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Abstract

This paper presents a generalized framework along with the associated computational

strategies for a rigorous quantification of the material structure in a range of different

applications using the framework of 2-point spatial correlations. In particular, we focus

on applications requiring different assumptions about the periodicity and/or involving

irregular domain shapes and potentially extremely large datasets. Important details of

the computational algorithms needed to address these challenges are developed and

illustrated with example case studies. Algorithms developed and presented in this work

are available at http://dx.doi.org/10.5281/zenodo.31329.

Background

Almost all materials enabling advanced technologies exhibit a richness of hierarchical

internal structures at multiple length scales (spanning from atomic to macroscale).

Certain salient features of this structure control the performance characteristics of

interest for a selected application. Although there is often some intuition about what

these salient features might be, validated and automated protocols do not yet exist for

reliably identifying these features. Further, efficient computational protocols do not yet

exist for tracking their evolution during the various unit processing/synthesis steps

employed in the industrial manufacturing of new products/devices. In fact, the modu-

lation of the material structure in order to improve the performance of engineering

components is often the main motivation behind all activities in the field of materials

science and engineering. Despite its important role, a unified computational framework

for the quantification of the material hierarchical structure does not exist currently.

Conventional practices for the quantification of the material microstructure have

largely relied on accumulated legacy knowledge by domain experts and intuition. Some

examples of such microstructure measures include volume fraction, average particle/

grain size, average particle/fiber spacing (mean free path), tortuosity and coordination

number [1–12]. However, it is easily seen that this simple set of microstructure mea-

sures is unlikely to be the best possible set or even an adequate set, because it is easy

to imagine multiple instantiations of microstructures that would exhibit the same

values of these simple microstructure measures while displaying vastly different values
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of macroscale properties of interest. This is particularly true when establishing structure–

property linkages for defect-sensitive, potentially anisotropic, macroscale properties.

In recent papers, Niezgoda et al. [13, 14] presented a rigorous theoretical framework

for the stochastic quantification of the material structure at any selected length/structure

scale, building on the established concepts of spatial correlation functions [15–26]. Al-

though a number of different measures of the spatial correlations in the microstructure

are possible (e.g., lineal path functions [27–30] and radial distribution [30–33] functions),

only the n-point spatial correlations (or n-point statistics) [15, 16, 18, 19, 30, 34–39] pro-

vide the most complete set of measures that are naturally organized by increasing

amounts of structure information. For example, the most basic of the n-point statistics

are the 1-point statistics, and they reflect the probability of finding a specific local state of

interest at any randomly selected single point (or voxel) in the material structure. In other

words, they essentially capture the information on volume fractions of the various distinct

local states present in the material system. The next higher level of structure information

is contained in the 2-point statistics, which capture the probability of finding specified

local states h and h0 at the tail and head, respectively, of a prescribed vector r randomly

placed into the material structure. It should be noted that there is a tremendous leap in

the amount of structure information contained in the 2-point statistics compared to the

1-point statistics. It should also be noted that if the 2-point statistics described above

are expressed only as a function of the distance between the two points (i.e., r is

treated as a scalar instead of a vector), one recovers the radial distribution functions

or the pair correlation functions that have been used extensively in prior literature

[21, 30, 40]. Higher-order correlations (3-point and higher) are defined in a completely

analogous manner.

It is emphasized that the n-point spatial correlations provide statistical information

on the microstructure. For example, 2-point statistics provide the expected (i.e., the

average) value of a selected correlation between two points separated by a specified

vector. However, they also contain information on the variance in the 1-point statistics

[39]. In some special cases, they can provide readily interpretable information such as

the average shape of the particle (i.e., a mesoscale constituent), especially when the par-

ticles have a dominant shape and orientation. On the other hand, when the distribution

of the particle shape and orientation is completely random, the corresponding correla-

tions are indeed isotropic (i.e., do not reveal the particle shape directly). The connec-

tions between the n-point statistics and the more traditional measures of

microstructure have been detailed in prior literature [30, 39].

The n-point statistics described above are most efficiently computed on digital data-

sets using fast Fourier transform (FFT) techniques [13, 35, 36, 41]. An implicit benefit

of treating the material structure function as a stochastic process is that it allows a

rigorous quantification of the associated variance [13, 14]. A second important benefit

of the spatial correlations described here is that they lend themselves to objective, low-

dimensional, high-value representations (using techniques such as principal component

analysis (PCA)) [13, 14, 37, 42–44].

The strongest support for the choice of n-point spatial correlations as the most ap-

propriate measures of material structure comes from the pioneering work of Kroner

[45], who has taught us that the effective properties of composite material systems can

be conveniently expressed as a series sum with the structure details entering this series
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explicitly in the form of n-point spatial correlations. These composite theories have been

generalized to a broad range of materials phenomena and have been summarized in sev-

eral books [30, 39, 46]. There are also several reports in literature, where they have been

successfully applied to estimate effective properties (both linear and nonlinear) of a broad

range of materials with complex structures [47–52]. Physically, the n-point spatial correla-

tions are very effective in rigorously quantifying the local neighbourhoods in the complex

internal structure of most advanced materials. Since the local neighbourhoods control the

local response, it is only logical that the n-point spatial correlations are the ideal measures

of the material structure in formulating process-structure–property (PSP) linkages of

interest in designing high performance engineering components. In recent work, the

spatial correlations have been used successfully to establish reliable low-cost surrogate

models for capturing the materials core knowledge in the form of process-structure–

property linkages [19, 37, 43, 44, 53, 54].

In this work, we focus exclusively on the computations of 2-point spatial correlations,

but the concepts presented can be expanded trivially for the computation of higher-

order statistics. Much of the prior work on the computations of the 2-point spatial cor-

relations has focused on fairly simple microstructures described on rectangular parallel-

epiped domains that were uniformly tessellated into cuboids (also referred as pixels or

voxels). In these earlier applications, the microstructure domains were mainly assumed

to be periodic to take advantage of the computational efficiency of discrete Fourier

transforms (DFTs). Furthermore, most computations were demonstrated on relatively

small domain sizes. In this paper, we present new enhancements that facilitate the com-

putation of the 2-point spatial correlations in a much broader range of applications. In

particular we focus on three challenges: (i) avoiding the need to invoke periodicity

while still using DFTs, (ii) application to irregular domains, and (iii) application to ex-

tremely large datasets.

Methods: Discretized microstructure function and spatial correlations

A microstructure function expresses spatially resolved material structure information

gathered from any source, either experiments or simulations. Conceptually, one can

think of the microstructure function as h(x), where h denotes the local state occupying

the spatial position x. In this notation, the local state refers to any combination of attri-

butes used to define the material locally (e.g., a combination of elemental composition,

phase identifier, crystal lattice orientation, and dislocation density may be used to de-

fine the local state in multiphase polycrystalline materials at the mesoscale). Brief re-

flection will expose the unwieldy nature of such a description, especially when one tries

to include a diverse set of local state attributes over multiple hierarchical length scales.

In an effort to overcome this challenge, the concept of a stochastic microstructure

function was introduced [15]. In this novel concept, the microstructure function is de-

fined as m(h, x), where m denotes the probability density associated with finding the

local state h at the spatial position x. Consequently, m(h, x)dhdx captures the corre-

sponding probability measure.

Our interest in this paper, however, rests solely on digital description of the micro-

structure. Although it is theoretically possible to extract a digital representation of the

microstructure function using a multitude of choices in the selection of the basis func-

tions for both the spatial and local state variables [55, 56], we focus our attention here
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on the simplest of these bases corresponding to the primitive binning of the spatial do-

main as well as the local state space. With this choice, m(h, x) admits a simple digital

description as

m h; xð Þdhdx≈
X

n

X

s

mn
s χs xð Þχn hð Þ ð1Þ

where χi() denotes a set of indicator basis functions, and mn
s denotes a digital microstruc-

ture signal. For example, χs(x) allows partitioning of the spatial domain into non-

overlapping volumes (typically employed as uniform binning of the space so that DFT

methods can be applied later), with the function taking the value one for all points inside

the sub-volume enumerated by s and the value zero for all other points. Note that χn(h)

can be defined in a similar manner for any local state space of interest. Figure 1 presents a

simple illustration of these concepts. It is also important to recognize that mn
s can be

physically interpreted as the probability of finding any of the local states corresponding to

local state bin enumerated by n in the spatial bin enumerated by s. Consequently, it

should be noted that mn
s reflects a spatially resolved description of the material structure

in a broadly applicable form. Note that 0≤mn
s ≤1 . It is also emphasized that the digital

microstructure signal is inherently tied to a specific length scale (defined by size of spatial

bins) and a specific resolution of the local state (defined by size of local state bins).

Because of the absence of a natural origin from where one might start indexing the

spatial bins, only the relative placement of local states in the material structure contains

meaningful information. In other words, only the spatial correlations in the material struc-

ture contain high value information. As mentioned earlier, an extensible framework for

rigorous quantification of spatial correlations in the material structure is available in the

Fig. 1 Illustration of the discretized microstructure, mn
s . In this highly simplified microstructure, there are

only two local states that are conveniently indexed by n, with n = 1 denoting the phase represented by

white and n = 2 denoting the phase represented by gray. Example values of the microstructure signal are

m1
1;2ð Þ ¼ 1, m2

1;2ð Þ ¼ 0, m1
2;0ð Þ ¼ 0, and m2

2;0ð Þ ¼ 1. The interpretation for the index t used to label the

discretized vector space is also illustrated. Note that both s and t are used as vector indices in this figure
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form of n-point spatial correlations (or n-point statistics) [16, 19, 30, 34–37]. The first-

order information on the spatial statistics is actually contained in the 2-point spatial corre-

lations (recall that 1-point statistics capture only the volume fractions) defined as [39]

f ðh; h
0

rj Þ ¼
1

Ω rð Þj j

Z

Ω rð Þ

m h; xð Þm h
0

; xþ r
� �

dx ð2Þ

As noted earlier, the 2-point spatial correlation function, f(h, h0|r), reflects the prob-

ability density associated with finding local states h and h' at the tail and head, respect-

ively, of a randomly placed vector (includes both a magnitude and a direction) r in the

material internal structure. Because the vector r carries both the magnitude and direction in

this definition, the spatial correlation function defined in Eq. (2) is directionally resolved. As

one can imagine, it is possible to average the statistics over the direction and use f(h, h0||r|)

instead, where |r| denotes the magnitude of the vector. Indeed, f(h, h0||r|) are generally re-

ferred to as the pair correlation functions or the radial distributions and contain significantly

less spatial information compared to f(h, h0|r). In Eq. (2), Ω(r) denotes the volumetric do-

main of the material internal structure analyzed, with |Ω(r)| denoting the measure of the

corresponding volume. It is important to note the dependence of the volumetric domain on

the vector itself. This is because material structures studied often have finite domains

(except when periodicity is invoked) and the domain available for evaluating the 2-point

spatial correlation defined in Eq. (2) depends on the vector r. This is because only those

points where it is possible to evaluate both m(h, x) and m(h0, x + r) can be included in the

evaluation of Eq. (2). As one might imagine, there are certain regions near the boundaries

of a given microstructure image where this condition is not met (i.e., either x or x + r fall

outside the given image) and therefore the region available for use in Eq. (2) should be ex-

pected to show a strong dependence on r (to be discussed in more detail later).

Analogous to the treatment of the microstructure function earlier, we can express the

probability measure as f(h, h0|r)dhdh0 and establish a simple digital representation of

this function as

f ðh; h
0

rj Þdhdh
0

≈

X

p

X

n

X

t

f
np
t χt rð Þχn hð Þχp h

0
� �

ð3Þ

It is important to recognize that the index t in Eq. (3) effectively bins the vector space

associated with r as illustrated in Fig. 1. Starting with the above notions, one can estab-

lish the desired relationship between the digital representations of microstructure and

the (directionally resolved) 2-point spatial correlations as [35, 36]

f
np
t ¼

1

St

X

St

s¼1

mn
sm

p
sþt ð4Þ

where St captures the r-dependence of Ω(r) (see Eq. (2)). It is important to recognize

that the denominator St in Eq. (4) is essentially the total number of trials conducted

(where each trial denotes checking what local states exist in spatial bins marked s and

s + t) and the numerator
X

St

s¼1

mn
sm

p
sþt in Eq. (4) denotes an expected measure of total

success in these trials (i.e., actually finding the selected local states n and p at the two
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bins, respectively). Recognizing this feature of Eq. (4) allows one to make any needed

corrections for different situations (will be expanded in later sections).

The computation of f
np
t for a specified combination of n and p, essentially requires

Ο(S2) (i.e., of the order of S2) computations (Ο(S) for each value of t and there are Ο(S)

different values of t). Such calculations are generally very expensive and are not easily

scalable for datasets with high values of S. In recent years, it has been demonstrated

that the angularly resolved n-point statistics computations can be accomplished at

Ο(Slog S) by employing discrete Fourier transforms (DFTs) [35, 36] (which allow the

use of fast Fourier transform (FFT) algorithms) and invoking the convolution theorem.

One of the main benefits of these computational schemes is their excellent scalability

to large datasets.

In prior work, the protocols described above have been successfully applied to multi-

phase composite systems [13, 14, 19, 43, 44, 57, 58], atomistic datasets [59, 60], and

polycrystalline microstructures [42, 61]. However, in all of these applications, the

microstructure domains had a simple overall shape (rectangles in 2-D and rectangular

parallelepipeds in 3-D), periodicity was generally imposed to take advantage of FFT al-

gorithms, and the studies used relatively small domains. In this work, we present major

enhancements to the current protocols that are designed to address these challenges.

As noted earlier, FFT algorithms are central to scalable computation of 2-point statis-

tics. However, they implicitly assume that the microstructure being studied is periodic

in all directions (i.e., it can be extended by simply repeating the entire domain as many

times as needed). With the assumption of periodicity, St in Eq. (4) can be taken to be

the same as S (the total number of spatial bins in the microstructure). This is because

every spatial bin in the microstructure can be used to place the tail (or equivalently the

head) of the vector in evaluating the 2-point statistics. Furthermore, one can simply

use the properties of DFTs to compute f
np
t . This is because Eq. (4), with the assumption

of periodicity, translates to the following in the DFT space via the convolution

theorem:

F
np
k ¼

1

S
Mn�

k ⊙M
p
k ; F

np
k ¼ ℑ f

np
tð Þ; Mn

k ¼ ℑ mn
s

� �

ð5Þ

where ⊙ is the element-wise product operator (also known as Hadamard or Schur

product). Throughout this paper, superscript * will denote the complex conjugate and

ℑ() denotes the DFT transformation of the data to the frequency space enumerated

by k (in the context of this paper, this is the spatial frequency space). As a result of

Eq. (5), the computation of the 2-point statistics is reduced to computing the DFT of

mn
s , performing requisite products in the frequency space (where they are fully

uncoupled), and performing an inverse DFT. For plotting the 2-point statistics, the

most intuitive visualizations of 2-pt. statistics would result if t = 0 lies in the center of

plot. This shift is accomplished trivially by making use of the periodicity implied in

the DFT-based computations.

Figure 2 illustrates the above concepts through a simple “honeycomb” microstruc-

ture, where each pixel or voxel is colored either white or black. Since there are two

local states, we can potentially compute a total of four different 2-point spatial correla-

tions functions: f 11t , f 12t , f 21t , and f 22t , where n = 1 refers to the white-colored phase and

n = 2 refers to the black-colored phase in Fig. 2. Exploiting the known properties of
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DFTs, Niezgoda et al. [35] have demonstrated that the number of independent 2-point

spatial correlations defined in Eq. (5) is only H − 1, where H is the total number of dis-

tinct local states present in the material system of interest. Consequently, for two-phase

microstructures studied here, we generally need to compute only one of the autocorre-

lations. Figure 2 shows a plot of white-white autocorrelation.

The autocorrelations presented in Fig. 2 capture a number of salient features of the

microstructure. The hexagonal symmetry, the feature shape, and the feature spacing are

readily apparent. Furthermore, the periodicity implied in the use of DFTs resulted in the

autocorrelations also exhibiting the same periodicity. Note also that the autocorrelation

for the zero vector (at the center of the plot) provides the phase volume fraction.

An important consequence of invoking periodicity assumptions is that the number of tri-

als for all vectors is exactly the same and is equal to the number of pixels or voxels in the

microstructure studied. In other words, all vectors of interest have been sampled fairly.

Results and Discussion

Application to non-periodic microstructures

As a specific example, we will revisit the same structure illustrated earlier, but without in-

voking the assumption of periodicity. In other words, our interest is to compute the auto-

correlations as defined in Eq. (4), while accounting for the fact that St ≠ S. However, as

stated earlier, a direct implementation of Eq. (4) would incur Ο(S2) computations. A much

better computational strategy would result if one borrows a well-established concept from

image analysis [62, 63] and “pads” the microstructure such that only long vectors (larger

than the vectors of interest in computing the 2-point statistics) can wrap around from

one edge of the original image to the opposite edge when the periodic assumption is im-

plicitly invoked to take advantage of the computational expediency of the DFTs.

The padding strategy described above is illustrated in Fig. 3. Let S = (S1, S2) de-

note the number of spatial bins in the original two-dimensional microstructure

Fig. 2 Illustration of the computation and visualization of 2-point statistics while invoking the periodicity

assumption. Left: the microstructure used in the computation. The actual microstructure, shown in the green

box in the center, is extended by invoking the periodicity assumption. This extension is only for visualization

purposes and allows us to see the use of the exact same sampling size for all vectors of interest in the

microstructure domain. Right: the corresponding white-white autocorrelation map
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(shown in the inner green box). The padding now extends the microstructure func-

tion to S ̃ ¼ S1 þ T 1; S2 þ T 2ð Þ, where T = (T1,T2) identifies the range of the vectors

for which the 2-point statistics are to be computed. The reader is cautioned that

use of very high values of T can produce meaningless answers. As an example, if

one chooses T = (S1, S2), then one can see that the number of trials conducted for

the largest vector in computing the 2-point statistics is just one. Based on our ex-

perience, we recommend that T < (S1/2, S2/2). Let the padded microstructure be de-

noted as m̃
n

s . The spatial bins in the padded region of the microstructure may be

assigned any of the local states that are not involved in the computation of the de-

sired 2-point statistics. For example, if we are interested in computing f 11t only,

then the spatial bins in the padded region can be assigned a local state enumerated

by 2 or a completely new local state enumerated by 3 (making the padded micro-

structure a 3-phase microstructure).

With the padded microstructures, we are now in a position to take advantage of

DFTs. Following Eq. (5), we can first compute M ̃
n

k ¼ ℑ m ̃
n

s

� �

, and then ℑ
−1 M ̃

n�

k ⊙M ̃
p

k

� �

,

which produces an accurate count of the number of successes in finding local states n

and p separated by all vectors t ≤ T. In fact, the computation described above produces

results even for vectors t > T, but these results are corrupted by vectors wrapping

around the padded region because of the periodicity assumption implicit in the DFTs.

However, since our interest here is exclusively in t ≤ T, we will only take these results from

the DFT computation described above. In order to compute the 2-point statistics of inter-

est, we simply need to divide these numbers (equivalent to the numerator in Eq. (4)) with

a suitable denominator denoting the total number of trials involved, which is expressed

simply as (S1 − |t1|)(S2 − |t2|). It is pointed out that this strategy provides the exact answer

we seek, and not an approximation to it. In fact all of the novel strategies presented in this

paper provide the exact answers for the problems posed, but have the advantage that they

provide these answers at significantly reduced computational cost compared to direct

computations. Furthermore, the padding in Fig. 3 is shown such that it equally envelopes

all sides of the original microstructure. This is just for easy visualization and

Fig. 3 Illustration of the padding strategy to compute the 2-point statistics using DFT representations while

avoiding the errors associated with the implicit periodic boundary assumptions. The green box around the

original microstructure is only for visualization
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interpretation. In reality, any placement of the original microstructure inside the overall

padded region (i.e., any unequal distribution of the padding as long as the extended

microstructure has the same overall size) will produce identical results for the computed

2-point statistics (this is, once again, a consequence of using DFTs).

Figure 3 depicts a plot of the f 11t (white-white) autocorrelations that are not tainted

by the periodicity assumptions implied in the use of DFTs. A comparison of the auto-

correlations in Figs. 2 and 3 reveals important consequences of the assumption of peri-

odicity. For example, the hexagonal symmetry is no longer evident in the

autocorrelations (see the values corresponding to the black and red vectors shown in

these figures). This is mainly because the different vectors are no longer sampled the

exact same number of times. Although this may not be as important when one deals

with a very large image, it clearly has an effect for the relatively small image shown in

Fig. 3. In this simple example, one can easily reconcile the different values of the auto-

correlations for the red and black vectors depicted in Fig. 3, by noting that we can in-

deed place many more red vectors with both endpoints in a white pixel, when

compared to the similar placement of the black vectors. It is therefore important to

recognize that the assumption of periodicity can indeed influence significantly the com-

puted 2-point statistics, especially when one has a limited number of features in the

image. Note that the strategy described above can be applied selectively on any of the

bounding planes of the image. In other words, one can decide to invoke periodicity as-

sumption on certain bounding planes and employ the padding strategy described above

selectively on the other bounding planes.

Masked microstructure domains

As an extension of the idea described above, we now demonstrate a general concept of

“masks” that can be used advantageously in many situations related to computing the

2-point statistics. In fact, the padding strategy described above can be considered as a

special case of using masks. As an example, consider the microstructure in Fig. 4 which

is essentially an extended version of the same microstructure shown in Figs. 2 and 3.

However, certain regions of the microstructure have been masked to hide certain ir-

regularly shaped regions where the information is either not available or is of inferior

quality (in other words, we do not wish to include that information in the computa-

tions of the 2-point statistics). As shown in Fig. 4, these masked regions can be on the

boundary of the microstructure (e.g., the microstructure is measured in an irregular do-

main). But they can also be inside the microstructure (e.g., some regions of the micro-

graph may not be discernable or reliable). As demonstrated earlier, a mask can also be

applied to produce a padded region to impose non-periodic boundaries (see Fig. 3). In

this situation, it is convenient to define two microstructure functions (see Fig. 4): (i) an

extended microstructure function denoted as m̃
n

s , where we have introduced an add-

itional fictitious local state (i.e., the third phase colored gray in Fig. 4) in the masked re-

gion as well as the boundary padded regions and (ii) a mask function denoted as cs

such that it takes a value of zero for spatial bins (shown as black) in the masked regions

and one (shown as white) everywhere else. It is pointed out that the extended m ̃
n

s

already contains the information in the cs. However, we choose to carry this informa-

tion in the redundant manner described above for ease of discussion and computation.
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Following the methodology described in the previous example, we compute M ̃
n

k ¼ ℑ

m̃
n

s

� �

and then ℑ
−1 M ̃

n�

k ⊙M ̃
p

k

� �

to accurately count of the number of successes in find-

ing local states n and p separated by all vectors of interest (as mentioned earlier, it is

important to include padding if we wish to avoid the default assumption of periodicity

implicit in the use of DFTs). In order to compute the 2-point statistics of interest, we

simply need to divide these numbers (equivalent to the numerator in Eq. (4)) with a

suitable denominator denoting the total number of trials involved. For the masked mi-

crostructures described here, the denominator can be computed easily as ℑ−1 C�
k⊙Ck

� �

,

where Ck = ℑ(cs). It should be noted once again that the padding scheme described in the

previous case study is essentially a special case of the masking protocol described here.

Figure 4 depicts a plot of the f 11t (white-white) autocorrelations where the computations

were limited to the unmasked regions (the white region of the mask) using the computa-

tionally efficient DFT-based protocols developed and presented in this paper. Further-

more, there was no assumption of periodicity in this computation. However, it is seen that

these autocorrelations are indeed very similar to the ones shown in Fig. 2 (performed as-

suming periodicity and limited to a much smaller range of vectors). This provides unam-

biguous confirmation that the protocols presented here are doing an excellent job of

computing the 2-point statistics for irregular domains without invoking periodicity, while

taking full advantage of the computational efficiency of the FFT algorithms.

Large microstructure domains

We have already emphasized the benefits of using FFT algorithms to dramatically re-

duce the computational time incurred in the calculations of spatial correlations. In this

section, we now shift our attention to cases where the datasets are extremely large and

present a substantial challenge with their storage requirements. For example, a

Fig. 4 Illustration of the masking strategy to compute 2-point statistics on irregular domains. The green

boxes around the original microstructure are only for visualization
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microstructure of about 600 × 600 × 600 pixels is likely to prove unwieldy for an aver-

age desktop computer, especially since the application of the FFT algorithms would re-

quire double precision storage of complex numbers. Consequently, the computation of

the non-periodic spatial correlations for a 2000 × 2000 × 2000 voxel dataset can easily

demand close to 180 GBs of memory, forcing the use of a supercomputer for such cal-

culations. We address the challenge described above using a strategy that carefully par-

titions the large domain into smaller subdomains, performs the requisite computations

on them, and then assembles correctly the statistics for the original large domain from

the computations on the subdomains. Our approach can be compared to various parti-

tioning strategies for efficient computation of convolutions via FFTs that are well

known in digital signal processing applications, such as overlap-save, overlap-add, and

hybrid schemes [64, 65]. The overall process is illustrated schematically for a 2-D data-

set in Fig. 5.

In this specific illustration, the overall domain is broken into 25 subdomains (see

Fig. 5a). Let imn
s denote the digitized microstructure in the subdomain enumerated by

i. The microstructure in each subdomain is then extended by padding in two ways to

produce im ̃ns and im̂n
s as shown in Fig. 5b for a corner subdomain (labelled 1) and an

interior subdomain (labelled 13). The main idea is that im ̃ns is a simply padded version

of imn
s with the padding size controlled by the largest vector size of interest in the cal-

culation of the 2-point statistics (as we did before for avoiding the assumption of peri-

odicity of the microstructure), while im̂n
s is an extended version of imn

s that actually

captures the real neighborhood information from the original large dataset. As illus-

trated in Fig. 5b, the treatment for generating im̂n
s would have to be somewhat different

for interior subdomains versus those that are at the boundary of the original large do-

main. Furthermore, it is important to ensure that the extensions for both im ̃ns and im̂n
s

are of the exact same size. Let iM ̃nk and iM̂
p
k denote the DFT representations of im ̃ns

and im̂n
s , respectively. Following the ideas presented earlier, it should be clear that ℑ−1

iM ̃n�k ⊙
iM̂

p
kÞ

�

will produce an accurate count of the number of successes from the ith

subdomain in finding vectors with local states n and p at the tail and the head of the

vector, respectively. As before, these counts are only accurate for vectors smaller than

the padding size used in im̃n
s , which is really our stated interest anyway. Once the

Fig. 5 a Illustration of the partitioning strategy for computation of the 2-point statistics for a very large

microstructure. b The padding strategy needed for different subdomains depending on where they appear

in the original large microstructure
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numbers of successes are computed for all of the non-overlapping subdomains, the de-

sired 2-point statistics for the original large domain can be easily recovered using

f
np
t ¼

X

i
ℑ
−1 iM ̃n�k ⊙

iM̂
p
k

��

X

i

iS t

ð6Þ

Note that the total number of trials (denominator in Eq. (6)) is actually the same as

what we used before in the case of non-periodic domains and is given by
iS 1− t1j jÞ iS 2− t2j jÞ

��

, where iS 1;
iS 2Þ

�

denote the grid size in the ith subdomain being

studied, and (t1, t2) denote the components of the vector for which the 2-point statistics

are being computed. It is important to also note that the concepts of masking and

modification for periodicity/non-periodicity can be combined with this scheme by mak-

ing suitable adjustments to the algorithm as described in earlier example case studies.

As a demonstration, the scheme is applied to a 3-D (three-dimensional) micro-CT

dataset obtained from a sample of reinforced polymer composite. A visualization of the

entire dataset and an exemplar subdomain is shown in Fig. 6a, b. For this dataset, we

have applied masks on the irregularly shaped overall domain and computed the non-

periodic 2-point autocorrelations of the fiber phase. The computed autocorrelations are

visualized as 3-D iso-contour surfaces in Fig. 6c. It can be observed that the fibers are

predominantly aligned along the xy-plane with a small angular margin confined within

a flat, ellipsoid region. There is also visible anisotropy in the in-plane distribution of

the fiber orientations. Note that these topological features regarding the placement of

Fig. 6 a A visualization of the entire polymer composite dataset. b A visualization of a partitioned section

of the dataset for use with the memory efficient calculation strategy described in this work. c Contour plots

of the central axial planes of the calculated autocorrelations
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the fibers in the structure cannot easily be inferred from a direct 3-D visualization of

the original structure.

It is important to note that suitable trade-offs can be made between the execution

speed and the memory usage for the computation on the large microstructure de-

scribed above. This is accomplished using the partitioning strategy illustrated in Fig. 5.

Obviously, using more partitions reduces the memory requirements at the expense of

increased overall computation time. Table 1 presents the time and memory cost com-

parisons for the 2-point autocorrelation calculation for the example dataset, for differ-

ent partitioning window sizes (i.e., different memory requirements). For this case study,

the partitioning window sizes were selected to correspond to commonly available mem-

ory choices. For example, at the current time, an average consumer laptop has 4 GBs

of DDR3 memory, while an average researcher desktop has 8 GBs of DDR3 memory.

All tests were done entirely on a single personal machine utilizing all threads available

with an i7-5820K CPU and 48 GBs of DDR4 RAM.

Conclusions

We have presented a rigorous framework for quantification of the material microstruc-

ture using directionally resolved 2-point spatial correlations. The use and importance

of FFTs for computationally efficient calculation of these spatial correlations have been

discussed. Schemes to accommodate non-periodic boundaries, irregular grids, and very

large datasets are detailed and demonstrated on simplistic datasets for maximum clar-

ity. Finally, all schemes are simultaneously demonstrated on an experimentally obtained

3D microstructure dataset of very large size displaying an irregular grid with non-

periodic boundaries. Algorithms developed and presented in this work are made avail-

able at http://dx.doi.org/10.5281/zenodo.31329.
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