
VERSE: Versatile Graph Embeddings from Similarity Measures

Anton Tsitsulin
Hasso Plattner Institute
anton.tsitsulin@hpi.de

Davide Mottin
Hasso Plattner Institute
davide.mottin@hpi.de

Panagiotis Karras
Aarhus University
panos@cs.au.dk

Emmanuel Müller
Hasso Plattner Institute

emmanuel.mueller@hpi.de

ABSTRACT

Embedding aweb-scale information network into a low-dimensional

vector space facilitates tasks such as link prediction, classi�cation,

and visualization. Past research has addressed the problem of ex-

tracting such embeddings by adopting methods from words to

graphs, without de�ning a clearly comprehensible graph-related

objective. Yet, as we show, the objectives used in past works implic-

itly utilize similarity measures among graph nodes.

In this paper, we carry the similarity orientation of previous

works to its logical conclusion; we propose VERtex Similarity Em-

beddings (VERSE), a simple, versatile, and memory-e�cient method

that derives graph embeddings explicitly calibrated to preserve

the distributions of a selected vertex-to-vertex similarity measure.

VERSE learns such embeddings by training a single-layer neural

network. While its default, scalable version does so via sampling

similarity information, we also develop a variant using the full infor-

mation per vertex. Our experimental study on standard benchmarks

and real-world datasets demonstrates that VERSE, instantiated with

diverse similarity measures, outperforms state-of-the-art methods

in terms of precision and recall in major data mining tasks and

supersedes them in time and space e�ciency, while the scalable

sampling-based variant achieves equally good results as the non-

scalable full variant.

ACM Reference Format:

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller.

2018. VERSE: Versatile Graph Embeddings from Similarity Measures. In

WWW 2018: The 2018 Web Conference, April 23–27, 2018, Lyon, France. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3178876.3186120

1 INTRODUCTION

Graph data naturally arises in many domains, including social

networks, protein networks, and the web. Over the past years,

numerous graph mining techniques have been proposed to analyze

and explore such real-world networks. Commonly, such techniques

apply machine learning to address tasks such as node classi�cation,

link prediction, anomaly detection, and node clustering.

Machine learning algorithms require a set of expressive discrim-

inant features to characterize graph nodes and edges. To this end,

one can use features representing similarities among nodes [18].

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186120

(a) Community structure (b) Roles (c) Structural equivalence

Figure 1: Three node properties are highlighted on the same

graph. Can a single model capture these properties?

However, feature engineering is tedious work, and the results do

not translate well across tasks [15].

An alternative to feature design is to learn feature vectors, or

embeddings by solving an optimization problem in unsupervised

fashion. Yet devising and solving a universal and tractable optimiza-

tion problem for learning representations has withstood research

e�orts [7]. One line of research [11, 42] applies classical dimension-

ality reduction methods, such as SVD, to similarity matrices over

the graph; yet these methods are burdened with constructing the

matrix. While a recent approach [33] overcomes this impediment,

it results in poor quality in prediction tasks due to its linear nature.

Another line of research aims to generate features capturing

neighborhood locality, usually through an objective that can be opti-

mized by Stochastic Gradient Descent (SGD) [37, 41]. Such methods

rely on an implicit, albeit rigid, notion of node neighborhood; yet

this one-size-�ts-all approach cannot grapple with the diversity of

real-world networks and applications. Grover et al. [15] discerned

this in�exibility in the notion of the local neighborhood; to ame-

liorate it, they proposed Node2vec, which biases the exploration

strategy of [37] using two hyperparameters. Yet this hyperparame-

ter-tuned approach raises a cubic worst-case space complexity and

compels the user to traverse several feature sets and gauge the one

that attains the best performance in the downstream task. Besides,

a local neighborhood, even when found by hyperparameter tun-

ing, still represents only one locality-based class of features; hence,

Node2vec does not adequately escape the rigidity it tries to mend.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

539

https://doi.org/10.1145/3178876.3186120
https://doi.org/10.1145/3178876.3186120

WWW 2018, April 23–27, 2018, Lyon, France Anton Tsitsulin, Davide Mo�in, Panagiotis Karras, and Emmanuel Müller

We argue that features extracted by a more versatile similarity

notion than that of a local neighborhood would achieve the �exibil-

ity to solve diverse data mining tasks in a large variety of graphs.

Figure 1 makes a case for such a versatile similarity notion by ex-

posing three distinct kinds of similarity on a graph: community

structure guides community detection tasks, roles are typically used

in classi�cation, while structural equivalence de�nes peer corre-

spondences in knowledge graphs. As real-world tasks rely on a mix

of such properties, a versatile feature learning algorithm should be

capable of capturing all such similarities.

In this paper, we propose VERSE, the �rst, to our knowledge, ver-

satile graph embedding method that explicitly learns any similarity

measures among nodes. In its learning core, VERSE stands between

deep learning approaches [12, 48] on the one hand and the direct

decomposition of the similarity matrix [11, 42] on the other hand.

Instead, VERSE trains a simple, yet expressive, single-layer neu-

ral network to reconstruct similarity distributions between nodes.

Thereby, it outperforms previous methods in terms of both runtime

and quality on a variety of large real networks and tasks.

Thanks to its ability to choose any appropriate similaritymeasure

for the task at hand, VERSE adjusts to that task without needing

to change its core. Thereby, it fully ameliorates the rigidity ob-

served in [15], and integrates representation learning with feature

engineering: any similarity measure, including those developed

in feature engineering, can be used as input to VERSE. For the

sake of illustration, we instantiate our generic methodology using

three popular similarity measures, namely Personalized PageRank

(PPR) [34], SimRank [21], and adjacency similarity. We also show

that versatility does not imply a new burden to the user, merely

substituting hyperparameter tuning with similarity measure tuning:

using PPR as a default choice for the similarity measure leads to

good performance in nearly all tasks and networks we examined.

We summarize our contributions as follows.

• We propose a versatile framework for graph embeddings

that explicitly learns the distribution of any vertex similarity

measure for each graph vertex.

• We interpret previous graph embeddings through the lens

of our similarity framework, and instantiate VERSE with

Personalized PageRank, SimRank, and Adjacency similarity.

• We devise an e�cient algorithm, linear in graph size, based

on a single-layer neural network minimizing the divergence

from real to reconstructed similarity distributions.

• In a thorough experimental evaluation, we show that VERSE

outperforms the state-of-the-art approaches in various graph

mining tasks in quality while being even more e�cient.

2 RELATEDWORK

In the absence of a general-purpose representation for graphs, graph

analysis tasks require domain experts to craft features [4, 18] or

to use specialized feature selection algorithms [36, 40]. Recently,

specialized methods were introduced to learn representations of dif-

ferent graph parts [2, 31] and graphs with annotations on nodes [20,

55], or edges [19, 49]. We focus on learning representations of nodes

in graphs without any prior or additional information other than

graph structure.

Traditional feature learning learns features by compressing rep-

resentations such as the Laplacian or adjacency matrix to a low-

dimensional space. Early works in this area include spectral tech-

niques [6] and nonlinear dimensionality reduction [39, 44]. In an-

other vein, Marginal Fisher Analysis [51] analyzes the dimension-

ality reduction of a point data set as the embedding of a graph

capturing its statistic and geometric properties. Such methods can-

not be applied to large graphs, as they operate on dense matrices.

Some e�orts have been made to overcome this limitation using

enhanced linear algebra tools. Ahmed et al. [3] adopt stochastic

gradient optimization for fast adjacency matrix eigendecomposi-

tion; Ou et al. [33] utilize sparse generalized SVD to generate a

graph embedding, HOPE, from a similarity matrix amenable to de-

composition into two sparse proximity matrices. HOPE is the �rst

to support diverse similarity measures; however, it still requires

the entire graph matrix as input and views the problem as one of

linear dimensionality reduction rather than as one of nonlinear

learning. This way, it deviates not only from current research on

graph embeddings but also from older works [51].

Neural methods for representation learning. Advances in ma-

chine learning have led to the adoption of neural methods for learn-

ing representations [7]. Building on the success of deep learning in

domains such as image processing [24] and Natural Language Pro-

cessing (NLP) [8, 29, 35], word2vec [29] builds word embeddings

by training a single-layer neural network to guess the contextual

words of a given word in a text. Likewise, GloVe [35] learns a

word space through a stochastic version of SVD in a transformed

cooccurrence matrix. While such text-based methods inherently

take neighbor relationships into account, they require conceptual

adaptations to model graphs [37].

Neural Graph Embeddings. The success of neural word embed-

dings inspired natural extensions towards learning graph repre-

sentations [11, 12, 15, 37, 46, 48]. DeepWalk [37] �rst proposed

to learn latent representations in a low-dimensional vector space

exploiting local node neighborhoods. It runs a series of random

walks of �xed length from each vertex and creates a matrix of d-

dimensional vertex representations using the SkipGram algorithm

of [29]. These representations maximize the posterior probability

of observing a neighboring vertex in a random walk. DeepWalk

embeddings can inform classi�cation tasks using a simple linear

classi�er such as logistic regression.

GraRep [11] suggests using Singular Value Decomposition (SVD)

on a log-transformed DeepWalk transition probability matrix of

di�erent orders, and then concatenate the resulting representations.

Struc2vec [38] rewires the graph to re�ect isomorphism among

nodes and capture structural similarities, and then derives an em-

bedding relying on the DeepWalk core. Works such as [12, 48]

investigate deep learning approaches for graph embeddings. Their

results amount to complex models that require elaborate parameter

tuning and computationally expensive optimization, leading to time

and space complexities unsuitable for large graphs.

Nevertheless, all DeepWalk-based approaches use objective

functions that are not tailored to graph structures. Some works [15,

38, 41] try to infuse graph-native principles into the learning pro-

cess. LINE [41] proposed graph embeddings that capture more

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

540

VERSE: Versatile Graph Embeddings from Similarity Measures WWW 2018, April 23–27, 2018, Lyon, France

Algorithm Similarity

method Local Scalable Nonlinear Global Versatile

DeepWalk [37]
✔ ✔ ✔ ✔ ✘

Node2vec [15]

LINE [41] ✔ ✔ ✔ ✘ ✘

GraRep [11] ✘ ✘ ✔ ✔ ✘

SDNE [48] ✔ ✘ ✔ ✘ ✘

DNGR [12] ✘ ✘ ✔ ✔ ✘

HOPE [33] ✘ ✔ ✘ ✔ ✔

VERSE ✔ ✔ ✔ ✔ ✔

Table 1: Outline of related work in terms of ful�lled (✔) and

missing (✘) properties of algorithm and similarity measure.

elaborate proximity notions. However, even LINE’s notion of prox-

imity is restricted to the immediate neighborhoods of each node;

that is insu�cient to capture the complete palette of node rela-

tionships [15, 33, 38]. Furthermore, Node2vec [15] introduces two

hyperparameters to regulate the generation of random walks and

thereby tailor the learning process to the graph at hand in semi-

supervised fashion. However, Node2vec remains attached to the

goal of preserving local neighborhoods and requires laborious tun-

ing for each dataset and each task.

Overview. Table 1 outlines �ve desirable properties for a graph

embedding, and the extent to which previous methods possess

them. We distinguish between properties of algorithms, on the one

hand, and those of any implicit or explicit similarity measure among

nodes a method may express, on the other hand.

• local: not requiring the entire graph matrix as input; GraRep,

DNGR, and HOPE fail in this respect.

• scalable: capable to process graphs with more than 106 nodes

in less than a day; some methods fail in this criterion due to the

dense matrix (GraRep), deep learning computations (SDNE), or

both (DNGR).

• nonlinear: employing nonlinear transformations; HOPE relies

on a linear dimensionality reduction method, SVD; that is detri-

mental to its performance on building graph representations, just

like linear dimensionality reduction methods fail to confer the

advantages of their nonlinear counterparts in general [26].

• global: capable to model relationships between any pair of

nodes; LINE and SDNE do not share this property as they fail

to look beyond a node’s immediate neighborhood.

• versatile: supporting diverse similarity functions; HOPE does

so, yet is compromised by its linear character.

3 VERSATILE GRAPH EMBEDDING

VERSE possesses all properties mentioned in our taxonomy; it

employs nonlinear transformation, desirable for dimensionality

reduction [26]; it is local in terms of the input it requires per node,

but global in terms of the potential provenance of that input; it is

scalable as it is based on sampling, and versatile by virtue of its

generality.

(a) Similarity (b) VERSE (c) SVD

Figure 2: An example similarity matrix and its reconstruc-

tions byVERSE and SVD. Karate club graph [53], dimension-

ality d = 4 for both methods.

3.1 VERSE Objective

Given a graph G = (V ,E), where V = (v1, . . . ,vn), n = |V |, is
the set of vertices and E ⊆ (V × V) the set of edges, we aim to

learn a nonlinear representation of vertices v ∈ V to d-dimensional

embeddings, where d ≪ n. Such representation is encoded into a

n × d matrixW ; the embedding of a node v is the rowWv, · in the

matrix; we denote it asWv for compactness.

Our embeddings re�ect distributions of a given graph similarity

simG : V ×V → R for every node v ∈ V . As such, we require that

the similarities from any vertex v to all other vertices simG(v, ·) are
amenable to be interpreted as a distributionwith

∑
u ∈V simG(v,u) =

1 for all v ∈ V . We aim to deviseW by a scalable method that

requires neither theV×V stochastic similaritymatrix nor its explicit

materialization.

The corresponding node-to-node similarity in the embedded

space is simE : V ×V → R. As an optimization objective, we aim

to minimize the Kullback-Leibler (KL) divergence from the given

similarity distribution simG to that of simE in the embedded space:

∑

v ∈V
KL (simG(v, ·) | | simE(v, ·)) (1)

We illustrate the usefulness of this objective using a small simi-

larity matrix. Figure 2 shows (a) the Personalized PageRank matrix,

(b) the reconstruction of the same matrix by VERSE, and (c) the

reconstruction of the same matrix using SVD. It is visible that the

nonlinear minimization of KL divergence between distributions

preserves most of the information in the original matrix, while the

linear SVD-based reconstruction fails to di�erentiate some nodes.

3.2 VERSE Embedding Model

We de�ne the unnormalized distance between two nodes u,v in

the embedding space as the dot product of their embeddingsWu ·
W ⊤v . The similarity distribution in the embedded space is then

normalized with softmax:

simE(v, ·) =
exp(WvW

⊤)∑n
i=1 exp (Wv ·Wi)

(2)

By Equation 1, we should minimize theKL-divergence from simG

to simE; omitting parts dependent on simG only, this objective is

equivalent to minimizing the cross-entropy loss function [14]:

L = −
∑

v ∈V
simG(v, ·) log (simE (v, ·)) (3)

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

541

WWW 2018, April 23–27, 2018, Lyon, France Anton Tsitsulin, Davide Mo�in, Panagiotis Karras, and Emmanuel Müller

We can accommodate this objective by stochastic gradient de-

scent, which allows updating the model on each node singularly.

However, a naïve version of gradient descent would require the

full materialization of simE and simG. Even in case simG is easy to

compute on the �y, such as the adjacency matrix, the softmax in

Equation 2 still has to be normalized over all nodes in the graph.

We use Noise Contrastive Estimation (NCE) [16, 30], which al-

lows us to learn a model that provably converges to its objective

(see [17], Theorem 2). NCE trains a binary classi�er to distinguish

between node samples coming from the empirical similarity dis-

tribution simG and those generated by a noise distribution Q over

the nodes. Consider an auxiliary random variable D for node clas-

si�cation, such that D = 1 for a node drawn from the empirical

distribution and D = 0 for a sample drawn from the noise distribu-

tion. Given a node u drawn from some distribution P and a node

v drawn from the distribution of simG (u, ·), we draw s ≪ n nodes

ṽ from Q(u) and use logistic regression to minimize the negative

log-likelihood:

LNCE =
∑

u∼P
v∼simG(u, ·)

[
log PrW (D = 1|simE(u,v))+

sEṽ∼Q(u) log PrW (D = 0|simE(u, ṽ))
] (4)

where PrW is computed fromW as a sigmoid σ (x) = (1 + e−x)−1 of
the dot product between vectorsWu andWv , while we compute

simE (u, ·) without the normalization of Equation 2. As the number

of noise samples s increases, the NCE derivative provably converges

to the gradient of cross-entropy [30]; thus, by virtue of NCE’s

asymptotic convergence guarantees, we are in e�ect minimizing

the KL-divergence from simG. NCE’s theoretical guarantees depend

on s , yet small values work well in practice [30]. In our experiments,

we use s = 3. These convergence guarantees of NCE are not a�ected

by choice of distributions P and Q (see [17], Corollary 5); however,

its performance is empirically dependent on Q [25].

3.3 Instantiations of VERSE

While VERSE can be used with any similarity function, we choose

to instantiate our model to widely used similarities simG, namely

Personalized PageRank (PPR), Adjacency Similarity, and SimRank.

Personalized PageRank. Personalized PageRank [34] is a com-

mon similarity measure among nodes, practically used for many

graph mining tasks [15, 28].

De�nition 3.1. Given a starting node distribution s , damping

factor α , and the normalized adjacency matrixA, the Personalized

PageRank vector πs is de�ned by the recursive equation:

πs = αs + (1 − α)πsA
The stationary distribution of a random walk with restart with

probability α converges to PPR [34]. Thus, a sample from simG(v, ·)
is the last node in a single random walk from node v . The damping

factor α controls the average size of the explored neighborhood. In

Section 3.6 we show that α is tightly coupled with the window size

parameterw of DeepWalk and Node2vec.

Adjacency similarity. A straightforward similarity measure is

the normalized adjacency matrix; this similarity corresponds to the

LINE-1 model and takes into account only the immediate neighbors

of each node. More formally, given the out degreeOut (u) of node u

sim
ADJ
G

(u,v) =

{
1/Out (u) if (u,v) ∈ E
0 otherwise

(5)

We experimentally demonstrate that VERSE model is e�ective

even in preserving the adjacency matrix of the graph.

SimRank. SimRank [21] is a measure of structural relatedness

between two nodes, based on the assumption that two nodes are

similar if they are connected to other similar nodes; SimRank is

de�ned recursively as follows:

simSR
G (u,v) =

C

|I (u)| |I (v)|

|I (u) |∑

i=1

|I (v) |∑

j=1

simSR
G (Ii (u), Ij (v)) (6)

where I (v) denotes the set of in-neighbors of node v , and C is

a number between 0 and 1 that geometrically discounts the im-

portance of farther nodes. SimRank is a recursive procedure that

involves computationally expensive operations: the straightforward

method has the complexity of O(n4).
SimRank values can be approximated up to a multiplicative

factor dependent on C through SimRank-Aware Random Walks

(SARW) [22]. SARW computes a SimRank approximation through

two reversed random walks with restart where the damping factor

α is set to α =
√
C . A reversed random walk traverses any edge

(u,v) in the opposite direction (v,u). Since we are only interested in

the distribution of each simSR
G
(v, ·), we can ignore the multiplicative

factor in the approximation [22] that has little impact on our task.

Algorithm 1 VERSE

1: function VERSE(G, simG,d)

2: W ← N
(
0, d−1

)
◃ WithW ∈ R |V |×d

3: repeat

4: u ∼ P ◃ Sample a node

5: v ∼ simG(u) ◃ Sample positive example

6: Wu ,Wv ← Update(u,v, 1)

7: for i ← 1 . . . s do

8: ṽ ∼ Q(u) ◃ Sample negative example

9: Wu ,Wṽ ← Update(u, ṽ, 0)

10: until converged

11: returnW

12: function Update(u,v,D) ◃ Logistic gradient update

13: д← (D − σ (Wu ·Wv)) ∗ λ
14: Wu ← д ∗Wv

15: Wv ← д ∗Wu

3.4 VERSE Algorithm

Algorithm 1 presents the overall �ow of VERSE. Given a graph,

a similarity function simG, and the embedding space dimension-

ality d , we initialize the output embedding matrixW to N (0, 1
d
).

Then, we optimize our objective (Equation 4) by gradient descent

using the NCE algorithm discussed in the previous section. To do

so, we repeatedly sample a node from the positive distribution P,
sample the simG (e.g. pick a neighboring node), and draw s nega-

tive examples. The σ in Line 13 represents the sigmoid function

σ = (1 + e−x)−1, and λ the learning rate. We choose P and Q to be

distributed uniformly byU(1,n).

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

542

VERSE: Versatile Graph Embeddings from Similarity Measures WWW 2018, April 23–27, 2018, Lyon, France

As a strong baseline for applications handling smaller graphs,

we also consider an elaborate, exhaustive variant of VERSE, which

computes full similarity distribution vectors per node instead of

performing NCE-based sampling. We name this variant fVERSE

and include it in our experimental study.

Figure 3 presents our measures on the ability to reconstruct a

similarity matrix for (i) VERSE using NCE; (ii) VERSE using Nega-

tive Sampling (NS) (also used in Node2vec); and (ii) the exhaustive

fVERSE variant. We observe that, while NCE approaches the ex-

haustive method in terms of matching the ground truth top-100

most similar nodes, NS fails to deliver the same quality.

20 40 60 80 100

0.4

0.6

0.8

1

k

N
D
C
G
@
k

full VERSE

NS, s = 3

NCE, s = 3

NCE, s = 100

Figure 3: Ranking preformance in terms of NDCG for recon-

structing PPR similarity, averaged across nodes in a graph.

3.5 Complexity Comparison

Table 2 presents the average (Θ) and worst-case (O) time and space

complexity of VERSE, along with those of methods in previous

works; d is the embedding dimensionality, n the number of nodes,

m the number of edges, and s the number of samples used, and t the

number of iterations in GraRep. Methods that rely on fast sampling

(VERSE and LINE) require time linear in n and space quadratic in

n in the worst case. DeepWalk requires O(n logn) time due to its

use of hierarchical softmax. Node2vec stores the neighbors-of-a-

neighbor, incurring a quadratic cost in sparse graphs, but cubic in

dense graphs. Thus, VERSE comes at the low end of complexities

compared to previous work on graph embeddings. Remarkably,

even the computationally expensive fVERSE a�ords complexity

comparable to some previous works.

Time Space

method Θ O Θ O
DeepWalk dn logn dn logn m n2

GraRep tn3 tn3 n2 n2

LINE dsn dsn m n2

Node2vec dsn dsn m2

n n3

HOPE d2m d2n2 m n2

fVERSE dn2 dn2 n2 n2

VERSE dsn dsn m n2

Table 2: Comparison of neural embeddingmethods in terms

of average (Θ) andworst-case (O) time and space complexity.

3.6 Similarity Notions in Previous Approaches

Here, we provide additional theoretical considerations of VERSE

compared to LINE [41], DeepWalk [37] and Node2vec [15] and

demonstrate how our general model subsumes and extends previous

research in versatility and scalability.

Comparison with DeepWalk and Node2vec. DeepWalk and

Node2vec generate samples from random walks of �xed window

size w by the word2vec sampling strategy [29]. We derive a re-

lationship between the window size w of that strategy and the

damping factor α of Personalized PageRank.

Lemma 3.2. Let Xr be the random variable that represents the

length of a randomwalk r sampledwith parameterw by theword2vec

sampling strategy. Then for any 0 < j ≤ w

Pr(Xr = j) =
2

w(w + 1)
(w − j + 1) (7)

Proof. For each node v ∈ V , word2vec strategy samples two

random walks of lengthw starting from v ∈ V . These two random

walks represents the context of v , where v is the central node of

a walk of length 2w + 1. The model is then trained on increasing

context size up tow . Therefore, the number of nodes sampled for

each random walk amount to
∑w
i=1 i =

w (w+1)
2 . A node at distance

0 < j ≤ w is sampled (w − j + 1) times; thus, the �nal probability is
2

w (w+1)
(w − j + 1). �

Personalized PageRank provides the maximum likelihood esti-

mation for the distribution in Equation 7 for α = w−1
w+1 . Then,w = 10

corresponds to α = 0.82, which is close to the standard α = 0.85,

proved e�ective in practice [10]. On the other hand, α = 0.95, which,

for example, achieves the best performance on a task in Section 4.2,

corresponds to w = 39. Such large w prohibitively increases the

computation time for DeepWalk and Node2vec.

Comparisonwith LINE. LINE introduces the concept of �rst- and

second-order proximities to model complex node relationships. As

we discussed, in VERSE, �rst-order proximity corresponds to the

dot-product among the similarity vectors in the embedding space:

simE(u,v) =Wu ·Wv

On the other hand, second-order proximity corresponds to let-

ting VERSE learn one more matrixW ′, so as to model asymmetric

similarities of nodes in the embedding space. We do that by de�ning

simE asymmetrically, using bothW andW ′:

simE(u,v) =Wu ·W ′v

The intuition behind second-order proximity is the same as that

of SimRank: similar nodes have similar neighborhoods. Every pre-

vious method, except for LINE-1, used second-order proximities,

due to the word2vec interpretation of embeddings borrowed by

DeepWalk and Node2vec. In our model, second-order proximities

can be encoded by adding an additional matrix; we empirically

evaluate their e�ectiveness in Section 4.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

543

WWW 2018, April 23–27, 2018, Lyon, France Anton Tsitsulin, Davide Mo�in, Panagiotis Karras, and Emmanuel Müller

4 EXPERIMENTS

We evaluate VERSE against several state-of-the-art graph embed-

ding algorithms. For repeatability purposes, we provide all data sets

and the C++ source code for VERSE1, DeepWalk
2 and Node2vec

3.

We run the experiments on an Amazon AWS c4.8 instance with

60Gb RAM. Each method is assessed on the best possible parame-

ters, with early termination of the computation in case no result is

returned within one day. We provide the following state-of-the-art

graph embedding methods for comparison:

• DeepWalk [37]: This approach learns an embedding by sam-

pling random walks from each node, applying word2vec-based

learning on those walks. We use the default parameters described

in the paper, i.e., walk length t = 80, number of walks per node

γ = 80, and window sizew = 10.

• LINE [41]: This approach learns a d-dimensional embedding

in two steps , both using adjacency similarity. First, it learns d/2

dimensions using �rst-order proximity; then, it learns another d/2

features using second-order proximity. Last, the two halves are

normalized and concatenated. We obtained a copy of the code4 and

run experiments with total T = 1010 samples and s = 5 negative

samples, as described in the paper.

• GraRep [11]: This method factorizes the full adjacency similarity

matrix using SVD, multiplies the matrix by itself, and repeats the

process t times. The �nal embedding is obtained by concatenating

the factorized vectors. We use t = 4 and 32 dimensions for each

SVD factorization; thus, the �nal embedding has d = 128.

• HOPE [33]: This method is a revised Singular Value Decomposi-

tion restricted to sparse similarity matrices. We report the results

obtained running HOPE with the default parameters, i.e, Katz simi-

larity (an extension of Katz centrality [23]) as the similarity measure

and β inversely proportional to the spectral radius. Since Katz simi-

larity does not converge on directed graphs with sink nodes, we

used Personalized PageRank with α = 0.85 for the CoCit dataset.

• Node2vec [15]: This is a hyperparameter-supervised approach

that extends DeepWalk by adding two parameters, p and q, so as to

control DeepWalk’s random walk sampling. The special case with

parameters p = 1,q = 1 corresponds to DeepWalk; yet, sometimes

Node2vec shows worse performance than DeepWalk in our evalu-

ation, due to the fact it uses negative sampling, while DeepWalk

uses hierarchical softmax. We �ne-tuned the hyperparameters p

and q on each dataset and task. Moreover, we used a large train-

ing data to fairly compare to DeepWalk, i.e., walk length l = 80,

number of walks per node r = 80, and window sizew = 10.

Baselines. In addition to graph embeddings methods, we imple-

mented the following baselines.

• Logistic regression: We use the well-known logistic regression

method as a baseline for link prediction. We train the model on a set

of common node-speci�c features, namely node degree, number of

common neighbors, Adamic-Adar, Jaccard coe�cient, preferential

attachment, and resource allocation index [27, 28].

1https://github.com/xgfs/verse
2https://github.com/xgfs/deepwalk-c
3https://github.com/xgfs/node2vec-c
4https://github.com/tangjianpku/LINE

Size Statistics

dataset |V | |E | |L | Avg. degree Mod. Density

BlogCatalog 10k 334k 39 64.8 0.24 6.3 × 10−3
CoCit 44k 195k 15 8.86 0.72 2.0 × 10−4
CoAuthor 52k 178k — 6.94 0.84 1.3 × 10−4
VK 79k 2.7M 2 34.1 0.47 8.7 × 10−4
YouTube 1.1M 3M 47 5.25 0.71 9.2 × 10−6
Orkut 3.1M 234M 50 70 0.68 2.4 × 10−5

Table 3: Dataset characteristics: number of vertices |V |, num-

ber of edges |E |; number of node labels |L|; average node de-
gree; modularity [32]; density de�ned as |E |/

(|V |
2

)
.

• Louvain community detection [9]: We employ a standard par-

tition method for community detection as a baseline for graph

clustering, reporting the best partition in terms of modularity [32].

Parameter settings. In line with previous research [15, 37, 41] we

set the embedding dimensionality d to 128. The learning procedure

(Algorithm 1, Line 3) is run 105 times for VERSE and 250 times for

fVERSE; the di�erence in setting is motivated by the number of

model updates which is O(n) in VERSE and O(n2) in fVERSE.

We use LIBLINEAR [13] to perform logistic regression with

default parameter settings. Unlike previous work [15, 37, 41] we

employ a stricter assumption for multi-label node classi�cation: the

number of correct classes is not known apriori, but found through

the Label Powerset multi-label classi�cation approach [45].

For link prediction and multi-label classi�cation, we evaluated

each individual embedding 10 times in order to reduce the noise

introduced by the classi�er. Unless otherwise stated, we run each

experiment 10 times, and report the average value among the runs.

Throughout our experimental study, we use the above parameters

as default, unless indicated otherwise.

Datasets. We test our methods on six real datasets; we report the

main data characteristics in Table 3.

• BlogCatalog [54] is a network of social interactions among blog-

gers in the BlogCatalog website. Node-labels represent topic cate-

gories provided by authors.

• Microsoft Academic Graph [1] is a network of academic papers,

citations, authors, and a�liations fromMicrosoft Academic website

released for the KDD-2016 cup. It contains 150 million papers up to

February 2016 spanning various disciplines from math to biology.

We extracted two separate subgraphs from the original network,

using 15 conferences in data mining, databases, and machine learn-

ing. The �rst, CoAuthor, is a co-authorship network among authors.

The second,CoCit, is a network of papers citing other papers; labels

represent conferences in which papers were published.

• VK is a Russian all-encompassing social network. We extracted

two snapshots of the network in November 2016 and May 2017 to

obtain information about link appearance. We use the gender of

the user for classi�cation and country for clustering.

• YouTube [43] is a network of social interactions among users of

the YouTube video platform. The labels represent groups of viewers

by video genres.

• Orkut [52] is a network of social interactions among users of the

Orkut social network platform. The labels represent communities

of users. We extracted the 50 biggest communities and use them as

labels for classi�cation.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

544

https://github.com/xgfs/verse
https://github.com/xgfs/deepwalk-c
https://github.com/xgfs/node2vec-c
https://github.com/tangjianpku/LINE

VERSE: Versatile Graph Embeddings from Similarity Measures WWW 2018, April 23–27, 2018, Lyon, France

Evaluation methodology. The default form of VERSE runs Per-

sonalized PageRank with α = 0.85. For the sake of fairness, we

design a hyperparameter-supervised variant of VERSE, by analogy

to the hyperparameter-tuned variant of DeepWalk introduced

by Node2vec [15]. This variant, hsVERSE, selects the best simi-

larity with cross-validation across two proximity orders (as dis-

cussed in Section 3.6) and three similarities (Section 3.3) with

α∈{0.45, 0.55, 0.65, 0.75, 0.85, 0.95} for simPPR
G

and C ∈ {0.15, 0.25,
0.35, 0.45, 0.55, 0.65} for simSR

G
.

Operator Result

Average (a + b)/2

Concat [a1, . . . , ad , b1, . . . , bd]

Hadamard [a1 ∗ b1, . . . , ad ∗ bd]
Weighted L1 [|a1 − b1 |, . . . , |ad − bd |]
Weighted L2 [(a1 − b1)2, . . . , (ad − bd)2]

Table 4: Vector operators used for link-prediction task for

each u,v ∈ V and corresponding embeddings a, b ∈ Rd .

method Average Concat Hadamard L1 L2

fVERSE 80.06 79.69 86.71 84.49 84.97

VERSE 79.16 78.79 85.69 71.93 72.11

DeepWalk 68.43 68.06 66.54 79.06 78.11

GraRep 74.87 74.91 82.24 80.03 80.05

LINE 77.49 77.39 77.73 70.55 71.83

HOPE 74.90 74.83 74.81 74.34 74.81

hsVERSE 79.52 79.10 86.15 76.45 76.72

Node2vec 77.07 76.67 79.42 81.25 80.85

Feature Eng. 77.53

Table 5: Link prediction results on the CoAuthor coauthor-

ship graph. Best results per method are underlined.

method Average Concat Hadamard L1 L2

fVERSE 74.94 74.81 80.77 78.49 79.13

VERSE 73.78 73.66 79.71 74.11 74.56

DeepWalk 70.05 69.92 69.79 78.38 77.37

LINE 75.17 75.13 72.54 63.77 64.47

HOPE 71.89 71.90 70.22 71.22 70.63

hsVERSE 74.14 74.02 80.26 73.04 73.53

Node2vec 71.29 71.22 72.43 78.38 78.66

Feature Eng. 78.84

Table 6: Link prediction results on the VK social graph. Best

results per method are underlined.

4.1 Link Prediction

Link prediction is the task of anticipating the appearance of a link

between two nodes in a network. Conventional measures for link

prediction include Adamic-Adar, Preferential attachment, Katz, and

Jaccard coe�cient. We train a Logistic regression classi�er on edge-

wise features obtained with the methods shown in Table 4. For

instance, for a pair of nodes u,v , the Concat operator returns a

vector as the sequential concatenation of the embeddings f (u) and

labelled nodes, %

method 1% 3% 5% 7% 9%

fVERSE 27.52 29.83 31.01 31.68 32.24

VERSE 27.32 29.42 30.67 31.32 31.83

DeepWalk 26.81 29.27 30.37 31.04 31.43

GraRep 27.68 29.21 30.24 30.23 30.79

LINE 23.68 26.90 27.89 28.49 28.80

HOPE 22.81 26.63 27.59 28.19 28.58

hsVERSE 27.46 29.45 30.67 31.38 31.92

Node2vec 27.45 29.66 30.82 31.54 32.04

Table 7: Multi-class classi�cation results in CoCit dataset.

f (v). On the CoAuthor data, we predict new links for 2015 and 2016

co-authorships, using the network until 2014 for training; onVK, we

predict whether a new friendship link appears between November

2016 and May 2017, using 50% of the new links for training and 50%

for testing. We train the binary classi�er by sampling non-existing

edges as negative examples. Tables 5 and 6 report the attained

accuracy. As a baseline, we use a logistic regression classi�er trained

on the respective data sets’ features.

VERSE with Hadamard product of vectors is consistently the

best edge representation. We attribute this quality to the explicit re-

construction we achieve using noise contrastive estimation. VERSE

consistently outperforms the baseline in the tested datasets. Be-

sides, the hyperparameter-supervised hsVERSE variant outruns

Node2vec on all datasets.

4.2 Node Classi�cation

Wenow conduct an extensive evaluation on classi�cation and report

results for all the methods, where possible, with the CoCit, VK,

YouTube, and Orkut graphs. Node classi�cation aims to predict of

the correct node labels in a graph, as described previously in this

section.

We evaluate accuracy by the Micro-F1 and Macro-F1 percentage

measures. We report only Macro-F1, since we experience similar

behaviors with Micro-F1. For each dataset we conduct multiple

experiments, selecting a random sample of nodes for training and

leaving the remaining nodes for testing. The results for four datasets,

shown in Tables 7-10, exhibit similar trends: VERSE yields predic-

tions comparable or superior to those of the other contestants, while

it scales to large networks such as Orkut. LINE outperforms VERSE

only in VK, where the gender of users is better captured using the

direct neighborhood. The hyperparameter-supervised variant, hs-

VERSE, is on a par with Node2vec in terms of quality on CoCit and

VK; on the largest datasets YouTube and Orkut, hsVERSE keeps

outperforming unsupervised alternatives, whileNode2vec depletes

the memory.

4.3 Node Clustering

Graph clustering detects groups of nodes with similar characteris-

tics [9, 32]. We assess the embedding methods, using the k-means

algorithmwith k-means++ initialization [5] to cluster the embedded

points in a d-dimensional space. Table 11 reports the Normalized

Mutual Information (NMI) with respect to the original label distri-

bution. On CoAuthor, VERSE has comparable performance with

DeepWalk; yet on VK, VERSE outperforms all other methods.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

545

WWW 2018, April 23–27, 2018, Lyon, France Anton Tsitsulin, Davide Mo�in, Panagiotis Karras, and Emmanuel Müller

labelled nodes, %

method 1% 3% 5% 7% 9%

fVERSE 58.32 61.01 61.74 62.26 62.50

VERSE 57.89 60.53 61.43 61.86 62.13

DeepWalk 58.22 60.93 61.79 62.17 62.49

LINE 60.39 62.83 63.58 64.01 64.23

HOPE 54.88 56.65 57.04 57.40 57.68

hsVERSE 58.87 61.67 62.50 62.97 63.16

Node2vec 58.85 61.79 62.62 63.04 63.30

Table 8: Multi-class classi�cation results in VK dataset.

labelled nodes, %

method 1% 3% 5% 7% 9%

VERSE 17.92 22.26 24.07 25.07 25.99

DeepWalk 18.16 21.55 22.89 23.64 24.54

LINE 13.71 17.36 18.69 19.84 20.64

HOPE 9.22 13.80 15.09 16.18 16.78

hsVERSE 18.16 22.84 25.40 27.38 29.09

Table 9:Multi-label classi�cation results inYouTube dataset.

labelled nodes, %

method 1% 3% 5% 7% 9%

VERSE 25.16 28.22 29.60 31.46 32.63

DeepWalk 24.21 27.99 29.63 30.60 31.27

LINE 26.79 30.89 32.34 32.92 33.65

hsVERSE 27.73 30.70 32.73 34.00 35.20

Table 10: Multi-class classi�cation results in Orkut dataset.

We also assess graph embeddings on their ability to capture the

graph community structure. We apply k-means with di�erent k

values between 2 and 50 and select the best modularity [32] score.

Table 12 presents our results, along with the modularity obtained by

the Louvain method, the state-of-the-art modularity maximization

algorithm [9]. VERSE variants produce result almost equal that

those of Louvain, outperforming previous methods, while the three

methods that could manage the Orkut data perform similarly.

method CoCit VK

fVERSE 33.22 9.24

VERSE 32.93 7.62

DeepWalk 34.33 7.59

LINE 18.79 7.49

GraRep 27.43 —

HOPE 19.05 6.47

hsVERSE 33.24 8.77

Node2vec 32.84 8.05

Louvain 30.73 4.54

Table 11: Node clustering results in terms of NMI.

4.4 Graph Reconstruction

Good graph embeddings should preserve the graph structure in the

embedding space. We evaluate the performance of our method on

reconstructing the graph’s adjacency matrix. Since each adjacent

method CoCit CoAuthor VK YouTube Orkut

fVERSE 70.12 80.95 44.59 — —

VERSE 69.43 79.25 45.78 67.63 42.64

DeepWalk 70.04 73.83 43.30 58.08 44.66

LINE 60.02 71.58 39.65 63.40 42.59

GraRep 67.61 77.40 — — —

HOPE 42.45 69.57 21.70 37.94 —

hsVERSE 69.81 79.31 45.84 69.13 —

Node2vec 70.06 75.78 44.27 — —

Louvain 72.05 84.29 46.60 71.06 —

Table 12: Node clustering results in terms of modularity.

node should be close in the embedding space, we �rst sort any

node other than the one considered by decreasing cosine distance

among the vectors. Afterwards, we take a number of nodes equal

to the actual degree of the node in the graph and connect to the

considered node to create the graph structure.

Table 13 reports the relative accuracy measured as the number

of correct nodes in the neighborhood of a node in the embedding

space. Again, VERSE performs comparably well; its exhaustive

variant, fVERSE, which harnesses the full similarity does even

better; however, the top performer is hsVERSE, which achieves the

obtained result when instantiated to the Adjacency Similarity. This

result is unsurprising, given that the adjacency similarity measure

tailors hsVERSE for the task of graph reconstruction.

method CoCit CoAuthor VK YouTube Orkut

fVERSE 88.96 98.20 66.45 — —

VERSE 58.73 74.30 50.18 28.64 18.39

DeepWalk 51.54 68.44 43.04 32.21 19.75

LINE 23.32 62.01 42.80 17.76 10.82

GraRep 67.61 77.40 — — —

HOPE 25.88 49.70 12.01 33.42 —

hsVERSE 97.53 98.91 78.38 38.34 28.81

Node2vec 66.35 72.70 53.70 — —

Table 13: Graph reconstruction % for all datasets.

4.5 Parameter Sensitivity

We also evaluate the sensitivity of VERSE to parameter choice.

Figures 4(a),4(b) depict node classi�cation performance in terms of

Micro-F1 on the BlogCatalog dataset, with 10% of nodes labeled.

The dimensionality d determines the size of the embedding,

and hence the possibility to compute more �ne-grained representa-

tions. The performance grows linearly as the number of dimensions

approaches 128, while with larger d we observe no further improve-

ment. Sampled VERSE instead, performs comparably better than

fVERSE in low dimensional spaces, but degrades as d becomes

larger than 128; this behavior re�ects a characteristic of node sam-

pling that tends to preserve similarities of close neighborhoods in

low-dimensional embeddings, while the VERSE leverages the entire

graph structure for larger dimensionality

The last parameter we study is the damping factor α which

amounts to the inverse of the probability of restarting random

walks from the initial node. As shown in Figure 4(b), the quality

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

546

VERSE: Versatile Graph Embeddings from Similarity Measures WWW 2018, April 23–27, 2018, Lyon, France

2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

d

M
ic
r o
-F
1

fVERSE

VERSE

(a) Dimensionality d

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

α

M
ic
ro
-F
1

fVERSE

VERSE

(b) PPR damping factor α

104 105 106
102

103

104

nodes

se
co
n
d
s

fVERSE

VERSE

DeepWalk

Node2vec

LINE-2

(c) Time, log scale

Figure 4: Classi�cation performance of various parameters in Fig. 4(a), 4(b) and scalability of di�erent methods in Fig. 4(c).

Figure 5: Visualizations of a subset of nodes from CoCit

graph with selected conferences: VLDB, ICDE, KDD,

WWW, and NIPS. Note that the number of nodes per

class is the same for all conferences.

of classi�cation accurary is quite robust with respect to α for both

VERSE and fVERSE, only compromised by extreme values. An α

value close to 0 reduces PPR to an exploration of the immediate

neighborhood of the node. On the other hand, a value close to 1

amounts to regular PageRank, deeming all nodes as equally im-

portant. This result vindicates our work and distinguishes it from

previous methods based on local neighborhood expansion.

4.6 Scalability

Wenow present runtime results on synthetic graphs of growing size,

generated by the Watts Strogatz model [50], setting VERSE against

scalable methods with C++ implementations, namely DeepWalk,

LINE, and Node2vec. For each method, we report the total wall-

clock time, with graph loading and necessary preprocessing steps

included. We used LINE-2 time for fair comparison. As Figure 4

shows,VERSE is comfortably themost e�cient and scalablemethod,

processing 106 nodes in about 3 hours, while DeepWalk and LINE

take from 6 to 15 hours.

4.7 Visualization

Last, we show how di�erent embeddings are visualized on a plane.

We apply t-SNE [47] with default parameters to each embedding for

a subset of 1500 nodes from the CoCit dataset, equally distributed

in 5 classes (i.e., conferences); we set the density areas for each class

by Kernel Density Estimation. Figure 5 depicts the result. VERSE

produces well separated clusters with low noise, even �nding dis-

tinctions among papers of the same community, namely ICDE ()

and VLDB ().

5 CONCLUSIONS

We introduced a new perspective on graph embeddings: to be ex-

pressive, a graph embedding should capture some similarity mea-

sure among nodes. Armed with this perspective, we developed a

scalable embedding algorithm, VERSE. In a departure from previous

works in the area, VERSE aims to reconstruct the distribution of any

chosen similarity measure for each graph node. Thereby, VERSE

brings in its scope a global view of the graph, while substantially

reducing the number of parameters required for training. VERSE
attains linear time complexity, hence it scales to large real graphs,

while it only requires space to store the graph. Besides, we have

shed light on some previous works on graph embeddings, looking at

them and interpreting them through the prism of vertex similarity.

Our thorough experimental study shows that, even instantiated

with PPR as a default similarity notion, VERSE consistently out-

performs state-of-the-art approaches for graph embeddings in a

plethora of graph tasks, while a hyperparameter-supervised vari-

ant does even better. Thus, we have provided strong evidence that

embeddings genuinely based on vertex similarity address graph

mining challenges better than others.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

547

WWW 2018, April 23–27, 2018, Lyon, France Anton Tsitsulin, Davide Mo�in, Panagiotis Karras, and Emmanuel Müller

REFERENCES
[1] 2016. Microsoft Academic Graph - KDD cup 2016. https://kddcup2016.

azurewebsites.net/Data. (2016). Accessed: 2016-04-30.
[2] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. 2017. Learning Edge

Representations via Low-Rank Asymmetric Projections. CIKM (2017).
[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.
In WWW. ACM, 37–48.

[4] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting
anomalies in weighted graphs. In PAKDD. 410–421.

[5] David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of
careful seeding. In SIAM. 1027–1035.

[6] Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In NIPS. 585–591.

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. TPAMI (2013), 1798–1828.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A
neural probabilistic language model. JMLR (2003), 1137–1155.

[9] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 10 (2008).

[10] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems (1998), 107 – 117.

[11] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In CIKM. 891–900.

[12] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for
Learning Graph Representations. In AAAI. 1145–1152.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A library for large linear classi�cation. JMLR 9, Aug (2008),
1871–1874.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
Press.

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In KDD. 855–864.

[16] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models.. In AISTATS.
297–304.

[17] Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-contrastive estimation
of unnormalized statistical models, with applications to natural image statistics.
JMLR 13 (2012), 307–361.

[18] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hang-
hang Tong, and Christos Faloutsos. 2011. It’s who you know: graph mining using
recursive structural features. In KDD. 663–671.

[19] Jiafeng Hu, CK Cheng, Zhipeng Huang, Yixiang Fang, and Siqiang Luo. 2017. On
Embedding Uncertain Graphs. In CIKM. ACM.

[20] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. InWSDM. ACM, 731–739.

[21] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In KDD. 538–543.

[22] Minhao Jiang, Ada Wai-Chee Fu, and Raymond Chi-Wing Wong. 2017. READS:
a random walk approach for e�cient and accurate dynamic SimRank. VLDB 10,
9 (2017), 937–948.

[23] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[24] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. Imagenet classi�-
cation with deep convolutional neural networks. 1097–1105.

[25] Matthieu Labeau and Alexandre Allauzen. 2017. An experimental analysis of
Noise-Contrastive Estimation: the noise distribution matters. EACL (2017).

[26] John A. Lee and Michel Verleysen. 2007. Nonlinear Dimensionality Reduction (1st
ed.). Springer Publishing Company, Incorporated.

[27] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. 2010. New perspec-
tives and methods in link prediction. In KDD. 243–252.

[28] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications 390, 6 (2011), 1150–1170.

[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Je�rey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[30] Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training
neural probabilistic language models. In ICML. 1751–1758.

[31] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and
Santhoshkumar Saminathan. 2016. subgraph2vec: Learning distributed represen-
tations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928
(2016).

[32] Mark EJ Newman. 2006. Modularity and community structure in networks. PNAS
(2006), 8577–8582.

[33] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In KDD. 1105–1114.

[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: bringing order to the web. (1999).

[35] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global Vectors for Word Representation.. In EMNLP. 1532–1543.

[36] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller.
2014. Focused clustering and outlier detection in large attributed graphs. In KDD.
1346–1355.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In KDD. 701–710.

[38] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In KDD. ACM, 385–394.

[39] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323–2326.

[40] Jiliang Tang and Huan Liu. 2012. Unsupervised Feature Selection for Linked
Social Media Data. In KDD. 904–912.

[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. InWWW. 1067–1077.

[42] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In
KDD. 817–826.

[43] Lei Tang and Huan Liu. 2009. Scalable learning of collective behavior based on
sparse social dimensions. In CIKM. 1107–1116.

[44] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[45] Grigorios Tsoumakas and Ioannis Katakis. 2006. Multi-label classi�cation: An
overview. IJDWM 3, 3 (2006).

[46] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and Maosong Sun. 2016. Max-
Margin DeepWalk: Discriminative Learning of Network Representation. In IJCAI.
3889–3895.

[47] L.J.P. van der Maaten and G.E. Hinton. 2008. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[48] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In KDD. 1225–1234.

[49] Suhang Wang, Charu Aggarwal, Jiliang Tang, and Huan Liu. 2017. Attributed
Signed Network Embedding. CIKM (2017).

[50] Duncan JWatts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’
networks. Nature 393 (1998), 440–442.

[51] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and
Stephen Lin. 2007. Graph embedding and extensions: A general framework for
dimensionality reduction. TPAMI 29, 1 (2007).

[52] Jaewon Yang and Jure Leskovec. 2015. De�ning and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems 42 (2015),
181–213.

[53] Wayne W Zachary. 1977. An information �ow model for con�ict and �ssion in
small groups. Journal of anthropological research 33, 4 (1977), 452–473.

[54] R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. (2009).
http://socialcomputing.asu.edu

[55] Daokun Zhanga, Jie Yinb, Xingquan Zhuc, and Chengqi Zhanga. 2017. User
pro�le preserving social network embedding. In IJCAI.

Track: Social Network Analysis and Graph Algorithms for the Web WWW 2018, April 23-27, 2018, Lyon, France

548

https://kddcup2016.azurewebsites.net/Data
https://kddcup2016.azurewebsites.net/Data
http://socialcomputing.asu.edu

	Abstract
	1 Introduction
	2 Related Work
	3 Versatile Graph Embedding
	3.1 VERSE Objective
	3.2 VERSE Embedding Model
	3.3 Instantiations of VERSE
	3.4 VERSE Algorithm
	3.5 Complexity Comparison
	3.6 Similarity Notions in Previous Approaches

	4 Experiments
	4.1 Link Prediction
	4.2 Node Classification
	4.3 Node Clustering
	4.4 Graph Reconstruction
	4.5 Parameter Sensitivity
	4.6 Scalability
	4.7 Visualization

	5 Conclusions
	References

