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ABSTRACT: The properties of synthetic peptides, including
potency, stability, and bioavailability, are strongly influ-
enced by modification of the peptide chain termini. Unfortu-
nately, generally applicable methods for selective and mild
C-terminal peptide functionalization are lacking. In this work, we
explored the peptide amidase from Stenotrophomonas malto-
philia as a versatile catalyst for diverse carboxy-terminal peptide
modification reactions. Because the scope of application of the
enzyme is hampered by its mediocre stability, we used compu-
tational protein engineering supported by energy calculations
and molecular dynamics simulations to discover a number of sta-
bilizing mutations. Twelve mutations were combined to yield a
highly thermostable (ΔTm = 23 °C) and solvent-compatible
enzyme. Protein crystallography and molecular dynamics simulations revealed the biophysical effects of mutations contributing to
the enhanced robustness. The resulting enzyme catalyzed the selective C-terminal modification of synthetic peptides with small
nucleophiles such as ammonia, methylamine, and hydroxylamine in various organic (co)solvents. The use of a nonaqueous environ-
ment allowed modification of peptide free acids with >85% product yield under thermodynamic control. On the basis of the crystal
structure, further mutagenesis gave a biocatalyst that favors introduction of larger functional groups. Thus, the use of computational
and rational protein design provided a tool for diverse enzymatic peptide modification.

KEYWORDS: computational protein engineering, peptide modification, enzymatic catalysis, protein stability, MD simulation

■ INTRODUCTION

The discovery of novel bioactive peptides and the growing
insight into their mode of action have strongly increased the
level of interest in the development of peptide-based drugs in
the past decade.1 Currently, more than 60 approved peptide
drugs are on the market, and intensive biomedical research of
peptides will provide an effective pipeline for innovative
therapeutic applications in the near future.2 Other important
applications of peptides are in medical diagnostics, nutritional
supplements, and cosmetics.3 The bioactivity and pharmacoki-
netics of peptides can be controlled by peptide engineering, e.g.,
by modification of the chain termini.4 C-Terminal function-
alization of peptides has significant effects on their biological

properties.5 The ability to selectively introduce functional
groups, such as a fluorescent reporter or a synthetic polymer,
onto a peptide under mild conditions would allow a broad array
of peptide biophysical studies and applications.6 Furthermore,
efficient C-terminal protection, deprotection, and activation
methods are crucial in chemoenzymatic peptide synthesis, partic-
ularly in cost-efficient N → C peptide elongation.7 Therefore,
methods for selective peptide carboxyl modification are of para-
mount importance.8
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As compared to chemical reactions, enzymatic methods for
peptide modification may offer clear advantages, such as the use
of mild conditions and high selectivity that obviates protection
steps and prevents racemization.9 Prominent enzymatic C-terminal
functionalization methods involve catalysis by proteases. For
instance, the industrial protease Alcalase has been used for
C-terminal amide−ester interconversion10 and arylamidation.11

However, these proteases are not C-terminally selective, which
often leads to undesired internal peptide bond cleavage. Thus,
alternative enzymes that present a relaxed substrate specificity
and a strict C-terminal regioselectivity are highly desirable.
In search of such a broadly applicable biocatalyst for C-terminal

peptide modification, we examined peptide amidase (PAM)
from Stenotrophomonas maltophilia. PAM is a serine hydrolase
that cleaves the C-terminal amide bond of peptide amides.12

The catalytic center of PAM is buried (Figure 1) and governs

specificity by binding a peptide substrate in such way that only
the C-terminal amide contacts the catalytic center, which is formed
by a Ser-Ser-Lys triad.13 Consequently, the enzyme exhibits
an absolute C-terminal regioselectivity, discriminating among
terminal, internal, and side chain amide bonds. The side chain
amides of Asp and Gln are not processed by PAM.14 The
C-terminal residues of the substrate interact with the enzyme
mainly through van der Waals interactions (Figure 1), making
the substrate spectrum of PAM rather broad.12 These structural
features suggest that PAM could be an effective peptide
modification biocatalyst. The catalytic mechanism involves forma-
tion of a covalent acyl (peptidyl)−enzyme intermediate,13 and we
anticipated that it would allow alternative reactions if water can
be replaced by other nucleophiles in the hydrolytic half-reaction
or if the reaction is reversed, which might be facilitated by
performing conversions under anhydrous conditions. The use
of PAM for one-step peptide C-terminal amide−ester inter-
conversion has been reported.15 However, the expansion of
PAM-catalyzed reactions to broader peptide functionalization
was restricted, because PAM has modest stability and low resis-
tance to organic solvents while many modification reactions,
e.g., functionalization of bioavailable peptide free acids, require
a nonaqueous environment.
To overcome this severe limitation and to exploit the poten-

tial of PAM for alternative transformations, we embarked on
the engineering of PAM into a robust biocatalyst for the selective
modification of peptide C-termini with a wide substrate scope,
with respect to both the peptide and the group to be attached

(Figure 2). The recent development of powerful tools for
computational protein design such as Rosetta16 and FoldX17

makes it possible to predict the effect of mutations on protein
stability.18,19 Such tools also allow computational library design
to support the rapid engineering of mutant enzymes with
thermostability enhanced by >15 °C20−22 and with improved
cosolvent compatibility.21 Other types of mutations that might
contribute to enhanced stability are substitutions of the con-
sensus sequence, replacing at homologous positions rare amino
acids with more common ones.23 Here we report the use of
computational library design to develop a PAM variant that is
remarkably stable under nonaqueous conditions, rendering
reactions that are not practical in the presence of water. This
allows conversion of peptidic C-terminal acids, amides, and
esters to a range of modified products, while avoiding hydro-
lysis of internal peptide bonds or side chain amide groups.
By structure-guided mutagenesis, the substrate scope of PAM
was expanded to accommodate more bulky functional groups.
Together, the engineered variants may serve as a suitable plat-
form for the development of versatile enzymatic peptide C-terminal
modification.

■ RESULTS

Computational Engineering of a Robust PAM12A. To
expand the applicability of PAM, we decided to engineer the
enzyme into a more robust variant, anticipating that a stabilized
PAM could tolerate harsh conditions, including the use of organic
solvents, and allow peptide modification with various nucleophiles
under kinetic and thermodynamic control. Engineering PAM
robustness was approached through a computational workflow
for enzyme stabilization called FRESCO.20,21 It consists of four
stages: (1) computational prediction of a large number of stabi-
lizing mutations, (2) inspecting and ranking the predicted stabi-
lizing mutations by molecular dynamics (MD) simulations, (3)
validating predicted mutations experimentally, and (4) combin-
ing the best compatible stabilizing mutations. After all possible
mutations along the whole protein sequence had been scanned,
Rosetta ddg,16 FoldX,17 and consensus analysis23 provided 458,
181, and 35 possibly beneficial mutations, respectively, with
some overlap. In total, 616 unique mutations were screened by
MD simulation and rationally guided selection to produce a
library of 120 promising variants. Because correlations between
thermostability and stability in organic solvents have been
reported,24,25 we used a rapid fluorescence-based thermal unfolding
assay26 to identify effective mutations, presuming that mutations
that reduce the level of thermal unfolding will stabilize the
enzyme in organic solvents, as well. Of the 120 designs that were
tested experimentally, 12 well-expressed mutants (Table 1) dis-
played a higher stability (>1 °C increase in the apparent Tm).
Rosetta ddg (64 designs), FoldX (44 designs), and consensus
analysis (20 designs) provided 5, 6, and 2 beneficial mutations,
respectively (D283P was proposed by both FoldX and consensus

Figure 1. Peptide amidase structural features. Atom coordinates were
taken from Protein Data Bank entry 1M21, in which the active site of
PAM (brown) is bound with the inhibitor chymostatin (N-{[(S)-1-
carboxy-2-phenylethyl]carbamoyl}-α-[2-iminohexahydro-4(S)-pyri-
midyl]-L-leucyl-L-phenylalaninal, sea green). The side chains of cata-
lytic residues (K123, S202, and S226) are colored yellow.

Figure 2. PAM-catalyzed regioselective peptide C-terminal function-
alization. Computationally designed peptide amidase allows straight-
forward modifications of peptidic C-terminal acids, amides, and esters
to a range of modified products.

ACS Catalysis Research Article

DOI: 10.1021/acscatal.6b01062
ACS Catal. 2016, 6, 5405−5414

5406

http://dx.doi.org/10.1021/acscatal.6b01062


T
ab
le

1
.
S
tr
u
ct
u
ra
l
E
ff
ec
ts

o
f
th
e
S
ta
b
il
iz
in
g
M
u
ta
ti
o
n
s

m
ut
at
io
n

or
ig
in

m
ec
ha
ni
sm

of
st
ab
ili
za
tio

n

R
86
H

(T
m
+
1.
5
°C

)
R
os
et
ta
dd
g

R
em

ov
es

th
e
po
si
tiv
el
y
ch
ar
ge
d
si
de

ch
ai
n
th
at
is
su
rr
ou
nd
ed

by
th
re
e
ot
he
r
ar
gi
ni
ne
s
(R
80

at
5.
2
Å
,R

84
at
3.
2
Å
,a
nd

R
19
0
at
5.
2
Å
).
T
he

st
ab
ili
za
tio

n
re
fle
ct
s
a
de
cr
ea
se

in
th
e
st
re
ng
th

of
re
pu
ls
iv
e
el
ec
tr
os
ta
tic

in
te
ra
ct
io
ns

in
th
e
fo
ld
ed

st
at
e.
T
he

re
pl
ac
em

en
t
of

R
86

w
ith

a
hi
st
id
in
e
al
lo
w
s
R
80

to
m
ov
e
to
w
ar
d
H
86

an
d
to

m
ak
e
a
ne
w
sa
lt
br
id
ge

w
ith

D
79

vi
a
its

N
H

at
om

s
an
d
th
e
an
ti
or
bi
ta
ls
of

th
e
ca
rb
ox
yl
ox
yg
en

of
D
79
.
D
80

no
w
m
ak
es

th
e
ne
w
H
-b
on
d
to

th
e
ba
ck
bo
ne

ca
rb
on
yl
ox
yg
en

of
V
88
.
B
ot
h
sa
lt
br
id
ge
s
an
d
H
-b
on
ds

ca
n
in
cr
ea
se

pr
ot
ei
n

st
ab
ili
ty
.3
1
−
3
3
T
o
al
lo
w
th
es
e
ne
w
in
te
ra
ct
io
ns
,t
he

ba
ck
bo
ne

of
R
80

sh
ift
ed

1.
5
Å
to
w
ar
d
H
86
,w

hi
ch

in
th
e
w
ild
-t
yp
e
st
ru
ct
ur
e
w
ou
ld
be

hi
gh
ly
un
fa
vo
ra
bl
e
be
ca
us
e
of
th
e
re
pu
ls
iv
e
po
si
tiv
e

ch
ar
ge

of
R
86
.

G
14
2D

(T
m
+
1.
5
°C

)
R
os
et
ta
dd
g

T
he

re
pl
ac
em

en
t
of
gl
yc
in
es

ca
n
st
ab
ili
ze

pr
ot
ei
ns
.3
4
,3
5
T
he

in
tr
od
uc
ed

as
pa
rt
at
e
m
ak
es

a
ne
w
sa
lt
br
id
ge

vi
a
th
e
an
ti
or
bi
ta
lo
fa

ca
rb
ox
yl
at
e
ox
yg
en

to
R
14
4.
R
14
4
is
sh
ift
ed

co
m
pa
re
d
to

th
e

w
ild
-t
yp
e
st
ru
ct
ur
e
of

P
A
M

an
d
m
ak
es

a
ne
w
sa
lt
br
id
ge

w
ith

E
90
.T

hi
s
el
on
ga
te
s
th
e
ex
is
tin

g
sa
lt
br
id
ge

ne
tw
or
k
of

E
90

w
ith

R
18
5,
w
hi
ch

its
el
f
fo
rm

s
a
sa
lt
br
id
ge

to
D
12
4,
w
hi
ch

its
el
f

fo
rm

s
a
sa
lt
br
id
ge

to
K
16
4.

T
hu
s,
a
fo
ur
-m

em
be
re
d
sa
lt
br
id
ge

ne
tw
or
k
is
co
nv
er
te
d
in
to

a
si
x-
m
em

be
re
d
sa
lt
br
id
ge

ne
tw
or
k.
Sa
lt
br
id
ge

ne
tw
or
ks

co
nt
ri
bu
te

to
pr
ot
ei
n
st
ab
ili
ty
.

A
17
1M

(T
m
+
6
°C

)
F
ol
dX

T
he

in
tr
od
uc
ed

M
17
1
fil
ls
a
de
ep
ly
bu
ri
ed

ca
vi
ty
in
th
e
vi
ci
ni
ty
of
th
e
ac
tiv
e
si
te
,w

hi
ch

w
ill
m
ak
e
th
e
fo
ld
ed

st
at
e
m
or
e
st
ab
le
an
d
th
us

co
nt
ri
bu
te
to

st
ab
ili
ty
.3
6
T
he

C
ε
at
om

of
M
17
1
m
ak
es

ne
w
hy
dr
op
ho
bi
c
in
te
ra
ct
io
ns

w
ith

th
e
C
δ
at
om

of
I2
54
,w

hi
ch

re
ar
ra
ng
es

to
al
lo
w
th
e
in
te
ra
ct
io
n.
T
he

sa
m
e
C
ε
at
om

al
so

m
ak
es

hy
dr
op
ho
bi
c
co
nt
ac
ts
w
ith

th
e
C
ε3

at
om

of
W
17
0
an
d

th
e
C
2
at
om

of
Il
e2
52
.
T
he

Sδ
at
om

of
M
17
1
m
ak
es

hy
dr
op
ho
bi
c
in
te
ra
ct
io
ns

w
ith

th
e
C
β
at
om

of
A
sn
12
5,

th
e
C
δ
1
at
om

of
L
16
7,

an
d
th
e
C
β
at
om

of
A
13
5.

G
17
5S

(T
m
+
1.
5
°C

)
co
ns
en
su
s

T
hi
s
m
ut
at
io
n
le
ad
s
to

en
tr
op
ic
st
ab
ili
za
tio

n,
lik
e
G
14
2D

.T
he

in
tr
od
uc
ed

se
ri
ne

m
ak
es

a
ne
w
H
-b
on
d
to

th
e
ba
ck
bo
ne

am
id
e
of
N
17
7
an
d
to

th
e
sy
n
or
bi
ta
lo
fa

ca
rb
ox
yl
at
e
ox
yg
en

of
E
40
6.

T
he
re

is
al
so

a
ba
ck
bo
ne

re
ar
ra
ng
em

en
t
of

bo
th

re
si
du
e
17
5
an
d
its

ne
ig
hb
or
,N

17
6,
w
hi
ch

is
be
st
ex
pl
ai
ne
d
by

it
al
lo
w
in
g
S1
75

to
m
ak
e
th
e
H
-b
on
d.
B
ec
au
se

th
e
ba
ck
bo
ne

di
he
dr
al
s
of

re
si
du
e
17
5
(ϕ

=
−
14
5°

an
d
ψ
=
17
5°

in
th
e
w
ild

ty
pe
;ϕ

=
−
15
6°

an
d
ψ
=
14
5°

in
P
A
M
12
)
w
er
e
al
re
ad
y
in
th
e
al
lo
w
ed

re
gi
on
s
fo
r
an
y
am

in
o
ac
id
,i
t
is
un
lik
el
y
th
at
th
e
re
ar
ra
ng
em

en
t
is

du
e
to

th
e
co
nf
or
m
at
io
na
l
pr
ef
er
en
ce

of
th
e
or
ig
in
al
gl
yc
in
e.
3
7

D
17
7N

(T
m
+
3.
5
°C

)
R
os
et
ta
dd
g

D
17
7N

ap
pe
ar
s
to

st
ab
ili
ze

vi
a
lo
ca
le
le
ct
ro
st
at
ic
in
te
ra
ct
io
ns
.I
n
th
e
im
m
ed
ia
te
vi
ci
ni
ty
of
D
17
7,
th
er
e
ar
e
tw
o
gl
ut
am

at
es
,w

hi
ch

ca
us
es

re
pu
ls
iv
e
el
ec
tr
os
ta
tic

in
te
ra
ct
io
ns

(E
40
6
at
a
di
st
an
ce

of
5.
9
Å
,
E
46
4
at

4.
5
Å
).
In

th
e
w
ild
-t
yp
e
st
ru
ct
ur
e,
th
er
e
is
a
ga
p
at

re
si
du
es

46
4−

46
6,
in

w
hi
ch

el
ec
tr
on

de
ns
ity

w
as

in
su
ffi
ci
en
t
to

m
od
el
th
e
pr
ot
ei
n.

T
hi
s
ga
p
is
no
t
pr
es
en
t
in

th
e

P
A
M
12
A
st
ru
ct
ur
e,
w
hi
ch

su
gg
es
ts
th
er
e
is
le
ss

di
so
rd
er

at
th
is
po
si
tio

n
in

P
A
M
12
A
.

I1
95
P
(T

m
+
1
°C

)
F
ol
dX

E
nt
ro
pi
c
st
ab
ili
za
tio

n
du
e
to

a
lo
w
er
de
gr
ee

of
fr
ee
do
m

of
a
pr
ol
in
e
in
th
e
un
fo
ld
ed

st
at
e.
T
he

or
ig
in
al
I1
95

w
as
pa
rt
ia
lly

so
lv
en
t
ex
po
se
d,
an
d
no

hy
dr
op
ho
bi
c
co
nt
ac
ts
ar
e
lo
st
be
ca
us
e
of
th
e

m
ut
at
io
n.

W
hi
le
pr
ol
in
es

on
ly
fit

w
el
l
w
ith

a
re
la
tiv
el
y
re
st
ri
ct
ed

se
t
of

po
ss
ib
le
ba
ck
bo
ne

co
nf
or
m
at
io
ns
,3
7
th
e
ba
ck
bo
ne

at
po
si
tio

n
19
5
di
d
no
t
ch
an
ge

co
nf
or
m
at
io
n
as

it
al
re
ad
y
fe
ll

w
ith

in
th
e
pr
op
er

ra
ng
e
fo
r
a
pr
ol
in
e
(ϕ

=
−
58
°
an
d
ψ
=
−
11
°
in

th
e
w
ild

ty
pe
;
ϕ
=
−
62
°
an
d
ψ
=
−
17
°
in

P
A
M
12
A
).

A
26
1P

(T
m
+
1
°C

)
F
ol
dX

M
ut
at
io
n
A
26
1P

ca
us
es

en
tr
op
ic
st
ab
ili
za
tio

n
(s
ee

G
14
2D

an
d
I1
95
P
)
an
d
al
so

fil
ls
up

a
ca
vi
ty

(l
ik
e
A
17
1M

).
T
he

ca
vi
ty

in
th
e
w
ild
-t
yp
e
st
ru
ct
ur
e
co
nt
ai
ns

a
w
at
er

m
ol
ec
ul
e,
w
hi
ch

is
no

lo
ng
er

pr
es
en
t
in

th
e
m
ut
an
t.
T
hi
s
w
at
er

re
le
as
e
ca
n
al
so

co
nt
ri
bu
te

to
st
ab
ili
za
tio

n
by

en
tr
op
y
ga
in
.3
4

D
28
3P

(T
m
+
1.
5
°C

)
co
ns
en
su
s/

F
ol
dX

T
he

m
ut
at
io
n
re
su
lts

in
bo
th

en
tr
op
ic
st
ab
ili
za
tio

n
(s
ee

G
14
2D

an
d
I1
95
P
)
an
d
m
or
e
fa
vo
ra
bl
e
el
ec
tr
os
ta
tic

in
te
ra
ct
io
ns
.T

he
m
ut
at
io
n
re
m
ov
es

th
e
re
pu
ls
iv
e
in
te
ra
ct
io
ns

w
ith

its
im
m
ed
ia
te

ne
ig
hb
or

in
th
e
se
qu
en
ce
,
w
hi
ch

is
D
28
4.

T
he

m
ut
at
io
ns

di
d
no
t
al
te
r
th
e
ba
ck
bo
ne

co
nf
or
m
at
io
n.

T
31
8V

(T
m
+
1.
5
°C

)
F
ol
dX

T
he

m
ut
at
io
n
im
pr
ov
es

hy
dr
op
ho
bi
c
in
te
ra
ct
io
ns
.T

he
in
tr
od
uc
ed

C
γ
at
om

of
V
31
8
m
ak
es

ne
w
in
te
ra
ct
io
ns

w
ith

th
e
C
β
at
om

of
A
45
2,
an
d
C
β
an
d
bo
th

C
γ
at
om

s
of

L
31
6.
A
s
a
re
su
lt
of

th
es
e
im
pr
ov
ed

in
te
ra
ct
io
ns
,
th
e
su
rf
ac
e-
ex
po
se
d
ba
ck
bo
ne

of
re
si
du
e
31
8
sh
ift
s
1.
5
Å
to
w
ar
d
th
e
pr
ot
ei
n.

Q
35
2Y

(T
m
+
3.
5
°C

)
R
os
et
ta
dd
g

T
he

m
ut
at
io
n
re
su
lts

in
im
pr
ov
ed

hy
dr
op
ho
bi
c
in
te
ra
ct
io
ns

an
d
ne
w
H
-b
on
ds
.T

he
or
ig
in
al
Q
35
2
si
de

ch
ai
n
la
ck
ed

cl
ea
r
in
te
ra
ct
io
ns
.T

he
ne
w
H
-b
on
ds

in
Q
35
2Y

ar
e
w
ith

th
e
si
de

ch
ai
n
sy
n

or
bi
ta
lo
xy
ge
ns

of
E
47
1
(2
.7
Å
ox
yg
en
−
ox
yg
en

di
st
an
ce
)
an
d
th
e
am

id
e
ni
tr
og
en

of
A
47
5
(N

−
O

di
st
an
ce

of
3.
3
Å
).
N
ew

hy
dr
op
ho
bi
c
co
nt
ac
ts
in
cl
ud
e
in
te
ra
ct
io
ns

of
th
e
Y
35
2
ar
om

at
ic

ca
rb
on

at
om

s
w
ith

th
e
C
γ
at
om

of
th
e
al
so

ne
w
ly
in
tr
od
uc
ed

V
31
8,
w
ith

on
e
C
δ
at
om

of
L
31
6,
w
ith

bo
th

C
δ
at
om

s
of
L
34
9,
w
ith

th
e
C
β
at
om

of
A
47
5,
an
d
w
ith

th
e
C
ζ
2
an
d
C
η
at
om

s
of

W
35
5.

T
he

ba
ck
bo
ne

C
α
at
om

of
Y
35
2
ha
s
sh
ift
ed

1.
0
Å
to
w
ar
d
th
e
ce
nt
er

of
th
e
pr
ot
ei
n,

w
hi
ch

ca
n
be

ex
pl
ai
ne
d
by

th
es
e
fa
vo
ra
bl
e
ne
w
in
te
ra
ct
io
ns
.

G
40
1A

(T
m
+
1.
5
°C

)
R
os
et
ta
dd
g

T
he

st
ab
ili
zi
ng

ef
fe
ct
is
ex
pl
ai
ne
d
by

en
tr
op
ic
st
ab
ili
za
tio

n
(s
ee

G
17
5S

an
d
I1
95
P
).
T
he
re

is
no

si
gn
ifi
ca
nt

ef
fe
ct
on

th
e
co
nf
or
m
at
io
n
of

th
e
ba
ck
bo
ne
,a
nd

th
e
in
tr
od
uc
ed

al
an
in
e
si
de

ch
ai
n

m
ak
es

no
ne
w
in
te
ra
ct
io
ns
.

S4
63
P
(T

m
+
2
°C

)
F
ol
dX

T
he

m
ut
at
io
n
in
tr
od
uc
es

a
pr
ol
in
e
th
at
ca
us
es

en
tr
op
ic
st
ab
ili
za
tio

n
of
th
e
pr
ot
ei
n
st
ru
ct
ur
e
(s
ee

G
17
5S

an
d
I1
95
P
).
T
he

ne
w
ly
in
tr
od
uc
ed

si
de

ch
ai
n
m
ak
es

no
ne
w
in
te
ra
ct
io
ns
,a
nd

th
er
e
is

no
ef
fe
ct

on
th
e
ba
ck
bo
ne
.

ACS Catalysis Research Article

DOI: 10.1021/acscatal.6b01062
ACS Catal. 2016, 6, 5405−5414

5407

http://dx.doi.org/10.1021/acscatal.6b01062


analysis). These results indicated that all three methods are
useful computational tools for predicting stabilizing mutations
with a reasonable success rate (∼10%). The stabilizing muta-
tions were stepwise combined into PAM (Table S1) to yield a
highly stabilized variant (PAM12A) containing 12 mutations
[R86H, G142D, A171M, G175S, D177N, I195P, A261P, D283P,

T318V, Q352Y, G401A, and S463P (Figure S1)]. Compared to
the wild-type enzyme, PAM12A exhibited a substantially higher
apparent unfolding temperature [ΔTm,app = 23 °C (Figure 3A)].
To gain insight into the structural basis of the enhanced ro-

bustness, we determined the crystal structure of PAM12A [1.8 Å
resolution, Protein Data Bank (PDB) entry 5AC3 (Figure 3B)].

Figure 3. Computational engineering of PAM and investigating the source of its evolved robustness. (A) Apparent melting temperatures in
phosphate buffer (20 mM, pH 7.5) measured by the thermofluor method: blue for wild type (WT) PAM and red for PAM12A. (B) Location of the
stabilizing mutations in the crystal structure of PAM12A (PDB entry 5AC3). Atom coordinates of the inhibitor chymostatin were taken from
WT-PAM (PDB entry 1M21). (C) Example of a stabilizing mutation. The PAM12A structure is shown with yellow carbon atoms, while the aligned
WT structure has sea-green carbon atoms. The electron density is displayed at 1σ. The original Q352 side chain lacks clear interactions with its
surroundings. The Q352Y mutation results in new H-bonds to the side chain of E471 and to the backbone amide of A475. (D) Atomic fluctuations
obtained from MD simulations. Distances to the active site are indicated (see panel B). (E) Normalized B factors of the X-ray structures of WT PAM
and PAM12A, indicating minor changes in protein flexibility after introduction of the 12 mutations. Normalized B factors are obtained from the
equation Bnorm = (Borig − Bavg)/BSD, where Borig is the original B factor, Bavg is the average B factor for all residues in the protein, and BSD is the
corresponding standard deviation. (F) Peptide amide hydrolysis activity of Z-Gly-Tyr-NH2 in phosphate buffer (20 mM, pH 7.5) at different
temperatures: blue for wild-type PAM and red for PAM12A.

Figure 4. Comparison of activities of wild-type PAM (blue) and computationally engineered variant PAM12A (red) in nonaqueous solvents for one-step
C-terminal deprotection and activation of peptides. (A) Specific activity in acetonitrile at different temperatures. (B) Specific activity in different organic
solvents. The log P values of the solvents are given in parentheses. (C) Specific activity in an acetonitrile/DMF cosolvent system.
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The overall wild-type structure (PDB entry 1M21) was main-
tained in the mutant, with an average Cα root-mean-square
deviation of 0.52 Å. An examination of the substitutions
(Table 1) suggests that the robustness of the enzyme stems
from improved electrostatic interactions (R86H, D177N,
and D283P), enhanced hydrophobic interactions (T318V and
Q352Y), introduction of new salt bridges (R86H and G142D)
or new H-bonds [R86H, G175S, and Q352Y (Figure 3C)],
elimination of internal cavities (A171M and A261P), release
of bound water (A261P), and a decreased gain in unfolding
entropy (G142D, G175S, I195P, A261P, D283P, G401A,
and S463P).
Enzymes stabilized by protein engineering may exhibit loss of

activity at lower temperatures, because of increased rigidity around
the active site.27,28 The influence of the mutations in PAM12A on
flexibility was examined by MD simulations. To improve sampling
of conformational space, we performed multiple independent MD
simulations instead of a single long simulation.29,30 The results
indicated that the flexibility was maintained, which also emerged
from an inspection of the B factors of the crystal structures
(Figure 3E). The maintained flexibility of the robust PAM12A
variant is in agreement with the preserved catalytic activity of the
enzyme at lower temperatures. In aqueous buffer, PAM12A
remained fully active in peptide amide hydrolysis at mild temper-
atures, whereas the engineered enzyme showed activity higher
than that of the wild type at elevated temperatures (Figure 3F).
PAM12A-Catalyzed C-Terminal Deprotection and

Activation of Peptides. To evaluate the applicability of
PAM12A under non-natural conditions, we initially compared
wild-type PAM and PAM12A for peptide C-terminal amide−
ester interconversion, a useful conversion for cost-effective
N → C chemoenzymatic peptide elongation. To prevent the
hydrolytic side reaction, this conversion must be performed in
nearly neat organic solvents. As desired, the higher thermal
stability of PAM12A was paralleled by a remarkable increase
in tolerance toward various organic solvents. In acetonitrile
(<0.1% water content), PAM12A was several-fold more active
than wild-type PAM at all temperatures tested (Figure 4A).
In addition, PAM12A also showed superior robustness in other
organic solvents [log P ranging from −0.334 to 0.94 (Figure 4B)].
We further studied whether PAM12A tolerates water-miscible

cosolvents. The polar aprotic DMF is a very good cosolvent
for dissolving peptides; however, it is also known to penetrate
into enzyme active sites and induce detrimental secondary and
tertiary structural changes.38 Notably, PAM12A retained ∼15%
activity in the presence of 30% DMF (Figure 4C), while the
activity of wild-type PAM was almost abolished under this
condition. The stabilized enzyme was judged to be sufficiently
robust to explore peptide modification in various anhydrous
solvents and water/cosolvent mixtures.
PAM12A Catalyzes C-Terminal Amidation of Peptide

Acids. Food-derived peptides and protein hydrolysates have
demonstrated diverse biological activities and serve as nutra-
ceuticals and antimicrobial agents.39,40 Most of these peptides
have free carboxyl termini.41 Modification of the C-terminus,
e.g., by amidation, can increase peptide bioavailability and
resistance to degradation by proteases.5 Therefore, we explored
the use of PAM12A for direct amidation of peptides with a free
C-terminal carboxyl group. This reaction is challenging because
formation of an acyl−enzyme complex from carboxylate groups
is disfavored and conversion can be realized only under thermo-
dynamic control. Because a high water activity will limit the
accumulation of product, the robustness of the biocatalyst and

its compatibility with nonaqueous solvents are of key impor-
tance for this process. A peptide amidase from orange flavedo
could catalyze C-terminal peptide amidation,42 but the enzyme
is insufficiently stable in neat organic solvents to obtain a
decent yield of peptide amide (>50%).
We tested several peptide free acids as the substrate for this

reaction using PAM12A as a catalyst. The robustness of the
enzyme made it possible to examine amide bond formation in
nearly neat organic solvents, and conversions could proceed for
several days until the reactions reached the thermodynamic
equilibrium. As the water content was decreased to trace amounts
(<0.1%), the PAM12A-catalyzed direct amidation of peptide
free acids was brought almost to completion (Figure 5).

PAM12A-Catalyzed C-Terminal Amidation of Peptide
Esters. For large-scale manufacturing of synthetic peptides,
solution phase methods employing peptide esters are often
preferred over solid phase synthesis because of the cost.43 The
better solubility of peptide esters in organic solvents as compared
to that of amides or to that of C-terminally free peptides reduces the
extent of product loss during extraction steps.44 The subsequent
transformation of peptide esters to amides can be catalyzed
by subtilisin A, but yields are unsatisfactory because of sub-
stantial peptide ester hydrolysis.45 To test the applicability of
PAM12A for peptide ester−amide conversion, we examined
reactions of several peptide esters with ammonia under nearly
anhydrous conditions. As desired, several peptide esters were
converted into the corresponding peptide amides smoothly in
nearly neat organic solvents upon treatment with PAM12A and
ammonia in almost quantitative high-performance liquid chro-
matography (HPLC) yield (Figure 6).

PAM12A-Catalyzed Peptide C-Terminal Methylamida-
tion and Hydroxylamidation. To evaluate the versatility
of PAM12A-catalyzed peptide modification, the nucleophile
scope of PAM12A was investigated. We first studied PAM12A-
catalyzed methylamidation of different peptide substrates in
organic solvents, either under thermodynamic control or under

Figure 5. PAM12A-catalyzed C-terminal amidation of peptide acids.
Detailed reaction conditions are described in the Supporting Information.
Product yields were determined by high-performance liquid chromatog-
raphy, and product identities were confirmed by mass spectrometry.

Figure 6. PAM12A-catalyzed C-terminal amidation of peptide esters.
Detailed reaction conditions are described in the Supporting Information.
Product yields were determined by HPLC, and product identities were
confirmed by mass spectrometry.
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kinetic control. C-Terminal methylamidation can have a signifi-
cant effect on the biological properties of a peptide, e.g., by
increasing the lipophilicity or bioactivity.46 Gratifyingly, all tested
peptides were converted into the corresponding N-methylamide
products in high HPLC yield (Figure 7A−C).
We next examined the use of PAM12A in the synthesis of

peptide hydroxamic acids, an important class of compounds
that has been widely explored as metal chelators and inhibitors
of metalloenzymes.47 PAM12A exhibited a substantial prefer-
ence for hydroxylamine over water. When the peptide amides
were treated with PAM12A in hydroxylamine·HCl buffer
(pH 7.4), fast and almost complete conversions of the sub-
strates to the corresponding peptide hydroxamic acids were
observed (Figure 7D).
Modification of Pharmaceutical Peptides and a Long

Peptide. After exploring the application scope with short
peptides, we moved to assay the practical utility of PAM12A-
mediated peptide modification with two pharmaceutical
peptides: pentagastrin, a peptide amide, and leu-enkephalin, a
peptide acid. Pentagastrin was efficiently converted to the corre-
sponding N-methylamide and hydroxamic acid. The modifica-
tions of leu-enkephalin were performed via the thermodynami-
cally controlled pathway, and this peptide was modified in good
yield with ammonia, methylamine, and hydroxylamine (Figure 8).
Finally, we examined the applicability of PAM12A for

modification of longer peptides. The 29-mer pharmaceutical
peptide Sermorelin, which contains multiple unprotected
reactive groups, such as Gln, Asp, Lys, etc., was selected as a
model. The hydroxylaminolysis of Sermorelin was conducted in
hydroxylamine·HCl buffer (5 wt %, pH 7.5) at room temper-
ature for 15 min (Figure 9A). The HPLC data pointed to a single
product with 99% yield. Electrospray ionization mass spec-
trometry (ESI-MS) analysis showed that this product was the
monomodified Sermorelin on the basis of the 16 Da mass shift
from unmodified substrate, and ESI-MS/MS analysis indicated
that the modification was located at the C-terminal Arg residue
(Figure 9B).

Expansion of Peptide Functionalization with PAM12B.
The examples given above show that various peptide substrates
are accessible to PAM12A-mediated reactions. Nevertheless,
PAM12A showed a strong preference for small nucleophiles,
and larger nucleophiles are either not processed or outcompeted
by water, leading to a high degree of hydrolysis (Figure 10).
To broaden its applicability, it would be attractive to expand the
range of nucleophiles that are accepted. Because steric hindrance
is a likely cause of the limited nucleophile spectrum, we reasoned
that mutations creating more space in the active center may be
beneficial for the reactions with larger nucleophiles. Because the
side chain of position 171 lines the nucleophile binding pocket,
we replaced Met171 with a glycine, resulting in mutant PAM12B
(Figure 10A).
The catalytic performance of PAM12A and PAM12B in

modifying a model peptide were compared for a variety of
nucleophiles. While PAM12A-catalyzed peptide amidation was
almost complete (>99%) in 1 day, the same reaction catalyzed

Figure 7. PAM12A-catalyzed C-terminal peptide modification with methylamine and hydroxylamine. Conversions include: methylamidation of
(A) peptide amides, (B) peptide esters, and (C) peptide acids and (D) hydroxylamidation of peptide amides. Detailed reaction conditions are
described in the Supporting Information. Product yields were determined by HPLC, and product identities were confirmed by mass spectrometry.

Figure 8. Examples of PAM12A-catalyzed pharmaceutical peptides
modifications. Detailed reaction conditions are described in the
Supporting Information. Product yields were determined by HPLC,
and product identities were confirmed by mass spectrometry.
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by PAM12B gave only 60% conversion, which suggests that
PAM12B is suboptimal for modification with small nucleophiles
(see the Supporting Information). On the other hand, PAM12B
exhibited a preference for bulky nucleophiles such as benzyl
amine (Figure 10B). Under the same reaction conditions, PAM12B
is superior in terms of the synthesis/hydrolysis ratio (synthesis
of desired product vs hydrolysis of amidated peptide substrate),
and with all larger nucleophiles, the yields of the desired peptide
derivatives were greater when using PAM12B (Figure 10B). These
results demonstrate that the complementary nucleophile scope of
PAM12A and PAM12B could provide broad substrate coverage
for the regioselective preparation of diverse peptide derivatives.

■ DISCUSSION AND CONCLUSION

The effect of C-terminal modification on the functional prop-
erties of peptides has stimulated substantial efforts to develop
suitable derivatization reactions. The selectivity of these methods

usually relies on a pre-introduced C-terminal functional group,
on a special recognition residue, or requires a specific amino acid
sequence motif.48−51 In contrast, the structural characteristics
of peptide amidase, i.e., the nonspecific C-terminal binding
tunnel and the buried active site, afford sequence-independent
C-terminal peptide modification with absolute regioselectivity.
Indeed, we observed that the amide or acid side chain (e.g.,
Ac-QWL-NH2 or pentagastrin) was not processed by the enzyme.
PAM12A exhibited a rather broad substrate spectrum. A range of
unprotected peptides with an aliphatic (Ala or Phe), an aromatic
(Phe, Tyr, or Trp), or a charged (Arg) residue at the C-terminus
were selectively and efficiently modified. The crystal structure of
PAM suggests that several C-terminal residues may make contact
with the enzyme. Therefore, future mapping of the substrate
profile of each binding subsite of PAM would reveal more details
about the substrate−enzyme interactions. While the versatility of
the synthetic applications was shown with short model peptides,

Figure 9. Example of PAM12A-catalyzed long peptide modification. (A) Sermorelin modification scheme. (B) ESI+-MS and ESI+-MS/MS of
product Tyr-AlaD-Asp-Ala-Ile-Phe-Thr-Gln-Ser-Tyr-Arg-Lys-Val-Leu-Ala-Gln-Leu-Ser-Ala-Arg-Lys-Leu-Leu-Gln-Asp-Ile-Leu-Ser-Arg-NHOH.
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we also demonstrated that PAM12A can be applied for bioactive
peptides and long peptide modifications.
In addition to the enzyme’s inherent virtues, the robustness

of the redesigned PAM is a key feature allowing synthetic appli-
cations. The compatibility of PAM12A with diverse solvents,
the tolerance to various nucleophiles without compromising
selectivity, and the increased catalytic activity at elevated temper-
atures make it possible to use the enzyme under diverse condi-
tions and allow a wide range of selective C-terminal function-
alization. As with other enzymes used for peptide modifica-
tion,10,31 the catalytic activity displayed by PAM12A in organic
solvents is much lower than in aqueous solution. Nevertheless,
the relatively high enzyme loading is not a limiting factor for
the process, because PAM12A can be produced at low cost by
fermentation. The (co)solvent resistance is of special importance
in view of the diversity of peptide properties and the necessity
to use specific solvent mixtures for peptide solubilization. More
importantly, the stability of PAM12A in nearly neat organic
solvent allows high-yield conversions that do not proceed in
water, particularly for the modification of peptide free acids.

These conversions could be useful for various applications, such
as functionalization of food-derived bioactive peptides and
protein hydrolysates.
The stabilization of PAM was achieved by introducing a set

of 12 mutations found by the FRESCO approach20 for compu-
tational library design. Using conventional rational protein
engineering or directed evolution, the swift discovery of such an
intensively engineered variant would be troublesome. The crystal
structures revealed that the introduced mutations stabilize the
protein through diverse biophysical effects, which are also
expected to prevent unfolding in the presence of organic
solvents. It should be emphasized that the enhanced stability
did not reduce activity, and there is no thermodynamic neces-
sity for a protein to rigidify for its melting temperature to
increase.52 Furthermore, using the robust PAM12A as the template,
a variant PAM12B that displays complementary substrate speci-
ficity was rationally designed.
In summary, we report the use of computational tools for

developing a facile, regioselective, and broadly applicable method
for C-terminal modification of peptides. The engineered enzymes

Figure 10. Expanded peptide functionalization using PAM12B. (A) Comparison of the active sites of PAM12A and PAM12B. The M171G mutation
will enlarge the binding pocket for nucleophiles in PAM12B. The left panel shows the active site of PAM12A. Atom coordinates of the inhibitor
chymostatin (sea green) were taken from PDB entry 1M21. The catalytic triad and Met171 are colored yellow. The right panel shows a model of the
PAM12B active site, built with YASARA-Structure (www.yasara.org). (B) Comparison of PAM12A and PAM12B for modification of Z-Gly-Tyr-NH2

with large nucleophiles. The S/H ratio is defined as the synthesis of desired product vs hydrolysis of the peptide substrate. Detailed reaction
conditions are described in the Supporting Information. Product yields were determined by HPLC, and product identities were confirmed by MS.
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catalyze a diversity of functionalization reactions of side chain
unprotected peptides, with relaxed sequence and C-terminal
functionality requirements. Depending on the desired reaction
and substrate properties, they can be applied under aqueous
conditions, in water/cosolvent mixtures, or in nearly anhydrous
organic solvents. The robust peptide amidase variants may pres-
ent a suitable platform for further engineering, enhancement of
catalytic performance, and expansion of nucleophile specificity
that would be particularly interesting.
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