RFID and sensor reader 
simulator). We compared the two approaches in order to verify what would be the gains, if any, of 
using domain-based isolation. The following aspects were verified: 

 The overhead of method calls across isolation boundaries. 

 The memory footprint of OSGi applications using our isolated sandbox  

 Sandbox microreboot time 

The first measurement consisted on evaluating if the communication overhead between the 
isolated platforms. On the MVM, we have evaluated it in two ways. On the first way, trusted and 
sandbox platforms were running in the same VM but in different Isolates, thus having domain-
isolation. On the second one, we have used two MVM instances like an ordinary JVM (i.e. not using 
Isolates) so we could use the whole process as a fault-contained boundary, providing us OS-based 
isolation.  

We have adapted the benchmark suite used in [Seinturier06a]. Our microbenchmark consisted 
in measuring the time taken to perform method call from the trusted platform to a service which is 
isolated in the sandbox. Three methods with different signatures were evaluated: a parameterless 
method; a method with a String parameter; and a method with an integer array with 128 elements so 
we could see the impact of parameter serialization and deserialization. All methods were void, so not 
returning any value. Since RMI is the standard Java Inter-Process protocol, we have benchmarked our 
approach against it. Table 10.1 presents the result of our microbenchmark. The experiment data had 
acceptable precision since each set of measured data had a coefficient of variation (ratio of the 
standard deviation to the mean) inferior to 1% in most of the cases and rarely over 1%.  

The results on the Custom Protocol column group concern the calls on the isolated service 
running in the sandbox as previously described. The RMI column group results actually did not 
execute in an OSGi application. We have taken the same interface as the tested service and changed 
its code to add what was necessary to enable RMI. Then it was tested on two non-OSGi applications 
(an RMI client and a server, respectively) coded exclusively for the benchmark. The usage of RMI in a 
non-OSGi application which used 35% less threads than the OSGi application also gives RMI a slight 
advantage. But it would still be more performing since our protocol was 2 to 3 times slower. Our 
protocol uses dynamic Java proxies in both ends, which is likely one reason for its low performance 
comparing to local RMI.  

The usage of domain-based isolation concerns only the first result line. The second result line 
also uses the MVM but in an OS-based fashion. We can notice that two MVM Isolates (domain 
isolation) perform slightly better than using two MVM instances (OS-based isolation). This is due to 
the fact of a faster context switching since the Isolates run in the same process (the JVM instance). The 
third and second result lines performed slightly better which is most likely due to JVM optimizations 
since they are more recent versions. If running with the JVM configured as interpreted mode (-Xint 
option), without JIT optimizations, the performance reduction was relatively similar in all cases 
ranging from 3 to 6 times slower than in the optimized mode (-server option), which is the mode used 
for collecting the results. 

 

Isolation Container 

Methods called using Custom Protocol 
(Sandboxed OSGi application) 

Methods called using Local Java 
RMI  

(non-OSGi application) 

m( ) m(String) m (int[128]) m( ) m(String) m (int[128]) 

MVM 1.5  
(Multi Isolate) 

178.72 225.22 277.56 75.68 80.93 103.36 

MVM 1.5  
(Multi JVM) 

182.74 231.23 284.49 82.19 87.62 110.33 

JVM 1.5 
 

162.58 203.71 241.39 63.58 67.40 87.14 

JVM 1.6 
 

129.12 161.49 190.67 53.46 55.24 66.83 

Table 10.1. Microbenchmark in microseconds (μs) on a void method m with different signatures between isolated 
platforms. 
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Another comparison we have performed concerned memory footprint, as shown in Figure 4. 
We have used the Solaris pmap command for verifying the resident and private memory of the tested 
combinations. The experiment consisted of measuring the total footprint of the OSGi test application 
(trusted platform + sandbox platform). In the OS-based approach used with two JVMs 1.5 and two 
JVMs 1.6 we have added the footprint of each JVM. In the case of domain-based approach a single 
MVM instance contained both OSGi platforms. The resident memory of the MVM running two 
isolates was inferior to the sum of sandbox and trusted platform running on the JVM 1.5. However, 
the two JVM 1.6 together performed with less footprint. If we consider just private memory the MVM 
performs better than the other ones. 

 

 
Figure 10.2. Resident memory footprint of sandbox solution using different VM combinations 

The third and last comparison made consisted on the time taken to perform application startup 
and a sandbox microreboot. Although we did not use a full autonomic manager on the domain-based 
approach for this experiment, we could provide a watchdog that is able to restart the sandbox in case 
of crashes. Table 2 presents the time taken in each VM combination. By using Isolates we can 
significantly reduce the mean time to repair of the sandbox. The major difference is probably because 
the watchdog monitors directly the Link objects that are responsible for the communication of the 
two platforms. Since the watchdog resides in the same process, the crash detection is immediate upon 
the disruption of the Link object. 

Based on these experiments we can verify that the main advantage of using domain-based 
isolation over an OS-based isolation implementation of our sandbox approach concerns the 
application startup time and, especially, sandbox microreboot time. The memory footprint (resident 
memory) differences were not very significant, at least for the evaluated application. Communication 
overhead across process boundaries is minimized in more recent and optimized JVM versions. 
Therefore, an OS-based approach seems to be a reasonable option for the realization of the sandbox. 

 

Isolation Containers 
Application Startup 

time (ms) 
Sandbox Crash 

detection time (ms) 
Sandbox Reboot 

time (ms) 

MVM (Multi-Isolate) 3186   32   303 

MVM 1.5 (Multi-JVM) 3449 697 3064 

JVM 1.5 3945 660 3047 

JVM 1.6 3859 658 2537 

Table 10.2. Average start up time and sandbox MTTR 
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10.4 Fault Injection Technique Employed 

The set of tests concerning the validation of the recovery mechanisms consisted in simulating 
scenarios using our fault model. In order to perform the tests it would be necessary to use a technique 
for fault injection. However such a technique may not be appropriate for a component-based 
approach. The behavior of systems tested with faults injected in the interface level (e.g., passing 
invalid parameters) significantly differs when faults are injected in the component level (e.g. 
emulation of internal component errors), not representing actual application usage [Moraes06].  

Therefore, for testing the recovery mechanism we rather focused on test cases resembling 
component fault injection that could reflect possible faults happening in a realistic scenario. In our 
case, the term fault deployment would be more appropriate, since the dynamic platform allows 
components to be deployed and started at runtime. When the faulty components used in our 
approach are deployed, their faults are dormant. Through a remotely accessible interface, available as 
a JMX MBean, we can activate these faults, so the abnormal behavior can be presented and the 
diagnosis and recovery mechanisms can take action. 

 Figure 10.3 illustrates an example scenario of our test application.  The bundles deployed with 
the faulty behavior publish the test probes as JMX MBeans in the MBeanServer, which allows external 
applications to access it through different connectors, in this case the default RMI connector. Through 
such management consoles it is possible to inspect the MBeans available and call the method that 
triggers the faulty behavior. We accessed the MBeans through the VisualVM tool, which has a plugin 
available for exploring MBeans, as depicted in Figure 10.4.  

 
Figure 10.3. The test probes are responsible for activating the faulty behavior in the components. 

10.5 Testing the Self-healing Mechanisms 

Although profiling and monitoring suites are fundamental for tasks like tuning-up application 
performance, finding application bottlenecks and memory leaks, most of these tools do not take 
automatic administration decisions (e.g., performance adjustment, the detection of problems) during 
execution. Indeed, such tooling sets are powerful and some of them provide good levels of flexibility, 
allowing to easily using their infrastructure.  In our experiments we have developed plugins for the 
VisualVM, in order to help us managing and monitoring sandboxed OSGi applications.  

The two platforms that comprise the sandboxed OSGi were also controlled through VisualVM 
plugins that we have developed: one for knowledge base (Figure 10.5 through Figure 10.7), and the 
VisualVM OSGi Plugin (see appendix) presented in [Gama11b] and now part of the OW2 
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Chameleon46 open source project. Although the ideal tool should be centralized, we monitor three 
different processes individually. We intended to provide a perspective that virtualizes the two 
platforms as a single view, but like the plugin for runtime reconfiguration of the policy it could not be 
finished due to time limitations. 

The MBeans that are illustrated Figure 10.4, provide the test cases concerning most of the 
problems that were specified in the fault model that we propose. Our fault model was also used as a 
reference for implementing the test cases which consisted of bundles providing the following faulty 
behaviors, after triggering the faults: Overutilization of CPU; application crash; excessive memory 
location; excessive thread instantiation; excessive invocation of services (Denial of Service) and 
application hang. The retention of stale services currently is tested manually through lifecycle 
operations (install, update, stop, etc).   

 
Figure 10.4. MBeans used for testing. 

The monitoring functionality that allowed identifying some basic resource usage such as 
memory allocation, CPU and thread instantiation were based on the ones provided by the Java 
platform, but without the component granularity level and without much precision about the data 
monitoring, which significantly differs from the process. Because there is not much control about how 
much data a bundle is using, the policy implemented in the control loop is to simply reboot the whole 
sandbox in case the threshold in exceeded. 

10.5.1 Detection of Stale Reference Retainers 

As already discussed in this manuscript, there is not enough information in component 
execution platforms that allow us to precisely identify which components are consuming more 
resources than others. Proxy layers allow intercepting and having more monitoring control, although 
introducing communication overhead. A good example that we can present concerns the detection of 
Denial of Service (DoS). We were able to detect excessive calls from the sandbox toward the main 
platform, thanks to the proxy layer between the two. We logged information counting the total of 
service calls that were made. In a situation where a DoS takes place, the control loop verifies that the 
last cycles were excessive, queries the sandbox touchpoint to retrieve information on the service that 
is being mostly called and sends a command to invalidate the proxy. Subsequent calls on the proxy 
would throw an exception, allowing the proxy to inspect the stack trace (in this case, the verification 
was in the sandbox, outside the control loop) as illustrated in Listing 10.1. The touchpoint forwards 

                                                 
 
46 chameleon.ow2.org 
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the notification to the managing platform, which automatically takes the decision of microrebooting 
the bundle. The process of locating the bundle consists in searching for the class identified in the stack 
trace, and rebooting the bundle that contains it. This process is not completely precise. There are cases 
where the stack may show where the code is located in the superclass, instead of pointing out the 
actual class that is instantiated. 
 

Exception in thread "Thread-12" java.lang.RuntimeException: Stale Service call 

 at 

fr.imag.adele.iosgi.proxy.DynamicServiceProxyGenerator.invoke(DynamicServicePro

xyGenerator.java:72) 

 at $Proxy0.receive(Unknown Source) 

 at org.ow2.aspirerfid.simulation.faults.repository.DoS.run(DoS.java:14) 

Listing 10.1. Runtime Exception thrown upon a call to an invalid proxy. 

Although we may not have fine grained resource monitoring for components, in platforms 
such as OSGi we can monitor the usage of the service layer where we are able to intercept 
components and evaluate if their behavior is adequate or not, so we can ultimately promote them to a 
safer container where communication should not be penalized.  

10.5.2 Causally Related Events 

Causal events are interconnected, and as discussed in Chapter 8, there are some inferences for 
establishing correlations among events that have a temporal proximity. In the case of events related 
to errors originated from the usage of stale services, we look back in recent history (e.g., last 10 cycles) 
if there was any reason for a proxy invalidation (e.g., explicit proxy invalidation, a service 
unregistration. The previous example of Listing 10.1 is the responsible for the causal relation between 
the chain of events that is shown in Figure 10.5, the other two, with IDs 15 and 16 are most likely the 
continuation of the same event, but the heuristics we use does not take into account the process that 
must coincide with new components arriving (RESOLVED and STARTED), however if we take into 
account the previous state or event that uses the same bundle ID that correlation could have been 
established in that case. 

 
Figure 10.5. Correlation that chained together a series of events. 

Establishing a policy or a method for creating this correlation is important, because they are 
mostly received asynchronously. However, the information stored in the knowledge base is not only 
for automatic inference, but also could be manually linked. It is important to keep such information of 
causality in order to understand potential component incompatibilities or mismatches (e.g., an 
anomaly that happens typically after a given update takes place). 
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10.5.3 Mean time to Repair 

As already detailed in the experiment with the MVM, the mean time to repair can be 
significantly improved in with domain-based isolation. Although we have not evaluated other 
platforms, such as .NET, where domain-based isolation is also present, we believe that the MTTR 
should also be quicker in relation to starting a whole virtual machine. The restart of a whole isolation 
container may be unacceptable in some critical applications, and perhaps this approach is not 
appropriate. Although the effect of restarts in certain applications may seem negligible (three seconds 
Figure 10.6 and Figure 10.7 in less than two seconds) constant reboots may be a limited technique, 
besides being very annoying to any user. Indeed, for larger applications this may not be adequate if a 
container shared by several components is constantly rebooted. 

 
Figure 10.6. Correlation of a sandbox restart with a loop cycle having excessive usage of CPU 

 

Figure 10.7. A sandbox reboot triggered by excessive thread allocation 
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10.6 Summary 

This chapter presented the work that validates in practical experiments the techniques used in 
our approach. Although the goal is to provide more dependable applications for components, we still 
lack important information for determining component trustworthiness at runtime. One of the 
missing data concerns resource consumption, which we can only verify at the process level, but not at 
the component level. In our approach it was possible to use fine grained information on the service 
layer where in our approach we can use a sort of inference to find out who are the retainers of stale 
services, and point out the components where they come from. If similar fine grained information 
becomes available concerning component resource consumption, the identification of some of the 
problems we addressed in a general manner would become easier to be spotted. 

The next chapter concludes this manuscript and draws conclusions about our work as well as 
perspectives for future work in this domain. 

 





Chapter 11  
 
Conclusions and Perspectives 

“As we advance in life we learn the limits of our abilities” 

Henry FORD 

“Once we accept our limits, we go beyond them” 

Albert EINSTEIN 
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11.1 Conclusions 

Applications demanding more uptime must be able to avoid unavailability caused by runtime 
updates. We have shown that this is especially true for those with critical availability requirements 
such as banking systems and air traffic control. We also showed that, although end user applications 
such as web browsers may not have the same requirements concerning criticality, they have 
undesired effects caused by third-party plugins that may be considered untrustworthy due to the 
potential risk of faults when executing them.  

Software that needs to evolve during runtime, by adding or updating components, may face 
problems when such dynamic updates introduce or cause errors. This may be due to inconsistencies 
in the update process, or due to faulty behavior from components installed during application 
execution. The latter case typically takes place when untrustworthy components are introduced in the 
application. However, untrustworthy does not necessarily means malicious. There are cases where 
running an untrustworthy component is needed, for instance, when no other available component 
provides the desired functionality.  
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In order to minimize risks from untrustworthy components it is important to provide 
mechanisms that can protect the application from potential faults that may be originated from such 
code. In the work presented here, we were interested in reducing the impact that can be brought by 
untrustworthy components, typically third-party code, deployed at runtime that would potentially 
compromise application stability.  An important point taken into account was to provide mechanisms 
that can avoid the propagation of faults from one component to another, so the system can still 
execute even if one of its components crash. The identification of the faulty component was also of 
significant importance. In the same way, we considered the need to automatically react to possible 
faults and reestablish normal system execution and behavior upon component faults.  

11.1.1 Self-healing Component Sandbox 

As an attempt to fulfill such requirements we proposed the utilization of strong isolation 
boundaries between components, providing a sort of fault-contained component sandbox. Crashes, 
restarts or faults that take place in our isolated component sandbox could not disturb the main 
application that runs in a separate isolation boundary. We have implemented, tested and compared 
the isolation container using two approaches: domain-based isolation and process-based isolation. 
Besides the isolation between containers, we also propose a lighter level of isolation within the main 
platform by means of local dynamic proxies for isolating services. By doing so, we minimize the 
impact of dangling services in memory.  

These two levels of isolation are backed by a runtime reconfigurable policy mechanism that is 
responsible for defining the isolation criteria that evaluated at runtime and performed dynamically. 
However, the purpose of our mechanism is not to isolate components permanently. The idea is to 
keep a component in isolation during a “quarantine” period. If after observing that an isolated 
component behaves correctly and that it does not represent any risk to the application, the policy can 
be changed for such component. As a result the appropriate reconfiguration could be performed to 
“promote” an isolated component to a trustworthy level. Our approach currently supports the 
manual reconfiguration (i.e., by the system administrator) for such promotion, although an automatic 
mechanism would be ideal. 

This constant component observation is also necessary to support a self-healing approach to 
the sandbox. By employing Recovery-oriented Computing (ROC) techniques, the sandbox is able to 
autonomously recover from a certain range of component faults and failures by applying 
microreboots in components. As a part of that process, it is necessary to provide monitoring 
capabilities for detecting such faulty behavior. We employed the principles of Autonomic Computing 
(AC), which suggests the creation of autonomic elements that are capable to manage themselves. As 
in the typical AC solution we implemented it in the form of a feedback control loop for verifying the 
monitored data, analyzing it and taking proper action if the system needs. Our implementation uses 
the chain of responsibility pattern for organizing the elements of the control loop, and also 
externalizes the main logic of policy, analysis and decisions into scripts that may be changed or 
added during execution. 

In short, our contributions concerned an approach for the dynamic isolation of components 
using a self-healing component sandbox. Although its mechanisms have proven to be effective, the 
ones concerning decisions about resource consumption are still rudimentary due to a lack of 
information from underlying platforms. On the other hand, we were able to provide more fine 
grained diagnosis with concerning the OSGi service layer, where we could add different dynamic 
monitoring mechanisms through an interception layer by means of proxies.  

11.1.2 Dependability as a Separate Concern 

As already identified by other researchers, Aspect-oriented Programming (AOP) can help in 
the separation of functional code from non-functional code, especially when developing self-adaptive 
mechanisms, in order to keep the fault tolerant code separate from functional code. In our approach 
for enhancing dependability in dynamic component-based platforms we had to introduce new 
concerns (i.e., dependability) into a component framework that did not take such requirement into 
account. The solution ended up scattered over different parts of the code, with difficulties for 
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maintaining it and accompanying the evolution of the target framework to newer versions. By 
separating the code into aspects, we could have a better modularization of our approach and even 
apply it to different implementations of the same API, having a sort of horizontal (across different 
implementations) and vertical (versions of the same implementation) portability of code. For these 
reasons, we believe that the “aspectized” solution of the dependability concerns was better than the 
version patched by-hand. 

During that process we identified that the aspects crosscut different OSGi layers, and in 
addition, in the API these layers did no represent exactly the same thing as in the specifications. We 
proposed the usage of aspects for abstracting software layers, providing a different form of aspects 
reuse that carried more semantics than it would have in a typical AOP usage. We documented this 
layering approach thinking of reuse in other scenarios and thinking about that generality. We have 
extracted an aspect-oriented reengineering pattern that is applicable to applications or frameworks 
other than OSGi that have similar needs as we had. The usage of aspects for abstracting layers 
allowed to improve the understanding of the API and to give a better architectural perspective of 
which layers are being affected by a given crosscutting concern. 

11.2 Perspectives 

Dependability is a rather relative concept that talks about “service failures that are more 
frequent and more severe than is acceptable” [Avižienis04]. Based on the system requirements one 
may ask what is more important: a dependable application, a dependable execution environment or both 
of them? In this thesis we were mostly concerned with the second one. A dependable execution 
environment is a requirement for dependable applications, and isolation can guarantee that in such 
scenario other applications will not disturb those that behave correctly.  

We presented in this manuscript an approach that adds to a component platform some 
behaviors that were not taken into account when that execution environment was modeled and 
specified. Providing a dependable execution environment for dynamic component platforms is a 
challenging task. We believe that there is still much that can be done in the context of our work since 
there are still many gaps to be filled. The next subsections discuss the open points that can be taken 
further as a continuation of this work:  

 Fine grained resource accounting at the component level 

 Infrastructure for providing automated component promotion 

 Other environments for isolation 

11.2.1 Resource Accounting at the Component Level 

Existing mechanisms that provide resource accounting (e.g., memory allocation, live threads, 
CPU usage) provide information about the whole OS process, without any distinction on what 
components are using which resources. In our approach for monitoring we consider the whole 
sandbox process, which is a rather imprecise measure since many components can be sharing the 
same environment. One of the drawbacks of the approach presented in this thesis is that a component 
that is behaving appropriately may be affected by a sandbox reboot if other components sharing the 
same environment are consuming too many resources. 

Fine grained resource accounting that is capable of individually providing resource accounting 
for each component would enable more precise monitoring mechanisms. This precision gives the 
possibility to find out which components present excessive resource consumption, which would 
potentially characterize faulty or undesired behavior. This capability is an important feature that is 
related to liability.  For instance, in multiple provider environments components can be supplied by 
different customers or partners sharing the same runtime. If such environments provided fine 
grained resource accounting, the liable party (i.e., the component provider) responsible for abnormal 
behavior concerning resource usage could be identified and potentially notified (e.g., automated 
creation of tickets in an issue tracking system) so they can take proper action to fix the problem.  
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Current software infrastructure does not allow per component resource accounting “out of the 
box”. Perhaps the existing component abstractions used at runtime in programming languages and 
execution environments are not adequate for individually measuring resource usage for components. 
In object-oriented languages like Java, which is used in our proof-of-concept implementation, 
components are represented at runtime by abstractions that are in fact ordinary objects. Component 
abstractions are not provided by the Java language, which needs additional layers in the application 
level (i.e., Java code) in order to provide such abstractions.  

Isolation containers such as .NET application domains and Java isolates seem to be appropriate 
for providing such representation since they provide containers that allow a clear separation of 
objects in distinct spaces. As an example we can cite the specification of the Resource Consumption 
Management API [JCP09], which according to its documentation is supposed to be built on the 
abstraction of an isolate [JCP06a]. This evidence reinforces the idea that application domains are 
abstractions that can lead to a finer grained level of resource accounting, although there are not many 
advances on resource accounting for such containers. In an approach [Geoffray09] inspired by 
isolates, Java classloaders have been used as the abstraction that represents a component.  Besides 
being a unit of isolation, the classloaders also provided also a modularity abstraction. In that 
approach, with the help of some customizations on an experimental VM it was possible to identify 
resource usage per classloader (i.e., per component).  

The desired granularity of resource accounting at the component level can provide information 
that is fundamental for precisely managing component platforms, either manually or autonomously. 
The technological limitations mentioned here remain a topic that is still a barrier that needs further 
investigation and represents a research path that could help improving our self-healing mechanism. 

11.2.2 Automated Component Promotion 

Promoting a component from the status of untrustworthy to trustworthy is currently a manual 
task to be performed by the system administrator, but our intention was to provide an automated 
mechanism that based on historical data of the component could take that decision without human 
intervention. If after a certain period of time the component has been used and kept a “clean record” 
without being involved in any type of fault, the system should take the component out of its sort of 
quarantine and promote it to the status of trustworthy, allowing its execution in the trusted platform.  

In order to take a component out of its quarantine, many issues are involved. The fine grained 
resource accounting, discussed in the previous section, is an enabler for precise monitoring but it 
concerns just raw data that has to be monitored and reasoned about.  Historical data about events – 
be it fault-related or not – is also generated and needs to be analyzed to extract knowledge from it 
and have higher level information about component quality. The next subsections detail these 
research directions that would help leading our approach towards automated component promotion. 

Correlation of Historical Events 

The correlation of monitored events can provide information to be used for detecting the 
possible origin of problems. The heuristics that we have employed in our approach are limited and 
concentrate on events that belong to a small time interval, allowing a correlation of recent events. A 
longer observation of the system would be more appropriate for trying to establish potential 
relationships between fault-originating events (e.g., resource consumption thresholds exceeded, stale 
service calls) and other events (e.g., component lifecycle, service (un)registration). 

Another research path can be taken concerning the reasoning agents that could perform the 
analysis of events outside the autonomic manager (e.g., an external process, a background thread) so 
they doe not interfere in the control loop execution. This analysis would be made on historical data 
stored in the knowledge base (KB) but in a wider interval backwards in the historical data, no longer 
being restricted to small timeframes, looking for potential causes of faults that have been detected. 
The agents could utilize more formal approaches like Bayesian networks and Markov chains for 
analyzing certain events found in the KB and verifying the probability of being the cause of the fault. 
By correctly identifying the source of problems, we can find the actual cause and exempt the 
component where the fault took place.  
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Rating Component Trustworthiness 

The current manual approach for component promotion is based on the principle of having a 
human administrator that observes the historical data of components and promotes them to a 
trustworthy level if no faults related to that component are found in the historic. Other mechanisms 
could also be put into practice for gathering more information about the component. Method 
coverage, for instance, could be used as a metric that would identify which services provided by a 
component have already been executed. Based on logged information one could consider as a criteria 
the percentage of the component’s service methods that have been invoked. But other information 
from external sources could also be used to support the decision for promoting a component to a 
trustworthy status. 

Whatever criteria are used for analyzing components, the external sources need to use a 
common model to store the trustworthiness level that was rated by other applications and persist that 
information. These shared repositories can be later used by other applications as well as system 
administrators that want to either store new information about components or to use existing 
component quality information for taking decisions about the runtime promotion of components. 
Since existing quality models [Alvaro05] do not deal directly with trustworthiness and dependability, 
an evaluation mechanism could use existing attributes (e.g., reliability) from such models as a start 
point, but introducing additional information such as the criteria used for classifying the components; 
the set of components that was in use with the rated components; the list of incompatibilities or 
problems found when combined with other components. In these repositories system administrators 
could also rate components employing a similar model to the current one used in Web links sharing 
and social networks. For instance, the usage of rating features such as “like” and “+1” which are 
popular in the Internet in the beginning of the 2010’s and have become intuitive. However, providing 
additional data on the components is fundamental since this rating model of a mere “like” or “+1” is 
too shallow. 

We see the construction of a trustworthiness model as something that not only depends on 
exhaustive testing information in a pre-deployment phase but also from actual component usage as 
more appropriate criteria for dynamic component-based applications. The construction of such model 
as well as the repositories and the rating system remain as a possible path that can be taken for 
helping constructing reusable knowledge about components. 

11.2.3 Diversity of Isolation Environments 

We also envision the utilization of the proposed isolation approach in embedded devices, 
which would require several adaptations and enhancements to be made in our solution. In another 
perspective we also envision the field of Cloud Computing as another environment where the 
isolation approach could be used. Each one of these perceptions is discussed in the next subsections. 

Embedded Devices 

In embedded systems, like home gateways, where applications, components and services from 
different providers (e.g., partner service providers, device manufacturers) need to share the same 
platform. The OSGi platform initially targeted that sort of environment; however the fact that there 
are no guarantees that functionality from a provider will not disturb code from other providers 
becomes an obstacle for OSGi adoption in that context. Efforts like [Royon06] tried to provide private 
gateways in a per-provider basis, by employing a virtualized environment where multiple OSGi 
framework instances (one for each provider) run on top of another OSGi framework. However, since 
they share the same JVM, there is no fault containment. Providers are still unprotected from bad 
utilization of resources or any other faults that may, for instance, crash or hang the whole JVM.  

A sandboxed platform as the one we propose is appropriate for hosting third party 
components and preventing faults from a provider to affect another. However our solution may not 
be appropriate yet for embedded systems. The sandboxed OSGi approach as it is today becomes 
impractical since it is not adequate for running in memory-constrained devices. This happens due to a 
few reasons like our strategy for cache duplication and, mostly, because of the need to spawn an 
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additional OSGi framework (either in a JVM or in another isolate) for the sandbox, which runs in 
parallel with the framework that hosts the trustworthy components. Performing adaptations or 
developing alternative isolation solutions is fundamental in order to enable the usage of the 
sandboxing solution in embedded environments, because memory footprint is still an issue for 
popular devices. 

The sandbox platform hosts the same set of components (i.e., OSGi bundles) of the trusted part 
of the application. However, not all of them are active. Only the ones considered as untrustworthy 
according to the policy in the policy, the component framework (an OSGi bundle itself), and bundles 
that provide auxiliary services like logging. The whole sandbox infrastructure could be reduced to a 
minimal runtime with the minimal environment necessary for hosting a component in isolation. It 
would basically consist of communication with the isolated platforms and a new dependency 
resolving mechanism, which would allow avoiding the cache duplication. 

Using multiple JVMs may not be appropriate in such scenarios. The usage of such an approach 
in embedded devices would have to rely on the Isolate API, which already has a reduced API 
available in JVMs that multitasking for Java applications in embedded devices, as described in 
[Sun07][Sun08]. A more general issue that is related to the functioning of the OSGi platform itself 
concerns the classloading limitations in such VMs. This issue is partially solved in OSGi ME 
[Bottaro10], where under certain restrictions the application can download bundles at runtime. 
Therefore, there is evidence for feasible research paths concerning the usage of our proposed 
approach in embedded devices. 

Cloud Computing  

Finally, we see emerging fields with a commercial appeal like Cloud Computing having 
already achieved a significant advance in application isolation, by employing transparent distribution 
and virtualization for that. With a move towards distributed environments that provide applications 
with scalability we are walking towards a more flexible isolation infrastructure, but with a coarser 
granularity (e.g., applications, virtual machines) than the types of components we deal with in this 
thesis. In contrast to the embedded devices limitations concerning memory, it is possible to allocate 
more resources; therefore the multi-JVM approach would not be a limitation.  

By considering the flexibility and scalability promised by cloud computing, this approach can 
host applications that isolate components based on top of its distributed infrastructure. This can be 
more appropriate to platforms such as OSGi where components communicate in a loose coupled way 
through services that could be isolated similar to our approach, but using standard communication 
protocols instead. Specialists in the OSGi also point out the potential use of that component platform 
combined with Clod Computing, as described in [OSGi10b]. Standardization attempts [OSGi10c] 
around that topic have already appeared in the OSGi Alliance, and research efforts like the one 
presented in [Schmidt09] are already providing infrastructure for the OSGi platform to take 
advantage of the cloud computing scenario. In our context targeting isolation, untrusted services or 
components could be hosted remotely in another node “in the cloud”, where our concept of 
promotion would mean that the component will be hosted in the same node, and possibly the same 
VM as the running application. 
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Résumé en Français 

Introduction 

Les logiciels ont de plus en plus besoin d’être à jour mis à jour ou complétés par de nouvelles 
fonctionnalités alors qu’ils sont déployés et en cours d’exécution dans les environnements de 
production. Il est donc nécessaire que ces logiciels aient la capacité d’évoluer en cours d'exécution 
avec le minimum d'interruptions en raison des besoins grandissants pour limiter la gêne des 
utilisateurs causés par le redémarrage des logiciels utilisés [Taylor09] ou pour fournir des systèmes 
sans arrêt (non-stop), également appelé systèmes à disponibilité critique [Coyle10]. 

L’évolution du logiciel est motivée par des différentes raisons telles que des changements sur le 
cahier de charges du client, de nouvelles fonctionnalités ajoutées, des corrections de bugs ou 
d’optimisation. Des applications non critiques peuvent également présenter des exigences pour faire 
évoluer le logiciel pendant son exécution, comme dans le cas des utilisateurs des applications telles 
que les navigateurs Web, les suites d'applications bureautiques et les applications mobiles qui ont 
besoin d'avoir une expérience utilisateur améliorée avec la possibilité d'ajouter facilement de 
nouvelles fonctionnalités (par exemple, les plugins) sans l’interruption des applications. Cependant, 
dans le cas des systèmes critiques, le logiciel doit être mis à jour être mis à jour avec la moindre 
interruption d'exécution, ou même sans aucune interruption. L’indisponibilité qui pourrait être causé 
par la mise à jour conduirait à des conséquences comme la perte de clients ou de potentielles ventes, 
du dommage de données, etc.  

De nos jours, les logiciels sont de plus en plus produits par assemblage des composants  
logiciels dont une partie grandissante est récupérée ou achetée « sur étagère » auprès de tierce parties 
qui sont des éditeurs ou des communautés open-source. Les paradigmes de la programmation par 
composants et à services sont désormais très populaires pour la production des logiciels. Les 
composants et services tiers sont généralement d’une qualité inégale et généralement mal connue. Or 
quand les composants et services sont combinés ensemble, il n'existe aucun moyen simple de garantir 
que les attributs de qualité observés individuellement dans chaque composant sont conservés dans 
l’assemblage [Crnkovic02]. En conséquence, l'utilisation de composants sur étagère (COTS pour 
Component off-the-shelves) "tels quels" conduit à la production de logiciels comportant  des erreurs et 
moins fiables [Fox05]. Dans le contexte dans lequel les pannes sont inévitables, l’approche du 
recovery-oriented computing (ROC) suggère de faire face aux défauts en récupérant le logiciel vers une 
exécution normale malgré l’occurrence de pannes. Cette approche recherche la propriété de sûreté (en 
anglais, dependability), qui concerne un concept large incluant plusieurs propriétés tels que la 
maintenabilité, la disponibilité, la fiabilité, entre autres. 

L'objectif de cette thèse est de fournir des mécanismes qui peuvent rendre plus fiables les 
applications à composant dynamiquement reconfigurables. Nous voulons minimiser certains impacts 
que les mises à jour en temps d'exécution peuvent introduire, en particulier celles liées à l'exécution 
des composants de fiable qualité. Nous proposons des approches distinctes qui combinées ensemble 
nous conduisent vers notre objectif:  

I. L'isolement dynamique des composants, régi par une politique reconfigurable en temps 
d'exécution. 

II. Un conteneur autoréparable pour l’isolation de composants. 

III. La séparation des préoccupations autour de la fiabilité (non-fonctionnelle) du code 
fonctionnel de la plateforme à composants. 

Nous voulons être en mesure d'isoler dynamiquement les composants peu fiables du reste de 
l’application. Cependant, nous souhaitons offrir la possibilité de promouvoir un composant du statut 
faible vers fiable après son évaluation pendant une période de « quarantaine ». Dans le cas de 
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défaillance interne d'un composant faible, le conteneur d’isolement doit être en mesure de rétablir 
l'exécution de la plateforme ainsi que celle du composant. De plus, nous souhaitons identifier les 
comportements anormaux qui sont à l’origine ces défaillances. Enfin, l’infrastructure des mécanismes 
proposés doit être faiblement couplée à la plateforme d’exécution cible afin de garantir les propriétés 
de portabilité et de maintenabilité car le logiciel des plateformes est lui-même en constante évolution.  

Sûreté Logicielle 

Une des motivations de la sûreté  logicielle est de produire des logiciels dans lesquels 
l’utilisateur et le fournisseur peuvent avoir confiance. Le concept général de sûreté de fonctionnement 
est étendu et englobe des différentes propriétés telles que : la fiabilité, la disponibilité, la 
maintenabilité, la sécurité, l’intégrité ou bien la confidentialité. Les mécanismes de tolérance aux 
pannes ciblent l’obtention de la sûreté de fonctionnement en évitant des problèmes, typiquement au 
moyen de techniques basées sur la redondance matérielle ou logicielle. D’un autre côté, les 
mécanismes orientés vers la reprise du fonctionnement (Recovery-Oriented Computing - ROC) sont 
plutôt destinés à des situations où le système doit se remettre de défauts, de défaillances ainsi de 
dégradations progressives de  service.  

Parmi les techniques utilisées par le ROC, nous pouvons citer le micro-redémarrage 
(microreboot) de composants. Son objectif de est d'employer des techniques de  récupération rapide, 
avec lesquelles, les composants défectueux sont individuellement redémarrés et les restaurés dans un 
état cohérent. Le temps moyen de remise en service peut être ainsi réduit. Cette approche a été 
montrée efficace pour des défauts non-déterministes avec un coût beaucoup moins important qu’un 
redémarrage complet de l’application. La décision de réparer une application peut être rendue 
autonome, c’est-à-dire sans l’intervention d’un opérateur humain. L’autoréparation d’un logiciel est 
l'une des principales propriétés de l'informatique autonomique, qui a pour objectif la construction de 
systèmes autogérés.   

Techniques d’Isolation des Applications 

L’isolation des applications s’exécutant sur une plateforme d’exécution partagée poursuit 
généralement deux objectifs : garantir la confidentialité et contingenter les fautes. Des différentes 
techniques autour de ces concepts qui s’appuient sur l’isolation matérielle (grâce à l'infrastructure 
sous-jacente de l’OS) tandis que d’autres implémentent l’isolation au niveau de la plateforme 
logicielle. Ces techniques d'isolation peuvent être cataloguées dans des sous-groupes distincts. 
Cependant, celles-ci peuvent être combinées entre elles pour obtenir le niveau d'isolation requis. 

Les techniques matérielles isolent la mémoire entre des processus du système d’exploitation ne 
permettant pas qu’un processus puisse accéder la mémoire d’un autre. Dans ce cas, en plus d’une 
application ne pas pouvoir accéder la mémoire d’une autre application exécutant en parallèle, ses 
erreurs ne sont pas propagés en dehors de son processus. Pourtant, l’isolation basée sur le 
« hardware » fourni facilement ces deux aspects de confidentialité et contingentement de fautes.  

Pour les applications qui sont hébergées dans le même processus, des techniques logicielles 
peuvent être mises en place pour arriver à un certain degré d’isolation qui peut varier. Des espaces de 
nommage, comme ces qui sont fournis par des chargeurs de classe dans Java, permettent une 
isolation plus souple, avec de la confidentialité mais sans contingentement des fautes. Cette limitation 
peut être contournée dans d’autres approches comme des domaines d’applications qui sont utilisés 
dans la plateforme .NET et aussi en Java, mais de manière expérimentale dans cette dernière.  

Isolation des Composants 

L'isolation des composants est normalement faite en s’appuyant sur des techniques logicielles, 
mais nous pouvons également trouver des approches basées sur l’isolation des processus, qui profite 
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de l’isolation matérielle. Le support à l’isolation de composant peut se donner dans plusieurs 
niveaux. Dans des extensions de langages de programmation (e.g., Oz/K), dans des systèmes 
d’exploitation (e.g., Singularity), ou même dans des plateformes à composants comme COM, .NET, 
Java EE et OSGi. Cette dernière est d'un intérêt particulier dans cette thèse, qui traite plusieurs 
questions liées à l'isolation de composants dans cette plateforme. Des approches expérimentales 
d’isolation sont trouvées autour d’OSGi, en arrivant au contingentement de fautes plutôt dans des 
environnements distribués, tandis que dans des approches locaux (des applications exécutées sur une 
même plateforme) sont plutôt liées à la confidentialité. 

Propositions 

Quand des composants sont combinés ensembles nous ne pouvons pas garantir que les 
attributs de qualité de cette composition seront les mêmes de quand ils sont observés 
individuellement. Si on n’est pas sûr de la fiabilité de la composition résultante, pour des diverses 
raisons (quantité insuffisante de tests avec le composant donné, peu d’information sur l’origine d’un 
composant, etc.), il est plus judicieux d’exécuter le composant concerné derrière une barrière 
d’isolement. En cas de son défaillance, l'application peut continuer son exécution pendant que le 
composant isolé est rétabli de la panne, en augmentant la maintenabilité. Cela permet aussi 
l’application de fournir une meilleure disponibilité vu que juste une partie du système est défaillante. 

Nous proposons des conteneurs de composants, capables de fournir ces  barrières d’isolation. 
Un mécanisme d’autoréparation est aussi proposé, pour effectuer le micro-redémarrage d’un 
composant diagnostiqué avec des erreurs ou des potentielles erreurs. La même procédure est 
exécutée sur le conteneur isolé lui-même en cas d’une erreur qui persiste même après le redémarrage 
d’un composant. L’architecture proposée pour ce mécanisme utilise une boucle de contrôle issue de 
l’informatique autonomique.  

Plateforme à Composants Ciblée 

Les principes et les efforts d’implémentation décrits dans cette thèse visent augmenter la sûreté 
dans des plateformes (et par conséquent) à  composant dynamiques. En raison de ses caractéristiques 
concernant le dynamisme ainsi que son acceptation par les communautés académiques et 
industrielles, nous voyons un intérêt en valider notre approche dans la plateforme OSGi. Bien que 
notre mise en œuvre et la validation de l'approche ciblent une plateforme spécifique, les propositions 
sont d'usage général et pourraient être appliquées à d’autres plates-formes dynamiques à 
composants.  

Approche d’Isolation des Composants 

Nos propositions suggèrent l’usage de plusieurs conteneurs d’isolation, par contre, 
l’implémentation de notre approche comporte juste un conteneur additionnel, appelé bac à sable 
(sandbox) qui héberge les composants de faible qualité ou dont la qualité est méconnue. Donc, 
l’application exécute dans deux plateformes OSGi distinctes: la plateforme principale (composants 
fiables) et le bac à sable (composants peu ou pas fiables). La communication entre les deux 
plateformes a été possible de façon transparente, c'est-à-dire, un composant n’est pas au courant que 
l’autre est isolé. Nous avons réalisé un protocole qui permet cette communication, dont les 
composants et les services n’ont pas besoin d’implémenter des interfaces de communication 
additionnelles. Par contre, pour avoir cette transparence, le protocole résultant a des limitations, 
comme par exemple les types de données utilisés dans les signatures des méthodes doivent être de 
type primitif, String ou un tableau qui comporte un des types mentionnés précédemment.  

En plus d’une isolation de composants dans des conteneurs séparés, dans notre 
implémentation nous utilisons aussi un niveau supplémentaire d’isolement qui est plus souple et 
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sans contingentement de faute, avec le but d’isoler des services en utilisant des mandataires (proxies). 
Cette technique évite l’occurrence de références éventées quand les consommateurs ne relâchent pas 
des références lors de la désinstallation d’un service. L'isolement des composants est régi par une 
politique d’exécution reconfigurable qui définit les règles pour isoler les composants et services. 
L’implémentation du conteneur d’isolation a été faite sur deux approches différentes : des isolates Java 
(domaines d’applications définis dans la JSR-121 [JCP06a]) et des JVM multiples. L’infrastructure de 
communication entre les plateformes isolées a été développée sur deux mécanismes. Le premier a été 
construit sur des Links, qui sont partie de l’API de la JSR-121 et qui fonctionne juste sur les isolates. Le 
deuxième a été construit sur des sockets Java et peut fonctionner avec les deux approches d’isolation 
fournies. 

Mécanisme d’Autoréparation 

Dans le bac à sable qui héberge les composants peu fiables, il est possible que l'environnement 
devienne instable. Il est nécessaire de prévoir des mécanismes qui permettent le rétablissement 
automatique de l'environnement, en cas de comportement anormal. Nous avons développé un 
gestionnaire autonomique qui se connecte au bac à sable par des sondes de gestion. Le gestionnaire 
autonomique utilise une boucle de contrôle pour la surveillance de ce bac à sable, permettant 
d’effectuer des actions correctives, si les données collectées indiquent un comportement anormal. La 
structure de la boucle de contrôle qui a été mise en œuvre est basée sur l’architecture de référence 
MAPE-K (Moniteur, Analyse, Planifier, Exécuter, connaissances), proposé par IBM [IBM06]. 
Cependant, la logique d'adaptation réelle a été conservée comme des scripts distincts qui sont chargés 
pendant l'exécution de la boucle, et qui peuvent être changés pendant l'exécution  de l’application. 

La Sûreté comme Préoccupation Transversale 

Nous avons identifié que notre solution recoupait des différentes parties de l’implémentation 
d’OSGi utilisée. Pour faciliter la maintenance et la portabilité de cette solution sur des différentes 
versions et implémentations d’OSGi, nous avons utilisé le principe de séparation des préoccupations. 
En utilisant la programmation orientée aspects (AOP) nous avons pu mieux modulariser le code lié à 
la sûreté (non fonctionnel), et le garder séparé du code métier de la plateforme OSGi (code 
fonctionnel). Pour ce faire, le code non-fonctionnel a été maintenu dans des fichiers qui représentaient 
des aspects, en utilisant Aspect-J, qui est une extension du langage Java pour donner du support à 
l’AOP. 

Les aspects ont été aussi utilisés comme des abstractions pour capturer des concepts 
architecturaux des couches logicielles. Dans le cas d’OSGi, sa spécification proposait une architecture 
en couche qui n’était pas respecté dans l'API. Cela a été constaté dû au fait des fonctionnalités d’une 
couche être dispersées sur des classes et des interfaces qui accumulent des rôles de différentes 
couches. Cette abstraction de couches a été généralisée et proposée aussi comme un patron de 
réingénierie logicielle. 

Résultats Expérimentaux 

L’implémentation de l’approche proposée a été validée dans le contexte de l’intergiciel RFID 
du projet européen ASPIRE. Dans cet intergiciel basé sur la plateforme OSGi, les pilotes des lecteurs 
RFID et des capteurs sont de qualités très inégales et utilisent parfois du code natif, entrainant 
fréquemment des pannes franches dans l’application. 

Dans la validation, les pilotes considérés comme peu fiables sont  hébergés dans le bac à sable 
(sandbox), en raison du risque introduit par l’usage des bibliothèques natives qui permettent l’accès à 
ces dispositifs. Nous  avons comparé l’implémentation basés sur des isolates Java [JCP06a] et 
l’implémentation qui utilise plusieurs machines virtuelles. Nous avons fait une comparaison entre ces 
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deux approches par rapport à la consommation de mémoire, au temps de démarrage de l’application 
et au temps de micro-redémarrage du bac à sable. La grande différence entre les deux approches 
consistait au temps de redémarrage du bac à sable, qui était beaucoup plus vite dans l’approche qui 
utilise les isolates. Les autres deux critères ne montraient pas de différences significatives. 

Cependant, il manque encore des informations importantes pour déterminer si un composant 
est fiable pendant son exécution. Vu que la consommation de ressources ne peut être mesurée qu’à la 
granularité du processus hébergeant la JVM et non pas au niveau des composants, une surveillance 
précise ne peut pas encore être facilement réalisée. Ce grain fin de précision serait utile dans des 
situations comme celle d’un composant qui consommerait une quantité excessive de mémoire. Dans 
le cas de la couche de service d’OSGi, nous avons pu avoir une certaine précision concernant 
l’invocation de méthodes et d’identifier des appels aux services éventés (stale references). Notre 
technique a utilisé une sorte d'inférence pour trouver quels consommateurs utilisaient des services de 
façon erronée. 

Conclusions et Perspectives 

Afin d'atteindre nos objectifs, nous avons utilisé des frontières pour créer des conteneurs 
d’isolement de composants qui permettent d’avoir du contingentement de fautes. En effet, une faute 
intervenant à l’exécution dans un conteneur isolé,  n’est pas propagée au reste de l’application. Si 
nécessaire, le conteneur peut être vidé de la mémoire, sans interrompre l’exécution du reste de 
l'application. De plus, les conteneurs isolés ont une capacité d'autoréparation. Ils peuvent détecter le 
moment où ils présentent des comportements anormaux, comportements décrit par un modèle de 
pannes, et ainsi être capable de se corriger automatiquement pendant l'exécution.   

Nous utilisons le principe de séparation des préoccupations pour dissocier le code qui concerne 
la sûreté du code de la plateforme à composants. Une telle séparation facilite la maintenance de la 
solution. Les applications ainsi que la plateforme peuvent évoluer indépendamment du code de notre 
solution. En effet, a l’aide de la programmation orientée aspects (Aspect-Oriented Programming - AOP), 
il est possible de maintenir dans des unités modulaires (appelées aspects) toutes ces préoccupations 
transversales concernant la sûreté. Une seconde proposition autour de l’AOP a consisté en la création 
d’un patron de réingénierie orienté aspect qui contribue à abstraire les aspects des couches logicielles 
et ajoute plus de sémantique dans la réutilisation des aspects. 

Parmi les perspectives de cette thèse, nous distinguons trois axes de travail principaux qui 
peuvent être développé dans de futurs travaux :  

(i) La création de mécanismes de surveillance plus précis qui permettent de mesurer la 
consommation de ressources au niveau composant. 

(ii) Le développement d’une infrastructure et de techniques permettant la promotion 
automatique des composants non fiables. En particulier des techniques tels que la 
corrélation des événements sauvegardés dans l’historique, l’utilisation d’approches 
formelles comme les réseaux Bayésiennes et les chaînes de Markov pour vérifier 
l’impact d’une mise à jour et des possibles pannes rapportées, la classification du 
dégrée de fiabilité d’un composant, etc. 

Des solutions d’isolation de composants dans d’autres domaine où l’isolation serait approprié 
(e.g., systèmes embarqués, l’informatique en nuage). 
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Glossary 

 
AOP ― Aspect-oriented Programming 
CBD ― Component-based Development 
CBSE ― Component-based Software Engineering 
CLDC ― Connected Limited Device Configuration  
CLR ― Common Language Runtime 
DLL ― Dynamic Link Library 
DSL ― Domain Specific Language 
GUI ― Graphical User Interface 
IPC ― Inter-Process Communication 
JSR ― Java Specification Request  
JMX ― Java Management Extensions 
JVM ― Java Virtual Machine 
OLE ― Object Linking and Embedding 
OS ― Operating System 
QoS ― Quality of Service  
RCP ― Rich-Client Platform 
RFID ― Radio-frequency Identification 
RMI ― Remote Method Invocation  
RMI-IIOP ― RMI over Internet Inter-Orb Protocol 
SOAP ― Simple Object Access Protocol 
UI ― User Interface 
UML ― Unified Modeling Language 
URL ― Uniform Resource Locator 
VM ― Virtual Machine 
XML ― eXtensible Markup Language  
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Appendix B 
 
Implementation Details 

 
public aspect ServiceRegistry { 
 

  pointcut registration(): 
     execution(ServiceRegistration  

      BundleContext+.registerService(..)); 

 

  pointcut unregistration(): 
     execution(void  

          ServiceRegistration+.unregister()); 

 

  pointcut retrieval(): 
     execution(Object  

      BundleContext+.getService( 

               ServiceReference ))  

     || call(Object   

          ServiceFactory+.getService(Bundle,                

                ServiceRegistration)); 

 

  pointcut release():  
     execution(boolean BundleContext+.ungetService(ServiceReference)) 
     || call(void    

     ServiceFactory+.ungetService(Bundle,   

                ServiceRegistration, 

                Object)); 

 

  pointcut referenceQuery():  
     execution(ServiceReference[] 

BundleContext+.getAllServiceReferences(..)) 

     || execution(ServiceReference  

 BundleContext+.getServiceReference*(..)); 

  

  pointcut bundleServices():  
     execution(ServiceReference[] 

      Bundle+.getRegisteredServices()); 

 

  pointcut usageQuery(): 
     execution(ServiceReference[] 

            Bundle+.getServicesInUse()); 

 

  pointcut addListener(): 
     execution(void 

      BundleContext+.addServiceListener( 

            ServiceListener)); 

   

  pointcut removeListener(): 
     execution(void 

        BundleContext+.removeServiceListener( 
             ServiceListener)); 

} 

Service Layer represented by the ServiceRegistryAspect 
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public aspect LifeCycle { 
  

 pointcut install():  
     execution(Bundle BundleContext+.installBundle(String,..)); 
  

  pointcut stop():  
     execution(void Bundle+.stop(..)); 
  

  pointcut start():  
     execution(void Bundle+.start(..)); 
  

  pointcut uninstall():  
     execution(void Bundle+.uninstall()); 
  

  pointcut update():  
     execution(void Bundle+.update(..)); 
  

  pointcut resolve(): 
     execution(boolean 

     PackageAdmin+.resolveBundles(Bundle[])); 
  

  pointcut refresh(): 
     execution(void 

    PackageAdmin+.refreshPackages(Bundle[])); 
  

  pointcut activate(): 
     call(void 

      BundleActivator+.start(BundleContext)); 
  

  pointcut deactivate(): 
     call(void 

       BundleActivator+.stop(BundleContext)); 

} 

 
LifeCycle Aspect 

 
 
 
public aspect ModuleLayer { 
 

 pointcut bundleInstantiation():  
  execution(Bundle+.new(..)); 
 

 pointcut classLoaderInstantiation():  
     execution(ClassLoader+.new(..)); 
 

 pointcut getResource():  
     execution(* Bundle+.getResource*(String)); 
 

  pointcut loadClass():  
     execution(Class 

          Bundle+.loadClass(String)) 

     || execution(Class  

          ClassLoader+.loadClass(String)); 

} 

Module Layer Aspect 
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 
   <xs:element name="isolationpolicy"> 
      <xs:complexType> 
         <xs:sequence> 
            <xs:element ref="components" /> 
            <xs:element ref="services" /> 
         </xs:sequence> 
         <xs:attribute name="name" use="required" type="xs:NCName" /> 
      </xs:complexType> 
   </xs:element> 
   <xs:element name="components"> 
      <xs:complexType> 
         <xs:sequence> 
            <xs:element ref="blocked-poa" /> 
            <xs:element ref="skip" /> 
            <xs:element ref="mirror" /> 
            <xs:element maxOccurs="unbounded" ref="rule" /> 
         </xs:sequence> 
      </xs:complexType> 
   </xs:element> 
   <xs:element name="services"> 
      <xs:complexType><xs:sequence> 
            <xs:element ref="skip" /> 
            <xs:element maxOccurs="unbounded" ref="rule" /> 
         </xs:sequence> 
      </xs:complexType> 
   </xs:element> 
   <xs:element name="blocked-poa"> 
      <xs:simpleType>   
         <xs:restriction base="xs:string"> 
    <xs:pattern value="((interface|class|superclass)(\s*)(!?)(=|like\s)([^;|^=]+;))*"> 
            </xs:pattern> 
         </xs:restriction> 
      </xs:simpleType> 
   </xs:element> 
   <xs:element name="skip"> 
      <xs:simpleType> <xs:restriction base="xs:string"> 
            <xs:pattern 
               value="((interface|class|superclass|import-package|export-
package|bundle-activator|bundle-category|bundle-name|bundle-symbolicname|bundle-
updatelocation|bundle-vendor|bundle-version)(\s*)(!?)(=|like\s)([^;|^=]+;))*"> 
            </xs:pattern> 
         </xs:restriction> 
      </xs:simpleType> 
   </xs:element> 
   <xs:element name="mirror"> 
      <xs:simpleType><xs:restriction base="xs:string"> 
            <xs:pattern 
               value="((import-package|export-package|bundle-activator|bundle-
category|bundle-name|bundle-symbolicname|bundle-updatelocation|bundle-vendor|bundle-
version)(\s*)(!?)(=|like\s)([^;|^=]+;))*"> 
            </xs:pattern> 
         </xs:restriction> 
      </xs:simpleType> 
   </xs:element> 
   <xs:element name="rule"> 
      <xs:complexType mixed="true"> 
         <xs:sequence> 
            <xs:element ref="name" /> 
            <xs:element ref="match-criteria" /> 
         </xs:sequence> 
      </xs:complexType> 
   </xs:element> 
   <xs:element name="name" type="xs:string" /> 
   <xs:element name="match-criteria"> 
      <xs:simpleType> <xs:restriction base="xs:string"> 
            <xs:pattern 
               value="((interface|class|superclass|import-package|export-
package|bundle-activator|bundle-category|bundle-name|bundle-symbolicname|bundle-
updatelocation|bundle-vendor|bundle-version)(\s*)(!?)(=|like\s)([^;|^=]+;))*"> 
            </xs:pattern> 
         </xs:restriction> 
      </xs:simpleType> 
   </xs:element> 
</xs:schema> 

XML Schema definition used for the isolation policy 
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VisualVM plugin used as a control panel of OSGi applications. 
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Project   Source Files SLOC 

Autonomic Manager 

  Autonomic Manager code 42 1802 

  Beanshell scripts 5 86 

AOP Solution 

  Aspects (AspectJ) 8 366 

  Dependability Concerns 107 6006 

Administration Plugins (VisualVM) 

  OSGi platform administration 16 1560 

  

Autonomic Manager  

(Knowledge base visualizer) 4 310 

TOTAL   182 10130 

Source lines of code (SLOC) metrics of the different projects that constitute our approach. 

 
 

        Object[] o = null; 

            while (true) { 

            o = new Object[] {o}; 

        } 

Code snippet used for crashing the HotSpot JVM 
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