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Abstract

We live in a world that demands more and more connectivity. Our everyday life is domi-

nated by an overwhelming amount of information that needs to be controlled and main-

tained. Everyday transactions that few years ago required our physical existence, have been

replaced by electronic applications. Users may now use friendly, fast and safe interfaces to

perform easily numerous tasks, varying from money transfers using the web and remote

health checks to e-learning and e-commerce.

Being exposed in an unprecedented number of threats and frauds, safe connectivity for all

network-based systems has now become a predicate necessity. The science of cryptography

provides the necessary tools and means towards this direction. Cryptographic hardware

and software play now a dominant role in e-commerce, mobile phone communications,

military applications, private emails, digital signatures for e-commerce, ATM cards, web

banking, maintenance of health records and so on.

This doctoral thesis approaches the problem of designing versatile architectures for cryp-

tographic hardware. By the term versatile we define hardware architectures capable of sup-

porting a variety of arithmetic operations and algorithms useful in cryptography, with no

need to reconfigure the internal interconnections of the integrated circuit.

A versatile architecture could offer considerable benefits to the end-user. By embedding a

variety of crucial operations in a common architecture, the user is able to switch seamlessly

the underlying cryptographic protocols. This not only gives an added value in the design

from flexibility but also from practicality point of view. The total cost of a cryptographic

application can also be benefited; assuming a versatile integrated circuit which requires

no additional circuitry for other vital operations (for example input–output converters) it is

easy to deduce that the total cost of development and fabrication of these extra components

is eliminated, thus reducing the total production cost.

We follow a systematic approach for developing and presenting the proposed versatile ar-

chitectures. First, an in-depth analysis of the algorithms of interest is carried out, in order to
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identify new research areas and weaknesses of existing solutions. The proposed algorithms

and architectures operate on Galois Fields GF of the form GF (p) for integers and GF (2n)

for polynomials. Alternative number representation systems such as Residue Number Sys-

tem (RNS) for integers and Polynomial Residue Number System (PRNS) for polynomials are

employed. The mathematical validity of the proposed algorithms and the applicability of

RNS and PRNS in the context of cryptographic algorithms is also presented. The derived

algorithms are decomposed in a way that versatile structures can be formulated and the

corresponding hardware is developed and evaluated. New cryptanalytic properties of the

proposed algorithms against certain types of attacks are also highlighted.

Furthermore, we try to approach a fundamental problem in Very Large Scale Integration

(VLSI) design, that is the problem of evaluating and comparing architectures using mod-

els independent from the underlying fabrication technology. Generic methods to evaluate

the optimal operation parameters of the proposed architectures and methods to optimize

the proposed architectures in terms of speed, area, and area × speed product, based on

the needs of the underlying application are provided. The proposed methodologies can be

expanded to include applications other than cryptography.

Finally, novel algorithms based on new mathematical and design problems for the crucial

operation of modular multiplication are presented. The new algorithms preserve the versa-

tile characteristics discussed previously and it is proved that, along with existing algorithms

in the literature, they may form a large family of algorithms applicable in cryptography, uni-

fied under the common frame of the proposed versatile architectures.
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Περίληψη της διατριβής στα

Ελληνικά

Η σύγχρονη ζωή βασίζεται εν πολλοίς στη διασύνδεση. Καθημερινά βαλλόμαστε από

καταιγισμό πληροϕοριών οι οποίες πρέπει να μεταϕέρονται, να αποθηκεύονται, και να

αξιολογούνται ως προς την ακεραιότητά τους σε ελάχιστο χρόνο, προκειμένου η ροή

τους να είναι συνεχής και απρόσκοπτη. Καθημερινές συναλλαγές που πριν από μερικά

χρόνια θα ήταν αδύνατες χωρίς τη ϕυσική μας παρουσία, έχουν πλέον αντικατασταθεί

από ηλεκτρονικές εϕαρμογές. Οι χρήστες μπορούν πλέον μέσω ϕιλικών, γρήγορων και

κυρίως ασϕαλών εϕαρμογών να ελέγχουν και να πραγματοποιούν πληθώρα εργασιών,

από τραπεζικές συναλλαγές και αγορές αγαθών μέχρι εϕαρμογές τηλεϊατρικής και απο-

μακρυσμένης εκπαίδευσης.

Παράλληλα όμως με την ανάπτυξη κάθε είδους ηλεκτρονικής και διαδικτυακής διευκό-

λυνσης, αναπτύχθηκε συνακόλουθα μια ευρεία κατηγορία απειλών και επιθέσεων ενάντια

σε τέτοια συστήματα, γεγονός που κατέστησε την ασϕάλεια πρωταρχικό πεδίο έρευνας

και ανάπτυξης και μείζονα λειτουργικό παράγοντα για τον σύγχρονο σχεδιαστή ηλεκτρο-

νικών συστημάτων. Η επιστήμη της κρυπτογραϕίας έρχεται να παίξει στο σημείο αυτό

πρωταρχικό ρόλο στην παροχή της επιθυμητής ασϕάλειας. Κρυπτογραϕικές εϕαρμογές

και ειδικά κρυπτογραϕικά κυκλώματα μεγάλης ολοκλήρωσης βρίσκονται πλέον εγκατ-

εστημένα σε όλες τις κρίσιμες εϕαρμογές που απαιτούν υψηλά επίπεδα ασϕάλειας,

όπως συστήματα ηλεκτρονικού εμπορίου, συστήματα κινητής τηλεϕωνίας (μαζί με τις

συνακόλουθες εϕαρμογές), στρατιωτικές εϕαρμογές, ιδιωτικό ηλεκτρονικό ταχυδρομείο,

ψηϕιακές υπογραϕές, τραπεζικές κάρτες ATM, διατήρηση ευαίσθητων ηλεκτρονικών αρ-

χείων υγείας ασθενών κ.α.

Η παρούσα διατριβή άπτεται του θέματος της ανάπτυξης ευέλικτων αρχιτεκτονικών

κρυπτογραϕίας σε ολοκληρωμένα κυκλώματα υψηλής ολοκλήρωσης (VLSI). Με τον όρο

ευέλικτες ορίζονται οι αρχιτεκτονικές που δύνανται να υλοποιούν πλήθος βασικών αρ-

ιθμητικών πράξεων για την εκτέλεση κρυπτογραϕικών αλγορίθμων, χωρίς την ανάγκη

επαναπροσδιορισμού των εσωτερικών διατάξεων στο ολοκληρωμένο κύκλωμα.

Η χρήση ευέλικτων αρχιτεκτονικών παρέχει πολλαπλά οϕέλη στο χρήστη. Η ενσωμάτωση
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κρίσιμων πράξεων απαραίτητων στη κρυπτογραϕία σε μια κοινή αρχιτεκτονική δίνει τη

δυνατότητα στο χρήστη να εναλλάσσει το υποστηριζόμενο κρυπτογραϕικό πρωτόκολ-

λο, εισάγοντας έτσι χαρακτηριστικά ευελιξίας και πρακτικότητας, χωρίς επιπρόσθετη

επιβάρυνση του συστήματος σε υλικό. Αξίζει να σημειωθεί πως οι εναλλαγές αυτές

δεν απαιτούν την παρέμβαση του χρήστη. Σημαντική είναι η συνεισϕορά μιας ευέλικτης

αρχιτεκτονικής και στο κόστος μιας εϕαρμογής. Αναλογιζόμενοι ένα ολοκληρωμένο κύκλ-

ωμα που μπορεί να υλοποιεί αυτόνομα όλες τις απαραίτητες πράξεις ενός αλγόριθμου

χωρίς την εξάρτηση από εξωτερικά υποσυστήματα (π.χ. μετατροπείς εισόδου–εξόδου),

είναι εύκολο να αντιληϕθούμε πως το τελικό κόστος της εκάστοτε εϕαρμογής μειώνε-

ται σημαντικά καθώς μειώνονται οι ανάγκες υλοποίησης και διασύνδεσης επιπρόσθετων

υποσυστημάτων στο ολοκληρωμένο κύκλωμα.

Η ανάπτυξη των προτεινόμενων αρχιτεκτονικών ακολουθεί μια δομημένη προσέγγιση.

Διενεργείται εκτενής μελέτη για τον προσδιορισμό γόνιμων ερευνητικών περιοχών και εν-

τοπίζονται προβλήματα και δυνατότητες βελτιστοποίησης υπαρχουσών κρυπτογραϕικών

λύσεων. Οι νέοι αλγόριθμοι που αναπτύσσονται αϕορούν τα Galois πεδία GF (p) και

GF (2n) και χρησιμοποιούν εναλλακτικές αριθμητικές αναπαράστασης δεδομένων, όπως

το αριθμητικό σύστημα υπολοίπων (Residue Number System (RNS)) για ακέραιους αρι-

θμούς και το πολυωνυμικό αριθμητικό σύστημα υπολοίπων (Polynomial Residue Num-

ber System (PRNS)) για πολυώνυμα. Αποδεικνύεται η μαθηματική τους ορθότητα και

βελτιστοποιούνται κατά τέτοιο τρόπο ώστε να σχηματίζουν ευέλικτες δομές. Αναπτύσ-

σεται το κατάλληλο υλικό (hardware) και διενεργείται μελέτη χρήσιμων ιδιοτήτων των

νέων αλγορίθμων, όπως για παράδειγμα νέες κρυπταναλυτικές ιδιότητες.

Επιπρόσθετα, προσεγγίζεται στα πλαίσια της διατριβής ένα βασικό πρόβλη-

μα της επιστήμης σχεδιασμού ολοκληρωμένων συστημάτων μεγάλης κλίμακας

(VLSI).Συγκεκριμένα, προτείνονται μέθοδοι σύγκρισης αρχιτεκτονικών ανεξαρτήτως

τεχνολογίας καθώς και τρόποι εύρεσης των βέλτιστων συνθηκών λειτουργίας των

προτεινόμενων αρχιτεκτονικών. Οι μέθοδοι αυτές επιτρέπουν στο σχεδιαστή να

παραμετροποιήσει τις προτεινόμενες αρχιτεκτονικές με βάση την ταχύτητα, επιϕάνεια

ή το γινόμενο ταχύτητα × επιϕάνεια. Οι προτεινόμενες μεθοδολογίες μπορούν εύκολα να

επεκταθούν και σε άλλες εϕαρμογές πέραν της κρυπτογραϕίας.

Τέλος, προτείνονται νέοι αλγόριθμοι για τη σημαντικότατη για την κρυπτογραϕία πράξη

του πολλαπλασιασμού με υπόλοιπα. Οι νέοι αλγόριθμοι ενσωματώνουν από τη μία τις

ιδέες των ευέλικτων δομών, από την άλλη όμως βασίζονται σε νέες ιδέες και μαθηματικά

προβλήματα τα οποία προσπαθούμε να προσεγγίσουμε και να επιλύσουμε. Αποδεικνύε-

ται πως είναι δυνατή η ενοποίηση μιας μεγάλης οικογένειας αλγορίθμων για χρήση στην

κρυπτογραϕία, υπό τη στέγη των προτεινόμενων μεθοδολογιών για ευέλικτο σχεδιασμό.
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Introduction

1.1 Overview

Cryptography is not a new field in electrical engineering, mathematics, and computer sci-

ence academic and industrial R&D communities. Its history stretches from its initial and

limited use by the Egyptians 4000 years ago, to the twentieth century when it defined to

a great extent the outcome of World War II. The main practitioners of cryptography were,

historically, those associated with the military, diplomatic services or the government in

general, and it was the main practice to protect national secrets and political or war-field

strategies.

The bloom of computers and communication systems in the 1960s brought new require-

ments and demands, especially from the private sector, in order to store and protect data in

digital format and to provide secure communication services. A pioneer at that age was the

work of Feistel at IBM in the early 1970s and the adoption of the U.S. Federal Information

Processing Standard for encrypting unclassified information, known as Data Encryption

Sandard (DES).

Later on, in 1976, Diffie and Hellman published a paper entitled “New Directions in Cryp-

tography”, which introduced the revolutionary concept of Public-Key Cryptography (PKC)

as well as a new and ingenious method for key-exchange, the security of which is based

on the difficulty of solving the underlying Discrete Logarithm Problem (DLP). Although no

practical realization of a public-key encryption scheme was provided, the idea was so revo-

lutionary and its implications and advantages were so profound that it attracted the interest

of the research community.

In 1978, Rivest, Shamir, and Adleman proposed probably the most widely deployed PKC

system nowadays, known as RSA (from the initials of their last names) [RSA78]. RSA is also

based on a hard-to-solve underlying mathematical problem, i.e, the intractability of factor-

ing large integers. In general, the concept of a hard mathematical problem as the basis of

a cryptographic system encouraged researchers to strive for more efficient methods to fac-

torize large integers. During the 1980s another class of powerful and practical public-key

schemes was proposed by ElGamal, also based on the discrete logarithm problem [Elg85].

An important advance at the same period was also the introduction of elliptic curves in

cryptography and the associated Elliptic Curve Cryptography (ECC) systems, proposed in-

dependently by V. Miller [Mil86] and N. Koblitz in 1985 [Kob87].

Without doubt, one of the most significant contributions of public-key cryptography is the

concept of digital signatures. In 1991 the first international standard for digital signatures

(ISO/IEC 9796) was adopted. It is based on the RSA public-key scheme. In 1994 the U.S.

Government adopted the Digital Signature Standard, a mechanism based on the ElGamal

public-key scheme [MVO96].

Development of new public-key schemes, like the exotic solutions based on quantum physics

[BCJL93, DFSS05] or lattice theory [GGH97, Reg06], improvements to existing cryptographic

solutions, and formal mathematical proofs of security and cryptanalytic strength of crypto-

algorithms continue at a rapid pace. Various standards and large-scale configurations are
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constantly released by the industry to cover the wide range of applications employing cryp-

tography. These activities, indicative of a living and exciting science field, have marked

cryptography as the key-player in the endeavor to address the security needs of an infor-

mation intensive society.

1.2 Design challenges and motivation

Equally important with the development of new cryptographic algorithms and their asso-

ciated cryptanalytic properties are their hardware and software realizations for the cor-

responding platforms they run on. There are significant challenges in high-speed, small-

space (circuit size or number of code lines) implementations of cryptographic algorithms.

Some of these challenges, particularly speed and space issues, have been understood and

partially met as soon as public-key cryptography algorithms were invented. However, new

challenges appeared as systems equipped with cryptography were deployed for commer-

cial use.

For example, the timing and power attack scenarios [Des09, HMV04] made us realize that

a cryptographic algorithm implemented in software or hardware is something totally dif-

ferent than its mathematical description. While it may be almost impossible to break a

cryptographic algorithm in an acceptable time, since it requires computing resources that

are far beyond our current algorithmic and resource capabilities, it may be quite easy to ob-

tain the very same key practically, by simply observing the timing or power data trace from

a device performing a signature or decryption operation.

Another important challenge in crypto-hardware design is the increase of key word-lengths,

a consequence of the higher security standards posed constantly by modern applications.

As a result, the associated crypto-hardware complexity, both in terms of silicon area as well

as from a power consumption point of view, is also expected to increase. This inevitably

creates the necessity to reduce algorithmic and hardware complexity, usually by the aid of

computer arithmetic techniques [Des09, EL04].

Moreover, the wide range of applications requiring secure implementations generated the

need for a smooth integration frame of various cryptographic components operating in

different platforms. A typical example of the cryptographic application span, depicted in

Figure 1.1, highlights this need. Various underlying mathematical problems at the basis of

the pyramid generate numerous cryptographic algorithms and protocols and, as a result, a

handful of applications with different implementation requirements and operational plat-

forms are employed in modern communication systems.

At the same time, the prerequisites that modern cryptographic systems need to comply

with, shown in Table 1.1, pose an extra design factor that also requires design flexibility to

achieve interoperability and communication closure. These necessities, driven by tech-

nological advances in all fields of communications and computer science, generated the

challenge to implement as many functions as possible in one architecture. In that way, flex-

ible systems that could adapt in different computing environments could be realized. This
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Table 1.1: Information security objectives

confidentiality
keeping information secret from all but those who are autho-
rized to see it

data integrity
ensuring information has not been altered by unauthorized
or unknown means

entity authentication
corroboration of the identity of an entity (e.g., a person, a
computer terminal, a credit card, etc.)

message authentication
corroborating the source of information; also known as data
origin authentication

signature a means to bind information to an entity

authorization
conveyance, to another entity, of official sanction to do or be
something

validation
a means to provide timeliness of authorization to use or ma-
nipulate information or resources

access control restricting access to resources to privileged entities
certification endorsement of information by a trusted entity
timestamping recording the time of creation or existence of information

witnessing
verifying the creation or existence of information by an entity
other than the creator

receipt acknowledgment that information has been received
confirmation acknowledgment that services have been provided

ownership
a means to provide an entity with the legal right to use or
transfer a resource to others

anonymity concealing the identity of an entity involved in some process
non-repudiation preventing the denial of previous commitments or actions
revocation retraction of certification or authorization

would have a profound affect on the applicability and flexibility of modern cryptographic

systems, allowing multiple algorithmic support. Such architectures would also reduce the

hardware requirements for implementing these functions considering that, dedicated sys-

tems are now required to implement the various counterparts of a cryptographic system.

Under this perspective, this thesis attempts to approach the problem of hardware design

in modern cryptography in a holistic manner, meeting, in the best possible extent, the re-

quirements for area, speed and power performance, flexibility characteristics and built-in

cryptanalytic properties and security features.

1.3 Thesis overview and contributions

The main contributions of this work can be divided in seven parts, following the organiza-

tion of the thesis in chapters.

In Chapter 2 a necessary introduction to the mathematical concepts required throughout
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Figure 1.1: Cryptographic applications

this thesis is presented, including basics on finite field theory, public-key cryptography al-

gorithms and data representation systems.

Chapter 3 presents, to the best of our knowledge, the first introduction of RNS arithmetic

in ECC. Two RNS designs of an Elliptic Curve Point Multiplier (ECPM) are offered. Both

designs are based on a novel Data Flow Graph (DFG) approach for the optimization of

point addition and doubling operations. Through the proposed DFG approach not only

the number of execution steps for a point addition is reduced, but also the same number

of execution steps for both point operations is achieved, thus offering resistance against

Simple Power Analysis (SPA) attacks for free.

For the first design an appropriate RNS range was selected to accommodate the full range of

calculations without intermediate modular reductions, while the second design employed

the RNS Montgomery Modular Multiplication (RNSMMM) algorithm. For the first architec-

ture, extra care to the design for the output RNS-to-binary converter was given. A specially

designed bit-serial multiplier was developed to handle large operands. The multiplier was

then embedded in the architecture of the converter, forming a serial design suitable for

large RNS ranges.

Area and timing results are offered proving the efficiency of the proposed implementation

even towards dedicated Application Specific Integrated Circuit (ASIC) implementations. A

study for various key lengths, number of RNS moduli and modulus word-lengths is also

performed. It is proved that, in comparison to traditional arithmetic approaches, RNS has

the tendency to perform better as the key length of an ECC system tends to increase.

The second design improved significantly our first effort by reducing the number of moduli

channels required and by utilizing moduli of special form. This amounted to reduction of

area and speed-ups in terms of total execution time for one point multiplication.

The rest chapters emphasize on the proposed versatile architectures and the accompanying
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Figure 1.2: Thesis organization

methodologies and algorithms that were developed. A relation diagram of the various ideas

developed in this thesis is shown in Figure 1.2.

In Chapter 4 an overview of state-of-the-art RNS Montgomery multiplication algorithms

is presented, along with algorithmic and architectural comparisons. Following, new al-

gorithms for modular multiplication that combine Montgomery multiplication and RNS-

PRNS for GF (p) and GF (2n) arithmetic are proposed, depicted as the inner boxes of Figure

1.2 under the title “Task decomposition”.

Especially for GF (2n), a methodology for incorporating Polynomial Residue Arithmetic (PRA)

in the Montgomery multiplication algorithm for polynomials in GF (2n) is presented. The

mathematical conditions that need to be satisfied, in order for this incorporation to be valid

are also examined.

The ideas developed in Chapter 4 formed the basis of the proposed versatile architectures

presented in Chapter 5, hence included in the box under the title “Versatile Architectures”.

The mathematical framework and a flexible, dual-field, residue arithmetic architecture for

Montgomery multiplication in GF (p) and GF (2n) is developed and the necessary condi-

tions for the system parameters (number of moduli channels, modulus word-length) are

derived. The proposed architecture supports all operations of Montgomery multiplication

in GF (p) and GF (2n), residue-to-binary and binary-to-residue conversions, Mixed Radix

Conversion (MRC) for integers and polynomials, dual-field modular exponentiation and

inversion, in the same hardware.

An important derivative of this work is the development of a generic, technology-indepe-

ndent methodology to evaluate the optimal system parameters (number of moduli, mod-
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ulus word-length). Generic complexity and real performance comparisons with state-of-

the-art works prove the potential of residue arithmetic exploitation in Montgomery multi-

plication.

Chapter 6 presents, to the best of our knowledge, the first RNS modular multiplication al-

gorithm based on Barrett’s technique. The algorithm’s validity is mathematically proved

and the conditions to employ the proposed algorithm in the context of modular expo-

nentiation are derived. Conditions for selecting the number and word-length of the RNS

moduli are also provided. In the context of the proposed algorithm, methods to evaluate

floor function and scaling by 2n of an RNS number directly in RNS format are also pro-

posed. Algorithmic and architectural comparisons with state-of-the-art algorithms based

on Montgomery’s technique prove the efficiency of the proposed algorithm in terms of total

execution time. The idea of merging both types of algorithms (RNS Barrett Modular Multi-

plication (RNSBMM) and RNSMMM) into a common architecture is also considered. The

chapter corresponds to the box entitled “New algorithms for modular multiplication”.

In Chapter 7 an important property of RNS Montgomery multipliers in the context of the

RSA-CRT crypto-algorithm is revealed. It is proved that the use of RNS multipliers offers

resilience against hardware-fault attacks for free, with no need to modify in any way the

original RSA-CRT algorithm, as opposed to the majority of current countermeasures. In

this way, speedups offered by RSA-CRT in comparison to the original RSA algorithm are

preserved.

Apparently, all chapters share common ideas, circuitry and methodologies, thus they are

included in the larger box of Figure 1.2 under the general title “Common Design Frame”.

New ideas, derived from this thesis, for future research work on the field of cryptographic

hardware design are offered in Chapter 8.
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CHAPTER

2
Mathematical Background

“We must be clear about the fact that the mathematical model cannot be used to prove

anything about the real world, although a study of the model may help us discover

important facts about the real world. A model is not true or false; rather, a model fits (i.e.

corresponds properly to) or does not fit the real-life situation. A model is useful, or it is not.”

Paul E. Pfeiffer,

Concepts of Probability Theory,

McGraw-Hill, 1965

This chapter outlines the necessary mathematical concepts required in this doctoral thesis.

The first sections present useful definitions from algebraic group theory and later, based

on these definitions, we describe the main cryptographic algorithms implemented in this

thesis. The last section is dedicated to alternative number representation systems, namely

RNS and PRNS, which constitute the basis of the proposed versatile architectures.



Mathematical Background

2.1 Basics on finite-field theory

Let us refer to some general definitions useful for our discussion.

Definition 1. A group {G ,•} is defined by a set of elements equipped with an operation •

whose result belongs also in the group G (closure property).

Assuming a,b elements of a group G , then the group should obey in the following laws:

• associative law: (a •b)• c = a • (b • c)

• has an identity element e such as: e •a = a •e = a

• its elements have inverses a−1 such as: a •a−1 = e

Definition 2. If a group {G ,•} is also commutative, i.e., a •b = b •a, then it forms an abelian

group.

Definition 3. Let {G ,×} be a group equipped with the operation of multiplication (multi-

plicative group). Assume g ∈ G and d ∈ Z. Then we define the operation of exponentiation

as

g d
=

d times︷ ︸︸ ︷
g × g ×·· ·× g . (2.1)

If G is an abelian group then the group operation is addition, i.e., the group is {G ,+}, and

exponentiation is defined as

d g =

d times︷ ︸︸ ︷
g + g +·· ·+ g . (2.2)

Definition 4. A group {G ,•} is cyclic if every one of its elements, bk , is some power of a certain

group element g , i.e., bk = g k and the identity element e is defined as e = g 0. The element g

is called the generator of the group since it generates the group through repeated application

of the operator on it.

Definition 5. A ring {R,+,×} is defined by a set of numbers, equipped with two operations

of addition and multiplication for which it forms an abelian group for addition and mul-

tiplication has the properties of closure, associativity, and distributivity over addition, i.e.,

a × (b + c) = a ×b +a × c. If multiplication operation is also commutative, {R,+,×} forms a

commutative ring. If multiplication operation has an identity element and no zero divisors,

{R,+,×} forms an integral domain.

Definition 6. A field {F ,+,×} is defined by a set of numbers, equipped with two operations

of addition and multiplication for which it forms an abelian group for addition an abelian

group for multiplication (ignoring 0), is a commutative ring and has multiplicative inverses

for all non-zero elements, i.e., a ×a−1 = e.

10
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The previous definitions imply that we can compute freely with +,−,×,/ without leaving

the set. In cryptography, finite fields (or Galois Field (GF)) are employed both for efficient

implementations and for security reasons [Des09, BSS02, DBS06]. Details on the fields em-

ployed in this dissertation are given in the following section.

2.1.1 GF (p) arithmetic

Field elements in GF (p) are all integers in [0, p −1] and arithmetic is performed modulo p,

where p a prime. We divide our discussion based on the most significant types of operations

required in cryptography.

2.1.1.1 Modular addition/subtraction

Modular addition and subtraction are identical operations. The core idea is that the in-

put operands are added or subtracted and the modulus p is subtracted or added to the

previous results for a modular addition or subtraction respectively. Based on the output

carries we select the appropriate result as the final result. The operations are summarized

by Algorithms 2.1 and 2.2 below. In fact, with trivial modifications, a common modular

adder/subtracter can be mechanized as shown in Figure 2.1.

Algorithm 2.1 Modular addition

Input: p,06 x < p,06 y < p

Output: z = 〈x + y〉p

1 z ′ = x + y

2 z ′′ = z ′−p

3 if z ′′ < 0 then

4 z = z ′

5 else

6 z = z ′′

7 end if

8 return z

Algorithm 2.2 Modular subtraction

Input: p,06 x < p,06 y < p

Output: z = 〈x − y〉p

1 z ′ = x − y

2 z ′′ = z ′+p

3 if z ′ < 0 then

4 z = z ′′

5 else

6 z = z ′

7 end if

8 return z

11
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Figure 2.1: Modular adder/subtracter circuit

2.1.1.2 Montgomery Modular Multiplication (MMM)

Efficient field multiplication with large operands is crucial for achieving a satisfying system

performance, since multiplication is the most time- and area-consuming operation. Cryp-

tographic applications form a special case, since, for security reasons, they require large

integer operands [Des09, LN86]. Various modular multiplication methods have been pro-

posed in the literature including Montgomery, Barrett, Karatsuba-Offman algorithms etc

[Mon85, Bar87, Des09, DBS06]. Details on Barrett’s method, along with a new algorithm for

modular multiplication based on Barrett’s technique are provided in detail in Chapter 6.

Montgomery’s algorithm for modular multiplication without division [Mon85] is widely

used today since it is well-suited to applications requiring consecutive multiplications, like

in cryptography, computer algebra, digital signal processing, etc. On the other hand, the

algorithm has undertaken huge analysis and numerous designs have been proposed, mak-

ing the space for further improvements and development even narrower. We discuss the

implications and new solutions offered by RNS and PRNS application to Montgomery mul-

tiplication in Chapters 3, 4, 5.

Montgomery’s algorithm is presented below, as Algorithm 2.3, in five steps, where R is the

Montgomery radix, gcd(R, p) = 1, p < R, and p is the reduction modulus. R must be chosen

so that steps 2 and 5 are efficiently computed. It is usually chosen to be a power of 2, when

radix-2 representation is employed. Condition gcd(R, p) = 1 ensures the existence of p−1

12
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Algorithm 2.3 Montgomery Modular Multiplication MMM

Input: a,b, p,R,R−1 { a,b < p }
Output: c ≡ abR−1 mod p, { c < 2p }

1 s ← a ·b

2 t ← s ·
(
−p−1

)
mod R

3 u ← t ·p

4 v ← s +u

5 c ← v/R

mod R. Condition p < R is sufficient for c < 2p since

c =
x y + t p

R
<

p2 +pR

R
=

( p

R
+1

)
p < 2p. (2.3)

Since cR = ab + t p, cR ≡ ab mod p holds. By multiplying R−1 mod p on both sides of

(2.3), c ≡ abR−1 mod p is obtained. Since Montgomery’s method was originally devised to

avoid divisions, it is expected to be well-suited to RNS implementations, considering that

RNS division is inefficient to perform.

The algorithm requires first to transform the input operands to their corresponding Mont-

gomery representations [Mon85]. Assuming an integer a, its Montgomery representation

is defined as ā = aR mod p. This conversion may be realized by means of an extra Mont-

gomery multiplication by R2 mod p, i.e. ā = a × (R2 mod p)×R−1 mod p = aR mod p.

With these inputs the algorithm outputs the Montgomery residue of the result, i.e., c̄ = cR

mod p = abR mod p.

An extra Montgomery multiplication needs to be executed to convert the Montgomery

residue back to the integer domain representation. This iteration accepts as input the re-

sult c̄ = cR mod p of the Montgomery multiplication and 1 mod p to produce cR×1×R−1

mod p = c mod p.

2.1.2 GF (2n) arithmetic

Field elements in GF (2n) are polynomials represented as binary vectors of dimension n,

relative to a given polynomial basis (1,α,α2, . . . ,αn−1), where α is a root of an irreducible

polynomial p of degree n over GF (2). The field is then realized as GF (2)[x]/(p) and the

arithmetic is that of polynomials of degree at most n −1, modulo p [BSS02].

The addition of two polynomials a and b in GF (2n) is performed by adding the polynomials,

with their coefficients added in GF (2), i.e., modulo 2. This is equivalent to a bit-wise XOR

operation on the vectors a and b.

Important progress has been reported lately regarding GF (2n) multiplication. The Massey-

Omura algorithm [OM86], the introduction of optimal normal bases [MOVW88] and their

software and hardware implementations [MOVW88, AMV93], the Montgomery algorithm

for multiplication in GF (2n) [KA98] are, among others, important advances. However, the

13
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architectures proposed for the Massey-Omura algorithm, although compact and fast, are

inflexible and expensive, while the Montgomery algorithm for GF (2n) multiplication pro-

posed in [KA98] is targeted to software implementations.

The product of two elements a and b in GF (2n) is obtained by computing

c = a ·b mod p, (2.4)

where c is a polynomial of degree at most n −1 and c ∈GF (2n).

A Montgomery multiplication algorithm suitable for polynomials in GF (2n) has been pro-

posed [KA98]. Instead of computing the product c = a ·b mod p, the algorithm computes

c = a ·b ·R−1 mod p, with deg{c(x)} < n and R is a special fixed element in GF (2n). The

selection of R(x) = xn is the most appropriate, since modular reduction and division by xn

are simple shifts [Des09]. The algorithm is identical to Algorithm 2.3, except from the con-

stant −p−1 in step 2, which is p−1 in GF (2n). Moreover, in the integer case the output may

exceed the modulus p, thus a final subtraction step is required. This is not necessary in

polynomials, as it has been proven that the degree of the resulting polynomial c is less than

n [KA98].

The Montgomery multiplication method in GF (2n) also requires that R and p are relatively

prime, i.e., gcd
{
R, p

}
= 1. This assumption always holds, since p is an irreducible polyno-

mial in GF (2), thus it is not divisible by x. Since R and p are relatively prime, there exist two

polynomials R−1 and p−1 such that

R ·R−1
+p ·p−1

= 1, (2.5)

where R−1 is the inverse of R modulo p. The polynomials R−1 and p−1 can be computed

using the extended Euclidean algorithm [Des09, LN86, McE87]. The Montgomery multipli-

cation of a and b is then defined as

c = a ·b ·R−1 mod p, (2.6)

which can be computed according to Algorithm 2.4.

Algorithm 2.4 Montgomery Modular Multiplication in GF (2n)

Input: a,b,R, p, p−1 {deg{a,b} < n}
Output: c = a ·b ·R−1 mod p { deg{c} < n}

1 s ← a ·b

2 t ← s ·p−1 mod R

3 u ← t ·p

4 v ← s +u

5 c ← v/R
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2.1.3 Modular Exponentiation/Inversion

Modular exponentiation, as will be shown in next sections, is a key-operation in PKC. It’s

mechanized through consecutive modular multiplications using any of the algorithms we

described before for modular multiplication. A naive approach is through the binary ex-

pansion of the exponent. Assume the task of b = ze mod p, such as e =
∑l−1

i=0 ei 2i . There

are two possibilities for implementation; the first is a method starting from the Most Signif-

icant Bit (MSB) and working downwards (called left-to-right method) and the second start-

ing from the Least Significant Bit (LSB) and working upwards (right-to-left). An example for

left-to-right method using the MMM algorithm appears in Algorithm 2.5.

Algorithm 2.5 Left-to-right modular exponentiation
Input: z,e = (en−1 . . .e1e0)2

Output: b, b ≡ 〈ze〉p

1 b ← 1
2 for i = n −1, . . . ,0 do

3 b ← M M M(b,b)
4 if ei = 1 then

5 b ← M M M(b, z)
6 end if

7 end for

8 return b

According to Euler’s theorem, if a is co-prime to p, i.e., gcd(a, p) = 1 then

aφ(p)
≡ 1 mod p, (2.7)

where φ is the Euler’s totient function. Therefore the modular inverse can be directly com-

puted as

aφ(p)−1
≡ a−1 mod p. (2.8)

In the special case where p is a prime, then φ(p) = p − 1 and consequently the modular

inverse can be computed using modular exponentiation according to

a−1
≡ ap−2 mod p. (2.9)

2.2 Public-Key Cryptography (PKC) algorithms

2.2.1 RSA cryptosystem

RSA is an algorithm for public-key cryptography that is based on the presumable difficult

mathematical problem of factoring large integers. RSA stands for Ron Rivest, Adi Shamir

and Leonard Adleman, who first publicly described the algorithm in 1977. Clifford Cocks,
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an English mathematician, had developed an equivalent system in 1973, but it was not clas-

sified until 1997.

In the RSA cryptosystem the public and private keys are generated by two distinct prime

numbers p and q . We calculate the public modulus N = pq and the quantity φ(N ) = (p −

1)(q − 1). We choose e ∈ Z co-prime to φ(N ) and we compute d = e−1 mod φ(N ). The

public key is the pair (N ,e) and the private key is d . The primes p, q are also kept secret.

The public and private keys are referred as the public and secret exponent respectively. The

encryption of a message M is defined by

C = M e mod N (2.10)

and decryption by

M =C d mod N . (2.11)

2.2.1.1 RSA-CRT algorithm

The security of RSA depends on the key size. With large keys varying from 1,024-bit, appro-

priate for protecting data through the year 2015, to 2,048-bit, appropriate through the year

2035 [Kal], it is apparent that efficient arithmetic operations on large operands are crucial

for optimal RSA implementations.

A solution towards this direction was the introduction of the Chinese Remainder Theorem

(CRT) to the RSA protocol, namely the RSA-CRT [Lab11b, Lab11a]. In RSA-CRT, the digital

signature operation S = M d mod N is split in two operations Sp = M dp mod p and Sq =

M dq mod q , where dp = d mod (p − 1) and dq = d mod (q − 1). CRT ensures that the

combination of these two values produces the signature S as

S = Sq +
[(

Sp −Sq

)
·
(
q−1 mod p

)
mod p

]
·q , (2.12)

denoted from now on as S = C RT (Sp ,Sq ) [Knu97]. In this way, an approximate 4-time

speedup of operations is achieved [Lab11b, Lab11a].

2.2.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC), presented by N. Koblitz [Kob87] and V. Miller [Mil86] in-

dependently in 1985, has withstood a large number of attacks and has evolved significantly,

so that it is considered nowadays a mature public-key cryptosystem. Extensive research

work regarding the underlying mathematics, security, and its efficient implementations, is

being carried out.

ECC offers the highest strength per bit and the smallest key size, when compared to other

public-key cryptosystems, by exploiting the mathematical basis of ECC, i.e., the Elliptic

Curve Discrete Logarithm Problem (ECDLP). ECDLP states that given two points P ,Q on

an elliptic curve such that Q = [k]P , it is computationally infeasible to calculate [k] [BSS02].

Although elliptic curves can be defined on a variety of different fields, only finite fields are

employed in cryptography. Among them, prime fields GF (p) and binary extension fields
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GF (2n) are considered to be the ones that offer the most efficient and secure implementa-

tions [BSS02].

2.2.2.1 Elliptic Curves over GF (p)

An elliptic curve E over GF (p) is defined by an equation of the form

y2
= x3

+ax +b, (2.13)

where a,b ∈ GF (p) and 4a3 + 27b2 ̸= 0 ( mod p ), together with a special point O, called

the point at infinity. The set E
(
GF (p)

)
consists of all points (x, y), x, y ∈GF (p), that satisfy

(2.13), together with O. Addition of two points on an elliptic curve can be defined by the

group law. Together with this addition operation, the set of points E
(
GF (p)

)
forms a group,

with O serving as its identity element. It is this group that is used in the construction of

elliptic curve cryptosystems. The special case of adding a point to itself is called a point

doubling.

Examples of point addition and point doubling are depicted in Figure 2.2. The double of a

point P0 is obtained by taking the tangent line on P0 until a second intersection point on

the curve is found (there is always a second point due to the form of (2.13)). The mirror

point of this second intersection on the x-axis is 2P0. Similarly, to add two points P0,P1, a

third intersecting point is found by the line that connects P0,P1. The mirror point on x-axis

of the third intersection point is P2 = P0 +P1.

For the case of GF (p) let P0 = (x0, y0),P1 = (x1, y1) ̸=O and P0 ̸= −P1. The sum P2(x2, y2) =

P0 +P1 is given by

P2 = P0 +P1 =

{
x2 =λ2 −x0 −x1

y2 = (x0 −x2)λ− y0,
(2.14)

where λ=
y1−y0

x1−x0
. The double of a point is given by

P2 = 2P0 =

{
x2 =λ2 −2x0

y2 = (x0 −x2)λ− y0,
(2.15)

where λ=
3x2

0+a

2y0
.

From (2.14), (2.15) it is apparent that in order to perform an addition or a doubling of a

point in affine representation one needs to compute the inverse of an element in GF (p),

which is a time consuming operation in GF (p) [BSS02]. In order to avoid inversions, the

use of projective coordinates of the EC points has been proposed [BSS02]. Given a point

P = (x, y) in affine coordinates, the projective coordinates P = (X ,Y , Z ) are given by

X = x; Y = y ; Z = 1. (2.16)

There are various projective coordinate representations that lead to more efficient imple-

mentations than using the one in (2.16). Jacobian coordinates are an example of such a
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representation, and will be employed in the implementations proposed in this thesis. Us-

ing Jacobian coordinates, the affine representation of an EC point is given by

x =
X

Z 2
; y =

Y

Z 3
. (2.17)

while the point at infinity is given by O = (0,0,1).

Using the representation in (2.17), (2.13) rewrites to

E
(
GF (p)

)
: Y 2

= X 3
+aX Z 4

+bZ 6. (2.18)

Let P0 = (X0,Y0, Z0), P1 = (X1,Y1, Z1) ∈ E (GF (p)). The sum P2 = (X2,Y2, Z2) = P0 + P1 ∈

E (GF (p)) can be computed as follows.

If P0 = P1 then

P2 = 2P1 =





X2 = M 2 −2S

Y2 = M(S −X2)−T ,

Z2 = 2Y1Z1

(2.19)

where M = 3X 2
1 +aZ 4

1 ,S = 4X1Y 2
1 and T = 8Y 4

1 . On the other hand, if P0 ̸= P1, then

P2 = P0 +P1 =





X2 = R2 −T W 2

2Y2 =V R −MW 3,

Z2 = Z0Z1W

(2.20)

where R = Y0Z 3
1 −Y1Z 3

0 ,T = X0Z 2
1 + X1Z 2

0 ,W = X0Z 2
1 − X1Z 2

0 , M = Y0Z 3
1 +Y1Z 3

0 , and V =

T W 2 −2X2.

2.2.2.2 Elliptic Curves over GF (2n)

Similar to the case of GF (p), an elliptic curve E over GF (2n) is defined by an equation of the

form

y2
+x y = x3

+ax2
+b (2.21)

with a,b ∈ GF (2n) and b ̸= 0. The corresponding equations for point doubling and point

addition in affine coordinates are

P2 = P0 +P1 =

{
x2 =λ2 +λ+x0 +x1 +a

y2 = (x0 −x2)λ− y0,
(2.22)

where λ=
y0+y1

x0+x1
and

P2 = 2P0 =

{
x2 =λ2 −2x0

y2 = (x0 −x2)λ− y0,
(2.23)

where λ=
3x2

0+a

2y0
.
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(a) Point doubling (b) Point addition

Figure 2.2: Operations on elliptic curves

As in the case of GF (p), using the Jacobian representation for the coordinates, the equation

for the curve rewrites to

E
(
GF (2n)

)
: Y 2

+X Y Z = X 3
+aX 2Z 2

+bZ 6 (2.24)

and the equations for point doubling and point addition rewrite to

P2 = 2P1 =





X2 =
(
X1 −M Z 2

1

)4

Y2 = X 4
1 Z3 +SX3,

Z2 = X1Z 2
1

(2.25)

where M = b2n−2, S = Z3 +X 2
1 +Y1Z1 and

P2 = P0 +P1 =





X2 = aZ 2
3 +λ6λ9 +λ3

3

Y2 =λ9X3 +λ8λ
2
7,

Z2 =λ7Z1

(2.26)

where λ1 = X0Z 2
1 , λ2 = X1Z 2

0 , λ3 = λ1 +λ2, λ4 = Y0Z 3
1 , λ5 = Y1Z 3

0 , λ6 = λ4 +λ5, λ7 =

Z0λ3, λ8 =λ6X1 +λ7Y1, λ9 =λ6 +Z3.

2.2.2.3 Point Multiplication

With the operations of point doubling and point addition available, the next step is to im-

plement the scalar point multiplication, which is the most important operation in ECC. For

the purposes of this thesis, the binary method algorithm was chosen, because it is easy to
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Algorithm 2.6 Binary method for EC point multiplication

Input: A point P , an l-bit integer k =
∑l−1

0 k j 2 j

Output: Q = [k]P
1 Q ←−O

2 for j = l −1 to 0 do

3 Q ←− [2]Q
4 if k j = 1 then

5 Q ←−Q +P

6 end if

7 end for

8 return Q

implement and minimizes memory requirements. The binary method algorithm [BSS02] is

based on the binary expansion of k, as follows.

The binary method requires l −1 point doublings and W −1 point additions, where l is the

length and W the Hamming weight of the binary expansion of k. For any positive integer

k, the notation [k] is used to denote the multiplication-by-k map from the curve to itself.

The notation [k] is extended to k 6 0 by defining [0]P = O, and [−k]P = −([k]P ). Other

methods based on various representations for the scalar [k] include window-based algo-

rithms, Signed-Digit (SD) representations, Non-adjacent form (NAF) representations etc,

which are out of scope of this thesis to analyze further [BSS02].

2.3 Data representation systems

2.3.1 Residue Number System (RNS)

RNS is a number system that allows representing a number as a set of smaller numbers. RNS

was originally described in terms of a game by Nicomachus of Gerasa (100 CE) in his book

“Introduction to Arithmetic”. Later, the problem was re-described by Sun Tsu Suan-Ching

(Master Suns Arithmetic Manual) in a 4th century CE book.

RNS consists of a set of L, pair-wise relatively prime integers A = (m1,m2, . . . ,mL) (called

the base) and the range of the RNS is computed as A =
∏L

i=1 mi . Any integer z ∈ [0, A −1]

has a unique RNS representation zA given by zA = (z1, z2, . . . , zL) =
(
〈z〉m1 ,〈z〉m2 , . . . ,〈z〉mL

)
,

where 〈z〉mi
denotes the operation z mod mi . Assuming two integers a,b in RNS format,

i.e., aA = (a1, a2, . . . , aL) and bA = (b1,b2, . . . ,bL), then one can perform the operations ⊗ ∈

(+,−,∗) in parallel by

aA⊗bA =
(
〈a1 ⊗b1〉m1 ,〈a2 ⊗b2〉m2 , . . . ,〈aL ⊗bL〉mL

)
. (2.27)

Equation (2.27) highlights the benefits of RNS; all operations are confined within each in-

dependent modulus channel and there is no need for carry propagation among channels

of different moduli.
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To reconstruct the integer from its residues, two methods may be employed [Tay88]. The

first is through the CRT according to

z =

⟨
L∑

i=1

⟨
zi · A−1

i

⟩
mi

· Ai

⟩

A

, (2.28)

where Ai = A/mi and A−1
i

is the inverse of Ai modulo mi . Note that (2.28) implies that in

order to obtain the exact value of z we must compute

z =

L∑

i=1

⟨
zi · A−1

i

⟩
mi

· Ai −γA, (2.29)

where γ is an integer correction factor. In practical implementations, (2.29) is preferred

since it avoids the large mod A reduction of (2.28) [KKSS00, BDK01, GLP+12, GLMB11].

The second method is through the MRC. The MRC of an integer z with an RNS representa-

tion zA = (z1, z2, . . . , zL) is given by

z =U1 +W2U2 +·· ·+WLUL , (2.30)

where Wi =
∏i

j=2 m j−1,∀i ∈ [2,L] and the Ui s are computed according to

U1 = z1

U2 =
⟨

(z2 −U1)m−1
1,2

⟩
m2

U3 =
⟨(

(z3 −U1)m−1
1,3 −U2

)
m−1

2,3

⟩
m3

(2.31)

...

UL =
⟨(

. . . (zL −U1)m−1
1,L −·· ·−UL−1

)
m−1

L−1,L

⟩
mL

,

where mi m−1
i , j

≡ 1 mod m j . The mixed-radix digits U1,U2, . . . ,UL are referred as the Mixed

Radix System (MRS) representation of z. Equation (2.31) requires L L−1
2 modular multipli-

cations. Another version of MRC that simplifies (2.31) and reduces the total number of

modular multiplications to only L−2 is based on

U1 = z1

U2 = 〈z2 − z1〉m2

U3 = 〈z3 − z1 −W2U2〉m3
(2.32)

...

UL = 〈zL − z1 −W2U2 −W3U3 −·· ·−WL−1UL−1〉mL
,

providing that the predetermined factors V1 ≡ 1 and Vi ≡

⟨(∏i−1
j=1 m j

)−1
⟩

mi

, ∀i ∈ [2,L] are

all unity [YM91]. Of the three methods, the proposed architectures utilize the MRC of (2.32),

as it avoids the problem of evaluating the correction factor γ of (2.29) and reduces the total

complexity of the original MRC in terms of number of modular multiplications.
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Figure 2.3: General architecture of an RNS processor

2.3.2 Polynomial Residue Number System (PRNS)

Similar to RNS, a PRNS is defined through a set of L, pair-wise relatively prime polynomials

A = (m1(x),m2(x), . . . ,mL(x)). We denote by A(x) =
∏L

i=1 mi (x) the dynamic range of the

PRNS. In PRNS, every polynomial z(x) ∈GF (2n), with deg{z(x)} < deg{A(x)}, has a unique

PRNS representation:

zA = (z1, z2, . . . , zL) , (2.33)

such as zi = z(x) mod mi (x), i ∈ [1,L], denoted as 〈z〉mi
. In the rest of this thesis, the nota-

tion "(x)" to denote polynomials shall be omitted, for simplicity. The notation z will be used

interchangeably to denote either an integer z or a polynomial z(x), according to context.

Assuming the PRNS representation aA = (a1, a2, . . . , aL) and bA = (b1,b2, . . . ,bL) of two poly-

nomials a,b ∈GF (2n), then all operations ⊗∈ (+,−,∗) can be performed in parallel, as

aA⊗bA =
(
〈a1 ⊗b1〉m1 ,〈a2 ⊗b2〉m2 , . . . ,〈aL ⊗bL〉mL

)
. (2.34)

Conversion from PRNS to weighted polynomial representation is identical to the MRC for

integers. The only difference is that, the subtractions in (2.32) are substituted by polynomial

additions. In the case of CRT for polynomials, the conversion is based on

z(x) =
L∑

i=1

⟨
zi (x) · A−1

i (x)
⟩

mi (x) · Ai (x), (2.35)

where Ai (x) = A(x)/mi (x) and A−1
i

(x) is the inverse of Ai (x) modulo mi (x). Unlike the

integer case in (2.28), the final reduction by the product polynomial A(x) is not necessary

in the case of polynomials over GF (2n).

A general architecture of a system based on residue arithmetic appears in Figure 2.3. There,

Input-Output (IO) converters for the binary-to-RNS and RNS-to-binary conversions are

employed, which increase significantly the total computational and hardware complexity
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of an RNS-based processor. Apparently, RNS is well-suited to applications requiring mul-

tiple executions of a core algorithm in the main RNS processing core, while IO operations

are executed only once at the beginning and end of the the algorithm.

2.4 Summary

In this chapter, the mathematical tools and concepts necessary for this thesis were pre-

sented. The all-important concepts of group and field theory were elaborated and the most

significant algorithms in PKC that will be implemented in this thesis were analyzed. Vari-

ous other schemes like the Digital Signature Algorithm (DSA) scheme for digital signatures

or the Diffie-Hellman key-exchange [DH76] also popular in PKC, require the same modular

operations, however their analysis is out of scope of this thesis. The reader should be fa-

miliar by now with modular exponentiation which, as we have shown, involves consecutive

modular multiplications and constitutes the core operation in PKC. Alternative represen-

tations using RNS and PRNS were also presented. The next chapters are dedicated to new

applications and methods for modular multiplication using RNS and PRNS.
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CHAPTER

3
RNS application in Elliptic Curve

Cryptography

This chapter presents, to the best of our knowledge, the first practical implementation of

an elliptic curve processor using the RNS representation. We approach the problem by

evaluating an appropriate range for the calculations, and new task execution graphs for

point doubling and point addition are proposed. The tasks are optimized to be resistant

against power and timing attacks. The idea is further enhanced and more efficient designs

based on pipelined RNS structures and moduli of special form are also proposed.



RNS application in Elliptic Curve Cryptography

3.1 Introduction

Elliptic Curve Cryptography (ECC), presented by N. Koblitz [Kob87] and V. Miller [Mil86] in-

dependently in 1985, has withstood a large number of attacks and has evolved significantly,

so that it is considered a mature public-key cryptosystem. Extensive research work regard-

ing the underlying mathematics, security, and its efficient implementations is being carried

out.

ECC offers the highest strength per bit and the smallest key size, when compared to other

public-key cryptosystems, by exploiting the mathematical basis of ECC, i.e., the discrete

logarithm problem in the group of points over elliptic curves.

Although Elliptic Curves (EC) can be defined on a variety of different fields, only finite fields

are employed for cryptography. Among them, prime fields GF (p) and binary extension

fields GF (2n) are considered to be the ones that offer the most efficient and secure imple-

mentations [BSS02].

The operands of ECC operations are large finite field elements. Implementing point multi-

plication algorithms in hardware leads to designs with high area complexity and high mul-

tiplication time delay. Therefore, there is a need for increasing the speed of ECC systems

with the least possible area penalty. An obvious approach to achieve this would be through

parallelization of their operations.

In recent years, RNS has enjoyed renewed scientific interest due to its ability to perform

parallel and fast modular arithmetic. Apart from its traditional use in digital signal pro-

cessing, RNS is also employed for the design of cryptographic systems [SFM+09, NMSK01,

BI04, BDEM06, ESJ+13, SS14]. Using RNS, a given data range can be decomposed into par-

allel paths of smaller dynamic ranges, with no need for exchanging information between

paths employing different moduli. As a result, the use of RNS can offer reduced complexity

and power consumption of arithmetic units with large word lengths. On the other hand,

RNS implementations bear the extra cost of an input converter to translate numbers from a

standard binary format into residues and an output converter to implement the translation

from RNS to a binary representation [Tay88].

The first practical deployment of RNS for the implementation of point multiplication over

elliptic curves was proposed in [SFKS06, SKS06]. This implementation proved to be com-

petitive towards existing designs in terms of speed, but the additional area overhead was

significant.

The contribution of this work is an RNS architecture and detailed implementation of an

ECPM, with the input and output converters included. The impact of various RNS bases,

in terms of number of moduli and their bit lengths, on the area and speed of the proposed

implementation is investigated, as this determines, to a large degree, the potential use of

RNS in ECC. The results of this work consolidate the application of RNS in ECC, as the

proposed implementation is highly effective. Furthermore, as key lengths are expected to

grow in the coming years, RNS could be used to effectively counter balance the increasing

computational complexity.
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3.2 Combining RNS and ECC

In the following, the notation used in Chapter 2 for the RNS representation is followed. Let

us rewrite some basic equations for easiness. RNS consists of a set of L, pair-wise relatively

prime integers A= (m1,m2, . . . ,mL) (called the base) and the range of the RNS is computed

as A =
∏L

i=1 mi . Any integer z ∈ [0, A−1] has a unique RNS representation zA given by zA =

(z1, z2, . . . , zL) =
(
〈z〉m1 ,〈z〉m2 , . . . ,〈z〉mL

)
, where 〈z〉mi

denotes the operation z mod mi .

For the purposes of this chapter, converting an integer zA in RNS format to its associated

binary representation will be based on CRT according to

z =

L∑

i=1

⟨
zi · A−1

i

⟩
mi

· Ai −γA, (3.1)

where γ is an integer correction factor [KKSS00, BDK01, GLP+12, GLMB11].

3.2.1 Extended RNS

An algorithm developed in [SK89] may be employed at this point to extend the use of RNS

to include negative numbers as well. The algorithm requires a redundant modulus mr > L

so that the RNS base A is extended to A= (m1,m2, . . . ,mL ∼ mr ). This redundant channel

will be available from now on throughout the calculations of the ECPM. Let z be an integer

with a RNS representation zA = (z1, z2, . . . , zL ∼ zr ), where zr = 〈z〉mr . By reducing both

sides of (3.1) mod mr we obtain that

〈z〉mr =

⟨⟨
L∑

i=1

⟨
zi · A−1

i

⟩
mi

· Ai

⟩

mr

−〈γA〉mr

⟩

mr

⇒

〈γ〉mr =

⟨
⟨

A−1⟩
mr

(⟨
L∑

i=1

⟨
zi · A−1

i

⟩
mi

· Ai

⟩

mr

−〈z〉mr

)⟩

mr

=

⟨⟨
A−1⟩

mr

(
δ−〈z〉mr

)⟩
mr

,

(3.2)

whereδ=

⟨∑L
i=1

⟨
zi · A−1

i

⟩
mi

· Ai

⟩
mr

. Sinceγ< L and mr > L it follows thatγ= 〈γ〉mr [SK89].

The representation zA = (z1, z2, . . . , zL ∼ zr ) forms the extended RNS representation. It has

been proven that any number z ∈ [−A+1, . . . , A−1] represented by (z1, z2, . . . , zL | zr ) can be

correctly calculated by formulas (3.1) and (3.2) [AH93]. The fact that negative numbers can

be calculated correctly by equations (3.1) and (3.2) will later prove to be extremely useful in

order to employ RNS for the ECC arithmetic.

3.2.2 Embedding RNS in Elliptic Curve Arithmetic

In the remainder of this chapter we will focus on elliptic curves defined over GF (p), where

p is a “large” prime number. The arithmetic is the usual modulo p arithmetic as defined in

Section 2.1. Elliptic curve arithmetic is implemented according to Section 2.2.
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Using Jacobian coordinates, the affine representation of an EC point is given by

x =
X

Z 2
; y =

Y

Z 3
, (3.3)

while the point at infinity is given by O = (0,0,1) and the curve equation corresponds to

E
(
GF (p)

)
: Y 2

= X 3
+aX Z 4

+bZ 6. (3.4)

In this case, EC point addition and doubling can be defined as follows. Let the points P0 =

(X0,Y0, Z0), P1 = (X1,Y1, Z1) ∈ E (GF (p)). The sum P2 = (X2,Y2, Z2) = P0 +P1 ∈ E (GF (p)) can

be computed as follows.

If P0 = P1 then

P2 = 2P1 =





X2 = M 2 −2S

Y2 = M(S −X2)−T ,

Z2 = 2Y1Z1

(3.5)

where M = 3X 2
1 +aZ 4

1 ,S = 4X1Y 2
1 and T = 8Y 4

1 . On the other hand, if P0 ̸= P1, then

P2 = P0 +P1 =





X2 = R2 −T W 2

2Y2 =V R −MW 3,

Z2 = Z0Z1W

(3.6)

where R = Y0Z 3
1 −Y1Z 3

0 ,T = X0Z 2
1 + X1Z 2

0 ,W = X0Z 2
1 − X1Z 2

0 , M = Y0Z 3
1 +Y1Z 3

0 , and V =

T W 2 −2X2.

All operations in equations (3.5) and (3.6) are performed mod p, where p is the character-

istic of the field. In a traditional implementation of a cryptographic scheme with an n-bit

key, all operands and finite field circuitry are n-bit long. Instead of this, smaller circuits

can be used operating in parallel, to generate the result. In the proposed approach, finite

field circuits are replaced with RNS ones. The benefits of using smaller RNS operands are

exploited to implement a fast and area efficient ECPM architecture.

For a valid replacement, an equivalent RNS dynamic range must be defined. Initially, it can

be assumed that (3.5) and (3.6) are computed over the integers, i.e., without the mod p re-

duction. Let |w | be the absolute maximum value generated by these computations. For a

valid RNS implementation, the RNS dynamic range must be chosen so that A > |w |. Then,

data are represented in RNS format and point multiplication can be performed using RNS

circuits.

For example, if the field characteristic p is 192-bit long, then the equivalent RNS range can

be calculated to be 840 bits, after simulating the algorithms of point doubling and consec-

utive point addition in Mathematica. In the presented implementation, an RNS basis set of

20 moduli, 42-bit each, was used for a 192-bit ECC. If a point multiplication result needs to

be transformed back to a finite field element, we only need to implement (3.1) to get a valid

result over the integers and then perform a final mod p reduction of the result to get the
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finite field element. Due to the ability of the extended RNS to represent negative numbers,

the results of the calculations in (3.5) and (3.6) over the integers can be correctly mapped to

finite field representation.

3.2.3 Graph-Oriented Optimization Of Point Addition / Doubling

Algorithms

Our previous efforts for designing an RNS ECPM resulted in a very fast design, but lacked in

terms of area towards other existing implementations [SFKS06, SKS06]. This work formed

the basis for further investigation of the sequence of operations, for the point addition /

doubling algorithms, at an architectural abstraction level.

Many abstract models for representing the behavior of an algorithm at the architectural

level have been proposed in the technical literature [Mic94]. All of these models consider

the sequence of tasks in the algorithm and their dependencies in terms of availability of

data, availability of hardware, and serialization constraints. The sequencing flow of the

algorithm’s behavior can be represented graphically using a Data Flow Graph (DFG) model.

A DFG is a directed graph Gd (V ,E), whose vertex set V is in one-to-one correspondence

with the set of tasks, while the directed set E is in correspondence to the data transfer from

one operation to the other. An assumption is made, that, at the end of a computation stage

of each member of V , there is a temporal storage unit (e.g. a register) making its output

available for consumption.

The ordering of the tasks represents the temporal dependencies in the sequencing graph,

highlighting the dependencies between the tasks. Exploitation of the DFGs can be made

with several techniques, i.e., balancing the graph (minimization of power dissipation) or

shortening the longest path (performance increase). Further improvements can be sug-

gested, including parallelization in operations, pre-computations, etc. In order to increase

the throughput for the targeted application, the latter techniques can exploit efficiently the

characteristics of the point addition/doubling algorithms.

For example, it is considered useful to explore every task for spatial and temporal depen-

dencies between calculations. It is then easier to select either when to perform a calcu-

lation, or how many arithmetic circuits are required to implement the targeted algorithm.

The DFGs in Figures 3.1 and 3.2 depict the result of the optimization process in the point

addition/doubling algorithms. Each circle denotes an arithmetic operation in the RNS rep-

resentation and each computation step is shown as a dashed line. The operands participat-

ing as inputs in this operation are at the top of each circle.

The registers used for storing the result of an operation are defined on the left side of each

figure (3.1, 3.2) and they are denoted as A, B, C, D, E, F, G, H and I. Their initial contents are

given at the top of each figure. The result is shown at the bottom of each task and inside the

rectangles the outputs are obtained. Parallelization between multiplication and addition

or subtraction was also achieved. We have considered a single adder/ subtractor circuit,

to save in terms of area. One pre-computation step exists in each figure. During time step
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Figure 3.1: The DFG for the point addition algorithm

12 (Figure 3.1), an extra multiplication is performed that produces X 2
2 for use in the first

step of the point doubling algorithm. Similarly, in time step 13 of the point doubling graph,

an extra multiplication is performed to produce Z 2
2 for use in the following point addition.

If the subsequent operation is not a point addition, instead of pre-computing Z 2
2 , X 2

2 is

calculated for use in the first step of the following point doubling operation.

To increase the degree of parallelization of the proposed implementation, a special circuit

could be used for squaring. Since the multiplication speed of the proposed design outper-

forms existing implementations, a squarer circuit is omitted for area reduction reasons.

3.2.3.1 Comments on the graph-oriented optimization

Since only nine registers compose the system’s register file, large area savings are achieved,

in comparison with previous works [SFKS06, SKS06], where, for each execution step, a sep-
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Figure 3.2: The DFG for the point doubling algorithm

arate register is used to store the result. Consequently, the circuit complexity for controlling

the data flow of the system is also decreased. The above optimizations also result in a re-

duction of the multiplication operations in point addition/doubling algorithms. Only 13

execution steps are now needed both for a point addition and for a point doubling. As a

result, savings in speed are obtained compared to [SFKS06, SKS06].

The total number of execution steps of Figures 3.1 and 3.2 for a doubling and a subsequent

point addition is 26. This is also the case for a typical realization of (3.5) and (3.6) [BSS02]. In

[LH08b], only 9 execution steps are required to perform a point doubling. This is expected

since a separate circuit for squaring is utilized and multiplications by small constants are

replaced with consecutive additions. In the proposed implementation, both squaring and

multiplication by small constants are performed with the use of RNS multipliers. In [KF07],

four parallelization levels are provided, i.e., with the use of one, two, three, or four modular

multipliers working in parallel. In order for the comparison to be fair, the case of using one
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multiplier is examined. In this case, the total number of execution steps is also 26. However,

the proposed implementation outperforms these works, which also exploit a DFG approach

to increase the parallelization degree of ECC operations (see Table 3.1).

An additional advantage of the proposed architecture is the equalization of execution steps

and power consumption for both EC operations. This was achieved by inserting dummy

operations in the DFGs’ datapath. Dummy operations are denoted in Figures 3.1 and 3.2 as

“D⊗”, where ⊗=+,−,∗ for a dummy addition, subtraction, or multiplication respectively.

Simple Power Analysis (SPA) attacks rely on the power traces of point addition and point

doubling. Due to the dummy operations inserted, power consumption in each time step

for both DFGs is equalized. Therefore, the proposed ECPM is protected against such threats

without any extra cost in operations such as required by other designs [HMV04].

3.3 Hardware Implementation

3.3.1 Modular addition/subtraction

Modular addition and subtraction have already been described in Section 2.1 and the de-

rived circuit is shown in Figure 2.1.

3.3.2 Modular multiplication

Modular multiplication was based on Horner’s rule shown in (3.7), where r is the number

of digits of X ,Y and m an arbitrary r -bit modulus

〈X Y 〉m = 〈(. . . ((xr−1Y )2+xr−2Y )2+ . . . )2+x0Y 〉m . (3.7)

Algorithm 3.1 describes the realization of modular multiplication. It implies a bit-serial

architecture for the modular multiplier, since our main optimization goal is the area reduc-

tion. A corresponding circuit is shown in Figure 3.3.

The RNS adder/subtractor and RNS multiplier are a parallel combination of the circuits in

Figures 2.1 and 3.3, respectively. Their architecture is depicted in Figure 3.4. Each block

represents a modular adder/subtracter or a modular multiplier. Each block executes the

assigned modular operation (addition, subtraction, or multiplication) mod mi ,16 i 6 L,

where the mi ’s define the modulus set of the RNS base.

3.3.3 The Elliptic Curve Point Multiplier

The system architecture for the proposed ECPM is presented in Figure 3.5. It consists of the

two RNS operation units (RNS adder/subtracter, RNS multiplier), the system’s register file,

the input and output converters and a Finite State Machine (FSM) operating as a control

unit. A selection module for driving the outputs of the registers to the appropriate RNS

operation unit is also included.
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Algorithm 3.1 Modular multiplication based on Horner’s rule

Input: 06 X ,Y ∈ N and r ,m ∈ N∗

Output: Z [0] = 〈X Y 〉m

1 Z [r ] ←− 0
2 for i = 0 to r do

3 Z [r − i ] ←−〈2Z [r − i +1]+xr−i Y 〉m

4 end for

5 return Z

Figure 3.3: The modular multiplier

Figure 3.4: General architecture of the RNS computing structures

Initially, the projective coordinates (X ,Y , Z ) of point P enter serially into the binary-to-RNS

converter. The converter consists of a modular multiplier which computes 〈(X ,Y , Z )∗1〉mi
,

i = 1, . . . ,L, where the mi ’s are the RNS base moduli (see Figure 3.5). Following this conver-

sion, a selection is made between the point at infinity O and point P , used to perform the

point multiplication, [k]P . Depending on whether the circuit is in initialization phase or

not, the point O or point P , accordingly, is stored in the G, H, and I registers.

All the registers of the register file are two input registers with load and write enable control

signals. However, registers A to F accept inputs from both buses, i.e., the output of both RNS

modules, but the G, H, I registers are connected directly to the input and the multiplication

bus. The main reason for making this selection was to reuse the G, H and I registers for

storing both the input data and intermediate results.

The FSM produces the appropriate signals to control the load and write enable signals of

the register file, in order to store the result of an RNS operation. Afterward, the selection
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module accepts these results and drives them to the input of the appropriate RNS module,

in order to perform the next operation, according to the DFGs presented in Figures 3.1 and

3.2. When all the bits of k are processed, the result is driven to the RNS-to-binary converter

to get the binary representation of the resulting point [k]P .

3.3.4 The RNS-to-binary converter

In RNS applications, the RNS-to-binary converter plays a crucial role in the performance

of the overall system. In fact, in most of the cases, a well-designed and efficient converter

is the criterion of whether an RNS application can be competitive or not towards non-RNS

implementations. Carefully selected modulus sets or simply small RNS ranges can reduce

the complexity of the converter, but in cases like ECC where the dynamic range of compu-

tations is very large, typical implementations can not be considered.

The following operations for the RNS-to-binary conversion have to be performed according

to (3.1) and (3.2) (assume r to be the word length of each modulus and L to be the number

of the moduli):

1. r -bit modular multiplications for the products
⟨

A−1
i

zi

⟩
mi

.

2. Multiplication of the r (L −1)-bit Ai constants with the r -bit products of the previous

step to form the inner products Ai

⟨
A−1

i
zi

⟩
mi

.

3. Addition of the L, r L-bit inner products of step 2, to form the term
∑L

i=1 Ai

⟨
A−1

i
zi

⟩
mi

of 3.1 and (3.2).

4. Assuming that L is q-bit long, then for (3.1) a r L ×q bit multiplication has to be per-

formed to form the term γA. This term is then subtracted from the outcome of step 3

to get the final result of (3.1).

5. In (3.2), a multiplication similar to step 2 is performed to form A−1 ∑L
i=1 Ai

⟨
A−1

i
zi

⟩
mi

.

Then, a modular subtraction between the previous term and the residue zr is per-

formed to form γ.

Due to the large operands of the multiplication in steps 2 and 5, a specially designed mul-

tiplier needs to be considered. Recall that the main operations shown in Figure 3.5, i.e.,

the binary-to-RNS conversion, point multiplication, and the RNS-to-binary conversion are

pipelined. As a result, since point multiplication is slower than all other operations, a serial

implementation of the converter and the large multiplier of steps 2 and 5 was realized. Such

a design approach offers the best speed to area trade-off.

Assume for simplicity that X and Y are two variables r L-bit and r -bit long, respectively, and

that we want to calculate their product P = X Y . It holds that

P = X Y =

r L−1∑

i=0

xi 2i Y . (3.8)
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Figure 3.5: General architecture of the RNS ECPM

Since r L is divisible by r , (3.8) is decomposed as

P = X Y =

r L−1∑

i=0

xi 2i Y =

=

r−1∑

i=0

xi 2i Y +

2r−1∑
r

xi 2i Y +·· ·+

r L−1∑

(L−1)r

xi 2i Y =

=

L∑

j=1

(
j r−1∑

i=( j−1)r

xi 2i Y

)
. (3.9)

The “large” multiplication of (3.9) is decomposed into L, r -bit multiplications and r -bit

additions. The validity of the above shall be illustrated with an example. Consider that we

want to perform the multiplication of 1010101102×1102. In that case r = 3, L = 3 and r L = 9.

We split the multiplication according to (3.9) into three 3-bit multiplications. The process

is illustrated in Figure 3.6.

Beginning with the r LSBs of the multiplicand, r -bit streams of this operator are multiplied

with the r -bit multiplier. The r LSBs of the first multiplication are driven directly to the

output. We store the remaining r MSBs and we perform the next multiplication between

the r -bit multiplier and the next r -bit stream of the large multiplicand. The MSBs of the

previously stored result are added to the r -bit LSBs of the current result and the outcome is

driven to the output.
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Figure 3.6: Large multiplication

paradigm

The procedure is repeated until all L, r -bit streams

of the multiplicand are processed (see Figure 3.7).

Having designed the multiplication module, the re-

alization of the RNS-to-binary converter is ana-

lyzed. The designing goal being the minimization of

area, a serial architecture was adopted. The archi-

tecture of the converter is illustrated in Figure 3.8.

The RNS digits zi of the integer z are driven along

with the constants A−1
i

into a modular multiplier to

produce the inner products
⟨

A−1
i

zi

⟩
mi

.

Afterward, each product is multiplied with the con-

stants Ai and then they are added recursively to

produce the term
∑L

i=1 Ai

⟨
A−1

i
zi

⟩
mi

of (3.1) and

(3.2). For the case of γ, (3.2) is rewritten as:

γ=

⟨
−xr K +K

L∑

i=1

〈Ai 〉mr

⟨
A−1

i zi

⟩
mi

⟩

mr

, (3.10)

where K =
⟨

A−1
⟩

mr
. Thus, in parallel with the calculation of

∑L
i=1 Ai

⟨
A−1

i
xi

⟩
mi

shown be-

fore, we calculate γ by first calculating the product
⟨

K
∑L

i=1 〈Ai 〉mr

⟨
A−1

i
zi

⟩
mi

⟩
mr

and then

by adding those products to form
⟨

K
∑L

i=1 〈Ai 〉mr

⟨
A−1

i
zi

⟩
mi

⟩
mr

. A final modular subtrac-

tion by zr K produces γ. As soon as γ is calculated, another “large” multiplication is per-

formed, i.e., the multiplication −γA. The final stage is an addition of the summation term∑L
i=1 Ai

⟨
A−1

i
zi

⟩
mi

with −γA to produce the binary representation of the integer z.

Figure 3.7: Architecture of the large operand multiplier

In case the result of the RNS-to-binary conversion is larger than p, an extra modular reduc-

tion needs to be conducted, in order to obtain the equivalent field element. Recall that the

result of the RNS-to-binary conversion is a r L-bit integer, which has to be reduced mod p.

Many dedicated modular reduction architectures exist in the literature, including look-up

table methods or iterative algorithms [HGG07, KPH04, Par97, KH98, FP99]. Nevertheless,

they are not well suited in the proposed implementation, considering that the input integer

is very large and, consequently, the added area or memory penalty would be significant.
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Figure 3.8: Architecture of the RNS-to-binary converter

Instead, modular reduction is conducted with the use of the modular bit-serial multiplier

in Figure 3.3. Assuming c to be the result of the RNS-to-binary conversion the multiplier

performs the operation 〈1∗ c〉p , where c is fed to the shift register of the modular multi-

plier (see Figure 3.3). This slow but area efficient solution does not add to the execution

time of the point multiplication operation. This is feasible due to the pipelined nature of

the proposed architecture, considering that modular reduction is much slower than point

multiplication.

The proposed converter holds some characteristics that make it suitable for large scale

RNS implementations. The proposed serial converter is preferable for RNS bases with a

large number of moduli, suitable for large dynamic ranges. The main reason is its low area

cost compared to other conversion solutions, i.e., realization using carry-save adder trees

[SBC98, Pie95].

Moreover, the designed multiplier can be reconfigured to support operands of any length,

according to the needs of the implementation. The length of the operand is determined

by the RNS range, which can be selected to have a length that is a multiple of the length

required by the application.

Also, in cases of time-consuming and data-intensive algorithms, like in ECC, the designer

has the flexibility to sacrifice some speed in favor of area, provided that the slow serial con-

verter can be pipelined with the fast RNS core which executes the main algorithm. In that

way, the internal speed gains due to the RNS are preserved and the area penalty introduced

by the converter is not significant.

3.3.5 Projective-to-affine coordinates conversion

Point [k]P is obtained from the RNS-to-binary converter in projective coordinates. How-

ever, in practical cryptographic applications, affine coordinates are exploited. Therefore, in

order to increase the functionality of the proposed implementation, a separate module for

the projective-to-affine coordinates conversion is employed.

37



RNS application in Elliptic Curve Cryptography

The projective-to-affine conversion is the realization of (3.3). Let us rewrite it here for con-

venience:

x =
X

Z 2
; y =

Y

Z 3
. (3.11)

It is apparent that one modular inversion
(
T1 =

1
Z

)
and 4 modular multiplications, namely(

T2 = T1
2, x = X ∗T2, T3 = T1 ∗T2, y = Y ∗T3

)
are required for the conversion.

Field characteristics recommended by the National Institute of Standards Technology (NIST)

are prime numbers of special form (generalized Mersenne numbers), which can be ex-

ploited in order to implement fast modular arithmetic. Efficient modular reduction algo-

rithms have been described [US 00], where modular reduction is replaced with simple ad-

ditions. Therefore, modular multiplication described in Algorithm 3.1 was not considered

for this conversion. Thus, the modular multiplier depicted in Figure 3.9 was realized by a

⌈log2 p⌉-bit multiplier, followed by a reduction process [US 00]. The prime field character-

istics utilized in the proposed implementation are offered in Section VII.

From the many works regarding modular inversion in the literature [SK00, KAK96, Mon85,

Wal99, Kal95, dDBQ04, GTK02, GT03, ZWBC02, TT04, BL06, DMP03], the implementation

proposed in [BL06] is adopted, as it efficiently encompasses the proposed implementation

characteristics, namely the modular inverter can support all the bit lengths used in the pro-

posed implementation (160, 192, 224 and 256-bit). Moreover, as it is implemented in a

Xilinx FPGA (Virtex 2 3000), the added area was accurately calculated according to Xilinx’s

FPGA data sheets [Xil05].

Figure 3.9: The projective-to-affine converter

The projective-to-affine converter is depicted in Figure 3.9. It consists of the modular mul-

tiplier described earlier and depicted by the symbol “×”, the modular inverter of [BL06] and

some control logic. The inverter first produces T1 =
1
Z

, which is driven to a multiplexer, to-

gether with the X , Y coordinates. The leftmost multiplexer selects T1 to be the first operand

of the multiplier and the rightmost multiplexer selects “1” as the other operand. Then, the

modular multiplier first produces 1 ∗ T1, which is then driven back to the multiplier in-

put. Following, T2 = T1
2 and T3 = T1 ∗T2 are computed, which are stored in the two reg-

isters following the multiplier. The leftmost multiplexer then selects the X coordinate as
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the first operand of the multiplier, and the rightmost multiplexer selects T2 to be the sec-

ond operand. The result x = X ∗T2 is stored in the register that previously contained T2.

Similarly, y = Y ∗T3 is computed and the x, y coordinates are driven serially to the output

register.

3.4 Performance Results and Comparisons

The proposed ECPM was synthesized in a Xilinx Virtex E-xcv1000E, FG680 FPGA device. In

Table 3.1, for a full pipeline exploitation case, the timings for an elliptic curve point multi-

plication are given and comparisons are made with other state-of-the-art implementations.

If only one point multiplication is performed, i.e., pipeline is not fully utilized by constant

streams of input points, then the point multiplication timings are 4.84 ms, 4.08 ms, 3.54

ms and 2.35 ms for a 256, 224, 192 and 160-bit implementation, respectively. The field

characteristic p is p = 2160 +7 for the 160-bit implementation and NIST P-192, P-224 and

P-256 (2192 −264 −1, 2224 − 296 + 1, 2256 − 2224 +2192 + 296 − 1) for 192-bit, 224-bit and 256-

bit ECC respectively [US 00]. The corresponding RNS set for the 192-bit implementation is

depicted in Table 3.2 and consists of 20 moduli, 42-bit long each. In cases where other re-

ported implementations supported smaller or larger fields, a relevant decrease or increase,

accordingly, in the RNS range was made to support those fields as well. In that way, fair and

accurate results were extracted.

In the frequency and elliptic curve point multiplication time columns, four values are con-

tained, referring to a 256, 224, 192, and 160-bit implementation. The proposed architecture

achieves competitive timings compared to existing implementations. When compared to

[ST03], [CBC07], and [ESG+05], the proposed design has smaller frequency and higher mul-

tiplication delay. However, as these works refer to ASIC implementations, the FPGA imple-

mentation presented here is still competitive. In [DMKP04], while the timings for point

addition and point doubling are given, the final execution time for the point multiplication

is not provided. As a result, the corresponding value, denoted with an asterisk in Table 3.1,

was estimated by the authors, according to the point doubling/addition timings given in

[DMKP04]. In [Wol03] the execution time of point multiplication is given in cycles and it

is claimed that operations like addition, subtraction or modular addition/subtraction are

executed in one cycle. However, no further information is given regarding the actual exe-

cution time of a cycle, thus no fair comparison can be made. Note that [KF07] and [Wol03]

were omitted from Table 3.1, since no data are offered.

Comparisons in terms of area are difficult to be made, due to the different implementa-

tion platforms adopted in the literature. The presented implementation occupies 25,012

4-input LUTs for a 192-bit architecture. For other bit configurations, results are offered in

Table 3.1. The reported area for the existing implementations was 50,000 LUTs in [SFKS06]

and [SKS06], 11,416 LUTs in [OP01] and 11,227 LUTs in [OBPV03]. As far as the ASIC ver-

sions are concerned, in [XB01] no measurements are given, while in [ST03], for the fast

configuration case, the circuit occupies 118K gates. In [MMM06], the presented architec-
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Table 3.1: Comparison of ECPM architectures

Field
Platform

Max Freq. EC mult.
LUT

Gates

(bits) (MHz) time (ms) (thousands)
GF (p) 256 39.7 3.95 32,716 103

This GF (p) 224 Xilinx 46.8 3.31 29,610 93.362
work GF (p) 192 xcv1000E-8 52.9 2.97 25,012 78.865

GF (p) 160 58 1.77 21,140 66.656
[SFKS06]

GF (p) 160
Xilinx

75 2.41 50,000 157
[SKS06] Virtex2 Pro

[LH08b] GF (p) 160
Xilinx

100 6.282 3,015 -
Virtex2 Pro

[OP01] GF (p) 192
Xilinx

40 3 11,416 35.983*
xcv1000E-8

[OBPV03] GF (p) 160
Xilinx

91.3 14.41 11,227 35.390*
xcv1000E-8

[MMM06] GF (p) 256
Xilinx

39.46 3.86 35,450* -
Virtex2 Pro

[DMKP04] GF (p) 192
Xilinx

19 9.3* - 83.236
VirtexE-2000

[SMB+07] GF (p) 256
Xilinx

40 17.7 - 4,100*
Spartan3

[ST03]
Dual-field 0.13m CMOS

137.7 1.44 - 118
192 ASIC

[CBC07] GF (p) 256
0.13m CMOS

556 1.01 - 122
ASIC

[XB01] GF (p) 192 ASIC 50 30 N/A N/A

[ESG+05] GF (p) 224
Custom

1,500 0.256 N/A N/A
processor

* values calculated by the authors

ture utilizes 15,755 CLB slices and 256 18×18-bit embedded multipliers in a Xilinx Virtex2

Pro FPGA device. The architecture in [SMB+07], utilizes 27,597 slices in the Xilinx Spar-

tan3 FPGA. In [Wol03] the authors state that only rough estimations regarding the area are

given. The total number of gates and the equivalent area in a 0.35 CMOS process, in terms

of mm2, are provided, therefore no fair comparison can be conducted. In [DMKP04] the

reported area is 83,236 gates and in [LH08b] 3,015 LUTs. All area data are summarized in

Table 3.1. The implementations in [XB01, Wol03, KF07, ESG+05] were omitted, since no

comparable data are offered. Values in Table 3.1 denoted with an asterisk were calculated

by the authors, according to the official Xilinx FPGA data sheets[Xil05].

In terms of versatility, the presented architecture supports prime fields, while [ST03] and

[Wol03] support both prime and binary extension fields. The proposed implementation
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Table 3.2: The RNS base modulus set for the 192-bit implementation

2446268224217 2446268224261 2446268224273

2446268224289 2446268224321 2446268224381

2446268224409 2446268224427 2446268224441

2446268224447 2446268224451 2446268224453

2446268224457 2446268224481 2446268224493

2446268224513 2446268224579 2446268224601

2446268224639 2446268224657

supports various field sizes and prime characteristics, by reducing or expanding the RNS

base accordingly. Furthermore, the proposed architecture embeds all the predicate con-

verters (binary-to-RNS, RNS-to-binary, projective-to-affine). Therefore, it offers a front-

end solution, which can be embedded to existing systems not exploiting RNS arithmetic or

projective coordinates for the elliptic curve point representation.

Finally, the moduli that comprise the RNS base of the proposed implementation, are not

of special form, i.e., Mersenne or Generalized Mersenne Numbers. Only in the case of the

projective-to-affine conversion, the special form of the field characteristic p was exploited,

to achieve fast modular reduction, as described in the previous sections. Comparing with

other works that fully exploit field characteristics of special form, as in [OP01], the proposed

architecture performs better in terms of both speed and area.

3.4.1 Impact of the number of moduli and their word-lengths on the

performance

The impact of the number of moduli and their word lengths on the performance of the

proposed implementation is investigated. Thus, a clear picture of whether RNS can be an

efficient platform for improvement in ECC can be formed, as key lengths are expected to

grow in the future.

A number of simulations were performed for various ECC implementations requiring 160,

192, 224, and 256 bits, respectively, in an effort to determine the performance of each im-

plementation in terms of frequency and area. For each of these implementations, different

combinations of number of moduli and their word lengths were employed, so that each

such combination would correspond to the dynamic range required for the implementa-

tion. These combinations are shown as pairs of numbers separated by commas, under the

X-axis in each of the Figures 3.10 and 3.11, which present the results of these simulations.

Figure 3.10(a) depicts the impact of the number and word length of the moduli on the

ECPM’s speed. For various ECC’s key word-lengths, the frequency of the implementation

remains the same, regardless of the number of moduli and their word lengths. In contrast,

an important decrease in area is achieved as the number of moduli increases and simulta-
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(a) speed comparisons (b) area comparisons

Figure 3.10: Number and word-length of moduli vs. (a) speed and (b) area

(a) Area of the ECPM without the RNS-to-binary con-
verter

(b) Area of the RNS-to-binary converter

Figure 3.11: Impact of the RNS-to-binary converter on the area of ECPM

neously their word lengths decrease. This outcome is depicted in 3.10(b). In order to further

investigate the performance, two separate synthesis simulations were performed. The first

was for the synthesis of the ECPM without the output converter and the second was for the

output converter as a stand-alone module. The results are shown in Figures 3.11(a) and

3.11(b).

From Figure 3.11(a), it can be remarked that there is a slight increase in the area, as we

transit from one configuration to another with more moduli. Therefore, it is the output

converter that determines the performance depicted in Figure 3.10(b). From Figure 3.11(b),

it is clear that the converter is very sensitive to the different RNS base configurations, as far

as the area is concerned, and that the behavior of the overall system follows the converter’s

behavior. Thus, as it was stated before, the number and the word-lengths of the moduli are

crucial for the converter’s performance. From the previous figures, it can be derived that

large modulus sets with small word lengths can achieve a beneficial area to speed ratio.

The presented simulations introduce a significant result. Assuming the same number of
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moduli, for a transition from a 160-bit ECC to a 192-bit one, the required increase in the

modulus word length is less than 32 bits, i.e. less than the increase of the word length of the

finite field operands, in the case of typical ECC implementations. As a result, the ratio

λ=
ECC key length

RNS modulus word-length
(3.12)

is expected to grow, as key lengths are expected to increase in the future. This behavior indi-

cates that, as we transit from smaller ECC key word-lengths to larger, the growth of area and

the consequent reduction of frequency become smaller in the RNS implementation case.

Thus, RNS will remain a viable solution for the implementation of point multiplication over

elliptic curves.

3.5 Pipelined RNS structures

Our previous approach towards a fully parallel RNS implementation of an ECPM was based

on a “naive” approach of calculating the maximum range for calculations over the integers,

that is the intermediate results in RNS format were not reduced modulo p, where p the field

characteristic of GF (p). This conversion was executed only once at the end of a point multi-

plication. The architecture achieved competitive performance compared to other RNS and

non-RNS implementations, but the large dynamic range required a considerable amount

of moduli channels, hence an analogous area overhead.

In the following section, an approach for RNS elliptic curve point multiplication based on

the RNSMMM algorithm is considered [ESJ+13]. RNSMMM allows for RNS calculations,

but the final result of the multiplication is already reduced modulo p, thus a significant

reduction in the RNS range is achieved. In the following, a brief overview of the algorithm

is provided for the needs of this section. Detailed analysis and further enhancements are

presented in Chapter 4.

3.5.1 Modular multiplication in RNS

The RNSMMM is actually a transformation of the original MMM in Algorithm 2.3 to support

RNS arithmetic [PP95, KKSS00]. Two RNS bases are introduced, namely A= (p1, p2, . . . , pL)

and B = (q1, q2, . . . , qL), such that gcd(pi , q j ) = 1,∀i , j ∈ [1,L]. The 5 steps of the Mont-

gomery algorithm are translated to RNS computations in both bases, denoted from now on

as T =A
∪
B.

Initially, the inputs a, b are expressed in RNS representation in both bases as aT and bT .

Steps 1, 3, and 4 of Algorithm 2.3, involve addition and multiplication operations, thus

their transformation to RNS is straightforward. For steps 2 and 5, the Montgomery radix

R is replaced by B =
∏L

i=1 qi , which is the range of B. We also denote as A =
∏L

i=1 pi the

range of base A. Then, in the second step, t in RNS format is computed in base B by

tB = sB · p−1
B

. Nevertheless, the computations in base B can’t be continued for steps 3, 4,

and 5 of Algorithm 2.3, since in step 5 we would need to compute a quantity of the form
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B−1 mod qi , which does not exist since qi s are factors of B . Thus, a base conversion Base

Conversion (BC) step, from base B to base A, is inserted, to compute tA. tA is then used

to execute the old steps 3, 4, and 5 in base A. The result at the end of this algorithm is a

quantity cT in RNS format that equals c ≡ abB−1 mod p, since BC is error-free.

Algorithm 3.2 RNS Montgomery Modular Multiplication (RNSMMM)

Input: aT ,bT { a,b < 2p }
Output: cT , { c < 2p and c ≡ abB−1 mod p }
Precompute:

(
−p−1

)
B

,B−1
A

, pA

1 sT ← aT ·bT

2 tB ← sB ·
(
−p−1

)
B

3 tA ← tB { base conversion step }
4 uA ← tA ·pA

5 vA ← sA+uA

6 cA ← vA ·B−1
A

7 cB ← cA { base conversion step}

Clearly, the total complexity of the algorithm is determined by the BC steps. A BC trans-

forms an integer expressed in an RNS base A to an another base B. A BC is essentially

a residue-to-binary conversion while the final result is computed modulo each modulus

of the new RNS base. In this context, the methods employed for BC are either CRT-based

methods according to (2.29) or MRC-based methods according to (2.30), (2.31). In the pro-

posed implementation an MRC-based method is utilized. Equation (2.31) is first employed

to obtain the MRC digits of the result, while (2.30) is computed modulo each modulus of

the new base.

Sets of three and four moduli are proposed in order to implement the RNSMMM of Al-

gorithm 3.2. The form of the moduli determines the efficiency of the arithmetic opera-

tions and the structure of the residue-to-binary and binary-to-residue converters [NME11].

The RNS bases employed are shown in Table 3.3. In the first base, RNS moduli of the form

2k −2ti −1, where ti < k/2 are employed, which offer simple modulo reduction operations

[BKP09].

The second base is realized by sets of three and four moduli of the special forms {2k ,2k+1 −

1,2k −1} [Moh07] and {2k ,2k −1,2k+1 −1,2k−1 −1}, which also provide efficient arithmetic

operations and residue-to-binary and binary-to-residue conversions [BKP09]. In order to

use the result of RNSMMM in subsequent modular multiplications, it is required that 4p <

P < Q [BKP09]. It is easy to check that the employed bases are sufficient to cover this re-

quirement.

3.5.2 Design

3.5.2.1 Modular adders and multipliers

For the first base, where moduli of the form 2k − 2ti − 1 are used, the modular adder and

multiplier depicted in Figure 3.12 are employed. Regarding modular multiplication, two
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Table 3.3: Proposed RNS Bases

Field (bit) First Base A Second Base B

Three-modulus

RNS bases (D1)
160

{256 −211 −1,

256 −216 −1,

256 −220 −1}

{256,

256 −1,

257 −1}

Three-modulus

RNS bases (D2)
192

{266 −217 −1,

266 −218 −1,

266 −224 −1}

{266,

266 −1,

267 −1}

Four-modulus

RNS bases (D3)
192

{250 −220 −1,

250 −222 −1,

250 −218 −1,

250 −210 −1}

{250,

250 −1,

251 −1,

249 −1}

Four-modulus

RNS bases (D4)
224

{258 −222 −1,

258 −213 −1,

258 −210 −1,

258 −216 −1}

{258,

258 −1,

259 −1,

257 −1}

Four-modulus

RNS bases (D5)
256

{266 −222 −1,

266 −224 −1,

266 −218 −1,

266 −217 −1}

{266,

266 −1,

267 −1,

265 −1}

k-bit operands are multiplied and a 2k-bit value is obtained. Modular reduction of a 2k-bit

value w with moduli of the form 2k −2ti −1 can be written using its higher k bits, denoted

as wh , and its k lower bits, denoted as wl , as

w =

⟨
wh2k

+wl

⟩
2k−2ti −1

. (3.13)

Since 2k mod
(
2k −2ti −1

)
= 2ti +1, it holds that

w =

⟨ w ′

︷ ︸︸ ︷
w ′

hh︸︷︷︸
ti bi t

2k
+ w ′

hl︸︷︷︸
k bi t

+wh +wl

⟩

2k−2ti −1

(3.14)

w ′
=

⟨
w ′

hh︸︷︷︸
ti bi t

ti bi t︷ ︸︸ ︷
0 · · ·0+w ′

hh︸︷︷︸
ti bi t

+w ′
hl

⟩

2k−2ti −1

. (3.15)
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Multiplication

k bitk bit
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m
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w
Modulo m adder

Bit Organizer

wlwhwhl
whh

Modulo m adder

Modulo m adder

2k bit

Reduction Circuit

(c)

Figure 3.12: (a) Modulo m adder/subtractor [SFM+09], (b) Proposed modulo 2k − 2ti − 1
multiplier, (c) Reduction circuit

Figure 3.13: (a) Proposed reconfigurable modular (RM) adder, (b) Proposed RM Multiplier,
(F = k,k −1,k +1)

Since w ′
hh has ti bits, it can be concatenated at the end of w ′

hh
0 · · ·0︸ ︷︷ ︸
ti bi t

. Therefore w can be

calculated by

w =

⟨
w ′

hh w ′
hh︸ ︷︷ ︸

whh

+w ′
hl +wh +wl

⟩

2k−2ti −1

. (3.16)

For the second base, a reconfigurable modular (RM) adder is employed shown in Figure

3.13. Based on the proposed adder, addition and multiplication modulo 2k , 2k−1-1, 2k -1,

and 2k+1-1 can be done without hardware redundancy. Note that the RM adder shown in

Figure 3.13 has (k −1)-bit delay of full adder less than the modulo m adder (Figure 3.12) in

the worst case, thus the second base supports more efficient arithmetic operations. The RM

multiplier is shown in Figure 3.13. After multiplication, the 2F -bit result R is split into two

F -bit LSB and MSB parts (Rl and Rh respectively) (F = k,k −1,k +1) and reduction modulo

2F −1 can be achieved by a modular addition of Rl and Rh [BKP09].
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Figure 3.14: Calculation of H in RNS to MRS conversion for the first base (a) area efficient
design, (b) Fast design

3.5.2.2 Conversion from base B to base A

In step 3 of RNSMMM a base conversion from base B to base A is required, which consists

of a residue-to-MRS conversion in base B and then a MRS-to-residue conversion in base

A. Efficient RNS to MRS conversion for base A is reported in [BKP09]. The core operation

in calculation of Ui ,∀i = 2,3,4 in (2.31) is

H =

⟨(
z j −Ui

)
m−1

i , j

⟩
m j

. (3.17)

Hardware implementations of (3.17) for area and time efficient designs are shown in Figure

3.14. Considering four-modulus RNS bases, for each Ui (i = 2,3,4), an implementation

shown in Figure 3.14 is employed. The bit organizer provides the required shifts according

to pre-calculated multiplicative inverses.

Residues in A must be calculated after the calculation of mixed radix digits in base B. In

the calculation of MRS to RNS from B to base A for four-modulus RNS bases, it holds that

z j = 〈U1 +m1 (U2 +m2(U3 +m3U4))〉m j
, (3.18)

where m j are the moduli 2k , 2k−1, 2k+1−1, and 2k−1−1. mi = m1, m2, and m3 are the moduli

of the form 2k−2ti −1. Based on the form of the considered bases with simple multiplicative

inverses, for fast and area efficient design, adder-based structure can be simply realized by

using one RM adder for each modulus.

3.5.2.3 Conversion from base A to base B

In order to mechanize RNS-to-MRS conversion in base A = {2k ,2k −1,2k+1 −1}, based on

(2.31) and considering m1 = 2k ,m2 = 2k −1,m3 = 2k+1 −1, we get

U1 = z1 (3.19)
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Figure 3.15: RNSMMM architecture, (a) Fast design, (b) Area efficient design

U2 =
⟨

(z2 −U1)m−1
1,2

⟩
m2

(3.20)

U3 =
⟨(

(z3 −U1)m−1
1,3 −U2

)
m−1

2,3

⟩
m3

. (3.21)

The required multiplicative inverses in (3.20) and (3.21) are
⟨

m−1
1

⟩
m2

= 1,
⟨

m−1
1

⟩
m3

= 2 and⟨
m−1

2

⟩
m3

= −2 [Moh07]. Due to the simple form of multiplicative inverses, the proposed

adder-based structure was employed both for the fast and the area efficient design.

Regarding the MRS-to-RNS conversion to base B, it holds that

z j = 〈U1 +m1 (U2 +m2 (U3 +m3U4))〉m j
. (3.22)
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It is apparent that all calculations in (3.22) consist of simple shifts and addition operations.

3.5.3 Hardware Architecture for RNS Montgomery multiplication

The proposed architectures for the RNSMMM are shown in Figure 3.15. The area efficient

architecture consists of one modulo (2k − 2ti − 1) multiplier, one RM multiplier, one RM

adder and two base conversion units with adder-based structure, connected in a four-stage

pipelined fashion (Figure 3.15b).

The alternate design optimized for high-speed is implemented in a six-stage pipelined ar-

chitecture, shown in Figure 3.15a. In each modulus channel in stages one and four of the

pipelined implementation, the modular multipliers and adders in Figures 3.12 and 3.13

are employed. For the base conversion operations, the modulo adders and multipliers de-

scribed in previous subsections are utilized.

3.6 Implementation details of ECPM and comparisons

Tables 3.4 summarizes the delay and area comparisons of the proposed ECPM with recent

state-of-the-art works. The field characteristic is p = 2160 +7 for a 160-bit implementation

and NIST recommendations for p-192, p-224 and p-256 corresponding to 2192 − 264 − 1,

2224 −296 +1, and 2256 −2224 +2192 +296 −1, respectively [SFM+09].

Regarding point multiplication, the binary method is employed. For the point addition

and doubling operations, the optimized DFGs presented in the previous sections as well

as in [SFM+09] are employed. Compared to [SFM+09] fewer moduli are required in the

proposed architecture. Moduli in Table 3.2 are of no special form, while well-formed moduli

employed here lead to a very simple reverse converter structure. The required conversions

consist of a simple adder-based structure, while the computations are pipelined with the

main ECPM core.

The architecture for the proposed ECPM consists of a binary-to-residue converter, a regis-

ter file, one RNSMMM, a control unit, and a residue-to-binary converter. In the proposed

architecture a binary-to-residue converter is employed to compute the RNS representation

of the projective coordinates (X ,Y , Z ). Due to the use of well-formed moduli, adder-based

structure can be utilized for the binary-to-residue conversion as discussed in [BKP09]. The

control unit provides the required input operands and control signals for the arithmetic

unit, while the distributed RAMs on FPGA are used in designing the register file. Residue-

to-binary conversion can be also realized by an adder-based structure according to (2.30)

and (2.31).

Due to the pipelined implementation of the RNSMMM, reduction in the execution time of

a point multiplication is also achieved. Unlike [SFM+09], [Gui10], fewer number of moduli

are required and the use of well-formed RNS bases results in efficient realization of modular

addition and multiplication required in the RNSMMM. Another advantage of the proposed

architecture is the simple, adder-based implementation of the residue-to-binary converter,
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compared to [SFM+09], which requires multiplications by large operands. The proposed

ECPM architecture is implemented on Xilinx VirtexE, Virtex 2 Pro and Altera Startix II to

achieve a fair, 1-to-1 comparison with the state-of-the-art implementations in Table 3.4. In

[Gui10], although moduli of smaller word-length are employed, a large number of moduli

is utilized and thus the RNS base conversions are complex resulting to worse performance,

as shown in Table 3.4.

3.7 Summary

In this chapter two RNS implementations of an ECPM were presented. A DFG approach

for the optimization of point addition and doubling was utilized for both designs to achieve

the same number of execution steps for both operations. For the first design an appropriate

RNS range was selected to accommodate the full range of calculations without intermediate

modular reductions, while the second design employed the RNSMMM algorithm.

For the first architecture extra care to the design for the output RNS-to-binary converter was

given. A specially designed bit-serial multiplier was developed to handle large operands.

The multiplier was then embedded in the architecture of the converter, forming a serial

design suitable for large RNS ranges.

Area and timing results were offered, proving the efficiency of the proposed implementa-

tion even toward dedicated ASIC implementations. A study for various key lengths, number

of RNS moduli and modulus bit lengths was also performed. It was proved that, in compar-

ison to traditional arithmetic approaches, RNS has the tendency to perform increasingly

better as the key word-lengths of an ECC will increase in the near future.

The second design improved significantly our first effort, by reducing the number of moduli

channels required and by utilizing moduli of special form. This amounted to reduction of

area and speed-ups in terms of total execution time for one point multiplication.
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Table 3.4: Comparison of ECPM architectures

Field Max Freq. EC mult.
Area

(bits) (MHz) time (ms)

3-moduli 192 34.7 2.56 20,014 LUT

(area efficient) 160 38.2 1.83 15,448 LUT

4-moduli
256 34.7 3.41 28,318 LUT

(area efficient)
224 37.0 2.92 25,912 LUT

192 38.4 2.67 21,380 LUT

[SFM+09]

256 39.7 3.95 32,716 LUT

224 46.8 3.31 29,610 LUT

192 52.9 2.97 25,012 LUT

[OP01] 192 40 3 11,416 LUT

[OBPV03] 160 91.3 14.41 11,227 LUT

3-moduli 192 50.2 1.82 9,310 LUT

(area efficient) 160 52.5 1.36 8,742 LUT

4-moduli 256 50.2 2.62 18,942 LUT

(area efficient) 192 53.6 2.07 14,782 LUT

3-moduli 192 50.2 0.35 19,224 LUT

(fast design) 160 52.5 0.31 18,114 LUT

4-moduli 256 50.2 0.59 28,746 LUT

(fast design) 192 53.6 0.52 25,304 LUT

[MMM06] 256 39.46 3.86 35,450 LUT

[SFKS06] 160 75 2.41 50,000 LUT

[LH08a]

256 94.7 2.66 41,595 Slices

192 94.7 1.25 40,219 Slices

160 94.7 0.78 39,531 Slices

3-moduli 192 54.1 0.33 5,248 ALUT

(fast design) 160 56.8 0.29 4,892 ALUT

4-moduli
256 54.1 0.54 12,324 ALUT

(fast design)
192 59.9 0.42 7,932 ALUT

192 61.2 0.38 5,148 ALUT

[Gui10]

256 157.2 0.68 9,177 ALUT

192 160.5 0.44 6,203 ALUT

160 165.5 0.32 5,896 ALUT

1 Implemented on Xilinx VirtexE 2 Implemented on Xilinx Virtex 2 Pro
3 Implemented on Altera Stratix II
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CHAPTER

4
New RNS architectures for GF (p) and

GF (2n)

This chapter presents an important class of algorithms that formed the basis of the

proposed versatile architectures, namely the RNS Montgomery Modular Multiplication

(RNSMMM) and PRNS Montgomery Modular Multiplication (PRNSMMM) algorithms. The

most important features and characteristics of these algorithms are analyzed. New, im-

proved versions for both algorithms are proposed, while an algorithmic and architectural

analysis proves the superiority of the proposed solutions compared to existing ones.



New RNS architectures for GF (p) and GF (2n)

4.1 Overview of RNS Montgomery modular multiplication

The previous chapter presented one of the first applications of RNS in ECC. The main char-

acteristic of this methodology was the calculation of the maximum dynamic range required

for a point-addition and point-doubling operation. Subsequently, an RNS base that could

accommodate this range was selected. This method is actually a translation of integer arith-

metic to a RNS system, and the final modulo reduction by the field modulus p of GF (p) is

executed once at the end of each point addition or doubling operations.

This solution, however, did not take into account the possibility of embedding modular

arithmetic within an RNS system, that is to perform calculations using RNS but at the same

time the result is reduced modulo p, where p the field characteristic of GF (p). An impor-

tant advance towards this direction was the introduction of RNS to MMM. To the best of

our knowledge, the authors in [PP95] were the first to propose such a type of algorithm.

Later, researchers produced more robust algorithms and implementations, mainly for use

in the context of modular exponentiation for RSA. The complete algorithms are described

by Kawamura et al. in [KKSS00], Bajard et al. in [BI04] and Gandino et al. in [GLMB11]. Let

us rewrite here the original MMM for convenience.

Algorithm 4.1 Montgomery Modular Multiplication MMM

Input: a,b, N ,R,R−1 { a,b < N }
Output: c ≡ abR−1 mod N , { c < 2N }

1 s ← a ·b

2 t ← s ·
(
−N−1

)
mod R

3 u ← t ·N

4 v ← s +u

5 c ← v/R

The challenges to transform this algorithm to RNS format are steps 2 and 5. Step 2 is a

modulo R operation, where R is the Montgomery radix. In non-RNS implementations R is

usually chosen to be a power of 2, thus modulo R operations amount to simple shifts. A

method that provides the modulo operation of step 2 within RNS representation needs to

be devised for the RNS version of the algorithm. Similar problems arise for step 5, where

division by the Montgomery radix needs to be performed in RNS.

The trick to overcome these issues is to choose a new Montgomery radix. Assume that a

base B = {q1, q2, . . . , qL} is employed with a corresponding range B . By assigning the Mont-

gomery radix to be the range B itself, step 2 is transformed to a step computed modulo B ,

since RNS is a closed modulo B system. Unfortunately, computations in the same base can-

not be continued, since in step 5 a quantity of the form B−1 mod B needs to be computed,

which mathematically does not exist. For this reason, a new base A= {p1, p2, . . . , pL} is em-

ployed and a BC from base B to base A is performed at step 2 of the algorithm. A BC is the

transformation of an RNS representation in a base B to another base A.

Computations for steps 3, 4 and 5 are computed in the new base A, since now it is feasible

to compute B−1 mod A in step 5. The complete RNSMMM algorithm is shown below.
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Algorithm 4.2 RNS Montgomery Modular Multiplication (RNSMMM)

Input: aT ,bT { a,b < 2N }
Output: cT , { c < 2N and c ≡ abB−1 mod N }
Precompute:

(
−N−1

)
B

,B−1
A

, NA

1 sT ← aT ·bT

2 tB ← sB ·
(
−N−1

)
B

3 tA ← tB { base conversion step }
4 uA ← tA ·NA

5 vA ← sA+uA

6 cA ← vA ·B−1
A

7 cB ← cA { base conversion step}

An extra BC is issued at the end of the algorithm so that inputs and outputs are compatible

with each other, thus the algorithm may be used repeatedly in the context of any modu-

lar exponentiation algorithm. Steps performed in both bases are denoted as T = A∪B.

Clearly, the complexity of the algorithm depends on the BC steps.

The algorithms for RNSMMM proposed by Kawamura et al. in [KKSS00] and Bajard et al.

in [BI04] differ only in the way the BC is performed. Gandino et al. offered optimizations

for both algorithms by reducing the total number of steps required using pre-computations

[GLMB11].

4.1.1 Base Conversion (BC) by Kawamura et al.

In 2000, Kawamura et al. presented the first practical method for base conversion [KKSS00].

Their approximation method evaluates the correction factor γ of the CRT in (2.29). Starting

from (2.29), and substituting by

ξi =
⟨

zi · A−1
i

⟩
mi

(4.1)

we obtain

z =

L∑

i=1

ξi · Ai −γA. (4.2)

Dividing both sides by A, we obtain

L∑

i=1

ξi

mi
=

z

A
+γ. (4.3)

Since 06 z/A < 1, γ6
∑L

i=1
ξi

mi
< γ+1 holds. Therefore,

γ=

⌊
L∑

i=1

ξi

mi

⌋
(4.4)

with 06 γ< L, since 06 ξi /mi < 1.
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Two approximations were employed in [KKSS00]. The denominator mi is replaced by 2r ,

where 2r−1 < mi 6 2r while the numerator ξi is approximated by its most significant q bits,

where q < r . Thus, instead of γ, an approximated value γ∗ can be calculated by

γ∗
=

⌊
L∑

i=1

tr unc(ξi )

2r
+α

⌋
, (4.5)

where tr unc(ξi ) = ξi ∧

q︷ ︸︸ ︷
(1 . . .1)

(r−q)︷ ︸︸ ︷
(0 . . .0) and ∧ denotes an AND operation. An offset value

06α< 1 is introduced to compensate the error produced by the approximations. Division

by powers of 2 are simple shifts thus (4.5) can be realized by additions alone. A theorem

that provides the offset value α, so that the error issued by the approximations is zero, was

also provided in [KKSS00]. The complete BC algorithm is shown below as Algorithm 4.3.

Algorithm 4.3 Base Conversion (BC) algorithm by Kawamura et al. [KKSS00]

Input: ζB = (ζ1,ζ2, . . . ,ζL) , A,B ,α
Output: ζA =

(
ζ′1,ζ′2, . . . ,ζ′L

)

Precompute:
(
B−1

i

)
qi

, (Bi )A (∀i = 1. . .L),(−B)A
1 σ0 =α

2 for all i = 1. . .L do

3 ξi =
⟨
ζi ·B−1

i

⟩
qi

4 δi ,0 = 0
5 end for

6 for all i = 1. . .L do

7 for j = 1. . .L do

8 σ j =σ( j−1) + trunc(ξ j )/2r

9 γ∗
j
= ⌊σ j ⌋, {γ∗

j
= {0,1}}

10 σ j =σ j −γ∗
j

11 δi , j = δi ,( j−1) +ξ j ·
⟨

B j

⟩
pi
+γ∗

j
· 〈−B〉pi

12 end for

13 end for

14 for all i = 1. . .L do

15 ζ′
i
=

⟨
δi ,L

⟩
pi

16 end for

Kawamura et al. offered theorems which provide optimum values for the quantity α, so that

the error introduced by their approximation method is equal to 0 [KKSS00] (α= 0 in the first

BC and α = 0.5 in the second one). There is however a limitation to this method, namely

the input operand that is to be extended should not be too close to the range B [KKSS00].

4.1.2 Base Conversion (BC) by Bajard et al.

Bajard et al. employed two different methods for the first and second BC of the RNSMMM

[BI04]. The first, shown below as Algorithm 4.4, issues an approximation error but performs

faster than Kawamura’s algorithm, while the second depicted as Algorithm 4.5, was origi-
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nally proposed by Shenoy and Kumaresan [SK89] and corrects the previous result. The two

algorithms convert the corresponding quantities in Algorithm 4.2, i.e., the values t and c

respectively. Note also that, the first algorithm is nothing more than the CRT expression in

(2.28), while the second computes the correction factor γ of the CRT expression in (2.29).

The key idea is that we can relax our restriction to obtain a correct result during the first

base conversion, since, as it was shown in [BI04], if larger bases are selected, such as A,B >

N (L+2)2, then this relaxation does not affect the final result.

Algorithm 4.4 First BC algorithm by Bajard et al. [BI04]
Input: tB = (t1, t2, . . . , tL)
Output: tA∪pr

=
(
t ′1, t ′2, . . . , t ′L , t ′r

)

Precompute:
⟨

B−1
i

⟩
qi

(∀i = 1. . .L, (Bi )A∪pr

1 qi = ti ·
⟨

B−1
i

⟩
qi

,∀i = 1. . .L

2 for all j = 1. . .L and j = r do

3 t ′
j
=

⟨∑L
i=1 qi ·Bi

⟩
p j

4 end for

Algorithm 4.5 Second BC algorithm by Bajard et al. [BI04]
Input: cA∪pr

= (c1,c2, . . . ,cL ,cr )
Output: cB =

(
c ′1,c ′2, . . . ,c ′L

)

Precompute:
⟨

A−1
j

⟩
p j

(∀ j = 1. . .L,r ),(−A)B ,
(

A j

)
B

,
⟨

A j

⟩
pr

(∀ j = 1. . .L)

1 c̃ j =

⟨
c j · A−1

j

⟩
p j

, ∀ j = 1. . .L

2 c ′′r =

⟨∑L
j=1 c̃ j · A j

⟩
pr

3 γ=
⟨

(c ′′r − cr )A−1
r

⟩
pr

4 c ′
i
=

⟨∑L
j=1 c̃ j · A j

⟩
qi

, ∀i = 1. . .L

5 c ′
i
=

⟨
c ′

i
−γA

⟩
qi

, ∀i = 1. . .L

4.1.3 Base Conversion (BC) by Gandino et al.

Gandino et al. [GLMB11] improved both of the solutions presented previously by issuing

pre-computation steps. In the following, values with a ĥat symbol denote values multiplied

by A−1
j

in base A, where A j = A/p j ,∀ j = 1. . .L. The re-organized versions of Kawamura’s et

al. BC are shown below as Algorithms 4.6 and 4.7, while the re-organized versions of Bajard

et al. BC correspond to Algorithms 4.8 and 4.9 respectively.

Interestingly, while the BC algorithms proposed by Kawamura et al. and Bajard et. al con-

vert only one value at steps 3 and 7 of Algorithm 4.3, the corresponding reorganized versions

proposed by Gandino et al. include in the BC algorithm all other steps of Algorithm 4.3 as

well. These savings are depicted in terms of reduced number of modular multiplications

required for one RNSMMM, as shown in Table 4.1 [GLP+12].
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Algorithm 4.6 Reorganized first BC algorithm for Kawamura et al. [GLMB11]

Input: sB ,α= 0, ˆ̂sA
Output: ĉA

Precompute:
(
B−1

A A j

)
A

,
(
−N A j

)
A

,
(
Bi N B−1

A A−1
j

)
A

(∀i = 1. . .L),
⟨
−N−1B−1

i

⟩
qi

(∀i = 1. . .L)

1 ξi =
⟨

si ·
(
−N−1B−1

i

)⟩
qi

, ∀i = 1. . .L

2 σ=α

3 ĉ j =
⟨

ˆ̂s j ·
(
B−1

A A j

)⟩
p j

, ∀ j = 1. . .L

4 for i = 1. . .L do

5 σ=σ+ trunc(ξi )/2r

6 γ∗ = ⌊σ⌋

7 σ=σ−γ∗

8 ĉ j =

⟨
ĉ j +ξi ·

(
Bi N B−1

A A−1
j

)
+γ∗ ·

(
−N A−1

j

)⟩
p j

, ∀ j = 1. . .L

9 end for

Algorithm 4.7 Reorganized second BC algorithm for Kawamura et al. [GLMB11]

Input: ĉA,α= 0.5
Output: cB
Precompute:

⟨
A j

)
B

, (−A)B
1 σ=α

2 ci = 0, ∀i = 1. . .L in B

3 for j = 1. . .L do

4 σ=σ+ trunc(ĉ j )/2r

5 γ∗ = ⌊σ⌋

6 σ=σ−γ∗

7 ci =
⟨

ci + ĉ j · A j +γ∗ · (−A)
⟩

qi
, ∀i = 1. . .L

8 end for

Algorithm 4.8 Reorganized first BC algorithm for Bajard et al. [BI04]

Input: sB∪pr
= (s1, s2, . . . , sL , sr ) , ˆ̂sA

Output: ĉA,c in pr

Precompute:
(
B−1

A A j

)
A

,
⟨

B−1
A

⟩
pr

,
⟨

Bi N B−1
A

⟩
pr

(∀i = 1. . .L),
(
Bi N B−1

A A−1
j

)
A

(∀i =

1. . .L),
⟨
−N−1B−1

i

⟩
qi

(∀i = 1. . .L)

1 qi =
⟨

si ·
(
−N−1B−1

i

)⟩
qi

, ∀i = 1. . .L

2 ĉ j =

⟨
ˆ̂s j ·B−1

A A j +
∑L

i=1 qi ·

(
Bi N B−1

A A−1
j

)⟩
p j

, ∀ j = 1. . .L

3 cr =
⟨

sr ·B−1
A +

∑L
i=1 qi ·

(
Bi N B−1

A

)⟩
pr
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Algorithm 4.9 Reorganized second BC algorithm for Bajard et al. [BI04]

Input: ĉA = (c1,c2, . . . ,cL) ,〈c〉pr

Output: cB =
(
c ′1,c ′2, . . . ,c ′L

)

Precompute:
⟨

A−1
r

⟩
pr

,
(

A j

)
B

(∀ j = 1. . .L),〈A j 〉pr (∀ j = 1. . .L), (−A)B

1 c ′′r =

⟨∑L
j=1 ĉ j · A j

⟩
pr

2 γ=
⟨

(c ′′r − cr )A−1
r

⟩
pr

3 c ′
i
=

⟨∑L
j=1 ĉ j · A j

⟩
qi

, ∀i = 1. . .L

4 c ′
i
=

⟨
c ′

i
−γA

⟩
qi

, ∀i = 1. . .L

Steps in
[KKSS00] [BI04]

[GLMB11] applied [GLMB11] applied

RNSMMM in [KKSS00] [BI04]

1, 3, 4 5L 5L 2L 2L

First BC L2 +2L L2 +L L2 +3L L2 +2L

Second BC L2 +2L L2 +2L L2 +L L2 +L

Total 2L2 +9L 2L2 +8L 2L2 +6L 2L2 +5L

Table 4.1: Number of modular multiplications in state-of-the-art RNSMMM

4.1.3.1 Modular reduction by the RNS moduli

The modular reduction technique by each RNS modulus is identical for all the works in

[KKSS00, BI04, GLMB11], since not only it offers simple implementations but also allows for

fair comparisons. Assuming moduli of the form pi = 2r − ci , where ci < 2h and h <
r−1

2 , the

reduction of an integer x < 22r requires two multiplications and three additions according

to

y = x mod 2r
+ ((x << r ) mod 2r ) · ci + (x << 2r ) · c2

i , (4.6)

where << denotes a left-shift operation, x < 2r , z > 2r , and ci < 2h [GLMB11].

4.1.3.2 Conversions to/from RNS

To allow handling of large integers in each modulus channel, it is useful to employ high-

radix representations so that each high-radix digit can be assigned to an RNS channel. A

radix-2r representation of an integer x as a L-tuple
(
x(L−1), . . . , x(0)

)
satisfies

x =

L−1∑

i=0

x(i )2r i
=

(
2r (L−1), . . . ,2r ,1

)




x(L−1)

...

x(1)

x(0)




, (4.7)
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where 0 6 x(i ) 6 2r −1. By applying the modulo p j operation in (4.7) we can convert the

integer x to its associated RNS representation by

〈x〉p j
=

⟨
L−1∑

i=0

x(i )
⟨

2r i
⟩

p j

⟩

p j

,∀ j ∈ [1,L]. (4.8)

If constants
⟨

2r i
⟩

p j
are precomputed, this computation is a typical multiply-accumulate

operation and can be computed in L steps, when executed by L units in parallel.

As (2.29) is the basis of the presented RNSMMM algorithms, it would be useful to employ it

also for the RNS-to-decimal conversion. Let us rewrite (2.29) as

x =

L∑

i=1

⟨
xi · A−1

i

⟩
pi
· Ai −γA =

=
(
2r (L−1), . . . ,2r ,1

) L∑

i=1




ξi ·




Ai (L−1)
...

Ai (1)

Ai (0)



−γ




A(L−1)
...

A(1)

A(0)








,

(4.9)

where ξi =
⟨

xi · A−1
i

⟩
pi

. As soon as γ has been evaluated using the methods of section 3,

each row of (4.9) can be computed in parallel in each cell by means of multiply-accumulate

operations. In this case, carry should be propagated from cell 1 until cell L [KKSS00].

4.1.4 Architectural comparisons

All works in [KKSS00, BI04, GLMB11] utilize cell-based architectures for implementing the

algorithms in [KKSS00] and [BI04, GLMB11] respectively. Each cell corresponds to a single

RNS modulus and utilizes a multiply-accumulate unit followed by a modular reduction unit

which performs reduction by the corresponding RNS modulus using (4.6). Actually, with

slight modifications, the architecture in [GLMB11] supports both algorithms in [KKSS00,

BI04].

The cell structure is shown in Fig.4.1 [GLMB11]; a common bus that connects the cells

and lines connecting one cell to a subsequent one are omitted, for simplicity reasons. The

multiply-accumulate unit is depicted at the top of the cell and the modular reduction units

at the bottom are a straightforward implementation of (4.6). Again, the prospective reader

is instructed to refer to [GLP+12, GLMB11] for a detailed architectural analysis of the state-

of-the-art RNSMMMalgorithms.

Table 4.2 summarizes the number of clock cycles required for the considered algorithms.

The metrics are based on the cell-based architecture in Figure 4.1 and depend on the pipeli-

ne stages ϵ of each cell, the number of cells L, and the number of parallel multipliers M in

each cell.
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Overview of RNS Montgomery modular multiplication

Operation Base # multiplications # cycles

s = x y B L ϵ

ˆ̂s = x̂ ŷ A L
⌊

1
ϵ+M−1

⌋

q = s(−N−1B−1
i

) B L ϵ

ŵ = ŝB−1
A A j A L

⌊
1

ϵ+M−1

⌋

ŵi = Bi N B−1
A A−1

j
A L2

⌈
L
M

⌉
−1+ϵ

w = ŵ j A j B L2
⌈

L
M

⌉
−1+ϵ

Table 4.2: Number of multiplication steps per RNS modular multiplication in state-of-the-
art RNSMMM ([GLP+12] without BC correction)

Algorithm BC # steps Step delay MM delay
Expon. delay Area

(×2,050) (×33)

[KKSS00],[BI04] [KKSS00] 88 93 8,184 8,184 99,873

[GLP+12] [KKSS00] 76 93 7,068 0.0034+7,068 99,873

[KKSS00, BI04] [BI04] 89 86.6 7,707 7,707 99,840

[GLP+12] [BI04] 77 86.6 6,669 0.0034+6,669 99,840

Table 4.3: Area and delay comparisons with L = 33, r = 32, ϵ= 3, M = 1, h = 11

Gate Area (transistors) Delay (inverter)

Inverter 2 1

NAND 4 1.4

XOR 4 1.4

XNOR 12 3.2

NAND3 8 1.8

NAND4 10 2.2

REGISTER 15 4.8

Table 4.4: Basic logic library in CMOS technology (model from [Gaj97])

Table 4.3 summarizes complexity comparisons based on the model in Table 4.4 [Gaj97].

Clearly, the approach in [GLP+12, GLMB11] further optimizes the algorithmic and hard-

ware complexity of the considered RNSMMM algorithm. In the following sections, opti-

mized versions of the considered RNSMMM algorithm based on a MRC approach for the

base conversion operation are proposed.
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4.2 New MRC-based Montgomery modular multiplication

in GF (p)

Figure 4.1: MAC cell [GLP+12]

In the following, the original MRC [ST67] is em-

ployed to construct new BC algorithms in the con-

text of the RNSMMM in Algorithm 4.2 [SS11]. In the

original case, the MRC of an integer x with an RNS

representation xA = (x1, x2, . . . , xL) is given by

x =U1 +W2U2 +·· ·+WLUL , (4.10)

where Wi =
∏i

j=2 m j−1,∀i ∈ [2,L] and the Ui s are

computed according to

U1 = x1

U2 =
⟨

(x2 −U1)m−1
1,2

⟩
m2

U3 =
⟨(

(x3 −U1)m−1
1,3 −U2

)
m−1

2,3

⟩
m3

(4.11)

...

UL =
⟨(

. . . (xL −U1)m−1
1,L −·· ·−UL−1

)
m−1

L−1,L

⟩
mL

,

where mi m−1
i , j

≡ 1 mod m j .

The proposed BC algorithm implements (4.11) in

steps 2 to 7 to obtain the mixed-radix digits Ui of

x. From step 8 to 15 (4.11) is realized by applying a

Horner’s rule scheme, while the whole summation

is computed modulo each modulus pi of the new

base A.

The proposed BC is error-free, as opposed to

[KKSS00, BI04], where CRT is employed and an

approximation of the correction factor γ of (2.29)

is calculated. Conditions gcd(B , N ) = 1 and

gcd(A,B) = 1 are sufficient for the existence of
(
N−1

)
B

and
(
B−1

)
A

, respectively. 4N 6 B

is also sufficient for c < 2N to hold when a,b < 2N . It holds that

c =
v

B
=

ab + t N

B
<

(2N )2 +B N

B
=

(
4N

B
+1

)
N 6 2N , (4.12)

which yields 4N 6 B . Finally, (4.12) shows that 2N 6 A is sufficient for c < A and v < AB .

Since v is the maximum intermediate value, all values are less than AB .

4.2.1 The Proposed RNSMMM Architecture

Figure 4.2 depicts a suitable architecture that implements the proposed RNSMMM algo-

rithm. Due to the algorithm’s internal structure, all calculations are decomposed to simple
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Algorithm 4.10 Proposed MRC-based base conversion
Input: xB = (x1, x2, . . . , xL)
Output: xA = (x ′

1, x ′
2, . . . , x ′

L)
1 U1 ← x1

2 for all i = 2, . . . ,L do

3 Ui ← xi

4 for j = 1 to i −1 do

5 Ui ←

⟨(
Ui −U j

)
q−1

j ,i

⟩
qi

6 end for

7 end for

8 for all i = 1, . . . ,L do

9 x ′
i
←〈UL〉pi

10 for j = L−1 to 1 do

11 x ′
i
←

⟨
x ′

i
q j +U j

⟩
pi

12 end for

13 end for

Figure 4.2: The proposed MRC-based RNSMMM architecture

add/multiply operations, each one dedicated to an RNS modulus channel. The lines that

connect each unit are used for the base conversion and MRC realization, since according

to (4.10), the outcome of a unit must be added to the outcome of its subsequent one. Obvi-

ously, the proposed architecture, if used repeatedly, executes modular exponentiation and

inversion algorithms [MVO96] with no need for extra hardware.

The architecture preserves the efficient input/output conversions presented in the previous

section for the binary-to-RNS and RNS-to-binary conversions respectively.
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Table 4.5: ROM requirements of the proposed RNSMMM architecture

Operation
Parameters ROM

stored in ROM (bits)

Binary-to-RNS
⟨

2r j
⟩

pi
,
⟨

2r j
⟩

qi
2Lr

RNSMMM N−1
B

,B−1
A

, NA 3Lr

BC q−1
j ,i , p−1

j ,i , p j , q j , 2Lr ( L+1
2 )

RNS-to-binary − −

Table 4.6: Number of operations in RNSMMM algorithms

Alg. RNSMMM Conversions

Alg. BC Others Binary-to-RNS RNS-to-binary

MRC-based [SS11] L(L−1)+2L2 5L L2 L2

[KKSS00] 2L2 +4L 5L L2 L(2L+1)

[BI04] 2L2 +3L 5L N/A N/A

[GLP+12] 2L2 +3L 2L L2 L(2L+1)

4.2.2 Performance and Comparisons

4.2.2.1 Memory requirements

Table 4.5 summarizes the memory requirements of the proposed architecture, where r

is the radix, and therefore the bit-length, of each modulus. If area is not an issue, two

RNSMMM architectures can be exploited in parallel, each one dedicated to a single base.

Each RAM module in Figure 4.2 stores an r−bit result of a multiply-accumulate unit, which

is equivalent to a total 2Lr -bit RAM, if two RNSMMM architectures operate in parallel. Note

also that all parameters for the RNS-to-binary conversion are identical to the parameters

used for the BC algorithm, thus no extra memory is required.

4.2.2.2 Frequency

Table 4.6 summarizes the number of operations required by the RNSMMM algorithm, along

with the binary-to-RNS and RNS-to-binary conversions in terms of modular multiplica-

tions. Comparisons are made with the works presented in [KKSS00, BI04, GLP+12], which

also present an RNS Montgomery multiplication, but they are based on CRT. It is apparent

that due to the use of MRC instead of CRT, the proposed algorithm requires slightly more

operations for the BC but less operations in total. The reason is that savings are achieved

in the RNS-to-binary case, since the upper part (steps 2-7) of the BC algorithm is identical
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New CRT-based Montgomery modular multiplication in GF (2n)

for the conversion case as well. Thus, only L2 multiplications are required for steps 8-13. In

Chapter 5 the algorithm is further optimized to minimize the modular multiplications for

the BC as well.

Note that in [BI04] no estimations are given for the converters, since an unusual splitting of

the input to blocks of size equal to the size of the RNS moduli is issued, instead of standard

RNS-to-binary conversion. However, this method produces an intermediate value that has

to be corrected at the end of the algorithm, by adding several multiples of the modulus N

to the final result.

Let ∆, f , T denote the total number of operations, frequency, and throughput of a modular

exponentiation that utilizes RNSMMM multiplication and requires 3Lr
2 + 2 modular mul-

tiplications [KKSS00]. ∆ is then roughly estimated by the sum of RNSMMM algorithm’s

operations multiplied with 3nr
2 + 2, plus the operations for the conversions and the final

correction step. Under these assumptions, T = f ·Lr /(∆/L) and ∆ is divided by L, since L

processing units work in parallel.

As an example, for a 1024−bit exponentiation used in RSA, if 33 32−bit moduli are chosen

and the frequency is set to f = 100 MHz, then T is about 3 [Mbit/sec], which is a reason-

able choice for deep sub-micron CMOS technologies, such as 0.35−0.18µm. For the same

scenario, the throughput reported in [KKSS00] was 890 [kbit/sec].

4.2.2.3 Area requirements

Each add/multiply unit encompasses an r−bit modular adder, consisting of 2 r−bit adders

and a multiplexer, and an r−bit multiplier. Assuming Aadd , Amul t and Amux be the area of

an r−bit adder, multiplier and multiplexer respectively, then the total area of the proposed

architecture is roughly estimated to be L(2Aadd + Amul t + Amux).

4.3 New CRT-based Montgomery modular multiplication in

GF (2n)

Details on GF (2n) arithmetic were presented in Chapter 2, section 1.1.2, thus we focus on

the applicability of PRNS in GF (2n) arithmetic. The authors in [KA98] proposed a Mont-

gomery multiplication algorithm, presented as Algorithm 4.11, suitable for polynomials in

GF (2n). Instead of computing the product c(x) = a(x) ·b(x) mod N (x), the algorithm com-

putes c(x) = a(x) ·b(x) · r−1(x) mod N (x), where r (x) is a special fixed element in GF (2n).

The selection of r (x) = xn is the most appropriate, since modular reduction and division by

xn are simple shifts [BSS02, HMV04].

The Montgomery multiplication method requires that r (x) and N (x) are relatively prime,

i.e., gcd{r (x), N (x)} = 1. This assumption always holds, since N (x) is an irreducible polyno-

mial in GF (2), thus it is not divisible by x. Since r (x) and N (x) are relatively prime, there

exist two polynomials r−1(x) and N−1(x) such that

r (x) · r−1(x)+N (x) ·N−1(x) = 1, (4.13)
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where r−1(x) is the inverse of r (x) modulo N (x). The polynomials r−1(x) and N−1(x) can

be computed using the extended Euclidean algorithm [LN86, McE87]. The Montgomery

multiplication of a(x) and b(x) is then defined as

c(x) = a(x) ·b(x) · r−1(x) mod N (x), (4.14)

which can be computed according to Algorithm 4.11.

Algorithm 4.11 Montgomery Multiplication in GF (2n)

Input: a(x),b(x),r (x), N (x), N−1(x)
Output: c(x) = a(x)b(x)r−1(x) mod N (x)

1 s(x) ← a(x)b(x)
2 t (x) ← s(x)N−1(x) mod r (x)
3 u(x) ← t (x)N (x)
4 v(x) ← s(x)+u(x)
5 c(x) ← v(x)/r (x)

The algorithm is similar to the Montgomery multiplication for integers presented already as

Algorithm 4.1. The only difference is that the final subtraction step required in the integer

case is not necessary in polynomials, as it has been proved that the degree of the resulting

polynomial c(x) is less than n [KA98].

4.3.1 The proposed PRNS Montgomery modular multiplication

A modification of the Montgomery algorithm for multiplication in GF (2n) that encom-

passes PRA is proposed. This work extends the work in [BIJ05], which encompasses tri-

nomials for the modulus set, by employing general, any-degree polynomials that achieve

larger dynamic ranges. Also, the problem of PRNS-to-polynomial and polynomial-to-PRNS

conversions are addressed, as opposed to [BIJ05].

Similar to the integer case, two PRNS bases A = (p1, p2, . . . , pL) and B = (q1, q2, . . . , qL) are

introduced, such that gcd{pi , q j } = 1,∀i , j ∈ [1,L]. The 5 steps of the Montgomery algorithm

are translated to PRNS computations in both bases, denoted from now on as T =A
∪
B.

Initially, the input polynomials a(x), b(x) are transformed to PRNS representation in both

bases as aT and bT . Steps 1,3, and 4 involve addition and multiplication operations, thus

their transformation to PRNS is straightforward. For step 2, the constant r (x) is replaced by

B(x) =
L∏

i=1

qi (x), which is the range of B. Then, t (x) in PRNS format is computed in base B

by tB = sB ·
(
N−1

)
B

. Nevertheless, the computations in base B can’t be continued for steps

3, 4 and 5, since in step 5 we would need to compute the quantity B−1(x) mod B(x), which

does not exist. Thus, a base conversion from base B to base A is inserted to compute tA.

tA is then used to execute steps 3, 4 and 5 in base A. The result at the end of the proposed

algorithm is a quantity cT in PRNS format such that c(x) = a(x)b(x)B−1(x) mod N (x).

Algorithm 4.12 depicts the proposed GF (2n) PRNS Montgomery Modular Multiplication

(PRNSMMM). In the proposed algorithm, the degree of input and output polynomials are
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both less than n, so that input and output are compatible with each other. This allows

to construct a modular exponentiation algorithm by repetition of the PRNS Montgomery

multiplication. Base extension in step 7 is utilized for the same reason. Note that it is un-

necessary to realize step 5 in base B. Also, base B representation in step 4 can be ignored

as well, since v is always a multiple of B and thus vB = 0B .

Algorithm 4.12 The proposed PRNSMMM algorithm

Input: aT ,bT , N−1
B

,B−1
A

, NA, {such that deg{a(x)} < n and deg{b(x)} < n}
Output: cT , {such that deg{c(x)} < n and c(x) = a(x)b(x)B−1(x) mod N (x)}

1 sT ← aT ·bT

2 tB ← sB ·N−1
B

3 tA ← tB
4 uA ← tA ·NA

5 vA ← sA+uA

6 cA ← vA ·B−1
A

7 cB ← cA

Algorithm 4.13 Base Conversion (BC) algorithm for PRNSMMM
Input: zB
Output: zA
Precompute: B−1

i
(x),〈Bi (x)〉p j

, { ∀i , j ∈ [1,L] }

1 ξi =
⟨

zi ·B−1
i

(x)
⟩

qi
, { ∀i ∈ [1,L] }

2 z0,i = 0
3 for i = 1, . . . ,L do

4 z j ,i = z j−1,i +ξi · 〈Bi (x)〉p j
, { ∀ j ∈ [1,L] }

5 end for

6 zA =
⟨

z j ,L
⟩

p j
, { ∀ j ∈ [1,L] }

4.3.2 Base Conversion (BC) algorithm for PRNSMMM

Assuming a base conversion from base B to base A, one can calculate (2.35) to transform a

PRNS vector expressed in B to polynomial representation and then perform a Polynomial-

to-PRNS conversion to base A to obtain the PRNS representation in the new base. The

process is shown in Algorithm 4.13.

4.3.2.1 Proof of PRNSMMM’s algorithm validity

Theorem 1: If (1)gcd{N ,B} = 1, (2) gcd{A,B} = 1, (3) deg{A} > n, and (4) deg{B} > n, then

Algorithm 4.12 outputs cT , for which c = abB−1 mod N and deg{c} < n.

Proof. Since gcd{N ,B} = 1 and gcd{A,B} = 1, N is relatively prime to B and B is relatively

prime to A. Thus, the quantities
⟨

N−1
⟩

qi
and

⟨
B−1

⟩
pi

exist ∀i ∈ [1,L], and therefore
(
N−1

)
B

and
(
B−1

)
A

exist.
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Assume that the polynomial v is a multiple of B , i.e., v mod B = 0. Then, s + t · N = 0

mod B , which means that t = s ·N−1 mod B . This corresponds to step 2 of the PRNSMMM

algorithm, which means that step 6 is error-free since base conversion in step 3 is error-free,

therefore PRNSMMM holds.

Furthermore, it must be proved that the resulting polynomial c of Algorithm 4.12 is a poly-

nomial of degree less than n. It holds that

deg{c}6 deg
{ v

B

}
⇒

deg{c}6 deg

{
ab + t N

B

}
⇒

deg{c}6 deg{ab + t N }−deg{B} ⇒

deg{c}6max
{
deg{ab},deg{t N }

}
−deg{B} ⇒

deg{c}6 deg{t N }−deg{B} ⇒

deg{c}6 deg{B}−1+n −deg{B} ⇒

deg{c}6 n −1. (4.15)

Since v is the maximum intermediate value of Algorithm 4.12, its degree must be less than

the degree of the polynomial AB . Under this assumption, we get

deg{v} < deg{AB } ⇒

deg{cB } < deg{AB } ⇒

deg{c}+deg{B} < deg{A}+deg{B} ⇒

deg{c} < deg{A}. (4.16)

From (4.15) and (4.16) we have

deg{c} < n

deg{c} < deg{A}

}
⇒ deg{A} > n. (4.17)

Finally, note that 4.16 is independent of deg{B}, thus selecting deg{B} > n is sufficient.

4.3.3 The proposed PRNSMMM architecture

Fig. 4.3 depicts a suitable architecture that implements the proposed PRNSMMM algo-

rithm. Due to the algorithm’s internal structure, all calculations are decomposed to simple

multiply-accumulate operations. This allows the use of identical parallel multiply-accumulate

units, each one dedicated to a PRNS modulus. The lines that connect each unit are used for

the base conversion and CRT realization, since the outcome of a unit must be added to the

outcome of its subsequent unit. Note the resemblance to the corresponding architecture

in Figure 4.2 for the integers case. Obviously, the proposed architecture, if used repeatedly,

executes the exponentiation algorithm [BSS02, HMV04] with no need for extra hardware.
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Figure 4.3: The proposed PRNSMMM architecture

4.3.3.1 Polynomial-to-PRNS conversion

Any polynomial z(x) ∈GF (2n) can be written in the form

z(x) =
(
z(L−1), . . . , z(1), z(0)

)
=

L−1∑

i=0

z(i )xr i (4.18)

considering r -bit word split. Based on (4.18), a method must be devised that matches the

proposed architecture and converts any polynomial z(x) ∈GF (2n) to PRNS format. By ap-

plying the mod p j operation in (4.18) we get

zA =

⟨
L−1∑

i=0

z(i )xr i

⟩

p j

=

⟨
L−1∑

i=0

z(i )

⟨
xr i

⟩
p j

⟩

p j

,∀ j ∈ [1,L]. (4.19)

If constants
⟨

xr i
⟩

p j
are precomputed, this computation is well-suited to the proposed ar-

chitecture and can be computed in L steps, when executed by L units in parallel.

4.3.3.2 PRNS-to-Polynomial conversion

As (2.35) is the basis of the proposed PRNSMMM algorithm, it would be useful to employ

it also for the PRNS-to-Polynomial conversion. Considering the polynomial representation

Ai ( j ), j ∈ [0,r (L−1)−1] of Ai (x), the PRNS-to-polynomial conversion can be computed as

z(x) =
(
xL−1, . . . , x1,1

) L∑

i=1




δi ·




Ai (L−1)
...

Ai (1)

Ai (0)








, (4.20)

where δi =
⟨

zi · A−1
i

(x)
⟩

pi
. Each row of (4.20) can be computed in parallel by using the

proposed architecture.
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Table 4.7: ROM requirements of the proposed PRNSMMM architecture

Operation
Parameters ROM

stored in ROM (bits)

Polynomial-to-PRNS xr i
pi

, xr i
qi

L(r + g )

PRNSMMM
(
N−1

)
B

,
(
B−1

)
A

, NA L(2r + g )

BC
〈B−1

i
(x)〉qi

, Bi (x)A,
(r + g )(L2 +L)

〈A−1
i

(x)〉pi
, Ai (x)B

PRNS-to-Polynomial Ai (x) L2r

Table 4.8: Number of modular multiplications in PRNSMMM algorithm

Alg. PRNSMMM Conversions

Alg. BC Others Polynomial-to-PRNS PRNS-to-Polynomial

# of ops 2L2 +4L 5L 2L2 L2 +L

4.3.4 Performance

4.3.4.1 Memory requirements

Table 4.7 summarizes the memory requirements of the proposed architecture, in terms of L,

r , and g . Recall that, in the general case, base A utilizes r -bit moduli, while base B consists

of g -bit moduli. It is always possible to select g > r , so that g -bit units can perform r -bit

calculations as well. In this case, the proposed architecture supports both bases with the

use of time sharing. If area is not an issue, two PRNSMMM architectures can be exploited

in parallel, each one dedicated to a single base. Each RAM module in Fig.1 stores an r - or

g -bit result of a multiply-accumulate unit, which is equivalent to a total L(r + g )-bit RAM,

if two PRNSMMM architectures operate in parallel.

4.3.4.2 Frequency

Table 4.8 summarizes the number of operations, in terms of modular multiplications, re-

quired by the PRNSMMM algorithm, along with the Polynomial-to-PRNS and PRNS-to-

Polynomial conversions.

Let ∆, f , T denote the total number of operations, frequency, and throughput of an ECC

implementation in GF (2n). In this case, approximately θ = 26⌈n/2⌉ modular multiplica-

tions have to be performed [BSS02, HMV04]. ∆ is then roughly estimated by the sum of all

operations for the PRNSMMM algorithm multiplied by θ, plus the number of operations for

the conversions. The throughput is then estimated by T = f ·Lr /(∆/L). ∆ is divided by L,

since L processing units work in parallel.
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Summary

As an example, for a GF (2239) multiplication used in ECC, if 8, 32-bit moduli are chosen and

the frequency is set to f = 100 MHz, then T is about 620 [kbit/sec], which is a reasonable

choice for deep sub-micron CMOS technologies, such as 0.35−0.18µm.

4.3.4.3 Area requirements

In the worst case, each unit performs in parallel operations for both bases thus, the ac-

cumulate part encompasses a GF (2r ) and a GF (2g ) adder, consisting of (r + g ) XOR gates.

The multiply part consists of a GF (2r ) and a GF (2g ) multiplier. For the multiplier, sev-

eral alternatives exist in the literature [DBS06]. Considering for example a MSB-mutiplier,

2(r + g ) XOR gates and 2(r + g ) AND gates are required per unit plus some control logic

[DBS06]. This results to a total number of L
[
3(r + g ) XOR+2(r + g ) AND

]
gates for an L-

unit, PRNSMMM architecture.

4.4 Summary

In this chapter, an overview of state-of-the-art RNS Montgomery multiplication algorithms

was presented, along with algorithmic and architectural comparisons. Following, new al-

gorithms for modular multiplication that combine Montgomery multiplication and RNS-

PRNS for GF (p) and GF (2n) arithmetic were proposed.

Especially for GF (2n), a methodology for incorporating PRA in the Montgomery multipli-

cation algorithm for polynomials in GF (2n) was presented. The mathematical conditions

that need to be satisfied, in order for this incorporation to be valid were examined and per-

formance results were given in terms of the field characteristic n, the number of moduli

elements L, and the moduli word-length r , g .

Both applications of residue arithmetic are flexible due to the decomposition of all internal

calculations to simple add/multiply operations. The architectures perform binary-to-RNS/

PRNS and RNS/ PRNS-to-binary conversion, RNS/ PRNS Montgomery multiplication, as

well as MRC for integers and CRT for polynomials in the same hardware, thus making them

suitable for a variety of cryptographic applications. A methodology to unify these algo-

rithms into a common dual-field frame, VLSI designs, further optimizations and detailed

performance estimations are examined in the next chapter.
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CHAPTER

5
Novel versatile architectures

This chapter presents the design methodology for incorporating RNS and PRNS in MMM

in GF (p) or GF (2n) respectively. An analysis of input/output conversions to/from residue

representation, along with the proposed residue Montgomery multiplication algorithm, re-

veals common multiply-accumulate data paths both between the converters and between

the two residue representations. A versatile architecture is derived that supports all oper-

ations of Modular Multiplication (MM) in GF (p) and GF (2n), input/output conversions,

MRC for integers and polynomials, dual-field modular exponentiation and inversion in the

same hardware. Detailed comparisons with state-of-the-art implementations prove the po-

tential of residue arithmetic exploitation in dual-field modular multiplication.
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5.1 Decomposition of operations

In Chapter 4 two algorithms for RNS-PRNS Montgomery multiplication based on MRC and

CRT (RNSMMM and PRNSMMM respectively), were presented. Both algorithms maintain

multiply-accumulate characteristics and share common logic and algorithmic parts. In this

chapter the RNSMMM algorithm is further optimized, the PRNSMMM algorithm is trans-

formed to an MRC-based structure, and the two algorithms are unified to a common Dual-

field Residue Arithmetic Montgomery Modular Multiplication (DRAMMM) algorithm.

5.1.1 Optimizing RNSMMM

The MRC-based algorithm that avoids the evaluation of the γ factor of (2.29) forms the ba-

sis of the proposed RNS-based Montgomery multiplication algorithm. The derived algo-

rithm is identical to Algorithm 4.2, however the BC algorithm is now based on the modified

version of MRC shown in (2.30) and (2.32). Comparing the previous approach employing

(2.31), which requires L L−1
2 modular multiplications, the optimized MRC requires only L−2

modular multiplications. The methodology is further extended for the case of GF (2n).

Algorithm 5.1 depicts the proposed base conversion process that converts an integer ζ ex-

pressed in RNS base B as ζB to the RNS representation of another base A. As will be shown

in next sections, Algorithm 5.1 offers better opportunities for parallelization of operations.

It implements 2.32 in steps 1-8 to obtain the mixed-radix digits Ui of ζ. In steps 9-15, 2.30

is realized, while the whole summation is computed modulo each modulus pi of the new

base A.

Algorithm 5.1 The proposed optimized base conversion for the RNSMMM

Input: ζB =
(
ζB1

,ζB2
, · · · ,ζBL

)
,A,B

Output: ζA =
(
ζA1

,ζA2
, · · · ,ζAL

)

1 W1 ← 0
2 U1 ← ζB1

3 for all i = 2, . . . ,L do

4 Ui ← ζBi
−ζB1

5 for j = 1 to i −1 do

6 Ui ←
⟨
Ui −W jU j

⟩
qi

7 end for

8 end for

9 ζA1
← 0

10 for all i = 1, . . . ,L do

11 for j = 1 to L do

12 κi j = 〈W j A j 〉pi

13 ζAi
←

⟨
κi j +ζAi

⟩
pi

14 end for

15 end for

The two base conversions in the RNSMMM algorithm are error-free, contrasted to other al-

gorithms that employ CRT and utilize approximation methods to compute the correction
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Algorithm 5.2 PRNSMMM in GF (2n)

Input: aT ,bT , N−1
B

,B−1
A

, NA, {deg{a} < n, deg{b} < n}
Output: cT , {deg{c} < n, c = abB−1 mod N }

1 sT ← aT ·bT

2 tB ← sB ·N−1
B

3 tA ← tB
4 uA ← tA ·NA

5 vA ← sA+uA

6 cA ← vA ·B−1
A

7 cB ← cA

factor γ of 2.29 [KKSS00, BI04, GLP+12, GLMB11]. Conditions gcd(B , N ) = 1 and gcd(A,B) =

1 are sufficient for the existence of (−N−1)B and B−1
A

, respectively. As it holds that

c =
v

B
=

ab + t N

B
<

(2N )2 +B N

B
=

(
4N

B
+1

)
N 6 2N , (5.1)

it follows that 4N 6 B is sufficient for c < 2N to hold when a,b < 2N . Finally, (5.1) also

shows that 2N 6 A is sufficient for c < B and v < AB . Since v is the maximum intermediate

value, all values are less than AB [KKSS00, SS11].

5.1.2 Embedding PRNS in GF (2n) Montgomery Multiplication

A modification of the Montgomery algorithm for multiplication in GF (2n) that encom-

passes PRNS is proposed next. The proposed algorithm employs general polynomials of

any degree, and is an extension of an algorithm [BIJ05], which employs trinomials for the

PRNS modulus set. Additionally, the proposed algorithm addresses the problem of convert-

ing data to/from PRNS representation. In contrast to a similar algorithm in [SSS12], which

employed CRT for polynomials for the BC algorithm, the proposed architecture employs

MRC. This allows for dual-field RNS/PRNS implementation, which is not supported in

[SSS12], and a new methodology to implement RNS-to-binary conversion as will be shown

in the following subsections.

The proposed algorithm for GF (2n) PRNSMMM is presented below as Algorithm 5.2. The

corresponding algorithm for base conversion in GF (2n) is identical to Algorithm 5.1, de-

picted below as 5.3. The only difference is that integer additions/subtractions and multipli-

cations are replaced by polynomial ones. Again, the degree of input and output polynomials

are both less than n, which allows the construction of a modular exponentiation algorithm

by repetition of the PRNSMMM. Base conversion in step 7 is employed for the same reason.

For the proof of PRNSMMM algorithm’s validity see Section 4.3.

75



Novel versatile architectures

Algorithm 5.3 GF (2n) base conversion algorithm for PRNSMMM

Input: ζB =
(
ζB1

,ζB2
, · · · ,ζBL

)
,A,B

Output: ζA =
(
ζA1

,ζA2
, · · · ,ζAL

)

Precompute: 〈Wi (x)〉p j
, { ∀i , j ∈ [1,L] }

1 W1 ← 0
2 U1 ← ζB1

3 for all i = 2, . . . ,L do

4 Ui ← ζBi
+ζB1

5 for j = 1 to i −1 do

6 Ui ←
⟨
Ui +W jU j

⟩
qi

7 end for

8 end for

9 ζA1
← 0

10 for all i = 1, . . . ,L do

11 for j = 1 to L do

12 κi j = 〈W j A j 〉pi

13 ζAi
←

⟨
κi j +ζAi

⟩
pi

14 end for

15 end for

5.1.3 The Proposed Versatile Architectures

A careful examination of RNSMMM and PRNSMMM algorithms reveals potential for uni-

fication into a common DRAMMM algorithm and a common Dual-field Base Conversion

(DBC) algorithm. The unified algorithms are depicted below as Algorithms 5.4 and 5.5,

where ⊕ represents a dual-field addition/subtraction and ⊙ represents a dual-field multi-

plication.

Algorithm 5.4 The proposed DRAMMM algorithm

Input: aT ,bT ,
(
−N−1

)
B

,B−1
A

, NA, { a,b < 2N }
Output: cT , { c < 2N and c ≡ abB−1 mod N }

1 sT ← aT ⊙bT

2 tB ← sB⊙
(
−N−1

)
B

3 tA ← tB { base conversion step }
4 uA ← tA⊙NA

5 vA ← sA⊕uA

6 cA ← vA⊙B−1
A

7 cB ← cA { base conversion step}

An important aspect is that all operations within the DRAMMM and the DBC algorithms

are now decomposed into simple MAC operations of word-length equal to the modulus

word length r . This allows for a fully-parallel hardware implementation, employing parallel

MAC units, each dedicated to a modulus of the RNS/PRNS base.

Finally, the conditions from (4.16) and (4.17), for a valid RNS/PRNS transformation of the
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Algorithm 5.5 DBC algorithm

Input: ζB =
(
ζB1

,ζB2
, · · · ,ζBL

)
,A,B

Output: ζA =
(
ζA1

,ζA2
, · · · ,ζAL

)

1 W1 ← 0
2 U1 ← ζB1

3 for all i = 2, . . . ,L do

4 Ui ← ζBi
⊕ζB1

5 for j = 1 to i −1 do

6 Ui ←
⟨
Ui ⊕W j ⊙U j

⟩
qi

7 end for

8 end for

9 ζA1
← 0

10 for all i = 1, . . . ,L do

11 for j = 1 to L do

12 κi j = 〈W j ⊙U j 〉pi

13 ζAi
←

⟨
κi j ⊕ζAi

⟩
pi

14 end for

15 end for

Montgomery algorithm yield

deg{A} > n

deg{B} > n

A > 2N

B > 4N





, (5.2)

which means that one should select RNS/PRNS ranges of word length

δA > max
{⌈

log2N
⌉

,n
}

δB > max
{⌈

log4N
⌉

,n
} (5.3)

for the bases A and B, respectively. Algorithms 5.4 and 5.5 along with conditions (5.2)

and (5.3) form the complete framework for a dual-field residue arithmetic Montgomery

multiplication.

As described before, the structure of the proposed algorithm allows it to be reused in the

context of any exponentiation algorithm. A possible implementation is depicted in Algo-

rithm 5.6, requiring in total 2n + 2 DRAMMM multiplications [LN86, McE87]. Using Fer-

mat’s little theorem, field inversion can be realized by field exponentiation as described in

[HMV04], thus it can be efficiently mapped to the proposed architecture as well without

extra hardware.
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Algorithm 5.6 Proposed DRAMMM modular exponentiation
Input: zT ,e = (en−1 . . .e1e0)2

Output: bT , b ≡ 〈ze〉N

1 b ← 1
2 for i = n −1, . . . ,0 do

3 b ← DR AM M M(b,b)
4 if ei = 1 then

5 b ← DR AM M M(b, z)
6 end if

7 end for

8 return b

5.1.4 Input-Output (IO) Conversions

In the following discussion, base A= (p1, p2, . . . , pL) shall be used as an example to analyze

the conversions to/from residue representations, without loss of generality.

5.1.4.1 Binary-to-Residue conversion

A radix-2r representation of an integer z as an L-tuple
(
z(L−1), . . . , z(0)

)
satisfies

z =

L−1∑

i=0

z(i )2r i
=

(
2r (L−1), . . . ,2r ,1

)




z(L−1)

...

z(1)

z(0)




, (5.4)

where 0 6 z(i ) 6 2r −1. A method to compute zA must be devised, that matches the pro-

posed DRAMMM’s multiply-accumulate structure. By applying the modulo p j operation in

(5.4) we obtain

〈z〉p j
=

⟨
L−1∑

i=0

z(i )
⟨

2r i
⟩

p j

⟩

p j

,∀ j ∈ [1,L]. (5.5)

If constants
⟨

2r i
⟩

p j
are precomputed, this computation is well-suited to the proposed MAC

structure and can be computed in L steps, when executed by L units in parallel.

Similar to the integer case, a polynomial z(x) ∈GF (2n) can be written as

z =

L−1∑

i=0

z(i )xr i
=

(
xr (L−1), . . . , xr ,1

)




z(L−1)

...

z(1)

z(0)




. (5.6)

Applying the modulo p j operation in 5.6 it yields

〈z〉p j
=

⟨
L−1∑

i=0

z(i )
⟨

xr i
⟩

p j

⟩

p j

,∀ j ∈ [1,L] (5.7)
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which is a similar operation to 5.5, if
⟨

xr i
⟩

p j
are precomputed.

From 5.5 and 5.7, it is deduced that conversions in both fields can be unified into a common

conversion method, if dual-field circuitry is employed, as already mentioned for the case of

the DRAMMM and DBC. In the rest of this thesis, the radix vectors
(
2r (L−1), . . . ,2r ,1

)
and(

xr (L−1), . . . , xr ,1
)

of both fields shall be denoted as a common radix vector V , without loss

of generality.

5.1.4.2 Residue-to-Binary Conversion

As all operands in (2.32) are of word length r , they can be efficiently handled by an r -bit

MAC unit. However, (2.30) employs multiplications with large values, namely the Wi s.

To overcome this problem, (2.30) can be rewritten in matrix notation, as in (5.8), which

implies a fully parallel implementation of the conversion process. The inner products of

a row i are calculated in parallel in each MAC unit. Each MAC then propagates its result

to subsequent MAC, so that at the end the last MAC(L) outputs the radix-2r digit z(i ) of

the result. In parallel with this summation, inner products of the next row i + 1 can be

formulated, since the adder and multiplier of the proposed MAC architecture may operate

in parallel.

z =





U1 ⊙




0
...

0

0

1



⊕U2 ⊙




0
...

0

W (1)
2

W (0)
2



⊕U3 ⊙




0
...

W (2)
3

W (1)
3

W (0)
3



⊕·· ·⊕UL ⊙




W (L−1)
L

...

W (2)
L

W (1)
L

W (0)
L








⊙V

=




0 ⊕ 0 ⊕ 0 ⊕·· ·⊕UL ⊙W (L−1)
L

... ⊕
... ⊕

... ⊕
... ⊕

...

0 ⊕ 0 ⊕U3 ⊙W (2)
3 ⊕·· ·⊕ UL ⊙W (2)

L

0 ⊕U2 ⊙W (1)
2 ⊕U3 ⊙W (1)

3 ⊕·· ·⊕ UL ⊙W (1)
L

U1 ⊕U2 ⊙W (0)
2 ⊕U3 ⊙W (0)

3 ⊕·· ·⊕ UL ⊙W (0)
L



⊙V =




z(L−1)

...

z(2)

z(1)

z(0)



⊙V (5.8)

5.2 Versatile architectures - hardware design

5.2.1 Dual-Field Addition/Subtraction

A Dual-field Full Adder (DFA) cell is basically a Full Adder (FA) cell equipped with a field-

select signal ( f sel ), that controls the operation mode [STK00]. When f sel = 0, the carry

output is forced to 0 and the sum outputs the XOR operation of the inputs. As already

mentioned, this is equivalent to the addition operation in GF (2n). When f sel = 1, GF (p)

mode is selected and the cell operates as a normal FA cell. Obviously, dual-field adders

in various configurations (carry-propagate, carry-skip, etc) can be mechanized by utilizing
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DFA cells. In the proposed implementation, 3-level, CLA with 4-bit Carry Lookahead Gen-

erator (CLG) groups are employed [EL04]. An example of a 4-bit dual-field CLA adder is

shown in Figure 5.2. The GAP modules generate the signals pi = xi XOR yi , gi = xi AND yi ,

αi = xi OR yi , and AND gates along with a fsel signal control whether to eliminate carries or

not. The carry-lookahead generator is an AN D −OR network based on (5.9) [EL04].

ci+1 =
i

OR
j=0

(
i

AND
k= j+1

αk

)
g j OR

(
i

AND
k=0

αk

)
c0 (5.9)

Figure 5.1: Dual-field full-adder cell

Figure 5.2: Dual-field CLA

5.2.1.1 Dual-Field Modular/Normal Addition/Subtraction

With trivial modifications of algorithms in 2.1 and 2.2 for modular addition/subtraction in

GF (p) [DBS06, LN86], a Dual-field Modular Adder-Subtracter (DMAS) shown in Figure 5.3

can be mechanized using CLA adders. There, cr s represent the carry-out signals of each

adder at position r , while the boolean function add/sub · (c1 ∨ c2)∨ add/sub · c1 controls

80



Versatile architectures - hardware design

whether addition or subtraction is performed when in GF (p) mode. When f sel = 0, the cir-

cuit is in GF (2n) mode and the output is derived directly from the top adder which performs

a GF (2n) addition. When f sel = 1, the circuit may operate either as a normal (2r + log2 L)-

bit adder/subtracter (conv_mode=0) or as a modular adder/subtracter (conv_mode=1). In

the first case, the output is the concatenation of the outputs of the two adders. This is re-

quired during residue-to-binary conversion, since (5.8) dictates that L, (2r )-bit quantities

need to be added recursively via a normal adder.

Figure 5.3: Dual-field modular/normal adder/subtracter (DMAS)

5.2.2 Dual-Field Multiplication

A parallel tree multiplier, which is suitable for high-speed arithmetic and requires little

modification to support both fields, is considered in the proposed architecture. Regard-

ing input operands, either integers or polynomials, partial product generation is common

for both fields, i.e., an AN D operation among all operand bits. Consequently, the addition

tree that sums the partial products must support both formats. In GF (2n) mode, if DFA cells

are used, all carries are eliminated and only XOR operations are performed among partial

products. In GF (p) mode, the multiplier acts as a conventional tree multiplier. A 4× 4-

bit example of the proposed Dual-field modular Multiplier (DM) with output in carry-save

format is depicted in Figure 5.4.

5.2.3 Dual-Field Modular Reduction
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Figure 5.4: Dual-field multiplier (DM)

Figure 5.5: Dual-field modular

reduction unit (DMR)

A final modular reduction by each RNS/PRNS modu-

lus is required, for each multiplication outcome, within

each MAC unit. From several modular reduction strate-

gies [DBS06], a method based on careful modulus selec-

tion is utilized, since, not only it offers efficient imple-

mentations but also provides the best unification poten-

tial at a low area penalty.

Assume a 2r -bit product c that needs to be reduced

modulo an integer modulus pi . By selecting pi of the

form 2r −µi , where the h-bit µi ≪ 2r , the modular re-

duction process can be simplified as

〈c〉pi
=

⟨
E︷ ︸︸ ︷

r−1∑

i=0

ci 2i
+2r

F︷ ︸︸ ︷
r−1∑

i=0

cr+i 2i

⟩

pi

=

d︷ ︸︸ ︷⟨
E +2r F

⟩
pi

=

⟨
ξ︷ ︸︸ ︷

r−1∑

i=0

di 2i
+µi

h∑

i=0

dr+i 2i

⟩

pi

. (5.10)

From (5.10), it is apparent that

〈c〉pi
=

{∑r−1
i=0 ξi 2i ,ξ< 2r −µ∑r
i=0ξi 2i +µi ,2r −µ< ξ< 2r .

(5.11)

The same decomposition can be applied to polynomi-

als and consequently, if dual-field adders and dual-field

multipliers are employed, a Dual-field Modular Reduc-

tion (DMR) unit can be mechanized as shown in Figure

82



Versatile architectures - hardware design

Figure 5.6: Task distribution in the proposed DRAMMM

5.5. The word length h of µi can be limited to a maximum of 10 bits for a base with 66

elements [KKSS00].

5.2.4 MAC Unit

The circuit organization of the proposed MAC unit is shown in Figure 5.7. Its operation

is analyzed below in three steps, corresponding to the three phases of the calculations it

handles, i.e., binary-to-residue conversion, RNS/PRNS Montgomery multiplication, and

residue-to-binary conversion.

5.2.4.1 Binary-to-residue conversion

Initially, r -bit words of the input operands, as implied by (5.5), are cascaded to each MAC

unit and stored in RAM1 at the top of Figure 5.7. These words serve as the first input to the

multiplier, along with the quantities
⟨

2r i
⟩

pi ,qi
or

⟨
xr i

⟩
pi ,qi

, which are stored in a ROM. Their

multiplication produces the inner products of (5.5) or (5.7) which are added recursively in

the DMAS unit. The result is stored via the bus in RAM1. The process is repeated for the

second operand and the result is stored in RAM2, so that when the conversion is finished,

each MAC unit holds the residue digits of the two operands in the two RAM. The conversion

requires L steps to be executed.
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Table 5.1: Normalized area and delay of the proposed DRAMMM architecture

Module Area Critical path delay

DFA AF A + A AN D TF A +TAN D

DF-CLA1 3r ADF A 2log4 (r )TDF A

DMAS7 2ADF−C L A + (3r + log2 L)Amux(2−1)

2log4 (r + log2(L)+1)TDF A+

+Tmux(2−1)

DM8 (r −2)ADF A + r 2 A AN D +2ADF−C L A TDF−C L A + (logr )TDF A +TAN D

DMR
ADM

2+ ADM
3+ ADF−C L A

4+ ADF−C L A
5+

(logh +6log4 (h + r +1))TDF A

+ADF−C L A
6+ (h + r +1)AF F + r Amux(2−1)

MAC
ADM + ADM AS + ADMR+

TDM +TDMR

+2r Amux(2−1) + (2r )AF F

DRAMMM L AM AC TM AC

1 r -bit DF-CLA 2 (h × r )-bit 3 (h × (h +1))-bit 4 3-input (h + r +1)-bit DF-CLA
5 3-input r -bit DF-CLA 6 2-input r -bit DF-CLA 7 (r + logL)-bit adders
8 (r × r )-bit

5.2.4.2 Montgomery multiplication

The first step of the proposed DRAMMM is a modular multiplication of the residue digits

of the operands. Since these digits are immediately available by the two RAMs, a modu-

lar multiplication is executed and the result in R1 is stored in RAM1 for base B and RAM2

for base A. Step 2 of DRAMMM is a multiplication of the previous result with a constant

provided by the ROM. The results correspond to ζBi
inputs of the DBC algorithm and are

stored again in RAM1. All MAC units are updated through the bus with the corresponding

RNS digits of all other MACs and a DBC process is initiated.

To illustrate the DBC process, a task distribution graph is presented in Figure 5.6 for a

DRAMMM requiring L = 4 moduli. Two cases are represented; the first corresponds to a

fully parallel architecture with β= 4 units and the second shows how the tasks can be over-

lapped when only β = 2 MAC units are available. Each MAC unit has been assigned to a

different color, thus in the overlapped case the color codes signify when a MAC unit per-

forms operations for other units. In the example of Figure 5.6, MAC(1) handles MAC(4) and

MAC(2) handles MAC(3).

In each cycle, modular additions and multiplications are performed in parallel in each

MAC. To depict this, each cycle is split in two parts: the operations on the left correspond

to modular additions and on the right to modular multiplications. The results obtained by

84



Versatile architectures - hardware design

Figure 5.7: The proposed MAC unit

Figure 5.8: The proposed DRAMMM architecture

each operation are depicted in each cycle (they correspond to Alg.5.5), while idle states are

denoted by dashed lines. An analysis on the number of clock cycles required, and how MAC

units can be efficiently paired is presented in the next section.

The remaining multiplications, additions, and the final base conversion operation required

by the DRAMMM algorithm are computed in the same multiply-accumulate manner and

the final residue Montgomery product can be either driven to the I/O interface, or it can be

reused by the MAC units to convert the result to binary format.

5.2.4.3 Residue-to-binary conversion

Residue-to-binary conversion is essentially a repetition of the DBC algorithm, except for

steps 9-14, which are no longer modulo operations. Instead, (5.8) has been developed to

map efficiently the conversion process to the proposed architecture. An important ob-

servation is that, whenever the preceding operation of a residue-to-binary conversion is

a DRAMMM, which ends with a DBC execution, time savings are achieved since the upper

part of the DBC algorithm (steps 1-8) is common with the conversion. Thus, the intermedi-

ate results from steps 1-8 can be stored until DBC is finished and then reused to implement

(5.8).
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Figure 5.9: Normalized time complexity function f (r ,L)

To illustrate the conversion process assume the generation of the inner products in row 1 of

(5.8). Each product is calculated in parallel in each MAC unit and a “carry-propagation”

from MAC(1) to MAC(L) is performed to add all inner products. When summation fin-

ishes the first digit z(0) of the result is produced in MAC(L). In parallel with this “carry-

propagation”, the inner products of line 2 are calculated. As soon as a MAC unit completes

an addition of carry-propagated inner products for line 1, a new addition for line 2 is per-

formed. The process continues for all lines of (5.8) and the result is available after L steps.

The complete DRAMMM architecture is depicted in Figure 5.8.

5.3 Performance results

5.3.1 Area and Delay Estimations

Table 5.1 summarizes the area and delay complexity of the proposed architecture, in terms

of the parameters L,r ,h. In general, delay and area of a cell G shall be denoted with TG and

AG respectively.

Regarding the area of a r -bit, dual-field CLA adder, with 4-bit CLG modules and three CLG

levels it holds that [EL04]

ADF−C L A =
r −1

4−1

4−bi t C LG︷ ︸︸ ︷
(10AOR +20A AN D )+r AF A. (5.12)

Based on (5.12) it is easy to show that an r− bit CLA is approximately 3 times larger than an

r -bit DFA, which explains the factor 3 regarding the area of the dual-field CLA in Table 5.1

[EL04].
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Figure 5.10: Normalized area complexity function g (r ,L)

5.3.1.1 Number of clock cycles

Assume that β6 L parallel MAC units are utilized in a real implementation. To simplify the

discussion it is assumed that β is a multiple of L, i.e., L = kβ. This means that each one of

the first MAC(i ), i = 1,2, . . . ,β will provide results for k −1 more channels. By construction

of the MRC, the DBC process in Figure 5.6 requires 2L − 1 clock cycles in the full parallel

case. Each channel 1 6 i 6 β requires L cycles for multiplications and L + i −2 cycles for

additions, thus each channel has L −1 free slots for multiplications and L − i +1 free slots

for additions (idle states in Figure 5.6).

Let us assume for simplicity that k = 3. The free slots in each MAC(i ) will accommodate

operations from one MAC( j ), j = β+ 1, . . . ,2β and one MAC(l ), l = 2β+ 1, . . . ,3β. Since

each MAC( j ) requires L multiplications and L + j −2 additions and each MAC(l ) requires

L cycles for multiplications and L + l − 2 cycles for additions, then the cycles required to

accommodate the results are 2L+( j+l )−4. The free slots in each MAC(i ) are L−i+1 thus the

extra cycles to produce all results in each MAC(i ) are 2L+( j+l )−4−(L−i+1) = L+(i+ j+l )−5.

The problem transposes to finding the best combinations for (i , j , l ) so that the quantity

L+(i + j +l )−5 minimizes. The problem can be described in terms of the following pseudo-

code:

1 for all i = 1, . . . ,β do

2 for j =β+1, . . . ,2β do

3 αi j l ← L+ (i + j + l )−5 {∀l ∈ [2β+1,3β]}

4 end for

5 end for

6 find ν= max(αi j l ) common ∀i

7 for all i = 1, . . . ,β do

8 match i with j and l such that αi j l 6 ν

9 end for

The pseudo-code calculates all possible values of extra cycles for all combinations of (i , j , l )

and in step 6 we select ν as the maximum common value for all MAC(i ). For every dis-
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Figure 5.11: Area × time product function σ(r ,L)

Table 5.2: Parameters of the proposed DRAMMM stored in ROM

Operation
Parameters ROM

stored in ROM (bits)

Binary-to-residue
⟨

2r i
⟩

p j ,q j
,
⟨

xr i
⟩

p j ,q j
4L2r

DRAMMM −p−1
B ,Q−1

A , p A 6Lr

DBC 〈W j 〉pi ,qi
2L(L−1)r

Residue-to-binary Wi L(L−1)r

tinct combination (i , j , l ) that satisfies αi j l < ν we match the corresponding units until all

distinct pairs of units in positions ( j , l ) are assigned to a distinct unit in position i . The

remaining 6 steps of the DRAMMM require 6k cycles in total.

5.3.1.2 Memory Requirements

Table 5.2 summarizes the ROM requirements of the proposed DRAMMM architecture. As

far as RAM is concerned, the worst case occurs during DBC and input/output conversions.

This amounts to a (2L −1)r -bit RAM1/2 per MAC unit, thus in total a L(4L −2)r -bit RAM is

required by the proposed DRAMMM architecture.

5.3.2 Comparisons with RNS implementations

The proposed architecture introduces the concept of dual-field RNS Montgomery multi-

plication, which is not supported by existing RNS solutions [KKSS00, BI04, NMSK01, PP95,

Gui10, TjZbXHQj10, BDK98, GLP+12]. The architecture in [PP95] requires additional bits

in the mantissa of the arithmetic units employed, in order to accurately compute the final
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Table 5.3: Number of modular multiplications in the DRAMMM algorithm

Alg. DRAMMM Conversions

Alg. DBC Others Input Output

This work 2L(L+1)−4 5L L2 L(L−1)
2

[KKSS00, NMSK01] 2L(L+2) 5L L2 L(2L+1)

[BI04] 2L(L+
3
2 ) 5L N/A N/A

[Gui10] 2L(L+2) 5L L2 L(2L+1)

[GLP+12] 2L(L+
3
2 ) 2L L2 L(2L+1)

modular product. Although the authors in [PP95] do not provide accurate metrics of the

hardware complexity, the bit precision of the proposed MAC unit is equal to the modulus

word-length, implying a simpler VLSI structure and less hardware. In [BI04], no hardware

details are discussed, while the proposed algorithm is impractical in real cryptosystem im-

plementations. Data sent from one party to another are in RNS format which, as a concept,

poses limitations on the hardware architecture of the communicating parties.

Compared to the most efficient and practical RNS implementations in [KKSS00, NMSK01,

Gui10, GLP+12], the proposed architecture further reduces the number of modular mul-

tiplications for the base conversion and the RNS-to-binary conversion, as depicted in Ta-

ble 5.3. Other algorithms that employ MRC also perform worse. For example, the work

in [TjZbXHQj10] requires 2L2 +5L modular multiplications while the work in [BDK98] is a

predecessor of [BI04], which also performs worse, as shown in Table 5.3. This is also due

to the simplified version of MRC employed in this work that requires L−2 multiplication to

implement (2.32), while [BDK98] requires L L−1
2 multiplications for the same conversion to

implement (2.31) [BDK98, TjZbXHQj10].

5.3.3 Complexity comparisons with non-RNS implementations

None of the RNS implementations presented in [KKSS00, BI04, NMSK01, PP95, Gui10] pro-

vided comparisons with non-RNS solutions. In the following, a systematic, technology-

independent, complexity comparison between RNS and non-RNS architectures is attempt-

ed for the first time, plus a function-based approach for the calculation of the optimal val-

ues for the parameters L,r is developed. As common constants for all comparisons, the

TSMC 0.13µm library of standard cells in Table 5.7 is employed [SCWL08].

The references in Tables 5.4 and 5.5, refer to both scalable [SL10, TK03, HKA+05, STK00,

PH08, HGEG11] and non-scalable architectures [MMM04, SKS07, SCWL08]. Regarding the

scalable implementations which encompass multiple Processing Elements (PEs), if n-bit

input operands are employed, then ϵ= ⌈n/r ⌉ or ϵ= ⌈(n +1)/r ⌉ (if carry-save format is used

or not accordingly), θ is the number of PEs, and λ= ⌈n/θ⌉.
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Table 5.4: Normalized time and area complexity comparisons in GF (p)

Work Cycles
Critical Time

Area
Area

path delay complexity complexity

This work see section 5.3.1.1 TMAC f (r ,L)8 L AMAC g (r ,L)11

[MMM04]1 n +1
3TF A +2TXOR 4.11 not reported 22.68n

10

+TAN D

[MMM04]2 n +2
2TF A +Tmux(4−1) 3.76 not reported 27.12n

10

+2TXOR +TAN D

[SCWL08] n +4
2TF A +Tmux(2−1)

2.94

10n AF F +2n AF A+

12.66n
+TAN D

3n A AN D +n Amux(2−1)+

n Amux(3−1)

[SL10]3 λθ+ϵ+3
2TAN D +2TF A

2rθA AN D + (2rθ+1)AF A+
1.33+4.17r+

+Tmux(2−1)
3.39 +(r −1)AH A+

θ(3.6+5.98r )
[SL10]7 λ(ϵ+1)+θ+2 [(4r +4)θ+4r +1]AF F

[TK03]4 2λθ+ϵ−1
2TAN D +2TF A+ 2rθ(A AN D + AF A)+

θ(1.8+9.58r )
Tmux(2−1)

3.39
+θ(8r +2)AF F

[TK03]7 λ(ϵ+1)+

+2(θ−1)

[HKA+05]5 λ(θ+⌈θ/r ⌉)+

2TAN D +2TF A+ 2rθ(A AN D + AF A)+
θ(5.4+5.98r )

+ϵ−1

Tmux(2−1)
3.39

+θ(4r +6)AF F
[HKA+05]7 λ(ϵ+⌈θ/r ⌉+1)+

+θ−1

[STK00]4 2λθ+ϵ−1
3TAN D +2TF A 2rθ(2A AN D + AF A)+

θ(1.8+9.96r )
+Tmux(2−1)

3.84
+θ(8r +2)AF F

[STK00]7 λ(ϵ+1)+

+2(θ−1)

[SKS07]6 n +2
Tmux(4−1) +2TF A

2rθA AN D +6rθAF F +

9.96rθ
+Tmux(2−1) +2TAN D

4.04 +2rθ(AF A + Amux(4−1))+

[SKS07]7 nλ+2 +rθAmux(2−1)

[PH08]9 λ(θ+4 θ
r +1) 2TF A +Tmux(4−1) 2.49

2(r +1)θAF A + (6r −9)θAF F+
r (3.8θ+5.4)+

+θAmux(2−1) +θAXOR+
+0.38θ+9

+2(r +1)θAmux(4−1)

[HGEG11]12 n +ϵ−1
TAN D +4TF A+

2(rθ+θ−1)Amux(2−1) + rθAH A+
r (4.46θ−1.8)+

+Tmux(2−1)
4.49 +θ(2r +6)AF A + AXOR+

+9.66θ−7.33
[HGEG11]7 n +λ(ϵ−θ)+

+(3rθ−2r +θ+1)AF F
+ϵ−1

1 design with 5-to-2 CSA 2 design with 4-to-2 CSA 3 ϵ+16 θ 4 ϵ+16 2θ 5 ϵ+16 θ⌈θ/r ⌉ 6 n 6 θ, each PE is bit-sliced
7 otherwise 8 f (r ,L) = 6.27log2(r +8)+4.18log2(r )+5.97 9 fastest case for time complexity, area calculated by the authors
10 calculated by the authors in [SL10] 11 g (r ,L) = L(0.19r 2 +33.6r +13.1log2(L)+94.24), h = 7 12 ϵ6 θ
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Table 5.5: Normalized area-time complexity comparisons for
a 1024-bit GF (p) Montgomery multiplication (CPA delays
included)1

Parameters Delay Area area × time

This work β= 6,r = 64 2,440.8 18,278.1 4.46×107

[PH08] θ = 64,r = 16 2,659.8 4,010.92 1.07×107

[SCWL08] n = 1024 4,046.3 12,963.8 5.25×107

[HKA+05] θ = 64,r = 16 4,980.1 6,469.12 3.22×107

[SKS07] n = 1024 5,169 10,199 5.27×107

[MMM04] n = 1024 5,236.7 23,224.3 1.22×107

[HGEG11] θ = 65,r = 16 5,326.7 5,230.17 2.79×107

[SL10] θ = 257,r = 4 5,386.9 7,090.6 3.82×107

[TK03] θ = 40,r = 8 13,786.6 3,137.6 4.33×107

[STK00] θ = 7,r = 32 20,294.4 2,243.64 4.55×107

1 Only the fastest versions of other works are considered

Table 5.4 offers a detailed, technology-independent comparison with the most up-to-date

non-RNS solutions. The time complexity of the proposed architecture is a function f (r ,L),

calculated according to Table 5.1, while it is a constant for each of the other works. Selecting

r ∈ [16,512] and L ∈ [2,66], a plot for the time complexity f (r ,L) can be sketched, as shown

in Figure 5.9.

The normalized area of the proposed architecture is provided as a 2-variable function g (r ,L),

by selecting a typical value h = 7 for the word length of µi s. The other works provide func-

tions of r , θ, and n. A plot of g (r ,L) is depicted in Fig. 5.10. The area of the proposed ar-

chitecture, although larger, is of comparable magnitude as the other works. Unfortunately,

complexity comparisons are not offered for the RNS implementation in [Gui10]. Instead,

only metrics in terms of the number of Adaptive Logic Modules (ALM) of the Stratix II FPGA

are given. Altera does not provide the number of gates per ALM, thus a direct comparison

is infeasible.

To depict the trade-offs between RNS and non-RNS implementations, the area-time prod-

uct is given in Figure 5.11 as a function σ(r ,L) = f (r ,L)g (r ,L) for a 1024-bit implemen-

tation. Table 5.5 was created by assigning values to the parameters L,r ,θ,n in Table 5.4

used in other works to obtain numerical values for the number of cycles, normalized delay

and area. The normalized areas are calculated for the complete designs and total execu-

tion time is calculated by the product cycles × critical path, all under the common TMSC

0.13µm technology.

Based on the derived functions f (r ,L), g (r ,L),σ(r ,L), one can parametrize the proposed

RNS architecture for minimum delay, area, or area×time product, according to the require-

ments.
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Table 5.7: Normalized area and delay of standard cells

FF FA HA OR AND XOR
MUX MUX MUX

(2-1) (3-1) (4-1)

Delay − 1 0.45 0.45 0.45 0.33 0.49 0.61 0.65

Area 0.9 1 0.57 0.19 0.19 0.33 0.38 0.71 0.9

5.3.4 Area-time-power comparisons

To verify the complexity comparisons presented in the previous paragraphs, a prototype of

the proposed DRAMMM architecture was synthesized in Xilinx Virtex 4 (XC4VFX60) FPGA

device using VHDL. Post-layout results were obtained from the Xilinx 14.4 ISE tool [Xil12b]

and are presented in Table 5.6 for three combinations of β,r . Note that the last configu-

ration for β = 6,r = 64 would not fit in the FPGA device, so it was optimized for area and

power minimization, while the other two were optimized for timing performance using the

corresponding strategies of the Xilinx 14.4 ISE tool.

In cases where other works reported area in terms of CLB slices, the equivalent area in terms

of LUT was calculated according to the Xilinx FPGA datasheets [Xil12a]. Exponentiation ex-

ecution times were calculated assuming that a single exponentiation requires 2n+2 Mont-

gomery multiplications. Works in [LH08a, Gui10, TjZbXHQj10] provide results for preci-

sions up to 512-bit, thus direct comparisons are infeasible. The works in [BDK98, Gro01]

were also not included since no experimental results are presented. Finally, the work in

[GLP+12] was omitted since it offers speed and area results for the fully-parallel case of

β= L = 33, which is unfair to compare with the proposed configuration that employs time-

sharing among MAC units. Additionally, area results are offered in terms of µm2 which is

incompatible with the values offered by other works.

Finally, power consumption measurements were performed using the XPower Analyzer

functionality of Xilinx 14.4 ISE tool [Xil12b]. For the three configurations of the proposed

DRAMMM in Table 5.6 the corresponding consumptions are 1,656/588 mW (β = 22,r =

16), 1,265/598 mW (β = 11,r = 32) and 1,076/595 mW (β = 6,r = 64) respectively, where

the first value is the total consumption and the second is the leakage power. From the con-

sidered works only [HKA+05] reports that the complete unit draws 69/23 mW . In terms

of power/throughput efficiency (throughput is in terms of exponentiations/sec) the corre-

sponding values are 14.9 (β= 22,r = 16), 7.61 (β= 11,r = 32) and 4.75 (β= 6,r = 64) for the

proposed architecture and 1.14 for [HKA+05].

Table 5.6 verifies that the generic complexity comparisons presented in Table 5.4 can be a

useful tool for comparing architectures of different implementation platforms and underly-

ing arithmetic. The proposed architecture outperforms existing implementations in terms

of total execution time for a modular exponentiation, with an overhead in area.Both Table

5.5 and Table 5.6 are sorted from the fastest to the slowest design for easy comparisons. The

results of the complexity analysis are in accordance with the results obtained from synthe-
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sis, since five out of nine references appear in the same ranking ([NMSK01] can be ignored

since no complexity results are provided). Deviations exist mainly due to the fan-out fac-

tor, which is not included in the complexity analysis, plus due to the completely different

characteristics of each implementation platform, even between FPGA packages of the same

FPGA family [Xil12a].

5.4 Summary

The mathematical framework and a flexible, dual-field, residue arithmetic architecture for

Montgomery multiplication in GF (p) and GF (2n) is developed and the necessary condi-

tions for the system parameters (number of moduli channels, modulus word-length) are

derived. The proposed DRAMMM architecture supports all operations of Montgomery

multiplication in GF (p) and GF (2n), residue-to-binary and binary-to-residue conversions,

MRC for integers and polynomials, dual-field modular exponentiation and inversion, in the

same hardware. A generic, technology-independent methodology to evaluate the optimal

system parameters (number of moduli, modulus word-length) was also presented. Generic

complexity and real performance comparisons with state-of-the-art works prove the po-

tential of residue arithmetic exploitation in Montgomery multiplication.
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CHAPTER

6
Novel RNS algorithms for modular

multiplication

A new RNS modular multiplication algorithm based on Barrett’s technique is presented in

this chapter. The necessary conditions for the algorithm’s validity, as well as the condi-

tions to apply the algorithm in modular exponentiation are also derived. Algorithmic and

architectural comparisons with the state-of-the-art solutions for RNS Montgomery multi-

plication are also offered.
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6.1 New RNS modular multiplication algorithm based on

Barrett’s technique

6.1.1 Barrett Modular Multiplication

Barrett’s modular reduction method requires the pre-computation of one parameter µ =⌊
22n

N

⌋
which remains constant as long as the n-bit reduction modulus N does not change. In

this case, like in Montgomery’s algorithm, modular multiplication is realized by multiplying

the input operands and then reducing the result. Assuming two n-bit input operands x, y

and their product s = x · y , then Barrett Modular Multiplication (BMM) is realized as

w = s −
⌊⌊ s

2n

⌋ µ

2n

⌋
N , (6.1)

where w < 3N and w ≡ s mod N , so that the modulus N may be needed to be subtracted

once or twice to obtain the exact result [Bar87].

6.1.2 Proposed RNSBMM algorithm

The first step towards the proposed RNSBMM algorithm is to transform (6.1) to an RNS-

friendly form [SS13]. For this reason, (6.1) is rewritten in 6 steps, depicted below as Algo-

rithm 6.1.

Algorithm 6.1 The proposed RNSBMM algorithm

Input: x, y in A∪αr , x, y < 3N

Output: w ≡ x y mod N , w < 3N in A∪αr

Precompute: µ, N in A∪αr

1 s = x · y in A∪αr

2 t = SR(s) in A∪αr

3 u = t ·µ in A∪αr

4 v = SR(u) in A∪αr

5 p = v ·N in A∪αr

6 w = s −p in A∪αr

The proposed algorithm is executed in a base A along with an extra modulus channel cor-

responding to a redundant modulus αr for reasons to be explained later on. Steps 1, 3, 5,

and 6 of the proposed RNSBMM algorithm are normal subtractions and multiplications,

thus they can be executed in parallel in the RNS base A∪αr . Steps 2 and 4 include scaling

of RNS numbers by 2n and then rounding of the result based on the floor function. In the

context of RNSBMM an SR operation by 2n is defined, that is SR(x) =
⌊

x
2n

⌋
.

Observe that the upper bound for the inputs was modified from x, y < N to x, y < 3N so that

inputs and outputs are compatible with each other. This allows recursive use of the pro-

posed RNSBMM to construct modular exponentiation as well [Des09]. Due to this change,

there are two issues that need to be addressed. First, the conditions so that the result w
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remains bounded by w < 3N should be derived, and secondly, based on the previous re-

sult, the minimum range A for a valid RNS incorporation to the BMM algorithm should be

evaluated.

In the following, the word-length n∗ = n +ξ is used to denote that ξ more bits are assigned

to represent all internal calculations in the proposed RNSBMM and N is considered as an

n-bit modulus. The proposed technique attempts to evaluate the appropriate conditions

for n∗ so that for inputs x, y < 3N the output is upper-bounded by w < 3N .

Our proof is based on a fundamental inequality for the floor function, i.e., ⌊x⌋ = m if and

only if x−1 < m 6 x for m ∈Z and x ∈R. Let t =
⌊

(3N )2

2n∗

⌋
denote the maximum value for t for

inputs x = y = 3N (t corresponds to step 2 of the RNSBMM). For the quantities t ,µ it holds

that
(3N )2

2n∗ −1 < t 6
(3N )2

2n∗

22n∗

N
−1 < µ6

22n∗

N
.

(6.2)

By multiplying both terms in (6.2) we formulate u = tµ (step 3 of RNSBMM). It holds that

(
(3N )2

2n∗ −1

)(
22n∗

N
−1

)
< tµ6

(3N )2

2n∗

22n∗

N
⇒

(3N )2

2n∗

22n∗

N
−

(
(3N )2

2n∗ +
22n∗

N
−1

)
< u 6

(3N )2

2n∗

22n∗

N
⇒

9N −

ζ︷ ︸︸ ︷(
(3N )2

2n∗ +
22n∗

N
−1

)

2n∗ 6
u

2n∗ 6 9N ⇒

9N −ζ6
u

2n∗ 6 9N ⇒

9N −⌊ζ⌋ < v 6 9N ⇒

−9N 2
6−v N < ⌊ζ⌋N −9N 2

⇒

9N 2
−9N 2

6 s − v N < 9N 2
+⌊ζ⌋N −9N 2

⇒

06 w < ⌊ζ⌋N .

(6.3)

At this point it is proven that w is upper-bounded by w < ⌊ζ⌋N . It is required to evaluate

the conditions so that ⌊ζ⌋6 3, in order for the condition w < 3N to hold. Based on another

fundamental inequality for the floor function, i.e., ⌊x⌋ = m if and only if m 6 x < m +1 for

m ∈Z and x ∈R, it holds that

⌊ζ⌋6 3 ⇒ ζ< 4 ⇒
9N 2

22n∗ +
2n∗

N
−

1

2n∗ < 4 ⇒

9N 2
< 22n∗

(
4−

2n∗

N
+

1

2n∗

)
. (6.4)
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Taking the base-2 logarithms on both sides of (6.4) to obtain a relation for the word-length

of n∗ (assuming both sides of (6.4) are positive) we get

⌈log2 9+2n⌉ <

⌈
2n∗

+ log2

(
4−

2n∗

N
+

1

2n∗

)⌉
⇒

2n +4 < 2n∗
+

⌈
log2

(
4−

2n∗

N
+

1

2n∗

)⌉
⇒

2n +4 < 2n +2ξ+

C︷ ︸︸ ︷⌈
log2

(
4−

2n+ξ

N
+

1

2n+ξ

)⌉
⇒

ξ> 2−
C

2
.

(6.5)

We make an observation on the quantity C , that is max
{
2− C

2

}
= 1, thus ξ > 1. Since it is

required that n∗ > n, that is the available word-length for calculations is always larger than

the modulus word-length, then from (6.5) 2− C
2 > 0 should also hold. In that case we get

2−
C

2
> 0 ⇒C 6 4 ⇒

⌈
log2

(
4−

2n+ξ

N
+

1

2n+ξ

)⌉
6 4 ⇒

4−
2n+ξ

N
+

1

2n+ξ
6 16 ⇒ n +ξ> 0 and 0 < N 6 2n+ξ

(6.6)

which holds by definition for all n,ξ, N , assuming that the logarithmic function elimination

is greater than 0. Under this restriction we finally get

4−
2n+ξ

N
+

1

2n+ξ
> 1 ⇒

1

N
22n∗

−3 ·2n∗

−16 0
ρ=2n∗

⇒

ρ2
−3Nρ−N 6 0 ⇒ ρ > 0 and N >

ρ2

3ρ+1
.

(6.7)

Figure 6.1 depicts the solutions of the inequality in (6.7). Note that only positive values

are of interest. Under this restriction, which can be easily met for positive values of ρ, N ,

all previous inequalities hold and thus the proposed algorithm is valid. Conditions in (6.7)

provide also the desired word-length for ξ. Consider relaxing the expression for N in (6.7)

as

N >
ρ2

3ρ
⇒ N >

22n∗

3 ·2n∗ ⇒ N >
2n∗

3
, (6.8)

which simplifies to ξ6 2 after logarithmic elimination. In combination with the result from

(6.5) it is required that 1 < ξ6 2. Therefore by selecting an RNS base that handles operands
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Figure 6.1: Region plot for inequality (6.7)

of at most n∗ = n +ξ-bit long it is assured that (6.4) also holds and the result w will always

be upper-bounded by w < 3N for inputs x, y < 3N .

This proof is one of the main contributions of this work, since it is proved that the proposed

RNSBMM can be executed repeatedly in the context of any modular exponentiation algo-

rithm to achieve modular exponentiation in RNS. More importantly, the correction step

that subtracts once or twice the modulus N according to (6.1) can be executed after the ex-

ponentiation is completed. An example of an RNSBMM exponentiation algorithm is shown

below as Algorithm 6.2.

It remains to evaluate an appropriate range A so that all calculations within the RNSBMM

are valid. Assuming that each modulus is r -bit long, then for the base A it holds that

A > (3n∗)2
⇒

log2 A >

⌈
log2(9)+ log2 n∗2

⌉
⇒

r k > 2n∗
+4.

(6.9)

Equation (6.9) holds because the maximum internal value in the RNSBMM corresponds to

single multiplication step, since multiplications in steps 1, 3 and 5 are always followed by

scaling or subtraction operations, thus the intermediate results never exceed (3n∗)2. (6.9)

also provides the conditions for selecting an appropriate number of RNS moduli and their

word-length so that RNSBMM is valid. For example, for n∗ = 1026-bit calculations (N a
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1024-bit modulus) and assuming that each modulus channel handles r = 32−bit operands,

an RNS base with at least k = 65 moduli is sufficient so that (6.5), (6.6), (6.9) hold.

Similar to the state-of-the-art RNSMMM algorithms in [KKSS00, BDK01, GLP+12] where BC

operations define the total complexity of the algorithms, SR operations define the complex-

ity and critical path of the proposed RNSBMM as will be shown in the following sections.

Algorithm 6.2 Proposed RNSBMM modular exponentiation
Input: xA∪αr

,e = (en−1 . . .e1e0)2

Output: bA∪αr
, b ≡ 〈be〉N

Precompute: µ, N in A∪αr

1 b ← 1 in A∪αr

2 for i = n −1, . . . ,0 do

3 b ← RN SB M M(b,b)
4 if ei = 1 then

5 b ← RN SB M M(b, x)
6 end if

7 end for

8 return b

6.1.3 Scaling and rounding of an RNS number

The proposed SR technique is based on a scaling-by-2 algorithm developed in [MBS03]. We

assume the scaling of an integer x by a scaling constant f . The algorithm is based on the

following theorems:

Theorem 1: (Exact Division) 〈x/ f 〉A = 〈x f −1〉A ↔
(
〈x f −1〉α1 ,〈x f −1〉α2 , . . . ,〈x f −1〉αk

)
if, and

only if, f | x ↔ (x1, x2, . . . , xk ) without remainder and gcd( f ,αi ) = 1, ∀i ∈ [1,2, . . . ,k].

Proof. For proof see [ST67], p.38.

For RNS sets with odd moduli the division by two is substituted by a multiplication with the

multiplicative inverse of two using the following corollary:

Theorem 2: (Odd-Modulus Set Division Without Remainder) If f = 2 | x ↔ (x1, x2, . . . , xk ),

then 〈x/2〉A = 〈2−1x〉A ↔
(
〈2−1x〉α1 ,〈2−1x〉α2 , . . . ,〈2−1x〉αk

)
implements a scaling by two,

where 〈2−1〉αi
is the multiplicative inverse of two with respect to αi .

Proof. For proof see [MBS03].

Theorem 3: (Odd-Modulus Set Division With Remainder) If f = 2 ∤ x ↔ (x1, x2, . . . , xk ), then

〈2−1(x+1)〉A ↔
(
〈2−1(x +1)〉α1 ,〈2−1(x +1)〉α2 , . . . ,〈2−1(x +1)〉αk

)
implements a scaling by two.

Proof. For proof see [MBS03].

The theorems above imply that for an RNS system with odd moduli, a scaling-by-2 scheme

can be devised by first checking whether 2 divides x. If not, x is odd thus (x+1) is even so (x+

1) is selected to be multiplied with the multiplicative inverse of 2, i.e., 〈×2−1〉αi
,∀i ∈ [1,k].
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Figure 6.2: Scaling by two scheme [MBS03]

A suitable architecture for the scheme is shown in Fig.6.2. Note that, this scheme performs

the “round-to-nearest” method [EL04]. If a rounding to next smaller integer is required,

i.e., the floor function, the increment in Fig.6.2 should be replaced by a decrement, that is

〈−1〉αi
. This solves the problem of floor function evaluation in RNS, which is required by

the proposed RNSBMM.

However, in order to incorporate the scheme to the proposed RNSBMM, the technique

should be enhanced to perform scaling by higher powers of 2. In general, two approaches

are possible. Either the scheme in Fig.6.2 may be iteratively used n times, or a larger look-

up table may be used, in order to get the right offset O, so that 2n divides (x −O) (just like

2 divides (x −1) in the scaling-by-2 case with rounding-to-next-smaller). Since it is desir-

able to avoid iterations of the scheme in order to achieve a parallel architecture and since

look-up-tables can grow too large for higher powers of 2 (> 32), a technique for scaling by

2n based on [SK89] is developed in the following subsection.

6.1.3.1 Divisibility check of an RNS number by 2n

The proposed scaling-by-2n scheme is shown in Fig.6.3 and is an extension of the scheme

in Fig.6.2. The architecture checks whether 2n divides x and if not it calculates the correct

offset O. The value (x−O) is then multiplied by the multiplicative inverse of 2n to complete

the scaling. Apparently, the module that checks whether 2n divides x determines the critical

path of the architecture.

We make an observation on the offset O. From the fundamental equation for integer divi-
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Figure 6.3: The proposed SR scheme for RNSBMM

sion it holds that

y =

⌊ x

2n

⌋
=

x −〈x〉2n

2n
⇒ x −〈x〉2n = y ·2n (6.10)

or SR(x) = y . By taking both sides of (6.10) modulo αi ,∀i ∈ [1,k] we obtain that

〈y〉αi
=

⟨
〈xαi

−〈x〉2n 〉αi
· 〈2−n

〉αi

⟩
αi

⇒

yi =
⟨
〈xi −O〉αi

· 〈2−n
〉αi

⟩
αi

,∀i ∈ [1,k] (6.11)

which is the mathematical expression of the proposed scheme in Figure 6.3. The condition

for the existence of 〈2−n〉αi
is gcd(2n ,αi ) = 1,∀i ∈ [1,k]. (6.11) implies that the offset O that

needs to be subtracted from x is

O = 〈x〉2n (6.12)

or, in other words, the n LSB of x. Thus the problem of evaluating the offset O transposes

to the problem of finding the n LSB of x.

An algorithm developed in [SK89] may be employed at this point to evaluate the offset O.

The algorithm requires a redundant modulus αr > k so that the RNS base A is extended to
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Figure 6.4: The proposed offset evaluation block

A = (α1,α2, . . . ,αk ||αr ). This redundant channel will be available from now on throughout

the calculations of the RNSBMM. Let x be an integer with an RNS representation xA =

(x1, x2, . . . , xk ||xr ), where xr = 〈x〉αr . By reducing both sides of (2.29) mod αr we obtain

that

〈x〉αr =

⟨⟨
k∑

i=1

⟨
xi · A−1

i

⟩
αi

· Ai

⟩

αr

−〈γA〉αr

⟩

αr

⇒

〈γ〉αr =

⟨
⟨

A−1⟩
αr

(⟨
k∑

i=1

⟨
xi · A−1

i

⟩
αi

· Ai

⟩

αr

−〈x〉αr

)⟩

αr

=

⟨⟨
A−1⟩

αr

(
δ−〈x〉αr

)⟩
αr

,

(6.13)

where δ=

⟨∑k
i=1

⟨
xi · A−1

i

⟩
αi

· Ai

⟩
αr

. Since γ< k and αr > k it follows that γ= 〈γ〉αr [SK89].

All terms on the right hand side of (6.13) are known, thus the correction factor γ can be

substituted in (2.29) to obtain x and then use the result in (6.12) to calculate O. Let us

rewrite (6.12) as

O = 〈x〉2n =

⟨⟨
β︷ ︸︸ ︷

k∑

i=1

⟨
xi · A−1

i

⟩
αi

· Ai

⟩

2n

−〈γA〉2n

⟩

2n

=

=
⟨
β−〈γA〉2n

⟩
2n =

⟨
β−γ〈A〉2n

⟩
2n =

=

⟨
β−

γ︷ ︸︸ ︷⟨⟨
A−1⟩

αr
(δ−xr )

⟩
αr

〈A〉2n

⟩

2n

,

(6.14)

whereδ can be efficiently computed by choosingαr to be of the convenient form 2l±1, l < r .

A block diagram for the offset evaluation is shown in Figure 6.4.

After scaling of an RNS number it is required to update the redundant modulus channel in

order to make the result compatible with subsequent scalings. By reducing mod αr both

sides of (6.10) we obtain

〈y〉αr =
⟨

(x −〈x〉2n ) · 〈2−n
〉αr

⟩
αr

⇒

yr =
⟨
〈xr −O〉αr

· 〈2−n
〉αr

⟩
αr

, (6.15)

103



Novel RNS algorithms for modular multiplication

where xr and O have already been computed during the scaling phase and 〈2−n〉αr is a

constant which can be precomputed. Obviously, it should hold that gcd(2n ,αr ) = 1 to allow

the existence of 〈2−n〉αr .

6.1.4 Numerical examples

Let us demonstrate the validity of the proposed RNSBMM by two numerical examples for

a modular multiplication and a modular exponentiation respectively. Assume the 16-bit

modulus N = 65521, N < 216 a prime. We select x, y < 3N that is x = 3N − 65 = 196498,

y = 2N − 1 = 131005. By substituting the values for the constant µ we get µ =

⌊
232

65521

⌋
=

65551 and from (6.1) the result is w = 196498 ·131005−
⌊⌊

196498·131005
216

⌋
µ

216

⌋
65521 = 67926 <

3N . The exact result can be obtained by subtracting once the modulus N , i.e., w = 67926−

65521 = 2405.

For the proposed RNSBMM the modulus set A= (131,137,139,149,151||5) is chosen, where

the redundant modulus αr = 5 > k = 5 and gcd(216,5) = 1. It is easy to check that A =∏5
i=1αi = 56126747867 > [3(65521−1)]2 as dictated by (6.9). The inputs x, y and the con-

stants µ, N are computed in A∪αr as following:

• x = (129,40,91,116,47||3)

• y = (5,33,67,34,88||0)

• µ= (51,65,82,140,17||1)

• N = (21,35,52,110,138||1)

• Ai = A/αi = (428448457,409684291,403789553,376689583,371700317)

• A−1
i

= (120,130,16,1,2)

• 〈2−16〉A∪αr
= (91,74,83,31,76||1)

Executing Alg.6.1 with the previous values yields

1 s = (129,40,91,116,47||3) · (5,33,67,34,88||0) = (121,87,120,70,59||0)

2 t = (57,16,120,31,44||0) with β= 47963,γ= 3,δ= 1,O = 7370

3 u = (57,16,120,31,44||0) · (51,65,82,140,17||1) = (25,81,110,19,144||0)

4 v = (15,105,70,120,133||4) with β= 34278,γ= 3,δ= 1,O = 59221

5 p = (15,105,70,120,133||4) · (21,35,52,110,138||1) = (53,113,26,88,83||4)

6 w = (121,87,120,70,59||0)− (53,113,26,88,83||4) = (68,111,94,131,127||1)

By applying (2.29) on the result w it can be verified that w = 67926, which is the same result

obtained by the original BMM execution. Subtracting once the modulus and applying again

(2.29) we get w = (68,111,94,131,127||1)− (21,35,52,110,138||1) = (47,76,42,21,140||0) =

240510, which is the exact result.

Assuming an exponent e = 216 − 564 and applying Algorithm 6.2 for the same input x =

(129,40,91,116,47||3) the algorithm outputs b = (70,70,11,107,111||0) = 8980510. Subtract-
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ing once the modulus N = (21,35,52,110,138||1) we obtain b = (49,35,98,146,124||4) =

2428210 which is the exact result. All calculations were done with Mathematica [Wol13].

6.2 Complexity analysis - comparisons

6.2.1 Complexity Comparisons

Evaluations for the algorithmic complexity of the proposed RNSBMM is presented in this

section. The metric is the same followed by [KKSS00, BDK01, GLP+12], i.e., the number of

small r−bit modular multiplications required to perform one RNSBMM. In cases where

normal multiplications are required we consider the cost of a normal multiplication to

be a fraction of the cost of a modular multiplication. Assuming that the normalized cost

of a modular multiplication is CM M = 1, then the cost of a normal multiplication will be

CN M =
1
ϵ
CM M , where ϵ an arbitrary positive variable. We proceed by examining the pro-

posed RNSBMM step-by-step:

• Steps 1, 3, 5: these steps are performed completely in parallel in all moduli channels.

Each step requires k+1 parallel modular multiplications, thus in total 3k+3 modular

multiplications are required.

• Step 2: the complexity of the SR step corresponds to the complexity implied by Figure

6.3. There, k +1 parallel modular multiplications are required for multiplications by

〈2−n〉αi
in A∪αr . The complexity of the x mod 2n = 0 module corresponds to the

complexity of the offset evaluation block in Figure 6.4 (values β,γ,δ,O).

– β evaluation: this step requires k modular multiplications to evaluate the r−bit

partial products 〈xi · A−1
i
〉αi

and another k normal multiplications of these par-

tial products by 〈Ai 〉2n . By considering that 〈Ai 〉2n is n−bit long and assuming we

want to use only r−bit operators in each RNS channel, we can split an r ×n−bit

multiplication in k/2 r−bit multiplications according to the restriction in (6.9).

In total this amounts to k+k×(k/2) 1
ϵ
=

1
2ϵk2+k modular multiplications for this

step.

– γ evaluation: 1 small ( mod αr ) multiplication between the pre-computed value

〈A−1〉αr and (δ−xr ) is required.

– δ evaluation: the k partial products 〈xi · A−1
i
〉αi

have already been calculated

from β evaluation thus only k modular multiplications by the pre-computed

values 〈Ai 〉αr should be considered in this case.

– O evaluation: the complexity is the summation of complexity values for β,γ,δ,

plus k/2 normal multiplications for the product γ〈A〉2n , i.e., 1
2ϵk2 + (2+ 1

2ϵ )k +1

modular multiplications in total.

– SR evaluation: the complexity corresponds to the complexity for computing O,

plus k + 1 modular multiplications by 〈2−n〉A∪αr
, plus (k + 1) k

2
ϵ−1
ϵ

modular re-

105



Novel RNS algorithms for modular multiplication

ductions for the 〈−O〉αi
calculations, i.e., 1

2 k2 +
7
2 k +2 modular multiplications

in total.

Putting all the above together, the proposed algorithm requires

steps 1,3,5︷ ︸︸ ︷
(3k +3) +

steps 2,4︷ ︸︸ ︷
2

(
1

2
k2

+
7

2
k +2

)
= k2

+10k +7 (6.16)

modular multiplications in total.

Steps in
[KKSS00] [BDK01]

[GLP+12] applied [GLP+12] applied

RNSMMM in [KKSS00] [BDK01]

1, 3, 4 5k 5k 2k 2k

First BC k2 +2k k2 +k k2 +3k k2 +2k

Second BC k2 +2k k2 +2k k2 +k k2 +k

Total 2k2 +9k 2k2 +8k 2k2 +6k 2k2 +5k

Table 6.1: Number of modular multiplications in state-of-the-art RNSMMM

Tables 6.1 and 6.2 compare the proposed algorithm with the state-of-the-art RNSMMM al-

gorithms in [KKSS00, BDK01, GLP+12]. An important remark is that, all values for the pro-

posed RNSBMM correspond to the values calculated previously, but with k replaced by 2k.

The reason is that the works in [KKSS00, BDK01, GLP+12] present complexity results with

k corresponding to the number of moduli in one of the two bases required to implement

RNSMMM, since in these cases the BC operations are performed in only one of the two

bases (thus 2k moduli are required in these algorithms). Since the proposed RNSBMM uti-

lizes only one base and all operations are performed on all channels, k should be replaced

by 2k to achieve an accurate comparison.

From Tables 6.1 and 6.2 it is clear that the proposed RNSBMM requires twice the number of

modular multiplications per RNS modular multiplication compared to existing solutions.

Steps in RNSBMM This work

1, 3, 5 3(2k +1)

First SR 2k2 +7k +2

Second SR 2k2 +7k +2

Total 4k2 +20k +7

Table 6.2: Number of modular multiplications in the proposed RNSBMM
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Operation Base # multiplications # cycles

s = x y B k ϵ

ˆ̂s = x̂ ŷ A k
⌊

1
ϵ+M−1

⌋

q = s(−N−1B−1
i

) B k ϵ

ŵ = ŝB−1
A A j A k

⌊
1

ϵ+M−1

⌋

ŵi = Bi N B−1
A A−1

j
A k2

⌈
k
M

⌉
−1+ϵ

w = ŵ j A j B k2
⌈

k
M

⌉
−1+ϵ

Table 6.3: Number of multiplication steps per RNS modular multiplication in state-of-the-
art RNSMMM ([GLP+12] without BC correction)

Apparently, a more efficient SR technique that would be executed in one of two bases, as

in the case of the BC operation, would dramatically reduce the total complexity and this is

currently a focus of our research.

6.2.2 Architectural Study

6.2.2.1 Modular reduction by the RNS moduli

The modular reduction technique by each RNS modulus is the same used in [KKSS00, BDK01,

GLP+12], since not only it offers simple implementations but also allows for fair compar-

isons. Assuming moduli of the form αi = 2r − ci , where ci < 2h and h <
r−1

2 , the reduction

of an integer x < 22r requires two multiplications and three additions according to

y = x mod 2r
+ ((x << r ) mod 2r ) · ci + (x << 2r ) · c2

i , (6.17)

where << denotes a left-shift operation, x < 2r , z > 2r , and ci < 2h [GLP+12].

6.2.2.2 Conversions to/from RNS

To allow handling of large integers in each modulus channel, it is useful to employ high-

radix representations so that each high-radix digit can be assigned to an RNS channel. A

radix-2r representation of an integer x as a k-tuple
(
x(k−1), . . . , x(0)

)
satisfies

x =

k−1∑

i=0

x(i )2r i
=

(
2r (k−1), . . . ,2r ,1

)




x(k−1)

...

x(1)

x(0)




, (6.18)
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Operation Base # multiplications # cycles

s = x y A∪αr 2k +1 ϵ

t = SR(s) A∪αr 2k2 +7k +2
⌈

kϵ
2M

⌉
+4ϵ+1

u = tµ A∪αr 2k +1 ϵ

v = SR(u) A∪αr 2k2 +7k +2
⌈

kϵ
2M

⌉
+4ϵ+1

p = v N A∪αr 2k +1 ϵ

Table 6.4: Number of multiplication steps in the proposed RNSBMM

where 0 6 x(i ) 6 2r −1. By applying the modulo α j operation in (6.18) we can convert the

integer x to its associated RNS representation by

〈x〉α j
=

⟨
k−1∑

i=0

x(i )
⟨

2r i
⟩
α j

⟩

α j

,∀ j ∈ [1,k]. (6.19)

If constants
⟨

2r i
⟩
α j

are precomputed, this computation is a typical multiply-accumulate

operation and can be computed in k steps, when executed by k units in parallel.

As (2.29) is the basis of the proposed RNSBMM algorithm, it would be useful to employ it

also for the RNS-to-decimal conversion. Let us rewrite (2.29) as

x =

k∑

i=1

⟨
xi · A−1

i

⟩
αi

· Ai −γA =

=

(
2r (k−1), . . . ,2r ,1

) k∑

i=1




σi ·




Ai (k−1)
...

Ai (1)

Ai (0)



−γ




A(k−1)
...

A(1)

A(0)








,

(6.20)

where σi =
⟨

xi · A−1
i

⟩
αi

. As soon as γ has been evaluated using the methods of section

6.1.3.1, each row of (6.20) can be computed in parallel in each cell by means of multiply-

accumulate operations. In this case, carry should be propagated from cell 1 until cell k

[KKSS00].

6.2.2.3 Architectural comparisons

In [NMSK01] and [GLP+12], cell-based architectures for implementing the algorithms in

[KKSS00] and [BDK01, GLP+12] respectively were presented. Each cell corresponds to a

single RNS modulus and utilizes a multiply-accumulate unit followed by a modular reduc-

tion unit which performs reduction by the corresponding RNS modulus using (6.17). Ac-

tually, with slight modifications, the architecture in [GLP+12] supports both algorithms in
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[KKSS00, BDK01].

Figure 6.5: Multiply-accumulate cell

architecture [GLP+12]

The cell structure is shown in Figure 6.5 [GLP+12]; a

common bus that connects the cells and lines con-

necting one cell to a subsequent one are omitted,

for simplicity reasons. The multiply-accumulate

unit is depicted at the top of the cell and the mod-

ular reduction units at the bottom are a straightfor-

ward implementation of (6.17). Again, the prospec-

tive reader is instructed to refer to [GLP+12] for a

detailed architectural analysis of the state-of-the-

art RNS MM algorithms.

Most importantly, the proposed RNSBMM can also

be mapped to the latest architecture in [GLP+12],

since, as will be shown, the algorithms share many

common parts. For example, both the proposed

RNSBMM and the state-of-the-art RNSMMM have

pure parallel multiplication or addition (subtrac-

tion) steps (for example steps 1, 3, 4, 6 of RNSBMM

and steps 1, 2, 4, 5, 6 of RNSMMM in Algorithm 3.1

are identical operations).

What needs to be verified is that BC and SR opera-

tions can be mapped to the same cell architecture.

Consider for example the execution of an SR op-

eration in the cell architecture of Figure 6.5. Ini-

tially, each RNS digit xi along with the correspond-

ing constants A−1
i

and Ai stored in a ROM (not

shown) are recursively multiplied and reduced in

parallel in each cell, as dictated by the offset block

in Figure 6.4. Each result is added to a subsequent

one until β is derived serially in r−bit streams from the last cell unit in position k.

β is stored and another multiplication of the same inner products 〈xi · A−1
i
〉αi

computed

previously by 〈Ai 〉αr , also stored in ROM, is executed in each cell. The results are cascaded

through a bus and are added recursively modulo αr in the cell unit dedicated to the re-

dundant modulus to compute δ. In the same cell unit γ is calculated by means of a small

subtraction and multiplication modulo αr , as dictated by (6.13).

Finally, the corresponding high-radix digits of β,γ,δ, A are combined in each unit to pro-

duce the quantity O using the same multiply-accumulate manner. The remaining subtrac-

tions by O and multiplications by 〈2−n〉αi
in Figure 6.3 are carried out in parallel in each

cell.

Tables 6.3 and 6.4 compare the number of multiplication steps between the latest and most
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Algorithm BC # cycles Cycle delay MM delay
Expon. delay Area

(×2,050) (×33)

[KKSS00],[BDK01] [KKSS00] 88 93 8,184 8,184 99,873

[GLP+12] [KKSS00] 76 93 7,068 ∼= 7,068 99,873

[KKSS00, BI04] [BI04] 89 86.6 7,707 7,707 99,840

[GLP+12] [BDK01] 77 86.6 6,669 ∼= 6,669 99,840

This work N/A 134 86.6 11,604.4 11,604.4 199,680

Table 6.5: Area and delay comparisons with k = 33, r = 32, ϵ= 3, M = 1, h = 11

Gate Area (transistors) Delay (inverter)

Inverter 2 1

NAND 4 1.4

XOR 4 1.4

XNOR 12 3.2

NAND3 8 1.8

NAND4 10 2.2

REGISTER 15 4.8

Table 6.6: Basic logic library in CMOS technology (model from [Gaj97])

efficient architecture in [GLP+12] with the proposed RNSBMM. The metrics used are the

same used in [GLP+12], i.e., the number of pipeline stages ϵ per cell, the number M of par-

allel multipliers per cell, and the word-length h associated with each RNS modulus. Table

6.5 summarizes complexity comparisons based on the model in Table 6.6 [Gaj97]. The ta-

ble is provided in [GLMB11] which is a preliminary version of the work in [GLP+12]. It is

assumed that the proposed RNSBMM is executed in the same architecture as [GLP+12],

only it requires double number of cells since all computations are executed in one base of

2k elements. However, the total delay of the proposed RNSBMM is close to previous works,

although, as in the case of total complexity, a more efficient SR technique would reduce the

total delay of the proposed architecture as well.

6.3 Summary

A new algorithm for RNS modular multiplication based on Barrett’s technique was pre-

sented in this chapter. The algorithm’s validity was proven and the conditions to employ the

proposed algorithm in the context of modular exponentiation were derived. Conditions for

selecting the number and word-length of the RNS moduli were also provided. In the con-

text of the proposed algorithm, methods to evaluate floor function and scaling by 2n of an

RNS number directly in RNS format were proposed. The proposed architecture requires ap-

proximately twice the number of modular multiplications compared to the state-of the-art,
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however the total delay is still competitive. Apparently, a more efficient SR technique that

would be executed in one of two bases, as in the case of the BC operation, would dramat-

ically reduce the total complexity and this is currently a focus of our research. The idea of

merging both types of algorithms (RNSBMM and RNSMMM) into a common architecture

was also considered.
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CHAPTER

7
Cryptanalysis

This chapter examines the security potentials offered by the proposed versatile hardware

implementations. It attempts to prove that the use of a well-designed, residue-arithmetic,

Montgomery multiplier overcomes hardware-fault attack threats, with no need to alter the

basic RSA-CRT protocol while at the same time, the speed-gains offered by RSA-CRT are

maintained.



Cryptanalysis

7.1 Overview of side-channel attacks countermeasures

Let us briefly present some basic concepts of the RSA-CRT algorithm for easiness. In this

scheme, the digital signature operation S = M d mod N is split in two operations Sp = M dp

mod p and Sq = M dq mod q , where dp = d mod (p − 1) and dq = d mod (q − 1). CRT

ensures that the combination of these two values produces the signature S as

S = Sq +
[(

Sp −Sq

)
·
(
q−1 mod p

)
mod p

]
·q (7.1)

denoted from now on as S = C RT (Sp ,Sq ) [Knu97]. In this way, an approximate 4-time

speedup of operations is achieved [Lab11b, Lab11a].

Despite this significant performance improvement, RSA-CRT was proved to be extremely

vulnerable against hardware-fault attacks [ABF+02, Gir06, BDL01]. Assume an erroneous

output generated randomly during the execution of a cryptographic operation. Without

loss of generality, let the fault be in the modulus p channel, denoted as S̃p . This will produce

a faulty signature S̃ = C RT
(
S̃p ,Sq

)
. An adversary can then factorize the public modulus n

by computing its prime factor q as q = gcd
{(

S̃e −m
)

mod n,n
}

and consequently obtain

p = n/q .

In [Sha99], Shamir modified the basic RSA-CRT algorithm in (7.1) by introducing a ran-

dom prime r so that Spr = md mod (p−1)(r−1) mod pr and Sqr = md mod (q−1)(r−1) mod qr .

The method checks whether Spr ≡ Sqr mod r holds before combining them with CRT. If

Spr ≡ Sqr mod r the computation is error-free, but the step of CRT combination is left un-

protected. Moreover, Shamir’s method requires the knowledge of the straightforward RSA

private key d in an RSA-CRT context, which is unpractical since the key material is given in

CRT format [Vig08].

The work in [ABF+02] exploited this weakness and broke Shamir’s countermeasure. The

authors proposed an improved implementation that included the protection of the CRT

re-combination step. But random number generation is a problem in this scheme, since

generating random numbers for each signature operation results in large time overhead.

In [Vig08], the authors proposed a method based on modulus expansion. It computes md

mod n in ZN r 2 , where r is a small random integer co-prime with n. The message m is trans-

formed to m̂ such that m̂ = m mod n and m̂ = 1+ r mod r 2. Then, S and Ŝ are computed

as S = md mod n and Ŝ = m̂d mod nr 2. If Ŝ ≡ S mod n then the protocol is error-free.

However, the method did not improve much the performance overhead [MLW12].

The work in [Gir06] exploited the Montgomery Ladder Exponentiation (MLE) algorithm as a

countermeasure scheme. Unlike the square-and-multiply algorithm which performs on av-

erage 1.5 modular multiplications per bit of the exponent, the MLE algorithm performs two

modular multiplications for each bit of exponent, and thereby increases execution time.

The authors in [YJ00] provided an ingenious fault-attack based on the safe-error concept.

They observed that during a modular exponentiation using typical Square and Multiply

algorithms, if the exponent bit is 0 then the result of a modular multiplication is not used.

By inducing an error during multiplication and by testing whether the result is correct or
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not the attacker can deduce the bit of the secret exponent. However, a countermeasure was

provided in [JY02] using MLE.

In [YKLM03, BOS03] a class of countermeasures based on “fault-infective” techniques are

introduced. They are based on the idea of modifying the RSA-CRT computations in such

a way that a faulty signature in one channel will infect the final signature after the CRT

recombination. Unfortunately, like in [Sha99], not only the knowledge of d is required, but

also the techniques rely on some very strong assumptions. For example, some parameters

t1, t2 introduced in [BOS03] require that gcd(t1, t2) = gcd(d ,φ(t1)) = gcd(d ,φ(t2)) = 1, where

φ is the Euler’s totient function. t1, t2 should normally be generated once along with the RSA

key and the same values should be used throughout the lifetime of the key. However, these

values cannot be stored in such a personalized context, meaning that the generation of t1, t2

for each signature is not a negligible computational task.

7.2 Fault handling in RNS-based multipliers

The majority of the aforementioned countermeasures are based on modifications in the

RSA-CRT protocol, which amount to extra operations and increased algorithmic complex-

ity for the RSA-CRT execution. These solutions rely on the 2-modulus splitting of RSA calcu-

lations using a naive RNS consisting of just the moduli p and q . In the following, we deviate

from 2-modulus splitting, and the multi-modulus RNS Montgomery multipliers presented

in the previous chapters are examined from a hardware-fault tolerance point of view.

7.2.1 Hardware-fault tolerance in MRC-based RNS Montgomery

multipliers

To simplify our discussion, the RNSMMM algorithm along with the MRC-based BC are pre-

sented for reference as Algorithm 7.1 and 7.2 respectively (see Section 4.1 and 4.2).

Algorithm 7.1 RNS Montgomery Modular Multiplication (RNSMMM)

Input: aT ,bT { a,b < 2N }
Output: cT , { c < 2N and c ≡ abQ−1 mod N }
Precompute:

(
−N−1

)
B

,Q−1
A

, NA

1 sT ← aT ·bT

2 tB ← sB ·
(
−N−1

)
B

3 tA ← tB { base conversion step }
4 uA ← tA ·NA

5 vA ← sA+uA

6 cA ← vA ·Q−1
A

7 cB ← cA { base conversion step}

It is apparent that steps 1,2,4,5,6 in Algorithm 7.1 are performed in parallel in each modulus

channel. Clearly, if the algorithm was completely parallel, an error in modulus channel i

would not influence the rest channels and thus the Greatest Common Divisor (GCD) attack
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Algorithm 7.2 MRC-based base conversion (see section 4.2)
Input: xB = (x1, x2, . . . , xL)
Output: xA = (x ′

1, x ′
2, . . . , x ′

L)
1 U1 ← x1

2 for all i = 2, . . . ,L do

3 Ui ← xi

4 for j = 1 to i −1 do

5 Ui ←

⟨(
Ui −U j

)
q−1

j ,i

⟩
qi

6 end for

7 end for

8 for all i = 1, . . . ,L do

9 x ′
i
←〈UL〉pi

10 for j = L−1 to 1 do

11 x ′
i
←

⟨
x ′

i
q j +U j

⟩
pi

12 end for

13 end for

would hold. We prove that the base conversion provides the desired mechanism for fault

tolerance.

Assume a permanent error t̃i in modulus channel 16 i 6 L. Note that, since step 2 of Algo-

rithm 7.1 uses the result of step 1, the faulty result will always amount to t̃i . By observation,

employing t̃i in the base conversion of step 3 yields

t̃i ←

⟨(
t̃i − t j

)
q−1

j ,i

⟩
qi

, i ∈ [2,L],∀ j ∈ [1, i −1]. (7.2)

(7.2) corresponds to the steps 1-7 of Algorithm 7.2 and implies that an error occurred in

position i , will always cascade to next channels and produce a faulty t̃L even if the error

occurs at the very last step of calculations in channel L. This value is used in step 9 to

continue the base conversion process. An important observation is that at this step, the

faulty t̃L is injected to all channels according to

t̃ ′i ←
⟨

t̃L

⟩
pi

,∀i ∈ [1,L] (7.3)

and similarly the faulty t̃ ′
i
s produce

t̃ ′i ←
⟨

t̃ ′i ·q j + t̃ j

⟩
pi

,∀i ∈ [1,L],∀ j ∈ [1,L−1]. (7.4)

As a result, a faulty t̃A is generated at step 3 of Algorithm 7.2 and injected in step 4 for sub-

sequent calculations. Note that due to (7.3), it is assured that all channels after the first base

conversion will be infected. Using a similar analysis, it is easy to show that even if the error

occurs after the first base conversion, the second base conversion at step 7 of Algorithm 7.1

will infect all channels in the same manner, thus making the GCD attack infeasible.

A special case is when the error is not permanent and is inserted in a channel i , i ∈ [1,L]

during the base conversion. If the error is generated during steps 1-7 of Algorithm 7.2, step
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9 will inject the error to all other channels, according to (7.3). The case that an error is

inserted in channel i , i ∈ [1,L] during step 11 of Algorithm 7.2 should also be examined.

Although step 11 is executed in parallel for all channels, each channel calculation reuses

the results from all other channels. This is also apparent from the recursive form of (7.3).

Due to this, all channels are affected making GCD attack infeasible. A similar analysis may

be conducted for the MRC-based BC in section 5.1.

7.2.2 Hardware-fault tolerance in CRT-based RNS Montgomery

multipliers

In [KKSS00], the first practical and efficient implementation of RNS Montgomery multi-

plier based on CRT was presented. The CRT-based algorithm for RNSMMM is identical to

Algorithm 7.1, thus only the BC is presented below as Algorithm 7.3.

Algorithm 7.3 Base Conversion (BC) algorithm by Kawamura et al. [KKSS00]

Input: ζB = (ζ1,ζ2, . . . ,ζL) , A,B ,α
Output: ζA =

(
ζ′1,ζ′2, . . . ,ζ′L

)

Precompute:
(
B−1

i

)
qi

, (Bi )A (∀i = 1. . .L),(−B)A
1 σ0 =α

2 for all i = 1. . .L do

3 ξi =
⟨
ζi ·B−1

i

⟩
qi

4 δi ,0 = 0
5 end for

6 for all i = 1. . .L do

7 for j = 1. . .L do

8 σ j =σ( j−1) + trunc(ξ j )/2r

9 γ∗
j
= ⌊σ j ⌋, {γ∗

j
= {0,1}}

10 σ j =σ j −γ∗
j

11 δi , j = δi ,( j−1) +ξ j ·
⟨

B j

⟩
pi
+γ∗

j
· 〈−B〉pi

12 end for

13 end for

14 for all i = 1. . .L do

15 ζ′
i
=

⟨
δi ,L

⟩
pi

16 end for

Clearly, steps 1-5 and 14-16 in Algorithm 7.3 involve completely parallel operations in all

channels, so fault-tolerance should be examined for the steps 6-13. In the case of a perma-

nent error, a faulty γ̃∗
j
, j ∈ [1,L] is generated in steps 8-9 which consequently produces

δ̃i , j = δi ,( j−1) +ξ j ·
⟨

B j

⟩
pi
+ γ̃∗

j · 〈(−B)〉pi
,∀i , j ∈ [1,L]. (7.5)

This means that all channels are affected by the error, thus the parallel operation of steps

14-16 is also affected.

In the case of an error induced in a timing manner, issues are raised. It is apparent that, if

an adversary is able to insert an error during the steps 14-16, only one (or several) channels
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can be affected, which makes the GCD attack easily mountable. To overcome this issue, an

extra checking procedure is inserted in steps 14-16 of Algorithm 7.3 based on the following

pseudo code:

1 for all i = 1, . . . ,L do

2 if δi ,L == δi ,L of step 11 then

3 ζ′
i
=

⟨
δi ,L

⟩
pi

4 else

5 error detected
6 end if

7 end for

The solution checks whether the quantities δi ,L are identical to the values obtained in the

previous step 11 and if not, a malicious error has been detected. The solution requires the

storage of the L values of step 11 and a comparison with the δi ,Ls employed in step 15. Note

that this solution does not issue significant overhead since the checking procedure can be

executed only once at the end of an RSA exponentiation.

7.2.3 Remarks on Performance

Presenting performance metrics of RNS Montgomery multipliers is out of scope of this

chapter. We have already presented comparative studies in chapters 4, 5 and in [SS14],

while trade-offs between state-of-the art RNS solutions appear in [GLP+12].

There is, however, an important derivative of the presented hardware-fault analysis on RNS

Montgomery multipliers. As described in Section 7.1, current countermeasures appearing

in the literature provide immunity at the cost of extra operations or checking procedures

in the RSA-CRT protocol itself, thus the 4-time speedup offered by the use of RSA-CRT is

somehow sacrificed to achieve tolerance against hardware-fault attacks.

The presented analysis shows that if RNS Montgomery multipliers are employed, instead of

typical non-RNS ones in crypto-hardware design, security is offered for free, with no need

for extra checking procedures or modifications to the RSA-CRT protocol as in [Sha99, Vig08,

ABF+02, MLW12, Gir06, YJ00, YKLM03, BOS03]. At the same time, since immunity comes

for free, the 4-time speedups between RSA and RSA-CRT are maintained.

7.3 Summary

The cryptanalytic properties of RNS-based Montgomery multipliers against hard-ware fault

attacks for RSA-CRT were analyzed. It was proved that, in contrast to previous solutions

based on modifications to the basic RSA-CRT protocol, the use of MRC-based RNS Mont-

gomery multipliers [SS14], is sufficient to provide security against such attacks with no

need for modifications in protocol level. Weaknesses of CRT-based multipliers were also

identified and countermeasures were proposed. The contribution of the base-conversion
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process as the inherent mechanism of RNS-based Montgomery multipliers responsible for

hardware-fault immunity was proved.
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Conclusions and Outlook

Being exposed in an unprecedented number of threats and frauds, safe connectivity for all

network-based systems has become a predicate necessity. Cryptographic hardware plays

a dominant role in the implementation of systems that could offer the desired levels of

security. The prospective crypto-hardware designer should not only care for performance

but also resistance against attacks. Under this perspective, cryptographic hardware design

poses extra difficulties and challenges considering especially the fact that, as years pass by,

the security standards need to be constantly strengthened.

This doctoral thesis attempted to approach the problem of cryptographic hardware de-

sign in a holistic manner, covering the aspects of new algorithms proposal, algorithmic

analysis, mathematical validation, crypto-hardware design, and security validation of the

proposed architectures. The proposed algorithms and architectures made use of the non-

conventional representation of RNS and PRNS.

Initially, the first practical implementation of an elliptic curve processor using the RNS rep-

resentation was presented. We approached the problem by evaluating an appropriate range

for the calculations, and new task execution graphs for point doubling and point addition

were proposed. The tasks were optimized to be resistant against power and timing attacks.

The idea was further enhanced and more efficient designs based on pipelined RNS struc-

tures and moduli of special form were also proposed.

Next, an important class of algorithms that formed the basis of the proposed versatile ar-

chitectures was presented, namely the RNSMMM and PRNSMMM algorithms. The most

important features and characteristics of these algorithms were thoroughly analyzed. New,

improved versions for both algorithms were proposed, while algorithmic and architectural

analysis proved the superiority of the proposed solutions compared to existing ones.

The design methodology for incorporating RNS and PRNS in MMM in GF (p) or GF (2n) re-

spectively was subsequently presented. An analysis of input/output conversions to/from

residue representation, along with the proposed residue Montgomery multiplication algo-

rithm, revealed common multiply-accumulate data paths both between the converters and

between the two residue representations. A novel versatile architecture was derived that

supports all operations of MM in GF (p) and GF (2n), input/output conversions, MRC for

integers and polynomials, dual-field modular exponentiation and inversion in the same

hardware. Detailed comparisons with state-of-the-art implementations proved the poten-

tial of residue arithmetic exploitation in dual-field modular multiplication.

Furthermore, one of the fundamental problems in VLSI design was considered, that is the

problem of evaluating and comparing architectures using models independent from the

underlying fabrication technology. Generic, function-based methods to evaluate the opti-

mal operation parameters of the proposed architectures as well as methodologies to opti-

mize the proposed architectures in terms of speed, area, or area × speed based on the needs

of the underlying application were proposed.

An important security property of the proposed residue arithmetic architectures was also

revealed. It was proved that the use of a well-designed, residue-arithmetic, Montgomery
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multiplier overcomes hardware-fault attack threats, with no need to alter the basic RSA-

CRT protocol while at the same time, the speed-gains offered by RSA-CRT are maintained.

Finally, novel algorithms based on new mathematical and design problems for the crucial

operation of modular multiplication using Barrett’s technique were presented. The algo-

rithms preserve the versatile characteristics discussed previously and it was proved that,

along with existing algorithms in the literature, a large family of algorithms applicable in

cryptography may be formed, unified under the common frame of the proposed versatile

architectures.

Several directions towards future research are still left open. The proposed function-based

methodologies for generic comparisons could be enhanced to include more design param-

eters, like the fan-out factor of logic gates, thus more detailed and accurate models could

be derived. Equivalent models could also be devised to analyze and compare power con-

sumption, in the same sense that area, speed and area × speed product were compared in

this thesis.

Hardware evaluation of the new RNSBMM algorithm should also be considered either by

employing the proposed multiply-accumulate architectures, or RNS-specific architectures

using special moduli sets like the ones proposed in Chapter 3. Optimization potentials for

the SR operations employed in RNSBMM should also be investigated.

Moduli of special form, like the ones employed in Chapter 3, should be evaluated in the

context of the proposed MAC architecture for RNSMMM and PRNSMMM. The possibility

of replacing the proposed arithmetic circuits with more specific ones in order to further

simplify and optimize the proposed architectures should be considered.

New parallelization prospects offered by state-of-the-art multi-processor systems could

also be investigated. A possible scenario could be that parallel processors perform par-

allel multiplications on different data-sets of a single message. In such cases, the existence

of equivalencies between a serial and a parallel algorithm, if any, should be mathematically

proven. Also, in case parallelization is possible, any required algorithmic overhead should

be carefully determined and assessed for performance impact. There are various design is-

sues when it comes to multi-processor system design. A careful examination of the impact

of interconnections, system I/O delays, etc., on the system’s performance and area should

be carried out. It should be also considered that these systems require full availability of all

input data beforehand, which does not allow for real-time encryption/signing.

Finally, the cryptanalytic properties of RNS-based architectures can also be further extended,

to include attacks other than hardware-fault related. The role of BC and SR operations

should be meticulously analyzed to reveal new possibilities for cryptanalytic resistance. An

interesting derivative of this thesis is the security potential offered by the proposed versa-

tile architectures, by means of changing seamlessly the underlying cryptographic proto-

cols during an established communication channel. Investigating the applicability of RNS

to other PKC systems, like for example the emerging lattice-based cryptography [GGH97,

Reg06], could also generate new and interesting cryptanalytic properties, architectures and

algorithms.
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Conclusions and Outlook

In general, current solutions employing conventional binary arithmetic for modular mul-

tiplication, are based on Montgomery’s algorithm (systolic, semi-systolic, etc). These ar-

chitectures have been extensively analyzed and the optimizations proposed are so fine-

grained, that the research space on the field steadily narrows. On the other hand, this doc-

toral thesis provided solid indications that non-conventional arithmetic like RNS and PRNS

may provide new means for tackling design problems of crypto-hardware and further ex-

tend the research space in this active field.
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