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Versatile and open software for comparing large genomesThe newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demon-strated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at http://www.tigr.org/software/mummer.

Abstract

The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying

evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical

viewing tools provide alternative ways to analyze genome alignments. The new system is the first

version of MUMmer to be released as open-source software. This allows other developers to

contribute to the code base and freely redistribute the code. The MUMmer sources are available

at http://www.tigr.org/software/mummer.

Background
Genome sequence comparison has been an important

method for understanding gene function and genome evolu-

tion since the early days of gene sequencing. The pairwise

sequence-comparison methods implemented in BLAST [1]

and FASTA [2] have proved invaluable in discovering the evo-

lutionary relationships and functions of thousands of pro-

teins from hundreds of different species. The most commonly

used application of these sequence-analysis programs is for

comparing a single gene (either a DNA sequence or the pro-

tein translation of that sequence) to a large database of other

genes. The results of such protein and nucleotide database

searches have been used in recent years as the basis for

assigning function to most of the newly discovered genes

emerging from genome projects. In recent years, an impor-

tant new sequence-analysis task has emerged: comparing an

entire genome with another. Until 1999, each new genome

published was so distant from all previous genomes that

aligning them would not yield interesting results. With the

publication of the second strain of Helicobacter pylori [3] in

1999, following the publication of the first strain [4] in 1997,

the scientific world had its first chance to look at two complete

bacterial genomes whose DNA sequences lined up very

closely. Comparison of these genomes revealed an overall

genomic structure that was very similar, but showed evidence

of two large inversion events centered on the replication ori-

gin. The comparison also made it clear that a new type of bio-

informatics program was needed, one that could efficiently

compare two megabase-scale sequences, something that

BLAST cannot do. In response to this need, TIGR released

MUMmer 1.0, the first system that could perform genome

comparisons of this scale [5]. The first two releases of MUM-

mer had over 1,600 site licensees, a number that has grown

since moving to an open-source license in May 2003.

The number of pairs of closely related genomes has increased

dramatically in recent years, with a corresponding increase in

the number of scientific studies of genome structure and evo-

lution, facilitated by new software that permits the compari-

sons of these genomes. As of mid-2003, there are more than

150 complete published genomes, with over 380 prokaryotic

genome projects and 240 eukaryotic projects under way.

Many of these involve species that are closely related to pub-

lished genomes. The published databases already include 33
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species for which at least one other closely related species has

been sequenced; for a detailed list see [6]. More distantly

related pairs of species, for example, Plasmodium falciparum

and P. yoelii, fail to show DNA sequence similarity but do

show large-scale similarity when their translated protein

sequences are aligned, as described in earlier studies [7,8].

Related to the growing number of closely related species that

have been sequenced is a rapid growth in the number of

known species whose genomes are similar but have under-

gone significant rearrangement. The human and mouse

genomes, for example, are both available in draft form, and

the chromosomes of either species can be aligned with the

other at the DNA level. Various lines of evidence in the past

have pointed to massive genome rearrangements separating

the species, and the latest analysis indicates that the mouse

genome can be split into 217 large segments that can be rear-

ranged to produce the same gene order as in the human

genome [9]. This very large-scale similarity interrupted by

rearrangements places additional demands on genome-com-

parison programs: essentially, one must produce all pairs of

similar regions in the sequences (in form of local alignments),

not merely a single 'best' or longest global alignment of the

entire sequences.

In addition to the need for whole-genome alignment pro-

grams, another need has become evident recently - a means of

reliably evaluating and comparing genome assemblies. The

explosion of genome sequencing has brought with it an explo-

sion in genome-assembly programs, with several new assem-

blers either under development or recently released [10-12].

Unlike the previous generation of assemblers (TIGR Assem-

bler [13], phrap [14], and CAP3 [15]), these second-genera-

tion assemblers are designed to handle large eukaryotic

genomes. Assembly of large genomes is a major technical

challenge, and once an assembly has been produced, evaluat-

ing it can be almost as difficult. Debates over the relative qual-

ity of assemblies produced by different assemblers are

ongoing, and whole-genome comparison algorithms repre-

sent a critical tool in these analyses. Different assemblies of

the same data should be nearly 100% identical, making the

comparison problem analogous to the problem of comparing

closely related species. Assembly differences may represent

errors in one of the algorithms, and are useful for providing

insights into the strengths and weaknesses of different meth-

ods. The large-scale comparison problem also occurs for

assemblies delivered by the same software but from different

inputs; for example, assemblies at threefold (3×) coverage

and sixfold (6×) coverage of the same genome. With larger

eukaryotic projects, multiple assemblies are run at different

stages of the project, and comparisons of the successive

assemblies provide a map showing how to transfer any analy-

ses (such as gene predictions) from one assembly to another.

A third use for rapid, large-scale alignment programs has

come up in our own applications. As part of our annotation

'pipeline' at TIGR, we routinely rebuild a database containing

the results of all-against-all BLAST searches for all known

proteins. Each time a new genome is added to the public

archives, many thousands of searches need to be re-run to

incorporate the newly sequenced genes. Because of the size of

the archive, these additional searches take a relatively long

time. A rapid method for identifying potential hits is used as

a pre-screen as follows: for each new gene that is being added

to the database, we use the high-speed method (MUMmer) to

determine if it has any potential hits. If it does not, then it can

be omitted from subsequent BLAST searches. If a new

genome has a large number of novel proteins, this pre-screen-

ing step can substantially reduce the time required to search

it against the database.

The new MUMmer system, version 3.0, addresses all of the

above uses and more, including new graphical modules for

viewing assembly comparisons and for looking at more dis-

tantly related species alignments. In addition, the implemen-

tations of all the fundamental search operations are now

either optimal or nearly optimal, in the sense of running in

time proportional to the sum of their input and output sizes.

Other parts of the code have also been rewritten to improve

their efficiency.

What may be the most significant change with MUMmer 3.0

is that it is now an open-source system. All code is publicly

available without restriction on its use or redistribution, and

we encourage others to add to the code base and distribute

their own improvements. The modularity of the code base

makes it easily extendable as well. Others can build on our

matching algorithm, for example, and create their own clus-

tering and extension steps.

Results
Since the development of MUMmer 1.0 in 1999, several other

programs for large-scale genome comparison have been

developed, for example, SSAHA [16], AVID [17], MGA [18],

BLASTZ [19], and LAGAN [20] (see also [21] for a review).

Most of these programs follow an anchor-based approach,

which can be divided into three phases: computation of

potential anchors; computation of a colinear sequence of

non-overlapping potential anchors - these anchors form the

basis of the alignment; and alignment of the gaps in between

the anchors. The traditional methods to compute potential

anchors, that is, maximal matches of some length l or longer,

use a generate-and-test approach. In a first step, all matches

of some fixed length k < l, called k-mers, are generated using

a method based on hashing (adopted from [22]). Each such k-

mer is checked to see whether it can be extended to a maximal

exact match of length at least l. The extension is done by pair-

wise character comparisons, and thus the run time of this

approach depends not only on the number of potential

anchors, but also on their lengths. This can be illustrated by

an example where all maximal matches of length 20 or larger
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between two different strains of Escherichia coli (strain K12,

4,639,221 base-pairs (bp) and strain O157:H7, 5,528,445 bp)

are computed. With k = 10, a typical choice for k, the hashing

approach first generates 4.99 × 107 k-mers and then performs

1.66 × 107 character comparisons to determine all 46,629

maximal matches of length 20 or larger. Thus, less than 0.1%

of the generated k-mers are extended to maximal matches of

the specified length. For this reason, the generate-and-test

approach leads to long running times, if the sequences under

consideration share long substrings.

Recognizing this disadvantage of the hashing approach,

MUMmer 1.0 was the first software system to use suffix trees

to find potential anchors for an alignment. Suffix trees have

been studied for almost three decades in computer science

(see [23] for an overview). A suffix tree is a data structure for

representing all the substrings of a string, whether that string

is a DNA sequence, a protein sequence, or plain text. Suffix

trees have the following nice features which make them an

important data structure for large-scale genome analysis: a

suffix tree for a string S of length n can be represented in

space proportional to n; fast algorithms have been designed

that can construct a suffix tree in time proportional to n

[24,25]; given the suffix tree of S and a query string Q of

length m, there are algorithms to compute all unique maximal

matches between S and Q of any specified minimum length

(the potential anchors) in time proportional to m. All maxi-

mal matches, unique or not, can be found in near-optimal

time. Note especially that, unlike the hashing approaches, the

run-time of the suffix-tree algorithms does not depend on the

length of the maximal matches.

Details of the suffix-tree algorithms incorporated in earlier

versions of MUMmer have been described in [5,7]. Here we

will focus on novel developments. MUMmer is among the

fastest programs for large-scale alignment; one recent test

reported times for MUMmer that ranged from 4 to 110 times

faster than AVID, BLASTZ, and LAGAN [20]. At its default

settings, MUMmer is less sensitive at detecting matches than

these programs; however, we have added several command-

line options to MUMmer 3.0 that permit the detection of

much weaker matches than the system would find otherwise.

Note that the modularity of MUMmer, and its availability as

open-source code, means that others can now build a hybrid

system using, for example, the suffix-tree matching algorithm

in MUMmer and the match extension program code from

LAGAN or AVID.

Additional features added to MUMmer 3.0 are a new Java

viewer, DisplayMUMs; a new graphical output program to

generate images in fig-format or PDF, showing the alignment

of a set of contigs to a reference chromosome; and new

options to find non-unique matches. These will be described

below.

Optimized suffix-tree data structure and suffix-tree 

library

The most significant technical improvement in MUMmer 3.0

is a complete rewrite of the suffix-tree code, based on the

compact suffix-tree representation of [26]. This representa-

tion was also used in the repeat analysis tool REPuter [27].

However, REPuter could only accommodate sequences up to

134 million bp (Mbp). For MUMmer 3.0 the implementation

was improved so that it allows sequences up to 250 Mbp on a

PC with 4 gigabytes (GB) of real memory, at the cost of a

slightly larger space usage per base pair. For example, one can

construct the suffix tree for human chromosome 2 (237.6

Mbp, the largest human chromosome) using 15.4 bytes per

base-pair. For processing DNA sequences less than 134 Mbp

in length, MUMmer can be compiled so that it uses only about

12.5 bytes per bp [26]. Since suffix trees for DNA sequences

are typically larger than for protein sequences, the bytes per

base-pair ratio is even better for the latter.

MUMmer now requires approximately 25% less memory than

release 2.1 and it runs slightly faster. Compared to the initial

release in 1999, the system is more than twice as fast and uses

less than half the memory. As in MUMmer 2.1, release 3.0

streams the query sequence against the suffix tree of the ref-

erence sequence. Thus the total space requirement of MUM-

mer is the size of the suffix tree plus the size of the reference

and the query sequences. Table 1 shows run times and mem-

ory requirements for MUMmer release 2.1 and 3.0, when

computing maximal matches for different pairs of genomes or

chromosomes.

While the previous versions of MUMmer implemented the

main suffix tree construction and traversal algorithms in one

monolithic program of 1,700 lines of code, the current version

is based on a well-structured and well-documented software

library. This provides data types for handling multiple DNA

or protein sequences and their suffix trees. The library con-

tains functions to construct the suffix tree and traverse it. In

this way, a programmer who intends to modify or extend the

code base can use the well-documented interfaces provided

by the library, without the need to learn all of the low-level

implementation details of the suffix tree.

With release 3.0, MUMmer now has the ability to run a multi-

contig query against a multi-contig reference. Previously this

was available by using the Nucmer package, but not directly

within the core mummer program. In Table 1, for example,

the genome sequence of Aspergillus fumigatus consisted (at

the time of this study) of 19 scaffolds that were aligned to 248

contigs from A. nidulans. This comparison was handled by a

simple call to the mummer program in release 3.0, but in

release 2.1 the reference sequence needs to be first collapsed

into a single contig and, after matching, the coordinates have

to be re-mapped (by Nucmer) to the correct contig locations.

Both releases handle multi-contig query files. Table 1 also

shows the times for aligning the 22.2 Mbp chromosome 2L of
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the fruit fly Drosophila melanogaster to an interim assembly

(before the genome project was complete) of D. pseudoob-

scura. In this case the query sequence, consisting of 4,653

scaffolds containing approximately 150 Mbp of sequence, was

much longer than the reference. The program required 485

Mb of total memory, approximately 310 Mb for the suffix tree

and the rest to hold the input sequences.

Non-unique maximal matches

Previous versions of MUMmer emphasized maximal unique

matches (MUMs) as prospective anchors for an alignment.

MUMs are unique in that they occur exactly once in each of

the genomes. In some cases, the uniqueness constraint will

prevent MUMmer from finding all matches for a repetitive

substring. For example, if the reference genome has two exact

copies of a particular string and the query has just one copy,

then earlier versions of MUMmer would generally miss one of

the matching copies, depending on the surrounding

sequence. To overcome this problem, the new MUMmer sys-

tem can find all maximal matches - including non-unique

ones - between two input sequences simply by providing a

command-line option to the program mummer. Other com-

mand-line options allow the user to produce MUMs that are

unique in both the query and the reference sequence or

MUMs that are unique only in the reference sequence.

Although the algorithm to produce all maximal matches is

more complicated than the algorithm to produce unique max-

imal matches, it still runs in nearly optimal time, where opti-

mal time would be proportional to the sum of the sizes of the

input strings and the number of matches found. The run

times to produce any of the three types of maximal matches

are generally similar. Note, however, that when the program

is directed to find all non-unique matches, including short

ones, the size of the output can be extremely large, and the

time to create the output file will be the dominant part of the

computation.

Distant matches

One of the criticisms that has been leveled at MUMmer 1.0

was that it only finds exact matches, whereas in practice we

often want to find approximate matches, that is, matches

between sequences that are less than 100% identical. We

addressed this concern in release 2.1, with the introduction of

the Nucmer and Promer packages built on top of MUMmer.

These have been substantially improved in the 3.0 release,

and now exhibit performance only marginally slower than the

basic search itself. The speed-up of Nucmer and Promer com-

pared to release 2.1 is approximately 10-fold.

Both Nucmer and Promer produce a collection of local align-

ments using the algorithm described below. The difference

between the two programs is that Nucmer constructs nucleo-

tide alignments between two sets of DNA sequences, while

Promer constructs amino acid alignments. Each set of

sequences is a collection of one or more sequences from the

same genome, for example, a collection of contigs produced

by a genome assembler. Promer first translates both refer-

ence and query in all six frames, finds all matches in the

amino acid sequences, and then maps the matches back to the

original DNA coordinate system. For the extension step

below, Promer uses a standard amino acid substitution

matrix (BLOSUM62 is the default) to score mismatches.

The Nucmer/Promer alignment algorithm is as follows. First,

both programs run MUMmer to find all exact matches longer

than a specified length l, measured in nucleotides for Nucmer

and amino acids for Promer. Second, the matches are

clustered in preparation for extending them. Two matches are

joined into the same cluster if they are separated by no more

than g nucleotides (Nucmer) or amino acids (Promer). Then

from each cluster, the maximum-length colinear chain of

matches is extracted and processed further if the combined

length of its matches is at least c nucleotides/amino acids.

(Note that a chain can consist of a single matching region if

Table 1

Time and space requirements of MUMmer 2.1 and 3.0 when computing all exact matches of length 20 or longer for different pairs of 

sequences

Reference genome Query genome   MUMmer 2.1 MUMmer 3.0

Species Size (Mbp) Species Size (Mbp) Time (sec) Space (MB) Time (sec) Space (MB)

E. coli K12 4.6 E. coli O157:H7 5.5 18 102 17 77

A. fumigatus 28.0 A. nidulans 30.1 128 578 120 459

Saccharomyces cerevisiae 13.0 Schizosaccharomyces pombe 13.8 51 261 47 204

D. melanogaster (chromosome 2L) 22.2 D. pseudoobscura
(all chromosomes)

150.0 546 684 520 485

Homo sapiens (chromosome 21) 44.7 Mus musculus
(chromosome 16)

99.2 - - 430 759

Timings were done on a Linux-based computer with a 2.4 GHz Pentium processor. The human-mouse comparison was run only with MUMmer 3.0. 
Mbp, millions of base pairs; MB, megabytes. A suffix tree is constructed only for the reference genome.
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l >c.) The parameters l, g, and c can all be set on the command

line. The chain matches are then extended using an imple-

mentation of the Smith-Waterman dynamic programming

algorithm [28], which is applied to the regions between the

exact matches and also to the boundaries of the chains, which

may be extended outward. This 'match and extend' step in the

algorithm is essentially the same as that used by FASTA [29],

BLAST [30], and many other sequence-alignment programs.

When two species are very similar, such as the two isolates of

the Bacillus anthracis Ames strain sequenced at TIGR [31-

33], then MUMmer is ideally suited for aligning the genomes.

In that comparison of anthrax isolates, only four single-

nucleotide differences separated the two 5.3 Mbp main chro-

mosomes from one another. Similarly, in our comparison of a

clinical isolate of Mycobacterium tuberculosis to a laboratory

strain [31], MUMmer quickly found the approximately 1,100

SNPs and a handful of IS elements that distinguished the

strains. However, when the species being compared are more

distant, Nucmer and Promer provide much more detailed and

more useful alignments than MUMmer alone. In the exam-

ples described below, we show how each of the programs

described here may be run for genomes at different evolution-

ary distances

Fly versus fly

The 130 Mbp genome of D. melanogaster is largely complete,

with the six main chromosome arms containing only a few

gaps. Recently, the Human Genome Sequencing Center at

Baylor College of Medicine completed the shotgun sequenc-

ing of D. pseudoobscura, a closely related species with a

genome of approximately the same size. These two species are

close enough that almost all genes are shared, and exons show

a high level of sequence identity. However, they are suffi-

ciently distant that intergenic regions and introns do not align

well, and there have been hundreds of large-scale chromo-

somal rearrangements since the species diverged. Thus, one

cannot simply align each chromosome arm to its counterpart.

Complicating matters further, the D. pseudoobscura shotgun

assembly consists of thousands of scaffolds and contigs. To

facilitate comparison, the first computational task is to align

all the scaffolds to each of the D. melanogaster arms. (The

comprehensive analysis of D. pseudoobscura, organized by

the sequencing center scientists and their collaborators, will

appear in a future paper. The description here is primarily

intended to illustrate the use and capabilities of Nucmer.)

We ran the Nucmer program with a minimum match length

of 25, which was adequate to capture virtually all matching

exons. Because matching genes are much longer, we required

cluster chains to contain at least 100 matching nucleotides.

To account for long introns and to allow the program to clus-

ter together multiple genes, we allowed the gap between exact

matches to be as long as 3,000 bp. At the time of our analysis

(before completion of the sequencing project), the D. pseu-

doobscura assembly contained 4,653 scaffolds spanning 150

Mbp. We ran Nucmer separately to align the full set of scaf-

folds to each D. melanogaster chromosome arm. Using these

settings, the program takes about 6 minutes per arm and uses

approximately 490 Mb of memory on a 2.8 GHz desktop Pen-

tium 4 PC running Linux.

Fly versus mosquito

When the two species are more distantly related, the only

means of detecting large-scale similarity is through compari-

sons on the amino acid level. One example of this phenome-

non arose during our comparison of the genomes of the

malaria mosquito, Anopheles gambiae, and the fruit fly D.

melanogaster. Because Anopheles was the second insect

genome to be sequenced, the only available species for com-

parison was fruit fly. Our detailed analysis, done jointly with

colleagues at the European Molecular Biology Laboratory in

Heidelberg, was based on a combination of BLAST and

MUMmer analysis [34]. These two species diverged about

250 million years ago, and they have an average protein

sequence identity of 56%, less than that shared between

humans and pufferfish. Although the two insects have the

same number of chromosomes, the Anopheles genome is

approximately twice as large, and the gene order has been

almost completely shuffled, as our alignments revealed. Only

small, but numerous, regions of 'microsynteny' remain: we

reported 948 regions, the largest containing 8 genes in

Anopheles and 31 in Drosophila. An interesting finding,

though, was that despite extensive shuffling, each chromo-

some arm had a clear predominance of homologs on a single

arm in the other species, indicating that intrachromosome

gene shuffling was the primary force affecting gene order (see

Figure 7 of [34]).

Fungus versus fungus

In a current application, we are using both Nucmer and

Promer to compare two related fungal genomes, Aspergillus

fumigatus (a human pathogen) and A. nidulans (a non-path-

ogenic model organism). Shotgun sequencing of these two

genomes has been completed, and A. fumigatus is in the proc-

ess of being completely finished; that is, all gaps are being

closed. (A. fumigatus is a joint sequencing project of TIGR

and The Sanger Institute, while A. nidulans is being

sequenced at the Whitehead/MIT Genome Center.) At the

time of our most recent comparison, the A. fumigatus

genome had progressed to the point where it was assembled

into 19 scaffolds spanning 28 Mbp, and the A. nidulans

genome was assembled into 238 contigs spanning 30 Mbp.

For this comparison, we first ran Nucmer and found that

most of the two genomes mapped onto one another quite

clearly: there are sufficient matches to reveal large segments

of similarity in a simple dot plot. There has been extensive

rearrangement of the chromosomes, but large-scale synteny

is still present. For example, the largest contig (A1058) in A.

fumigatus, at 2.9 Mbp, representing an essentially complete

chromosome, maps onto five different scaffolds in A. nidu-

lans. If one looks only at the Nucmer alignment of the largest
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of these, a 2.1 Mbp scaffold containing 10 contigs, it appears

to be rearranged into multiple segments, but the matches are

so scattered that it is difficult to tell how many segments there

are (Figure 1, left-hand side).

The syntenic alignment is much more clearly visible, how-

ever, if we use Promer instead. The simplest summary is just

the number of bases included in the alignments: if we look at

the Nucmer alignment between the scaffolds, the total

number of matching bases is 81 kbp. In contrast, the Promer

alignment covers 1.87 Mbp of A1058, beginning at nucleotide

position 1,000,000 and continuing to the end of the chromo-

some. A graphical illustration is shown in Figure 1, which dis-

plays both the Promer and Nucmer alignments between the

2.1 Mbp scaffold from A. nidulans and scaffold A1058 of A.

fumigatus. As the figure makes clear, the amino-acid-based

alignment covers much more of the sequence of both species,

and is therefore much more useful for determining homolo-

gous relationships between genes and chromosomal

relationships.

Human versus human

One of the most challenging computational tasks one can per-

form today is the cross-comparison of mammalian genomes.

The human and mouse genomes are sufficiently complete

that much ongoing research is based on mappings between

these two species. As shown in Table 1, MUMmer 3.0 can

compare human and mouse chromosomes in a matter of min-

utes. The table shows the time (7 minutes 10 seconds, on a 2.4

GHz Pentium processor) required to align mouse chromo-

some 16 (Mm16) to human chromosome 21 (Hs21). These two

were chosen because nearly all of Hs21 maps to one end of

Mm16; in fact, researchers have developed a mouse model of

Down syndrome that has an extra copy of this part of Mm16.

We ran a benchmark test of MUMmer 3.0 in which we com-

pared the human genome (version of 3 January 2003, down-

loaded from GenBank) to itself by computing all maximal

matches of length at least 300 between each chromosome and

all the others. The resulting 631,975 matches allow one to

identify both large- and small-scale interchromosomal dupli-

cations. Note that the run-times reported in [6] are only for

the match-finding part of MUMmer. The time for processing

clusters and performing alignments in the gaps between

matches are omitted as these vary widely depending on the

parameters used.

For this test, we needed a maximum of about 4 GB of mem-

ory. As we did not have a PC available with this amount of

memory, we used a Sun-Sparc computer running the Solaris

operating system, with 64 GB of memory and a 950 MHz

processor.

We ran the alignment as follows. Each human chromosome

was used as a reference, and the rest of the genome was used

as a query and streamed against it. To avoid duplication, we

only included chromosomes in the query if they had not

already been compared; thus we first used chromosome 1 as a

reference, and streamed the other 23 chromosomes against it.

Then we used chromosome 2 as a reference, and streamed

chromosomes 3-22, X, and Y against that, and so on.

The total length of all human chromosomes for this test was

2,839 Mbp. The time required to build all the suffix trees was

4.7 hours. The space requirement for the suffix tree was

remarkably constant, with about 15.5 bytes per base-pair

(with only one exception). The total query time was 101.5

hours, and memory usage never exceeded 3.9 GB (see [6] for

details). Thus, in approximately 4.5 days on a single

Dot-plot alignments of a 2.9 Mbp chromosome of A. fumigatus (x-axis) to a 2.1 Mbp scaffold of A. nidulans (y-axis)Figure 1

Dot-plot alignments of a 2.9 Mbp chromosome of A. fumigatus (x-axis) to a 2.1 Mbp scaffold of A. nidulans (y-axis). Left: nucleotide-based alignment with 

Nucmer. Right: amino-acid-based alignment with Promer. Aligned segments are represented as dots or lines, up to 3,000 bp long in the Nucmer alignment 

and up to 9,500 bp in the Promer alignment. These alignments were generated by the mummerplot script and the Unix program gnuplot.
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processor, we matched the human genome against itself. This

could easily be divided up among multiple computers, with

each chromosome handled separately, bringing the time

down to just 11 hours.

Graphical viewers

Because the text-format output of MUMmer 3.0 is often volu-

minous, we have developed two graphical viewers, one for the

purpose of comparing two genome assemblies or near-identi-

cal sequences, and the other for comparing more distantly

related genomes, such as two distinct species. The first

viewer, DisplayMUMs, is an open-source, platform-inde-

pendent Java program. It has been tested on a variety of

Unix/Linux platforms and also runs on Apple Macintosh (OS

X) or Microsoft Windows computers. The program, which

takes as input the results of running MUMmer, allows the

user to align and view the results of two different assemblies

of the same or very closely related genomes and to tile one set

of contigs onto the other. This provides a powerful graphical

front end for assembly comparison, a function that is fre-

quently used in the process of assembling and finishing

genomes. It allows a user to visualize the tiling of sequence

reads onto an assembly in order to understand why contigs

might not have properly merged together. Alternatively, one

can compare the output of different genome assemblers on

the same data, a task that can be quite bewildering when the

genome is large and the assemblers disagree.

DisplayMUMs creates a stand-alone display, illustrated in

Figure 2. It contains three main areas. The upper area can

show a variety of types of information, including zoomed-in

nucleotide alignments. The central panel shows a summary of

the alignment, with the reference shown as a gray bar. The

matches of the queries to the reference are shown as green

(forward) and red (reverse) rectangles, with gaps indicated in

gray. A second gray bar shows the gaps in blue, which may

seem redundant but is useful when the scale is zoomed out;

for example, if the sequence has only one small gap and the

scale shows 1 Mbp, then the small gap will be invisible in the

upper bar but will still be visible on the lower bar. The lower

panel shows the tiling of all the query sequences on the refer-

ence, with red and green colors indicating the forward and

reverse matching substrings. As Figure 2 shows, some

sequences might match for only a small portion of their

length, while others will match across their entire length. Dis-

playMUMs has many other features, including mouse-over

and searching functions, all of which are documented in the

software. As this example makes clear, its primary purpose is

to improve the utility of MUMmer for genome-assembly

analysis.

The second viewer, MapView, creates a picture of the map-

ping between two species based on Nucmer or Promer output.

The motivation for creating this viewer was the rapidly

increasing number of genome projects that are undertaken to

enhance our understanding of another, already completed

genome. In these projects, the second genome may have only

faint DNA sequence similarity to the first, and in some cases

the similarity may be detectable only through protein

sequence alignments, such as those produced by Promer. A

good example of such a project is the recent effort to sequence

D. pseudoobscura mentioned above. The primary motivation

for this project is to improve the annotation of D. mela-

nogaster, and MUMmer is one of the tools being used to map

the newly assembled D. pseudoobscura onto it. Because the

reference genome is well annotated, we included in the viewer

the option to display the locations of the genes (and their

identifiers) along with the mapping at either the DNA or

amino acid sequence level. A snapshot of this alignment by

MapView is in Figure 3, which makes it clear that the amino

acid conservation between these two species closely matches

the annotated exon structure. This viewer can be used to

highlight areas of a genome where exons might have been

missed in previous analyses.

The MapView program can produce output in three formats:

fig (for viewing with the Unix xfig program), PostScript, or

PDF. The most flexible format, fig, allows for unlimited

scrolling and zooming, and for export to a wide range of addi-

tional formats. This makes it easy to view the mapping

between a large collection of contigs and a large chromosome.

Sample display from DisplayMUMs, showing whole-genome alignment of individual shotgun reads (query sequences) to a contig from the Staphylococcus epidermidis genomeFigure 2

Sample display from DisplayMUMs, showing whole-genome alignment of 

individual shotgun reads (query sequences) to a contig from the 

Staphylococcus epidermidis genome. The display illustrates how exact 

matches of the tiling reads can be seen against the contig consensus. 

Green and red colors in the query sequences indicate alignment on the 

forward and reverse strands, respectively.
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Conclusions
As the examples above show, the capabilities of MUMmer 3.0

enable a researcher to compare virtually any two genomes, or

collections of genomic sequences, using computers widely

available today. Bacterial genomes and relatively small

eukaryotes can be aligned on a standard desktop computer,

while larger genomes may require larger, server-class

machines. With the state of the art representation of the suf-

fix-tree data structure, the memory usage of MUMmer 3.0 is

close to the minimum possible, while retaining optimal or

near-optimal worst-case run time, depending on the match

algorithm used. The additional features in MUMmer 3.0

allow one to find non-unique and non-exact matches, greatly

enhancing the flexibility of the system. Finally, by making the

system open source, we hope to encourage others to expand

upon and improve the code base, which is freely available to

all.
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