Doctoral Thesis University of Patras No. 309

Versatile Architectures for
Cryptographic Systems

A dissertation submitted to the
Department of Electrical & Computer Engineering
University of Patras

for the degree of

DOCTOR OF PHILOSOPHY
presented by

DIMITRIOS SCHINIANAKIS

Dipl. Eng., University of Patras, Greece
born 21.01.1983 in Athens
Greek citizen

2013

Doctoral Thesis University of Patras No. 309

Versatile Architectures for
Cryptographic Systems

A dissertation submitted to the
Department of Electrical & Computer Engineering
University of Patras

for the degree of
DOCTOR OF PHILOSOPHY
presented by

DIMITRIOS SCHINIANAKIS

Dipl. Eng., University of Patras, Greece
born 21.01.1983 in Athens
Greek citizen

2013

OPERATIONAL PROGRAMME
EDUCATION AND LIFELONG LEARNING ﬁ N SRF
TYe: ﬂmm@m? = g T
MINISTRY OF EDUCATION & RELIGIOUS AFFAIRS EUROPEAN

European Union MANAGING AUTHORITY
Euroepean Social Fund

Co-financed by Greece and the European Union

This research has been co-financed by the European Union (European Social Fund-ESF)
and Greek national funds through the Operational Program “Education and Lifelong Learn-
ing” of the National Strategic Reference Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through the European Social Fund.

© 2013 Dimitrios Schinianakis
All Rights Reserved

Mowverotiuio Matpwy
Tunua Haextpordywy Mnyovixdy & Texvoroyiag Ymoroytotwy

IMIXTOIMOIHXH

Hiotomoteitor 6Tt N Tapovor JLdXHTOPLKUY SLaTELBN e TiTAO

BUEAATES OPYITEXTOVIXES CLOTHUATLY xpuTToYoo@ias (EAL.)

Versatile architectures for cryptographic systems (Eng.)

Tou Zyowtavéxy Anunteiov Tov MuyanA, Stmiwpoatovyov Hiextpordyov Myyovixob & Teyvo-
Aoyiag Yroroytotody Tou [Havemotuion Jlatpwy, mtapovotdotnue dnuooiwg oty atbovoa ov-
vedpLtaoewy Tov TuAuatos HAextpordywy Myyavixwy & Teyvoroyiog YmoroyLotody tou Iove-
motnuiov Tatpdy otig 11/10/2013, eketdotnxe xor eyxoifnxe amnd Ty axdiovby) EEstaotiny
Emttpomn:

Zrovpditg Abavaotog, Kabnynoig [loAvteyvinng Xyordg Moavenmtotnuiov Hoxpody (Tu. HA.
M. & Teyv. Y71toA.)

Kovgoradiev Odvsciag, Kabnyntig HoAuteyvixng Eyorng Havemomuiov Matpoky (T, HA.
M. & Teyv. TmoA.)

ZopoAtdyxng Xpnotog, Kabnyntig Molvteyviung Exoing Hoavemotuiov Motpdy (Tu. Mry.
H/Y & [Anpo.)

Yepmdvog Anpirotog, Kabnyntig HoAuteyvindg Lyohng Mavemiotnuiov Matpwdv (Tu. HA. My,
& Tzyv. YToA.)

IMoArovpag Baoiieiog, Enixovpog Kablinyntig [oAvteyvixng XyxoAng HNavemotquiov [lotpadv
(Tw. HX. My, & Teyv. Ymoh.)

Qzodwpidng Mempyros, Enixovpog Kalbnyntmg MoAvteyvinrig Eyxoing Havematpiov Hoatpwy
(Tu. HA. Mny. & Teyy. YmoA.)

Kovetavtivou Elséfer, Enixovpn Koabnyvrora Havemotpiov Avyalov (Tu. My, [TAnpoo.
& Emuxow. Yuot.)

[atpa, 11 OxtwBpiov 2013

Pt A
ZrovpaiTng AbDaviocrog Tovy x(mom\ng B. Faﬁptk!
EnfBAénwy, Kabnmtig Tunpatog Iwﬁm fe. llpdedpog tov Tunpatog

HA. Mrx. & Teyv. moh. HA. Mry. & Teyv. Yion.)

“Aut viam inveniam aut faciam”
(Either I shall find a way or I shall make one)
Hannibal, 247-183 BCE

Abstract

We live in a world that demands more and more connectivity. Our everyday life is domi-
nated by an overwhelming amount of information that needs to be controlled and main-
tained. Everyday transactions that few years ago required our physical existence, have been
replaced by electronic applications. Users may now use friendly, fast and safe interfaces to
perform easily numerous tasks, varying from money transfers using the web and remote
health checks to e-learning and e-commerce.

Being exposed in an unprecedented number of threats and frauds, safe connectivity for all
network-based systems has now become a predicate necessity. The science of cryptography
provides the necessary tools and means towards this direction. Cryptographic hardware
and software play now a dominant role in e-commerce, mobile phone communications,
military applications, private emails, digital signatures for e-commerce, ATM cards, web
banking, maintenance of health records and so on.

This doctoral thesis approaches the problem of designing versatile architectures for cryp-
tographic hardware. By the term versatile we define hardware architectures capable of sup-
porting a variety of arithmetic operations and algorithms useful in cryptography, with no
need to reconfigure the internal interconnections of the integrated circuit.

A versatile architecture could offer considerable benefits to the end-user. By embedding a
variety of crucial operations in a common architecture, the user is able to switch seamlessly
the underlying cryptographic protocols. This not only gives an added value in the design
from flexibility but also from practicality point of view. The total cost of a cryptographic
application can also be benefited; assuming a versatile integrated circuit which requires
no additional circuitry for other vital operations (for example input—-output converters) it is
easy to deduce that the total cost of development and fabrication of these extra components
is eliminated, thus reducing the total production cost.

We follow a systematic approach for developing and presenting the proposed versatile ar-
chitectures. First, an in-depth analysis of the algorithms of interest is carried out, in order to

i

identify new research areas and weaknesses of existing solutions. The proposed algorithms
and architectures operate on Galois Fields GH of the form GF(p) for integers and GF(2")
for polynomials. Alternative number representation systems such as Residue Number Sys-
tem (BNX) for integers and Polynomial Residue Number System (PRNS) for polynomials are
employed. The mathematical validity of the proposed algorithms and the applicability of
RNS and PRNS in the context of cryptographic algorithms is also presented. The derived
algorithms are decomposed in a way that versatile structures can be formulated and the
corresponding hardware is developed and evaluated. New cryptanalytic properties of the
proposed algorithms against certain types of attacks are also highlighted.

Furthermore, we try to approach a fundamental problem in Very Large Scale Integration
(MLSI) design, that is the problem of evaluating and comparing architectures using mod-
els independent from the underlying fabrication technology. Generic methods to evaluate
the optimal operation parameters of the proposed architectures and methods to optimize
the proposed architectures in terms of speed, area, and area x speed product, based on
the needs of the underlying application are provided. The proposed methodologies can be
expanded to include applications other than cryptography.

Finally, novel algorithms based on new mathematical and design problems for the crucial
operation of modular multiplication are presented. The new algorithms preserve the versa-
tile characteristics discussed previously and it is proved that, along with existing algorithms
in the literature, they may form a large family of algorithms applicable in cryptography, uni-
fied under the common frame of the proposed versatile architectures.

ii

[MNepiAndm Tnc dratpPngc ota
EAANVIkA

H oVyxpovn {wn Baoiletar ev moAdoic otn Stacivéeon. KabBnuepwwd BaAlduaote amd
KA TALYLOUGS TIATPOWOPLWV oL oTtolec mpémel va petapépovtal, va amobnkevovtal, kat va
aélodoyolvtal w¢ MPo¢ TNV akepaldTnTd TOuc O€ €AdXLOTO Xpbvo, TpokeLuévou 1 pot
Tou¢ va €ival ouvvextic kat ampbéokontn. KabOnuepwéc ovvaddayéc mov mow and uepikd
xpévia Ba frav abivatec xwpic) puotkn pac mapovoia, éxovv mAéov avtikataota Oel
ané nAektpovikéc epapuoyéc. Ov xpriotec umopolv mAéov uéow PLALKQV, Yp1iyopwV Kal
Kuplwe aopaldv epapuoydv va eAéyxouv kat va mpayuatoroolv mAnBdpa epyaoidv,
amé tpanelikéc ovvallayéc kat ayopés ayaBidv uéxpl epapuoyéc tneiatoikric kat amo-
HUakpuouévne ekmaibevonc.

MapdAAnAa Suwc pe tnv avdrruén kdOe elbouc nAektpovikric kat diadikTvaknic Sieukd-
Avvorng, avartuxOnke ocuvakéAovBa uia evpeia katnyopia aneAdv kat emibéoewy evdvtia
o€ TéTOoLA OUOTNATA, YEYOVEC oV KATETTNOE TNV aopdAeia mpwtapxiké medio épevvac
kat avdtuéne kat peiova Aeitoupyikd mapd yovta yia tov oUyxpovo oxedia ot NAeKTpo-
VIKDV ovoTnudtwv. H emothiun tnc kpuntoypapiac éoxetat va maiéel oto onueio avtd
mpwTapxLké péAo otnv mapoxn tne embuuntic aopdAeiac. Koumtoypapikéc epappoyéc
kat €lbikd kpumtoypapikd kukAwuata ueydAnc odokArpwone Peiokovtal mAéov eykat-
ecotnuéva o€ 6Aec Tic kploluec epapuoyéc mov amaitolv vdnAd emimeda aocpdAeiac,
émwe ovothiuata nAektpovikol eumopiov, cvotrhuata kwntic tnAepwviac (uali pe tic
ouvakbéAovBec epapoyéc), oTPaTIWTIKES epapoYée, tBLwTkS NAekTpovikd Ta xuSpoueio,
dneiakéc vroypapéc, tpamelikéc kdptec ATM, Siatripnon evaioOntwv nAektpovikdv ap-
Xxelwv vyeiac aoBevdyv k.a.

H mapovoa Siatolfr drtetar tov Béuatoc tne avdmtuéne €VEAKTWY apXLTEKTOVIKWY
kpumtoypa giac o€ oAokAnpwuéva kukAduata vdnArc odokAripwone (NLSI). Me tov dpo
evéAiktec opilovtal oL apyitekTovikéc mov SUvavtat va vlomoroUv mA1iboc PBaoikav ap-
Buntikav mpdéewv yia TNV ekTédeon kpumToypa Pk aAyopiBuwv, xwpic THv avdykn
€mavampoobloplouol TwV €owTeplkV Slatd éewv oTo oAokAnpwiévo kUKAwuA.

H xpron evéAktwv apxiTekToukV tapéxel ToAAanAd opéAn oto xpriotn. H evowudtwon

iii

kplowwwy mpdéewv amapaltntwyv oTn KpumToypa pia o€ pia Kow1h apxiTekTtovikn Sivel TN
Suvatétnra oto xpriotn va evaAldooel To umooTnoL{6UEVO KPUTLTOYPA PIKS TPWTOKOA-
Ao, elodyovtac étol yapaktnolotikd eveAliac kal mpakTikéTnTac, Ywpic emimpdéobern
emfdpuvon tou ovothuatoc o€ vAkd. Aéilel va onueiwbel mwc or evallayéc avtéc
dev amattovv v mapéuPfaocn tov xpiotTn. Inuavtiky eivatr n ocuvelopopd wiac €VEAKTNC
APXLTEKTOVIKTIC KaL OTO K60 TOC ptac epappoyrc. Avadoyilbuevol éva odokAnpwiuévo KUKA-
wpa mou umopel va. vAomoiel avtévoua bAec Tic amapaitntec mpdeic evéc alydpiBuov
xwpic tnv eédptnon ané eéwtepikd vmoovotiuata (m.x. uetatpormeic etoé6Sou—eEdbov),
eivat eUkodo va avtiAnpBolue mwe To TEAkS K6OTOC TNC €KAOTOTE €PAPUOYTC ILELDVE-
Tal onuavtikd kaBdc peidvovtal o avd ykec vAomoinone kat diaocvvleonc emimpdoBetwv
UTTOOUOTNUATWV OTO 0AOKATPWMEVO KUKAWLLA..

H avdntuén twv mpotevduevwv apxitektovikdv akodovlel uia Sounuévn mpooéyyion.
Atevepyeital ekTeviic LEAETN Yia TOV TTPOodLopLoUd YOVLLWY €PEVVTIKWV TLEPLOXWV KA.l €V-
tomti{ovtal mpofAfjuata kat Suvatdtntec PEATIOTOTOINONG UTAPXOVOWY KPUTTTOYPA PLKWV
AVoewv. O véor adybpiBuor mov avantiooovtatr agpopolv ta Galois media GF(p) kat
GF(2") kat xpnotuormololv evaidaktikéc aplBuntikéc avanapdotaons Sedouévwv, dnwe
10 aplBuntiké ovotnua vmoloinwv (Residue Number System (BENS)) yta aképatovc apt-
Buolc kat to moAvwvuuiké aplBuntiké ovotnua vmoloimwy (Polynomial Residue Num-
ber System (PENS)) yta moAvavuua. Amobeikvietar 1 pnabnuatiky tove opbétnta kat
BeAtiotomotoUvtal katd Tétolo TPdémo Wote va oxnuatifovv evéAiktec Souéc. Avamtio-
oetat 10 katdAAnAo vAiké (hardware) kat Sievepyeitat ueAéTn xproluwv tBloThTwY Twv
Véwv adyopiBuwv, dntwe yia mapddetypua véec kpumtavaAvtikéc t8LéTnTec.

Eminpéoleta, mpooeyyiletar ota mAaioia tne Satofric éva Paoikd mpdBAn-
pa TN €motTniung oxediaouol OoAokANpwuévwv ovoTNUdTwV ueYdAne kAipakacg
(MVLSI). Xvykekpiuéva, mpoteivovtar uéBobor oUYKpLong apxLTEKTOVIKAV aveéapTitwg
texvodoyiac kabBd¢ kai tpdémor €Upeonc twv Pédtiotwv ouvvlnkdv Aeitouvpyiac twv
mpoTewduevwy apxttektovikdv. Ou uébobor avutéc emtpémouv oto oxediaoth va
TAPA LETPOTOLOEL TIG TPOTEWOIEVES ApXITEKTOVIKES e Bdon TNV TaxUTnTa, €mpdveia
1 To ywiéuevo tayvtnta x empdveia. Ou mpotewdpeves ueBodoloyiec umopolv evkoda va
emekta Bovv kat o€ dAAec epapuoyéc mépav Tne kpumToypa piac.

Té)og, mpoteivovtal véor adydpilBuol yia Th onuavTikétatn yia tnv kpurroypa pia mpdén
Tou moAdamAaoiaouol pe vtéloirta. O véor adydpiBuol evowuatdvouvv ané T uia Tic
18éec Twv €véAikTtwy Soudv, and tnv AAAN Suwc Baoilovtal o€ véec 16éec kat uaOnuatikd
npofAfuata ta omoia mpoomaBolue va mpooeyyioovpe katl va emAloouvue. Amodelkvie-
TaL mwe eivat Suvaty n evomoinon uiac ueyYdAnc otkoyévelac adyopiBuwv yia xpron otnv
KpurToypa pia, umd TN oTéYn TwV MPoTeWSUeVwV ueBoSodoyidv yia €VéAkTo oxediaoud.

iv

Acknowledgements

I owe my deepest gratitude to my supervisor, Professor Thanos Stouraitis, for his excellent
guidance throughout the 8 years of my Ph.D. studies. I consider myself more than lucky
to have collaborated with him in the development of this doctoral thesis. I would like to
gratefully thank him not only as a supervisor, but also as a friend. Thanos stood for me as
areal source of inspiration, an example of out-of-the-box thinking, a paradigm of devotion
and faith to hard work. This thesis would not have been possible without his exemplary
support and his continuous and close supervision.

During all those years, I had the opportunity to collaborate with several remarkable peo-
ple, who influenced my work and provided me with invaluable help in my research. I am
grateful to my friends Dr. Athanasios Kakarountas, and Dr. Charalampos Michail for the
collaboration and cooperation during the first years of my Ph.D. studies. The roots of this
thesis share a lot of common thoughts and efforts.

I would also like to thank Mrs. Fotopoulou Eleni and Mr. Ferentinos Aris for our collabo-
ration and all the fun moments we had in the Digital Signal & Image Processing Lab. Fur-
thermore, I owe my deepest gratitude to my co-supervisors Prof. Odysseas Koufopavlou
and Prof. Christos Zaroliagis, for the valuable comments, guidance and support during the
preparation of this dissertation.

Last, but not least, my family and friends deserve my deepest gratitude for their support
and belief in me throughout those 8 years. I sincerely believe that this work would not have
been as successful without them.

Contents

Abstract

E

Acknowledgements

List of Tables

gl

L1 Overview

L

Mathematical Background
P.I Basicson fnite-HeId TREOIY v v v v v v e e e e e e e e e e e e
R.1.1 GE(p)arithmetiq o e e e e e e e e e e e e e e e

g.1.1.2 Montgomery Modular Multiplication (MMM)|

P12 GFEF2Marithmetid

2.1.3 Modular Exponentiation/Inversion

p.2 Public-Key Cryptography (PKC) algorithmd

vi

i

iii

E.

B W N -

P.2.1 Rivest-Shamir-Adleman (RSA) cryptosystemy 15

R.2. 1.1 RSA-CRTalgorithmd 16

p.2.2 FElliptic Curve Cryptography (ECC) 16

g.2.2.1 EllipticCurvesover GE(p) o v .. 17

R.2.2.2 EllipticCurvesover GF2") 18

R.2.2.3 Point Multiplication 19

P.3 Datarepresentationsystemy e e e e 20

P.3.I Residue NumberSystem (RNS) 20

P.3.2 Polynomial Residue Number System (PRNS). 22

B4 Summary i i e 23

RNS application in Elliptic Curve Cryptography 25

BI Infroducfion e e e e e e e e e 26

B.2 Combining RNSandECQ 27

B2T ExtendedBNS e 27

B.2.2 Embedding RNS in Flliptic Curve Arithmetid. 27

B.2.3 Graph-Oriented Optimization Of Point Addition / Doubling Algorithmg 29

B.2.3.1 Comments on the graph-oriented optimization 30

B.3 Hardware Implementation i 32

B3 T Maodularaddifion/subfraction 32

B.3.2 Modular multiplication] 32

B.3.3 The Elliptic Curve PointMultiplied 32

B.3.4 The RNS-to-binaryconverter] 34

p.5.0 Projective-to-atfine coordinates conversion 37

B.4 Performance Results and Comparisong 39
p.4.1 Impact of the number of modull and thelr word-lengths on the per{

Formancd 41

B.5 Pipelined RNSstructureq i i e 43

B.5. Modular multiplicationinRNS 43

B.5.2Z DesSIS e e e e e e e e e e e e e 44

B.0.2.1 Modular adders and multipliery 44

B.h22 Conversionifrombase Stobase A 47

B.5.2.3 Conversion from base Atobase 8 47

p.o.o Hardware Architecture for RNS Montgomery multiplicationy 49

B.6 Implementation details of ECPM and comparisony 49

B.7 Summary e e e e e e e e e e e e e e e e 50

New RNS architectures for GF(p) and GF(2") 53

g.I Overview of RNS Montgomery modular multiplication 54

d.1.1 Base Conversion (BC) by Kawamuraetal] 55

g.1.2 Base Conversion (BC) by Bajardetal] 56

Bg.1.3 Base Conversion (BC) by Gandinoetal] 57

g.1.3.1 Modular reduction bythe RNSmodulj 59

4132 Conversions to/trom RNN

B. 1.4 Architecturalcomparisony i v i 60

h.2 New MRC-based Montgomery modular multiplicationin GF(p) 62
d.2.1 The Proposed KNSMMM Architecture. 62

g.2.2 Performance and Comparisony. 64
EZZ1T Memoryrequirements o v vt i e e e 64

222 FIeqQUENCY . . v v v v v o e e e e e e e e e e e e e e 64

B2Z223 Arearequirementd, 65

#.5 New CRl-based Montgomery modular multiplicationin GF(2™) 65
g.3.1 The proposed PRNS Montgomery modular multiplicationj. 66

h.5.2 bBbase Conversion (bC) algorithm tor PRNSMMM| 67
g.3.2.1 Proof of PRNSMMM’s algorithm validityy 67

g.3.3 The proposed PRNSMMM architecturd 68
#.3.3.1 Polynomial-to-PRNS conversiond 69

#.3.3.2 PRNS-to-Polynomial conversion 69

B34 PerformancCd. i it e e e e e e 70
g3.41 Memoryrequirements 70

BE3AZ FreqQUENCY . . v v v v v o o e e e e e e e e e e e e e 70

B.3.4.3 Arearequirementst 71

B4 Summaryl o e 71
b__Noavel versafile archifectured 73
b.l Decomposition ofoperationy 74
b.I.I Optimizing RKNSMMM et e 74

b.1.2 Embedding PRNS in GF(2") Montgomery Multiplication 75

b.1.3 The Proposed Versatile Architectured 76

p.1.4 Input-Output JOU) Conversiony.« ¢ v v v v v v v .. 78
b.I.4.1 Binary-to-Residue conversion 78

b.1.4.2 Residue-to-Binary Conversion 79

b.2 Versatile archifectures - hardwaredesignl 79
B2T1 Dual-Field Addition/Subfraction 79

B2 11 Dual-Field Modular/Normal Addifion/Subfracfion 80

b.2.2 Dual-Field Multiplication]f 81

b.23 Dual-Field ModularReducfion 81

Z24 MACUNDM e e e e e e e e e e e e e e e e e e e 83
b.2.4.1 Binary-to-residueconversion 83

b.2.4.2 Montgomery mulfiplication 84

b.2.4.3 Residue-to-binary conversion 85

B3 Performanceresulfd e 86
b.3.1 Areaand Delay Estimationy 86
b.3.I.T Numberofclockcycled. 87

b3 1.2 Memory Requirements v v v v v v v v .. 88

b.3.2 Comparisons with RNS implementationd 88

viii

p.3.50 Complexity comparisons with non-kNS implementations. 89

b3 4 Area-lime-pOWEr COMPATISONT« v v v v v v v e e e e e e e e 93

B4 SUmMIMAary] o o o e e e e e e e e e e e e e e e e 94

6 Novel RNS algorithms for modular multiplication 95
b.IT New RNS modular multiplication algorithm based on Barrett’s techniqug .. 96
b.1.I Barrett Modular Multiplication 96

b.1.Z Proposed RNS Barrett Modular Multiplication (RNSBMM) algorithm 96

b.1.3 Scaling and roundingofan RNSnumber 100

b.1.3.1 Diwvisibility check of an RNS numberbvy?2 101

b.1.4 Numericalexampled, 104

b.2 Complexity analysis - comparisons v v v v v v i v v e e e 105
b.2.1 Complexity Comparisons v i vt vttt et et e 105

b.2.2 ArchitecturalStudy s 107

b.2.2.1 Modular reduction bythe RNSmodulij 107

b222 Conversionsfo/from BNS 107

b.2.2.3 Architecturalcomparisony 108

B.3 Summary e e e e e e e e e e e e 110

[/ Cryptanalysig 113
[L1__Overview of side-channel affacks counfermeasured 114

[7.2 Fault handling in RNS-based multiplier 115
[7.2.1 Hardware-fault tolerance in MRC-based RNS Montgomery multiplierd 115

[7.2.2 Hardware-fault tolerance in CRT-based RNS Montgomery multiplierd 117

23 RemarksonPerformancd 118

3 Summary o it e 118
B8__Conclusions and Ouflook 121
B oraphy 125
C i Vifag 137

ix

List of Figures

Chapter 1
II.1 Cryptographic applicationg. @ i i i i e e e e e 5
[.2 Thesisorganization] @ i i i i i i e e e e e e e 6
Chapter 2
21 Maodular adder/subfractercircuifi oL L oo e e e e 12
2.2 Operationsonellipticcurvey i i it 19
2.3 General architecture of an KNS processof 22
Chapter 3
B.I The DFG ior the point addition algorithm| 30
B.2 The DFG ior the point doubling algorithm| 31
B.3 Themodular multiplied, 33
B.4 General architecture of the RNS computing structured 33
B.h __Generalarchifecifure of the RNSECPM 35
B.6 Large multiplication paradigm i vt it 36
B.7 Architecture of the large operand multiplief 36
B.8 Architecture of the RNS-to-binaryconverter. 37
B.9 The projective-to-affine converter., 38
B.10 Number and word-length of moduli vs. (a) speedand (b)ared 42
B.IT Impact of the RNS-to-binary converter on theareaof ECPM 42
B.12 (a) Modulo m adder/subtractor [SEFM*09], (b) Proposed modulo 2*-2% -1 mul
ffiplier, (c) Reductioncircuif o i v i i i e e 46
B.13 (a) Proposed reconfigurable modular (RM) adder, (b) Proposed RM Multiplier]
(F=K.E=T.KXT) e e e e e e e e e e e 46

14 C lation of A 1in RN MR nversion ior the fir r tcien

design, (b) Fastdesign e e e e e e e 47
B.I5 RNSMMM architecture, (a) Fast design, (b) Area efficientdesign] 48
Chapter 4
4.1 MACCell [GLPTI2] o e e e e e 62
#.2 _The proposed MRC-based RNSMMM architecturg 63
E.3 The proposed PRNSMMM architecturd 69
Chapter 5
BT Dual-fieldfmll-addercell 80
B2 _Dual-field CTA e e e e e e e e e e e e e e e 80
3 Dual-fieldm lar/normal T T T (DMAS) 81
b.4 Dual-field multiplier (DM) e 82
Bb.5 Dual-field modular reductionunit(DMR] 82
b.6 Task distribufion in the proposed DRAMMM 83
Bb.7 Theproposed MACUNIY i i i i i it e e e e 85
b.8 The proposed DRAMMM architecture 85
b.9 Normalized time complexity function f(r,L) 86
b.10 Normalized area complexity tunction g(r, L) 87
b.IT Area x time productiunctiono(r,L) 88
Chapter 6
b.I Region plotforinequality (6.7)« e 99
b.2 Scaling by two scheme [MBSO3] e 101
b.3 The proposed Scaling-Rounding (SR) scheme for RNSBMM 102
b.4 The proposed ofiset evaluationblock 103
b.5 Multiply-accumulate cell architecture [GLP™12] 109

List of Tables

Chapter 1
I.1 Information security objectivey o i i i i i e e e e e e e e e e e
Chapter 3
p.l Comparison of ECPM architecturey i i i i i i v i i e
p.2 The RNS base modulus set 1or the 192-bit implementationy
p.o Proposed KNS baseg e e e e
p.4 Comparison of ECPM architecturey o i i i i i v v i i e
Chapter 4
4.1 Number of modular multiplications in state-oi-the-art RKNSMMM.
A.2 Number of multiplication steps per RNS modular multiplication in state-oi-the-
rt RNSMMM ([GLP™12] with B rrection)
4.3 Area and delay comparisonswith L. =33, r=32,¢e=3, M=1,n=11
A.4 basic logic library in CMOS technology (model from [Gaj97/])f.
A.5 ROM requirements ot the proposed RNSMMM architecture
A.60 Number of operations in KNSMMM algorithms
4.7 ROM requirements ot the proposed PRNSMMM architecturg
Ad.6 Number of modular multiplications in PRNSMMM algorithmy
Chapter 5
b.1 Normalized area and delay of the proposed DRAMMM architecturg.
b.2 Parameters of the proposed DRAMMM storedin ROM|.
b.5> Number of modular multiplications in the DRAMMM algorithm|.
b.4 Normalized time and area complexity comparisons in G-(p)

Xii

p.o

Normalized area-time complexity comparisons for a 1024-bit G (p) Montgomery]

multiplication (CPAdelaysincluded)] 91
b.6 Area-time comparisons for 1024-bit modular exponentiation 92
b.7 Normalized area and delay of standardcell§ 93
Chapter 6
b.I Number of modular multiplications in state-of-the-art RNSMMM|. 106
b.2 Number of modular multiplications in the proposed RNSBMM 106
6.3 Number of multiplication steps per RNS modular multiplication in state-of-the

art RNSMMM (|GLP™12] without BC correction) 107
b.4 Number of multiplication steps in the proposed RNSBMM 108
b.5 Area and delay comparisons with k=33, r=32,¢e=3, M=1,h=11... 110
b.6_ Basic Iogic library in CMOS technology (model from [Gaj97]) 110

xiii

Acronyms

ASIC Application Specific Integrated Circuit
BC Base Conversion

BMM Barrett Modular Multiplication

CLA Carry Lookahead Adder

CLB Configurable Logic Blocks

CLG Carry Lookahead Generator

CMOS Complementary Metal-Oxide Semi-conductor
CPA Carry Propagation Adder

CRT Chinese Remainder Theorem

CSA Carry Save Adder

DBC Dual-field Base Conversion

DES Data Encryption Sandard

DFA Dual-field Full Adder

DFG Data Flow Graph

DLP Discrete Logarithm Problem

DM Dual-field modular Multiplier

DMAS Dual-field Modular Adder-Subtracter

DMR Dual-field Modular Reduction

DRAMMM Dual-field Residue Arithmetic Montgomery Modular Multiplication

DSA Digital Signature Algorithm
DSP Digital Signal Processing
EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

ECPM Elliptic Curve Point Multiplier

FA Full Adder

FPGA Field-Programmable Gate Array
FSM Finite State Machine

GCD Greatest Common Divisor

GF Galois Field

10 Input-Output

ISE Integrated Software Environment
LSB Least Significant Bit

LUT Look-Up Table

MAC Multiply Accumulate

MLE Montgomery Ladder Exponentiation
MM Modular Multiplication

MMM Montgomery Modular Multiplication
MRC Mixed Radix Conversion

MRS Mixed Radix System

MSB Most Significant Bit

NAF Non-adjacent form

NIST National Institute of Standards Technology

PE Processing Element

PKC Public-Key Cryptography
PRA Polynomial Residue Arithmetic
PRNS Polynomial Residue Number System

PRNSMMM PRNS Montgomery Modular Multiplication
RAM Random Access Memory

RNS Residue Number System

RNSBMM RNS Barrett Modular Multiplication
RNSMMM RNS Montgomery Modular Multiplication
ROM Read Only Memory

RSA Rivest-Shamir-Adleman

RSA-CRT RSA-Chinese Remainder Theorem

SD Signed-Digit

SPA Simple Power Analysis

SR Scaling-Rounding

VHDL VHSIC Hardware Description Language
VLSI Very Large Scale Integration

VPN Virtual Private Network

xvii

Notation

Generic notation

z the set of integers

R the set of reals

GF(2" Galois Fields of characteristic 2

GF(p) Galois Fields of primes, p a prime

& an elliptic curve £

O point at infinity of an elliptic curve £
A An ENS/PRNS base A

aa A quantity a (integer or polynomial) expressed in an ENS/PRENS base A
(a)p a mod p operation

x|y x divides y

xty x does not divide y

@(e) Euler’s totient function

Le] floor function

[o] ceiling function

<< left shift

SR(a) = |4 | Scaling-Rounding of an n-bit integer a
a a value a affected by an error

Xix

CHAPTER

|

Introduction

Introduction

1.1 Overview

Cryptography is not a new field in electrical engineering, mathematics, and computer sci-
ence academic and industrial R&D communities. Its history stretches from its initial and
limited use by the Egyptians 4000 years ago, to the twentieth century when it defined to
a great extent the outcome of World War II. The main practitioners of cryptography were,
historically, those associated with the military, diplomatic services or the government in
general, and it was the main practice to protect national secrets and political or war-field
strategies.

The bloom of computers and communication systems in the 1960s brought new require-
ments and demands, especially from the private sector, in order to store and protect data in
digital format and to provide secure communication services. A pioneer at that age was the
work of Feistel at IBM in the early 1970s and the adoption of the U.S. Federal Information
Processing Standard for encrypting unclassified information, known as Data Encryption
Sandard (DES).

Later on, in 1976, Diffie and Hellman published a paper entitled “New Directions in Cryp-
tography”, which introduced the revolutionary concept of Public-Key Cryptography (PKQO)
as well as a new and ingenious method for key-exchange, the security of which is based
on the difficulty of solving the underlying Discrete Logarithm Problem (DLP). Although no
practical realization of a public-key encryption scheme was provided, the idea was so revo-
lutionary and its implications and advantages were so profound that it attracted the interest
of the research community.

In 1978, Rivest, Shamir, and Adleman proposed probably the most widely deployed PKO
system nowadays, known as RSA (from the initials of their last names) [RSA78]. RSA is also
based on a hard-to-solve underlying mathematical problem, i.e, the intractability of factor-
ing large integers. In general, the concept of a hard mathematical problem as the basis of
a cryptographic system encouraged researchers to strive for more efficient methods to fac-
torize large integers. During the 1980s another class of powerful and practical public-key
schemes was proposed by ElGamal, also based on the discrete logarithm problem [EIg85].
An important advance at the same period was also the introduction of elliptic curves in
cryptography and the associated Elliptic Curve Cryptography (ECO) systems, proposed in-
dependently by V. Miller [Mil86] and N. Koblitz in 1985 [Kob87].

Without doubt, one of the most significant contributions of public-key cryptography is the
concept of digital signatures. In 1991 the first international standard for digital signatures
(ISO/IEC 9796) was adopted. It is based on the BSA public-key scheme. In 1994 the U.S.
Government adopted the Digital Signature Standard, a mechanism based on the ElGamal
public-key scheme [MVO96].

Development of new public-key schemes, like the exotic solutions based on quantum physics
[BCILI3, DESSO4] or lattice theory [GGHY7, Reg06], improvements to existing cryptographic
solutions, and formal mathematical proofs of security and cryptanalytic strength of crypto-
algorithms continue at a rapid pace. Various standards and large-scale configurations are

2

Design challenges and motivation

constantly released by the industry to cover the wide range of applications employing cryp-
tography. These activities, indicative of a living and exciting science field, have marked
cryptography as the key-player in the endeavor to address the security needs of an infor-
mation intensive society.

1.2 Design challenges and motivation

Equally important with the development of new cryptographic algorithms and their asso-
ciated cryptanalytic properties are their hardware and software realizations for the cor-
responding platforms they run on. There are significant challenges in high-speed, small-
space (circuit size or number of code lines) implementations of cryptographic algorithms.
Some of these challenges, particularly speed and space issues, have been understood and
partially met as soon as public-key cryptography algorithms were invented. However, new
challenges appeared as systems equipped with cryptography were deployed for commer-
cial use.

For example, the timing and power attack scenarios [Des04, HMV04] made us realize that
a cryptographic algorithm implemented in software or hardware is something totally dif-
ferent than its mathematical description. While it may be almost impossible to break a
cryptographic algorithm in an acceptable time, since it requires computing resources that
are far beyond our current algorithmic and resource capabilities, it may be quite easy to ob-
tain the very same key practically, by simply observing the timing or power data trace from
a device performing a signature or decryption operation.

Another important challenge in crypto-hardware design is the increase of key word-lengths,
a consequence of the higher security standards posed constantly by modern applications.
As aresult, the associated crypto-hardware complexity, both in terms of silicon area as well
as from a power consumption point of view, is also expected to increase. This inevitably
creates the necessity to reduce algorithmic and hardware complexity, usually by the aid of
computer arithmetic techniques [Des0Y, EL04].

Moreover, the wide range of applications requiring secure implementations generated the
need for a smooth integration frame of various cryptographic components operating in
different platforms. A typical example of the cryptographic application span, depicted in
Figure [T, highlights this need. Various underlying mathematical problems at the basis of
the pyramid generate numerous cryptographic algorithms and protocols and, as a result, a
handful of applications with different implementation requirements and operational plat-
forms are employed in modern communication systems.

At the same time, the prerequisites that modern cryptographic systems need to comply
with, shown in Table [T, pose an extra design factor that also requires design flexibility to
achieve interoperability and communication closure. These necessities, driven by tech-
nological advances in all fields of communications and computer science, generated the
challenge to implement as many functions as possible in one architecture. In that way, flex-
ible systems that could adapt in different computing environments could be realized. This

3

Introduction

Table 1.1: Information security objectives

keeping information secret from all but those who are autho-

confidentiali . .
v rized to see it
. . ensuring information has not been altered by unauthorized
data integrity
or unknown means
. .. corroboration of the identity of an entity (e.g., a person, a
entity authentication

computer terminal, a credit card, etc.)

corroborating the source of information; also known as data

message authentication . o
origin authentication

signature a means to bind information to an entity
.. conveyance, to another entity, of official sanction to do or be
authorization .
something
o a means to provide timeliness of authorization to use or ma-
validation . . .
nipulate information or resources
access control restricting access to resources to privileged entities
certification endorsement of information by a trusted entity
timestamping recording the time of creation or existence of information
. . verifying the creation or existence of information by an entity
witnessing
other than the creator
receipt acknowledgment that information has been received
confirmation acknowledgment that services have been provided
. a means to provide an entity with the legal right to use or
ownership
transfer a resource to others
anonymity concealing the identity of an entity involved in some process
non-repudiation preventing the denial of previous commitments or actions
revocation retraction of certification or authorization

would have a profound affect on the applicability and flexibility of modern cryptographic
systems, allowing multiple algorithmic support. Such architectures would also reduce the
hardware requirements for implementing these functions considering that, dedicated sys-
tems are now required to implement the various counterparts of a cryptographic system.

Under this perspective, this thesis attempts to approach the problem of hardware design
in modern cryptography in a holistic manner, meeting, in the best possible extent, the re-
quirements for area, speed and power performance, flexibility characteristics and built-in
cryptanalytic properties and security features.

1.3 Thesis overview and contributions

The main contributions of this work can be divided in seven parts, following the organiza-
tion of the thesis in chapters.

In Chapter P a necessary introduction to the mathematical concepts required throughout

4

Thesis overview and contributions

Secure email, PGP,

mobile networks, IPv6,
SSL, TSL, secure payment, IPSEC,
secure |P networks

Figure 1.1: Cryptographic applications

this thesis is presented, including basics on finite field theory, public-key cryptography al-
gorithms and data representation systems.

Chapter B presents, to the best of our knowledge, the first introduction of RNS arithmetic
in ECA. Two BNS designs of an Elliptic Curve Point Multiplier (ECPM) are offered. Both
designs are based on a novel Data Flow Graph (DEG) approach for the optimization of
point addition and doubling operations. Through the proposed DEG approach not only
the number of execution steps for a point addition is reduced, but also the same number
of execution steps for both point operations is achieved, thus offering resistance against

Simple Power Analysis (SPA) attacks for free.

For the first design an appropriate RNS range was selected to accommodate the full range of
calculations without intermediate modular reductions, while the second design employed
the RNS Montgomery Modular Multiplication (RNSMMM) algorithm. For the first architec-
ture, extra care to the design for the output RNS-to-binary converter was given. A specially
designed bit-serial multiplier was developed to handle large operands. The multiplier was
then embedded in the architecture of the converter, forming a serial design suitable for
large RNS ranges.

Area and timing results are offered proving the efficiency of the proposed implementation
even towards dedicated Application Specific Integrated Circuit (ASIT) implementations. A
study for various key lengths, number of RNS moduli and modulus word-lengths is also
performed. It is proved that, in comparison to traditional arithmetic approaches, RNS has
the tendency to perform better as the key length of an [ECO system tends to increase.

The second design improved significantly our first effort by reducing the number of moduli
channels required and by utilizing moduli of special form. This amounted to reduction of
area and speed-ups in terms of total execution time for one point multiplication.

The rest chapters emphasize on the proposed versatile architectures and the accompanying

5

Introduction

Common desigm fmme

PR Versatile arditectures
New a[?mfhms / or‘
‘modu[m" |\

pltipleation 3

[Mew c{y/ofan;f’_y;a

Fmﬁ&fﬁ'&s ;,

| Tt decomposition

Generic d—:sign meﬂfasdslll|

(repres |

Figure 1.2: Thesis organization

methodologies and algorithms that were developed. A relation diagram of the various ideas
developed in this thesis is shown in Figure 2.

In Chapter B an overview of state-of-the-art KNS Montgomery multiplication algorithms
is presented, along with algorithmic and architectural comparisons. Following, new al-
gorithms for modular multiplication that combine Montgomery multiplication and RNS-
PRNS for GF(p) and GF(2") arithmetic are proposed, depicted as the inner boxes of Figure
2 under the title “Task decomposition”.

Especially for GF(2""), amethodology for incorporating Polynomial Residue Arithmetic (PRA)
in the Montgomery multiplication algorithm for polynomials in GF(2") is presented. The
mathematical conditions that need to be satisfied, in order for this incorporation to be valid
are also examined.

The ideas developed in Chapter @ formed the basis of the proposed versatile architectures
presented in Chapter B, hence included in the box under the title “Versatile Architectures’.
The mathematical framework and a flexible, dual-field, residue arithmetic architecture for
Montgomery multiplication in GF(p) and GF(2") is developed and the necessary condi-
tions for the system parameters (number of moduli channels, modulus word-length) are
derived. The proposed architecture supports all operations of Montgomery multiplication
in GF(p) and GF(2"), residue-to-binary and binary-to-residue conversions, Mixed Radix
Conversion (MRQ) for integers and polynomials, dual-field modular exponentiation and
inversion, in the same hardware.

An important derivative of this work is the development of a generic, technology-indepe-
ndent methodology to evaluate the optimal system parameters (number of moduli, mod-

6

Thesis overview and contributions

ulus word-length). Generic complexity and real performance comparisons with state-of-
the-art works prove the potential of residue arithmetic exploitation in Montgomery multi-
plication.

Chapter B presents, to the best of our knowledge, the first RNS modular multiplication al-
gorithm based on Barrett’s technique. The algorithm’s validity is mathematically proved
and the conditions to employ the proposed algorithm in the context of modular expo-
nentiation are derived. Conditions for selecting the number and word-length of the RNS
moduli are also provided. In the context of the proposed algorithm, methods to evaluate
floor function and scaling by 2" of an RNS number directly in RNS format are also pro-
posed. Algorithmic and architectural comparisons with state-of-the-art algorithms based
on Montgomery’s technique prove the efficiency of the proposed algorithm in terms of total
execution time. The idea of merging both types of algorithms (RNS Barrett Modular Multi-
plication (RNSBMM) and RNSMMM) into a common architecture is also considered. The
chapter corresponds to the box entitled “ New algorithms for modular multiplication’.

In Chapter [@ an important property of RNS Montgomery multipliers in the context of the
[RSA-CRTI crypto-algorithm is revealed. It is proved that the use of RNS multipliers offers
resilience against hardware-fault attacks for free, with no need to modify in any way the
original RSA-CRT algorithm, as opposed to the majority of current countermeasures. In
this way, speedups offered by RSA-CRT in comparison to the original RSA algorithm are
preserved.

Apparently, all chapters share common ideas, circuitry and methodologies, thus they are
included in the larger box of Figure 2 under the general title “Common Design Frame’.
New ideas, derived from this thesis, for future research work on the field of cryptographic
hardware design are offered in Chapter B.

CHAPTER

2

Mathematical Background

“We must be clear about the fact that the mathematical model cannot be used to prove
anything about the real world, although a study of the model may help us discover
important facts about the real world. A model is not true or false; rather, a model fits (i.e.
corresponds properly to) or does not fit the real-life situation. A model is useful, or it is not.”

Paul E. Pfeiffer,
Concepts of Probability Theory,
McGraw-Hill, 1965

This chapter outlines the necessary mathematical concepts required in this doctoral thesis.
The first sections present useful definitions from algebraic group theory and later, based
on these definitions, we describe the main cryptographic algorithms implemented in this
thesis. The last section is dedicated to alternative number representation systems, namely
RNS and PRNS, which constitute the basis of the proposed versatile architectures.

Mathematical Background

2.1 Basics on finite-field theory
Let us refer to some general definitions useful for our discussion.

Definition 1. A group {G, ¢} is defined by a set of elements equipped with an operation e
whose result belongs also in the group G (closure property).

Assuming a, b elements of a group G, then the group should obey in the following laws:

e associative law: (aeb)ec=ae (bec)

* has an identity element esuch as: esea=aee=a

e its elements have inverses a~! such as: aea™ 1 =e

Definition 2. Ifa group {G, *} is also commutative, i.e., as b = b e a, then it forms an abelian
group.

Definition 3. Let {G, x} be a group equipped with the operation of multiplication (multi-
plicative group). Assume g € G and d € Z. Then we define the operation of exponentiation

as
d times

gl=gxgx--xg. 2.1)

If G is an abelian group then the group operation is addition, i.e., the group is {G, +}, and
exponentiation is defined as

d times

dg=g+g+---+g. (2.2)

Definition 4. A group {G, ¢} is cyclic if every one of its elements, by, is some power of a certain
group element g, i.e., by = g* and the identity element e is defined as e = g°. The element g
is called the generator of the group since it generates the group through repeated application
of the operator on it.

Definition 5. A ring {R, +, x} is defined by a set of numbers, equipped with two operations
of addition and multiplication for which it forms an abelian group for addition and mul-
tiplication has the properties of closure, associativity, and distributivity over addition, i.e.,
ax (b+c)=axb+axc. If multiplication operation is also commutative, {R, +, x} forms a
commutative ring. If multiplication operation has an identity element and no zero divisors,
{R,+, x} forms an integral domain.

Definition 6. A field {F,+, x} is defined by a set of numbers, equipped with two operations
of addition and multiplication for which it forms an abelian group for addition an abelian
group for multiplication (ignoring 0), is a commutative ring and has multiplicative inverses

for all non-zero elements, i.e, ax a ' = e.

10

Basics on finite-field theory

The previous definitions imply that we can compute freely with +,—, x,/ without leaving
the set. In cryptography, finite fields (or Galois Field (GE)) are employed both for efficient
implementations and for security reasons [Des09, BSS02, DBS06]. Details on the fields em-
ployed in this dissertation are given in the following section.

2.1.1 GF(p) arithmetic

Field elements in GF(p) are all integers in [0, p — 1] and arithmetic is performed modulo p,
where p a prime. We divide our discussion based on the most significant types of operations
required in cryptography.

2.1.1.1 Modular addition/subtraction

Modular addition and subtraction are identical operations. The core idea is that the in-
put operands are added or subtracted and the modulus p is subtracted or added to the
previous results for a modular addition or subtraction respectively. Based on the output
carries we select the appropriate result as the final result. The operations are summarized
by Algorithms 21 and 22 below. In fact, with trivial modifications, a common modular
adder/subtracter can be mechanized as shown in Figure P71

Algorithm 2.1 Modular addition
Input: p,0<x<p,0<y<p
Output: z=(x+y)p
Z=x+y
7=z — p
if 2’ <0 then

z=2
else

z= Z//
end if
return z

O N O ke W -

Algorithm 2.2 Modular subtraction
Input: p,0<x<p,0<y<p
Output: z=(x-y)p
Z=x-y
Z'=z'+p
if z/ <0 then

z= ZU
else

z=2
end if
return z

0 N O ke W N

11

Mathematical Background

X y
. add/sub
T
i —
.....\._./ 7
L J L J
ADDER ¢
p_ |
=
1y
— & }——+ ADDER [

Figure 2.1: Modular adder/subtracter circuit

2.1.1.2 Montgomery Modular Multiplication (MMIVI)

Efficient field multiplication with large operands is crucial for achieving a satisfying system
performance, since multiplication is the most time- and area-consuming operation. Cryp-
tographic applications form a special case, since, for security reasons, they require large
integer operands [Des0Y, LN86]. Various modular multiplication methods have been pro-
posed in the literature including Montgomery, Barrett, Karatsuba-Offman algorithms etc
[Mon85, Bar87, Des09, DBS06]. Details on Barrett’s method, along with a new algorithm for
modular multiplication based on Barrett’s technique are provided in detail in Chapter B.

Montgomery’s algorithm for modular multiplication without division [Mon85] is widely
used today since it is well-suited to applications requiring consecutive multiplications, like
in cryptography, computer algebra, digital signal processing, etc. On the other hand, the
algorithm has undertaken huge analysis and numerous designs have been proposed, mak-
ing the space for further improvements and development even narrower. We discuss the
implications and new solutions offered by ENS and PRNS application to Montgomery mul-
tiplication in Chapters 3, @, B.

Montgomery’s algorithm is presented below, as Algorithm 3, in five steps, where R is the
Montgomery radix, gcd(R, p) =1, p < R, and p is the reduction modulus. R must be chosen
so that steps 2 and 5 are efficiently computed. It is usually chosen to be a power of 2, when
radix-2 representation is employed. Condition gcd(R, p) = 1 ensures the existence of p~!

12

Basics on finite-field theory

Algorithm 2.3 Montgomery Modular Multiplication MMM
Input: a,b,p,R,R ' {a,b<p}

Output: c=abR™! modp,{c<2p}

s—a-b

t—s-(-p7') modR

Uu—t-p

V—S+u

c—UV/R

G W N~

mod R. Condition p < R is sufficient for ¢ < 2p since

_xy+tp p*+pR _(p
o=t <t —(E+1)p<2p. 2.3)
Since cR = ab + tp, cR = ab mod p holds. By multiplying R~! mod p on both sides of
(3), c= abR™' mod p is obtained. Since Montgomery’s method was originally devised to
avoid divisions, it is expected to be well-suited to RNS implementations, considering that

[RNS division is inefficient to perform.

The algorithm requires first to transform the input operands to their corresponding Mont-
gomery representations [Mon85]. Assuming an integer a, its Montgomery representation
is defined as @ = aR mod p. This conversion may be realized by means of an extra Mont-
gomery multiplication by R> mod p, i.e. @=ax (R> mod p) x R™! mod p = aR mod p.
With these inputs the algorithm outputs the Montgomery residue of the result, i.e., ¢ = cR
mod p = abR mod p.

An extra Montgomery multiplication needs to be executed to convert the Montgomery
residue back to the integer domain representation. This iteration accepts as input the re-
sult ¢ = cR mod p of the Montgomery multiplication and 1 mod p to produce cRx1x R~}
mod p =c¢ mod p.

2.1.2 GF(2") arithmetic

Field elements in GF(2") are polynomials represented as binary vectors of dimension n,
relative to a given polynomial basis (1, a, a?,...,a™ 1), where «a is a root of an irreducible
polynomial p of degree n over GF(2). The field is then realized as GF(2)[x]/(p) and the
arithmetic is that of polynomials of degree at most n — 1, modulo p [BSS0?].

The addition of two polynomials a and b in GF(2") is performed by adding the polynomials,
with their coefficients added in GF(2), i.e., modulo 2. This is equivalent to a bit-wise XOR
operation on the vectors a and b.

Important progress has been reported lately regarding GF(2") multiplication. The Massey-
Omura algorithm [OMS86], the introduction of optimal normal bases [MOVW&88] and their
software and hardware implementations [MOVW88, AMV93], the Montgomery algorithm
for multiplication in GF(2") [KAY98] are, among others, important advances. However, the

13

Mathematical Background

architectures proposed for the Massey-Omura algorithm, although compact and fast, are
inflexible and expensive, while the Montgomery algorithm for GF(2") multiplication pro-
posed in [KAY8] is targeted to software implementations.

The product of two elements a and b in GF(2") is obtained by computing
c=a-b modp, (2.4)

where c is a polynomial of degree at most n—1 and c € GF(2").

A Montgomery multiplication algorithm suitable for polynomials in GF(2") has been pro-
posed [KA98]. Instead of computing the product ¢ = a-b mod p, the algorithm computes
c=a-b-R! mod p, with degf{c(x)} < n and R is a special fixed element in GF(2"). The
selection of R(x) = x" is the most appropriate, since modular reduction and division by x”
are simple shifts [Des0Y]. The algorithm is identical to Algorithm P23, except from the con-
stant —p~! in step 2, which is p~! in GF(2"). Moreover, in the integer case the output may
exceed the modulus p, thus a final subtraction step is required. This is not necessary in
polynomials, as it has been proven that the degree of the resulting polynomial c is less than
n [KA98].

The Montgomery multiplication method in GF(2") also requires that R and p are relatively
prime, i.e., gcd{R, p} = 1. This assumption always holds, since p is an irreducible polyno-
mial in GF(2), thus it is not divisible by x. Since R and p are relatively prime, there exist two
polynomials R~! and p~! such that

R-Rl'+p-pl=1, (2.5)
where R™! is the inverse of R modulo p. The polynomials R~! and p~! can be computed
using the extended Euclidean algorithm [Des09, LN86, McE87]. The Montgomery multipli-
cation of a and b is then defined as

c=a-b-R' mod p, (2.6)

which can be computed according to Algorithm P-4

Algorithm 2.4 Montgomery Modular Multiplication in GF(2")
Input: a,b,R, p,p~! {degia, b} < n}

Output: c=a- b-R™1 mod p {degic} < n}

s—a-b

t—s-p~! modR

u—t-p

V—S+u

c—vI/R

(S O R S

14

Public-Key Cryptography (PKQ) algorithms

2.1.3 Modular Exponentiation/Inversion

Modular exponentiation, as will be shown in next sections, is a key-operation in PKQ. It’s
mechanized through consecutive modular multiplications using any of the algorithms we
described before for modular multiplication. A naive approach is through the binary ex-
pansion of the exponent. Assume the task of b = z° mod p, such as e = Zﬁ;é e;2'. There
are two possibilities for implementation; the first is a method starting from the Most Signif-
icant Bit (MSB) and working downwards (called left-to-right method) and the second start-
ing from the Least Significant Bit (LSB) and working upwards (right-to-left). An example for
left-to-right method using the MMM algorithm appears in Algorithm PZ5.

Algorithm 2.5 Left-to-right modular exponentiation
Input: z,e=(e,-1...€1€0)2
Output: b, b=z,

1 b—1

2 fori=n-1,...,0do
b— MMM b, b)
if e; = 1 then

b— MMM(b,z)

6 end if
7 end for
8 return b

o s~ W

According to Euler’s theorem, if a is co-prime to p, i.e., gcd(a, p) = 1 then
a®?P =1 mod p, 2.7)

where ¢ is the Euler’s totient function. Therefore the modular inverse can be directly com-
puted as
a®?P1=4"1 mod p. (2.8)

In the special case where p is a prime, then ¢@(p) = p — 1 and consequently the modular
inverse can be computed using modular exponentiation according to

-1_

al=aP?

mod p. (2.9)

2.2 Public-Key Cryptography (PKQ) algorithms

2.2.1 cryptosystem

[RSA is an algorithm for public-key cryptography that is based on the presumable difficult
mathematical problem of factoring large integers. BSA stands for Ron Rivest, Adi Shamir
and Leonard Adleman, who first publicly described the algorithm in 1977. Clifford Cocks,

15

Mathematical Background

an English mathematician, had developed an equivalent system in 1973, but it was not clas-
sified until 1997.

In the BSA cryptosystem the public and private keys are generated by two distinct prime
numbers p and q. We calculate the public modulus N = pq and the quantity ¢(N) = (p —
1)(g —1). We choose e € Z co-prime to ¢(N) and we compute d = e~! mod ¢(N). The
public key is the pair (IV, e) and the private key is d. The primes p, g are also kept secret.
The public and private keys are referred as the public and secret exponent respectively. The
encryption of a message M is defined by

C=M° modN (2.10)

and decryption by
M=C% modN. 2.11)

2.2.1.1 RSA-CRT algorithm

The security of RSA depends on the key size. With large keys varying from 1,024-bit, appro-
priate for protecting data through the year 2015, to 2,048-bit, appropriate through the year
2035 [Kal], it is apparent that efficient arithmetic operations on large operands are crucial
for optimal ESA implementations.

A solution towards this direction was the introduction of the Chinese Remainder Theorem
(CET) to the BSA protocol, namely the RSA-CRT [[Lab1Th, LabTTa]. In RSA-CRKT], the digital
signature operation S = M¢ mod N is split in two operations S p=M 4 mod p and Sq=
M% mod g, where dy, =d mod (p—-1) and d; = d mod (g —1). CRI ensures that the
combination of these two values produces the signature S as

S=8;+[(Sp—S4)-(¢7" modp) modp]-gq, (2.12)

denoted from now on as S = CRT(Sp,S,) [Knu97]. In this way, an approximate 4-time
speedup of operations is achieved [[LabTTh, LabTTal.

2.2.2 Elliptic Curve Cryptography (ECQO)

Elliptic Curve Cryptography (ECQO), presented by N. Koblitz [Kob87] and V. Miller [Mil86] in-
dependently in 1985, has withstood a large number of attacks and has evolved significantly,
so that it is considered nowadays a mature public-key cryptosystem. Extensive research
work regarding the underlying mathematics, security, and its efficient implementations, is
being carried out.

[ECO offers the highest strength per bit and the smallest key size, when compared to other
public-key cryptosystems, by exploiting the mathematical basis of ECQ, i.e., the Elliptic
Curve Discrete Logarithm Problem (ECDTLP). ECDTP states that given two points P,Q on
an elliptic curve such that Q = [k] P, it is computationally infeasible to calculate [k] [BSS02].

Although elliptic curves can be defined on a variety of different fields, only finite fields are
employed in cryptography. Among them, prime fields GF(p) and binary extension fields

16

Public-Key Cryptography (PKQ) algorithms

GF(2") are considered to be the ones that offer the most efficient and secure implementa-
tions [BSS0Z].

2.2.2.1 Elliptic Curves over GF(p)

An elliptic curve £ over GF(p) is defined by an equation of the form
yZ:x3+ax+ b, (2.13)

where a,b € GF(p) and 4a3 +27b%* # 0 (mod p), together with a special point O, called
the point at infinity. The set £ (GF(p)) consists of all points (x, y), x, y € GF(p), that satisfy
(Z13), together with . Addition of two points on an elliptic curve can be defined by the
group law. Together with this addition operation, the set of points £ (GF(p)) forms a group,
with O serving as its identity element. It is this group that is used in the construction of
elliptic curve cryptosystems. The special case of adding a point to itself is called a point
doubling.

Examples of point addition and point doubling are depicted in Figure Z22. The double of a
point Py is obtained by taking the tangent line on Py until a second intersection point on
the curve is found (there is always a second point due to the form of (ZZI3)). The mirror
point of this second intersection on the x-axis is 2Py. Similarly, to add two points Py, Py, a
third intersecting point is found by the line that connects Py, P;. The mirror point on x-axis
of the third intersection point is P, = Py + P;.
For the case of GF(p) let Py = (xo, yo), P1 = (x1, 1) # O and Py # —P;. The sum P;(x2,) =
Py + P is given by
_ 92
P2:P0+P1:{x2_)l —rTha (2.14)
Y2 = (xo — x2)A = yo,

_ y —J/ . . .
where A = £—". The double of a point is given by
X2 = AZ - ZXQ
Py =2P, = (2.15)
Y2 = (X0 = x2)A - yo,
h 1= 3x§+a
where 1 = =2 —.

From (Z14), (Z13) it is apparent that in order to perform an addition or a doubling of a
point in affine representation one needs to compute the inverse of an element in GF(p),
which is a time consuming operation in GF(p) [BSS0Z?]. In order to avoid inversions, the
use of projective coordinates of the EQ points has been proposed [BSS0?]. Given a point
P = (x, y) in affine coordinates, the projective coordinates P = (X, Y, Z) are given by

X=xY=y, Z=1. (2.16)

There are various projective coordinate representations that lead to more efficient imple-
mentations than using the one in (ZI6). Jacobian coordinates are an example of such a

17

Mathematical Background

representation, and will be employed in the implementations proposed in this thesis. Us-
ing Jacobian coordinates, the affine representation of an [EQ point is given by

X Y
x:?; y:?. 2.17)
while the point at infinity is given by O = (0,0, 1).
Using the representation in (ZZ17), (ZI3) rewrites to
E(GF(p): Y*=X>+aXZ'+bZ". (2.18)

Let Py = (Xo, Yo, Z0), P1 = (X1,Y1,21) € E(GF(p)). The sum P, = (X,,Y>,2) = Py+ P €
E(GF(p)) can be computed as follows.
If PO = P] then

X, = M?-28§
Py =2P1={ Yo =M(S—X5)—-T, (2.19)
Zy =217,

where M =3X? +aZ},S=4X;Y? and T =8Y;". On the other hand, if Py # P;, then

X, =R*—-TW?
Py =Py+P;=<{2Y,=VR- MW?3, (2.20)
Zo =20 Z1W

where R = Y027 - V123, T = XoZ¢ + X1 Z5,W = Xo Zf — X1 Z§, M = YoZ} + Y1 Z3, and V =
TW?-2X,.

2.2.2.2 Elliptic Curves over GF(2")

Similar to the case of GF(p), an elliptic curve £ over GF(2") is defined by an equation of the
form
y2+xy:x3+ax2+b (2.21)

with a,b € GF(2") and b # 0. The corresponding equations for point doubling and point
addition in affine coordinates are

Xo=A2+A+x0+x +a
Py =Py+ Py = (2.22)
V2 = (xo — x2)A = yo,

_ Joty
where 1 = h and
X2 = /12 - 2x0
P, =2P; = (2.23)
Y2 = (X0 — x2)A — Yo,
_ 3x3+a
where A = o

18

Public-Key Cryptography (PKQ) algorithms

PD_(-\AO:.I"(J) P[—(¥|,‘Iy’|)

Py=(xp,10)

=) Pr=rayy

(a) Point doubling (b) Point addition

Figure 2.2: Operations on elliptic curves

As in the case of GF(p), using the Jacobian representation for the coordinates, the equation
for the curve rewrites to

E(GF2M): Y*+XYZ=X+aX*Z*+DbZ" (2.24)
and the equations for point doubling and point addition rewrite to
X, = (X, - MZ72)*

Py =2P) =3 Y, = X{ Z3+ SX3, (2.25)
Zy=X2¢

where M = b*"72, S= Z3 + X7 + Y1 Z; and
Xy = LZZ?? + AgAg + Ag

Py=Py+Py =3 Yo = Ag X3+ Agh2, (2.26)
Zg = A7Zl

where 17 = X()le, Ao = XlZg, Ag = A1+ A, Ay = Y()Z3, A5 = leg, Ag = Aa+ A5, A7 =
Zo/lg, /18 = /16X1 +A7Y1, /19 = /16+Zg.

2.2.2.3 Point Multiplication

With the operations of point doubling and point addition available, the next step is to im-
plement the scalar point multiplication, which is the most important operation in ECO. For
the purposes of this thesis, the binary method algorithm was chosen, because it is easy to

19

Mathematical Background

Algorithm 2.6 Binary method for EQ point multiplication
Input: A point P, an [-bit integer k = Z(l)_l kaf
Output: Q= [k]P
1 Q—0
2 forj=1-1to0do
3 Q—I[21Q
4 if k; =1 then
5 Q—Q+P
6
7
8

end if
end for
return Q

implement and minimizes memory requirements. The binary method algorithm [BSS0?7] is
based on the binary expansion of k, as follows.

The binary method requires / — 1 point doublings and W — 1 point additions, where [is the
length and W the Hamming weight of the binary expansion of k. For any positive integer
k, the notation [k] is used to denote the multiplication-by-k map from the curve to itself.
The notation [k] is extended to k < 0 by defining [0]P = O, and [-k]P = —([k]P). Other
methods based on various representations for the scalar [k] include window-based algo-
rithms, Signed-Digit (§80) representations, Non-adjacent form (NAE) representations etc,
which are out of scope of this thesis to analyze further [BSS02].

2.3 Datarepresentation systems

2.3.1 Residue Number System (RNS)

RNSis a number system that allows representing a number as a set of smaller numbers. RNS
was originally described in terms of a game by Nicomachus of Gerasa (100 CE) in his book
“Introduction to Arithmetic”. Later, the problem was re-described by Sun Tsu Suan-Ching
(Master Suns Arithmetic Manual) in a 4th century CE book.

BNS consists of a set of L, pair-wise relatively prime integers A = (m;, my,...,my) (called
the base) and the range of the RNS is computed as A = Hle m;. Any integer z € [0, A — 1]
has a unique RNS representation z 4 given by z 4 = (z1, z2,...,21) = ((z)ml, (Z)my» -+ (2) mL)’
where (z),,;, denotes the operation z mod m;. Assuming two integers a, b in KNS format,
i.e., ay = (ay,ap,...,ar) and by = (by, by,...,br), then one can perform the operations ® €
(+,—, *) in parallel by

as®ba=((a1®b1)m,{a2®b2)my,....{aL®br)m,). (2.27)

Equation (ZZ7) highlights the benefits of RNS; all operations are confined within each in-
dependent modulus channel and there is no need for carry propagation among channels
of different moduli.

20

Data representation systems

To reconstruct the integer from its residues, two methods may be employed [lay88]. The
first is through the CRT according to

L
Z= <Z (zi- A7), 'Ai> : (2.28)
i=1

A

where A; = A/m; and Al.‘1 is the inverse of A; modulo m;. Note that (Z228) implies that in
order to obtain the exact value of z we must compute

L
z=) (zi- A1), - Ai— YA (2.29)
i=1

where vy is an integer correction factor. In practical implementations, (Z29) is preferred
since it avoids the large mod A reduction of (ZZZ8) [KKSS00, BDKOT, GLPT12, GEMBIT].

The second method is through the MRO. The of an integer z with an RNS representa-
tion z4 = (21, 2,...,2r) is given by

z=U+WoUs +---+ WL Up, (2.30)

where W; = H§:2 mj_1,Vi€ [2,L] and the U;s are computed according to

U1 =21
Uz = (22— U1) m1_§>m2
Us = (((z3 = U myz—Uz) my3), (2.31)
UL = <(.. (ZL — Ul) ml_i —eer— UL—I) millvf)m]_ ,
where m;m; ;= 1 mod m;. The mixed-radix digits Uy, Us,..., Uy are referred as the Mixed

Radix System (MRXS) representation of z. Equation (ZZ31)) requires L% modular multipli-
cations. Another version of MRO that simplifies (ZZ31) and reduces the total number of
modular multiplications to only L — 2 is based on

U=z

Uz =22 — 21) m,

Us =(z3— 21— Wal2) (2.32)
UL=(zL—21—-WoUz - W3U3 — - =Wy 1UL-1) n; »

. -1
providing that the predetermined factors V; =1 and V; = <(H;;11 m j) > , Vi€ [2,L] are

m

all unity [YM9T]. Of the three methods, the proposed architectures utilize the of (Z232),
as it avoids the problem of evaluating the correction factor y of (Z229) and reduces the total
complexity of the original MRQ in terms of number of modular multiplications.

21

Mathematical Background

Binary-to-RNS
conversion

RNS processing

RNS-to-binary
CRT or MRC i conversion

TR, coereeeeees i_'_'"""""'_'_'""""""'"""""""""":

Figure 2.3: General architecture of an RNS processor

2.3.2 Polynomial Residue Number System (PRNS)

Similar to RNS, a PRNS is defined through a set of L, pair-wise relatively prime polynomials
A = (my(x),my(x),...,mp(x)). We denote by A(x) = Hle m;(x) the dynamic range of the
PRNS. In PRNS, every polynomial z(x) € GF(2"), with deg{z(x)} < deg{A(x)}, has a unique
PRNS representation:

zp=(21,22,..-,2L), (2.33)

such as z; = z(x) mod m;(x), i € [1, L], denoted as (z),,. In the rest of this thesis, the nota-
tion "(x)" to denote polynomials shall be omitted, for simplicity. The notation z will be used
interchangeably to denote either an integer z or a polynomial z(x), according to context.

Assuming the PRNS representation a4 = (ay, ay,...,ar) and b4 = (by, by, ..., br) of two poly-
nomials a, b € GF(2"), then all operations ® € (+,—, *) can be performed in parallel, as

as®by=({a1®b1)m,, (a2 ®b2Ym,,...,{aL®bL)m,). (2.34)

Conversion from PRNS to weighted polynomial representation is identical to the MRO for
integers. The only difference is that, the subtractions in (ZZ32) are substituted by polynomial
additions. In the case of CRT for polynomials, the conversion is based on

L
2(0) =Y (2i(x0)- A7 (0),,, (o - Ai (), (2.35)
i=1
where A;(x) = A(x)/m;(x) and Ai—l(x) is the inverse of A;(x) modulo m;(x). Unlike the
integer case in (ZZ28), the final reduction by the product polynomial A(x) is not necessary
in the case of polynomials over GF(2").

A general architecture of a system based on residue arithmetic appears in Figure Z3. There,
Input-Output ([A) converters for the binary-to-RNS and BNS-to-binary conversions are
employed, which increase significantly the total computational and hardware complexity

22

Summary

of an RNS-based processor. Apparently, RNS is well-suited to applications requiring mul-
tiple executions of a core algorithm in the main BNS processing core, while [0 operations
are executed only once at the beginning and end of the the algorithm.

2.4 Summary

In this chapter, the mathematical tools and concepts necessary for this thesis were pre-
sented. The all-important concepts of group and field theory were elaborated and the most
significant algorithms in PKO that will be implemented in this thesis were analyzed. Vari-
ous other schemes like the Digital Signature Algorithm (DSA) scheme for digital signatures
or the Diffie-Hellman key-exchange [[DH76] also popular in PK(, require the same modular
operations, however their analysis is out of scope of this thesis. The reader should be fa-
miliar by now with modular exponentiation which, as we have shown, involves consecutive
modular multiplications and constitutes the core operation in PKO. Alternative represen-
tations using KNS and PRNS were also presented. The next chapters are dedicated to new
applications and methods for modular multiplication using RNS and PRNS.

23

CHAPTER

3

RNS application in Elliptic Curve
Cryptography

Py=(x,»)

Py=(x0,y0)

Po=(r2y)

This chapter presents, to the best of our knowledge, the first practical implementation of
an elliptic curve processor using the RNS representation. We approach the problem by
evaluating an appropriate range for the calculations, and new task execution graphs for
point doubling and point addition are proposed. The tasks are optimized to be resistant
against power and timing attacks. The idea is further enhanced and more efficient designs
based on pipelined RNS structures and moduli of special form are also proposed.

RNS application in Elliptic Curve Cryptography

3.1 Introduction

Elliptic Curve Cryptography (ECQ), presented by N. Koblitz [Kob87] and V. Miller [Mil86] in-
dependently in 1985, has withstood a large number of attacks and has evolved significantly,
so that it is considered a mature public-key cryptosystem. Extensive research work regard-
ing the underlying mathematics, security, and its efficient implementations is being carried
out.

[ECO offers the highest strength per bit and the smallest key size, when compared to other
public-key cryptosystems, by exploiting the mathematical basis of ECGT, i.e., the discrete
logarithm problem in the group of points over elliptic curves.

Although Elliptic Curves (EC) can be defined on a variety of different fields, only finite fields
are employed for cryptography. Among them, prime fields GF(p) and binary extension
fields GF(2") are considered to be the ones that offer the most efficient and secure imple-
mentations [BSS0Z].

The operands of ECU operations are large finite field elements. Implementing point multi-
plication algorithms in hardware leads to designs with high area complexity and high mul-
tiplication time delay. Therefore, there is a need for increasing the speed of ECO systems
with the least possible area penalty. An obvious approach to achieve this would be through
parallelization of their operations.

In recent years, RNS has enjoyed renewed scientific interest due to its ability to perform
parallel and fast modular arithmetic. Apart from its traditional use in digital signal pro-
cessing, RNS is also employed for the design of cryptographic systems [SEM™09, NMSKOT,
BI04, BDEMOG, EST™13, SST4]. Using KNS, a given data range can be decomposed into par-
allel paths of smaller dynamic ranges, with no need for exchanging information between
paths employing different moduli. As a result, the use of KNS can offer reduced complexity
and power consumption of arithmetic units with large word lengths. On the other hand,
RNS implementations bear the extra cost of an input converter to translate numbers from a
standard binary format into residues and an output converter to implement the translation
from BNS to a binary representation [Iay88].

The first practical deployment of RNS for the implementation of point multiplication over
elliptic curves was proposed in [SFKS06, SKS06]. This implementation proved to be com-
petitive towards existing designs in terms of speed, but the additional area overhead was
significant.

The contribution of this work is an RNS architecture and detailed implementation of an
[ECPM, with the input and output converters included. The impact of various RNS bases,
in terms of number of moduli and their bit lengths, on the area and speed of the proposed
implementation is investigated, as this determines, to a large degree, the potential use of
RNS in ECO. The results of this work consolidate the application of KNS in [ECT, as the
proposed implementation is highly effective. Furthermore, as key lengths are expected to
grow in the coming years, RNS could be used to effectively counter balance the increasing
computational complexity.

26

Combining BNS and [ECO

3.2 Combining RNS and ECO

In the following, the notation used in Chapter 2 for the RNS representation is followed. Let
us rewrite some basic equations for easiness. RNS consists of a set of L, pair-wise relatively
prime integers A = (my, my,..., my) (called the base) and the range of the RNS is computed
as A= Hle m;. Any integer z € [0, A— 1] has a unique RNS representation z 4 given by z 4 =
(21,22, 21) = ({2 my» {2V my» - --» (2 m,), Where (), denotes the operation z mod m;.

For the purposes of this chapter, converting an integer z 4 in KNS format to its associated
binary representation will be based on CRT according to

L
z= Z(zi-Al-'1>mi-Ai—yA, 3.1)
i=1

where v is an integer correction factor [KKSSO0, BDKOT, GLP™12, GELMBTI].

3.2.1 Extended RNS

An algorithm developed in [SK8Y] may be employed at this point to extend the use of RNS
to include negative numbers as well. The algorithm requires a redundant modulus m, > L
so that the RNS base A is extended to A = (m;, my,...,m; ~ m,). This redundant channel
will be available from now on throughout the calculations of the ECPM. Let z be an integer
with a RNS representation z4 = (z1,22,...,21 ~ Zr), where z, = (z),,,. By reducing both
sides of (Bl) mod m, we obtain that

L
<z>m,:<<Z<Zi-A;1>mi-Ai> —<yA>m,> =
i=1 myr my
L 3.2
<y>m,:<<A‘1>mr <Z<zi-A;1>m,.-Ai> —<z>mr)> (32
i=1 m, m,
= (47, 0-@m)),

where 6 = <Z,~L:1 (zi- Ai_1>mi -A,->m . Since y < Land m, > Litfollows thaty = (y),,, [SK8Y].

The representation z 4 = (21, 2,...,21 ~ z,) forms the extended RNS representation. It has
been proven that any number z€ [-A+1,..., A—1] represented by (z1, z2,...,2r | z;) can be
correctly calculated by formulas (B) and (822) [AH93]. The fact that negative numbers can
be calculated correctly by equations (81) and (B2) will later prove to be extremely useful in
order to employ RNS for the ECO arithmetic.

3.2.2 Embedding BRNS in Elliptic Curve Arithmetic

In the remainder of this chapter we will focus on elliptic curves defined over GF(p), where
p is a “large” prime number. The arithmetic is the usual modulo p arithmetic as defined in
Section 1. Elliptic curve arithmetic is implemented according to Section 2Z2.

27

RNS application in Elliptic Curve Cryptography

Using Jacobian coordinates, the affine representation of an EC point is given by

X Y

X = ?’y:?, (33)

while the point at infinity is given by O = (0,0, 1) and the curve equation corresponds to

E(GF(p): Y*=X+aXZ*+bZ°. (3.4)

In this case, EC point addition and doubling can be defined as follows. Let the points Py =
(Xo, Y(),Zo), P1 = (Xl, Yl,Zl) € S(GF(]?)) The sum Pg = (Xg, Yz,Zz) = Po +P1 € S(GF(]?)) can
be computed as follows.

If P() = Pl then

X, = M?-28§
Py =2P1 =X Yo,=M(S-X5)-T, (3.5)
Zg = 2Y1Z1

where M =3X? +aZ},S=4X;Y? and T =8Y;". On the other hand, if Py # P;, then

X, =R*-TW?
P, =Py+P;=X2Y,=VR-MW3, (3.6)
Zo = 20 Z1W

where R = Y027 - V123, T = XoZ¢ + X1 Z5,W = Xo ZF = X1 Z§, M = Yo Z} + Y1 Z3, and V =
TW?-2X,.

All operations in equations (83H) and (BH) are performed mod p, where p is the character-
istic of the field. In a traditional implementation of a cryptographic scheme with an n-bit
key, all operands and finite field circuitry are n-bit long. Instead of this, smaller circuits
can be used operating in parallel, to generate the result. In the proposed approach, finite
field circuits are replaced with RNS ones. The benefits of using smaller RNS operands are
exploited to implement a fast and area efficient ECPM architecture.

For a valid replacement, an equivalent RNS dynamic range must be defined. Initially, it can
be assumed that (85) and (B8) are computed over the integers, i.e., without the mod p re-
duction. Let |w| be the absolute maximum value generated by these computations. For a
valid ENS implementation, the RNS dynamic range must be chosen so that A > |w|. Then,
data are represented in RNS format and point multiplication can be performed using RNS
circuits.

For example, if the field characteristic p is 192-bit long, then the equivalent RNS range can
be calculated to be 840 bits, after simulating the algorithms of point doubling and consec-
utive point addition in Mathematica. In the presented implementation, an KNS basis set of
20 moduli, 42-bit each, was used for a 192-bit ECU. If a point multiplication result needs to
be transformed back to a finite field element, we only need to implement (81 to get a valid
result over the integers and then perform a final mod p reduction of the result to get the

28

Combining BNS and [ECO

finite field element. Due to the ability of the extended RNS to represent negative numbers,
the results of the calculations in (33) and () over the integers can be correctly mapped to
finite field representation.

3.2.3 Graph-Oriented Optimization Of Point Addition / Doubling
Algorithms

Our previous efforts for designing an RNS [ECPM resulted in a very fast design, but lacked in
terms of area towards other existing implementations [SFKS06, SKS06]. This work formed
the basis for further investigation of the sequence of operations, for the point addition /
doubling algorithms, at an architectural abstraction level.

Many abstract models for representing the behavior of an algorithm at the architectural
level have been proposed in the technical literature [Mic94]. All of these models consider
the sequence of tasks in the algorithm and their dependencies in terms of availability of
data, availability of hardware, and serialization constraints. The sequencing flow of the
algorithm’s behavior can be represented graphically using a Data Flow Graph (DEG) model.

A IDEQ is a directed graph G,4(V, E), whose vertex set V is in one-to-one correspondence
with the set of tasks, while the directed set E is in correspondence to the data transfer from
one operation to the other. An assumption is made, that, at the end of a computation stage
of each member of V, there is a temporal storage unit (e.g. a register) making its output
available for consumption.

The ordering of the tasks represents the temporal dependencies in the sequencing graph,
highlighting the dependencies between the tasks. Exploitation of the DFGs can be made
with several techniques, i.e., balancing the graph (minimization of power dissipation) or
shortening the longest path (performance increase). Further improvements can be sug-
gested, including parallelization in operations, pre-computations, etc. In order to increase
the throughput for the targeted application, the latter techniques can exploit efficiently the
characteristics of the point addition/doubling algorithms.

For example, it is considered useful to explore every task for spatial and temporal depen-
dencies between calculations. It is then easier to select either when to perform a calcu-
lation, or how many arithmetic circuits are required to implement the targeted algorithm.
The DEGs in Figures Bl and B2 depict the result of the optimization process in the point
addition/doubling algorithms. Each circle denotes an arithmetic operation in the RNS rep-
resentation and each computation step is shown as a dashed line. The operands participat-
ing as inputs in this operation are at the top of each circle.

The registers used for storing the result of an operation are defined on the left side of each
figure (B:1, B2) and they are denoted as A, B, C, D, E, E G, H and I. Their initial contents are
given at the top of each figure. The result is shown at the bottom of each task and inside the
rectangles the outputs are obtained. Parallelization between multiplication and addition
or subtraction was also achieved. We have considered a single adder/ subtractor circuit,
to save in terms of area. One pre-computation step exists in each figure. During time step

29

RNS application in Elliptic Curve Cryptography

RESERVED
REGISTERS A=X,B=Y,,C=2,,D=27G=X,,H=Y,,1=2,
A,B,CD Xy z?

ty

Al So

tr

D,G ™ 2, w

tio

DF X Yz(modp)

Figure 3.1: The IDEG for the point addition algorithm

12 (Figure B), an extra multiplication is performed that produces X? for use in the first
step of the point doubling algorithm. Similarly, in time step 13 of the point doubling graph,
an extra multiplication is performed to produce Z7 for use in the following point addition.
If the subsequent operation is not a point addition, instead of pre-computing Z2, X22 is
calculated for use in the first step of the following point doubling operation.

To increase the degree of parallelization of the proposed implementation, a special circuit
could be used for squaring. Since the multiplication speed of the proposed design outper-
forms existing implementations, a squarer circuit is omitted for area reduction reasons.

3.2.3.1 Comments on the graph-oriented optimization

Since only nine registers compose the system’s register file, large area savings are achieved,
in comparison with previous works [SEKS06, SKS06], where, for each execution step, a sep-

30

Combining BNS and [ECO

RESERVED

RECISTERS A=Xy,B=Y,,C=Z,D=X’
A,B,C,D 3 X
-
M = 2y i St i 3_x.‘l_z i s s t
A Zy Z4 i
z?
D Z7 t
D-
R 10
D a n
. D-
- 7.2 A S
D Yo % t
+
________________ M ._._!.‘Z_‘___________.__. ts
E.D Y, Y Y12y
% -
— -~ - 4 - P . b Zﬂ.
B.C Xq Ys? b
D+
= % t;
2 D.
s
D) =
+ *
_______________ s My
AF Y2
* +
________ Y 1_4_______x_2.l________________. tio
B.A 8
-
_______ T8 -
D ti
. D-
M(S-X;) t
A 5 12
_Bb...__.____..,|L|__ e B e el

Figure 3.2: The IDEG for the point doubling algorithm

arate register is used to store the result. Consequently, the circuit complexity for controlling
the data flow of the system is also decreased. The above optimizations also result in a re-
duction of the multiplication operations in point addition/doubling algorithms. Only 13
execution steps are now needed both for a point addition and for a point doubling. As a
result, savings in speed are obtained compared to [SFKS06, SKS06].

The total number of execution steps of Figures B and B2 for a doubling and a subsequent
point addition is 26. This is also the case for a typical realization of (B3) and (8:6) [BSS0Z]. In
[LHO8b], only 9 execution steps are required to perform a point doubling. This is expected
since a separate circuit for squaring is utilized and multiplications by small constants are
replaced with consecutive additions. In the proposed implementation, both squaring and
multiplication by small constants are performed with the use of KNS multipliers. In [KEQ07],
four parallelization levels are provided, i.e., with the use of one, two, three, or four modular
multipliers working in parallel. In order for the comparison to be fair, the case of using one

31

RNS application in Elliptic Curve Cryptography

multiplier is examined. In this case, the total number of execution steps is also 26. However,
the proposed implementation outperforms these works, which also exploit a[DEG approach
to increase the parallelization degree of ECUO operations (see Table BTI).

An additional advantage of the proposed architecture is the equalization of execution steps
and power consumption for both EC operations. This was achieved by inserting dummy
operations in the DFGs’ datapath. Dummy operations are denoted in Figures Bl and B2 as
“D®”, where ® = +, —, * for a dummy addition, subtraction, or multiplication respectively.

Simple Power Analysis (SPA) attacks rely on the power traces of point addition and point
doubling. Due to the dummy operations inserted, power consumption in each time step
for both IDEGs is equalized. Therefore, the proposed ECPM is protected against such threats
without any extra cost in operations such as required by other designs [HMV04].

3.3 Hardware Implementation

3.3.1 Modular addition/subtraction

Modular addition and subtraction have already been described in Section ZZ1 and the de-
rived circuit is shown in Figure 211,

3.3.2 Modular multiplication

Modular multiplication was based on Horner’s rule shown in (872), where r is the number
of digits of X, Y and m an arbitrary r-bit modulus

(XYY = (21 Y)2+ X, 2Y)2+..)2+ %Y) . (3.7)

Algorithm B describes the realization of modular multiplication. It implies a bit-serial
architecture for the modular multiplier, since our main optimization goal is the area reduc-
tion. A corresponding circuit is shown in Figure B3.

The BNS adder/subtractor and ENS multiplier are a parallel combination of the circuits in
Figures P71 and B3, respectively. Their architecture is depicted in Figure B4. Each block
represents a modular adder/subtracter or a modular multiplier. Each block executes the
assigned modular operation (addition, subtraction, or multiplication) mod m;,1 <i <L,
where the m;’s define the modulus set of the RNS base.

3.3.3 The Elliptic Curve Point Multiplier

The system architecture for the proposed ECPM is presented in Figure BA. It consists of the
two RNS operation units (RNS adder/subtracter, RNS multiplier), the system’s register file,
the input and output converters and a Finite State Machine (ESM) operating as a control
unit. A selection module for driving the outputs of the registers to the appropriate RNS
operation unit is also included.

32

Hardware Implementation

Algorithm 3.1 Modular multiplication based on Horner’s rule
Input: 0< X, YeNandr,me N*
Output: Z[0] =(XY),
1 Z[r]—20
2 for i=0tordo
3 Zlr—i]l —QZ[r=i+1]1+x—-;),
4
5

end for
return 7

= Z[r=i+1]

B
T

>~ z
+ -

r+ 1
Y_ .
e 3
T |) Toor
X0 Xp.2 Xr1 7
1

Shift register —»

Figure 3.3: The modular multiplier

X Y, XY X Y.

v v
- Fodm)| 4. *@modm) oo |4~ (modm,)

! ! !

Z Z, z,

Figure 3.4: General architecture of the RNS computing structures

Initially, the projective coordinates (X, Y, Z) of point P enter serially into the binary-to-RNS
converter. The converter consists of a modular multiplier which computes (X, Y, Z) x 1) ..,
i=1,...,L, where the m;’s are the RNS base moduli (see Figure B). Following this conver-
sion, a selection is made between the point at infinity O and point P, used to perform the
point multiplication, [k]P. Depending on whether the circuit is in initialization phase or
not, the point O or point P, accordingly, is stored in the G, H, and I registers.

All the registers of the register file are two input registers with load and write enable control
signals. However, registers A to F accept inputs from both buses, i.e., the output of both RNS
modules, but the G, H, [registers are connected directly to the input and the multiplication
bus. The main reason for making this selection was to reuse the G, H and I registers for
storing both the input data and intermediate results.

The ESM produces the appropriate signals to control the load and write enable signals of
the register file, in order to store the result of an RNS operation. Afterward, the selection

33

RNS application in Elliptic Curve Cryptography

module accepts these results and drives them to the input of the appropriate RNS module,
in order to perform the next operation, according to the DEGs presented in Figures Bl and
B2. When all the bits of k are processed, the result is driven to the RNS-to-binary converter
to get the binary representation of the resulting point [k] P.

3.3.4 TheRNS-to-binary converter

In BRNS applications, the BRNS-to-binary converter plays a crucial role in the performance
of the overall system. In fact, in most of the cases, a well-designed and efficient converter
is the criterion of whether an RNS application can be competitive or not towards non-RNS
implementations. Carefully selected modulus sets or simply small RNS ranges can reduce
the complexity of the converter, but in cases like ECO where the dynamic range of compu-
tations is very large, typical implementations can not be considered.

The following operations for the RNS-to-binary conversion have to be performed according
to (B) and (B22) (assume r to be the word length of each modulus and L to be the number
of the moduli):

1. r-bit modular multiplications for the products (A;'z;) .

2. Multiplication of the r (L — 1)-bit A; constants with the r-bit products of the previous
step to form the inner products A; (A;'z;), .

3. Addition of the L, r L-bit inner products of step 2, to form the term Zle A; (Al._lz,-)m.
of BT and (B2).

4. Assuming that L is g-bit long, then for (B) a r L x g bit multiplication has to be per-
formed to form the term y A. This term is then subtracted from the outcome of step 3
to get the final result of (B:1).

5. In (B2), a multiplication similar to step 2 is performed to form A™' Y1 | A; (A7'z;) .
Then, a modular subtraction between the previous term and the residue z; is per-
formed to form y.

Due to the large operands of the multiplication in steps 2 and 5, a specially designed mul-
tiplier needs to be considered. Recall that the main operations shown in Figure B3, i.e.,
the binary-to-RNS conversion, point multiplication, and the RNS-to-binary conversion are
pipelined. As a result, since point multiplication is slower than all other operations, a serial
implementation of the converter and the large multiplier of steps 2 and 5 was realized. Such
a design approach offers the best speed to area trade-off.

Assume for simplicity that X and Y are two variables r L-bit and r-bit long, respectively, and
that we want to calculate their product P = XY It holds that

rL-1 .
P=XY=) x2'Y. (3.8)
i=0

34

Hardware Implementation

el 3 virl 5 etrl_6
r | ;
[M RNSto | X, Projective x,
- U— binary (' To [K]P
FSM . X converter " Affine —

elk i
BUSA BUSH REGISTER FILE

toad —— | ||

AS1 RNS T
AS2 © i . i |
tnad ¢} |

ctrl 1 wi_end] | T N — A%2

2T =—SNmE-mw

‘ + From .Rrp, C

load £}

| M1
M1 RNS . |
M2 x d | | [
4 : M2

EoiosaE

| | wr j
sel_|
ek %

el 3 wtrl 4
| Foint 0 M

ki
coordinates —* o virl 3

:‘ieu-izt |I|pllf of » Binary to U

= 4 S
point P coordinates RNS — .
RNS moduli set " Paint P courdinates

—* converter | Paint P courdinates
| in RINS format

wlk

in r-hit streams

Figure 3.5: General architecture of the RNS [ECPM

Since rL is divisible by r, (38) is decomposed as

rL-1 .
P=XY=) x2'vY=
i=0
r—1 . 2r—1 . rL-1 .
=Y x2'Y+) x2'Y+-4+) x2'V =
i=0 r (L-Dr

. (3.9)

L jr—1)
Z (Z x,-2’Y
=1 \i=(j-Dr

i
J

The “large” multiplication of (89) is decomposed into L, r-bit multiplications and r-bit
additions. The validity of the above shall be illustrated with an example. Consider that we
want to perform the multiplication of 101010110, x 110,. Inthatcase r =3, L=3and rL =9.
We split the multiplication according to (89) into three 3-bit multiplications. The process
is illustrated in Figure B8.

Beginning with the r LSBs of the multiplicand, r-bit streams of this operator are multiplied
with the r-bit multiplier. The r LSBs of the first multiplication are driven directly to the
output. We store the remaining r IMSBs and we perform the next multiplication between
the r-bit multiplier and the next r-bit stream of the large multiplicand. The MSBs of the
previously stored result are added to the r-bit LSBs of the current result and the outcome is
driven to the output.

35

RNS application in Elliptic Curve Cryptography

The procedure is repeated until all L, r-bit streams
of the multiplicand are processed (see Figure B7).
Having designed the multiplication module, the re-
alization of the RNS-to-binary converter is ana-
lyzed. The designing goal being the minimization of
area, a serial architecture was adopted. The archi-
tecture of the converter is illustrated in Figure B8.
The BNS digits z; of the integer z are driven along
with the constants Ai—1 into a modular multiplier to
produce the inner products (A; ' z; >mi'

Afterward, each product is multiplied with the con-
stants A; and then they are added recursively to
produce the term ZleAi(Al.‘lemi of (B) and
(B2). For the case of y, (B2) is rewritten as:

Figure 3.6: Large multiplication
paradigm

L
y= <—er+KZ(A,->mr (Ai_lzi>mi> : (3.10)

i=1
where K = (A™"), . Thus, in parallel with the calculation of ¥}, A4; (A;'x;), shown be-
fore, we calculate y by first calculating the product <K Zle (Aidm, (Al._lzl->m‘> and then
il my
by adding those products to form <K Zle (Aidm, (Al.‘lz,-)m,> . A final modular subtrac-
il'm

tion by z,K produces y. As soon as v is calculated, another “large” multiplication is per-
formed, i.e., the multiplication —y A. The final stage is an addition of the summation term
Zle A; <Ai_lzi>m,- with —y A to produce the binary representation of the integer z.

Figure 3.7: Architecture of the large operand multiplier

In case the result of the RNS-to-binary conversion is larger than p, an extra modular reduc-
tion needs to be conducted, in order to obtain the equivalent field element. Recall that the
result of the RNS-to-binary conversion is a r L-bit integer, which has to be reduced mod p.
Many dedicated modular reduction architectures exist in the literature, including look-up
table methods or iterative algorithms [HGGO7, KPH04, Par97, KH98, FP99]. Nevertheless,
they are not well suited in the proposed implementation, considering that the input integer
is very large and, consequently, the added area or memory penalty would be significant.

36

Hardware Implementation

J"]"Ji.
a2 -
Al <X>m
! {
Al = M —_—
v Y T X —F— 4+ —F 1z
A X ‘

reg

()= (), —), —

“ N

Figure 3.8: Architecture of the RNS-to-binary converter

Instead, modular reduction is conducted with the use of the modular bit-serial multiplier
in Figure B3. Assuming c to be the result of the RNS-to-binary conversion the multiplier
performs the operation (1 * c),, where c is fed to the shift register of the modular multi-
plier (see Figure B3). This slow but area efficient solution does not add to the execution
time of the point multiplication operation. This is feasible due to the pipelined nature of
the proposed architecture, considering that modular reduction is much slower than point
multiplication.

The proposed converter holds some characteristics that make it suitable for large scale
RNS implementations. The proposed serial converter is preferable for RNS bases with a
large number of moduli, suitable for large dynamic ranges. The main reason is its low area
cost compared to other conversion solutions, i.e., realization using carry-save adder trees
[SBCY8, PieYs].

Moreover, the designed multiplier can be reconfigured to support operands of any length,
according to the needs of the implementation. The length of the operand is determined
by the RNS range, which can be selected to have a length that is a multiple of the length
required by the application.

Also, in cases of time-consuming and data-intensive algorithms, like in ECO, the designer
has the flexibility to sacrifice some speed in favor of area, provided that the slow serial con-
verter can be pipelined with the fast RNS core which executes the main algorithm. In that
way, the internal speed gains due to the RNS are preserved and the area penalty introduced
by the converter is not significant.

3.3.5 Projective-to-affine coordinates conversion

Point [k]P is obtained from the BNS-to-binary converter in projective coordinates. How-
ever, in practical cryptographic applications, affine coordinates are exploited. Therefore, in
order to increase the functionality of the proposed implementation, a separate module for
the projective-to-affine coordinates conversion is employed.

37

RNS application in Elliptic Curve Cryptography

The projective-to-affine conversion is the realization of (83). Let us rewrite it here for con-

venience:
X Y

= =5 V=25 (3.11)

X

It is apparent that one modular inversion (7} = %) and 4 modular multiplications, namely
(lo=T% x=Xx*Tp, T3 =T * Tp, y =Y = T3) are required for the conversion.

Field characteristics recommended by the National Institute of Standards Technology (NISTI)
are prime numbers of special form (generalized Mersenne numbers), which can be ex-
ploited in order to implement fast modular arithmetic. Efficient modular reduction algo-
rithms have been described [UJS00], where modular reduction is replaced with simple ad-
ditions. Therefore, modular multiplication described in Algorithm Bl was not considered
for this conversion. Thus, the modular multiplier depicted in Figure B9 was realized by a
[log, p1-bit multiplier, followed by a reduction process [[IS00]. The prime field character-
istics utilized in the proposed implementation are offered in Section VII.

From the many works regarding modular inversion in the literature [SKO0, KAK96, Mon85,
Wal99, Kal95, dDBQO04, GTK0Z, (GT03, ZWBC0?2, 1'T04, BLOG, DMPO3], the implementation
proposed in [BLOG] is adopted, as it efficiently encompasses the proposed implementation
characteristics, namely the modular inverter can support all the bit lengths used in the pro-
posed implementation (160, 192, 224 and 256-bit). Moreover, as it is implemented in a
Xilinx FPGA (Virtex 2 3000), the added area was accurately calculated according to Xilinx’s
FPGA data sheets [Xil05].

en_1 en_2 ? en_6
| | Ll |
w Xx—M) —fM)
Z— INV > 2 U 2 <X> - en|74 U b g: — X,y
X — N /P ~ X
I J 50 |
ctrl_1 f ctrl_2
en_5
=11]
<]
E =

Figure 3.9: The projective-to-affine converter

The projective-to-affine converter is depicted in Figure B9. It consists of the modular mul-
tiplier described earlier and depicted by the symbol “x”, the modular inverter of [BLO] and
some control logic. The inverter first produces T = %, which is driven to a multiplexer, to-
gether with the X, Y coordinates. The leftmost multiplexer selects T; to be the first operand
of the multiplier and the rightmost multiplexer selects “1” as the other operand. Then, the
modular multiplier first produces 1 * T, which is then driven back to the multiplier in-
put. Following, T» = T;? and T3 = T * T» are computed, which are stored in the two reg-
isters following the multiplier. The leftmost multiplexer then selects the X coordinate as

38

Performance Results and Comparisons

the first operand of the multiplier, and the rightmost multiplexer selects 7T, to be the sec-
ond operand. The result x = X * T5 is stored in the register that previously contained 7.
Similarly, y = Y * T3 is computed and the x, y coordinates are driven serially to the output
register.

3.4 Performance Results and Comparisons

The proposed ECPM was synthesized in a Xilinx Virtex E-xcv1000E, FG680 EPGA device. In
Table B, for a full pipeline exploitation case, the timings for an elliptic curve point multi-
plication are given and comparisons are made with other state-of-the-art implementations.
If only one point multiplication is performed, i.e., pipeline is not fully utilized by constant
streams of input points, then the point multiplication timings are 4.84 ms, 4.08 ms, 3.54
ms and 2.35 ms for a 256, 224, 192 and 160-bit implementation, respectively. The field
characteristic p is p = 2150 + 7 for the 160-bit implementation and NIST P-192, P-224 and
P-256 (2192 — 264 — 1, 2224 _ 296 1 1 2256 _ 2224 1 2192 4 296 _ 1) for 192-bit, 224-bit and 256-
bit ECO respectively [LIS00]. The corresponding RNS set for the 192-bit implementation is
depicted in Table B2 and consists of 20 moduli, 42-bit long each. In cases where other re-
ported implementations supported smaller or larger fields, a relevant decrease or increase,
accordingly, in the RNS range was made to support those fields as well. In that way, fair and
accurate results were extracted.

In the frequency and elliptic curve point multiplication time columns, four values are con-
tained, referring to a 256, 224, 192, and 160-bit implementation. The proposed architecture
achieves competitive timings compared to existing implementations. When compared to
[ST03], [CBCO7], and [ESGT05], the proposed design has smaller frequency and higher mul-
tiplication delay. However, as these works refer to ASIO implementations, the FPGA imple-
mentation presented here is still competitive. In [DMKP04], while the timings for point
addition and point doubling are given, the final execution time for the point multiplication
is not provided. As a result, the corresponding value, denoted with an asterisk in Table BT,
was estimated by the authors, according to the point doubling/addition timings given in
[DMKPO4]. In [Wol03] the execution time of point multiplication is given in cycles and it
is claimed that operations like addition, subtraction or modular addition/subtraction are
executed in one cycle. However, no further information is given regarding the actual exe-
cution time of a cycle, thus no fair comparison can be made. Note that [KF07] and [Wol03]
were omitted from Table B, since no data are offered.

Comparisons in terms of area are difficult to be made, due to the different implementa-
tion platforms adopted in the literature. The presented implementation occupies 25,012
4-input COTs for a 192-bit architecture. For other bit configurations, results are offered in
Table B1. The reported area for the existing implementations was 50,000 LIITs in [SEKS06]
and [SKS06], 11,416 COTs in [OPOT] and 11,227 COTs in [OBPVO3]. As far as the ASIA ver-
sions are concerned, in [XBOI] no measurements are given, while in [ST03], for the fast
configuration case, the circuit occupies 118K gates. In [MMMUOS], the presented architec-

39

RNS application in Elliptic Curve Cryptography

Table 3.1: Comparison of ECPM architectures

Field Max Freq. | EC mult. Gates
Platf CIT
(bits) atlorm (MHz) time (ms) (thousands)
GF(p) 256 39.7 3.95 32,716 103
This GF(p) 224 Xilinx 46.8 3.31 29,610 93.362
work GF(p) 192 | xcv1000E-8 52.9 2.97 25,012 78.865
GF(p) 160 58 1.77 21,140 66.656
[SEKSO6] Xilinx
[SKSU8] GF(p) 160 Virtex? Pro 75 2.41 50,000 157
, Xilinx
LHO8H . -
[] GF(p) 160 Virtex? Pro 100 6.282 3,015
Xilinx
OPO1 .983*
[C] GF(p) 192 <cv1000E-8 40 3 11,416 35.983
Xilinx
OBPVO3 .390*
[C 1 | GF(p) 160 <cv1000E-8 91.3 14.41 11,227 35.390
Xilinx
MMMOG * -
[1 | GF(p) 256 Virtex? Pro 39.46 3.86 35,450
Xilinx
DMKPO4 g i _
[1 | GF(p) 192 VirtexE-2000 19 9.3 83.236
SMB07] | GF(p) 256 | ounx 40 17.7 i 4,100*
Spartan3
Dual-field | 0.13m CMOS
STO03 . . -
[] 192 ASTO 137.7 1.44 118
0.13m CMOS
CBCO7 F(p) 2 1.01 - 122
[] GF(p) 256 ASTO 556 0
[XBOT] GF(p) 192 ASTd 50 30 N/A N/A
[FSGT05] | GF(p)224 | CUStom 1,500 0.256 N/A N/A
processor

“values calculated by the authors

ture utilizes 15,755 CLB slices and 256 18 x 18-bit embedded multipliers in a Xilinx Virtex2
Pro [EPGA device. The architecture in [SMB*07], utilizes 27,597 slices in the Xilinx Spar-
tan3 FPGA. In [Wol03] the authors state that only rough estimations regarding the area are
given. The total number of gates and the equivalent area in a 0.35 CMOS process, in terms
of mm?, are provided, therefore no fair comparison can be conducted. In [DMKP04] the
reported area is 83,236 gates and in [LHO08bD] 3,015 LI Ts. All area data are summarized in
Table Bl The implementations in [XBOT, Wol03, KF07, ESGT05] were omitted, since no
comparable data are offered. Values in Table B denoted with an asterisk were calculated
by the authors, according to the official Xilinx FPGA data sheets[Xil05].

In terms of versatility, the presented architecture supports prime fields, while [ST03] and
[Wol03] support both prime and binary extension fields. The proposed implementation

40

Performance Results and Comparisons

Table 3.2: The RNS base modulus set for the 192-bit implementation

2446268224217 2446268224261 2446268224273
2446268224289 2446268224321 2446268224381
2446268224409 2446268224427 2446268224441
2446268224447 2446268224451 2446268224453
2446268224457 2446268224481 2446268224493
2446268224513 2446268224579 2446268224601
2446268224639 2446268224657

supports various field sizes and prime characteristics, by reducing or expanding the RNS
base accordingly. Furthermore, the proposed architecture embeds all the predicate con-
verters (binary-to-BNS, RNS-to-binary, projective-to-affine). Therefore, it offers a front-
end solution, which can be embedded to existing systems not exploiting RNS arithmetic or
projective coordinates for the elliptic curve point representation.

Finally, the moduli that comprise the RNS base of the proposed implementation, are not
of special form, i.e., Mersenne or Generalized Mersenne Numbers. Only in the case of the
projective-to-affine conversion, the special form of the field characteristic p was exploited,
to achieve fast modular reduction, as described in the previous sections. Comparing with
other works that fully exploit field characteristics of special form, as in [OP01], the proposed
architecture performs better in terms of both speed and area.

3.4.1 Impact of the number of moduli and their word-lengths on the
performance

The impact of the number of moduli and their word lengths on the performance of the
proposed implementation is investigated. Thus, a clear picture of whether RNS can be an
efficient platform for improvement in [ECO can be formed, as key lengths are expected to
grow in the future.

A number of simulations were performed for various ECO implementations requiring 160,
192, 224, and 256 bits, respectively, in an effort to determine the performance of each im-
plementation in terms of frequency and area. For each of these implementations, different
combinations of number of moduli and their word lengths were employed, so that each
such combination would correspond to the dynamic range required for the implementa-
tion. These combinations are shown as pairs of numbers separated by commas, under the
X-axis in each of the Figures B10 and BT, which present the results of these simulations.

Figure depicts the impact of the number and word length of the moduli on the
[ECPM’s speed. For various ECUO’s key word-lengths, the frequency of the implementation
remains the same, regardless of the number of moduli and their word lengths. In contrast,
an important decrease in area is achieved as the number of moduli increases and simulta-

41

RNS application in Elliptic Curve Cryptography

60 AS000
U -
—
5000 -
R —— R ECC S e T .
P = AN — T - . —— 180 ki FOC
g s —— 192-hil BRI = T
Z o L L g’ 230N .- T e———— —=— b LCC
g —=CSGHHECT S 2000 TTe—, ... —— 24 LI ECC
g 15000 —=— 36 LCC
g " . " - " " 1006
oo
Lértilie ECC 10,00 1544 20,33 527 30,23
2 192-bic TCC! 1,84 13.50 2042 2554 30,24
| ii-hir ECC T, 1544 2033 25,27 30,23 - - - m e EE ! po— | a0
e 108 1556 042 353 | 303% b LCC 109 i il o i
Dabic 1090 1560 2045 2536 30,30 LI ECC 10108 13.60 .52 3542 3045
25a-ki BOC 1L103 15, 20,52 2542 3,35 #moduli, modulus bit length
amaoduli, modulns bit length
(a) speed comparisons (b) area comparisons
Figure 3.10: Number and word-length of moduli vs. (a) speed and (b) area
25000 1
25000
20000 1 20000 |
= — —— l6bit BCC = e l60bit ECC
= . . —a— 192:5it ECC S 1s000 | e 192:bit ECC
£ ju000 e RbRECC b . e 220ebit ECC
= —=— 256bit ECC = oo | e —_— e 256 FCC
R‘_————_:-.:_:_' ———
5000 5000 { — +
[1] 0
160-hit ECC 101,66 1544 20,33 2527 30,23 160-hit ECC 1066 15,44 0,33 2527 30,23
192-bit ECC 10,84 1556 42 2514 30,28 192-hit ECC 10,84 15,56 42 2534 30,28
224-hit EOC 10,50 15,60 0,45 25,36 30,30 224-bit ECC 10,90 15,60 20,45 25,36 30,20
ssebi EoC, 10003 15,69 2052 2542 3035 ssebiEcc 10,103 1569 2052 2542 3035
moduli, modulus bit length # moduli, modulus bit length
(a) Area of the ECPM without the BNS-to-binary con- (b) Area of the RNS-to-binary converter
verter

Figure 3.11: Impact of the RNS-to-binary converter on the area of ECPM

neously their word lengths decrease. This outcome is depicted in B.I0(b). In order to further
investigate the performance, two separate synthesis simulations were performed. The first
was for the synthesis of the ECPM without the output converter and the second was for the
output converter as a stand-alone module. The results are shown in Figures and
B.11(b).

From Figure B.II(a), it can be remarked that there is a slight increase in the area, as we
transit from one configuration to another with more moduli. Therefore, it is the output
converter that determines the performance depicted in Figure B.T0(b). From Figure B.11(b]J,
itis clear that the converter is very sensitive to the different RNS base configurations, as far
as the area is concerned, and that the behavior of the overall system follows the converter’s
behavior. Thus, as it was stated before, the number and the word-lengths of the moduli are
crucial for the converter’s performance. From the previous figures, it can be derived that
large modulus sets with small word lengths can achieve a beneficial area to speed ratio.

The presented simulations introduce a significant result. Assuming the same number of

42

Pipelined RNS structures

moduli, for a transition from a 160-bit ECO to a 192-bit one, the required increase in the
modulus word length is less than 32 bits, i.e. less than the increase of the word length of the
finite field operands, in the case of typical ECO implementations. As a result, the ratio

ECC key length

A=
RNS modulus word-length

(3.12)

is expected to grow, as key lengths are expected to increase in the future. This behavior indi-
cates that, as we transit from smaller ECO key word-lengths to larger, the growth of area and
the consequent reduction of frequency become smaller in the RNS implementation case.
Thus, RNS will remain a viable solution for the implementation of point multiplication over
elliptic curves.

3.5 Pipelined RNS structures

Our previous approach towards a fully parallel RNS implementation of an ECPM was based
on a “naive” approach of calculating the maximum range for calculations over the integers,
that is the intermediate results in RNS format were not reduced modulo p, where p the field
characteristic of GF(p). This conversion was executed only once at the end of a point multi-
plication. The architecture achieved competitive performance compared to other ENS and
non-BNS implementations, but the large dynamic range required a considerable amount
of moduli channels, hence an analogous area overhead.

In the following section, an approach for RNS elliptic curve point multiplication based on
the RNSMMM algorithm is considered [ESI"13]. RNSMMM allows for RNS calculations,
but the final result of the multiplication is already reduced modulo p, thus a significant
reduction in the KNS range is achieved. In the following, a brief overview of the algorithm
is provided for the needs of this section. Detailed analysis and further enhancements are
presented in Chapter 8.

3.5.1 Modular multiplication in RNS

The RNSMMM is actually a transformation of the original MMM in Algorithm P23 to support
RNS arithmetic [PP95, KKSSO0]. Two BENS bases are introduced, namely A = (py, p2,..., pr)
and B = (q1,92,...,q1), such that ged(p;, qj) = 1,Vi,j € [1,L]. The 5 steps of the Mont-
gomery algorithm are translated to RNS computations in both bases, denoted from now on

asT = AUB.

Initially, the inputs a, b are expressed in RNS representation in both bases as a7 and bt
Steps 1, 3, and 4 of Algorithm 23, involve addition and multiplication operations, thus
their transformation to BNS is straightforward. For steps 2 and 5, the Montgomery radix
R is replaced by B =]'[f:1 qi, which is the range of B. We also denote as A = l'[f:1 pi the
range of base A. Then, in the second step, ¢ in BNS format is computed in base B by
Ig=3S3" pgl. Nevertheless, the computations in base I can’t be continued for steps 3, 4,
and 5 of Algorithm 23, since in step 5 we would need to compute a quantity of the form

43

RNS application in Elliptic Curve Cryptography

B! mod g;, which does not exist since g;s are factors of B. Thus, a base conversion Base
Conversion (BO) step, from base 3 to base A, is inserted, to compute t 4. t4 is then used
to execute the old steps 3, 4, and 5 in base A. The result at the end of this algorithm is a
quantity c7 in RNS format that equals ¢ = abB™! mod p, since BU is error-free.

Algorithm 3.2 RNS Montgomery Modular Multiplication (RNSMMM)
Input: ar,byr{a b<2p}
Output: ¢7,{c<2pandc=abB™! modp}
Precompute: (-p~')z,B,',pa
1 s;y—ag-br
tg—sp (-p7')p
t 4 — I { base conversion step }
UA—TAPA
VApg—SAtUpg
CA—Ug- B;ll
cB — ¢4 { base conversion step}

N O O W

Clearly, the total complexity of the algorithm is determined by the steps. A BO trans-
forms an integer expressed in an RNS base .4 to an another base 5. A BU is essentially
a residue-to-binary conversion while the final result is computed modulo each modulus
of the new RNS base. In this context, the methods employed for BO are either CRT-based
methods according to (Z229) or MRU-based methods according to (230), (2231). In the pro-
posed implementation an MRO-based method is utilized. Equation (231) is first employed
to obtain the digits of the result, while (ZZ30) is computed modulo each modulus of
the new base.

Sets of three and four moduli are proposed in order to implement the RNSMMM of Al-
gorithm B2. The form of the moduli determines the efficiency of the arithmetic opera-
tions and the structure of the residue-to-binary and binary-to-residue converters [NMETT].
The BNS bases employed are shown in Table B3. In the first base, RNS moduli of the form
2k — 2% 1, where t; < k/2 are employed, which offer simple modulo reduction operations
[BKP09].

The second base is realized by sets of three and four moduli of the special forms {2¥,2%*1 —
1,2F — 1} [Moh07] and {2%,2F — 1,2k+1 1 2k=1 _ 1} which also provide efficient arithmetic
operations and residue-to-binary and binary-to-residue conversions [BKP0Y]. In order to
use the result of RNSMMM in subsequent modular multiplications, it is required that 4p <
P < Q [BKPOY]. It is easy to check that the employed bases are sufficient to cover this re-
quirement.

3.5.2 Design
3.5.2.1 Modular adders and multipliers

For the first base, where moduli of the form 2% — 2% — 1 are used, the modular adder and
multiplier depicted in Figure BT are employed. Regarding modular multiplication, two

44

Pipelined RNS structures

Table 3.3: Proposed RNS Bases

Field (bit) | FirstBase A | Second Base BB
{256 _ 211 -1 {256
Three-modulus ’ ’
RNS b DO 160 256 _216 _q, 2% _1,
ases
256_220_1} 257_1}
{266 _ 217 -1 {266
Three-modulus ’ ’
RNS b D2) 192 266 _218 _q, 266 _1,
ases
266_224_1} 267_1}
{250 _ 220 _ 1’ {250,
Four-modulus 250 _p22_ 1. 2501,
192 50 _ 518 51
RNS bases (D3) 200 =2"°-1, 224 -1,
250_210_1} 249_1}
{258 _ 222 -1 {258
Four-modulus 258 _p13_ 1, 258 _1,
224 58 _ 510 59
RNS bases (D4) 2°° -2 1, 2°7 -1,
258_216_1} 257_1}
{266 _ 222 -1, {266,
Four-modulus 266 _p24_ 1. 266 _1,
256
RNS bases (D5) 266 _218 _q, 2671,
266_217_1} 265_1}

k-bit operands are multiplied and a 2k-bit value is obtained. Modular reduction of a 2k-bit
value w with moduli of the form 2 — 2% —1 can be written using its higher k bits, denoted
as wy, and its k lower bits, denoted as w;, as

w= <wh2k + w,> (3.13)

2k_pti—1’
Since 2¥ mod (2% -2% —1)=2% +1, it holds that

wl

——t—
> (3.14)

— / k /
W= Wy,2"+wy,,+wy+ w
~—~—

——
t; bit kbit 2k_oti _1

t; bit
"=(w,, 0---0+w,, +w, (3.15)
—— ——
t; bit t; bit 2k _oti _q

45

RNS application in Elliptic Curve Cryptography

la lb {2kbit

m 4 :
= +/- PR § f k bit f k bit Bit Organizer
(2

w,
¢ v Sel Multiplication " + + Whi +Wh + i
+/ B Modulo m adder Modulo m adder
B w L 2k bit

‘ e

A A Reduction Circuit

Modulo m adder
Sel DN + 0 * ;

(a) (b) (©)

Figure 3.12: (a) Modulo m adder/subtractor [SEM™09], (b) Proposed modulo 2k _oti _q
multiplier, (c) Reduction circuit

F-bit

al b
‘ { Fbit { Fobit
scll | scl2 | Addition * *

-t

H Ck' H - - .
0 | 0| Modulo 241 (k+1)- bit I (k+1)- bit 1 Multiplication
0| 1| Modulo2*1 Adder S Adder |
1] Modulo 21 R * 2F-bit
L] Modulo 2*

Bit Organizer

Cri1
[N m R,~§ rbit R, ¥ #ot
Crt

0 RM adder

sell +? sel? Sum ¥
(a) (b)

Figure 3.13: (a) Proposed reconfigurable modular (RM) adder, (b) Proposed RM Multiplier,
(F=k,k—-1,k+1)

Since w'y,, has t; bits, it can be concatenated at the end of w;lh 0---0. Therefore w can be
t; bit
calculated by

_ ! ! !
—_——

Whn zk_ztl'_l

For the second base, a reconfigurable modular (RM) adder is employed shown in Figure
BI3. Based on the proposed adder, addition and multiplication modulo 2K, 2%-1-1, 2.1,
and 2f*1-1 can be done without hardware redundancy. Note that the RM adder shown in
Figure 813 has (k — 1)-bit delay of full adder less than the modulo m adder (Figure B12) in
the worst case, thus the second base supports more efficient arithmetic operations. The RM
multiplier is shown in Figure BI3. After multiplication, the 2F-bit result R is split into two
F-bit CSB and MSH parts (R; and Ry, respectively) (F = k, k—1, k+ 1) and reduction modulo
2F —1 can be achieved by a modular addition of R; and R, [BKP0OY].

46

Pipelined RNS structures

#Ur‘ ¢z_r-

- z].
Module m subtactor ‘Uﬁ ‘ ’
—$ | Modulo m subtactor
y n
Bit Organizer +
2k bit /“’ /“’ 2k bit Multiplication
Addition/ subtraction -4 2kbit
/“/zk bit Reduction Circuit
Reduction Circuit v H

HY
(a) (b)

Figure 3.14: Calculation of H in KNS to MRS conversion for the first base (a) area efficient
design, (b) Fast design

3.5.2.2 Conversion from base 5 to base A

In step 3 of ENSMMM a base conversion from base B to base A is required, which consists
of a residue-to-IMRES conversion in base B and then a MES-to-residue conversion in base
A. Efficient RNS to MRS conversion for base A is reported in [BKP(9]. The core operation
in calculation of U;, Vi = 2,3,4 in (ZZ31) is
—{(zi— U\ m}
Hardware implementations of (817) for area and time efficient designs are shown in Figure
B14. Considering four-modulus RNS bases, for each U; (i = 2,3,4), an implementation
shown in Figure B4 is employed. The bit organizer provides the required shifts according
to pre-calculated multiplicative inverses.

Residues in .4 must be calculated after the calculation of mixed radix digits in base B. In
the calculation of MRS to RNS from B to base A for four-modulus BRNS bases, it holds that

zj = Uy +my (Uz + ma(Uz + m3Uy))) m; » (3.18)

where m; are the moduli 2¥, 28— 1, 2K*1 —1 and 2¥"! - 1. m;= my, m,, and ms are the moduli
of the form 2K —2% —1. Based on the form of the considered bases with simple multiplicative
inverses, for fast and area efficient design, adder-based structure can be simply realized by
using one RM adder for each modulus.

3.5.2.3 Conversion from base .4 to base 13

In order to mechanize RNS-to-MRES conversion in base A = {2%,2k — 1,2k+1 _ 1} based on
(Z37) and considering m; = 2k my = 2k_1q, ms = 2k+1 _ 1 we get

U=z (3.19)

47

RNS application in Elliptic Curve Cryptography

Stage 1

@ @ b vk,

48 ay by Tix
} "

’ Modulo 2%-2%-1 multiplication

’ Modulo 2%-2'-1 multiplication ‘

Stage |

.,, v) b v gl

Modulo 2%-2"-1 multiplication ‘

b
[Reg | [Reg] lRegHRlegl
|
l Reg]
Stage 2 J_ a1 J_qz l q3 J_q;
A4 L4 ¥ A
RNS to RNS Conv.
(first to second basis)
[[[[
| | | |
l Reg |
Stage 3 q' q" q's q's

Reg Reg
|
A 4 A 4
[Reg]
lql .-e- iq4 Stage 2
Y 14
| RNS to MRS Conv. ‘
[Reg |
#v' oo ¢ Va Stage 3
| MRS to RNS Conv. |
i i
l __ Reg |
lq I R lq'4 Stage 4
l—v A4
ﬁ a’ M'| Ny b ﬁ a’y M| Ny b
Sel 4 " * Sel 4 * M* * Sel 4 * Sel 4 * * *
ux ux Mux Mux
Sel 5 * Sel 5 v Sel 5 Sel_5
RM multiplier ‘ ’ RM multiplier ‘
Y Y
Reg Reg
[Reg |
77 o= (77 Stage 5
\J \J
[RNS to MRS Conv.]
[[
[Reg |
[v s [vh s
v
| MRS to RNS Cony. ‘
[v Reg i]
r woeT T4
(a)

Sel 4 Sel 4
— Mux = Mux
Sel_5 Sel_s
RM multiplier ‘

’ RM adder ‘
N bmx
lReg][Reg] lReg]lReg]

| |
l Reg]

RNS to RNS Conv.
(Second to first basis)

(b

Figure 3.15: RNSMMM architecture, (a) Fast design, (b) Area efficient design

Uz =((z2 = U) my),,. (3.20)
Us =(((zs = Uy my3—Uz) my3), - (3.21)
The required multiplicative inverses in (82201) and (B-Z1)) are <m1‘1>m2 =1, <m1‘1>m3 =2and
(m; 1y my = 2 [Moh(7]. Due to the simple form of multiplicative inverses, the proposed
adder-based structure was employed both for the fast and the area efficient design.
Regarding the MES-to-RNS conversion to base 53, it holds that
zZj= (U +my (U + my (U3+M3U4))>mj. (3.22)

48

Implementation details of [ECPM and comparisons

It is apparent that all calculations in (8222) consist of simple shifts and addition operations.

3.5.3 Hardware Architecture for RNS Montgomery multiplication

The proposed architectures for the RNSMMM are shown in Figure B15. The area efficient
architecture consists of one modulo (2% — 2% — 1) multiplier, one RM multiplier, one RM
adder and two base conversion units with adder-based structure, connected in a four-stage
pipelined fashion (Figure B15b).

The alternate design optimized for high-speed is implemented in a six-stage pipelined ar-
chitecture, shown in Figure BT5a. In each modulus channel in stages one and four of the
pipelined implementation, the modular multipliers and adders in Figures BT2 and B13
are employed. For the base conversion operations, the modulo adders and multipliers de-
scribed in previous subsections are utilized.

3.6 Implementation details of ECPM and comparisons

Tables B4 summarizes the delay and area comparisons of the proposed ECPM with recent
state-of-the-art works. The field characteristic is p = 2!6° + 7 for a 160-bit implementation
and NIST recommendations for p-192, p-224 and p-256 corresponding to 2192 — 264 — 1,
2224 _ 2% 1 1, and 22°6 — 2224 + 2192 4 296 _ 1 respectively [SFM7T09].

Regarding point multiplication, the binary method is employed. For the point addition
and doubling operations, the optimized IDEGs presented in the previous sections as well
as in [SEM™09] are employed. Compared to [SEM™09] fewer moduli are required in the
proposed architecture. Moduli in Table B2 are of no special form, while well-formed moduli
employed here lead to a very simple reverse converter structure. The required conversions
consist of a simple adder-based structure, while the computations are pipelined with the
main ECPM core.

The architecture for the proposed ECPM consists of a binary-to-residue converter, a regis-
ter file, one RNSMMM, a control unit, and a residue-to-binary converter. In the proposed
architecture a binary-to-residue converter is employed to compute the RNS representation
of the projective coordinates (X, Y, Z). Due to the use of well-formed moduli, adder-based
structure can be utilized for the binary-to-residue conversion as discussed in [BKP0Y]. The
control unit provides the required input operands and control signals for the arithmetic
unit, while the distributed RAMs on [EPGA are used in designing the register file. Residue-
to-binary conversion can be also realized by an adder-based structure according to (ZZ30)
and (Z3).

Due to the pipelined implementation of the RNSMMM, reduction in the execution time of
a point multiplication is also achieved. Unlike [SEMT09], [Guil0], fewer number of moduli
are required and the use of well-formed RNS bases results in efficient realization of modular
addition and multiplication required in the RNSMMM. Another advantage of the proposed
architecture is the simple, adder-based implementation of the residue-to-binary converter,

49

RNS application in Elliptic Curve Cryptography

compared to [SEM™09], which requires multiplications by large operands. The proposed
[ECPM architecture is implemented on Xilinx VirtexE, Virtex 2 Pro and Altera Startix II to
achieve a fair, 1-to-1 comparison with the state-of-the-art implementations in Table B4. In
[Guil0], although moduli of smaller word-length are employed, a large number of moduli
is utilized and thus the RNS base conversions are complex resulting to worse performance,
as shown in Table B4.

3.7 Summary

In this chapter two BENS implementations of an ECPM were presented. A [DEQ approach
for the optimization of point addition and doubling was utilized for both designs to achieve
the same number of execution steps for both operations. For the first design an appropriate
RINS range was selected to accommodate the full range of calculations without intermediate
modular reductions, while the second design employed the RNSMMM algorithm.

For the first architecture extra care to the design for the output RNS-to-binary converter was
given. A specially designed bit-serial multiplier was developed to handle large operands.
The multiplier was then embedded in the architecture of the converter, forming a serial
design suitable for large KNS ranges.

Area and timing results were offered, proving the efficiency of the proposed implementa-
tion even toward dedicated ASIO implementations. A study for various key lengths, number
of RNS moduli and modulus bit lengths was also performed. It was proved that, in compar-
ison to traditional arithmetic approaches, RNS has the tendency to perform increasingly
better as the key word-lengths of an [ECO will increase in the near future.

The second design improved significantly our first effort, by reducing the number of moduli
channels required and by utilizing moduli of special form. This amounted to reduction of
area and speed-ups in terms of total execution time for one point multiplication.

50

Summary

Table 3.4: Comparison of ECPM architectures

Field | Max Freq. | EC mult.
Area
(bits) (MHz) time (ms)
3-moduli 192 34.7 2.56 20,014 LUT
(area efficient) | 160 38.2 1.83 15,448 LUT
. 256 34.7 3.41 28,318 LUT
4-moduli
. 224 37.0 2.92 25,912 LUT
(area efficient)
192 38.4 2.67 21,380 LUT
256 39.7 3.95 32,716 LUT
[SEMT09] 224 46.8 3.31 29,610 LUT
192 52.9 2.97 25,012 LUT
[OPOT]) 192 40 3 11,416 LUT
[OBPVO3] 160 91.3 14.41 11,227 LUT
3-moduli 192 50.2 1.82 9,310 LUT
(area efficient) | 160 52.5 1.36 8,742 LUT
4-moduli 256 50.2 2.62 18,942 LUT
(area efficient) | 192 53.6 2.07 14,782 LUT
3-moduli 192 50.2 0.35 19,224 LUT
(fast design) 160 52.5 0.31 18,114 LUT
4-moduli 256 50.2 0.59 28,746 LUT
(fast design) 192 53.6 0.52 25,304 LUT
[MMMOA] 256 39.46 3.86 35,450 LUT
[SEKSOA] 160 75 2.41 50,000 LUT
256 94.7 2.66 41,595 Slices
[CHO8A] 192 94.7 1.25 40,219 Slices
160 94.7 0.78 39,531 Slices
3-moduli 192 54.1 0.33 5,248 ALUT
(fast design) 160 56.8 0.29 4,892 ALUT
. 256 54.1 0.54 12,324 ALUT
4-moduli
. 192 59.9 0.42 7,932 ALUT
(fast design)
192 61.2 0.38 5,148 ALUT
256 157.2 0.68 9,177 ALUT
[Guil(] 192 160.5 0.44 6,203 ALUT
160 165.5 0.32 5,896 ALUT

! Implemented on Xilinx VirtexE 2 Implemented on Xilinx Virtex 2 Pro

3 Implemented on Altera Stratix I

51

CHAPTER

New RNS architectures for GF(p) and
GF(2™)

W{gm fmme \\
Versatile architectures R

This chapter presents an important class of algorithms that formed the basis of the
proposed versatile architectures, namely the RNS Montgomery Modular Multiplication
(RNSMMM) and PRNS Montgomery Modular Multiplication (PRNSMMM) algorithms. The
most important features and characteristics of these algorithms are analyzed. New, im-
proved versions for both algorithms are proposed, while an algorithmic and architectural
analysis proves the superiority of the proposed solutions compared to existing ones.

New RNS architectures for GF(p) and GF(2")

4.1 Overview of RNS Montgomery modular multiplication

The previous chapter presented one of the first applications of RNS in [ECO. The main char-
acteristic of this methodology was the calculation of the maximum dynamic range required
for a point-addition and point-doubling operation. Subsequently, an RNS base that could
accommodate this range was selected. This method is actually a translation of integer arith-
metic to a KNS system, and the final modulo reduction by the field modulus p of GF(p) is
executed once at the end of each point addition or doubling operations.

This solution, however, did not take into account the possibility of embedding modular
arithmetic within an KNS system, that is to perform calculations using RNS but at the same
time the result is reduced modulo p, where p the field characteristic of GF(p). An impor-
tant advance towards this direction was the introduction of RNS to MMM. To the best of
our knowledge, the authors in [PP95] were the first to propose such a type of algorithm.
Later, researchers produced more robust algorithms and implementations, mainly for use
in the context of modular exponentiation for BSA. The complete algorithms are described
by Kawamura et al. in [KKSS00], Bajard et al. in [BI04] and Gandino et al. in [GELMBTT]. Let
us rewrite here the original MMM for convenience.

Algorithm 4.1 Montgomery Modular Multiplication MMM
Input: a,b,N,R, R ' {a,b<N}

Output: c=abR™! mod N, {c<2N}

1 s—a-b

2 t—s-(-N7') modR
3 u—t-N
4

5

V—S+u
c—7vVI/R

The challenges to transform this algorithm to RNS format are steps 2 and 5. Step 2 is a
modulo R operation, where R is the Montgomery radix. In non-RNS implementations R is
usually chosen to be a power of 2, thus modulo R operations amount to simple shifts. A
method that provides the modulo operation of step 2 within KNS representation needs to
be devised for the RNS version of the algorithm. Similar problems arise for step 5, where
division by the Montgomery radix needs to be performed in RNS.

The trick to overcome these issues is to choose a new Montgomery radix. Assume that a
base B ={q1,q>,...,qr} is employed with a corresponding range B. By assigning the Mont-
gomery radix to be the range B itself, step 2 is transformed to a step computed modulo B,
since KNS is a closed modulo B system. Unfortunately, computations in the same base can-
not be continued, since in step 5 a quantity of the form B~! mod B needs to be computed,
which mathematically does not exist. For this reason, a new base A = {p1, p2,..., pr} is em-
ployed and a BO from base B to base A is performed at step 2 of the algorithm. A BO is the
transformation of an ENS representation in a base BB to another base A.

Computations for steps 3, 4 and 5 are computed in the new base .4, since now it is feasible
to compute B~! mod A in step 5. The complete RNSMMM algorithm is shown below.

54

Overview ofIRNS Montgomery modular multiplication

Algorithm 4.2 RNS Montgomery Modular Multiplication (RNSMMMI)
Input: ar,by{a,b<2N}
Output: c¢7,{c<2Nandc=abB~! modN}
Precompute: (-N7!) B B;ll, Ny
1 s;y—ag-br
tg—sp-(-N7")g
t 4 — tp { base conversion step }
ug—tg-Ny
Vgpg—Sqat+tUmp
CA—Vy- B;41
cB — c 4 { base conversion step}

N O s W

An extra BO is issued at the end of the algorithm so that inputs and outputs are compatible
with each other, thus the algorithm may be used repeatedly in the context of any modu-
lar exponentiation algorithm. Steps performed in both bases are denoted as 7 = Au B.
Clearly, the complexity of the algorithm depends on the BO steps.

The algorithms for RNSMMM proposed by Kawamura et al. in [KKSS00] and Bajard et al.
in [BI04] differ only in the way the BO is performed. Gandino et al. offered optimizations
for both algorithms by reducing the total number of steps required using pre-computations
(GCMBIT].

4.1.1 Base Conversion (BO) by Kawamura et al.

In 2000, Kawamura et al. presented the first practical method for base conversion [KKSSO0Q].
Their approximation method evaluates the correction factor y of the CRT in (2229). Starting
from (ZZ29), and substituting by

¢i=(zi- A7), 4.1)
we obtain
L
z= fi'Ai—YA. (4-2)
i=1
Dividing both sides by A, we obtain
L&z
224y (4.3)
imimi A '

Since0 < z/A<1,y< Zle _ <y + 1 holds. Therefore,

T
Gi
mj

Y= {i iJ (4.4)

i=1 M

with0 <y <L,since0<¢;/m; <1.

55

New RNS architectures for GF(p) and GF(2")

Two approximations were employed in [KKSS00]. The denominator m; is replaced by 2',
where 2”71 < m; < 2" while the numerator ¢; is approximated by its most significant ¢ bits,
where g < r. Thus, instead of y, an approximated value y* can be calculated by

L
{Z trunc(é) “J ’ s

r—j‘ﬁf(—rj‘q)ﬁ
where trunc(é;) = &; A(1...1)(0...0) and A denotes an AND operation. An offset value
0 < a < 1lisintroduced to compensate the error produced by the approximations. Division
by powers of 2 are simple shifts thus (E3H) can be realized by additions alone. A theorem
that provides the offset value a, so that the error issued by the approximations is zero, was
also provided in [KKSS00]. The complete BO algorithm is shown below as Algorithm A3.

Algorithm 4.3 Base Conversion (BO) algorithm by Kawamura et al. [KKSS00]
Input: {5 =((1,{>,....{1),A B,a
Output: {4 =({},¢5,...,¢))
Precompute: (B;l)ql_ ,(B)A(Vi=1...L),(-B) 4
1l op=0
foralli=1...Ldo
61 = <(l 'Bi_l>qi
0ip=0
end for
foralli=1...Ldo
forj=1...Ldo
a] =0(j-1 +trunc(¢;)/2"
=lojl, {Y, {0,1}}
a] =0j—)/j
0i,j =00 +&j(Bj),, +7; =By,
end for
end for
foralli=1...Ldo
¢ ={8iL)p,

16 end for

© 0 N O G W

— = = = e
O W NN~ O

Kawamura et al. offered theorems which provide optimum values for the quantity «, so that
the error introduced by their approximation method is equal to 0 [KKSS00] (a = 0 in the first
and a = 0.5 in the second one). There is however a limitation to this method, namely
the input operand that is to be extended should not be too close to the range B [KKSSO0].

4.1.2 Base Conversion (B() by Bajard et al.

Bajard et al. employed two different methods for the first and second B of the RNSMMM
[BI04]. The first, shown below as Algorithm A4, issues an approximation error but performs
faster than Kawamura’s algorithm, while the second depicted as Algorithm B3, was origi-

56

Overview ofIRNS Montgomery modular multiplication

nally proposed by Shenoy and Kumaresan [SK89] and corrects the previous result. The two
algorithms convert the corresponding quantities in Algorithm B2, i.e., the values ¢ and ¢
respectively. Note also that, the first algorithm is nothing more than the CRT expression in
(Z28), while the second computes the correction factor y of the CRT expression in (ZZ29).

The key idea is that we can relax our restriction to obtain a correct result during the first
base conversion, since, as it was shown in [BI04], if larger bases are selected, such as A, B >
N(L+2)?, then this relaxation does not affect the final result.

Algorithm 4.4 First BO algorithm by Bajard et al. [BI04]
Input: 5= (%, %,...,1L)
Output: 14, =(1],1),...,1],1})
Precompute: (Bl._1>q' (Vi=1...L (Bj) Aup,
1 gq;= ti'<Bi_l>q_,Vi =1...L
2 forallj=1...Land j=rdo
3 t}:<Z§:1qi'Bi>pj
4 end for

Algorithm 4.5 Second BO algorithm by Bajard et al. [BI04]

Inpllt: CAupr = (Cly CZ)”‘)CL) Cr)

Output: ¢ =(c},¢c},...,C;)

Precompute: <A]_.1>pj (Vj=1...Lr),(-A)B,(A})5.(4)), (Vj=1...L)

1 ¢ = <cj-A]'.1>pj,Vj: 1...L

2 o =(ZfdiAf)
3 y=((c/-cIAh),

4.1.3 Base Conversion (BO) by Gandino et al.

Gandino et al. [GLMBTI] improved both of the solutions presented previously by issuing
pre-computation steps. In the following, values with a hat symbol denote values multiplied
by AJ‘.1 in base A, where A; = A/p;,Vj=1...L. The re-organized versions of Kawamura’ et
al. BA are shown below as Algorithms &6 and B4, while the re-organized versions of Bajard
et al. BO correspond to Algorithms B8 and B9 respectively.

Interestingly, while the B algorithms proposed by Kawamura et al. and Bajard et. al con-
vert only one value at steps 3 and 7 of Algorithm &3, the corresponding reorganized versions
proposed by Gandino et al. include in the BO algorithm all other steps of Algorithm B3 as
well. These savings are depicted in terms of reduced number of modular multiplications
required for one RNSMMM, as shown in Table BT [GL.P™12].

57

New RNS architectures for GF(p) and GF(2")

Algorithm 4.6 Reorganized first BA algorithm for Kawamura et al. [GLMBIT]

Input: sz, a =0, §A
Output: ¢4

Precompute: (B;lAj)A,(—NAJ)A,(B,-NB;AJ—J)A(W =1...0,(-N"'B1) (vi=1..

é.l = <Sl' (—N_lBi_l)>qi, Vi = 1...L
o=a
¢j=(8- (B4 4))),, Vi=1...L
fori=1...Ldo
o = o +trunc(é;)/2"
Y* =lo]
o=0-Y"
¢j={¢j+&i (BiNB; A7) +y" - (-NAY))

end for

X N O ks Wy -

,Vj=1...L
Pj

©

L)

Algorithm 4.7 Reorganized second algorithm for Kawamura et al. [GEMBIT]

Input: ¢4,a=0.5

Output: cp

Precompute: (A;) 5 (A3
1 o=a

2 ¢i=0,Vi=1...LinB

3 forj=1...Ldo

4 o =0 +trunc(é;)/2"

5 y'=lol

6 o=0-Y"

7 Ci:<Ci+éj'Aj+Y*'(—A)>qi,Vi=1...L
8 end for

Algorithm 4.8 Reorganized first BO algorithm for Bajard et al. [BI04]

Input: sgy,, = (51,32,...,SL,sr),§A

Output: 4, cin p,

Precompute: (B;'4;) 1,(B3'), (BiNB3'), (¥i = 1..0),(BiNB;'47!) (v
1...L),(—N‘lBl.‘1>qi (Vi=1...L)

1 q,-:<s,--(—N-lB;1)>q,,Vi:1...L

2 éj:<§j-B;1AJ~+z§=1qi-(BiNBglA;1)>p',Vj:1...L

J
3 ¢r=(s B +X,qi- (BiNB/?»pr

58

Overview ofIRNS Montgomery modular multiplication

Algorithm 4.9 Reorganized second BO algorithm for Bajard et al. [BI04]

Input: ¢4 =(c1,¢2,...,¢1),{C)p,

Output: ¢z =(c},¢c},...,C})
Precompute: (A;') (A;)z (Vj=1...),(Aj)p, (Vj=1...1),(-A)p

—

¢/ = <Z§:15j 'Aj>

Pr

2 7= <(C§’—Cr)A?1>pr

3 ¢ = <z§zlé]--A,->ql_, Vi=1..L

4 .ci= <C:_YA>q,- Vi=1...L
Steps in KESSm | (e [GLMBI1I] applied | [GLMBTI] applied
RNSMMM in [KKSSO0] [B104]
1,3,4 5L 5L 2L 2L
First BO L2420 | I*+L L?+3L L2 +2L
SecondBO | L[?+2L | L?>+2L I+ L I?+L
Total 212 +9L | 2L?+8L 212 +6L 212 +5L

Table 4.1: Number of modular multiplications in state-of-the-art RNSMMM

4.1.3.1 Modular reduction by the RNS moduli

The modular reduction technique by each BENS modulus is identical for all the works in
[KKSS00, B104, GEMBIT], since not only it offers simple implementations but also allows for
fair comparisons. Assuming moduli of the form p; = 2" — ¢;, where ¢; < 2" and h < rT_l, the
reduction of an integer x < 22" requires two multiplications and three additions according
to

y=x mod2" +((x<<r) mod2r)-c,-+(x<<2r)‘cl?, (4.6)

where << denotes a left-shift operation, x <2, z>2r,and ¢; < 21 [GEMBTT).

4.1.3.2 Conversions to/from RNS

To allow handling of large integers in each modulus channel, it is useful to employ high-
radix representations so that each high-radix digit can be assigned to an KNS channel. A

radix-2" representation of an integer x as a L-tuple (x(L_D, ety x(O)) satisfies
x(L—l)
& iori (L-1) :
—_ l rt __ r{L— r .
x—Zx 2" =2 yeenr2h1) RUE 4.7)
i=0
+©

59

New RNS architectures for GF(p) and GF(2")

where 0 < x? < 27 — 1. By applying the modulo p j operation in (&7) we can convert the
integer x to its associated RNS representation by

L-1 @ .)
<x>pj:<i§0x (2 >pj> Yjel,Ll. (4.8)

Pj

If constants (2" i> p; are precomputed, this computation is a typical multiply-accumulate
operation and can be computed in L steps, when executed by L units in parallel.

As (Z29) is the basis of the presented RNSMMM algorithms, it would be useful to employ it
also for the RNS-to-decimal conversion. Let us rewrite (Z229) as

L
x=) (xi A7), - Ai-yA=
i=1

Ai-1 Aw-1
L) i
=&V L2n)Y g -y :
i=1 Aiqy Aq)
A0 A

(4.9)

where &; = (xi -Al._1>p.. As soon as y has been evaluated using the methods of section 3,
each row of (£9) can be computed in parallel in each cell by means of multiply-accumulate
operations. In this case, carry should be propagated from cell 1 until cell L [KKSS00].

4.1.4 Architectural comparisons

All works in [KKSSO0, BI04, GEMBTT] utilize cell-based architectures for implementing the
algorithms in [KKSS00] and [BI04, GLMBIT] respectively. Each cell corresponds to a single
RNS modulus and utilizes a multiply-accumulate unit followed by a modular reduction unit
which performs reduction by the corresponding ENS modulus using (&H). Actually, with
slight modifications, the architecture in [GLMBII] supports both algorithms in [KKSS00,
BI04].

The cell structure is shown in Fig.Z1 [GLMBII]; a common bus that connects the cells
and lines connecting one cell to a subsequent one are omitted, for simplicity reasons. The
multiply-accumulate unit is depicted at the top of the cell and the modular reduction units
at the bottom are a straightforward implementation of (&8). Again, the prospective reader
is instructed to refer to [GLP™12, GLMBTI] for a detailed architectural analysis of the state-
of-the-art RNSMMMialgorithms.

Table B2 summarizes the number of clock cycles required for the considered algorithms.
The metrics are based on the cell-based architecture in Figure &1 and depend on the pipeli-
ne stages € of each cell, the number of cells L, and the number of parallel multipliers M in
each cell.

60

Overview ofIRNS Montgomery modular multiplication

Operation Base | # multiplications | # cycles
S=Xy B L €
$=1y A L vl

g=s-N"'B;) | B L €

A ap— 1

=3B, A, A L |3l

w; = B;NB'A' | A 12 [£]-1+¢
w=1wjA; B r? [£]-1+¢

Table 4.2: Number of multiplication steps per RNS modular multiplication in state-of-the-
art RBNSMMM ([GL.P™12] without correction)

) Expon. delay | Area
Algorithm # steps | Step delay | MM delay
(x2,050) (x33)
[KKSSO0], [BT04] | [KKSSO(] 88 93 8,184 8,184 99,873
[GLPT12] [KKSS00] 76 93 7,068 0.0034+7,068 | 99,873
[KKSSO(, BI04] [BI04] 89 86.6 7,707 7,707 99, 840
[GLPT12] (BI04] 77 86.6 6,669 0.0034 +6,669 | 99,840

Table 4.3: Area and delay comparisons with L=33,r=32,¢=3, M =1, h=11

Gate Area (transistors) | Delay (inverter)
Inverter 2 1

NAND 4 1.4
XOR 4 1.4
XNOR 12 3.2
NAND3 8 1.8
NAND4 10 2.2
REGISTER 15 4.8

Table 4.4: Basic logic library in CMOS technology (model from [Gaj97])

Table E23 summarizes complexity comparisons based on the model in Table B2 [Gaj97].
Clearly, the approach in [GLP12, GLMBTI] further optimizes the algorithmic and hard-
ware complexity of the considered RNSMMM algorithm. In the following sections, opti-
mized versions of the considered RNSMMM algorithm based on a MR approach for the
base conversion operation are proposed.

61

New RNS architectures for GF(p) and GF(2")

4.2 New MRC-based Montgomery modular multiplication

in GF(p)

In the following, the original MRO [ST67] is em-
ployed to construct new BO algorithms in the con-
text of the RNSMMM in Algorithm B2 [SSTT]. In the
original case, the IMRQ of an integer x with an KNS
representation x 4 = (xy, X,..., Xr) is given by

x=U;+WoUp+---+ Wi Uj, (4.10)

where W; = Hj’:z mj-1,Yi € [2,L] and the U;s are
computed according to
U1 = X1
Uz =((x2 = U my,),.
_ -1 -1
Us = (((xs = U my 3= Ua) my3) (4.11)

Up=((-..cc,=U)myp—---=U1) m;LL>mL’

where mim;} =1 mod m;.

The proposed algorithm implements (ETT) in
steps 2 to 7 to obtain the mixed-radix digits U; of
x. From step 8 to 15 (E11) is realized by applying a
Horner’s rule scheme, while the whole summation

is computed modulo each modulus p; of the new
base A.

The proposed BO is error-free, as opposed to
[KKSS00, BI04], where CRT is employed and an
approximation of the correction factor y of (Z229)

Multiply-
accumulate s e, L
unit

¥ ¥
v v C5-PSEUDO MUL
MUX
vy v ¥
ADD

Y
REGISTER

v

¥ ¥
C5-PSEUDO MUL

¥ ¥
C5-PSEUDO MUL
Yy YvYy

ADD First modular
3 reduction unit
v
REGISTER

¥

Y L 4
C5-PSEUDO MUL

Yy v v.v - Y ¥ ¥
ADD ADD
. A
MUX
Second modular

— W N
MUX reduction unit

¥
REGISTER

Figure 4.1: MAO cell [GLPT12]

is calculated. @ Conditions gcd(B,N) = 1 and
ged(A, B) = 1 are sufficient for the existence of (N~!)z and (B™') 4, respectively. 4N < B
is also sufficient for ¢ < 2N to hold when a, b < 2N. It holds that

v ab+tN (@2N)?+BN (4N
c=—= < =[—+1|N<2N, (4.12)
B B B B

which yields 4N < B. Finally, (ET2) shows that 2N < A is sufficient for c < A and v < AB.
Since v is the maximum intermediate value, all values are less than AB.

4.2.1 The Proposed RNSMMM Architecture

Figure B2 depicts a suitable architecture that implements the proposed RNSMMM algo-
rithm. Due to the algorithm’s internal structure, all calculations are decomposed to simple

62

New MRC-based Montgomery modular multiplication in GF (p)

Algorithm 4.10 Proposed MRUO-based base conversion
Input: xp = (x1,x2,...,X1)
Output: x4 = (x},X5,...,X])

1 U —x;
2 foralli=2,...,Ldo
3 Ui — x;
4 forj=1toi—1do
5 Ui‘—<(Ui—Uj)q},}>q.
6 end for l
7 end for
8 foralli=1,...,Ldo
9 x?«—(UL)pi
10 forj=L-1to1ldo
0o g (U,
12 end for
13 end for
« /0 x y x
B TP 5 v
“RAM | RAM |ROM RAM | ROM RAM |ROM

Add/mult L Add/mult Add/mult
mod p1 / g > modpz/q: " modp/q
UNIT # 1 UNIT#2 | UNIT#L

Figure 4.2: The proposed MRUO-based RNSMMM architecture

add/multiply operations, each one dedicated to an RNS modulus channel. The lines that
connect each unit are used for the base conversion and MR realization, since according
to (E10), the outcome of a unit must be added to the outcome of its subsequent one. Obvi-
ously, the proposed architecture, if used repeatedly, executes modular exponentiation and
inversion algorithms [MVO96] with no need for extra hardware.

The architecture preserves the efficient input/output conversions presented in the previous
section for the binary-to-RNS and RNS-to-binary conversions respectively.

63

New RNS architectures for GF(p) and GF(2")

Table 4.5: requirements of the proposed RNSMMM architecture

) Parameters
Operation

stored in ROM (bits)

Binary-to-RNS <2rj>pl, , <2rj>qi 2Lr

RNSMMM Ng', B}, Na 3Lr
GO a5 P ppd) | 2LrE
RNS-to-binary - -

Table 4.6: Number of operations in RNSMMM algorithms

Alg. RNSMVIMI Conversions
Alg. Others | Binary-to-RNS | RNS-to-binary
MRO-based [SSTT] | L(L—1)+2L? | 5L 12 1?
[KKSSO0] 2% +4L 5L I? LRL+1)
(BI04 2% +3L 5L N/A N/A
[GLP*17] 217 +3L 2L I? LR2L+1)

4.2.2 Performance and Comparisons
4.2.2.1 Memory requirements

Table 5 summarizes the memory requirements of the proposed architecture, where r
is the radix, and therefore the bit-length, of each modulus. If area is not an issue, two
RNSMMM architectures can be exploited in parallel, each one dedicated to a single base.
Each RAM module in Figure B2 stores an r—bit result of a multiply-accumulate unit, which
is equivalent to a total 2Lr-bit RAM, if two RNSMMM architectures operate in parallel. Note
also that all parameters for the RNS-to-binary conversion are identical to the parameters
used for the B algorithm, thus no extra memory is required.

4.2.2.2 Frequency

Table B8 summarizes the number of operations required by the RNSMMM algorithm, along
with the binary-to-BNS and RNS-to-binary conversions in terms of modular multiplica-
tions. Comparisons are made with the works presented in [KKSS0O0, BI04, GI.PT12], which
also present an RNS Montgomery multiplication, but they are based on CRT. It is apparent
that due to the use of instead of CRT], the proposed algorithm requires slightly more
operations for the BO but less operations in total. The reason is that savings are achieved
in the RNS-to-binary case, since the upper part (steps 2-7) of the BO algorithm is identical

64

New CRT-based Montgomery modular multiplication in GF(2")

for the conversion case as well. Thus, only L? multiplications are required for steps 8-13. In
Chapter B the algorithm is further optimized to minimize the modular multiplications for
the B as well.

Note that in [BI04] no estimations are given for the converters, since an unusual splitting of
the input to blocks of size equal to the size of the RNS moduli is issued, instead of standard
RNS-to-binary conversion. However, this method produces an intermediate value that has
to be corrected at the end of the algorithm, by adding several multiples of the modulus N
to the final result.

Let A, f, T denote the total number of operations, frequency, and throughput of a modular
exponentiation that utilizes RNSMMM multiplication and requires % + 2 modular mul-
tiplications [KKSS0O0]. A is then roughly estimated by the sum of RNSMMM algorithm’s
operations multiplied with % + 2, plus the operations for the conversions and the final
correction step. Under these assumptions, T = f - Lr/(A/L) and A is divided by L, since L

processing units work in parallel.

As an example, for a 1024—bit exponentiation used in BRSA, if 33 32—bit moduli are chosen
and the frequency is set to f = 100 MHz, then T is about 3 [Mbit/sec], which is a reason-
able choice for deep sub-micron CMOS technologies, such as 0.35 —0.18um. For the same
scenario, the throughput reported in [KKSS00O] was 890 [kbit/sec].

4.2.2.3 Arearequirements

Each add/multiply unit encompasses an r—bit modular adder, consisting of 2 r—bit adders
and a multiplexer, and an r—bit multiplier. Assuming A,q4, Amui: and A,,,x be the area of
an r—bit adder, multiplier and multiplexer respectively, then the total area of the proposed
architecture is roughly estimated to be L(2A,44 + Amuir + Amux)-

4.3 New CRT-based Montgomery modular multiplication in
GF(2")

Details on GF(2") arithmetic were presented in Chapter 2, section 1.1.2, thus we focus on
the applicability of PRNS in GF(2") arithmetic. The authors in [KA98] proposed a Mont-
gomery multiplication algorithm, presented as Algorithm BT, suitable for polynomials in
GF(2"). Instead of computing the product c(x) = a(x)-b(x) mod N(x), the algorithm com-
putes c(x) = a(x) - b(x)-r~(x) mod N(x), where r(x) is a special fixed element in GF(2").
The selection of r(x) = x" is the most appropriate, since modular reduction and division by
x™ are simple shifts [BSS02, HMV(4].

The Montgomery multiplication method requires that r(x) and N(x) are relatively prime,
i.e,, gcd{r(x), N(x)} = 1. This assumption always holds, since N(x) is an irreducible polyno-
mial in GF(2), thus it is not divisible by x. Since r(x) and N(x) are relatively prime, there
exist two polynomials ! (x) and N~!(x) such that

r)-rlx)+Nx)-Ntw) =1, (4.13)

65

New RNS architectures for GF(p) and GF(2")

where r~1(x) is the inverse of r(x) modulo N(x). The polynomials r~!(x) and N~!(x) can
be computed using the extended Euclidean algorithm [LN86, McE87]. The Montgomery
multiplication of a(x) and b(x) is then defined as

cx)=ax) - -bx)-r'(x) modN(x), (4.14)

which can be computed according to Algorithm ETT.

Algorithm 4.11 Montgomery Multiplication in GF(2")
Input: a(x),b(x),r(x),N(x),N‘l(x)

Output: c(x) = a(x)b(x)r"}(x) mod N(x)

s(x) — a(x)b(x)

t(x) — s(x)N~'(x) mod r(x)

u(x) — t(x) N(x)

v(x) — s(x) + u(x)

c(x) —v(x)/r(x)

(S B O R

The algorithm is similar to the Montgomery multiplication for integers presented already as
Algorithm E1. The only difference is that the final subtraction step required in the integer
case is not necessary in polynomials, as it has been proved that the degree of the resulting
polynomial c(x) is less than n [KA98].

4.3.1 The proposed PENS Montgomery modular multiplication

A modification of the Montgomery algorithm for multiplication in GF(2") that encom-
passes PRA is proposed. This work extends the work in [BIJ05], which encompasses tri-
nomials for the modulus set, by employing general, any-degree polynomials that achieve
larger dynamic ranges. Also, the problem of PRNS-to-polynomial and polynomial-to-PRNS
conversions are addressed, as opposed to [BII05].

Similar to the integer case, two PENS bases A = (p1, p2,...,pr) and B = (q1, 42, ..., qL) are
introduced, such that gcd{p;, q;} = 1,Vi, j € [1, L]. The 5 steps of the Montgomery algorithm
are translated to PRNS computations in both bases, denoted from now on as 7 = AUB.

Initially, the input polynomials a(x), b(x) are transformed to PRNS representation in both
bases as a7 and b7. Steps 1,3, and 4 involve addition and multiplication operations, thus
their transformation to PRNS is straightforward. For step 2, the constant r(x) is replaced by

L
B(x) = H qi(x), which is the range of 5. Then, t(x) in PENS format is computed in base 3
i=1

by tg=sg-(N7}) - Nevertheless, the computations in base 3 can't be continued for steps
3,4 and 5, since in step 5 we would need to compute the quantity B~!(x) mod B(x), which
does not exist. Thus, a base conversion from base B to base A is inserted to compute 7 4.
t 4 is then used to execute steps 3, 4 and 5 in base .A. The result at the end of the proposed
algorithm is a quantity ¢ in PRNS format such that c¢(x) = a(x)b(x)B ~1(x) mod N(x).

Algorithm BT depicts the proposed GF(2") PRNS Montgomery Modular Multiplication
(PRNSMMM). In the proposed algorithm, the degree of input and output polynomials are

66

New CRT-based Montgomery modular multiplication in GF(2")

both less than n, so that input and output are compatible with each other. This allows
to construct a modular exponentiation algorithm by repetition of the PRNS Montgomery
multiplication. Base extension in step 7 is utilized for the same reason. Note that it is un-
necessary to realize step 5 in base B. Also, base I3 representation in step 4 can be ignored
as well, since v is always a multiple of B and thus vz = 03.

Algorithm 4.12 The proposed PRNSMMM algorithm

Input: ar, b, Nél, B;ll, N 4, {such that deg{a(x)} < n and deg{b(x)} < n}
Output: c7, {such thatdeg{c(x)} < nand c(x) = a(x)b(x)B~1(x) mod N(x)}
ST —ar-br

Ig—sip- Nél

A 1IB

ug—tg-Ny

Vp—Sqat+tUuy

cA—va-By

CB—CA

N O ke W

Algorithm 4.13 Base Conversion (BQ) algorithm for PRNSMMM
Input: zp
Output: z4
Precompute: B; ' (x),(B; (X)), { Vi, j€[1,L]}
§i=(zi-B;'(x),, (Viell,L]}
20, =0
fori=1,...,Ldo
zji=2j-1,i+¢i(Bi(x)p, {Vje L, L]}
end for
za=(21),, (Vjell, L]}

—

S s W N

4.3.2 Base Conversion (BO) algorithm for PRNSMMM

Assuming a base conversion from base B to base .4, one can calculate (Z235) to transform a
[PRNS vector expressed in B3 to polynomial representation and then perform a Polynomial-
to-PRNS conversion to base .4 to obtain the PENS representation in the new base. The
process is shown in Algorithm E-T3.

4.3.2.1 Proof of PRNSMMM'’s algorithm validity

Theorem 1: If (1)gcd{N, B} =1, (2) gcd{A, B} =1, (3) deg{A} > n, and (4) deg{B} > n, then
Algorithm ET2 outputs ¢, for which ¢ = abB™! mod N and degic} < n.

Proof. Since gcd{N,B} =1 and gcd{A, B} =1, N is relatively prime to B and B is relatively
prime to A. Thus, the quantities (N~') and (B™') , exist Vi € [1, L], and therefore (N~') 5
and (B™!) 4 exist.

67

New RNS architectures for GF(p) and GF(2")

Assume that the polynomial v is a multiple of B, i.e., v mod B = 0. Then, s+¢-N =0
mod B, which means that = s- N~! mod B. This corresponds to step 2 of the PRNSMMM
algorithm, which means that step 6 is error-free since base conversion in step 3 is error-free,
therefore PRNSMMM holds.

Furthermore, it must be proved that the resulting polynomial c of Algorithm E-T2 is a poly-
nomial of degree less than n. It holds that

deg{c}gdeg{%}:
ab+ tN}
=

deg{c} < deg{

degic} < deg{ab+ tN}—-deg{B} =

deg{c} < max{deg{ab},deg{tN}} — deg{B} =

degic} < deg{tN}—deg{B} =

degfc} < deg{B}—1+n—-deg{B} =

degic}<n-1. (4.15)

Since v is the maximum intermediate value of Algorithm B-T2, its degree must be less than
the degree of the polynomial AB. Under this assumption, we get

deg{v} <deg{AB} =

deg{cB} < deg{AB} =

degic} + deg{B} < deg{A} +deg{B} =

degic} < deg{A}. (4.16)

From (BE1R) and (EIR) we have

degic} < n

degic} < deg{A}} = deg{A} > n. (4.17)

Finally, note that 18 is independent of deg { B}, thus selecting deg {B} > n is sufficient. [

4.3.3 The proposed PRNSMMM architecture

Fig. B3 depicts a suitable architecture that implements the proposed PRNSMMM algo-
rithm. Due to the algorithm’s internal structure, all calculations are decomposed to simple
multiply-accumulate operations. This allows the use of identical parallel multiply-accumulate
units, each one dedicated to a PENS modulus. The lines that connect each unit are used for
the base conversion and CRT realization, since the outcome of a unit must be added to the
outcome of its subsequent unit. Note the resemblance to the corresponding architecture
in Figure B2 for the integers case. Obviously, the proposed architecture, if used repeatedly,
executes the exponentiation algorithm [BSS02, HMV04] with no need for extra hardware.

68

New CRT-based Montgomery modular multiplication in GF(2")

[y T A 3
‘ — ¥ v 'l' — Y ¥ L i ¥
RAM RAM | ROM RAM | ROM RAM | ROM

| Mul & Acc N Mul & Acc 1, Mul & Acc
mod p; / g mod pz / g mod p_/ q.
UNIT # 1 UNIT # 2 UNIT #L
|

Figure 4.3: The proposed PRNSMMM architecture

4.3.3.1 Polynomial-to-IPRNS conversion

Any polynomial z(x) € GF(2") can be written in the form

L-1
z(x) = (Z(L—l)»---»z(l);Z(O)) = Z z(i)x” (4.18)
i=0

considering r-bit word split. Based on (E18), a method must be devised that matches the
proposed architecture and converts any polynomial z(x) € GF(2") to PRNS format. By ap-
plying the mod p; operation in (E-18) we get

-1 , -1 _
zp= <Z Z(i)x”> =<Z Z(i) <X”> > Vjell,L). (4.19)
i=0 p; i=0 pj p

i
If constants (x"’) p; are precomputed, this computation is well-suited to the proposed ar-
chitecture and can be computed in L steps, when executed by L units in parallel.

4.3.3.2 [PRNS-to-Polynomial conversion

As (Z39) is the basis of the proposed PRNSMMM algorithm, it would be useful to employ
it also for the PRNS-to-Polynomial conversion. Considering the polynomial representation
Ajjy, J €10,r(L-1) —1] of A;(x), the PENS-to-polynomial conversion can be computed as

Aj-1
L)
z(x) = (xL_l,...,xl, 1) Z 5;- :) (4.20)
i=1 Aiqy
Ai(0)

where §; = (z;- Al.‘l(x)>p.. Each row of (BZ1) can be computed in parallel by using the
proposed architecture.

69

New RNS architectures for GF(p) and GF(2")

Table 4.7: requirements of the proposed PRNSMMM architecture

Parameters
Operation
stored in ROM (bits)
Polynomial-to-PRNS xlr]i, x;f L(r+g)
PRNSMMM (N Y (B™) 4 N4 L2r+g)
B (x)Y,,, Bi(X) 4,
B ‘i Ya Bi() 4 (r+g)I*+1)
(A1) p;» Ai(X)B
[PRNS-to-Polynomial A;(x) L%r

Table 4.8: Number of modular multiplications in PRNSMMM algorithm

Alg. PRNSMMM Conversions

Alg. Others | Polynomial-to-PRNS | PRNS-to-Polynomial

#ofops | 212 +4L | 5L 212 I+ L

4.3.4 Performance
4.3.4.1 Memory requirements

Table B4 summarizes the memory requirements of the proposed architecture, in terms of L,
r, and g. Recall that, in the general case, base A utilizes r-bit moduli, while base B consists
of g-bit moduli. It is always possible to select g > r, so that g-bit units can perform r-bit
calculations as well. In this case, the proposed architecture supports both bases with the
use of time sharing. If area is not an issue, two PRNSMMM architectures can be exploited
in parallel, each one dedicated to a single base. Each RAM module in Fig.1 stores an r- or
g-bit result of a multiply-accumulate unit, which is equivalent to a total L(r + g)-bit RAM,
if two PRNSMMM architectures operate in parallel.

4.3.4.2 Frequency

Table .8 summarizes the number of operations, in terms of modular multiplications, re-
quired by the PRNSMMM algorithm, along with the Polynomial-to-PRNS and PRNS-to-
Polynomial conversions.

Let A, f, T denote the total number of operations, frequency, and throughput of an ECO
implementation in GF(2"). In this case, approximately § = 26[n/2] modular multiplica-
tions have to be performed [BSS02, HMV04]. A is then roughly estimated by the sum of all
operations for the PRNSMMM algorithm multiplied by 6, plus the number of operations for
the conversions. The throughput is then estimated by T = f- Lr/(A/L). A is divided by L,
since L processing units work in parallel.

70

Summary

As an example, for a GF(223%) multiplication used in [ECT, if 8, 32-bit moduli are chosen and
the frequency is set to f = 100 MHz, then T is about 620 [kbit/sec], which is a reasonable
choice for deep sub-micron CMOS technologies, such as 0.35-0.18um.

4.3.4.3 Arearequirements

In the worst case, each unit performs in parallel operations for both bases thus, the ac-
cumulate part encompasses a GF(2") and a GF(28) adder, consisting of (r + g) XOR gates.
The multiply part consists of a GF(2") and a GF(28) multiplier. For the multiplier, sev-
eral alternatives exist in the literature [DBS06]. Considering for example a MSB-mutiplier,
2(r + g) XOR gates and 2(r + g) AND gates are required per unit plus some control logic
[DBSOR]. This results to a total number of L[3(r + g) XOR +2(r + g) AND] gates for an L-
unit, PRNSMMM architecture.

4.4 Summary

In this chapter, an overview of state-of-the-art RNS Montgomery multiplication algorithms
was presented, along with algorithmic and architectural comparisons. Following, new al-
gorithms for modular multiplication that combine Montgomery multiplication and BNS-
[PRNS for GF(p) and GF(2") arithmetic were proposed.

Especially for GF(2"), a methodology for incorporating PRA in the Montgomery multipli-
cation algorithm for polynomials in GF(2") was presented. The mathematical conditions
that need to be satisfied, in order for this incorporation to be valid were examined and per-
formance results were given in terms of the field characteristic n, the number of moduli
elements L, and the moduli word-length r, g.

Both applications of residue arithmetic are flexible due to the decomposition of all internal
calculations to simple add/multiply operations. The architectures perform binary-to-BNS/
[PRNS and RNS/ PRNS-to-binary conversion, RNS/ PRNS Montgomery multiplication, as
well as MRO for integers and CRTl for polynomials in the same hardware, thus making them
suitable for a variety of cryptographic applications. A methodology to unify these algo-
rithms into a common dual-field frame, VTSI designs, further optimizations and detailed
performance estimations are examined in the next chapter.

71

CHAPTER

Novel versatile architectures

Common design frame

Versatile architectures

T ask decomposition

This chapter presents the design methodology for incorporating RNS and PRNS in MMM
in GF(p) or GF(2") respectively. An analysis of input/output conversions to/from residue
representation, along with the proposed residue Montgomery multiplication algorithm, re-
veals common multiply-accumulate data paths both between the converters and between
the two residue representations. A versatile architecture is derived that supports all oper-
ations of Modular Multiplication (MM) in GF(p) and GF(2"), input/output conversions,
for integers and polynomials, dual-field modular exponentiation and inversion in the
same hardware. Detailed comparisons with state-of-the-art implementations prove the po-
tential of residue arithmetic exploitation in dual-field modular multiplication.

Novel versatile architectures

5.1 Decomposition of operations

In Chapter 8 two algorithms for RNS-PRNS Montgomery multiplication based on MRO and
CRT (RNSMMM and PRNSMMM respectively), were presented. Both algorithms maintain
multiply-accumulate characteristics and share common logic and algorithmic parts. In this
chapter the RNSMMM algorithm is further optimized, the PRNSMMM algorithm is trans-
formed to an MRO-based structure, and the two algorithms are unified to a common Dual-
field Residue Arithmetic Montgomery Modular Multiplication (DRAMMM) algorithm.

5.1.1 Optimizing RNSMMM

The MRO-based algorithm that avoids the evaluation of the y factor of (ZZ9) forms the ba-
sis of the proposed RNS-based Montgomery multiplication algorithm. The derived algo-
rithm is identical to Algorithm B2, however the BO algorithm is now based on the modified
version of MRUO shown in (Z30) and (ZZ32). Comparing the previous approach employing
(231), which requires L%modular multiplications, the optimized MRU requires only L—2
modular multiplications. The methodology is further extended for the case of GF(2").

Algorithm B depicts the proposed base conversion process that converts an integer { ex-
pressed in RNS base B as (3 to the ENS representation of another base .A. As will be shown
in next sections, Algorithm BT offers better opportunities for parallelization of operations.
It implements 2372 in steps 1-8 to obtain the mixed-radix digits U; of {. In steps 9-15, 2230
is realized, while the whole summation is computed modulo each modulus p; of the new
base A.

Algorithm 5.1 The proposed optimized base conversion for the RNSMNMM

Input: (5= ((5,,(5, (s,),AB
Output: C.A = (CAV(.AZJ tt ’C-AL)

1 Wy <0

2 Ul‘_CBl

3 foralli=2,...,Ldo

4 UihCBi_(Bl

5 forj=1toi—1do

6 U; <—<Ui—WjUj>ql_

7 end for

8 end for

9 (4, <0

10 foralli=1,...,Ldo
11 for j=1to Ldo

12 Kij= <WjAj>pi

13 Ca; —(Kij+8a;),
14 end for

15 end for

The two base conversions in the RNSMMM algorithm are error-free, contrasted to other al-
gorithms that employ CRT and utilize approximation methods to compute the correction

74

Decomposition of operations

Algorithm 5.2 PRNSMMM in GF(2")

Input: ar, b, ngl,B;tl,NA, {degia} < n, deg{b} < n}
Output: c7, {degic}<n,c= abB™! mod N}

ST —ar-br

g —sp- Nél

A< 1B

up—1ta-Ng

Vp—Sqat+tUuy

CA—Vy- B;ll

CB—CA

N O Ok W -

factor y of 2229 [KKSSO0, BI04, GT.PT12, GLMBIT]. Conditions gcd(B, N) = 1 and ged(A, B) =
1 are sufficient for the existence of (-N~1)5 and B;ll, respectively. As it holds that

v_ab+iN (2N)2+BN_(4N

c=—
B B B B

+1)N<2N, (5.1)
it follows that 4N < B is sufficient for ¢ < 2N to hold when a,b < 2N. Finally, (61) also
shows that 2N < A is sufficient for ¢ < B and v < AB. Since v is the maximum intermediate
value, all values are less than AB [KKSS00, SST1].

5.1.2 Embedding PRNS in GF(2") Montgomery Multiplication

A modification of the Montgomery algorithm for multiplication in GF(2") that encom-
passes PRNS is proposed next. The proposed algorithm employs general polynomials of
any degree, and is an extension of an algorithm [B1J05], which employs trinomials for the
[PRNS modulus set. Additionally, the proposed algorithm addresses the problem of convert-
ing data to/from PRNS representation. In contrast to a similar algorithm in [SSST2], which
employed CRT for polynomials for the algorithm, the proposed architecture employs
MRO. This allows for dual-field RNS/PRNS implementation, which is not supported in
[SSST?7], and a new methodology to implement RNS-to-binary conversion as will be shown
in the following subsections.

The proposed algorithm for GF(2") PRNSMMM is presented below as Algorithm 62. The
corresponding algorithm for base conversion in GF(2") is identical to Algorithm b, de-
picted below as h3. The only difference is that integer additions/subtractions and multipli-
cations are replaced by polynomial ones. Again, the degree of input and output polynomials
are both less than n, which allows the construction of a modular exponentiation algorithm
by repetition of the PRNSMMM. Base conversion in step 7 is employed for the same reason.
For the proof of PRNSMMM algorithm’s validity see Section E3.

75

Novel versatile architectures

Algorithm 5.3 GF(2") base conversion algorithm for PRNSMMM

Input: {5 =({5,,{B,,{B,), A B
Output: { 4= ({4,041 A,)
Precompute: (W;(x)),,, {¥i,je[l,L]}
1 W1<—0
U — (5,
foralli=2,...,Ldo
Ui, +{B,
forj=1toi—1do
Ui<—<U,'+WjUj>qi
end for
end for
c/h <0
foralli=1,...,Ldo
for j=1to Ldo
Kij = (WjAj)p,
(Ai (_<Kij+(Ai>pi
end for
end for

© O N O Gk W N

— = e e e
g W N = O

5.1.3 The Proposed Versatile Architectures

A careful examination of RNSMMM and PRNSMMM algorithms reveals potential for uni-
fication into a common DRAMMM algorithm and a common Dual-field Base Conversion
(DBQ) algorithm. The unified algorithms are depicted below as Algorithms 64 and B3,
where & represents a dual-field addition/subtraction and © represents a dual-field multi-
plication.

Algorithm 5.4 The proposed DRAMMM algorithm
Input: ar,by,(-N7")z,B;', N4, {a,b<2N}
Output: ¢y, {c<2Nandc=abB™! mod N}

ST —arobr

g —Spo (—N_l)B

t 4 — I { base conversion step }

up—tg0Ny

VA—SAD Uy

CA—U40 B;ll

cB — ¢4 { base conversion step}

N O s Wy -

An important aspect is that all operations within the DRAMMM and the algorithms
are now decomposed into simple IMAQO operations of word-length equal to the modulus
word length r. This allows for a fully-parallel hardware implementation, employing parallel
[MAQ units, each dedicated to a modulus of the RNS/[PRNS base.

Finally, the conditions from (816) and (BI7), for a valid RNS/PRNS transformation of the

76

Decomposition of operations

Algorithm 5.5 algorithm

Input: {5=((5,,(8, " {5,), AB
OUtput: (.A = ((Al!(sz e ’C.AL)

1 Wi <0

2 UthBl

3 foralli=2,...,Ldo

4 Ui—(p®(p

5 forj=1toi-1do

6 Ui‘_<Ui€BWj®Uj>qi
7 end for

8 end for

9 (4,0

10 foralli=1,...,Ldo

—
—_

for j=1to Ldo

12 Kij={WjoUjp,
13 Cap = (Kij@la;),
14 end for

15 end for

Montgomery algorithm yield

degf{A} > n
deg{B} > n
A > 2N|(’ (5:2)
B > 4N
which means that one should select RNS/PRNS ranges of word length
> log2N],
o4 > max{[log2N],n} 53

6 > max{[log4aN],n}

for the bases A and B, respectively. Algorithms b4 and B3 along with conditions (52)
and (B3) form the complete framework for a dual-field residue arithmetic Montgomery
multiplication.

As described before, the structure of the proposed algorithm allows it to be reused in the
context of any exponentiation algorithm. A possible implementation is depicted in Algo-
rithm B, requiring in total 2n + 2 DRAMMM multiplications [LN86, McE87]. Using Fer-
mat’s little theorem, field inversion can be realized by field exponentiation as described in
[HMV04], thus it can be efficiently mapped to the proposed architecture as well without
extra hardware.

77

Novel versatile architectures

Algorithm 5.6 Proposed DRAMMM modular exponentiation
Input: z7,e=(e;-1...€1€0)2
Output: by, b=(z%y

1 b1

2 fori=n-1,...,0do

3 b—DRAMMM/(b,b)

4 ife; =1 then
5 b—DRAMMM b, z)
6
7
8

end if
end for
return b

5.1.4 Input-Output (IUJ) Conversions

In the following discussion, base A = (p1, p2, ..., pr) shall be used as an example to analyze
the conversions to/from residue representations, without loss of generality.

5.1.4.1 Binary-to-Residue conversion

Aradix-2" representation of an integer z as an L-tuple (zX7V,..., z©) satisfies
Z(L—l)
& ori (L-1) :
_ 1 rv __ r(L— r .
z=) 272" =2 o2 1) o | (5.4)
i=0
m©

where 0 < z) < 2" —1. A method to compute z 4 must be devised, that matches the pro-
posed DEAMMM's multiply-accumulate structure. By applying the modulo p; operation in

(B4) we obtain
2 o
<Z>pj:<;)z <2 >pj>

If constants (2" i) p; are precomputed, this computation is well-suited to the proposed MAQ
structure and can be computed in L steps, when executed by L units in parallel.

,Vjell,L]. (5.5)
Pj

Similar to the integer case, a polynomial z(x) € GF(2") can be written as

Z(L—l)
&b (L-1)
1 rit r(L— r .
z:;z x"=(x yeers X', 1) 0 (5.6)
i=0
7
Applying the modulo p j operation in bR it yields
L-1 .
@py=(X 2P(x)) vjel,L] (5.7)
i=0 pij .

pj

78

Versatile architectures - hardware design

which is a similar operation to 63, if (x"?) p, are precomputed.

From BHand b7, it is deduced that conversions in both fields can be unified into a common
conversion method, if dual-field circuitry is employed, as already mentioned for the case of
the DRAMMM and DBU. In the rest of this thesis, the radix vectors (2"&~V ... 27 1) and
(x"E=D ..., x",1) of both fields shall be denoted as a common radix vector V, without loss
of generality.

5.1.4.2 Residue-to-Binary Conversion

As all operands in (232) are of word length r, they can be efficiently handled by an r-bit
[MAQ unit. However, (230) employs multiplications with large values, namely the W;s.

To overcome this problem, (Z30) can be rewritten in matrix notation, as in (638), which
implies a fully parallel implementation of the conversion process. The inner products of
a row i are calculated in parallel in each MAC unit. Each MAU then propagates its result
to subsequent IMAQ, so that at the end the last MAC(L) outputs the radix-2" digit z'? of
the result. In parallel with this summation, inner products of the next row i + 1 can be
formulated, since the adder and multiplier of the proposed MAC architecture may operate
in parallel.

0 0 0 WY
z = U0l oo 0 U0 W3(2) &---0UL0 WL(Z) LoV
0 W W W
3

1 WZ(O) W?’(O) WE())

0e 0 o 0 e-eUoW] LD)

P @ : ® : ® o : :

= 0e 0 oUsoWe-e UoW? |0V=] & oV (58
0elUoWNeolUsoW,"e--0 UowD zM
| UioUoW eUsoW."e--0 UoW | | O

5.2 Versatile architectures - hardware design

5.2.1 Dual-Field Addition/Subtraction

A Dual-field Full Adder (DEA) cell is basically a Full Adder (EA) cell equipped with a field-
select signal (fsel), that controls the operation mode [STK(O0O]. When fsel = 0, the carry
output is forced to 0 and the sum outputs the XOR operation of the inputs. As already
mentioned, this is equivalent to the addition operation in GF(2"). When fsel =1, GF(p)
mode is selected and the cell operates as a normal EA cell. Obviously, dual-field adders
in various configurations (carry-propagate, carry-skip, etc) can be mechanized by utilizing

79

Novel versatile architectures

DFA cells. In the proposed implementation, 3-level, CLA with 4-bit Carry Lookahead Gen-
erator (CLG) groups are employed [EL04]. An example of a 4-bit dual-field CTA adder is
shown in Figure B2. The GAP modules generate the signals p; = x; XOR y;, g; = x; AND y;,
a; = x; OR y;, and AND gates along with a fsel signal control whether to eliminate carries or
not. The carry-lookahead generator is an AND — OR network based on (9) [EL04].

i i i
ci+1=0R (AND ak) g;jOR (AND ak) Co (5.9)
j=0 \k=j+1 k=0

X

|
" s

1
1
]
]
""- |]
1 AN
‘ 4 = HA | L = | DFA
|
|
1
1
1
1
]

—<

Gin

—c
fsel

Figure 5.1: Dual-field full-adder cell

X3 Y3 X2 Y2 X1 Y1 Xo Yo

- -
GAP GAP GAP GAP

P3 ‘ P2 P1 Po
&3 laa gz\ h A%5) gj\r v gov) A%0]
| CARRY-LOOKAHEAD GENERATOR (CLG) ‘

fsel I C3 ' "Cz C1 Co

Figure 5.2: Dual-field CLA
5.2.1.1 Dual-Field Modular/Normal Addition/Subtraction

With trivial modifications of algorithms in 21 and 222 for modular addition/subtraction in
GF(p) [DBS06, LN86], a Dual-field Modular Adder-Subtracter (DMAS) shown in Figure
can be mechanized using CTA adders. There, c,s represent the carry-out signals of each
adder at position r, while the boolean function add/sub- (¢, V ¢2) vV add/sub-¢c; controls

80

Versatile architectures - hardware design

whether addition or subtraction is performed when in GF(p) mode. When f'sel = 0, the cir-
cuitisin GF(2") mode and the output is derived directly from the top adder which performs
a GF(2") addition. When f'sel = 1, the circuit may operate either as a normal (2r +log, L)-
bit adder/subtracter (conv_mode=0) or as a modular adder/subtracter (conv_mode=1). In
the first case, the output is the concatenation of the outputs of the two adders. This is re-
quired during residue-to-binary conversion, since (68) dictates that L, (2r)-bit quantities
need to be added recursively via a normal adder.

’ add/sub

v v
Dual-field
CLA adder G

] | I F:’1-"__] x H

ol

JrHlag(L) 1~ ;E+|og{|_)"\..__ L

L1 +,
0 —0 1 ' conv_mode
v
c . Dual-field
‘ 2 CLA adder
‘add!sub-(m V ¢;) V add/sub-c4 ‘
z

Figure 5.3: Dual-field modular/normal adder/subtracter (DMAS)

5.2.2 Dual-Field Multiplication

A parallel tree multiplier, which is suitable for high-speed arithmetic and requires little
modification to support both fields, is considered in the proposed architecture. Regard-
ing input operands, either integers or polynomials, partial product generation is common
for both fields, i.e., an AND operation among all operand bits. Consequently, the addition
tree that sums the partial products must support both formats. In GF(2") mode, if DEA cells
are used, all carries are eliminated and only XOR operations are performed among partial
products. In GF(p) mode, the multiplier acts as a conventional tree multiplier. A 4 x 4-
bit example of the proposed Dual-field modular Multiplier (DM) with output in carry-save
format is depicted in Figure b4.

5.2.3 Dual-Field Modular Reduction

81

Novel versatile architectures

| PARTIAL PRODUCT GENERATOR

|DFA || [DFA| | DFA | HA

@«

L

<

W

b, S b _ ©)
| DFA | HA | DFA | HA

Sg S5 S4 S3 So S4q Sg

¥ ¥ ¥ ¥ ¥ 2 L]

¥ Cs ¥YCyq Ca ¥ Cz

Figure 5.4: Dual-field multiplier (IDM)

A final modular reduction by each RNS/PRNS modu-
lus is required, for each multiplication outcome, within
each MAJ unit. From several modular reduction strate-
gies [DBS06], a method based on careful modulus selec-
tion is utilized, since, not only it offers efficient imple-
mentations but also provides the best unification poten-
tial at a low area penalty.

Assume a 2r-bit product ¢ that needs to be reduced
modulo an integer modulus p;. By selecting p; of the
form 2" — u;, where the h-bit yu; < 2", the modular re-
duction process can be simplified as

E F .

r—1 . r=1 . ——
(C)p; = <Z ci2'+2") cr+,-2’> = <E+2’F)pl_

i=0 i=0 ps

53
= n)
= <Z di2l+,ui2dr+i21> . (510)
i=0 i=0 o

From (B10), it is apparent that

Yrlgelhe<2r—p

I :{ o2 —p<g<zr, O

The same decomposition can be applied to polynomi-
als and consequently, if dual-field adders and dual-field
multipliers are employed, a Dual-field Modular Reduc-
tion (DMR) unit can be mechanized as shown in Figure

[MsB LSB
i):I/ AT

. A / r

~ om

|

| 22

CLA

v

Figure 5.5: Dual-field modular
reduction unit (OMR)

82

Versatile architectures - hardware design

L=4,p=2
—_— S

'i(az'(al U, W, '

|

Gt LW, '

UW; |

%\\ Idle stale

Figure 5.6: Task distribution in the proposed DRAMMM

6AH. The word length h of u; can be limited to a maximum of 10 bits for a base with 66
elements [KKSS0Q].

5.2.4 MAC Unit

The circuit organization of the proposed IMAQO unit is shown in Figure b7. Its operation
is analyzed below in three steps, corresponding to the three phases of the calculations it
handles, i.e., binary-to-residue conversion, RNS/PRNS Montgomery multiplication, and
residue-to-binary conversion.

5.2.4.1 Binary-to-residue conversion

Initially, r-bit words of the input operands, as implied by (&3), are cascaded to each MAO
unit and stored in RAM1 at the top of Figure h2. These words serve as the first input to the
multiplier, along with the quantities (2") o (x'’) ., which arestored ina ROM. Their
multiplication produces the inner products of (B35) or (64) which are added recursively in
the DMAS unit. The result is stored via the bus in RAM1. The process is repeated for the
second operand and the result is stored in RAM2, so that when the conversion is finished,
each MAQ unit holds the residue digits of the two operands in the two BAM. The conversion
requires L steps to be executed.

83

Novel versatile architectures

Table 5.1: Normalized area and delay of the proposed DRAMMM architecture

Module Area Critical path delay
DFA AFa+ AanD Tra+ TanD
DF-CLA! 3rApra 2log, () Tpra
, 2log, (r +1og, (L) + 1) Tpra+
DMAS 2ADF—CLA+ (3I’+10g2 L)Amux(z—l)
+ Tmuxe-1
DM8 (r—2)Appa+1r?Aanp +2Apr-cLa Tpr-cra+(1ogr)Tpra+ Tanp

Apm™ Apm App-cra®t Apr-cra¥
DMR (logh+6log, (h+r1r+1)Tpra

+Apr_cra® (h+ 71+ 1) App+ 1 Apuxe-1

Apm+ Apmas+ Apmr+
MAC Tpm + Tpmr

+21r Apmuxe-1) + (2r) Arr

DRAMMM LAMAC TMAC

r-bit DF-CLA 2 (hxr)-bit 3(hx (h+1))-bit *3-input (h+ r +1)-bit DF-CLA
53-input r-bit DF-CLA 82-input r-bit DF-CLA 7 (r +logL)-bit adders
8 (r x r)-bit

5.2.4.2 Montgomery multiplication

The first step of the proposed DRAMMM is a modular multiplication of the residue digits
of the operands. Since these digits are immediately available by the two RAMs, a modu-
lar multiplication is executed and the result in R; is stored in RAM1 for base B and RAM2
for base A. Step 2 of DRAMMM is a multiplication of the previous result with a constant
provided by the ROM. The results correspond to {3, inputs of the DBC algorithm and are
stored again in RAM1. All MAQ units are updated through the bus with the corresponding
RNS digits of all other MAUs and a process is initiated.

To illustrate the DBA process, a task distribution graph is presented in Figure b8 for a
DRAMMM requiring L = 4 moduli. Two cases are represented; the first corresponds to a
fully parallel architecture with = 4 units and the second shows how the tasks can be over-
lapped when only = 2 MAQ units are available. Each IMAQ unit has been assigned to a
different color, thus in the overlapped case the color codes signify when a MAQ unit per-
forms operations for other units. In the example of Figure b6, MAO(1) handles MAO(4) and
MAJ(2) handles MAO(3).

In each cycle, modular additions and multiplications are performed in parallel in each
IMAQ. To depict this, each cycle is split in two parts: the operations on the left correspond
to modular additions and on the right to modular multiplications. The results obtained by

84

Versatile architectures - hardware design

1

h

MAC (i)
h h 4 |
RAM1 ‘ RAM2 || ROM MAC(i-1)

\J_L, ROM y !
j — iRAM 1le |
v v

DM DMAS ‘
MAC (i + 1)
« | -Rz
v
DMR bus
PR . R
Figure 5.7: The proposed MAQO unit
— ”O -
|Fsm’
. — MAC(L) «——MAC({L-1)« - « MAC(1)
clk ctrl i

Figure 5.8: The proposed DRAMMM architecture

each operation are depicted in each cycle (they correspond to Alg.6H), while idle states are
denoted by dashed lines. An analysis on the number of clock cycles required, and how MATO
units can be efficiently paired is presented in the next section.

The remaining multiplications, additions, and the final base conversion operation required
by the DRAMMM algorithm are computed in the same multiply-accumulate manner and
the final residue Montgomery product can be either driven to the I/0 interface, or it can be
reused by the IMAQ units to convert the result to binary format.

5.2.4.3 Residue-to-binary conversion

Residue-to-binary conversion is essentially a repetition of the algorithm, except for
steps 9-14, which are no longer modulo operations. Instead, (58) has been developed to
map efficiently the conversion process to the proposed architecture. An important ob-
servation is that, whenever the preceding operation of a residue-to-binary conversion is
a DRAMMM, which ends with a execution, time savings are achieved since the upper
part of the DBC algorithm (steps 1-8) is common with the conversion. Thus, the intermedi-
ate results from steps 1-8 can be stored until DBO is finished and then reused to implement
(B38).

85

Novel versatile architectures

r

Figure 5.9: Normalized time complexity function f(r, L)

To illustrate the conversion process assume the generation of the inner products in row 1 of
(68). Each product is calculated in parallel in each MAQ unit and a “carry-propagation”
from MAQ(1) to MAQ(L) is performed to add all inner products. When summation fin-
ishes the first digit z@ of the result is produced in MACQ(L). In parallel with this “carry-
propagation”, the inner products of line 2 are calculated. As soon as a MAU unit completes
an addition of carry-propagated inner products for line 1, a new addition for line 2 is per-
formed. The process continues for all lines of (68) and the result is available after L steps.
The complete DRAMMM architecture is depicted in Figure h38.

5.3 Performance results

5.3.1 Areaand Delay Estimations

Table b1 summarizes the area and delay complexity of the proposed architecture, in terms
of the parameters L, r, h. In general, delay and area of a cell G shall be denoted with T and
Ag respectively.

Regarding the area of a r-bit, dual-field CLA adder, with 4-bit CLG modules and three CLG
levels it holds that [EL04]

] 4-bit CLG
r - r - N
ADF—CLA = —4 1 (IOAOR + ZOAAND) +rAFA- (5.12)

Based on (B12) it is easy to show that an r— bit CLA is approximately 3 times larger than an
r-bit DFA, which explains the factor 3 regarding the area of the dual-field CLA in Table b1
[ELO4].

86

Performance results

)

) 40

.

. ST
| 3x 108
;2><l[]"
Ul

ey

" 200

ST i

Figure 5.10: Normalized area complexity function g(r, L)

5.3.1.1 Number of clock cycles

Assume that § < L parallel MAQ units are utilized in a real implementation. To simplify the
discussion it is assumed that f is a multiple of L, i.e., L = k. This means that each one of
the first MAQ(i), i = 1,2,..., B will provide results for k — 1 more channels. By construction
of the MRQ, the process in Figure BB requires 2L — 1 clock cycles in the full parallel
case. Each channel 1 < i < f requires L cycles for multiplications and L + i — 2 cycles for
additions, thus each channel has L —1 free slots for multiplications and L —i + 1 free slots
for additions (idle states in Figure b8).

Let us assume for simplicity that k = 3. The free slots in each MAU(i) will accommodate
operations from one MAQ(j), j = f+1,...,26 and one MAQ(/), I =26 +1,...,36. Since
each MAU(j) requires L multiplications and L + j — 2 additions and each MAU(/) requires
L cycles for multiplications and L+ [— 2 cycles for additions, then the cycles required to
accommodate the results are 2L+ (j+1)—4. The free slots in each MAQ(i) are L—i+1 thus the
extra cycles to produce all results in each MAQ(i) are 2L+ (j+1)—4—(L—i+1) = L+(i+j+1)-5.
The problem transposes to finding the best combinations for (i, j,!) so that the quantity
L+ (i+ j+1)—5minimizes. The problem can be described in terms of the following pseudo-
code:
foralli=1,...,fdo

forj=p+1,...,20do

aiji— L+({+j+D-5{VIie2f+1,3p]}

end for
end for
find v = max (a; ;) common Vi
foralli=1,...,fdo

match i with j and / such that a;;; <v
end for

© 0 N O s W N -

The pseudo-code calculates all possible values of extra cycles for all combinations of (i, j, I)
and in step 6 we select v as the maximum common value for all MAQ(i). For every dis-

87

Novel versatile architectures

By 10 e
G lnh
410"
ax 101

o

Figure 5.11: Area x time product function o (r, L)

Table 5.2: Parameters of the proposed DRAMMM stored in ROM

Parameters
Operation
stored in (bits)

: : ri ri 2
Binary-to-residue | (2"") pids” (x") pid; AL%r
DRAMMM —-p3z',Q3' pa 6Lr
DBC Widpi.ai 2L(L-1)r
Residue-to-binary W; L(L-1Dr

tinct combination (i, j, I) that satisfies a;;; < v we match the corresponding units until all
distinct pairs of units in positions (j, /) are assigned to a distinct unit in position i. The
remaining 6 steps of the DRAMMM require 6k cycles in total.

5.3.1.2 Memory Requirements

Table B2 summarizes the ROM requirements of the proposed DRAMMM architecture. As
far as RAMI is concerned, the worst case occurs during and input/output conversions.
This amounts to a (2L — 1) r-bit RAM1/2 per MAQ unit, thus in total a L(4L — 2)r-bit RAM is
required by the proposed DRAMMM architecture.

5.3.2 Comparisons with ENS implementations

The proposed architecture introduces the concept of dual-field RNS Montgomery multi-
plication, which is not supported by existing RNS solutions [KKSS00, BI04, NMSKOT, PP95,
G0, T7ZbXHQj10, BDKY8, GLPT12]. The architecture in [PP95] requires additional bits
in the mantissa of the arithmetic units employed, in order to accurately compute the final

88

Performance results

Table 5.3: Number of modular multiplications in the DRAMMM algorithm

Alg. DRAMMM Conversions
Alg. Others | Input | Output

This work 2L(L+1)-4 | 5L 2 L=l
[KKSSO0, NMSKOT] | 2L(L+2) 5L L? | L2L+1)

(BI04] 2L(L+3) 5L N/A N/A
(e 2L(L+2) 5L I? | LR2L+1)
[GLP*12] 2L(L+3) 2L L* | LRL+1)

modular product. Although the authors in [PP95] do not provide accurate metrics of the
hardware complexity, the bit precision of the proposed IMAQ unit is equal to the modulus
word-length, implying a simpler VTSI structure and less hardware. In [BI04], no hardware
details are discussed, while the proposed algorithm is impractical in real cryptosystem im-
plementations. Data sent from one party to another are in RNS format which, as a concept,
poses limitations on the hardware architecture of the communicating parties.

Compared to the most efficient and practical KNS implementations in [KKSS00, NMSKOT,
Guil(, GLP™12], the proposed architecture further reduces the number of modular mul-
tiplications for the base conversion and the RNS-to-binary conversion, as depicted in Ta-
ble 3. Other algorithms that employ MREQO also perform worse. For example, the work
in [[[ZbXHQjI0] requires 212 + 5L modular multiplications while the work in [BDK98] is a
predecessor of [BI04], which also performs worse, as shown in Table B3. This is also due
to the simplified version of MRUO employed in this work that requires L —2 multiplication to
implement (Z37), while [BDKY8] requires L% multiplications for the same conversion to
implement (Z31) [BDK98, [7ZbXHQ]10].

5.3.3 Complexity comparisons with non-RNS implementations

None of the RNS implementations presented in [KKSS00, BI04, NMSKO1, PP95, Guiil(] pro-
vided comparisons with non-RNS solutions. In the following, a systematic, technology-
independent, complexity comparison between RNS and non-BNS architectures is attempt-
ed for the first time, plus a function-based approach for the calculation of the optimal val-
ues for the parameters L,r is developed. As common constants for all comparisons, the
TSMC 0.13um library of standard cells in Table b2 is employed [SCWTL0O8].

The references in Tables b4 and B3, refer to both scalable [SLI0, I'K03, HKAT05, STKOQ,
PHO8, HGEGTT] and non-scalable architectures [MMMO04, SKS07, SCWI08]. Regarding the
scalable implementations which encompass multiple Processing Elements (PBs), if n-bit
input operands are employed, then € = [n/r] or e = [(n+ 1)/r] (if carry-save format is used
or not accordingly), 8 is the number of PHs, and A = [n/0].

89

Novel versatile architectures

Table 5.4: Normalized time and area complexity comparisons in GF(p)

Work Cycl Critical Time A Area
or] cles rea
path delay complexity complexity
This work | seesection5.3.1.1 Tan for,D)8 LAgAD g(r,nl!
3Tpp+2T 10
[(vviviTE) n+l Fa XOR 4.11 not reported 22.68n
+TAND
2Tpp+ T _ 10
(MMM 2 n+2 FAT Smuxi4-1) 3.76 not reported 27.12n
+2Txor+ TAND
10nApp+2nAps+
I 2TrA+ Tmuxe-1)
[SCWIOE] n+4 2.94 3nAAND + NAmux—-1)+ 12.667
+TAND
NARmux3-1)
srIn)3 AB+€+3 2rHA +2r0+1)App+
[: 2TAND +2TFa AND A 1.33+4.17r+
3.39 +(r—-1DAga+
- +Tmux(2,1) 0(3.6+5.98r)
[s|.|(1]7 Ae+1)+6+2 [4r+4)0 +4r +11ArFp
(K034 200 +e—1 - - 21004 A
+ + r + +
AND T ETEA 3.39 AND T EA 0(1.8+9.58r)
[Km]” Ale+ D+ Tmux@-1) +087 +2)App
+2(60-1)
| MO0/
+e—1 2T, +2Tpp+ 2ro(A + App)+
AND T ETEA 3.39 AND T EA 0(5.4+5.98r)
(ERAT0E Ale+T10/r1+1)+ Tmux@-1) +0(4r +6)Afp
A +0-1
[STRO0] 4 200 +e—1 - - 21024 Aon)
+ r + +
ANDTEEA 3.84 AND T A 0(1.8+9.961)
(STEmm)? Ale+1)+ +Tmux2-1) +0(8r +2)App
+2(60-1)
[QKS()'/]B n+2 2r0AaNp + 610 ARE+
Trmux@a-1) +2TFA
T 0T 4.04 +2r0(Apa+ Apuxa-1))+ 9.9676
+ n+
[SKS02]” nA+2 mux(2=1) AND +10Amuxe-1)
2(r+1)0App+ (6r —9)0App+
PEnE]° A0 49 11y 2Tpa+ T 2.49 (91; ot QA) " re.80+54)+
+4% + - . + _n+ +
T FA mux(4-1) mux(2—1) XOR 4+0.380 +9
+2(T+1)9Amux(4,1)
oy Y o 12
HGEGLI n+e—1 2(ro+60-1)A 1+ TO0AgA+
[] TaND +4Tpa+ mux(2-1) HAT | (4.460 - 1.8)+
4.49 +02r+6)Apa+ AxOR+
] ntae-0+ +Trux2-1) +9.660 —7.33
[HGEGT] +@Bro0-2r+0+1)App
+e—1

1 design with 5-to-2 2 design with 4-to-2 CSA 3¢+1<0 *e+1<20 %e+1<0[0/r1 ©n<0,eachPEisbit-sliced
7otherwise 8 f(r,L)= 6.27log, (r +8) +4.18log, (r) +5.97 9 fastest case for time complexity, area calculated by the authors
10 calculated by the authors in [STT0] M g(r, L) = L(0.197% +33.6r + 13.1log, (L) + 94.24), h=7 2¢<0

90

Performance results

Table 5.5: Normalized area-time complexity comparisons for
a 1024-bit GF(p) Montgomery multiplication (CPA delays
included)’

Parameters Delay Area area x time
Thiswork | f=6,r=64 | 2,440.8 | 18,278.1 | 4.46x107
[PHO8] | 0=64,r=16 | 2,659.8 | 4,010.92 | 1.07x10’
[SCWID8] n=1024 4,046.3 | 12,963.8 | 5.25x10°
[HKAT05] | 6 =64,r=16 | 4,980.1 | 6,469.12 | 3.22x10’
[SKS07] n=1024 5,169 10,199 | 5.27x107
[MMM04] n=1024 5,236.7 | 23,2243 | 1.22x10’
[HGEGIT] | #=65,r=16 | 5326.7 | 5,230.17 | 2.79x10’

[SLT0] | =257,r=4 | 5,386.9 | 7,090.6 | 3.82x107
[TKO3] | 6=40,r=8 | 13,786.6 | 3,137.6 | 4.33x107
[STKOO] | 0=7,r=32 | 20,294.4 | 2,243.64 | 4.55x107

1 Only the fastest versions of other works are considered

Table b4 offers a detailed, technology-independent comparison with the most up-to-date
non-BNS solutions. The time complexity of the proposed architecture is a function f(r, L),
calculated according to Table b, while it is a constant for each of the other works. Selecting
r € [16,512] and L € [2,66], a plot for the time complexity f(r, L) can be sketched, as shown
in Figure b9.

The normalized area of the proposed architecture is provided as a 2-variable function g(r, L),
by selecting a typical value h = 7 for the word length of y;s. The other works provide func-
tions of r, 8, and n. A plot of g(r, L) is depicted in Fig. 610. The area of the proposed ar-
chitecture, although larger, is of comparable magnitude as the other works. Unfortunately,
complexity comparisons are not offered for the RNS implementation in [Guil(]. Instead,
only metrics in terms of the number of Adaptive Logic Modules (ALM) of the Stratix II FPGA
are given. Altera does not provide the number of gates per ALM, thus a direct comparison
is infeasible.

To depict the trade-offs between RNS and non-BNS implementations, the area-time prod-
uct is given in Figure b1 as a function o(r,L) = f(r,L)g(r,L) for a 1024-bit implemen-
tation. Table BA was created by assigning values to the parameters L,r,0,n in Table b4
used in other works to obtain numerical values for the number of cycles, normalized delay
and area. The normalized areas are calculated for the complete designs and total execu-
tion time is calculated by the product cycles x critical path, all under the common TMSC
0.13um technology.

Based on the derived functions f(r,L),g(r,L),o(r,L), one can parametrize the proposed
RNS architecture for minimum delay, area, or area xtime product, according to the require-
ments.

91

Table 5.6: Area-time comparisons for 1024-bit modular exponentiation

Cycles Max Freq. | Exponentiation Area Area
Platform Parameters Comments
(per mult.) (MHz) time (m5s) (LUT) (Gates)
. B=22,r=16 624 142.23 8.99 29,379
Thi k Xilinx 6.02 37,723 N/A BRS
is wor =11, r=32 316 107.66 . ,
XC4VFX60 p dual-field
B=6,r1= 645 176 81.63 4.42 30,467
Xilinx 0 =64 non-BNS
[PHODH] 651 248 5.38 8,428 N/A
XC2V2000 r=16 not dual-field
0.25um 6 RNS
[NMSKOT] B=11,r=32 248 80 6.35 N/A 333,000
CMOS not dual-field
i} Xilinx 0 =257 1 non-BNS
[ST10] 1,287 254.55 10.36 5,430 N/A
Virtex-1I-6 r=4 not dual-field
- Xilinx 1 2 non-BNS
[SCWT08] n=1024 1,028 152.49 13.82 25,074 N/A
XC2V6000 not dual-field
- Xilinx non-BNS
[SKS07] n=1024 1,026 140 15 5,892 N/A
2VP100 dual-field
Xilinx 0 =64 non-BNS
[HKAT0R] 1,167 144 16.61 5,598 N/A
XC2V250-6 r=16 dual-field
Xilinx 0 =65 1 non-BNI
[HGEGIT) 1,088 116.4 19.17 9,319 N/A
XC2V6000 r=16 not dual-field
Xilinx 3 non-BNS
[MMMO4] n=1024 1,025 95.9 21.9 23,208 165,048
XC2V6000 not dual-field
0.5um 0 =40 4 non-BENS
[TKO3] 3,458 80 88.61 N/A 28,000
CMOS r=8 not dual-field
) 1.2um 0=7 ! non-RNS
[STKO0] 5,010 90 114.12 not reported | not reported
CMOS r=32 dual-field

Novel versatile architectures

! Calculated by the authors 2 Original value is 12,537 slices. Each slice contains 2 LUTs in the XCV6000 device [XilI24].
3 Result in CSA format, CPA delay should be included. ~ # Equivalent area only for the multiplier ~ ° optimized for area and power
6 original value is 4.2 ms using a 4-bit window method exponentiation algorithm [NMSK{11]

92

Performance results

Table 5.7: Normalized area and delay of standard cells

MUX | MUX | MUX
2-1) | G- | 4-1
Delay | — 1 045|045 | 045 | 033 | 049 | 061 | 0.65
Area | 09| 1 | 057|019 0.19 | 0.33 | 0.38 | 0.71 0.9

FF | FA| HA | OR | AND | XOR

5.3.4 Area-time-power comparisons

To verify the complexity comparisons presented in the previous paragraphs, a prototype of
the proposed DBRAMMM architecture was synthesized in Xilinx Virtex 4 (XC4VFX60) EPGA
device using VHDII. Post-layout results were obtained from the Xilinx 14.4 [SE tool [XilT2h]
and are presented in Table b8 for three combinations of §,r. Note that the last configu-
ration for f = 6,r = 64 would not fit in the device, so it was optimized for area and
power minimization, while the other two were optimized for timing performance using the
corresponding strategies of the Xilinx 14.4 [SH tool.

In cases where other works reported area in terms of CLB slices, the equivalent area in terms
of CITT was calculated according to the Xilinx FPGA datasheets [Xil123a]. Exponentiation ex-
ecution times were calculated assuming that a single exponentiation requires 27 + 2 Mont-
gomery multiplications. Works in [LH084, Guil(), [7ZbXHQj10] provide results for preci-
sions up to 512-bit, thus direct comparisons are infeasible. The works in [BDK98, Gro(T]
were also not included since no experimental results are presented. Finally, the work in
[GLPT12] was omitted since it offers speed and area results for the fully-parallel case of
p = L =33, which is unfair to compare with the proposed configuration that employs time-
sharing among IMAQ units. Additionally, area results are offered in terms of um? which is
incompatible with the values offered by other works.

Finally, power consumption measurements were performed using the XPower Analyzer
functionality of Xilinx 14.4 [SE tool [Xil1?h]. For the three configurations of the proposed
[DRAMMM in Table B8 the corresponding consumptions are 1,656/588 mW (f = 22,r =
16), 1,265/598 mW (= 11,r = 32) and 1,076/595 mW (B = 6,r = 64) respectively, where
the first value is the total consumption and the second is the leakage power. From the con-
sidered works only [HKA™05] reports that the complete unit draws 69/23 mW. In terms
of power/throughput efficiency (throughput is in terms of exponentiations/sec) the corre-
sponding values are 14.9 (f =22,r =16), 7.61 (8 =11,r =32) and 4.75 (B = 6, r = 64) for the
proposed architecture and 1.14 for [HKAT05].

Table B verifies that the generic complexity comparisons presented in Table b4 can be a
useful tool for comparing architectures of different implementation platforms and underly-
ing arithmetic. The proposed architecture outperforms existing implementations in terms
of total execution time for a modular exponentiation, with an overhead in area.Both Table
b6H and Table b8 are sorted from the fastest to the slowest design for easy comparisons. The
results of the complexity analysis are in accordance with the results obtained from synthe-

93

Novel versatile architectures

sis, since five out of nine references appear in the same ranking ([NMSKOT] can be ignored
since no complexity results are provided). Deviations exist mainly due to the fan-out fac-
tor, which is not included in the complexity analysis, plus due to the completely different
characteristics of each implementation platform, even between [FPGA packages of the same
FPGA family [XilT23a].

5.4 Summary

The mathematical framework and a flexible, dual-field, residue arithmetic architecture for
Montgomery multiplication in GF(p) and GF(2") is developed and the necessary condi-
tions for the system parameters (number of moduli channels, modulus word-length) are
derived. The proposed DRAMMM architecture supports all operations of Montgomery
multiplication in GF(p) and GF(2"), residue-to-binary and binary-to-residue conversions,
[MRO for integers and polynomials, dual-field modular exponentiation and inversion, in the
same hardware. A generic, technology-independent methodology to evaluate the optimal
system parameters (number of moduli, modulus word-length) was also presented. Generic
complexity and real performance comparisons with state-of-the-art works prove the po-
tential of residue arithmetic exploitation in Montgomery multiplication.

94

CHAPTER

Novel RNS algorithms for modular
multiplication

Common design frame

Versatile architectures

T ask decomposition

A new BNS modular multiplication algorithm based on Barrett’s technique is presented in
this chapter. The necessary conditions for the algorithm’s validity, as well as the condi-
tions to apply the algorithm in modular exponentiation are also derived. Algorithmic and

architectural comparisons with the state-of-the-art solutions for RNS Montgomery multi-
plication are also offered.

Novel RNS algorithms for modular multiplication

6.1 New RNS modular multiplication algorithm based on
Barrett’s technique

6.1.1 Barrett Modular Multiplication

Barrett’s modular reduction method requires the pre-computation of one parameter pu =
LZZWHJ which remains constant as long as the n-bit reduction modulus N does not change. In
this case, like in Montgomery’s algorithm, modular multiplication is realized by multiplying
the input operands and then reducing the result. Assuming two n-bit input operands x, y

and their product s = x - y, then Barrett Modular Multiplication (BMM)) is realized as

w=s— HzinJ zﬁnJ N, ©.1)

where w <3N and w = s mod N, so that the modulus N may be needed to be subtracted
once or twice to obtain the exact result [Bar87].

6.1.2 Proposed RNSBMM algorithm

The first step towards the proposed RNSBMM algorithm is to transform (1) to an RNS-
friendly form [SST3]. For this reason, (1) is rewritten in 6 steps, depicted below as Algo-
rithm B

Algorithm 6.1 The proposed RNSBMM algorithm
Input: x,yin Aua,, x,y <3N
Output: w=xy mod N, w <3Nin Aua,
Precompute: y, Nin Aua,
1 s=x-yinAua,
t=SR(s)in Aua;,
u=t-pin Aua,
v=SRu)in Aua,
p=v-Nin Aua,
w=s-pin Aua,

(o200 B -GS V)

The proposed algorithm is executed in a base A along with an extra modulus channel cor-
responding to a redundant modulus a, for reasons to be explained later on. Steps 1, 3, 5,
and 6 of the proposed RNSBMM algorithm are normal subtractions and multiplications,
thus they can be executed in parallel in the BNS base A U ;. Steps 2 and 4 include scaling
of ENS numbers by 2" and then rounding of the result based on the floor function. In the
context of RNSBMM an SR operation by 2" is defined, that is SR(x) = | 55 .

Observe that the upper bound for the inputs was modified from x, y < N to x, y < 3N so that
inputs and outputs are compatible with each other. This allows recursive use of the pro-
posed RNSBMM to construct modular exponentiation as well [[Des0Y]. Due to this change,
there are two issues that need to be addressed. First, the conditions so that the result w

96

New RNS modular multiplication algorithm based on Barrett’s technique

remains bounded by w < 3N should be derived, and secondly, based on the previous re-
sult, the minimum range A for a valid RNS incorporation to the BMM algorithm should be
evaluated.

In the following, the word-length n* = n + ¢ is used to denote that { more bits are assigned
to represent all internal calculations in the proposed RNSBMM and N is considered as an
n-bit modulus. The proposed technique attempts to evaluate the appropriate conditions
for n* so that for inputs x, y < 3N the output is upper-bounded by w < 3N.

Our proof is based on a fundamental inequality for the floor function, i.e., [x] = m if and
onlyifx—l<m<xformeZandxeR. Let t = L%TN)ZJ denote the maximum value for ¢ for
inputs x = y = 3N(t corresponds to step 2 of the RNSBMM). For the quantities ¢, it it holds
that

N)? N)?
(32’1*) e f<(32n3
o . (6.2)
21’1 22]’!
-l<pu< N

By multiplying both terms in (622) we formulate u = tu (step 3 of RNSBMM). It holds that

2 2n* 2 92n*
O e

2n 2" N
(SN)Z 221’!* (3N)2 22}1* (3N)2 22?1*
- - > + -11< < —_— =
21 N 21 21 N
¢
B
oN- 2 < <N (63

u

IN-{]<v<IN>
—IN’ < —vN< [{|N-9N? =
IN?—9N? < s—vN <IN?*+ |{|N-9N? =
0< w< [{]N.

At this point it is proven that w is upper-bounded by w < [{|N. It is required to evaluate
the conditions so that [{]| < 3, in order for the condition w < 3N to hold. Based on another
fundamental inequality for the floor function, i.e., |[x] = mifand onlyif m < x<m+1 for
me Z and x € R, it holds that

NZ 27]

(] <3>(<dm DN 2

on N o <4>

. XN |
9N? < 2%" (4——+) (6.4)

97

Novel RNS algorithms for modular multiplication

Taking the base-2 logarithms on both sides of (62) to obtain a relation for the word-length
of n* (assuming both sides of (64) are positive) we get

log,9+2n] < |2n* +log, |4 2n*+ L =

N 27
o

A
e ~

2n+f 1
2n+4<2n+2¢+ [logz (4_T+2n+€ﬂ =
C

>2——.
¢ 2

i 2 1
2n+4<2n” + |log, [4— —+ =
(6.5)

We make an observation on the quantity C, that is max {2 — %} =1, thus ¢ > 1. Since it is
required that n* > n, that is the available word-length for calculations is always larger than
the modulus word-length, then from (B3) 2 — % 2 0 should also hold. In that case we get

C
2-—->0=>C<4=

2n+£ 1
{b&44_ N +2mfﬂ5§43 o
21’l+£
4— TR <16=>n+¢>0and0< N <2

which holds by definition for all n, ¢, N, assuming that the logarithmic function elimination
is greater than 0. Under this restriction we finally get

2n+€ 1
4— N +2n+£>1:>
]_ * * :2}1*
—22n" _3.0" _1<0"S 6.7)
2 Pz
—-3No-N<0=>p>0and N > .
p p = p /3p+1

Figure B depicts the solutions of the inequality in (64). Note that only positive values
are of interest. Under this restriction, which can be easily met for positive values of p, N,
all previous inequalities hold and thus the proposed algorithm is valid. Conditions in (62)
provide also the desired word-length for . Consider relaxing the expression for N in (67)

as
p2 2n* 2n*
N>2—>N>2—>>N2>—, (6.8)
3p 3.21 3

which simplifies to ¢ < 2 after logarithmic elimination. In combination with the result from
(635) itis required that 1 < ¢ < 2. Therefore by selecting an KNS base that handles operands

98

New RNS modular multiplication algorithm based on Barrett’s technique

0.2}

]
02l
_04l

-0.6} \

-0.8 -0.6 -04 -0.2 0.0 0.2
P

Figure 6.1: Region plot for inequality (62)

of at most n* = n+ ¢-bit long it is assured that (62) also holds and the result w will always
be upper-bounded by w < 3N for inputs x, y < 3N.

This proof is one of the main contributions of this work, since it is proved that the proposed
RNSBMM can be executed repeatedly in the context of any modular exponentiation algo-
rithm to achieve modular exponentiation in RNS. More importantly, the correction step
that subtracts once or twice the modulus N according to (1) can be executed after the ex-
ponentiation is completed. An example of an RNSBEMM exponentiation algorithm is shown
below as Algorithm B2

It remains to evaluate an appropriate range A so that all calculations within the RNSBEMM
are valid. Assuming that each modulus is r-bit long, then for the base A it holds that
A>(3n*)? >
log, A> [log2 9) +log, n*z-‘ = (6.9)
rk>2n"*+4.
Equation (B3) holds because the maximum internal value in the RNSBMM corresponds to
single multiplication step, since multiplications in steps 1, 3 and 5 are always followed by
scaling or subtraction operations, thus the intermediate results never exceed (3n*)%. (£9)

also provides the conditions for selecting an appropriate number of RNS moduli and their
word-length so that RNSBMM is valid. For example, for n* = 1026-bit calculations (N a

99

Novel RNS algorithms for modular multiplication

1024-bit modulus) and assuming that each modulus channel handles r = 32—-bit operands,
an BNS base with at least k = 65 moduli is sufficient so that (657), (68), (69) hold.

Similar to the state-of-the-art RNSMMM algorithms in [KKSS00, BDKOT, GLP™12] where BO
operations define the total complexity of the algorithms, SR operations define the complex-
ity and critical path of the proposed RNSBMM as will be shown in the following sections.

Algorithm 6.2 Proposed RNSBMM modular exponentiation
Input: x4.q,,e=(ep-1...€1€0)2
Output: b 4yq,, b=(b°) N
Precompute: y, Nin Aua,

1 b—1linAua,

2 fori=n-1,...,0do

3 b— RNSBMM(b,b)

4 ife; =1 then
5 b— RNSBMM(b, x)
6
7
8

end if
end for
return b

6.1.3 Scaling and rounding of an RNS number

The proposed SR technique is based on a scaling-by-2 algorithm developed in [MBS03]. We
assume the scaling of an integer x by a scaling constant f. The algorithm is based on the
following theorems:

Theorem 1: (Exact Division) (x/f) 4 = (xf ™14 < ((xfDay, (X Dayr--or (xf g,) if, and
onlyif, f | x < (x1, x2,..., X)) without remainder and gcd(f,a;) =1, Vi€ [1,2,..., k].

Proof. For proof see [ST67], p.38. O

For RNS sets with odd moduli the division by two is substituted by a multiplication with the
multiplicative inverse of two using the following corollary:

Theorem 2: (Odd-Modulus Set Division Without Remainder) If f =2 | x < (x1, x2,..., Xk),
then (x/2) 4 = 27 'x) 4 < (27 '%) gy, 27 %) gy, ..., (271x)q,) implements a scaling by two,
where 271), ; is the multiplicative inverse of two with respect to «;.

Proof. For proof see [MBS03]. O

Theorem 3: (Odd-Modulus Set Division With Remainder) If f =21 x < (x1, X2, ..., X¢), then
x4+ 4 < (@7Hx+ D)gy, @7Hx + D) gy, .-, (271 (x + 1)),) implements a scaling by two.

Proof. For proof see [MBS03]. O

The theorems above imply that for an RNS system with odd moduli, a scaling-by-2 scheme
can be devised by first checking whether 2 divides x. If not, x is odd thus (x+1) is even so (x+
1) is selected to be multiplied with the multiplicative inverse of 2, i.e., (xz_l)ai, Viellk].

100

New RNS modular multiplication algorithm based on Barrett’s technique

X x/2

<+ 1>(Z ’\'

SAE] I E AP SR R
. | o

(+ 1), gl

xl .

h 4

¥

h 4
™,

|\.
i
TN
+
[E—) N
gl
-
¥
.

v
.

~ =1
x2) ey

©y

(xmod 2=0) [

Figure 6.2: Scaling by two scheme [MBS03]

A suitable architecture for the scheme is shown in Fig.62. Note that, this scheme performs
the “round-to-nearest” method [ELD4]. If a rounding to next smaller integer is required,
i.e., the floor function, the increment in Fig.6:2 should be replaced by a decrement, that is
(—=1)q;. This solves the problem of floor function evaluation in RNS, which is required by
the proposed RNSBEMM.

However, in order to incorporate the scheme to the proposed RENSBMM, the technique
should be enhanced to perform scaling by higher powers of 2. In general, two approaches
are possible. Either the scheme in Fig.62 may be iteratively used 7 times, or a larger look-
up table may be used, in order to get the right offset O, so that 2" divides (x — O) (just like
2 divides (x — 1) in the scaling-by-2 case with rounding-to-next-smaller). Since it is desir-
able to avoid iterations of the scheme in order to achieve a parallel architecture and since
look-up-tables can grow too large for higher powers of 2 (> 32), a technique for scaling by
2" based on [SK8Y] is developed in the following subsection.

6.1.3.1 Divisibility check of an RNS number by 2"

The proposed scaling-by-2" scheme is shown in Fig.63 and is an extension of the scheme
in Fig.62. The architecture checks whether 2" divides x and if not it calculates the correct
offset O. The value (x — O) is then multiplied by the multiplicative inverse of 2” to complete
the scaling. Apparently, the module that checks whether 2" divides x determines the critical
path of the architecture.

We make an observation on the offset O. From the fundamental equation for integer divi-

101

Novel RNS algorithms for modular multiplication

X1

v
TN

X

[\

3

~—
2

=

A 4

(-0),

-
2
-
A 4

(-0)., {27, e

W 0),), e
A

Yvyy O

(x mod 2" = 0)

Figure 6.3: The proposed SR scheme for RNSBEMM

sion it holds that

y:[szm:x—(x)zn:yin (6.10)

2n 2n
or SR(x) = y. By taking both sides of (610) modulo «a;, Vi € [1, k] we obtain that

W a; = (o = (D2na; - Qe g, =
i ={{x%i = O)a; (27" a;) g, Vi€ [L, K] (6.11)

which is the mathematical expression of the proposed scheme in Figure 3. The condition
for the existence of (27", is gcd(2", a;) = 1, Vi € [1, k]. (E11) implies that the offset O that
needs to be subtracted from x is

O = (x)on (6.12)

or, in other words, the n CSH of x. Thus the problem of evaluating the offset O transposes
to the problem of finding the n LSB of x.

An algorithm developed in [SK8Y] may be employed at this point to evaluate the offset O.
The algorithm requires a redundant modulus a, > k so that the ENS base A is extended to

102

New RNS modular multiplication algorithm based on Barrett’s technique

Xo ——"» k ﬁ
: <Z<$i‘-}‘1i—]>ai A¢>

o, (47, 6=a) 7
L i

Figure 6.4: The proposed offset evaluation block

A = (a1, az,...,arlla;). This redundant channel will be available from now on throughout
the calculations of the RNSBMM. Let x be an integer with an KNS representation x4 =
(x1,%2,..., Xkllxr), where x, = (x)o,. By reducing both sides of (ZZ9) mod a, we obtain

that .
<x>a,:<<2<xrA;1>ai-Ai> —<yA>a,> >
i=1 ar ar

Pa, = <<A_1>ar (<Zk" <xi 'Ai_1>a,- 'Ai> - <x>ar)> (6.13)
=((a™h),, (6- <x>ar)>ar,

where 6 = <Zf:1 (x; -Al.‘1>a_ -Ai> . Since y < k and a, > k it follows that y = (y),, [SK8Y].
i ar
All terms on the right hand side of (613) are known, thus the correction factor y can be

substituted in (ZZ29) to obtain x and then use the result in (612) to calculate O. Let us
rewrite (BE12) as

4
rk -~
0= (xon = <<Z (xi- A7), 'Ai> - (YA)2n> =
i=1 2n on
= {(B— (Y A1) 0 = (B—Y(A)an)yn = (6.14)

Y

= <ﬁ—Z<A‘1>a,?6—xr)>aj<A>zn>)

2}1

where § can be efficiently computed by choosing a, to be of the convenient form 2/+1,1 < r.
A block diagram for the offset evaluation is shown in Figure 64.

After scaling of an KNS number it is required to update the redundant modulus channel in
order to make the result compatible with subsequent scalings. By reducing mod a, both
sides of (6110) we obtain

P, = (= (D2n)- 27N,)y =
Yr= <<xr_O>ar'<2_n>ar>ary (6.15)
103

Novel RNS algorithms for modular multiplication

where x, and O have already been computed during the scaling phase and (27"),, is a
constant which can be precomputed. Obviously, it should hold that gcd(2”, a,) = 1 to allow
the existence of (27", .

6.1.4 Numerical examples

Let us demonstrate the validity of the proposed RNSBEMM by two numerical examples for
a modular multiplication and a modular exponentiation respectively. Assume the 16-bit
modulus N = 65521, N < 2!6 a prime. We select x,y < 3N that is x = 3N — 65 = 196498,

. . 232
y = 2N -1 = 131005. By substituting the values for the constant y we get u = [MJ =

65551 and from (1) the result is w = 196498131005 — | | 12498131005 | £ | 65501 = 67926 <
3N. The exact result can be obtained by subtracting once the modulus N, i.e., w = 67926 —

65521 = 2405.

For the proposed ENSBMM the modulus set A = (131,137,139, 149, 151|5) is chosen, where
the redundant modulus &, =5 > k =5 and gcd(216,5) = 1. It is easy to check that A =
]'[15.:1 a; = 56126747867 > [3(65521 — 1)]? as dictated by (69). The inputs x, y and the con-
stants y, N are computed in AU a; as following:

x = (129,40,91,116,47||3)

y = (5,33,67,34,88]|0)

p = (51,65,82,140,17|(1)

N = (21,35,52,110,138]|1)

A; = Al a; = (428448457,409684291,403789553,376689583,371700317)
A;'=(120,130,16,1,2)

(2718 quq, = (91,74,83,31,76|[1)

Executing Alg 61 with the previous values yields
1 §=(129,40,91,116,47/|3) - (5,33,67,34,88||0) = (121,87,120,70,591|0)
2 t=(57,16,120,31,44/|0) with § =47963,y =3,6 =1,0="7370
3 u=(57,16,120,31,44/|0)- (51,65,82,140,17||1) = (25,81,110, 19, 144(|0)
4 v=(15,105,70,120,133]|4) with § = 34278,y =3,6 = 1,0 =59221
5 p=(15,105,70,120,133]||4) - (21,35,52,110,138]|1) = (53,113, 26,88, 83|(4)
6 w=(121,87,120,70,59]|0) - (53,113,26,88,83||4) = (68,111,94,131,127||1)

By applying (ZZ29) on the result w it can be verified that w = 67926, which is the same result
obtained by the original BMM execution. Subtracting once the modulus and applying again
(ZZ9) we get w = (68,111,94,131,127||1) - (21,35,52,110,138||1) = (47,76,42,21,140]|0)
240579, which is the exact result.

Assuming an exponent e = 216 — 564 and applying Algorithm B2 for the same input x =
(129,40,91,116,47||3) the algorithm outputs b = (70,70,11,107,111||0) = 89805,¢. Subtract-

104

Complexity analysis - comparisons

ing once the modulus N = (21,35,52,110,138]|1) we obtain b = (49,35,98,146,124||4) =
2428210 which is the exact result. All calculations were done with Mathematica [WalT3].

6.2 Complexity analysis - comparisons

6.2.1 Complexity Comparisons

Evaluations for the algorithmic complexity of the proposed RNSBMM is presented in this
section. The metric is the same followed by [KKSS00, BDK0OT, GL.P*17], i.e., the number of
small r—bit modular multiplications required to perform one RNSBEMM. In cases where
normal multiplications are required we consider the cost of a normal multiplication to
be a fraction of the cost of a modular multiplication. Assuming that the normalized cost
of a modular multiplication is Cp;p; = 1, then the cost of a normal multiplication will be
Cyym = %CMM, where € an arbitrary positive variable. We proceed by examining the pro-
posed RNSBMM step-by-step:

e Steps 1, 3, 5: these steps are performed completely in parallel in all moduli channels.
Each step requires k + 1 parallel modular multiplications, thus in total 3k +3 modular
multiplications are required.

* Step 2: the complexity of the SR step corresponds to the complexity implied by Figure
B3. There, k + 1 parallel modular multiplications are required for multiplications by
(27" 4, in AU a,. The complexity of the x mod 2" = 0 module corresponds to the
complexity of the offset evaluation block in Figure 64 (values 8,y,6, O).

— B evaluation: this step requires k modular multiplications to evaluate the r—bit
partial products (x; 'Ai_1>ai and another k normal multiplications of these par-
tial products by (A;),». By considering that (A;)»» is n—bitlong and assuming we
want to use only r—bit operators in each RNS channel, we can split an r x n—bit
multiplication in k/2 r—bit multiplications according to the restriction in (69).
In total this amounts to k+ k x (k/2) % = % k? + k modular multiplications for this
step.

- yevaluation: 1 small (mod a,) multiplication between the pre-computed value
(A™1y,, and (6 — x;) is required.

- 0 evaluation: the k partial products (x; - Ai_1>a,- have already been calculated
from B evaluation thus only k modular multiplications by the pre-computed
values (A;)q, should be considered in this case.

- O evaluation: the complexity is the summation of complexity values for 3,7, 9,
plus k/2 normal multiplications for the product y(A)pn, i.e., 3 k* + 2+ 3)k +1
modular multiplications in total.

— SR evaluation: the complexity corresponds to the complexity for computing O,

plus k + 1 modular multiplications by (27") 4,4, plus (k+ 1)%% modular re-

105

Novel RNS algorithms for modular multiplication

ductions for the (-0}, calculations, i.e., %kz + %k + 2 modular multiplications
in total.

Putting all the above together, the proposed algorithm requires

steps 2,4

steps 1,3,5 A ~

. N 1., 7 2

Bk+3)+2 Ek +§k+2 =k“+10k+7 (6.16)

modular multiplications in total.
Steps in GLP™17)] applied | [GLP*12] applied
p [KKSSO0] | [BDKOT] [lapp [I app

RNSMMM in [KKSS00] [BDOKOT]
1,3,4 5k 5k 2k 2k
First BO k2 +2k K+k k% +3k k2 +2k
SecondBO | k*+2k | k*+2k K+ k K +k
Total 2k*>+9k | 2k%+8k 2k* + 6k 2k* +5k

Table 6.1: Number of modular multiplications in state-of-the-art RNSMMM

Tables 611 and B2 compare the proposed algorithm with the state-of-the-art RNSMMM al-
gorithms in [KKSS00, BDKOT, GLP™12]. An important remark is that, all values for the pro-
posed RNSBMM correspond to the values calculated previously, but with k replaced by 2k.
The reason is that the works in [KKSS00, BDKOT, GLPT12] present complexity results with
k corresponding to the number of moduli in one of the two bases required to implement
RNSMMM, since in these cases the BU operations are performed in only one of the two
bases (thus 2k moduli are required in these algorithms). Since the proposed RNSBMM uti-
lizes only one base and all operations are performed on all channels, k should be replaced
by 2k to achieve an accurate comparison.

From Tables 61 and B2 it is clear that the proposed RNSBMM requires twice the number of
modular multiplications per RNS modular multiplication compared to existing solutions.

Steps in RNSBMM | This work
1,3,5 3(2k+1)
First SR 2k* + 7k +2
Second SR 2k2+7k+2
Total 4k*+20k+7

Table 6.2: Number of modular multiplications in the proposed RNSEMM

106

Complexity analysis - comparisons

Operation Base | # multiplications | # cycles
s=xy B k €
A_an 1
§= %y A k [z

g=s(-N"'B;Y) | B k €

N Ape 1

=3B, A, A k |3l
w;=B;NB;'A;' | A K2 L\—]ﬂ 1+t
w= If}jAj B k? [1_151-|_1+€

Table 6.3: Number of multiplication steps per RNS modular multiplication in state-of-the-
art RENSMMM ([GLP™12] without BO correction)

Apparently, a more efficient SR technique that would be executed in one of two bases, as
in the case of the BC operation, would dramatically reduce the total complexity and this is
currently a focus of our research.

6.2.2 Architectural Study
6.2.2.1 Modular reduction by the RNS moduli

The modular reduction technique by each RNS modulus is the same used in [KKSS00, BDKOT,
GLP™12], since not only it offers simple implementations but also allows for fair compar-
isons. Assuming moduli of the form a; =2" — ¢;, where ¢; < 2" and h < rT_l, the reduction
of an integer x < 22" requires two multiplications and three additions according to

y=x mod2’ +((x<<r) mod2")-¢;+(x<<2r)-c7, (6.17)
where << denotes a left-shift operation, x <2, z>2r,and ¢; < 2l [GILPT12].

6.2.2.2 Conversions to/from RNS

To allow handling of large integers in each modulus channel, it is useful to employ high-
radix representations so that each high-radix digit can be assigned to an RNS channel. A

radix-2" representation of an integer x as a k-tuple (x*71, ..., x(¥) satisfies
x(k—l)
k_l . . .
x=y xP2ri=(2ron, ora) | o (6.18)
. ()
i=0 X
O

107

Novel RNS algorithms for modular multiplication

Operation | Base | # multiplications # cycles

s=xy |Aua, 2k+1 €
t=SR(s) | Aua, 2k% + 7k +2 [2’67511+4e+1

u=ty | Aua, 2k+1 €
v=SRu) | Aua, 2k%+ 7k +2 UTEJ“L4€+1

p=vN | Aua;, 2k+1 €

Table 6.4: Number of multiplication steps in the proposed RNSBEMM

where 0 < x? < 27 — 1. By applying the modulo « j operation in (618) we can convert the
integer x to its associated RNS representation by

k-1 " .
(X)g. = xP (2" YielLkl. (6.19)

aj

If constants (2" i} ., are precomputed, this computation is a typical multiply-accumulate
J
operation and can be computed in k steps, when executed by k units in parallel.

As (Z229) is the basis of the proposed RNSBMM algorithm, it would be useful to employ it
also for the RNS-to-decimal conversion. Let us rewrite (2229) as

k
x=) (xi A7), Ai—yA=
i=1

Ajk-1) Ak-1)
k))
:(zr(k—l)"“’zr’l)z o : —y : ’
i-1 Aiq) Aqy
A A0

(6.20)

where o; = (xi~Al.‘1>a,. As soon as y has been evaluated using the methods of section
6.1.3.1, each row of (620) can be computed in parallel in each cell by means of multiply-

accumulate operations. In this case, carry should be propagated from cell 1 until cell k
[KKSSO0].

6.2.2.3 Architectural comparisons

In [NMSKOT] and [GLPT12], cell-based architectures for implementing the algorithms in
[KKSSO0] and [BDKOT, GLPT12] respectively were presented. Each cell corresponds to a
single RNS modulus and utilizes a multiply-accumulate unit followed by a modular reduc-
tion unit which performs reduction by the corresponding KNS modulus using (614). Ac-
tually, with slight modifications, the architecture in [GLP™12] supports both algorithms in

108

Complexity analysis - comparisons

[KKSS00, BDKOT].

The cell structure is shown in Figure B3 [GLPT12]; a
common bus that connects the cells and lines con-
necting one cell to a subsequent one are omitted,
for simplicity reasons. The multiply-accumulate
unit is depicted at the top of the cell and the mod-
ular reduction units at the bottom are a straightfor-
ward implementation of (617). Again, the prospec-
tive reader is instructed to refer to [GLP™12] for a
detailed architectural analysis of the state-of-the-
art RNS MM algorithms.

Most importantly, the proposed RNSBMM can also
be mapped to the latest architecture in [GLPT12],

Multiply-
accumulate
unit

h 4
MUX

¥ ¥
C5-PSEUDO MUL

¥ ¥
C5-PSEUDO MUL

vv vy
ADD
Y
REGISTER
v

¥ h 4
C5-PSEUDO MUL

since, as will be shown, the algorithms share many I
common parts. For example, both the proposed ADD
BNSBMM and the state-of-the-art RNSMMM have !
pure parallel multiplication or addition (subtrac-
tion) steps (for example steps 1, 3, 4, 6 of RNSEMM
and steps 1, 2, 4, 5, 6 of RNSMMM in Algorithm BTl
are identical operations).

First modular
reduction unit

¥
REGISTER

s

¥ L 4
C5-PSEUDO MUL

.
Yy ¥ ¥ v Yy vy ¥

What needs to be verified is that and SR opera- _ -
tions can be mapped to the same cell architecture. []
Consider for example the execution of an op- o

eration in the cell architecture of Figure B3. Ini- i
tially, each KNS digit x; along with the correspond- '
ing constants Al._1 and A; stored in a (not
shown) are recursively multiplied and reduced in
parallel in each cell, as dictated by the offset block
in Figure B4. Each result is added to a subsequent
one until g is derived serially in r—bit streams from the last cell unit in position k.

Second modular
reduction unit

Y
REGISTER

Figure 6.5: Multiply-accumulate cell
architecture [GLPT12]

B is stored and another multiplication of the same inner products (x; 'A,-_1>a , computed
previously by (A;),, also stored in ROM, is executed in each cell. The results are cascaded
through a bus and are added recursively modulo «, in the cell unit dedicated to the re-
dundant modulus to compute §. In the same cell unit y is calculated by means of a small
subtraction and multiplication modulo a,, as dictated by (E13).

Finally, the corresponding high-radix digits of §,y,0, A are combined in each unit to pro-
duce the quantity O using the same multiply-accumulate manner. The remaining subtrac-
tions by O and multiplications by (27"), in Figure B3 are carried out in parallel in each
cell.

Tables 633 and 6.4 compare the number of multiplication steps between the latest and most

109

Novel RNS algorithms for modular multiplication

Algorithm BA # cycles | Cycle delay | MM delay Expon. delay | - Area
(x2,050) (x33)
[KKSSO0], [BDKOT] | [KKSSO0] 88 93 8,184 8,184 99,873
[GLPT17] [KKSSO0] 76 93 7,068 =7,068 99,873
[KKSS00, BI04| (BI04| 89 86.6 7,707 7,707 99,840
([GLPT12] [BDKOT] 77 86.6 6,669 =6,669 99, 840
This work N/A 134 86.6 11,604.4 11,604.4 199,680

Table 6.5: Area and delay comparisons with k=33, r=32,¢=3, M=1, h=11

Gate Area (transistors) | Delay (inverter)
Inverter 2 1

NAND 4 1.4
XOR 4 1.4
XNOR 12 3.2
NAND3 8 1.8
NAND4 10 2.2
REGISTER 15 4.8

Table 6.6: Basic logic library in CMOS technology (model from [Gaj97])

efficient architecture in [GLPT12] with the proposed RNSBMM. The metrics used are the
same used in [GLP™12], i.e., the number of pipeline stages € per cell, the number M of par-
allel multipliers per cell, and the word-length / associated with each KNS modulus. Table
B3 summarizes complexity comparisons based on the model in Table B8 [Gaj97]. The ta-
ble is provided in [GLMBII] which is a preliminary version of the work in [GLPT12]. It is
assumed that the proposed ENSBMM is executed in the same architecture as [GLPT12],
only it requires double number of cells since all computations are executed in one base of
2k elements. However, the total delay of the proposed RNSBMM is close to previous works,
although, as in the case of total complexity, a more efficient SR technique would reduce the
total delay of the proposed architecture as well.

6.3 Summary

A new algorithm for RNS modular multiplication based on Barrett’s technique was pre-
sented in this chapter. The algorithm’s validity was proven and the conditions to employ the
proposed algorithm in the context of modular exponentiation were derived. Conditions for
selecting the number and word-length of the RNS moduli were also provided. In the con-
text of the proposed algorithm, methods to evaluate floor function and scaling by 2” of an
RNS number directly in RNS format were proposed. The proposed architecture requires ap-
proximately twice the number of modular multiplications compared to the state-of the-art,

110

Summary

however the total delay is still competitive. Apparently, a more efficient SR technique that
would be executed in one of two bases, as in the case of the BC operation, would dramat-
ically reduce the total complexity and this is currently a focus of our research. The idea of
merging both types of algorithms (RNSBMM and RNSMMM) into a common architecture
was also considered.

111

CHAPTER

7

Cryptanalysis

Common design frame

Versatile architectures

This chapter examines the security potentials offered by the proposed versatile hardware
implementations. It attempts to prove that the use of a well-designed, residue-arithmetic,
Montgomery multiplier overcomes hardware-fault attack threats, with no need to alter the
basic RSA-CRT protocol while at the same time, the speed-gains offered by RSA-CRT are
maintained.

Cryptanalysis

7.1 Overview of side-channel attacks countermeasures

Let us briefly present some basic concepts of the RSA=CRTI algorithm for easiness. In this
scheme, the digital signature operation S = M mod N is split in two operations S p=M dp
mod p and S, = M% mod g, where dy, =d mod(p-1) and d; = d mod (g —1). CRT
ensures that the combination of these two values produces the signature S as

S=S,+[(Sp—-S4)-(¢7" modp) modp]-q (7.1)

denoted from now on as S = CRT(Sp,S;) [Knu97]. In this way, an approximate 4-time
speedup of operations is achieved [[LabTTh, LabTTal.

Despite this significant performance improvement, RSA-CRT was proved to be extremely
vulnerable against hardware-fault attacks [ABET02, Gir06, BDLOT]. Assume an erroneous
output generated randomly during the execution of a cryptographic operation. Without
loss of generality, let the fault be in the modulus p channel, denoted as S,. This will produce
a faulty signature S = CRT (S, S4). An adversary can then factorize the public modulus n
by computing its prime factor g as g = gcd{(S°—m) mod n, n} and consequently obtain
p=nlq.

In [Sha99], Shamir modified the basic RSA-=CRT algorithm in (Z1) by introducing a ran-
dom prime r so that S,, = m? med(P=D=1 mod pr and S, = m? Med@-D0=D med gr.
The method checks whether S, = S;; mod r holds before combining them with CRT. If
Spr =S4y mod r the computation is error-free, but the step of CET combination is left un-
protected. Moreover, Shamir’s method requires the knowledge of the straightforward RSA
private key d in an RSA-=CRT context, which is unpractical since the key material is given in
CRT format [Vig08].

The work in [ABET02] exploited this weakness and broke Shamir’s countermeasure. The
authors proposed an improved implementation that included the protection of the CKT
re-combination step. But random number generation is a problem in this scheme, since
generating random numbers for each signature operation results in large time overhead.

In [Vig08], the authors proposed a method based on modulus expansion. It computes m4

mod nin Zp;,2, where r is a small random integer co-prime with n. The message m is trans-
formed to 7 such that 2= m mod nand /2 =1+r mod r?. Then, S and S are computed
as S=m? modnand S = /% mod nr?. If §=S mod n then the protocol is error-free.
However, the method did not improve much the performance overhead [MTWI?7].

The work in [Gir06] exploited the Montgomery Ladder Exponentiation (MLE) algorithm as a
countermeasure scheme. Unlike the square-and-multiply algorithm which performs on av-
erage 1.5 modular multiplications per bit of the exponent, the MLE algorithm performs two
modular multiplications for each bit of exponent, and thereby increases execution time.

The authors in [Y]00] provided an ingenious fault-attack based on the safe-error concept.
They observed that during a modular exponentiation using typical Square and Multiply
algorithms, if the exponent bit is 0 then the result of a modular multiplication is not used.
By inducing an error during multiplication and by testing whether the result is correct or

114

Fault handling in RNS-based multipliers

not the attacker can deduce the bit of the secret exponent. However, a countermeasure was
provided in [IY0Z] using MTLE.

In [YKLMO3, BOSO3] a class of countermeasures based on “fault-infective” techniques are
introduced. They are based on the idea of modifying the RSA=CRT computations in such
a way that a faulty signature in one channel will infect the final signature after the CRTI
recombination. Unfortunately, like in [Sha99], not only the knowledge of d is required, but
also the techniques rely on some very strong assumptions. For example, some parameters
t1, t; introduced in [BOS03] require that ged (¢4,) = ged (d, ¢(t)) = ged (d, ¢(t2)) = 1, where
¢ is the Euler’s totient function. #;, f» should normally be generated once along with the RSA
key and the same values should be used throughout the lifetime of the key. However, these
values cannot be stored in such a personalized context, meaning that the generation of 71, #,
for each signature is not a negligible computational task.

7.2 Fault handling in RNS-based multipliers

The majority of the aforementioned countermeasures are based on modifications in the
[RSA-CRT protocol, which amount to extra operations and increased algorithmic complex-
ity for the RSA-CRT execution. These solutions rely on the 2-modulus splitting of RSA calcu-
lations using a naive RNS consisting of just the moduli p and g. In the following, we deviate
from 2-modulus splitting, and the multi-modulus RNS Montgomery multipliers presented
in the previous chapters are examined from a hardware-fault tolerance point of view.

7.2.1 Hardware-fault tolerance in MR(-based RNS Montgomery
multipliers

To simplify our discussion, the RNSMMM algorithm along with the MRUO-based BO are pre-
sented for reference as Algorithm [Z1 and [Z2 respectively (see Section &1 and &2).

Algorithm 7.1 RNS Montgomery Modular Multiplication (RNSMIVIM)
Input: ar,byr{a,b<2N}
Output: c7,{c<2Nand c=abQ ! mod N}
Precompute: (-N~'),Q ', Ny
1 sy —ay-br
tg—sg:(-N7)g
t 4 — I { base conversion step }
Uug—tg-Ny
Vpg—SpatUy
cA—va-QY
cB — ¢4 { base conversion step}

N O s W

Itis apparent that steps 1,2,4,5,6 in Algorithm [Z1 are performed in parallel in each modulus
channel. Clearly, if the algorithm was completely parallel, an error in modulus channel i
would not influence the rest channels and thus the Greatest Common Divisor (GCD) attack

115

Cryptanalysis

Algorithm 7.2 MRO-based base conversion (see section &)
Input: xp = (x1,x2,...,X1)
Output: x4 = (x},X),...,x)

1 U —x

2 foralli=2,...,Ldo

3 U; — x;

4 forj=1toi—1do

5 U—((Ui-U)a;h)

6 end for

7 end for

8 foralli=1,...,Ldo

9 x;‘ — (UL p,

10 forj=L-1to1ldo

qi

/ / . .
1 x; —(x;q;+Uj),
12 end for
13 end for

would hold. We prove that the base conversion provides the desired mechanism for fault
tolerance.

Assume a permanent error #; in modulus channel 1 < i < L. Note that, since step 2 of Algo-
rithm [T uses the result of step 1, the faulty result will always amount to #;. By observation,
employing 7; in the base conversion of step 3 yields

b= (-1 ajh), i€ 2LV €li-1). (7.2)

(Z2) corresponds to the steps 1-7 of Algorithm [Z2 and implies that an error occurred in
position i, will always cascade to next channels and produce a faulty 7; even if the error
occurs at the very last step of calculations in channel L. This value is used in step 9 to
continue the base conversion process. An important observation is that at this step, the
faulty 7 is injected to all channels according to

fi (1), Yiell, L] (7.3)
and similarly the faulty #/s produce
i —(ii-q;+1), Yiell,LLVje[l,L-1]. (7.4)

As aresult, a faulty 7 4 is generated at step 3 of Algorithm [Z2 and injected in step 4 for sub-
sequent calculations. Note that due to (Z3), it is assured that all channels after the first base
conversion will be infected. Using a similar analysis, it is easy to show that even if the error
occurs after the first base conversion, the second base conversion at step 7 of Algorithm [T
will infect all channels in the same manner, thus making the GCD attack infeasible.

A special case is when the error is not permanent and is inserted in a channel i,i € [1, L]
during the base conversion. If the error is generated during steps 1-7 of Algorithm [Z2, step

116

Fault handling in RNS-based multipliers

9 will inject the error to all other channels, according to (Z3). The case that an error is
inserted in channel i,7 € [1,L] during step 11 of Algorithm [ZZ should also be examined.
Although step 11 is executed in parallel for all channels, each channel calculation reuses
the results from all other channels. This is also apparent from the recursive form of (Z3).
Due to this, all channels are affected making GCD attack infeasible. A similar analysis may
be conducted for the MRO-based Bd in section b1l

7.2.2 Hardware-fault tolerance in CRT-based RNS Montgomery
multipliers
In [KKSS00], the first practical and efficient implementation of RNS Montgomery multi-

plier based on CRT was presented. The CRT-based algorithm for RNSMMM is identical to
Algorithm [T, thus only the BO is presented below as Algorithm [Z3.

Algorithm 7.3 Base Conversion (BQO) algorithm by Kawamura et al. [KKSSO0]

Input: CB = ((l)(Zr---’(L)’A)Bva
Output: {4 =({},05,...,(7)
Precompute: (Bl.‘l)q_ ,(Bi)4(Vi=1...L),(-B) 4

1 opg=0a

2 foralli=1...Ldo

3 5i=<Ci'B,-_1>qi

4 51',0:0

5 end for

6 foralli=1...Ldo

7 forj=1...Ldo

8 0j=0(j-1+trunc(;)/2"
9 Y;=lojl ty; =10,1}

10 O']':Uj—)f;f

1 0i,j=0i(j-1+&j-(Bj),, +7j (=Bdp,
12 end for

13 end for

14 foralli=1...Ldo

15 {;=(0iL),

16 end for

Clearly, steps 1-5 and 14-16 in Algorithm [Z3 involve completely parallel operations in all
channels, so fault-tolerance should be examined for the steps 6-13. In the case of a perma-
nent error, a faulty)7; ,J €11, L] is generated in steps 8-9 which consequently produces

81,j=084,j-1+&j(Bj),, +7; (BN, Vi, j€[L,Ll. (7.5)
This means that all channels are affected by the error, thus the parallel operation of steps
14-16 is also affected.

In the case of an error induced in a timing manner, issues are raised. It is apparent that, if
an adversary is able to insert an error during the steps 14-16, only one (or several) channels

117

Cryptanalysis

can be affected, which makes the GCI attack easily mountable. To overcome this issue, an
extra checking procedure is inserted in steps 14-16 of Algorithm [Z3 based on the following
pseudo code:

1 foralli=1,...,Ldo

2 if6;,; ==6; of step 11 then
3 ¢ =(0iL)),

4 else
5

6

7

error detected
end if
end for

The solution checks whether the quantities §; ; are identical to the values obtained in the
previous step 11 and if not, a malicious error has been detected. The solution requires the
storage of the L values of step 11 and a comparison with the §; ;s employed in step 15. Note
that this solution does not issue significant overhead since the checking procedure can be
executed only once at the end of an RSA exponentiation.

7.2.3 Remarks on Performance

Presenting performance metrics of KNS Montgomery multipliers is out of scope of this
chapter. We have already presented comparative studies in chapters @, B and in [SST4],
while trade-offs between state-of-the art RNS solutions appear in [GLPT12].

There is, however, an important derivative of the presented hardware-fault analysis on RNS
Montgomery multipliers. As described in Section [Z1], current countermeasures appearing
in the literature provide immunity at the cost of extra operations or checking procedures
in the RSA=CRT protocol itself, thus the 4-time speedup offered by the use of RSA=CRT is
somehow sacrificed to achieve tolerance against hardware-fault attacks.

The presented analysis shows that if RNS Montgomery multipliers are employed, instead of
typical non-RNS ones in crypto-hardware design, security is offered for free, with no need
for extra checking procedures or modifications to the RSA=CRT protocol as in [Sha99, Vig08,
ABET02, MIWI1?, Gir06, YT00, YKIEMO3, BOSO3]. At the same time, since immunity comes
for free, the 4-time speedups between BSA and KSA-CRT are maintained.

7.3 Summary

The cryptanalytic properties of RNS-based Montgomery multipliers against hard-ware fault
attacks for RSA=CRT were analyzed. It was proved that, in contrast to previous solutions
based on modifications to the basic ESA=CRT protocol, the use of MRO-based RNS Mont-
gomery multipliers [SS14], is sufficient to provide security against such attacks with no
need for modifications in protocol level. Weaknesses of CRT-based multipliers were also
identified and countermeasures were proposed. The contribution of the base-conversion

118

Summary

process as the inherent mechanism of RNS-based Montgomery multipliers responsible for
hardware-fault immunity was proved.

119

CHAPTER

Conclusions and Outlook

Conclusions and Outlook

Being exposed in an unprecedented number of threats and frauds, safe connectivity for all
network-based systems has become a predicate necessity. Cryptographic hardware plays
a dominant role in the implementation of systems that could offer the desired levels of
security. The prospective crypto-hardware designer should not only care for performance
but also resistance against attacks. Under this perspective, cryptographic hardware design
poses extra difficulties and challenges considering especially the fact that, as years pass by,
the security standards need to be constantly strengthened.

This doctoral thesis attempted to approach the problem of cryptographic hardware de-
sign in a holistic manner, covering the aspects of new algorithms proposal, algorithmic
analysis, mathematical validation, crypto-hardware design, and security validation of the
proposed architectures. The proposed algorithms and architectures made use of the non-
conventional representation of RNS and PRNS.

Initially, the first practical implementation of an elliptic curve processor using the ENS rep-
resentation was presented. We approached the problem by evaluating an appropriate range
for the calculations, and new task execution graphs for point doubling and point addition
were proposed. The tasks were optimized to be resistant against power and timing attacks.
The idea was further enhanced and more efficient designs based on pipelined BENS struc-
tures and moduli of special form were also proposed.

Next, an important class of algorithms that formed the basis of the proposed versatile ar-
chitectures was presented, namely the RNSMMM and PRNSMMM algorithms. The most
important features and characteristics of these algorithms were thoroughly analyzed. New,
improved versions for both algorithms were proposed, while algorithmic and architectural
analysis proved the superiority of the proposed solutions compared to existing ones.

The design methodology for incorporating RNS and PRNS in MMM in GF(p) or GF(2") re-
spectively was subsequently presented. An analysis of input/output conversions to/from
residue representation, along with the proposed residue Montgomery multiplication algo-
rithm, revealed common multiply-accumulate data paths both between the converters and
between the two residue representations. A novel versatile architecture was derived that
supports all operations of MM in GF(p) and GF(2"), input/output conversions, for
integers and polynomials, dual-field modular exponentiation and inversion in the same
hardware. Detailed comparisons with state-of-the-art implementations proved the poten-
tial of residue arithmetic exploitation in dual-field modular multiplication.

Furthermore, one of the fundamental problems in TSI design was considered, that is the
problem of evaluating and comparing architectures using models independent from the
underlying fabrication technology. Generic, function-based methods to evaluate the opti-
mal operation parameters of the proposed architectures as well as methodologies to opti-
mize the proposed architectures in terms of speed, area, or area x speed based on the needs
of the underlying application were proposed.

An important security property of the proposed residue arithmetic architectures was also
revealed. It was proved that the use of a well-designed, residue-arithmetic, Montgomery

122

multiplier overcomes hardware-fault attack threats, with no need to alter the basic RSA-
CRT protocol while at the same time, the speed-gains offered by RSA-CRT are maintained.

Finally, novel algorithms based on new mathematical and design problems for the crucial
operation of modular multiplication using Barrett’s technique were presented. The algo-
rithms preserve the versatile characteristics discussed previously and it was proved that,
along with existing algorithms in the literature, a large family of algorithms applicable in
cryptography may be formed, unified under the common frame of the proposed versatile
architectures.

Several directions towards future research are still left open. The proposed function-based
methodologies for generic comparisons could be enhanced to include more design param-
eters, like the fan-out factor of logic gates, thus more detailed and accurate models could
be derived. Equivalent models could also be devised to analyze and compare power con-
sumption, in the same sense that area, speed and area x speed product were compared in
this thesis.

Hardware evaluation of the new RNSBMM algorithm should also be considered either by
employing the proposed multiply-accumulate architectures, or RNS-specific architectures
using special moduli sets like the ones proposed in Chapter B. Optimization potentials for
the SR operations employed in RNSBMM should also be investigated.

Moduli of special form, like the ones employed in Chapter B, should be evaluated in the
context of the proposed MAQ architecture for RNSMMM and PRNSMMM. The possibility
of replacing the proposed arithmetic circuits with more specific ones in order to further
simplify and optimize the proposed architectures should be considered.

New parallelization prospects offered by state-of-the-art multi-processor systems could
also be investigated. A possible scenario could be that parallel processors perform par-
allel multiplications on different data-sets of a single message. In such cases, the existence
of equivalencies between a serial and a parallel algorithm, if any, should be mathematically
proven. Also, in case parallelization is possible, any required algorithmic overhead should
be carefully determined and assessed for performance impact. There are various design is-
sues when it comes to multi-processor system design. A careful examination of the impact
of interconnections, system I/0 delays, etc., on the system’s performance and area should
be carried out. It should be also considered that these systems require full availability of all
input data beforehand, which does not allow for real-time encryption/signing.

Finally, the cryptanalytic properties of RNS-based architectures can also be further extended,
to include attacks other than hardware-fault related. The role of and SR operations
should be meticulously analyzed to reveal new possibilities for cryptanalytic resistance. An
interesting derivative of this thesis is the security potential offered by the proposed versa-
tile architectures, by means of changing seamlessly the underlying cryptographic proto-
cols during an established communication channel. Investigating the applicability of RNS
to other PKO systems, like for example the emerging lattice-based cryptography [GGH97,
Reg06], could also generate new and interesting cryptanalytic properties, architectures and
algorithms.

123

Conclusions and Outlook

In general, current solutions employing conventional binary arithmetic for modular mul-
tiplication, are based on Montgomery’s algorithm (systolic, semi-systolic, etc). These ar-
chitectures have been extensively analyzed and the optimizations proposed are so fine-
grained, that the research space on the field steadily narrows. On the other hand, this doc-
toral thesis provided solid indications that non-conventional arithmetic like RNS and PRNS
may provide new means for tackling design problems of crypto-hardware and further ex-
tend the research space in this active field.

124

Bibliography

[ABF*02]

[AH93]

[AMV93]

[Bar87]

(BCJLI3]

[BDEMO6]

[BDK98]

C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault Attacks on
RSA with CRT: Concrete Results and Practical Counter-Measures. In Proc.
Int. Workshop Cryptographic Hardware and Embedded Systems (CHES '02),
pages 260-275, 2002.

I. O. Aichholzer and H. Hassler. A fast method for modulus reduction and
scaling in residue number system. In Workshop on Economic Parallel Pro-
cessing (EPP’93), pages 40-56, 1993.

G.B. Agnew, R.C. Mullin, and S.A. Vanstone. An implementation of elliptic
curve cryptosystems over F,iss. IEEE J. Sel. Areas Commun., 11(5):804-813,
jun 1993.

Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In Advances in
Cryptology, CRYPTO 86, volume 263 of Lecture Notes in Computer Science,
pages 311-323. Springer Berlin Heidelberg, 1987.

G. Brassard, C. Crepeau, R. Jozsa, and D. Langlois. A quantum bit commit-
ment scheme provably unbreakable by both parties. In Foundations of Com-
puter Science, 1993. Proceedings., 34th Annual Symposium on, pages 362—
371, 1993.

J. C. Bajard, Sylvain Duquesne, M. Ercegovac, and N. Meloni. Residue sys-
tems efficiency for modular products summation: application to elliptic
curves cryptography. In Proc. Advanced Signal Processing Algorithms, Ar-
chitectures, and Implementations XVI, volume 6313, August 2006.

J. Bajard, L.-S. Didier, and P. Kornerup. An RNS Montgomery modular multi-
plication algorithm. Computers, IEEE Transactions on, 47(7):766-776, 1998.

125

[BDKO1]

[BDLO1]

[BIO4]

[(BIJO5]

(BKPO9]

[BLOG]

[BOS03]

[BSS02]

[CBCO07]

[DBS06]

[dDBQO4]

[Des09]

126

J.-C. Bajard, L. S. Didier, and P. Kornerup. Modular multiplication and base
extensions in residue number systems. In Proceedings of the 15th Sympo-
sium on Computer Arithmetic, ARITH ’01, pages 59-65, 2001.

D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Importance of Eliminating
Errors in Cryptographic Computations. Journal of Cryptology, 14:101-119,
2001.

Jean-Claude Bajard and Laurent Imbert. A full RNS implementation of RSA.
IEEE Transactions on Computers, 53:769-774, June 2004.

Jean-Claude Bajard, Laurent Imbert, and Graham A. Jullien. Parallel Mont-
gomery Multiplication in GF(2*) Using Trinomial Residue Arithmetic. Com-
puter Arithmetic, IEEE Symposium on, 0:164-171, 2005. doi:10.1109/
ARTTH. 200534,

J.C. Bajard, M. Kaihara, and T. Plantard. Selected RNS Bases for Modular
Multiplication. In 19th IEEE International Symposium on Computer Arith-
metic, pages 25-32, 2009.

J. Bucek and R. Lrencz. Comparing subtraction-free and traditional AMI.
In Proc. IEEE Design and Diagnostics of Electronic Circuits and systems,
DDECS’06, pages 95-97, April 2006.

Johannes Blmer, Martin Otto, and Jean-Pierre Seifert. A new CRT-RSA algo-
rithm secure against bellcore attacks. In Proceedings of the 10th ACM con-
ference on Computer and communications security, CCS ’03, pages 311-320,
2003.

I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography. Cam-
bridge University Press, 2002.

G. Chen, G. Bai, and H. Chen. A High-Performance Elliptic Curve Crypto-
graphic Processor for General Curves Over GF(p) Based on a Systolic Arith-
metic Unit. IEEE Transactions on Circuits and Systems II: Express Briefs,
54(5):412-416, May 2007.

Jean-Pierre Deschamps, Gery J. A. Bioul, and Gustavo D. Sutter. Synthesis of
arithmetic circuits: FPGA, ASIC and embedded systems. John Wiley & Sons,
Hoboken, New Jersey, 2006.

G. M. de Dormale, P. Bulens, and J.-J. Quisquater. An improved Montgomery
modular inversion targeted for efficient implementation on FPGA. In Proc.
IEEE Int. Conf. Field Programm (FPT'04), pages 441-444, December 2004.

Jean-Pierre Deschamps. Hardware Implementation of Finite-Field Arith-
metic. McGraw-Hill, Inc., New York, NY, USA, 2009.

http://dx.doi.org/10.1109/ARITH.2005.34
http://dx.doi.org/10.1109/ARITH.2005.34

[DFSS05]

[DH76]

[DMKPO04]

[DMPO03]

[ELO04]

[Elg85]

[ESG*05]

[ESJ"13]

[FP99]

(Gaj97]

[GGH97]

[.B. Damgard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the
bounded quantum-storage model. In Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 449-458, 2005.
doi:10.1109/SFCS.2005. 30.

W. Diffie and M.E. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644-654, 1976.

A. Daly, W. Marnane, T. Kerins, and E. Popovici. An FPGA implementation of
a GF(p) ALU for encryption processors. Microprocessors and Microsystems,
28(5-6):253-260, August 2004.

A. Daly, L. Marnane, and E. Popovici. Fast modular inversion in the Mont-
gomery domain on reconfigurable logic. Technical report: University College
Cork, Ireland, 2003.

M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers,
San Francisco, 2004.

T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. Information Theory, IEEE Transactions on, 31(4):469-
472,1985. doi:10.1109/TIT.1985.1057074.

H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick, and L. Spracklen. Acceler-
ating next-generation public-key cryptosystems on general-purpose CPUs.
IEEE Micro, 25(2):52-59, March-April 2005.

M. Esmaeildoust, D. Schinianakis, H. Javashi, T. Stouraitis, and K. Navi.
Efficient RNS Implementation of Elliptic Curve Point Multiplication Over
GF(p). Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
8(21):1545-1549, 2013.

W. L. Freking and K. K. Parhi. A unified method for iterative computation
of modular multiplication and reduction operations. In Proc. IEEE Inter-
national Conference on Computer Design (ICCD’99), pages 80-87, October
1999.

D. Gajski. Principles of Digital Design. Prentice-Hall, 1997.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In BurtonS. Jr. Kaliski, editor, Ad-
vances in Cryptology CRYPTO ’97, volume 1294 of Lecture Notes in Com-
puter Science, pages 112-131. Springer Berlin Heidelberg, 1997. URL: http:
//dx.doi.org/10.1007/BFb0052231,doi:10.1007/BFb0052231.

127

http://dx.doi.org/10.1109/SFCS.2005.30
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/BFb0052231

[Gir06]

(GLMBI11]

[GLP*12]

[Gro01]

[GTO3]

[GTKO2]

[GuilO]

[HGEG11]

(HGGO7]

[HKA"05]

[HMV04]

128

C. Giraud. An RSA Implementation Resistant to Fault Attacks and to Sim-
ple Power Analysis. IEEE Transactions on Computers, 55(9):1116-1120, Sept.
2006.

E Gandino, E Lamberti, P. Montuschi, and J. Bajard. A General Approach
for Improving RNS Montgomery Exponentiation Using Pre-processing. In
Computer Arithmetic (ARITH), 2011 20th IEEE Symposium on, pages 195-
204, july 2011.

E Gandino, E Lamberti, G. Paravati, J.-C. Bajard, and P. Montuschi. An Al-
gorithmic and Architectural Study on Montgomery Exponentiation in RNS.
Computers, IEEE Transactions on, 61(8):1071-1083, aug. 2012.

Johann Gro3schéddl. A Bit-Serial Unified Multiplier Architecture for Finite
Fields GF(p) and GF(2™). In Proceedings of the Third International Work-
shop on Cryptographic Hardware and Embedded Systems, CHES '01, pages
202-219, London, UK, 2001. Springer-Verlag.

A. A. A Gutub and A.E Tenca. Efficient scalable hardware architecture for
Montgomery inverse computation in GF(p). In Proc. IEEE Workshop Signal
Process. Syst. (SIPS’03), pages 93-98, August 2003.

A. A.-A. Gutub, A. Tenca, and C. K. Kog. Scalable VLSI architecutre for GF(p)
Montgomery modular inverse computation. In Proc. IEEE Comput. Soc. An-
nual Symp. VLSI, pages 53-58, April 2002.

Nicolas Guillermin. A High Speed Coprocessor for Elliptic Curve Scalar Mul-
tiplications over F,. In Cryptographic Hardware and Embedded Systems,
CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages 48—
64. Springer Berlin / Heidelberg, 2010.

Miaoqing Huang, K. Gaj, and T. El-Ghazawi. New Hardware Architectures
for Montgomery Modular Multiplication Algorithm. IEEE Transactions on
Computers, 60(7):923-936, july 2011.

William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast modu-
lar reduction. In Proc. 18th IEEE Int. Symposium on Computer Arithmetic
(ARITH’07), pages 225-229, June 2007.

David Harris, Ram Krishnamurthy, Mark Anders, Sanu Mathew, and Steven
Hsu. An Improved Unified Scalable Radix-2 Montgomery Multiplier. Com-
puter Arithmetic, IEEE Symposium on, 0:172-178, 2005.

D. Hankerson, A. Menezes, and S. Vanstone. Guide to elliptic curves cryptog-
raphy. Springer-Verlag & Hall/CRC, New York, 2004.

[JYO02]

[KA98]

[KAK96]

[Kal]

[Kal95]

[KFO7]

[KH98]

[KKSS00]

[Knu97]

[Kob87]

[(KPHO04]

[Lablla]

[Lab11b]

M. Joye and S.-M. Yen. The Montgomery powering ladder. In Proc. Work-
shop on Cryptographic Hardware and Embedded Systems (CHES'02) LNCS,
pages 291-302, 2002.

C. K. Kog and T. Acar. Montgomery Multiplication in GF(2¥). Design, Codes
and Cryptography, 14(1):57-69, April 1998.

C. K. Kog, T. Acar, and B. S. Kaliski. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26-33, June 1996.

B. Kaliski. TWIRL and RSA Key Size. URL: http://www.rsasecurity.com/
rsalabs/node.asp?id=2004.

B. S. Kaliski. The Montgomery inverse and its applications. IEEE Transac-
tions on Computers, 44(8):1064-1065, August 1995.

Hakim Khali and Ahcene Farah. Cost-Effective Implementations of GF(p)
Elliptic Curve Cryptography Computations. International Journal of Com-
puter Science and Network Security, 7(8):29-37, August 2007.

Q. K. Kop and C. Y. Hung. Fast algorithm for modular reduction. In Proc.
IEEE Computer and Digital Techniques, volume 145(4), pages 265-271, July
1998.

Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo.
Cox-Rower architecture for fast parallel Montgomery multiplication. In EU-
ROCRYPT’00: Proceedings of the 19th international conference on Theory
and application of cryptographic techniques, pages 523-538, Berlin, Heidel-
berg, 2000. Springer-Verlag.

Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203-209, 1987.

Hyun-Sung Kim, Hee-Joo Park, and Sung-Ho Hwang. Parallel Modular Mul-
tiplication Algorithm in Residue Number System. In Proc. Workshop on High
Perfomance Numerical Algorithms LNCS, volume 3019, pages 1028-1033,
April 2004.

RSA Lab. High-Speed RSA Implementation, 2011. URL: ftp://ftp.
rsasecurity.com/pub/pdfs/tr201.pdf.

RSA Lab. RSA Hardware Implementation, 2011. URL: ftp://ftp.
rsasecurity.com/pub/pdfs/tr801.pdf.

129

http://www.rsasecurity.com/rsalabs/node.asp?id=2004
http://www.rsasecurity.com/rsalabs/node.asp?id=2004
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr801.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr801.pdf

(LHO8a]

[LHO8Db]

[LN86]

[MBSO03]

[MCcE87]

[Mic94]

[Mil86]

MLW12]

[MMMO04]

[MMMO6]

[Moh07]

[Mon85]

(MOVW88]

130

Jyu-Yuan Lai and Chih-Tsun Huang. Elixir: High-Throughput Cost-Effective
Dual-Field Processors and the Design Framework for Elliptic Curve Cryp-
tography. IEEE Transactions on VLSI, 16(11):1567-1580, nov. 2008.

Ralf Laue and Sorin A. Huss. Parallel Memory Architecture for Elliptic Curve
Cryptography over GF(p) Aimed at Efficient FPGA Implementation. Journal
of Signal Processing Systems, 51:39-55, 2008.

Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their
applications. Cambridge University Press, New York, NY, USA, 1986.

U. Meyer-Base and T. Stouraitis. New power-of-2 RNS scaling scheme for
cell-based IC design. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 11(2):280-283, april 2003.

Robert]. McEliece. Finite field for scientists and engineers. Kluwer Academic
Publishers, Norwell, MA, USA, 1987.

G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill
Inc., Singapore, 1994.

V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology
(CRYPTO’85) LNCS, volume 218, pages 47-426, 1986.

Kun Ma, Han Liang, and Kaijie Wu. Homomorphic Property-Based Concur-
rent Error Detection of RSA: A Countermeasure to Fault Attack. Computers,
IEEE Transactions on, 61(7):1040-1049, july 2012.

C. Mclvor, M. McLoone, and J.V. McCanny. Modified Montgomery modular
multiplication and RSA exponentiation techniques. Computers and Digital
Techniques, IEE Proceedings -, 151(6):402—-408, Nov. 2004.

C. J. Mclvor, M. McLoone, and J. V. McCanny. Hardware elliptic curve cryp-
tographic processor over GF (p). IEEE Transactions on Circuits and Systems-
Part I, 53(9):1946-1957, September 2006.

PV.A. Mohan. RNS-To-Binary Converter for a New Three-Moduli Set {on+l _
1,2",2" —1}. Circuits and Systems II: Express Briefs, IEEE Transactions on,
54(9):775-779, 2007.

P L. Montgomery. Modular multiplication without trial division. Math.
Comput., 16:519-521, 1985.

R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson. Optimal normal bases
in GF(p™). Discrete Applied Mathematics, 22:149-161, 1988.

[MVO96]

[NME11]

[NMSKO1]

[OBPVO03]

[OM86]

[OPO1]

[Par97]

[PHO8]

[Pie95]

[PP9I5]

[Reg06]

Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1996.

K. Navi, A.S. Molahosseini, and M. Esmaeildoust. How to Teach Residue
Number System to Computer Scientists and Engineers. Education, IEEE
Transactions on, 54(1):156-163, 2011.

H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura. Implementation of
RSA Algorithm Based on RNS Montgomery Multiplication. In Proc. Work-
shop on Cryptographic Hardware and Embedded Systems (CHES'01) LNCS,
volume 2162, pages 364-376, 2001.

Siddika Berna Ors, Lejla Batina, Bart Preneel, and Joos Vandewalle. Hard-
ware implementation of an elliptic curve processor over GF(p). In Proc.
IEEE Application-Specific Systems, Architectures, and Processors (ASAP’03),
pages 433-443, June 2003.

J. Omura and J. Massey. Computational method and apparatus for finite
field arithmetic, May 1986.

G. Orlando and C. Paar. A scalable GF(p) elliptic curve processor archi-
tecture for programmable hardware. In Proc. Workshop on Cryptographic
Hardware and Embedded Systems (CHES'01) LNCS, volume 2162, pages 348—
363, 2001.

B. Parhami. Modular reduction by multi-level table lookup. In Proc. IEEE
40th Midwest Symposium on Circuits and Systems, volume 1, pages 381-384,
August 1997.

Nathaniel Ross Pinckney and David Money Harris. Parallelized radix-4 scal-
able Montgomery multipliers. Integrated Circuits and Systems, 3(1):39-45,
nov. 2008.

S.]. Piestrak. A high-speed realization of a residue to binary number system
converter. IEEE Transactions on Circuits and Systems II, Analog and Digital
Signal Processing, 42:661-663, October 1995.

K. Posch and R. Posch. Modulo reduction in residue number systems. Trans.
Parallel Distrib. Syst., 6(5):449-454, 1995.

Oded Regev. Lattice-based cryptography. In Advances in Cryptology
CRYPTO '06, Lecture Notes in Computer Science, pages 131-141. Springer
Berlin Heidelberg, 2006.

131

[RSA78]

[SBCI98]

[SCWL08]

[SFKSO06]

[SFM*09]

[Sha99]

[SK89]

[SKO0O0]

[SKS06]

[SKS07]

[SL10]

132

R. Rivest, A. Shamir, and L. Adleman. A method for Obtaining digital sig-
natures and public-key cryptosystems. Comm. ACM, 21:120-126, February
1978.

T. Srikanthan, M. Bhardwaj, and C. T. Clarke. Area-time-efficient VLSI
residue-to-binary converters. IEE Proceedings Computers and Digital Tech-
niques, 145:229-235, May 1998.

Ming-Der Shieh, Jun-Hong Chen, Hao-Hsuan Wu, and Wen-Ching Lin. A
new modular exponentiation architecture for efficient design of RSA cryp-
tosystem. IEEE Transactions on VLSI, 16:1151-1161, September 2008.

D. M. Schinianakis, A. P. Fournaris, A. P. Kakarountas, and T. Stouraitis. An
RNS architecture of an F(p) elliptic curve point multiplier. In Proc. IEEE
International Symposium on Circuits and Systems (ISCAS’06), pages 3369-
3373, May 2006.

D.M. Schinianakis, A.P. Fournaris, H.E. Michail, A.P. Kakarountas, and
T. Stouraitis. An RNS Implementation of an F,, Elliptic Curve Point Mul-
tiplier. IEEE Transactions on Circuits and Systems I, 56(6):1202-1213, jun.
2009.

A. Shamir. Improved Method and Apparatus for Protecting Public Key
Schemes from Timing and Fault Attacks, Nov 1999.

M.A.P. Shenoy and R. Kumaresan. A fast and accurate RNS scaling technique
for high speed signal processing. Acoustics, Speech and Signal Processing,
IEEE Transactions on, 37(6):929-937, jun 1989.

E. Savas and C. K. Ko¢. The Montgomery modular inverse-Revisited. IEEE
Transactions on Computers, 49(7):763-766, July 2000.

D. M. Schinianakis, A. P. Kakarountas, and T. Stouraitis. A new approach
to elliptic curve cryptography: an RNS architecture. In Proc. IEEE Mediter-
ranean Electrotechnical Conference MELECON'06, pages 1241-1245, May
2006.

M. Sudhakar, R.V. Kamala, and M.B. Srinivas. A bit-sliced, scalable and uni-
fied Montgomery multiplier architecture for RSA and ECC. In Very Large
Scale Integration, 2007. VLSI - SoC 2007. IFIP International Conference on,
pages 252-257, oct. 2007. doi:10.1109/VLSISOC.2007.4402507.

Ming-Der Shieh and Wen-Ching Lin. Word-Based Montgomery Modu-
lar Multiplication Algorithm for Low-Latency Scalable Architectures. IEEE
Transactions on Computers, 59(8):1145-1151, aug. 2010. doi:10.1109/TC.
201079,

http://dx.doi.org/10.1109/VLSISOC.2007.4402507
http://dx.doi.org/10.1109/TC.2010.72
http://dx.doi.org/10.1109/TC.2010.72

[SMB*07]

[SS11]

[SS13]

[SS14]

[SSS12]

[ST67]

[STO3]

[STKOO0]

[Tay88]

[TjZbXHQj10]

[TKO3]

[TT04]

K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede. Recon-
figurable modular arithmetic logic unit supporting high-performance RSA
and ECC over GF(p). International Journal of Electronics, 94(5):501-514,
May 2007.

D. Schinianakis and T. Stouraitis. A RNS Montgomery multiplication archi-
tecture. In Circuits and Systems (ISCAS), 2011 IEEE International Symposium
on, pages 1167-1170, May 2011.

D. Schinianakis and T. Stouraitis. An RNS modular multiplication algorithm.
In Circuits, Electronics and Systems (ICECS), 2013 IEEE International Confer-
enceon, 2013.

D. Schinianakis and T. Stouraitis. Multifunction residue architectures for
cryptography. accepted for publication in IEEE Transactions on Circuits and
Systems I, 2014.

D. Schinianakis, A. Skavantzos, and T. Stouraitis. GF(2") Montgomery mul-
tiplication using Polynomial Residue Arithmetic. In Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, pages 3033-3036, 2012.

N. Szabo and R. Tanaka. Residue Arithmetic and its Applications to Com-
puter Technology. New York: McGraw-Hill, 1967.

Akashi Satoh and Kohji Takano. A scalable dual-field elliptic curve crypto-
graphic processor. IEEE Transactions on Computers, 52:449-460, April 2003.

Erkay Savas, Alexandre Tenca, and Cetin Kog. A Scalable and Unified Mul-
tiplier Architecture for Finite Fields GF(p) and GF(2™). In Cryptographic
Hardware and Embedded Systems (CHES 2000), volume 1965 of Lecture
Notes in Computer Science, pages 277-292. Springer Verlag, 2000.

E J. Taylor. Residue arithmetic: a tutorial with examples. IEEE Computer,
17:50-62, May 1988.

Yang Tong-jie, Dai Zi-bin, Yang Xiao-Hui, and Zhao Qian-jin. An improved
RNS Montgomery modular multiplier. In Computer Application and System
Modeling (ICCASM), 2010 International Conference on, volume 10, pages
144-147, 2010.

A.E Tenca and C.K. Ko¢. A scalable architecture for modular multiplica-
tion based on Montgomery’s algorithm. IEEE Transactions on Computers,
52(9):1215-1221, sep. 2003.

L. A. Tawalbeh and A. Tenca. An algorithm and hardware architecture for
integrated modular division and multiplication in GF(p). In Proc. IEEE Int.

133

[US 00]

[Vig08]

[Wal99]

[Wol03]

[Wol13]

(XBO1]

[Xil05]

[Xil12a]

[Xil12b]

[YJOO]

[YKLMO3]

[YM91]

134

Conf. Application-Specific Systems, Architectures, and Processors (ASAP'04),
pages 247-257, September 2004.

US National Institute of Standards and Technology (NIST). Digital Signa-
ture Standard (DSS), 2000. URL: http://csrc.nist.gov/publications/
fips/fips186-2/fipsl186-2-changel.pdf.

D. Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In Proc. Int. Workshop Cryptographic Hardware and Embedded Sys-
tems (CHES 08), pages 130-145, 2008.

C. D. Walter. Montgomery exponentiation needs no final subtractions. Elec-
tronic Letters, 35(21):1831-1832, October 1999.

J. Wolkerstorfer. Dual-field arithmetic unit for GF(p) and GF(2™). In Proc.
Workshop on Cryptographic Hardware and Embedded Systems (CHES'02)
LNCS, volume 2523, pages 95-114, January 2003.

Wolfram Research. Wolfram Research, Mathematica Student Edition, 2013.
URL: http://www.wolfram.com/mathematica/.

S. Xu and L. Batina. Efficient implementation of elliptic curve cryptosys-
tems on an ARM7 with hardware accelerator. In Proc. Information Security
(ISC’01), pages 266-279, October 2001.

Xilinx Inc. Xilinx Data Sheets, 2005. URL: http://www.xilinx.com/
support/documentation/index.htm.

Xilinx Inc. Xilinx Data Sheets, 2012. URL: http://www.xilinx.com/
support/documentation/index.htm.

Xilinx Inc. Xilinx Downloads, 2012. URL: http://www.xilinx.com/
support/download/index.htm.

S.M. Yen and M. Joye. Checking Before Output May Not be Enough against
Fault-Based Cryptanalysis. IEEE Transactions on Computers, 49(9):967-970,
Sept. 2000.

S.M. Yen, S. Kim, S. Lim, and S.]J. Moon. RSA Speedup with Chinese Remain-
der Theorem Immune against Hardware Fault Cryptanalysis. IEEE Transac-
tions on Computers, 52(4):461-472, Apr. 2003.

H. M. Yassine and W.R. Moore. Improved mixed-radix conversion for residue
number system architectures. Circuits, Devices and Systems, IEE Proceedings
G, 138(1):120-124, Feb. 1991.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://www.wolfram.com/mathematica/
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com/support/download/index.htm

[ZWBCO02] T. Zhou, X. Wu, G. Bai, and H. Chen. New algorithm and fast VLSI imple-
mentation for modular inversion in Galois field GF(p). In Proc. IEEE Int.
Conf. Commun. Circuits Syst. West Sino Expo., volume 2, pages 1491-1495,
July 2002.

135

Curriculum Vitae

Dimitrios Schinianakis
born January 21%, 1983 in Athens, Greece

2005 — 2013 University of Patras, Greece
Doctorate Student
Department of Electrical & Computer Engineering

2000 — 2005 University of Patras, Greece
Diploma in Electrical and Computer Engineering
Specialization: Electronics & Computer Science

1997 — 2000 2" Public High School, Peristeri, Athens, Greece

Publications

Journals

[J11 H.E. Michail, G. Selimis, M. Galanis, D. Schinianakis, and C. E. Goutis, “Novel Hard-
ware Implementation of the Cipher Message Authentication Code”, Journal of Com-
puter Systems, Networks, and Communications, vol. 2008, Article ID 923079.

J2] Schinianakis, D.M., Fournaris A.P, Michail H., Kakarountas A.P. and Stouraitis T., “An
RNS Implementation of an F), Elliptic Curve Point Multiplier”, IEEE Transactions in
Circuits and Systems I, Regular Papers, Vol. 56(6), 2009, pp.1202-1213

137

J3] H.E.Michail, D. Schinianakis, and C. E. Goutis, “Cipher Block Based Authentication
Module: a Hardware Design Perspective”, Journal of Circuits, Systems, and Comput-
ers, Vol. 20, No. 2 (2011) 163-184

[J4] Mohammad Esmaeildoust, Dimitrios Schinianakis, Hamid Javashi, Thanos Stouraitis,
and Keivan Navi, “Efficient RNS Implementation of Elliptic Curve Point Multiplica-
tion Over GF(p)”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 21(8), 2013, pp.1545-1549

[J5] Schinianakis, D.M. and Stouraitis T., “Multifunction Residue Architectures for Cryp-
tography, accepted for publication in IEEE Transactions in Circuits and Systems I,
Regular Papers

Refereed Conferences

[C1] Schinianakis D.M., Fournaris A.P, Kakarountas A.P. and Stouraitis T., “An RNS archi-
tecture of an F), elliptic curve point multiplier”, Proc. of IEEE International Sympo-
sium on Circuits and Systems (ISCAS 2006), pp. 3369-3373.

[C2] Aisopos E, Aisopos K., Schinianakis D., Michail H. and Kakarountas A.P, “A novel
high-throughput implementation of a partially unrolled SHA-512", Proc. of IEEE
Mediterranean Electrotechnical Conference (MELECON 2006), pp. 61-65.

[C3] Schinianakis D.M., Kakarountas A.P. and Stouraitis T., “A new approach to elliptic
curve cryptography: an RNS architecture”, Proc. of IEEE Mediterranean Electrotech-
nical Conference (MELECON 2006), pp. 1241-1245.

[C4] Michail H.E., Thanasoulis V.N., Schinianakis D.M., Panagiotakopoulos G.A., and Goutis
C.E., “Application of novel technique in RIPEMD-160 aiming at high-throughput”,
Proc. of IEEE International Symposium on Industrial Electronics, (ISIE 2008), pp.
1937-1940.

[C5] Skavantzos A., Abdallah M., Stouraitis T., and Schinianakis D. “Design of a balanced
8-modulus RNS”, Proc. of IEEE International Conference on Electronic Circuits and
Systems (ICECS 2009), pp. 61-64.

[C6] Schinianakis D, Kakarountas A., and Stouraitis T., “Elliptic Curve Point Multiplica-
tion in GF(2") using Polynomial Residue Arithmetic”, Proc. of IEEE International
Conference on Electronic Circuits and Systems (ICECS 2009), pp. 980-983.

[C7] Schinianakis D, and Stouraitis T., “A RNS Montgomery Multiplication Architecture”,
Proc. of IEEE International Symposium on Circuits and Systems (ISCAS 2011), pp.
1167-1170.

[C8] Schinianakis D.M., Skavantzos A., Stouraitis T., “GF(2"") Montgomery Multiplication
using Polynomial Residue Arithmetic”, Proc. of IEEE International Symposium on
Circuits and Systems (ISCAS 2012), pp. 3033 - 3036.

138

[CI] Schinianakis D, and Stouraitis T., “Hardware-fault attack handling in RNS-based Mont-
gomery multiplier”, Proc. of IEEE International Symposium on Circuits and Systems
(ISCAS 2013), pp. 3042-3045

[C10] Schinianakis D, and Stouraitis T., “An RNS modular multiplication algorithm”, Proc.
of IEEE International Conference on Electronic Circuits and Systems (ICECS 2013)

[C11] Schinianakis D, and Stouraitis T., “An RNS Barrett modular multiplication architec-
ture”, Proc. of IEEE International Symposium on Circuits and Systems (ISCAS 2014)

139

	Abstract
	Abstract in Greek
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notation
	Introduction
	Overview
	Design challenges and motivation
	Thesis overview and contributions

	Mathematical Background
	Basics on finite-field theory
	GF(p) arithmetic
	Modular addition/subtraction
	Montgomery Modular Multiplication (MMM)

	GF(2n) arithmetic
	Modular Exponentiation/Inversion

	Public-Key Cryptography (PKC) algorithms
	RSA cryptosystem
	RSA-CRT algorithm

	Elliptic Curve Cryptography (ECC)
	Elliptic Curves over GF(p)
	Elliptic Curves over GF(2n)
	Point Multiplication

	Data representation systems
	Residue Number System (RNS)
	Polynomial Residue Number System (PRNS)

	Summary

	RNS application in Elliptic Curve Cryptography
	Introduction
	Combining RNS and ECC
	Extended RNS
	Embedding RNS in Elliptic Curve Arithmetic
	Graph-Oriented Optimization Of Point Addition / Doubling Algorithms
	Comments on the graph-oriented optimization

	Hardware Implementation
	Modular addition/subtraction
	Modular multiplication
	The Elliptic Curve Point Multiplier
	The RNS-to-binary converter
	Projective-to-affine coordinates conversion

	Performance Results and Comparisons
	Impact of the number of moduli and their word-lengths on the performance

	Pipelined RNS structures
	Modular multiplication in RNS
	Design
	Modular adders and multipliers
	Conversion from base B to base A
	Conversion from base A to base B

	Hardware Architecture for RNS Montgomery multiplication

	Implementation details of ECPM and comparisons
	Summary

	New RNS architectures for GF(p) and GF(2n)
	Overview of RNS Montgomery modular multiplication
	Base Conversion (BC) by Kawamura et al.
	Base Conversion (BC) by Bajard et al.
	Base Conversion (BC) by Gandino et al.
	Modular reduction by the RNS moduli
	Conversions to/from RNS

	Architectural comparisons

	New MRC-based Montgomery modular multiplication in GF(p)
	The Proposed RNSMMM Architecture
	Performance and Comparisons
	Memory requirements
	Frequency
	Area requirements

	New CRT-based Montgomery modular multiplication in GF(2n)
	The proposed PRNS Montgomery modular multiplication
	Base Conversion (BC) algorithm for PRNSMMM
	Proof of PRNSMMM's algorithm validity

	The proposed PRNSMMM architecture
	Polynomial-to-PRNS conversion
	PRNS-to-Polynomial conversion

	Performance
	Memory requirements
	Frequency
	Area requirements

	Summary

	Novel versatile architectures
	Decomposition of operations
	Optimizing RNSMMM
	Embedding PRNS in GF(2n) Montgomery Multiplication
	The Proposed Versatile Architectures
	Input-Output (IO) Conversions
	Binary-to-Residue conversion
	Residue-to-Binary Conversion

	Versatile architectures - hardware design
	Dual-Field Addition/Subtraction
	Dual-Field Modular/Normal Addition/Subtraction

	Dual-Field Multiplication
	Dual-Field Modular Reduction
	MAC Unit
	Binary-to-residue conversion
	Montgomery multiplication
	Residue-to-binary conversion

	Performance results
	Area and Delay Estimations
	Number of clock cycles
	Memory Requirements

	Comparisons with RNS implementations
	Complexity comparisons with non-RNS implementations
	Area-time-power comparisons

	Summary

	Novel RNS algorithms for modular multiplication
	New RNS modular multiplication algorithm based on Barrett's technique
	Barrett Modular Multiplication
	Proposed RNSBMM algorithm
	Scaling and rounding of an RNS number
	Divisibility check of an RNS number by 2n

	Numerical examples

	Complexity analysis - comparisons
	Complexity Comparisons
	Architectural Study
	Modular reduction by the RNS moduli
	Conversions to/from RNS
	Architectural comparisons

	Summary

	Cryptanalysis
	Overview of side-channel attacks countermeasures
	Fault handling in RNS-based multipliers
	Hardware-fault tolerance in MRC-based RNS Montgomery multipliers
	Hardware-fault tolerance in CRT-based RNS Montgomery multipliers
	Remarks on Performance

	Summary

	Conclusions and Outlook
	Bibliography
	Curriculum Vitae

