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ABSTRACT 

 

Recently, Hot Melt Extrusion (HME) has attracted the attention of pharmaceutical 

companies and scientists as a technique for manufacturing a variety of dosage forms. In this 

research, HME was applied in different ways to achieve different goals, such as solubility 

enhancement, taste masking, solid state stability enhancement, and sustained release 

formulations for oral drug delivery, using one model drug, mefenamic acid. For solubility 

enhancement and taste masking formulations, Eudragit EPO was blended with MA in different 

ratios (20, 25, 30, and 40% of drug loads) and processed by a hot melt extruder to produce a 

solid dispersion system. FT-IR analysis suggested hydrogen bonding between the drug and the 

carrier up to 25% drug loading. SEM images indicated aggregation of MA at over 30% drug 

loading. Based on the FT-IR, SEM, and dissolution results for the extrudates, two optimized 

formulations (20% and 25% drug loads) were selected to formulate orally disintegrating tablets 

(ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time, 

in addition to the desired taste-masking effect. 

 In chapter 3, HME was applied to enhance the solubility of class II drugs by making solid 

dispersion systems by mixing MA with hydrophilic polymers (polyvinylpyrrolidone, PVP) in 

different ways as follow: (1) to demonstrate the effect of polyvinylpyrrolidone (PVP) matrices 

on the release of the poorly water-soluble drug, MA was prepared using the hot-melt extrusion 

technique, (2) to investigate the effect of PEG as a plasticizer and swelling agent in dissolution 

studies, (3) to study the influence of MgO as an alkalizer on the modification of the 
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microenvironmental pH of the matrices, and (4) to investigate the combined effect of PEG and 

MgO on the drug release behavior of the formulations.   

In addition, we have also studied the ability of HME techniques to produce sustained 

release formulations for oral drug delivery. Various drug loads of MA and Kollidon® SR as a 

polymeric carrier were blended and extruded using a twin-screw extruder (16-mm Prism 

EuroLab, ThermoFisher Scientific) to prepare a solid dispersion system. Thermal analyses were 

used to confirm thermal stability, miscibility and to select the optimum processing conditions for 

extrusion. Sustained release tablets were successfully prepared with excellent tablet 

characteristics of these formulations. The drug release from the 40% drug-loaded extrudate 

reached 20% within 2 hours and 80% within 12 hours, compared to more than 80% drug release 

of the corresponding physical mixture, and 100% of the pure drug and formulations with higher 

drug loads of 60% and 80% within 2 hours. Therefore, the drug release of MA was further 

retarded by increasing the concentration of this polymer, which indicates Kollidon® SR has a 

significant effect on MA sustained release formulations. 
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CHAPTER 1 

INTRODUCTION 

1.1. Solid dispersion: 

    The most common and preferred route of drug administration is the oral route, due to the 

ease and convenience of intake compared to other routes of administrations such as parenteral 

drug delivery. However, the oral route of drug delivery has many limitations for a few reasons, 

which affect many active pharmaceutical ingredients. Poor drug absorption leads to poor 

bioavailability, which is a major concern when delivering the drug through the oral route. In 

addition, poor drug solubility and/or limited drug permeability result in restricted and insufficient 

drug absorption from the gastrointestinal tract inside the body. Consequently, poor water 

solubility of a drug will lead to slow or limited dissolution and limited absorption. In addition, 

drugs with poor permeability will limited the drug particles’ ability to cross through the GIT 

membrane, thus limited the drug absorption (Dhirendra, Lewis, Udupa, & Atin, 2009; 

Serajuddin, 1999).  

To overcome these problems, various solubilization technologies have been developed, 

including solid dispersion, salt formation, nanocrystals, and cyclodextrin complexes. Recently, 

research into solid dispersions has attracted the pharmaceutical companies and increased the 

products that have been approved by the FDA. Solid dispersion is broadly used to improve the 

oral absorption and bioavailability of the Biopharmaceutical Classification System (BCS) class II 
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drugs, which is described as low solubility with high permeability, specifically drugs with high 

dosages and/or high propensity for re-crystallization (Y. Huang & Dai, 2014). The research 

projects covered by this dissertation mainly uses solid dispersions of a poorly water-soluble drug 

in several different hydrophilic polymeric carriers. 

1.1.1 Definition of solid dispersion: 

The definition of a solid dispersion has been clarified by Chiou and Riegelman as “the 

dispersion of one or more ingredients in an inert carrier or matrix, where the active ingredients 

could exist in finely crystalline, solubilized or amorphous state”(Chiou & Riegelman, 1971). 

Therefore, the solid dispersion system usually consists of two or more materials, a hydrophobic 

drug and a hydrophilic carrier in a solid state. The drug particles can be dispersed in amorphous 

particles, forming clusters, or in crystalline particles.   

1.1.2. Advantages and Disadvantages Solid dispersions: 

Solid dispersion has recently become used extensively as a successful technique for 

solubility enhancement of poorly water-soluble drugs. This great increase in the solubility caused 

by solid dispersion is the result of decreasing the particle size of the drug, which forms a higher 

surface area and improves the wettability, which then decreases the thickness of the diffusion 

layer, consequently increasing the dissolution rate and therefore the bioavailability. It has been 

reported that solid dispersion has the highest degree of porosity, though this depends on the 

carrier properties. In addition, converting the crystalline form of the drug to the high-energy 

amorphous form enhances solubility and bioavailability. Thus, the dissolution rate is specified by 

the dissolution rate of the polymeric carrier. Subsequently, selecting a suitable carrier will 
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improve the dissolution rate of poorly soluble drugs(Leuner & Dressman, 2000; Vasconcelos, 

Sarmento, & Costa, 2007).  

However, solid dispersion does have disadvantages, including drug precipitation and 

recrystallization. Drug precipitation occurs because the drug particles are dispersed in a 

hydrophilic carrier, which can then leach out fast without the drug during the dissolution process.  

The amorphous drugs are physically unstable and have the tendency to revert back to the stable, 

crystalline form, due to their high-energy states. Also, the hydrophilic polymers have the ability 

to absorb moisture with time and this increase in the volume of the matrix can lead to 

recrystallization.  

1.1.3 preparation of solid dispersions: 

 Many methods have been developed to manufacture solid dispersion systems including 

fusion and melt methods, solvent evaporation, hot melt extrusion, and spray drying. The fusion 

method is considered to be the first solid dispersion invented for pharmaceutical applications, 

developed in 1961 by Sekiguchi and Obi, using sulfathiazole and urea as a matrix. However, the 

major drawback of this technique is that the drug and the carrier have to be compatible and mix 

well before melting in order to prevent phase separation during the heating and cooling process 

(Dhirendra et al., 2009). The solvent evaporation technique is the most common and easiest way 

to form solid dispersions. The solvent evaporation process consists of two simple steps: first, 

dissolve the drug and the carrier in a suitable solvent, and then dry the solvent to form a solid 

dispersion system. Unfortunately, most of the organic solvents are toxic and require a large 

amount of the solvent, which makes this method impractical and highly expensive to 

manufacture (O'Donnell & McGinity, 1997). Spray drying is a technique that is widely used to 

manufacture dry powder solid dispersions in the food and pharmaceutical industries.  It is a 
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process of producing a dry powder from a liquid or suspension by rapidly drying it with hot gas.  

This technique uses a one-step process and is preferred for thermally sensitive materials. This 

technique suffers from disadvantages that the equipment needed for the process is costly and as 

well as expensive to maintain. (Jain Manu et al.). For these reasons, hot melt extrusion is now the 

technique of choice and gets more attention from the pharmaceutical industry and the academic 

fields as a method for manufacturing solid dispersion systems.   

1.2. Hot melt extrusion: 

Hot-melt extrusion (HME) is a technique that has been used since the 1930s mostly in the 

manufacturing of plastic materials. After that, specifically in the early 1970s, HME was applied 

to the pharmaceutical industry to formulate and manufacture solid oral dosage forms. HME is a 

technique of pumping raw materials through a feeder to a rotating screw (or screws) under 

suitable heat, then pushing it through a die to form product extrudates of various shapes and 

sizes. This technique is used to manufacture amorphous solid dispersion systems where the API 

particles are melted and dispersed within a matrix carrier to generate and stabilize the amorphous 

form of the API’s particles. The resulting extrudates could be a final product like pellets, mini-

tablets, or films, or they could be milled and filled into capsules or compressed into tablets after 

adding tablet excipients. (Crowley et al., 2007; Repka et al., 2007).   

HME offers many advantages over other traditional pharmaceutical techniques. It is a 

continuous process which gives it a shorter and more effective time, and it is water and solvent 

free, therefore reducing the number of manufacturing steps as well as the drying process, which 

makes it beneficial to the environment (Table 1)(Patil, Tiwari, & Repka, 2015). Therefore, HME 

has attracted the pharmaceutical field with more than 100 papers published and an increase in the 
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number of patents over the last two decades. HME has proved itself as a new technique to 

manufacture solid oral dosage forms such as capsules, tablets, pellets, films and implants.  

 

 

Table 1-1: Advantages and Disadvantages of Hot-Melt Extrusion Technology: 

Advantages Disadvantages 

Continuous process May not be applicable for heat sensitive 
drugs 

No water or organic solvents are needed High energy input 

High production outcomes Limited number of heat stable polymers 

Less labor and equipment demands  

Favorable product cost  

Can produce "solid solutions or dispersions" 
that may lead to increased solubility and 
bioavailability 

 

Shorter and more efficient processing times  

  

1.2.1. Hot melt extrusion equipment and process: 

There are two types of extruders commonly used for pharmaceutical applications, the 

screw extruder and the ram extruder. The ram extruder works with a positive displacement piston 

that is able to create high pressure to push materials through the die. The screw extruder, which 

is the most commonly used in the pharmaceutical industry, consists of a feeder, screws inside a 
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barrel, control panel, torque sensors, heating/cooling device, divers dies, and downstream 

auxiliary equipment (fig. 1-1). In addition, the screw extruder could be further classified 

according to the number of screws, the size, and the direction of the rotation of the screws (co- 

or- counter rotating screws)(Shah, Maddineni, Lu, & Repka, 2013).  

 

    

Fig. 1-1: Schematic of typical extruder system(Patil, Tiwari, & Repka, 2015). 

 

The screw extruder is classified according the number of screws inside the barrel as 

follows: single screw extruders, twin screw extruders and multi screw extruders. The single 

screw extruder is the most widely used extruder in the industry; it consists of one screw that 

rotates inside the barrel. This screw serves multiple functions, conveying, melting, pumping and 
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shaping outputs.  The raw materials are placed in the feed hopper (flood fed) then mixed and 

conveyed through a screw in the barrel. The rate of output from the die is controlled by the speed 

of the screw. This type of extruder is considered the simplest and least expensive compared to 

the others (Crowley et al., 2007; Maniruzzaman, Boateng, Snowden, & Douroumis, 2012). 

The second common type of screw extruder is the twin screw extruder. As the name 

indicates, the twin screw extruder has two screws in a parallel position inside the barrel. These 

screws can rotate in the same direction, which is called co-rotating, or can rotate in opposite 

directions, which is called counter-rotating screws. The twin screw extruder has many 

advantages over other extruders which make it the favored choice in the pharmaceutical industry. 

These advantages include easier feeding, efficient mixing and dispersion of the excipient, 

decreased heat generation, de volatilization and reduced residence time of the materials inside 

the extruder. The ultimate choice between co-rotating or counter-rotating screws depends on 

several factors such as the material properties and the intended application. Counter-rotating 

screws can used when there will be high shear and intense mixing as the materials are pressed 

through the space between the screws when they rotate. However, this system may have some 

drawbacks, such as high pressure and heat generation that may lead to product degradation, air 

entrapment and low screw speed with low outcomes. On the other hand, co-rotating twin screw 

designs usually feature intermeshing screws which are self-cleaning. This type of extruder can 

maintain uniform mixing even though it operates at high speeds, thus achieving a high output 

which makes it the most preferred type of extruder in the industry (Chokshi & Zia, 2010; Jani & 

Patel, 2015; Patel et al., 2013).  

There are two types of extrusion processes: wet extrusion and dry extrusion, and which is 

used depends on the properties of the raw materials. In the wet process, the excipients are wetted 
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and softened with by a solvent such as water or alcohol to form wet mass, which works as a 

binder or plasticizer to facilitate the extrusion process and produce more uniform extrudates 

compared to the dry process. This technique is used when working with heat sensitive materials 

because the wet extrusion process produces less heat and pressure than the dry process. On the 

other hand, dry extrusion works with no solvent, making it the process of choice with materials 

that can handle the process. The API is mixed with a thermoplastic agent (in a powder form), 

which softens and melts because of the fractional heat during extrusion. The rotating screws 

force the mixture forward towards the die and, it solidifies when exiting the extruder (Fielden, 

Newton, & Rowe, 1992).  

1.2.2. Materials used in hot melt extrusion:  

 

 The raw materials for the HME process must have some requirement and characteristics 

as follow (Crowley et al., 2007; Patil, Tiwari, & Repka, 2015):  

1- They must have thermoplastic behavior, which is the ability to deform easily during 

extrusion and solidify upon exiting the die. 

2- They must have the same degree of purity and safety as those used for manufacture 

by traditional methods. 

3- These materials must have been used previously in the production of other solid 

dosage forms.  

4-  They must exhibit thermal stability as well as physical and chemical stability. This is 

a prerequisite for each compound used in the HME process, although decreasing the 

processing times used in this process may not limit all thermolabile compounds. 

Generally, the dosage forms produced by hot melt extrusion techniques consist of a blend 
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of active pharmaceutical ingredients and functional excipients. These excipients could be 

classified as matrix carriers, plasticizers, release modifying agents, bulking agents, antioxidants, 

thermal lubricants, and miscellaneous additives. Thermoplastic carriers (polymers) must 

withstand shear and high temperatures, form pores or provide to the matrix specific physic-

mechanical properties that facilitate the HME process.  Adding a plasticizer to the formulations 

may reduce the processing temperatures, thus decreasing the drug polymer degradation. 

1.2.3. Analytical characterizations of hot melt extrusion: 

 Analytical evaluations of hot melt extrudates, particularly amorphous solid dispersions, is 

used to determine solid-state drug polymer miscibility, kinetics of solid-state phase separation 

and nucleation (re-crystalline behavior), thermal stability or drug polymer degradation, and 

release studies. There are several analytical techniques, which have been applied for 

characterization of hot melt extruded products that list in table 1-2. Basically, the choice of 

evaluation methods depends on the physico-chemical properties of the materials and the 

purposes of the underlying study (Lu et al., 2014; Shah et al., 2013).    
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Table 1-2: Analytical techniques commonly used in HME: 

Method Evaluations 

HPLC To analyze drug content and dissolution samples. 

TGA Moisture analysis and thermal stability. 

LOD Moisture analysis and thermal stability. 

DSC Physical state (crystalline/amorphous state, polymorphic form). 

FTIR Interaction between drug and matrix. 

XRD Physical state (crystalline/amorphous state, polymorphic form). 

PLM Crystalline/amorphous state of the particles. 

SEM Crystalline state, shape, size, surface morphology. 

HSM Crystalline state, surface morphology. 

Dissolution In vitro drug release. 

 

 

1.3. Model drug: Mefenamic acid: 

Mefenamic acid [N-(2,3-dimethylphenyl) anthranilic acid] is a non-steroidal anti-

inflammatory drug (NSAID) that acts by inhibiting the activity of cyclo-oxygenase-2 and thereby 

the production of prostaglandin, and is also a member of the fenamate group (Zeinolabedini 

Hezave, Khademi, & Esmaeilzadeh, 2012)(Fig. 1-2). Mefenamic acid (MA) is used as an anti-

inflammatory, antipyretic, and potent analgesic agent to treat rheumatoid arthritis, osteoarthritis, 

dental pain, and dysmenorrhea (Abdolmohammad-Zadeh, Morshedzadeh, & Rahimpour, 2014; 

Kormosh & Matviychuk, 2013; Sriamornsak, Limmatvapirat, Piriyaprasarth, Mansukmanee, & 
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Huang, 2014). Recent studies also show that MA could be used to treat Alzheimer’s disease 

(Sevgi, Kaynarsoy, Ozyazici, Pekcetin, & Ozyurt, 2008). 

According to the biopharmaceutical classification system (BCS), MA is a class II drug that 

exhibits high permeability and low water solubility (i.e. 20 mg/l, which is practically insoluble in 

water). This low solubility affects its rate of absorption from the GI tract and thus consequently 

decreases its oral bioavailability (Alshehri et al., 2015; Sriamornsak et al., 2014). It is an odorless 

white or light gray powder with a melting point of 230°-231°C, with an unpleasant taste, which 

could lead to patient compliance issues (Adam, Schrimpl, & Schmidt, 2000; Mudit Dixit, 

Kulkarni, KR, & PRASAD, 2011). MA has a relatively short half-life of 2 hours with a usual 

oral dose of 250 or 500 mg which is prescribed three times daily (Ibrahim, 2013). Like other 

NSAIDs, and due to the free carboxylic acid group in the chemical structure, MA has broad 

gastrointestinal side effects, which could lead to serious patient incompliances (Sevgi et al., 

2008).  

 

OH O

CH3

CH3

NH

 

 

Fig. 1-2: Chemical structure of Mefenamic acid [N-(2,3-dimethylphenyl)] anthranilic acid] 
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 According to the literature, there have been many scientist tried to enhance solubility of 

the poorly water soluble drug mefenamic acid by producing solid dispersion systems through 

many techniques, such as the fusion method (Owusu-Ababio, Ebube, Reams, & Habib, 1998; 

Serajuddin, 1999), thermal cross-linking microsphere (Roy et al., 2009), the cryogenic grinding 

method (Kojima et al., 2012), solvent evaporation method (Nagabhushanam & Rani, 2011), and 

the spray drying method (M Dixit, Kini, & Kulkarni, 2010). In addition, sustained release MA 

microcapsules prepared with acrylic polymers, MA beads based on cellulose acetate phthalate, 

MA microspheres, and MA matrix tablets have all been studied in the literature (Güngör, Yıldız, 

Özsoy, Cevher, & Araman, 2003; Sevgi et al., 2008). However, according to our knowledge,  no 

HME studies have been conducted for this drug, there are no MA orally disintegrated tablets 

available on the market, and there are no taste-masking studies reported in the literature 

regarding the bitter taste of MA. Also, there is no commercial MA sustained release product 

available on the market. Therefore, we found that MA is a very unique choice for a model drug 

to be studied and processed by hot melt extrusion, as illustrated and studied in the following 

chapters. 
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CHAPTER 2 

 

MEFENAMIC ACID TASTE-MASKED ORAL DISINTEGRATING TABLETS WITH 

ENHANCED SOLUBILITY VIA MOLECULAR INTERACTION PRODUCED BY HOT 

MELT EXTRUSION TECHNOLOGY 

Objectives: 

The objectives of the present study were to mask the bitter taste and to enhance the 

solubility of MA using HME solid dispersion techniques, and to optimize the HME processing 

conditions to manufacture stable orally disintegrating tablets by incorporating milled extrudates. 

In this study, we have selected Eudragit® E PO (aminoalkyl methacrylate copolymer) and 

explored its solubilizing and taste making potential for MA by HME. 

 

Abstract: 

The objective of this study was to enhance the solubility as well as to mask the intensely 

bitter taste of  the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility 

of the drug was improved by using Eudragit® E PO in different ratios via hot melt extrusion 

(HME), solid dispersion technology. Thermogravimetric analysis (TGA) demonstrated the 

stability of both the drug and polymer at the employed processing temperatures. The physical 

mixtures (20, 25, 30, and 40% of drug loads) were successfully extruded using a co-rotating  
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twin-screw extruder at 110°C with a screw speed of 100 rpm. Differential scanning calorimetry 

(DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. 

Powder X-ray diffraction (PXRD) analysis indicated that MA was converted to its amorphous 

phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding 

between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation 

of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the 

extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the 

orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability 

and rapid disintegration time in addition to having the desired taste-masking effect. All of the 

extruded formulations and the ODTs were found to be physically and chemically stable over a 

period of 6 months at 40°C/75% RH and 25 oC/ 60% RH.   

 

Keywords: Hot-melt extrusion; Orally disintegrating tablets; Solid dispersion; Solubility 

enhancement; Taste masking effect; Molecular interaction. 
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2.1. Introduction: 

The oral route of drug administration has many advantages over other routes (i.e. simple 

self-administration, painlessness compared to the parenteral route, and often excellent patient 

compliance) and, is generally considered to be the most important route for a drug delivery 

system (Chaudhary, Gauri, Rathee, & Kumar, 2013; Hearnden et al., 2012; Park, Lim, Kang, & 

Lee, 2013; Sattar & Lane, 2014).  However, some patients may find it difficult to swallow intact 

tablets or capsules. This is particularly true for both pediatric and geriatric populations, who have 

a tendency to suffer from dysphagia, or among those who suffer from certain mental disorders. 

These problems could be overcome, in part, by developing orally disintegrating tablets (ODT). 

These tablets have the capability to dissolve in the mouth rapidly without the need of additional 

water, or they can dispersed directly in water to make a suspension which is then administered as 

a liquid (Abdelbary et al., 2005; M. Huang et al., 2012). The U.S. FDA has defined ODTs as “A 

solid dosage form containing medical substance or active ingredient which disintegrates rapidly, 

usually within a matter of seconds when placed upon the tongue” therefore the disintegration 

time for ODT’s are limited from seconds up to a minute (Narmada, Mohini, Prakash Rao, 

Gowrinath, & Kumar, 2009). In addition to rapid disintegration concerns, ODT formulations 

must also provide sufficient taste masking as the tablet dissolves in the oral cavity thereby 

allowing the drug to come into direct contact with the patient’s taste buds. The bitter taste of the 

drug could be prevented from coming in directly contact with the patient’s tongue, via the 

formulation of a solid dispersion system (J.-I. Kim et al., 2013). 

According to the drug discovery field, more than 50% of the active pharmaceutical 

ingredients (APIs) belongs to class II of Biopharmaceutical classification system (BCS), 

characterized as poorly soluble compounds resulting in low bioavailability, which is a major 
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disadvantage in oral drug delivery systems (Liu, Cao, Zhang, & Ping, 2013). The bioavailability 

can be enhanced by increasing the apparent solubility of the API (Shah et al., 2013; P. H.-L. Tran 

et al., 2013; Vo, Park, & Lee, 2013). Various strategies for improving solubility of poorly water 

soluble drugs have been developed, such as micronization, chemical modification, pH 

adjustment, solid dispersion formation, complexation, co-solvency, micellar solubilization, 

hydrotropy etc (Vemula, Lagishetty, & Lingala, 2010). Amorphous solid dispersion formulation 

is a technique that leads to the conversion of the crystalline lattice to the amorphous phase and 

disperses the drug molecules in a suitable carrier in order to enhance the solubility of the drug 

(Khan, Kotta, Ansari, Sharma, & Ali, 2014). High drug load in the drug delivery system, 

especially in solid dispersion systems, is crucial when high dosing is required. Thus, the present 

study has employed hot-melt extrusion (HME) technology to improve the solubility and to mask 

the bitter taste of the API in the ODT formulations with maximized drug load.  

Over the last decade, HME has been used as a processing technique in the pharmaceutical 

industry for the formulation of oral solid dosage forms. HME has multiple inherent advantages 

such as elimination of organic solvents and fewer processing steps compared to the other 

pharmaceutical technologies (Crowley et al., 2007; Madana & Madanb, 2012). HME has been 

used to form solid dispersions in order to increase the bioavailability of many drugs by 

increasing their solubility. This is especially true for BCS class II drugs (Mohammed et al., 2012; 

Park, Kang, et al., 2013; Reintjes, 2011). Also, HME has been utilized for taste masking 

purposes (Maniruzzaman, Boateng, Bonnefille, et al., 2012). Mefenamic acid (MA) [2-(2,3-

dimethyl phenyl) aminobenzoic acid], is a non-steroidal anti-inflammatory agent, which acts by 

inhibiting the activity of cyclo-oxygenase-2 and thereby the production of prostaglandin 

(Zeinolabedini Hezave et al., 2012). It is an odorless white or light gray powder with a melting 
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point of 230°-231°C, with an unpleasant taste, which could lead to patient compliance issues 

(Adam et al., 2000; Mudit Dixit et al., 2011) was used as a model drug.  

 Based on our knowledge, there is no MA ODT available on the market.  In addition, there 

are no taste masking studies reported in the literature regarding the bitter taste of MA. Therefore, 

the objectives of the present study were to mask the bitter taste and to enhance the solubility of 

MA using HME solid dispersion techniques, and to optimize the HME processing conditions to 

manufacture stable orally disintegrating tablets by incorporating milled extrudates. In this study, 

the authors selected Eudragit® E PO (aminoalkyl methacrylate copolymer) and explored its 

solubilizing and taste making potential for MA by HME. 

 

2.2. Materials:  

Mefenamic acid (MA) was purchased from Sigma Aldrich (Bellefonte PA. USA); 

Eudragit® E PO and Aerosil® was gifted by Evonik (Evonik Industries, Germany); Avicel® 200 

was gifted by FMC Biopolymers (Philadelphia, PA. USA); PolyplasdoneTM crospovidone was 

gifted by ISP Technologies (ISP Technologies, Inc., Wayne, NJ, USA); Magnesium stearate was 

purchased from Mallinckrodt (St. Louis, MO, USA). All other chemicals used were of analytical 

grade.  

 

2.3. Preparation methods: 

2.3.1. Preparation and Evaluation of Hot-Melt Extrudates 

2.3.1.1. Thermal   Gravimetric   Analysis   (TGA): 
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The thermal stabilities of Eudragit® E PO, Mefenamic acid and the physical mixtures, 

were determined in the temperature range of 30°C to 250°C, at heating rate of 20°C/min by TGA 

(Pyris 1 TGA, Perkin Elmer) using Pyris manager software (PerkinElmer Life and Analytical 

Sciences, 719 Bridgeport Ave., CT, USA). The analysis was performed on samples of 

approximately 3-5 mg and evaluated as a function of weight loss. 

2.3.1.2. Preparation of Hot Melt Extrudates 

Mefenamic acid was blended with Eudragit® E PO at drug loadings of 20%, 25%, 30%, 

and 40% using a V-shell blender (GlobePharma, Maxiblend®, New Brunswick, NJ). The binary 

mixtures of drug and polymer were extruded using a co-rotating twin-screw extruder (16 mm 

Prism Euro Lab, ThermoFisher Scientific) at 110°C with a screw speed of 100 rpm. The 

extrudates were further processed using a comminuting mill (Fitzpatrick, Model L1A), which 

was sieved by USP mesh (#35). 

2.3.1.3. Determination of Drug Loading using Differential Scanning Calorimetry (DSC) 

 DSC (Diamond DSC, Perkin Elmer) equipped with Pyris manager software, was utilized 

to determine the physical properties, stability and miscibility of binary mixture of MA with the 

Eudragit® E PO in each physical mixture and the extrudates. Samples were prepared by weighing 

2-4 mg each in hermetically sealed aluminum pans and analyzed at a heating rate of 

20°C/minute under an inert nitrogen atmosphere at a flow rate of 20ml/min, over a temperature 

range of 30°C to 250°C.  

2.3.1.4. Powder X-Ray Diffraction (PXRD) 

 PXRD measurements were used to study the crystallinity of the MA in melt extrudates. 

The PXRD studies were performed using a powder X-ray diffraction apparatus (Bruker AXS, 
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Madison, MI) at room temperature using CuKα radiation at 15 mA and 30 kV, 4°/min, and 

diffraction angles (2θ) of 1-40°. 

2.3.1.5. Fourier Transform Infrared Spectroscopy (FT-IR) 

  FT-IR spectroscopic analysis was performed on the extruded samples to study the drug-

polymer interactions and corroborate the miscibility results obtained by DSC. FT-IR was 

conducted on a Cary 660 bench (Agilent Technologies, Santa Clara, CA.). The bench was 

equipped with an ATR (Pike Technologies MIRacle ATR, Madison, WI), which was fitted with 

a single bounce diamond coated ZnSe internal reflection element. 

2.3.1.6. Scanning Electron Microscope (SEM) 

The surface morphology of the pure drug and milled extrudates were evaluated and studied 

using SEM. Samples were mounted on adhesive carbon pads placed on aluminum stubs prior to 

sputter coating. A Hummer® 6.2 sputtering system (Anatech LTD, Springfield, VA) in a high 

vacuum evaporator were used to sputter-coated the samples with gold. SEM (JEOL JSM-5600) 

operating at an accelerating voltage of 10 kV was used for imaging. Three magnificent (500X, 

1000X, 1500X) were used to give more accurate and clear results comparing each blend with 

pure MA.    

 2.3.1.7. Quantitative evaluations on extrudates  

         All of the prepared extrudates were evaluated for content uniformity and dissolution 

profiles. The milled extrudates were filled into hard HPMC capsules for in vitro drug release 

studies, each capsule containing the equivalent amount of 100 mg MA. The capsule dissolution 

tests  were conducted in 500 ml of acetate buffer (pH 5.5) dissolution medium utilizing a USP 

apparatus II (Hanson SR8) at 37 ± 0.5°C for 120 minutes with a rotation speed of 100 rpm (n=3) 
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(Kojima et al., 2012). All of the samples from the content uniformity test and dissolution studies 

were analyzed using a Waters HPLC-UV system.  

2.3.1.8. HPLC Method 

A Waters HPLC (Waters Corp, Milford, MA, USA) and Empower 2 software were used to 

analyze the samples and data. The stationary phase consisted of a Symmetry Shield C18, 

250Å~4.6 mm, 5 μm particle size reverse-phase column. The mobile phase consisted of 

methanol: water: acetonitrile (80:17.5:2.5 v/v) with the pH adjusted to 3.0 with phosphoric acid 

(85%). The detection wavelength was set at 225 nm and the mobile phase flow rate was 

maintained at 1.0 mL/min. The injection volume for all samples was 20 μL (Sultana, Arayne, 

Siddiqui, & Naveed, 2012). All assays studies were performed in triplicate (n=3). 

2.3.2. Preparation and Evaluation for Orally Disintegrating Tablets 

2.3.2.1. Tablet Preparations 

          20% and 25% drug loading extrudates were selected to make ODTs based on the FT-IR, 

SEM and dissolution results. Selected milled extrudates were mixed with excipients 

(microcrystalline cellulose, PolyplasdoneTM crospovidone, colloidal silicon dioxide and 

magnesium stearate) and sieved using US # 35 of mesh size, and compressed at 4-4.1 kN on a 

manual tablet press (MCTMI, Globe Pharma Inc., New Brunswick, NJ) using a 12 mm flat 

punch to a final tablet weight of 650 mg (Table 2-1). 
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Table 2-1: Compositions of Mefenamic Acid ODTs 

 

 

Excipients  

20% MA/EPO 
EXTRUDATES  

25% MA/EPO 
EXTRUDATES  

% 
(W/W) 

Weight 
(mg/tablet) 

% 
(W/W) 

Weight 
(mg/tablet) 

Mefenamic acid 15.38 100.00 15.38 100.00 

Eudragit®  E PO 61.53 400.00 46.15 300.00 

Avicel® 102 12.58 81.75 27.96 181.75 

AEROSIL® 200 5.0 32.5 5.0 32.5 

PolyplasdoneTM  
crospovidone 

5.0 32.5 5.0 32.5 

Magnisium 
Stearate 

0.5 3.25 0.5 3.25 

Total 100.00 650.00 100.00 650.00 

 

2.3.2.2. Compressibility Test to Make ODTs 

Prior to compression, compressibility test was carried out with the final mixtures. The bulk 

density (ρb) was determined by placing a specific amount of the mixture (M) in 100 ml 

graduated cylinder to measure the bulk volume (Vb). Bulk density was calculated using the 

following equation [35]: 

ρb = M/Vb                        Eq.1. 

Tap density (ρt) was determined by placing a known amount of the mixture into a 100 mL 

graduated cylinder and measuring its volume. The mixture was then tapped for 100 times and its 
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volume was measured again. The tap density was calculated using the following equation [35]: 

ρt = M/Vt                         Eq.2. 

Where M is the amount of the blend and Vt is the tapped volume. 

Compressibility index (Carr’s index, I) was determined by the following equation [35]: 

I = (ρt –ρb)/ ρt ×100         Eq.3. 

2.3.2.3. Tablet Characterization 

The compressed tablets were evaluated for thickness, diameter, hardness, friability and 

disintegration test. A digital vernier caliper (Fisher Scientific) was used to evaluate the thickness 

and diameter of the tablets. A hardness tester (VarianVK200, Agilent technologies, 13000 

Weston Pkwy, Cary, NC was used to evaluate the hardness of the tablets (n=6). Friability studies 

were performed by Roche friabilator) for 4 min at 25 rpm (n=10, total weight-6.5 g). 

Disintegration testing was performed on Dr. Schleuniger Pharmatron USP disintegration 

apparatus (n=6) at 37±0.5°C [5]. The tablet dissolution test for drug release was carried out using 

the previously outlined conditions for capsules. 

2.3.2.4 In vitro taste masking evaluation of OTDs 

          In vitro dissolution studies were carried out by two different methods to analyze the taste-

masking efficiency. In vitro oral drug release was conducted in 150 ml of simulated saliva fluids 

adjusted to pH 6.8 (Table 2-2). A dissolution apparatus II (Hanson SR8), which equipped with 

UV-Vis probes (Rainbow Dissolution Monitor, pION) set at 225 nm with collecting samples 

every 5 seconds for 120 seconds, was used and maintained at 37 ± 0.5°C with a shaft rotation 

speed of 100 rpm (n=3). In addition, a 500 ml of water using USP apparatus II (Hanson SR8) at 
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37 ± 0.5°C with a rotation speed of 50 rpm (n=3) was conducted and samples were collected at 

time points of 0.5, 1, 2, 3, and 5 minute. 

 

Table 2-2:  Composition of artificial saliva media adjusted to pH 6.8 

 

 

2.3.3. Stability Studies 

Stability testing was performed over a period of 6 months at accelerated conditions and a 

year at normal conditions to evaluate the physical and chemical stability of the extrudates and 

ODTs. The extrudates and ODTs samples were stored in closed glass vials at 40°C/75%RH and 

25 oC/60% RH, respectively. DSC, FT-IR, and XRD were utilized to determine the influence of 

the temperature and humidity conditions on the physical stability of the formulations. The 

extrudates and ODTs samples were evaluated for chemical stability by measuring drug content 

and content uniformity, which were compared with fresh ones. Additionally, the in vitro drug 
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release studies in aqueous and 0.1 M acetate buffer media were also performed on the samples 

and the release profiles were compared with the fresh ones using the similarity factor (f2 value) 

(J.-Y. Kim et al., 2012). All of the samples from the drug content, content uniformity test and 

dissolution studies were analyzed using a Waters HPLC-UV system. 

2.4. Results and discussion:  

2.4.1. Thermal Analysis 

TGA thermogram demonstrated the thermal stability of pure MA and all physical 

mixtures at the employed processing temperatures (Fig. 2-1). Mefenamic acid and all of the 

physical mixtures showed no significant degradation up to 200oC. Less than 2% of 

degradation was considered as residual water of MA and other excipients. Therefore, all of 

the formulations were assumed to be thermally stable during the hot melt extrusion process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 2-1: Thermogravimetric analysis of various MA/EPO mixtures   

� MA 
� 20% MA/EPO 
� 25% MA/EPO 
� 30% MA/EPO 
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DSC studies of the physical mixtures and the extrudates showed complete miscibility 

between the MA and Eudragit® E PO at 20%, 25%, 30%, and 40% of drug loadings (Fig. 2-2). 

Moreover, the DSC studies revealed that MA exhibited an endothermic peak at 230°C. 

However, the disappearance of the MA melting peak in both of the physical mixtures up to 40% 

drug load and the melt extrudates confirmed the formation of amorphous solid dispersions of MA 

in Eudragit® E PO. Additionally, the absence of the melting peak in the thermograms indicates 

that the drug was completely solubilized in the melt-extruded matrices [27]. 

 

Fig. 2-2 :  MA/EPO miscibility studies using DSC at temperatures of 30-250°C and heating rate 

of 20 °C/min 
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2.4.2. Hot Melt Extrusion Process 

The hot melt extrusion process is affected by the different physical and chemical 

properties of the drug and the carrier, which also affects the final product as well (Repka et al., 

2012; Sarode, Sandhu, Shah, Malick, & Zia, 2013). Thus, the process condition should be 

adjusted and optimized according to the physicochemical properties of both the API and the 

excipients. Based on the TGA and DSC studies as well as other preliminary studies, the extruder 

temperature and screw speed seemed to be well adjusted. Therefore, four drug loads (20%, 25%, 

30%, and 40%) were extruded at 110oC with a screw speed of 100 rpm to produce uniform rod 

extrudates. All of the extruded formulations possessed exceptional drug content (>98%) as well 

as content uniformities (<3% RSD) after hot melt extrusion processing. This is indicative of a 

robust formulation and process. However, 20% and 25% of drug loaded extrudates were 

transparent in appearance, whereas 30% and 40% drug loaded extrudates were opaque due to 

increasing the amount of drug and decreasing the fraction of the Eudragit® E PO. 

Eudragit® E PO is a cationic copolymer, consists of dimethyl amino ethyl methacrylate 

and neutral methacrylic acid ester, which is in the amorphous form. According to the literature 

on solid dispersion, E PO has multiple uses in the pharmaceutical field such as taste and odor 

masking [36]. In this work E PO has been selected as a primary carrier due to its cationic nature, 

which forms counter ionic intermolecular interaction with the weakly acidic drug (Figure 2-3). 

The interaction between Eudragit® E PO and MA was later confirmed by FT-IR analysis. This 

interaction may have aided in improving taste masking efficiency as well as drug release. The 

advantage of using E PO is that it is very stable thermally, and has a very low glass transition 

temperature, which is beneficial during HME processing (Kojima et al., 2012; Madana & 
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Madanb, 2012). MA has a high melting point of 230 0C. However, the binary mixtures could be 

extruded at a low temperature of 110 0C without the addition of a plasticizer, which indicates that 

MA acted as a plasticizer with E PO.  

 

Fig. 2-3: Chemical structure of Eudragit® E PO. 
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 Fig. 2 -4: In vitro dissolution profiles of MA/EPO extrudates in 0.1 M acetate buffer (pH 5.5) 

dissolution media. 

 

2.4.3. In Vitro Dissolution Studies on Extrudates 

Mefenamic acid is known to be increasingly soluble when raising the buffer’s pH from pH 

1.2 to 9.0. MA is a weak acid (pKa=4.32) and easily ionizes at higher pH (Klose et al., 2011). 

Thus, the US Pharmacopeia recommended pH 9.0 buffer as a dissolution media to produce sink 

conditions. E PO is basic material (butylated methacrylate copolymer) with high solubility in the 

gastric media (1.2-5.0 pH), which cannot dissolve or swell above pH 5. This property of E PO 

makes it an attractive copolymer for taste masking applications. Therefore, choosing acetate 
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buffer of pH 5.5 as a dissolution media is a reasonable choice for this extruded formulation, and 

has been previously reported in the literature (Kojima et al., 2012). Drug release studies were 

performed to understand the dissolution behavior of MA from the binary solid dispersion 

matrices.  

According to the in vitro dissolution studies, drug release from all of the extruded 

formulations (acetate buffer) demonstrated improved dissolution as compared to the pure drug. 

The drug release from the 20% and 25% drug loaded extrudates reached more than 85% within 

40 minutes, whereas less than 1% drug release within 40 minutes was observed for the pure drug, 

and less than 15% release for the physical mixture (20% of drug load) under the same conditions 

(Figure 3). However, the 20% drug loaded formulation demonstrated approximately 99% release 

within 60 minutes. Thus, the dissolution of MA was greatly enhanced by increasing the portion 

of Eudragit® E PO, and up to 25% drug loading. This indicates that the melt extruded molecular 

dispersion with Eudragit® E PO plays an integral role in enhancing the dissolution rate of MA. 

The mechanism by which the drug release was enhanced in these formulations is discussed in 

greater detail in the ‘physico-chemical properties of extrudates’ section.  

2.4.4. Physico-Chemical Properties of Extrudates 

The characteristic PXRD peaks of crystalline MA were observed at 2θ= 6.3, 21.4, and 

26.3. These peaks indicated that the pure MA is in a crystalline state. Eudragit® E PO showed no 

characteristic peaks, indicating the amorphous structure of the polymer. The MA peaks were 

absent in the hot melt extruded binary formulations with up to 40% drug loading (fig. 2-5). These 

results confirm that crystalline MA was transformed into the amorphous phase during the HME 

processing with Eudragit® E PO.  
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Fig. 2-5: PXRD analysis for pure MA, E PO and various MA/EPO extrudates. 

 

FT-IR analysis was used to observe the drug-polymer interactions usually resulting in peak 

shifting or the appearance/absence of absorbance peaks.  MA showed three significant stretching 

absorbance peaks at 3,308 cm−1, 1,646 cm−1, and 1,573 cm−1 representative of the functional 

groups of N-H, C=O, and C=C respectively (fig. 2-6). Additionally, E PO spectra showed one 

significant peak from the stretching of a carbonyl C=O at 1,730 cm−1. Furthermore, from the 

chemical structure of MA, it can be seen that available carboxyl group (proton-donating group) 

and the aminoalkyl group (proton-accepting group) in E PO may have a strong interaction. This 

interaction was confirmed by the absence of the peaks at 1,646 cm−1 and 1,573 cm−1. Therefore, 
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FTIR analysis clearly indicated strong intermolecular interactions (hydrogen bonding) were 

induced between MA and the E PO by HME processing. This interaction is presumed to have led 

to the enhanced MA release profile. However, the MA peak at 1,646 cm−1 reappeared when drug 

loading increased to 40%. Based on these findings, it is apparent that 30% drug loading saturated 

the hydrogen bonding capacity of the polymer. Consequently, 30% and 40% of drug loadings 

showed relatively lower drug release as well as precipitation.  

    

Fig. 2-6: FTIR analysis for pure MA, EPO and various MA/EPO extrudates. 
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Kojima et al. (2012) used MA and E PO to prepare solid dispersion formulations, which 

were subsequently stabilized in a supersaturated state utilizing cryogenic milling at -180°C for 

90 min. They reported that the strong intermolecular interactions between MA and E PO resulted 

in enhanced bioavailability as well as long-term storage stability in the solid state (Kojima et al., 

2012). In this current research, solid dispersions composed of MA and E PO prepared by hot 

melt extrusion technology demonstrated the same strong intermolecular interactions, which were 

made evident by FT-IR analysis. 

Scanning Electron Microscope (SEM) showed a remarkable difference between pure MA 

and processed binary mixtures (fig. 2-7). Pure MA (2-7-e) seemed to consist of microcrystalline 

aggregates with a coarse surface. On the other hand, 20% (2-7-a) and 25% (2-7-b) drug loaded 

dispersions exhibited smooth surfaces and no aggregation suggesting a completely miscible 

single-phase binary solid dispersion system. However, increase in drug loading further results in 

increase in agglomeration as shown in fig. 2-7-c (30%) and 2-7-d (40%). 

The above analysis confirms that the extrudates up to 25% drug loading produced 

completely miscible systems. Consequently, 20% and 25% of drug loading hot melt extrudates 

showed very high dissolution rates as compared to the pure API. Though the drug loadings of 30% 

and 40% were changed to an amorphous phase, there was an occurrence of precipitation and 

decrease in the drug release which may be due to the weak or absent intermolecular interaction 

and agglomeration.. Based on these findings, only 20% and 25% drug loadings were chosen for 

further studies with orally disintegrating tablets (ODT).  
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Fig.  2-7: SEM images: (a) 20% MA/EPO extrudate; (b) 25% MA/EPO exrudate; (c) 30% 

MA/EPO extrudate; (d) 40% MA/EPO extrudate; (e) Pure MA. 

 

2.4.5. Preparation and Characterization of Orally Disintegrating Tablets  

Based on the previous findings, 20% and 25% drug loaded hot-melt extrudates were 

selected to make orally disintegrating tablets. The selected extrudates and corresponding physical 

mixtures were mixed with tableting excipients (microcrystalline cellulose, colloidal silicon 

dioxide, polyplasdoneTM crospovidone) for 10 min using V-shell blender (GlobePharma, 

Maxiblend®). Magnesium stearate was added during the final two minutes of mixing. The 

resulting mixtures were tested for bulk density, tap density and Carr’s index (Table 2-3). These 

(a) (b) (c) 

(d) (e) 
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mixtures were compressed into tablets and evaluated by tablet characterization tests. The results 

of tablet weight, thickness, hardness, friability and disintegrating time were shown in Figure 2-8. 

The ODT with 25% drug loading showed improved hardness and friability values compared to 

20% of drug loading, which may be due to decreasing the amount of extrudate and increasing the 

amount of microcrystalline cellulose. Both ODT formulations exhibited less than 1% friability, 

which meets the USP specification. The super-disintegrant, cros-povidone, played a key role in 

disintegration, and consequently, both of the tablets disintegrated in less than 25 seconds. These 

ODTs showed almost ideal drug content as well as content uniformity for 20% and 25 % drug 

loaded tablets which were 98.8% ± 2.5 and 102.8% ± 1.0, respectively. 

Table 2-3: Physical Properties of Final Blends (n=3) 

 

  

20% MA/EPO + Excipients 

 

25% MA/EPO + Excipients 

 

Bulk density (g/cm3) 

 

0.4 

 

0.38 

 

Tapped density (g/cm3) 

 

0.5 

 

0.52 

 

Carr’s index (%) 

 

20 

 

26.90 
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Fig. 2-8: Tablet Properties (weight, thickness, hardness, friability and disintegration time) for 

20% and 25% of drug loaded ODTs. 

All tablets containing extruded material consistently demonstrated enhanced drug release 

profiles when compared to tablets containing their corresponding physical mixtures (20% drug 

load). The drug release from the 20% and 25% drug loaded tablets containing extrudates in pH 

5.5 acetate buffer was more than 80% within 5 minutes compared to that less than 10% of drug 

release was seen with tablets containing physical mixture under the same conditions (Fig. 2-9).  

However, the drug release from the tablets in the water media for taste masking assessment, 

which can be placed in a glass of water and administered as a suspension, were less than 2% 

during the first five minutes (Fig. 2-10) as well as the drug release from the simulated salivary 

fluid, which can be administered directly into the mouth, were less than 4% during the first 2 

minutes (Fig. 2-11) indicating that the bitter taste of the drug was suppressed when processed by 
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hot melt extrusion [37-40].  

      

     Fig. 2-9: In vitro dissolution profiles of ODTs in 0.1 M acetate buffer (pH 5.5). 

       

     Fig. 2-10: In vitro taste masking dissolution testing of ODTs in aqueous media. 
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   Fig. 2-11: In vitro taste masking dissolution testing of ODTs in artificial saliva media (pH 6.8). 

 

2.5. Stability Tests 

The rate of recrystallization for amorphous drugs during storage is of considerable concern 

as they are often physically unstable due to their high-energy states (Ewing, Clarke, & Kazarian, 

2014; Keen et al., 2014). Therefore, there are many polymers commercially available that assist 

in maintaining drugs in the amorphous form for extended periods of time. Drug-polymer 

interactions may increase the physical stability by increasing their energy barrier for nucleation 

(Konno & Taylor, 2006; Sathigari, Radhakrishnan, Davis, Parsons, & Babu, 2012). In this work, 

all of the extruded formulations and ODTs were found to be physically stable when stored under 

an accelerated stability conditions (40°C/75% RH) and (25oC/60% RH) for a period of 6 months 

and 12 months, respectively. DSC analysis data showed absence of MA melting endothermic 

peaks, which confirms the miscibility status of drug, indicating that the MA is still in the 
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amorphous form even after 6 months (Fig. 2-12-a). Additionally, the MA crystalline peaks in 

XRD for the extrudates were absent as well (Fig. 2-12-b). The FT-IR results also indicated no 

differences between, before and after stability testing (data not shown). The contents for two 

drug loaded extrudates (20% and 25%) after 6 months were identical with the results obtained 

before the stability study. Dissolution studies were also utilized to verify any post-storage 

changes. The drug release profiles were assessed by similarity factor (f2 value), which was 

developed to evaluate the degree of similarity between two in vitro dissolution profiles. If the 

similarity factor is between 50 and 100, that would suggest that two release profiles are similar 

(J.-Y. Kim et al., 2012). The f2 value of 20% and 25% drug loaded extrudates were 59.3 and 62.3 

respectively under accelerated condition (40°C/75% RH). The ODTs in 0.1 M acetate buffer 

media showed more than 85% drug release in 15 minutes, which is considered similar and also it 

was further supported by f2 value measurements which were 67 and 64. Also the f2 values were 

88 (20% drug loading) and 82 (25% drug loading) in aqueous media. It can be considered that 

the drug release profiles after long-term storage under normal and accelerated conditions were 

similar to the initial ones (Fig. 2-12-c and Fig. 2-13).  

Based on these results, the solid dispersions produced via hot-melt extrusion processing 

were very stable during 6 months at accelerated conditions (40°C/75% RH). Therefore, the 

molecular interaction between MA and E PO is playing a key role in API phase stability when 

processed by hot melt extrusion.  
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Fig. 2-12: Accelerated stability test (40°C/75% RH) for 6 months of MA/EPO extrudates: (a) 

DSC results; (b) PXRD data; (c) Drug release of extrudates in 0.1 M acetate buffer (pH 5.5). 

 

(a) (b) 

(c) 
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(a) 

    

(b) 

    

 

Fig. 2-13: In vitro drug release after 6 & 12 months stability at (25 0C/60% RH) of MA/ EPO 
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ODTs: (a) 0.1 M acetate buffer (pH 5.5); (b) aqueous media 

2.6. Conclusion 

 Mefenamic acid was successfully extruded with the various concentrations of Eudragit® E 

PO using HME technology. The optimized formulations produced very promising solid 

dispersions for both taste masking and solubility enhancement. The dissolution rate of MA was 

improved with the increase in the concentrations of Eudragit® E PO, indicating that Eudragit® E 

PO is playing an important role in the solubilization of this high melting point, poorly soluble 

drug. The mechanism of solubility enhancement was investigated using multiple methodologies, 

including TGA, DSC, PXRD, SEM and FT-IR. Finally, Mefenamic acid ODTs were successfully 

produced using HME solid dispersion techniques demonstrating short disintegration times, 

sufficient taste masking and high drug release profiles. 

 

"This chapter was reprinted from Journal of Drug Delivery Science and Technology, 27, 

Alshehri, Sultan M., et al. "Mefenamic acid taste-masked oral disintegrating tablets with 

enhanced solubility via molecular interaction produced by hot melt extrusion technology, 18-27, 

2015, with permission from Elsevier" 
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CHAPTER 3 

INVESTIGATIONS OF THE COMBINED EFFECT OF MGO AND PEG ON THE 

RELEASE PROFILE OF MEFENAMIC ACID PREPARED VIA HOT MELT 

EXTRUSION TECHNIQUE 

Objectives: 

The primary aim of this study was to investigate the dual effect of MgO and PEG on the 

drug release behavior of mefanamic acid (MA)/ polyvinylpyrrolidone (PVP) formulations 

utilizing hot-melt extrusion technology. 

Abstract: 

This study aimed to investigate the combined effect of magnesium oxide (MgO) as an alkalizer 

and polyethylene glycol (PEG) as a plasticizer and wetting agent in the presence of Kollidon® 12 

PF and 17 PF polymer carriers on the release profile of mefenamic acid (MA), which was 

prepared via hot-melt extrusion (HME) technique. Various drug loads of MA and various ratios 

of the polymers, PEG 3350, and MgO were blended using a V-shell blender and extruded using a 

twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific) at different screw speeds 

and temperatures to prepare a solid dispersion system. Differential scanning calorimetry and X-

ray diffraction data of the extruded material confirmed that the drug existed in the amorphous 

form, as evidenced by the absence of corresponding peaks. Intermolecular interactions between 

the drug and polyvinylpyrrolidone were clearly seen in the Fourier transform infrared spectra, 
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whereas MgO and PEG were not found to be involved in the observed hydrogen bond formation. 

MgO and PEG altered the micro-environmental pH to be more alkaline (pH 9) and increased the 

hydrophilicity and dispersibility of the extrudates to enhance MA solubility and release, 

respectively. The in vitro release study demonstrated an immediate release for 2 h with more 

than 80% drug release within 45 min in matrices containing MgO and PEG in combination with 

PVP, when compared to the binary mixture, physical mixture, and pure drug.  

 

Keywords: Magnesium oxide, Polyethylene glycol, Mefenamic acid, Hot-melt extrusion, 

Kollidon® 12 PF and 17 PF.  
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3.1. Introduction 

         Mefenamic acid [N-(2,3-dimethylphenyl) anthranilic acid] is a non-steroidal anti-

inflammatory drug (NSAID) known to inhibit prostaglandin biosynthesis and is also a member 

of the fenamate group. Mefenamic acid (MA) is used as an anti-inflammatory, antipyretic, and 

potent analgesic agent to treat rheumatoid arthritis, osteoarthritis, dental pain, and 

dysmenorrhea.(Abdolmohammad-Zadeh et al., 2014; Kormosh & Matviychuk, 2013; 

Sriamornsak et al., 2014) According to the biopharmaceutical classification system (BCS), MA 

is a class II drug that exhibits high permeability and low water solubility (i.e. 20 mg/l, which is 

practically insoluble in water). This low solubility affects its rate of absorption from the GI tract 

and thus consequently decreases its oral bioavailability.(Alshehri et al., 2015; Sriamornsak et al., 

2014) Solid dispersion is a promising technique for overcoming this problem; it involves 

processing the poorly soluble drugs with hydrophilic polymers to change the nature of the drug, 

i.e. converting the crystalline form of the drug into an amorphous form that subsequently 

improves drug solubility and further increases drug bioavailability.(Crowley et al., 2007; 

Kindermann, Matthee, Strohmeyer, Sievert, & Breitkreutz, 2011)  

        Many techniques for formulating solid dispersion systems have been reported. The hot-melt 

extrusion (HME) technique has attracted attention in the pharmaceutical field as a novel 

technique with several advantages compared to other conventional techniques.(Morott et al., 

2015) HME is a continuous and solvent-free process and thus is considered an economical 

technique because it reduces processing steps and eliminates drying steps. Extrusion is the 

process of embedding a raw mixture of the drug, polymers, and other additives into a barrel and 

then forcing it through a die to produce a molten material of a uniform shape 

(extrudate).(Crowley et al., 2007; Singhal, Lohar, & Arora, 2011) Poor extrusion processability 
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is usually an issue since it leads to poor thermoplastic properties and degradation of most drugs. 

Adding a suitable carrier and/or plasticizer can promote the drug thermal stability by decreasing 

the processing temperature and enhance the extrusion processability.(Schilling, Bruce, Shah, 

Malick, & McGinity, 2008) PEG is a chemical synthesis polymer that is usually used in HME to 

enhance the solubility of a poorly soluble drug or as a plasticizer owing to its high 

hydrophilicity. This property gives PEGs the ability to increase the porosity, water uptake, and 

dispersibility of the formulations.(Saharan, Kukkar, Kataria, Gera, & Choudhury, 2009; 

Stanković, Frijlink, & Hinrichs, 2015)  

         The solubility of poorly water-soluble drug can be improved by incorporating a hydrophilic 

carrier into the matrix, such as polyvinyl pyrrolidone, eudragit, or hydroxyl propyl methyl 

cellulose. However, super saturation or recrystallization may limit the solubilization capacity of a 

solid dispersion system.(Sikarra, Shukla, Kharia, & Chatterjee, 2012) A pH modifier is a 

promising agent that increases the solubilization capacity of the drug in the microenvironment 

pH (pHM), since most of the active drugs are either weak acids or bases, with pH-dependent 

solubility.(M. Yang et al., 2014) 

        In the pharmaceutical field, the pHM is defined as a very thin layer surrounding drug 

particles that aids in water adsorption and formation of a saturated solution.(M. Yang et al., 

2014) This technique can consequently increase or decrease the pHM of the matrix by 

incorporating an alkalizer or acidifier, respectively.(Dvořáčková et al., 2013) This can potentially 

result in an improvement of the solubility and/or stability of the drug, or achievement of an 

excellent sustained release formulation as compared to the conventional binary solid dispersion 

system.(Siepe et al., 2006; T. T.-D. Tran, Tran, Choi, Han, & Lee, 2010) It has been reported that 

using a small amount of MgO as an alkalizer potentially increases the dissolution of the poorly 
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soluble drug telmisartan within a solid dispersion of polyethylene glycol 6000.(Phuong et al., 

2011; P. H. L. Tran, Tran, & Lee, 2008) In this study, we found that the addition of 5% MgO can 

modulate the pHM up to 9.0, thus increasing the drug release of the poorly soluble drug MA from 

the matrices. 

       The purpose of this novel study was to: (1) demonstrate the effect of 

polyvinylpyrrolidone (PVP) matrices on the release of the poorly water-soluble drug MA 

prepared using the hot-melt extrusion technique, (2) investigate the effect of PEG as a plasticizer 

and swelling agent in dissolution studies, (3) study the influence of MgO as an alkalizer on the 

modification of the microenvironmental pH of the matrices, and (4) investigate the combined 

effect of PEG and MgO on the drug release behavior of the formulations.    

   

3.2. MATERIALS AND METHODS 

3.2.1. Materials 

Mefenamic acid (MA) was purchased from Sigma Aldrich (Bellefonte PA. USA); 

Kollidon 12PF and Kollidon 17PF were obtained as gift samples from BASF (PEGPVCLPVA, 

BASF, Germany). Magnesium oxide and polyethylene glycol 3350 were purchased from Fisher 

Scientific. All other chemicals used in this study were of analytical grade.  

 

3.2.2. Methods 

3.2.2.1. Thermal gravimetric analysis 

       Thermal gravimetric analysis (TGA) was performed in order to examine the thermal stability 



 
 

47

of the pure components and physical mixture at the employed extrusion conditions (TGA, Pyris 

1 TGA, Perkin Elmer). Samples weighing around 5-7 mg were placed in a platinum pan before 

heating from 30°C to 250°C at heating rate of 20°C/min under an inert nitrogen gas purge of 20 

ml/min. 

3.2.2.2. Loss on drying 

        For the loss on drying (LOD) test, the moisture analyzer (MB45, Ohaus) was used to 

measure the amount of moisture in each formulation (physical mixture and pure drug). Each 

sample was placed in the aluminum dish, accurately weighed on the thermo-balance of moisture 

analyzer, and further heated electrically at 120°C for 15 min. The moisture analyzer 

automatically calculated the moisture loss from the sample in this process. The % LOD was 

calculated using the following equation: 

����%� = �	
�
� ��
�ℎ� �� �ℎ� �����
�
	� ��
�ℎ� �� �ℎ� ����� ����� ���
	� × 100 

3.2.2.3. Differential scanning calorimetry (DSC) 

       DSC (Diamond DSC, Perkin Elmer) studies were performed to evaluate the stability and 

miscibility of the drug within the matrices before and after the extrusion process. Samples were 

weighed (2-4 mg) and placed in hermetically sealed aluminum pans before analysis at 10°C/min 

with a heating rate between 30°C to 250°C under an inert nitrogen gas at a flow rate of 20 

ml/min. The obtained data was analyzed using Pyris manager software (Shelton, CT, USA). 

3.2.2.4. HPLC analysis 

      A reverse phase HPLC system was used for the analysis of MA (Waters Corp, Milford, MA, 

USA). The reverse-phase column consisted of a Symmetry Shield (C18, 250Å~4.6 mm, 5 μm 
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particle size). The mobile phase comprised methanol, water, and acetonitrile at a ratio of 

80:17.5:2.5 v/v, respectively. The pH of the mobile phase was adjusted with phosphoric acid 

(85%) to 3.0. The mobile phase was degassed under vacuum conditions for 10 min. The injection 

volume was 20 μL and the mobile phase flow rate was adjusted at 1.0 mL/min. The detection 

wavelength was set at 225 nm and all studies were performed in triplicate (n = 3).(Andrews, 

AbuDiak, & Jones, 2010) 

3.2.2.5. Preparation of hot melt extrudates 

       Before preparing the physical mixture, the polymers were separated using USP mesh screen 

#35 to remove any aggregations. Various drug loads of MA and various ratios of polymers, with 

or without PEG 3350 (plasticizer) and MgO (alkalizer), were blended using a V-shell blender 

(GlobePharma, Maxiblend®) at 25 rpm for almost 10 min (Table 3-1).  Each blend was extruded 

using a twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific) at a temperature 

range of 100-160°C and screw speed of 100 rpm. The rod-shaped extrudates were milled using a 

comminuting mill (Fitzpatrick, Model “L1A”), sieved using USP mesh (#35), and stored in glass 

vials for further analysis.  

3.2.2.6. Evaluation of MA capsules   

       Hot-melt extrudates equivalent to 100 mg MA were filled in HPMC capsules. In-vitro 

release studies were conducted for all of the formulations in 900 ml phosphate buffer (pH 6.8) as 

the dissolution medium utilizing an USP apparatus II (Hanson SR8) maintained at 37 ± 0.5°C for 

120 minutes with a shaft rotation speed of 50 rpm (n = 3). Sample (1.5 ml) was collected at the 

following intervals: 10, 20, 30, 45, 60, 90, and 120 min. It was then centrifuged (Centrifuge 

Eppendorf 5415 R) for 8 min at 13,000 rpm and 25°C, and then analyzed using the Waters 
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HPLC-UV system. Fresh dissolution media was added to the dissolution vessels, equivalent to 

1.5 ml at each time point. 

Table 3-1: Formulation Design and processing conditions. 

 

 

Formulations 

 

 

MA  

W/W% 

 

 

K12 

W/W% 

 

 

K17 

W/W% 

 

 

MgO 

W/W% 

 

 

PEG 
3350 

W/W% 

Extrusion 
Conditions 

Temp. 
0
C 

Speed 
rpm 

F1 20 80 - - - 145 100 

F2 20 70 - - 10 110 100 

F3 20 75 - 5 - 120 100 

F4 20 65 - 5 10 110 100 

F5 20 - 80 - - 150 100 

F6 20 - 70 - 10 125 100 

F7 20 - 65 5 10 130 100 

 

 

3.2.2.7. Fourier transform infrared spectroscopy (FT-IR) 

       Mid-infrared spectra were collected using an FT-IR bench (Agilent Technologies Cary 660, 

Santa Clara, CA). The bench was equipped with a high-pressure ATR (Pike Technologies 

MIRacle ATR, Madison, WI), which was fitted with a single bounce diamond-coated ZnSe 
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internal reflection element. Analysis of the spectra was performed using Resolution Pro Version 

5.2.0 (Agilent Technologies) software suite.  

3.2.2.8. Scanning electron microscope (SEM) 

        The surface size, shape, and structure of the pure drug and optimized formulations were 

evaluated using a JEOL JSM-5600 SEM. In a high-vacuum evaporator, a Hummer® 6.2 

sputtering system was used to sputter coat the samples with gold (Anatech LTD, Springfield, 

VA). Before sputter coating, the samples of interest were mounted on adhesive carbon pads set 

on aluminum stubs. An accelerating voltage of 5 kV equipped with JSM 5000 software was used 

for imaging. 

3.2.2.9. In-vitro media uptake studies 

       This study was conducted similar to the in-vitro dissolution studies described above. 

Samples were weighed and placed into the dissolution tester. Samples were withdrawn at two 

time points (10 and 20 min) and the excess liquid was removed by tissue paper. Samples were re-

weighed Wo, placed into an oven, and dried for 24 h before re-weighing for a constant weight, 

W1. The percentage media uptake capacity (MUC) was calculated using the following 

equation:(Kreye, Siepmann, & Siepmann, 2011) (Fig. 3-1) 

%� ! = "# − "%
"&

× 100 
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Fig. 3-1: schematic diagram for preparation of media uptake studies. 

3.2.2.10. Measurement of microenvironmental pH (pHM) 

       To investigate the effect of an alkalizer on the release of MA in the dissolution, the weighed 

capsules were removed from the dissolution media (pH 6.8) after 10 min time intervals. The non-

disintegrated capsules were removed from the dissolution and the water was strained off at 

ambient temperature. The pHM for each formulation was measured potentiometrically using an 

Oakton pH meter (pH Spear, Fisher Scientific) equipped with a contact electrode (Ha, Tran, 

Tran, Park, & Lee, 2011; Patil, Tiwari, Upadhye, Vladyka, & Repka, 2015; T. T.-D. Tran, Tran, 

& Lee, 2009) (Fig. 3-2) 
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Fig. 3-2: schematic diagram for Measurement of microenvironmental pH (pHM). 

3.2.2.11. Polarized light microscopy (PLM): 

      Polarized light microscopy was conducted using an optical microscope (Agilent 

Technologies 620 IR) equipped with crossed polarizers. The images were captured at 5X and 

15X magnification. Images were identified using Videum Capture software. Samples of interest 

were exposed to the dissolution media (pH 6.8 phosphate buffer) and observed at 0 and 30 min to 

understand dissolution behavior.   

3.2.2.12. Powder X-ray diffraction (PXRD) 

      The PXRD studies were performed using a Bruker AXS D8 ADVANCE XRD instrument 

(Bruker AXS, Madison, MI) at room temperature using a CuKα radiation current at 40 mA and 
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generator voltage at 40 kV. The scanning rate was 0.5 deg/min and diffraction angles (2Ɵ) of 3-

40°. 

3.2.2.13. Stability studies 

       Analysis of the physicochemical stabilities of the extrudates was carried out for a period of 6 

months to evaluate the influence of the temperature and humidity on the amorphous solid 

dispersion system. Corresponding samples were stored in stability chambers (Caron 6030 

Environmental Test Chamber, Caron Products and Services, Marietta, OH) in closed glass vials 

at 25°C/60% RH conditions. Physical stability of the formulations was determined by DSC and 

XRD. Drug content was determined by HPLC analysis to confirm chemical stability. In-vitro 

drug release studies after 3 and 6 months were evaluated and the similarity factor (f2 value) was 

applied to compare the dissolution profile at time 0 using the following equation:(Food & 

Administration, 2000)  

 �' = 50 × log ,-1 + /1 	0 1 ∑ �34 − 54�'46%7 89&.; × 100< 

 Where Rt and Tt is the cumulative percentage of drug released from the reference and the 

test product, respectively, at each of the selected n time points. The f2 value or similarity factor 

was calculated to determine whether two dissolution profiles are similar.  The two profiles are 

considered similar when the f2 value is between 50 and 100.  

3.2.2.14. Statistical analysis 

Differences between groups were analyzed by one-way analysis of variance (ANOVA) 

followed by Dunnett’s test. A difference of P < 0.05 was considered statistically significant as 

compared with the pure MA. 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Thermal analysis 

        TGA analysis is generally performed before running the extrusion process to evaluate the 

thermal stability of the drug and physical mixture, and to make sure the excipients are thermally 

stable under the processing extrusion temperatures. These excipients must not degrade either at 

or below the extrusion processing temperature. Our results show that there was a loss in weight 

after heating from 30 to 250°C with a heating rate of 20°C/min, which was about 4-5% with k12 

formulations and 5-7% with k17 formulations. This is considered high and may be due to drug 

degradation or water evaporation (Fig. 3-3). To confirm that this loss of weight was due to 

moisture uptake, because PVP polymers have the ability to absorb water, we applied the LOD 

moisture analyzer to the mixture for 15 min at a heating temperature of 120°C. The LOD results 

demonstrated that there was up to 9% moisture uptake, which further supports the TGA results 

(Table 3-2). Consequently, TGA studies confirmed the stability of the drug and the polymers at 

the employed extrusion temperatures.  

           To achieve proper HME outcomes, miscibility studies of the API within the matrix had to 

be addressed. Solid-state characterization of MA in the matrix was carried out using differential 

scanning calorimetry. MA exists in two polymorphic forms, I and II.(Romero, Escalera, & 

Bustamante, 1999) In the present study, form I, crystalline MA, was used. Form I has two 

endothermic peaks, a small one at 175°C and a more significant, sharp peak at 230°C. The K-

series of 12 and 17 polymers display a glass transition temperature at 90°C and 138°C, 

respectively.(Crowley et al., 2007), 34 Polyethylene glycol (PEG 3350) and magnesium oxide 
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(MgO) have melting point at 53-59°C and 2,852°C, respectively.(Al-Naser, Zhou, Wang, Liu, & 

Wang, 2015; Oh, Heng, & Chan, 2015) The melting endothermic peaks were not observed in the 

extrudates in all formulations up to 20% drug load, indicating that the drug was completely 

transformed into an amorphous state after the extrusion process. Therefore, the DSC studies of 

the pure drug and the extrudates demonstrated miscibility of drug and PVP polymers, as the 

corresponding sharp peak representative of the drug’s melting point at 230°C was not observed 

(Fig. 3-4). 

a) 
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b) 

       

Fig. 3-3: TGA analysis of: a) MA/ K12 formulations, b) MA/ K17 formulations. 

 

Table 3-2: LOD analysis of Pure MA and physical mixture: 

Formulations % LOD  

F1 6.64 

F2 6.44 

F3 8.16 

F4 7.24 

F5 9.22 

F6 8.73 

F7 9.17 

Pure drug  0.84 
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a) 

      

b) 

      

Fig. 3-4: Pure MA and extrudates miscibility studies using DSC at temperatures of 30-250℃ and 

heating rate of 10 ℃/min, a) PVP K12 formulations, b) PVP K17 formulations.  
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3.3.2. Proper hot melt extrusion process with MA 

         Before beginning the experiment, the HME process could be adjusted and optimized by 

studying the physical-chemical properties of the API and other materials. Choosing the 

appropriate excipients is highly recommended in order to formulate suitable HME products. 

These excipients should have some elastic behavior, i.e. they should be able to deform and pass 

easily through the extruder during processing and should solidify after extrusion from the die35. 

MA is considered a challenging drug to process via HME owing to its high melting point 

(230°C), which indicates high crystallinity and sticking behavior during manufacturing. Two 

polyvinylpyrrolidine (PVP) grades with various molecular weight and glass transition 

temperatures were selected as main carriers. They possess amorphous hydrophilic properties that 

aid in producing solid dispersions via HME technology. PVP is an efficient carrier due to its 

ability to inhibit drug recrystallization and decrease molecular motion of the amorphous drug, 

leading to a more stable solid dispersion system.(Andrews et al., 2010) PVP K12 has low Tg 

(90°C) with a high degradation temperature, which makes it easier to process during HME 

(Table 3-1).  

         Adding a plasticizer to the formula reduces the processing temperature and facilitates the 

extrusion process, thus decreasing the degradation of the drug and polymers. There were no 

issues during the extrusion process when MgO was added to the formulations owing to the low 

Tg of the polymer, K12. However, K17 has a high Tg (139°C) with a degradation temperature 

around 175°C, which makes it difficult to process using HME under 175°C without a plasticizer, 

especially when MgO is added to the formulations.   

         Therefore, MA and the polymers with and without a plasticizer were extrudable at the 

processing conditions previously stated (Table 3-1). However, K17 combined with an alkalizer 
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was not extrudable without a plasticizer. 

 

3.3.3. In vitro drug release studies 

        The dissolution profile of the pure drug, physical mixture, and solid dispersions in 

simulated intestinal fluid (pH 6.8) is shown in the figure 3-5. The release of the pure drug was 

less than 1% within first hour owing to the hydrophobic nature of the drug; the drug particles 

were not in contact with the media and did not dissolve. However, the binary solid dispersion of 

MA with K12 and K17 exhibited remarkable drug release, at less than 40% and 20% within 120 

min, respectively.  In this case, the extrudates had limited effect on the drug release even though 

the drug was transformed into an amorphous form. This low release was hypothesized to be due 

to the aggregation and agglomeration of the mixture in the dissolution media, because the drug 

did not dissolve well in the PVP polymer carrier. The difference in drug release between the two 

polymers was because of the difference in the viscosity, molecular weight, and water uptake 

ability.  Thus, we hypothesized that adding a wetting or dispersion agent would have a strong 

effect and reduce or prevent aggregation and agglomeration.    

         Polyethylene glycols (PEGs) are usually used as a plasticizer in the HME process due to 

their low melting point, low toxicity, and low cost.(Crowley et al., 2007) It has been reported 

that PEG has the ability to increase the wettability and dispersibility of the mixture directly after 

contact with water.(Minhaz, Rahman, Ahsan, Rahman, & Chowdhury, 2012; D. Yang, Kulkarni, 

Behme, & Kotiyan, 2007) Therefore, PEG 3350 was incorporated into the HME process to 

facilitate the extrusion process as well as improve drug release by increasing the capability of the 

matrix to absorb more media and increase drug-polymers dispersibility, leading to increased drug 
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release. Adding PEG 3350 to the formulations enhances the drug release dissolution to 10-30% 

of the binary mixture by inhibiting aggregation and agglomeration. In addition, we confirmed 

our hypothesis by studying how much media the matrix would absorb during the dissolution 

process. Media uptake results indicate that the pure drug media uptake rate increased from 2.6% 

to 7-12% with K-Series (12 & 17) PVP polymers. Adding PEG 3350 to the formulations 

increased the media uptake to 20-23% at the 10 min time point. The media uptake after 20 min 

of exposure increased from 2.9% to approximately 29% of the pure drug and MA in the 

extrudates, respectively (Fig. 3-6).  The water uptake study corresponded with the dissolution 

behaviors of the drug and extrudates as a function of time. 

However, increasing water uptake ability is not sufficient to achieve high drug release. It 

has been reported that modifying the pHM could have a strong positive effect on the solid 

dispersion system. Incorporating an alkalizer or acidifier to the formula would modulate the pHM 

and thus be beneficial in enhancing the solubility of weakly acidic or basic poorly soluble drugs, 

respectively.   

         Tran et al. (2008) has investigated the use of nine alkalizers to modulate the pHM of a solid 

dispersion of Telmisartan and PEG 6000. They found that there was no significant increasing in 

the drug dissolution of the binary solid dispersion without an alkalizer. Moreover, among the 

nine alkalizers, a small amount of MgO (3%) demonstrated the highest modulation of pHM, 

leading to enhancement of drug dissolution.(P. H. L. Tran et al., 2008) Tran et al. (2011) 

continued their work and studied MgO release behavior and its potential effect on Telmisartan in 

gastrointestinal tissue. They reported that MgO increases the pHM and thus increases the release 

of the insoluble model drug.(T. T.-D. Tran et al., 2010)  

         MgO was chosen as an alkalizer in the present study owing to its strong alkalizing effect 
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and thermally stability. Furthermore, it has been reported in the literature to be a powerful agent 

that can increase pHM. Incorporating MgO into the binary mixture of MA-K12 increased the 

dissolution of the drug to around 20%, compared with the binary mixture, and 40% compared to 

the pure drug MA. We have confirmed these results by measuring the pHM of the formulations 

within the dissolution media. We found that incorporation of MgO into the formulations 

increases the pHM to about 9, which allows the drug to easily ionize and dissolve since the drug 

is weakly acidic in nature (Fig. 3-7). The pH of the drug and other formulations was maintained 

between 6-6.5; it is evident that in the absence of MgO, the pHM of the formulation would not 

increase to the pHM of the alkaline media and ionize the drug, thus decreasing its solubility. 

However, adding MgO to the binary mixture (MA-PVP) resulted in less than 50% drug release 

within 2 h, with more than half of the drug remaining undissolved in the dissolution media.  
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 a)  

     

b) 

    

Fig. 3-5: In vitro dissolution testing of physical mixture and extrudates in phosphate buffer (pH 

6.8), a) PVP K12 formulations, b) PVP K17 formulations. 
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 a) 

    

b) 

    

 

Fig. 3-6: Media uptake studies of pure drug and extrudates after: a) 10 min. and b) 20 min. 
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a) 

    

 

b) 

     

 

Fig. 3-7: pH analysis of pure drug and extrudates: a) K12 formulations, b) K17 formulations. 
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Interestingly, we found that incorporating 5% MgO and 10% PEG 3350 together within 

the binary mixture significantly increased drug release, resulting in more than 80% dissolution 

within one hour for the binary mixture with both K12 and K17. We also found that the 

formulation containing K12 (average Mw 2000-3000) had a more rapid release, reaching 85% 

within 2 h, whereas the other formulation with K17 (average Mw 7000-11000) demonstrated 

slower release, reaching 100% drug release. This is probably due to the differences in the 

molecular weight (Mw) and viscosity of the polymers. Increasing the amount of MgO to 10% did 

not affect the formulation containing K12, but resulted in faster release with K17, since MgO 

interfered more strongly with the API’s particles with rapid modulation of the pHM. 

       Therefore, the dissolution rate was found to significantly increase after incorporation of an 

alkalizer and PEG into the formulations, when compared to that of the pure drug, physical 

mixture, and binary mixture with PVP. It is evident that PEG 3350 led to an increase in the 

media uptake and MgO modified the microenvironmental pH inside the extrudate to be highly 

basic, resulting in an enhanced MA dissolution rate. 

 

3.3.4. Physico-chemical properties of extrudates 

        The FT-IR, PXRD, SEM, and PLM studies were performed to understand the mechanism of 

action of the extrudates, as well as to observe the changes after extrusion. 

The FT-IR spectra indicate that there is an extrusion-induced intermolecular interaction 

between MA and the K-Series (12 & 17) PVP polymers. Figure 3-8 displays the individual 

spectra for the raw materials for comparison with the extruded formulations. The carbonyl in 

PVP, a most likely hydrogen bond acceptor, was originally centered at 1651 cm-1 before making 
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a noteworthy shift to 1661 cm-1 in the extruded formulation. Likewise, there is a complimentary 

shift in the MA amino group, a likely hydrogen bond donor, from 1574 cm-1 to 1580 cm-1. The 

decrease in the observed absorption intensity from this amino group is attributed to APIs' 

dilution in the polymer relative to the reference spectrum. It is also possible that the hydroxyl 

portion of the carboxylic acid group present on MA is also participating in the newly formed 

bond. However, taking into consideration the strong, broad absorbance of the PVP carbonyl 

centered near 1650 cm-1, as well as the carrier and API’s relative proportions (80% and 20% 

respectively), it is not possible to distinguish any changes to the hydroxyl’s infrared signature 

due to the stated spectral overlap. In either case, the formation of post-extrusion hydrogen bonds 

is strongly indicated by these spectral shifts. Additionally, the spectra containing magnesium 

oxide and PEG did not seem to alter the spectral absorptions in these specified regions and were 

therefore considered to be uninvolved in the observed hydrogen bond formation (Fig. 3-8). It is 

also worth noting that these spectral characteristics were apparent in all of the formulations, as 

the only difference in the carriers was one of molecular weight and not chemical composition.  
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Fig. 3-8: FTIR analysis of pure drug, polymer and extrudates. 

 

 

Powder X-Ray Diffraction (PXRD) measurements were used to study the crystallinity of 

the MA in the extrudates. The PXRD diffraction pattern of pure MA demonstrated highly intense 

and sharp peaks at 2θ = 6.3, 21.4, and 26.3, confirming the crystalline structure of the pure API.  

However, the PXRD analysis of various formulations after extrusion did not exhibit any traces of 

crystallinity as all sharp peaks had disappeared, indicating that the drug had completely 

transformed into an amorphous structure and had formed a solid dispersion in those matrices 

(Fig. 3-9). These results further confirm the DSC data, where the absent melting endothermic 

peaks of MA indicated the formation of a solid dispersion system by HME.   
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    a) 

      

b) 

      

 

Fig. 3-9: PXRD analysis for pure MA and extrudates, a) PVP K12 formulations, b) PVP K17 

formulations. 

Scanning electron microscope (SEM) was used to investigate the surface morphology of 

the pure drug and extrudates (Fig. 3-10). The surface morphology of pure MA consists of 

microcrystalline aggregates with a coarse surface, which explains the hydrophobicity and poor 
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water solubility of this compound.  However, the extrudates, including MgO and PEG within the 

binary mixture of MA-PVP, showed fewer aggregates, and a large smooth surface. 

 a) 

 

b) 

 

c) 

 

Fig. 3-10: SEM images of a) pure MA, b) 20% MA/ 5% MgO/ 10% PEG/ K12, c) 20% MA/ 5% 

MgO/ 10% PEG/ K17. 
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Polarized light microscopy (PLM) is a technique that has been used to differentiate 

between crystalline and amorphous form of the particles, since crystal structures have different 

refractive indices that are usually birefringent. They can be determined under polarized light 

microscope as a brilliant color that cannot be seen in the amorphous form.(Sarode et al., 2013) 

PLM was applied to compare the pure drug and extrudates and to study the dissolution behavior 

of the two optimized formulations (20% MA/ 5%MgO/ 10%PEG/ 65%K12 & K17). Figure 9-A 

shows that the pure drug crystals exhibited large crystal birefringence even after 30-min 

exposure to phosphate buffer (pH 6.8). Interestingly, extrudates rapidly dissolved once exposed 

to the dissolution media, with no vivid color, confirming that the drug exhibited in an amorphous 

form (Fig. 3-11).   
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i)                                                                                                                                     

  
 
 
 
 
 
 
 
 
 
 
 
ii) 

 
 
 
 
 

 

 

 

 

 

 

 

Fig. 3-11: PLM of a) pure MA, b) 20% MA/ 5% MgO/ 10% PEG/ K12, c) 20% MA/ 5%MgO/ 

10% PEG/ K17, after exposure to phosphate buffer (pH 6.8) at: i) 0 min, ii) 30 min. 

According to these studies of physical-chemical properties, it was determined that after 

incorporation of PEG 3350 and MgO to PVP-based extrudates, an amorphous solid dispersion 

with hydrogen bonding was able to be prepared that increased the amount of water uptake and 

the pHM, resulting in the rapid and fast dissolution profiles of MA.  

3.3.5. Stability studies 

        One of the critical problems that can limit the commercial outcomes of solid dispersions is 

the physical and chemical stability of the blends.(Breitenbach, 2002) Recrystallization of the 

drug in the amorphous systems usually occurs with aging due to the high free energy of 

a) b) c) 

a) b) c) 
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amorphous molecules compared to the crystalline form. The addition of a suitable polymer can 

delay this crystallization phenomena according to many studies.(Qian, Huang, & Hussain, 2010) 

The viscosity of the polymer, as well as the intermolecular interactions (hydrogen bonds) that 

can occur between the API and the polymer, are most important factors in the stabilization of 

solid dispersion systems(Breitenbach, 2002) Fitzpatrick et al. (2002) studied the effect of 

temperature and humidity on the stability of PVP formulations. They found that the PVP 

formulations at a high temperature and humidity (accelerated conditions) modified it from a 

glassy to rubbery state. However, this transformation did not occur when PVP was stored over 

long term conditions (61 weeks) at 30°C/60% RH.(Fitzpatrick, McCabe, Petts, & Booth, 2002)  

        In the present study, we stored our samples of interest for a period of 6 months at normal 

conditions (25°C/60% RH). Assay of MA in the extrudates confirmed that the extrudates were 

chemically stable, with no drug degradation when checking for drug content after storage (>99%, 

within 1% difference). DSC analysis demonstrated that the drug remained in an amorphous form, 

as the corresponding endothermic peak was not present after 6 months of storage (Fig. 3-12-a & 

3-13-a). Furthermore, drug crystalline peaks were absent in XRD, and no recrystallizations were 

found (Fig. 3-12-b & 3-13-b). In addition, in-vitro drug dissolution studies were applied to check 

for any modifications that might have occurred with time and compare the formulation with fresh 

ones. The f2 value for k12 formulations after 3 and 6 months were 57% and 53%, respectively. 

The k17 formulations after 3 and 6 months of storage time were 59% and 54%, respectively. 

Therefore, we can conclude that the drug release profiles after long-term storage were similar to 

the ones at time 0.  

       Thus, the 6-month stability studies for the hot melt extrudates suggest that the extrudates 

were physically and chemically stable and identical to the fresh extrudates.    
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a)  

    
b) 

     
c) 

    
 
Fig. 3-12: Stability test (25°C/60% RH) for 6 months of MA/PVP K12 extrudates: (a) DSC 

results; (b) PXRD data; (c) Drug release of extrudates in phosphate buffer (pH 6.8). 

0

20

40

60

80

100

0 20 40 60 80 100 120

 20%MA/5%MgO/10%PEG/K12 T=0 M

20% MA/5% MgO/10% PEG/K12 T=3 M

20% MA/5% MgO/10% PEG/K12 T=6 M



 
 

74

a) 

   
b) 

   
c) 

   
 
Fig. 3-13: Stability test (25°C/60% RH) for 6 months of MA/PVP K17 extrudates: (a) DSC 

results; (b) PXRD data; (c) Drug release of extrudates in phosphate buffer (pH 6.8). 
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3.4. Conclusion 

        The thermal stability of each blend at the employed extrusion temperatures was confirmed 

by TGA analysis. All formulations were successfully extruded under the employed extrusion 

parameters. DSC revealed that the MA was completely miscible up to 20% w/w drug load 

extrudate. PXRD confirmed that the drug was in an amorphous form after extrusion. The 

formation of post-extrusion hydrogen bonds is strongly indicated between MA and the K-Series 

(12 and 17) PVP polymers. Different grades of Kollidon® had an effect on the solubility of MA 

by transforming the drug crystals into an amorphous form to form a solid dispersion system. 

Moreover, adding an alkalizer to the formulation has a marked positive effect on its dissolution 

rate by increasing the pHM to almost 9 and alkalizing the surrounding area. Incorporating PEG 

3350 into the formulations significantly increased media uptake, owing to the wettability and 

dispersability effect of PEG. Kollidon® is a promising carrier with which to produce solid 

dispersion formulations by hot melt extrusion for poorly water-soluble drugs. Furthermore, the 

addition of an alkalizer with a plasticizer to the formulation had significant influence on the 

release of this API from the Kollidon® matrices.  
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CHAPTER 4 

 

FORMULATION AND EVALUATION OF MEFENAMIC ACID SUSTAINED 

RELEASE TABLETS CONTAINING KOLLIDON® SR VIA HOT-MELT EXTRUSION 

TECHNOLOGY  

Objectives: 

The main objectives of this study was: 

1- To formulate and evaluate the effect of Kollidon® SR on the release profiles of mefenamic 

acid from matrix tablets using hot-melt extrusion technology. 

2- Formulation of an MA sustained-release dosage form to reduce the frequency of intakes and 

therefore reduce its adverse side effects.  

Abstract: 

The aim of this study was to formulate and evaluate the controlled effect of a Kollidon® 

SR polymer carrier on the release profiles of the poorly soluble drug mefenamic acid from 

matrix tablets utilizing hot melt extrusion technology. Various drug loads of MA and polymer 

were blended using a V-shell blender and extruded using a twin-screw extruder (16-mm Prism 

EuroLab, ThermoFisher Scientific) at a screw speed of 100 rpm, and 150-160 0C extrusion 

temperature to prepare a solid dispersion system. Differential scanning calorimetry (DSC) 

studies demonstrated that MA and K SR were completely miscible and transformed to an 

amorphous structure at drug loads up to 40%. FT-IR confirmed the intermolecular interaction 

between the drug and the polymer carrier after extrusion process. Sustained release 
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tablets were successfully prepared with excellent tablet characteristics for these formulations. In 

addition, the drug release from the 40% drug loaded extrudate reached 20% within 2 hours and 

80% within 12 hours, compared to more than 80% drug release of the corresponding physical 

mixture, and 100 % of the pure drug and higher drug load (60% and 80%) formulations within 2 

hours. Finally, the drug release kinetics showed that the drug release from the tablets was 

controlled by two mechanisms: diffusion and the erosion process.  

Keywords: Mefenamic acid, Kollidon® SR, Hot Melt Extrusion, Sustained Release Tablets, In 

vitro drug release. 
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4.1. Introduction: 

Recently, sustained/controlled release formulations have become an important issue and 

have received much attention in the manufacturing process and medical use due their ability to 

release the drug at a sustained rate over a period of time, which maintains the pharmacological 

effect of the drug. Long-acting formulations have many advantages, such as improving patient 

compliance by reducing intake frequency and therefore reducing gastrointestinal side effects (P. 

H.-L. Tran, Tran, Park, & Lee, 2011). Hot melt extrusion (HME) is one of several techniques 

that can be used to make sustained-release dosage forms (Almeida et al., 2011). It has been 

reported that the formulations created by HME show slower drug release rates due to lower 

porosity, compared to other traditional methods. There are many suitable and safe polymers that 

have been used to make sustained release formulations, including ethylcellulose, 

polymethacrylate, polyethylene oxide and polyvinyl acetate/ polyvinylpyrrolidone (Özgüney, 

Shuwisitkul, & Bodmeier, 2009). 

Mefenamic acid (MA), a poorly water-soluble compound, was chosen as a model drug. It 

has a relatively short half-life of 2 hours and a usual oral dose of 250 or 500 mg which is 

prescribed three times daily (Ibrahim, 2013). In recent studies, MA also has the potential to be 

used to treat Alzheimer’s disease. As other NSAIDs, and due to the free carboxylic acid group in 

the chemical structure, MA has broad gastrointestinal side effects, which could lead to serious 

patient incompliance.  In addition, there is no commercial MA sustained release product on the 

market(Sevgi et al., 2008). It has been reported that Kollidon SR is a great matrix-retarding agent 

and it is widely used to develop oral controlled release products. It consists of 80% polyvinyl 

acetate, which is water the insoluble part, and almost 20% polyvinylpyrrolidone, which is a 

water-soluble compound (Fig. 4-1). Therefore, when the tablet contacts the dissolution media, 



 
 

80

the tablet can maintain its geometric shape till the end of the test because of the superior content 

of the insoluble part of the polymer; in the same time  the povidone can leach out to make pores 

through the tablet which explains the diffusion drug release mechanism (Buhler, 2008; Sakr, 

Alanazi, & Sakr, 2011). Kollidon® SR is considered a safe material for oral administration in 

humans, with no toxicity and no irritation of the skin or mucous membranes of the body. It has 

been reported that this carrier is barely absorbed orally and mostly excreted in the feces (Arias, 

Gómez-Gallo, Delgado, & Gallardo, 2009).   

 

Fig. 4-1: chemical structure of Kollidon® SR. 

 

In this study, various drug loads of mefenamic acid were blended with Kollidon® SR to 

assess and evaluate its effect on the release profiles of MA from matrix tablets using hot-melt 

extrusion technology. 

 

4.2. Materials and Methods: 

4.2.1. Materials: 

Mefenamic acid (MA) was purchased from Sigma Aldrich (Bellefonte PA. USA); 
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Kollidon SR was obtained as gift samples from BASF (PEGPVCLPVA, BASF, Germany); 

Microcrystalline cellulose (Avicel1 PH 101) was gifted from FMC Biopolymer (Philadelphia, 

PA); Magnesium stearate was purchased from Mallinckrodt (St. Louis, MO, USA). All other 

chemicals used were of analytical grade (impurities <0.1%). 

 

4.2.2. Perpetration Methods: 

4.2.2.1. Thermal Characterization: 

4.2.2.1.1. Thermogravimetric (TGA) & Differential Scanning Calorimetry (DSC) Analysis: 

 

Thermogravimetric analysis (TGA, Pyris 1 TGA Perkin Elmer) equipped with Pyris 

manager software (PerkinElmer Life and Analytical Sciences, 719 Bridgeport Ave., Connecticut, 

USA) was used to assess the thermal stability of the MA and Kollidon® SR in order to select the 

optimal temperatures for the extrusion process. Each sample of pure MA, pure polymer, and 

physical mixture weighed from 7-10 mg and was heated from 30 0C to 250 0C at a heating rate of 

20 0C/min. The results were collected according to the percentage of weight loss that occurred 

when increasing the temperature of the samples. 

Differential scanning calorimetry (DSC) was performed to study the physical nature of 

the drug and the polymer and also to study the drug-polymer compatibility. Samples of interest 

were analyzed using Perkin Elmer Diamond Differential Scanning Calorimeter (DSC) (Perkin 

Elmer Life and Analytical Sciences, 710 Bridgeport Ave., Connecticut, USA) equipped with 

Pyris manager software (Shelton, CT, USA). Each sample weighed between 3-5 mg and was 

hermetically sealed in an aluminum pan then heated, under an inert nitrogen atmosphere, from 

30-250 0C at a heating rate of 10 0C/min.  
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4.2.2.2. Chromatography System and Conditions: 

A Waters HPLC system consisting of a Waters 600 binary pump, Waters 2489 UV/ 

detector, and Waters 717 Plus auto sampler (Waters Technologies Corporation, 34 Maple St., 

Milford, MA 0157) and Empower 2 software was used to analyze the samples and data. The 

stationary phase consisted of a Symmetry Shield C18, 250Å~4.6 mm, 5 μm particle size reverse-

phase column. The mobile phase consisted of methanol: water: acetonitrile (80:17.5:2.5 v/v) with 

the pH adjusted to 3.0 with phosphoric acid (85%). The detection wavelength was set at 225 nm 

and the mobile phase flow rate was maintained at 1.0 mL/min. The injection volume for all 

samples was 20 μL (Sultana et al., 2012). The drug content samples of the mefenamic acid 

physical mixture and extrudates were approximately 20mg weighed and dissolved in methanol 

then diluted 10 times with methanol. After that, samples were filtered and analyzed using the 

HPLC method stated above. All assays studies were performed in triplicate (n=3). 

4.2.2.3. Preparation of hot melt extrudates: 

MA and Kollidon® SR were blended at drug loads of 20%, 40%, 60% and 80% using a 

V-shell blender (MaxiBlendTM, GlobePharma, North Brunswick, NJ, USA), at 25 rpm for 10 

minutes (Table 4-1). After passing the physical blend through US# 35 mesh screen to remove 

any aggregates that may have formed, melt extrusion was used for each blend using a twin-screw 

extruder (16 mm Prism Euro Lab, Thermo Fisher Scientific) at a screw speed of 100 rpm and 

over the temperature range of 150-1600C. The obtained extrudates were further milled using a 

comminuting mill (Fitzpatrick, Model “L1A”) and then sieved using ASTM #35 mesh.  
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Table 4-1: Formulation Design and processing conditions. 

 

Formulations 

 

MA 
w/w% 

 

K SR 
w/w% 

Extrusion conditions 

Temp. 0C Speed 
rpm 

F1 20 80 150 100 

F2 40 60 155 100 

F3 60 40 160 100 

F4 80 20 160 100 

 

4.2.2.4. Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR spectroscopic analysis was performed on the extruded samples to study the drug-

polymer interactions and corroborate the miscibility results obtained by DSC. FT-IR was 

conducted on a Cary 660 bench (Agilent Technologies, Santa Clara, CA.) for mid-infrared 

spectra from 4000–650 cm−1. The bench was equipped with an ATR (Pike Technologies 

MIRacle ATR, Madison, WI), which was fitted with a single bounce diamond coated ZnSe 

internal reflection element. 

4.2.2.5. Scanning Electron Microscope (SEM) 

The surface morphology of the pure drug, mefenamic acid, pure polymer, Kollidon SR, 

and milled extrudates were evaluated and studied using SEM (JEOL JSM-5600). Samples were 

mounted on adhesive carbon pads placed on aluminum stubs prior to sputter coating. A 
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Hummer® 6.2 sputtering system (Anatech LTD, Springfield, VA) in a high vacuum evaporator 

was used to sputter-coat the samples with gold. SEM operating at an accelerating voltage of 10 

kV was used for imaging. 

4.2.2.6. In vitro drug release studies: 

Milled extrudates equivalent to 100 mg MA were then filled in hydroxypropyl 

methylcellulose (HPMC) capsules and used for the dissolution studies. In-vitro release studies 

were performed for 12 hours using a USP apparatus Type-II (Hanson SR8) in 900 ml of 0.5% 

Tween 80, adjusted pH to 7.4 phosphate buffer maintained at 37 ± 0.5°C and at a paddle rotation 

speed of 50 rpm(Güngör et al., 2003).  At different time points, the samples were withdrawn (1.5 

ml) and an equal amount of fresh medium was added to the continuing dissolution medium 

vessel. HPLC was used to analyze the samples and the percentage of drug release vs. time 

(hours) profile was plotted. The dissolution studies were performed in triplicate (n=3). Similarity 

factor (f2 values) were calculated in order to evaluate similarity of the release patterns of MA 

from the optimized extrudate and the tablet of 40% drug load.  

4.2.2.7. Preparation and compression of MA sustained release tablets: 

Based on the DSC data and dissolution results of the prepared extrudates, 40% drug load 

was chosen to formulate the sustained release tablets and further mixed with the tablet excipients 

such as microcrystalline cellulose, used as diluent, and magnesium stearate, used as lubricant. 

All excipients were mixed using a V-shell blender (GlobePharma, MaxiBlend, New 111 

Brunswick, NJ, USA) after passing through ASTM #30 mesh. Magnesium stearate was added 

when two minutes of blending remained to prevent over-mixing. Then, tablets were manually 

prepared by direct compression on a single punch tablet press (MCTMI, Globe Pharma Inc., 

New Brunswick, NJ) by using 10 mm biconcave punches at a compression force of 1.0-1.1 kN, 
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to create a final tablet weight of 400 mg.  

4.2.2.8. Evaluation of tablet properties 

Compressed tablets were then evaluated for weight variations, thickness, diameter, 

hardness, friability and drug content uniformity. Thickness and diameter of the tablets were 

evaluated using a digital vernier caliper (Fisher Scientific). Ten tablets were randomly selected 

and tested for hardness using a hardness tester (VarianVK200, Agilent technologies, 13,000 

Weston Pkwy, Cary, NC). Friability studies were performed as a percentage weight loss of 

tablets (weighing 6.5 g) using Roche friabilator for 4 min at 25 rpm (Vankel Industries Inc., 

Chatham, NJ). 

4.2.2.9. Drug release kinetics and mechanism 

To understand the mechanism of the drug release from each formulation, the analysis data 

was determined kinetically by four equations as follow (Higuchi, 1963; Korsmeyer, Gurny, 

Doelker, Buri, & Peppas, 1983; Patil, Tiwari, Upadhye, et al., 2015): 

� Zero order equation: 

Qt = Q0 + K0t 

Where Qt is the amount of the drug release at time t, Q0 is the initial amount of the drug in the 

dissolution media and K0 is the zero order rate constant. 

� First order equation: 

log Qt = log Q0 – K1t/2.303 

Where Qt is the amount of the drug release at time t, Q0 is the initial amount of the drug in the 

dissolution media and K1 is the first order rate constant.  

� Higuchi equation: 
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Qt = KH t1/2   

Where Qt is the amount of the drug release at time t and KH is the Higuchi dissolution constant. 

� Korsmeyer-Peppas equation: 

Qt/Q∞ = Kkp tn  

Where Qt is the amount of drug release at time t, Q∞ is the total amount of the drug in the dosage 

form, Kkp is the Korsmeyer’s rate constant which is the release constant, comprised of structural 

and geometrical characteristics of the tablets, and n is the release exponent that is explained by 

the drug release mechanism.  

 

4.3. Results and discussion: 

4.3.1. Thermal Analysis: 

The TGA thermograms of the samples were determined for changes in weight. TGA 

thermograms confirmed that the pure drug and the physical mixture are thermally stable during 

the extrusion processing temperature. Pure drug and physical mixtures showed less than 2% 

weight loss up to 200 0C and that was considered to be from residual moisture of MA and other 

components. Therefore, all of the formulations were assumed to be thermally stable during the 

hot melt extrusion process as the extrusion temperatures were less than this temperature (Fig. 4- 

2). 
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Fig. 4-2: Thermogravimetric analysis of pure MA, pure K SR and various MA/K SR mixtures.   

 

DSC studies were applied to evaluate the physical state of the drug in the polymeric 

matrix. Pure mefenamic acid exhibited a sharp endothermic peak onset at 230 oC shown in 

Figure 4-3.  DSC data showed that MA was completely transformed to an amorphous form 

within the polymer matrix up to 40% drug loading, as its endothermic peak at 230 oC was 

completely absent. However, this peak appeared slightly with 60% and more with 80% drug 

loading, suggesting that the drug partially exists in the crystalline form (Fig. 4-3). Thus, the DSC 

results indicate that the molten formulations were able to depress the melting point of MA and 

manufacture an amorphous solid dispersion after passing through the hot melt extrusion at up to 
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40% drug loads and this corresponds with the dissolution studies which are explained in the next 

section.    

 

   

Fig. 4-3:  DSC analysis of pure MA, pure K SR and MA/ K SR extrudates at temperatures of 30-

250°C and heating rate of 10 °C/min. 

 

4.3.2. Drug content and In vitro drug release studies on extrudates: 

The uniformity of drug content was calculated before and after extrusion to confirm 

uniformity of mixing and to evaluate the chemical stability of mefenamic acid. Each formulation 

was analyzed using HPLC for drug content and content uniformity. All of the extruded blends 
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and tablets showed excellent drug content and content uniformity (98%-102%) after processing 

by hot-melt extrusion, thus exhibiting a robust process and product outcome, indicating that 

mefeanmic acid is chemically stable with no degradation or weight loss in any formulation after 

extrusion, further confirming the TGA results.  

In vitro dissolution studies were performed by a modified dissolution method that has 

been reported in the literature, as currently there are no regulatory (USP or FDA) guidelines 

available to evaluate mefenamic acid sustained release tablets in the dissolution media. We 

choose this media as a discrimination media to compare between the pure drug and other 

formulations and also to show the powerful effect of this polymer to sustain the drug release of 

poorly soluble drugs. The formation of solid dispersions tends to sustain the release of poorly 

water-soluble drug when they are extruded with Kollidon® SR at various drug loads. The 

dissolution results displayed show that the pure drug release showed fast and high release 

compared to all formulations with this polymer. Clearly from figure 4-4, we can observe that the 

drug release from the 40% drug loaded extrudate reached 20% within 2 hours and 80% within 12 

hours compared to more than 80% drug release of the corresponding physical mixture, 100 % of 

the pure drug and higher drug loads 60% and 80% formulations within 2 hours (Fig. 4-4). 

Therefore, Kollidon® SR demonstrated the ability to sustain the drug release up to 12 hours in 

the dissolution study. 
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Fig. 4-4: In vitro dissolution profiles of pure MA and MA/K SR extrudates in buffer (pH 7.4) 

 

4.3.3. Fourier Transform Infrared Spectroscopy (FT-IR) 

It is believed that physical stability and solubility were improved by manufacturing solid 

dispersion systems through making intermolecular interactions such as hydrogen bonding 

interactions between the API and the polymeric carrier. In order to confirm this hypothesis, FT-

IR studies was used to demonstrate the drug-polymer intermolecular interaction, resulting in 

peak shifting, or the appearance or absence of the absorbance peaks. The FT-IR analyses were 

conducted on the pure component, physical mixture and extrudates. The model drug, MA, 

0

20

40

60

80

100

0 2 4 6 8 10 12

%
 D

ru
g

 r
e

le
a

se

Time (hrs)

20% MA/ K SR EXT 40% MA/ K SR EXT

60% MA/K SR EXT 80% MA/K SR EXT

40% MA/ K SR EXT PM PURE MA



 
 

91

showed two significant stretching absorbance peaks of N-H functional group at 3308 cm-1 and 

C=O absorbance functional group at 1646 cm-1.  The polymeric carrier, K SR, consisting of 

polyvinyl acetate (PVA) and polyvinyl pyrrolidone (PVP) showed three significant peaks at 1740 

cm-1, which correspond to the carbonyl stretching vibration of the ester group and that belongs to 

the PVA part. The N-H and C=O functional groups showed absorbance peaks around 3470 and 

1664 cm-1 corresponding to the PVP part. As shown in Figure 4-5, no peak shifting, or 

appearance or absence of the absorbance peaks was detected in the physical mixture. However, 

in the extrudates, the stretching absorbance peak of N-H was shifted and the intensity was 

decreased indicating the hydrogen bonding (drug-matrix interactions) could be formed between 

the N-H group of mefenamic acid and C=O group of K SR after processing utilizing HME 

technology.  
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Fig. 4-5:  FT-IR analysis of pure MA, pure K SR, MA/ K SR physical mixture and extrudates. 

 

 4.3.4. Scanning Electron Microscope (SEM) 

Due to the high resolution and magnification of the SEM machine, it has been used to 

characterize the solid-state conditions of substances in the pharmaceutical field. Kollidon® SR 

polymeric carrier loaded with mefenamic acid was studied by scanning electron microscope to 

understand the morphological and the particle size changes that may have occurred after the 

extrusion process. Figure 4-6 shows remarkable variances between the pure API and other 

formulations. Pure MA seems to consist of microcrystalline aggregates with a coarse texture 

while Kollidon® SR shows spherical shapes with smooth surfaces, which indicates the 

amorphous state of the polymer. However, the aggregates and coarse morphology become less 
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when extruded with Kollidon SR, especially when the portion of the polymer is increased and the 

drug load is decreased. 20% and 40% drug loads exhibited smooth surfaces which were 

interspersed with fissures; this explains the sustained-release behavior of these two drug loads in 

the dissolution studies. Therefore, the morphology and surface properties were found to be 

affected by different Kollidon SR concentrations.  

4.3.5. Preparation and characterization of sustained release tablets: 

Tablets showed good hardness and excellent friability which was related to the polymeric 

carrier, K SR. Tablet characterization test results exhibited an average weight of 401.5 mg, a 

thickness of 5.9 mm, and a hardness of 10.8 kp. The most important factor here is the friability of 

0.25%, which fit the USP specifications (Fig. 4-7). In addition, drug release from 40% drug 

loaded tablets at 1.0-1.1 kN compression force showed almost the same as the corresponding 

extrudates with the similarity factor ( f2 value) of 71, which is considered similar when the f2 

value is between 50 and 100 (Fig. 4-8). 
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a)                                                                     b) 

 
c)                                                                      d) 

 

e)                                                                     f) 

 

 

Fig. 4-6:  SEM analysis of: a) pure MA, b) pure K SR, c) 20% MA/K SR extrudates, d) 40% 

MA/K SR extrudates, e) 60% MA/K SR extrudates, f) 80% MA/K SR extrudates. 
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Fig. 4-7: Tablet Properties (weight, thickness, hardness and friability) for 40% MA/ 60% K SR 

tablet at 1000 PSI. 

       

 

Fig. 4-8: In vitro dissolution profiles of 40% MA/ K SR extrudate and tablet in buffer (pH 7.4). 
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4.3.6. Determination of drug release kinetics: 

In order do understand the release mechanism of MA from various formulations, the 

dissolution profiles were plotted according to several kinetic equations such as zero-order, first-

order, Higuchi and Korsmeyer-Peppas. The regression coefficient values of various release 

kinetic equations for all performed formulations were compared as shown in Table 4-2.  

Table 4-2 clearly indicates that all formulations did not flow zero order patterns. 

However, 20% and 40% drug loads of extrudates and tablets showed high linearity of first order 

release with regression values of 0.9987, 0.9982, and 0.9915, respectively which indicates that 

the drug release is highly governed by the diffusion process. To confirm the diffusion 

mechanism, data were plotted in the Korsmeyer–Peppas equation. The release exponent (n) 

found for these formulations were more than 0.5 (0.81, 0.89, and 0.84), which indicates that the 

combined effect of diffusion and erosion mechanisms for the drug release.  Thus the drug release 

was controlled by both diffusion and erosion processes.  
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Table 4-2: Mathematical modeling and release kinetics of MA from the prepared formulations: 

 

 

 

Formulations 

 

Zero 
order 

plots (R
2
) 

 

First order 

plots (R
2
) 

 

Higuchi 

plots (R
2
) 

 

Korsmeyer-Peppas plots 

Correlation 

coeff. (R
2
) 

Diffetional 
exponent 

(n) 

20% MA/60% 
K SR EXT 

0.9831 0.9987 0.9666 0.9964 0.81 

40% MA/60% 
K SR EXT 

0.9964 0.9982 0.9705 0.9963 0.89 

60% MA/60% 
K SR EXT 

0.7174 0.9471 0.9278 0.9986 0.3 

80% MA/60% 
K SR EXT 

0.7036 0.8548 0.9178 0.94574 

 

0.41 

40% MA/60% 
K SR EXT PM 

0.5148 0.9858 0.7901 0.98905 

 

0.33 

40% MA/60% 
K SR TAB 

0.9578 0.9915 0.9763 0.9937 0.84 

 

4.4. Conclusion  

TGA thermograms confirmed that the pure drug and the physical mixture are thermally 

stable during the extrusion processing temperature. DSC data showed that MA was completely 

transformed to an amorphous form within the polymer matrix up to 40% drug loading, as its 

endothermic peak at 230 °C was completely absent. All of the extruded blends and tablets 
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showed excellent drug content and content uniformity (98%-102%) after processing by hot-melt 

extrusion, thus exhibiting a robust process and product outcome. The formation of intermolecular 

interaction between the drug and the carrier were confirmed by FT-IR. Sustained release 

formulations with an exceptional tablet characteristic of this API can be produced by hot-melt 

extrusion processing using Kollidon® SR as a polymeric carrier. Kollidon® SR exhibited superior 

flowability and compressibility as well as excellent hardness and friability. The drug release of 

MA was further retarded by increasing the concentration of this polymer, which indicates 

Kollidon® SR has a significant effect on MA sustained release formulations.  
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

2- Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via 

molecular interaction produced by hot melt extrusion technology: 

� Mefenamic acid was successfully extruded with the different ratios of Eudragit® E PO 

using hot melt extrusion technology. 

� The optimized formulations produced very promising solid dispersions for both taste 

masking and solubility enhancement. 

� The dissolution rate of MA was improved with the increase in the concentrations of 

Eudragit® E PO, indicating that Eudragit® E PO is playing an important role in the 

solubilization of this high melting point, poorly soluble drug.  

� The mechanism of solubility enhancement was investigated using multiple 

methodologies, including TGA, DSC, PXRD, SEM and FT-IR.  

� Mefenamic acid ODTs were successfully produced using HME solid dispersion 

techniques demonstrating short disintegration times, sufficient taste masking and high 

drug release profiles. 

 

3- Investigations of the combined effect of MgO and PEG on the release profile of 

Mefenamic acid prepared via hot melt extrusion technique: 
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� DSC revealed that the MA was completely miscible up to 20% w/w drug load extrudate.  

� PXRD confirmed that the drug was in an amorphous form after extrusion.  

� The formation of post-extrusion hydrogen bonds is strongly indicated between MA and 

the K-Series (12 and 17) PVP polymers.  

� Different grades of Kollidon® had an effect on the solubility of MA by transforming the 

drug crystals into an amorphous form to form a solid dispersion system. 

�  Adding an alkalizer to the formulation has a marked positive effect on its dissolution 

rate by increasing the pHM to almost 9 and alkalizing the surrounding area.  

� Incorporating PEG 3350 into the formulations significantly increased media uptake, 

owing to the wettability and dispersability effect of PEG.  

� Kollidon® is a promising carrier with which to produce solid dispersion formulations by 

hot melt extrusion for poorly water-soluble drugs. Furthermore, the addition of an 

alkalizer with a plasticizer to the formulation had significant influence on the release of 

this API from the Kollidon® matrices.  

 

4- Formulation and Evaluation of Mefenamic Acid Sustained Release Tablets Containing 

Kollidon® SR via Hot-Melt Extrusion Technology: 

� TGA thermograms confirmed that the pure drug and the physical mixture are thermally 

stable during the extrusion processing temperature.  

� DSC data showed that MA was completely transformed to an amorphous form within the 

polymer matrix up to 40% drug loading, as its endothermic peak at 230 °C was 

completely absent.  

� All of the extruded blends and tablets showed excellent drug content and content 
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uniformity (98%-102%) after processing by hot-melt extrusion, thus exhibiting a robust 

process and product outcome.  

� Sustained release formulations with an exceptional tablet characteristic of this API can 

be produced by hot-melt extrusion processing using Kollidon® SR as a polymeric carrier.  

� Kollidon® SR exhibited superior flowability and compressibility as well as excellent 

hardness and friability.  

� The drug release of MA was further retarded by increasing the concentration of this 

polymer, which indicates Kollidon® SR has a significant effect on MA sustained release 

formulations. 
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