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Version 3 of the Global Aridity Index 
and Potential Evapotranspiration 
Database
Robert J. Zomer   1,2, Jianchu Xu1,2 ✉ & Antonio Trabucco   3

The “Global Aridity Index and Potential Evapotranspiration Database - Version 3” (Global-AI_PET_v3) 
provides high-resolution (30 arc-seconds) global hydro-climatic data averaged (1970–2000) monthly 
and yearly, based upon the FAO Penman-Monteith Reference Evapotranspiration (ET0) equation. 
An overview of the methods used to implement the Penman-Monteith equation geospatially and a 
technical evaluation of the results is provided. Results were compared for technical validation with 
weather station data from the FAO “CLIMWAT 2.0 for CROPWAT” (ET0: r2 = 0.85; AI: r2 = 0.90) and 
the U.K. “Climate Research Unit: Time Series v 4.04” (ET0: r2 = 0.89; AI: r2 = 0.83), while showing 
significant differences to an earlier version of the database. The current version of the Global-AI_PET_
v3 supersedes previous versions, showing a higher correlation to real world weather station data. 
Developed using the generally agreed upon standard methodology for estimation of reference ET0, this 
database and notably, the accompanying source code, provide a robust tool for a variety of scientific 
applications in an era of rapidly changing climatic conditions.

Background & Summary
Potential evapotranspiration (PET) is a measure of the ability of the atmosphere to remove water through evapo-
transpiration (ET)1,2, and is the sum of two processes, evaporation and transpiration, which transfer water from 
the land surface to the atmosphere. These two processes occur simultaneously, with the rates of both dependent 
on solar radiation, air temperature, relative humidity (i.e., vapor pressure deficit) and wind speed3,4, as well as 
specific crop characteristics and cultivation practices2. Measures of, and indices based upon PET (or the ET of a 
reference crop under optimal conditions) are widely used in a range of scientific disciplines and practical appli-
cations, particularly in agricultural and natural resource management, where it is applied at scales from farm to 
regional and global5,6. In a rapidly changing global environment and climate, these metrics, and their derivative 
indices, become a direct and critical measure, and predictive tool, of the trend, direction, and magnitude of 
climatic change, and it’s impacts upon the terrestrial biosphere, with implications for plant growth, sustainable 
development, and eventually, considering the recently released conclusions of the latest IPCC7,8 reports, for 
human civilization.

Likewise, aridity is a complex concept that ideally requires a comprehensive assessment of 
hydro-climatological and hydro-ecological variables to fully describe or understand anticipated changes. A 
widely used approach to assess status and changes in aridity is the aridity index (AI), defined as the ratio of 
precipitation to PET. Aridity indices9–11 provide a measure of moisture availability for potential growth of ref-
erence crop or other specific vegetation types1,12,13. Summarizing the aridity concept into a single number, the 
use of aridity indices allows for both spatial and temporal comparisons and provide an important baseline for 
measuring and anticipating the impacts of climatic change. The AI reflects the exchanges of energy and water 
between the land surface and the atmosphere, and its variation can be used as input for a variety of operational 
decision making, such as irrigation and crop management, as well as forecasting drought and flood patterns, 
which makes it of great significance for agricultural production and water management14.

The first version of the “Global Aridity Index and PET Database” (Global-AI_PET_v1)15, using the 
global climatic dataset WorldClim (version 1.4: 1960–1990) has been available online since 200915–18, and a 
subsequent version the “Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database” 
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(Global-AI_PET_v2)19 implementing a Penman-Monteith equation and based on the updated WorldClim ver-
sion 2.020 (1970–2000), has been available online since 2019. These datasets been downloaded currently in excess 
of 47,000 times, and applied across a wide range of disciplines, with nearly 1500 citations on topics ranging 
from agricultural and natural resource science, to genetics, anthropology, archaeology, conflict resolution, and 
climate change. It has been found useful in a wide variety of applications, particularly related, but not limited to 
water management21,22 and crop production, but also socio-ecological and socio-economic applications related 
to sustainable development23,24, climate change impacts25,26, and adaptation27,28. The topics of papers citing this 
dataset range from global environmental stratification29–31, to human migration32, pastoralism and dryland envi-
ronmental threats33,34, wildlife and restoration ecology35, fire modeling36, child mortality37, and epidemiologi-
cal38–40 and other human and livestock health research41–45, such as the effect of malaria control39,40, or mapping 
the zoonotic niche of Ebola virus disease in Africa38.

This paper describes the updated Version 3 of the “Global Aridity Index and Potential Evapotranspiration 
(ET0) Database” (Global-AI_PET_v3)46, which is based upon a fully parameterized geospatial implementation 
of the FAO-56 Penman-Monteith equation (referred to hereafter as “FAO-56”). An overview of the methods 
used to implement FAO-56 geospatially on a per grid cell basis, and a technical evaluation of the results, both 
in relation to weather station data, and in comparison, with the two previous versions (Global-AI_PET_v1/
Global-AI_PET_v2) is provided as guidance to previous users. Results are compared for technical validation 
with weather station data from the FAO “CLIMWAT 2.0 for CROPWAT”47 and the global gridded time series 
data from the CRU_TS (version 4.04)48.

The updated Global-AI_PET_v346 database is archived and available online for download at: https://doi.
org/10.6084/m9.figshare.7504448.v5.

Methods
Calculating Potential Evapotranspiration using Penman-Monteith.  Among several equations used 
to estimate PET, an implementation of the Penman-Monteith equation originally presented by the Food and 
Agriculture Organization FAO-561, is considered a standard method3,12,13,49. FAO-561 defined PET as the ET of a 
reference crop (ET0) under optimal conditions, in this case with the specific characteristics of well-watered grass 
with an assumed height of 12 centimeters, a fixed surface resistance of 70 seconds per meter and an albedo of 
0.231. Less specifically, “reference evapotranspiration”, generally referred to as “ET0”, measures the rate at which 
readily available soil water is evaporated from specified vegetated surfaces2,13, i.e., from a uniform surface of 
dense, actively growing vegetation having specified height and surface resistance, not short of soil water, and rep-
resenting an expanse of at least 100 m of the same or similar vegetations1,13. ET0 is one of the essential hydrological 
variables used in many research efforts, such as study of the hydrologic water balance, crop yield simulation, 
irrigation system management and in water resources management, allowing researchers and practitioners to 
study the evaporative demand of the atmosphere independent of crop type, crop development and management 
practices2,4,13,49. ET0 values measured or calculated at different locations or in different seasons are comparable as 
they refer to the ET from the same reference surface. The factors affecting ET0 are climatic parameters, and crop 
specific resistances coefficients solved for reference vegetation. Other crop specific coefficients (Kc) may then be 
used to determine the ET of specific crops (ETc), and which can in turn be determined from ET0

1.
As the Penman-Monteith methodology is predominately a climatic approach, it can be applied globally 

as it does not require estimations of additional site-specific parameters. However, a major drawback of the 
Penman-Monteith method is its relatively high need for specific data for a variety of parameters (i.e., wind-
speed, relative humidity, solar radiation). Zomer et al.18 compared five methods of calculating PET with 
parameters from data available at the time and settled upon using a Modified Hargreaves-Thornton equation50 
which required less parametrization to produce the Global-AI_PET_v116–18. Several other attempts to produce 
global PET datasets with concurrently available global datasets came to similar conclusions51–53. The Modified 
Hargreaves-Thornton method required less parameterization with relatively good results, relying on datasets 
which were available at the time for a globally applicable modeling effort. The Global-AI_PET_v1 used the 
WorldClim_v1.420 downscaled climate dataset (30 arcseconds; averaged over the period 1960–1990) for input 
into the global geospatial implementation of the Modified Hargreaves-Thornton equation, applied on a per 
grid cell basis at approximately 1 km resolution (30 arcseconds). More recently, the UK Climate Research Unit 
released the “CRU_TS Version 4.04”, which now includes a Penman-Monteith calculated PET (ET0) global cov-
erage, however at a relatively coarse resolution of 0.5 × 0.5 degrees. A number of satellite-based remote sensing 
datasets22,54–57 are now available and in use to provide the parameters for ET0 estimates, in some cases providing 
high spatial and/or temporal resolution and are likely to become increasingly utilized as the historical data 
record lengthens and sensors improve.

The latest 2.0 versions of WorldClim58 (currently version 2.1; released January 2020), in addition to being 
updated with improved data and analysis, and a revised baseline (1970–2000), includes several additional pri-
mary climatic variables, beyond temperature and precipitation, namely: solar radiation, wind speed and water 
vapor pressure. The addition of these variables allowed that the global data now available was sufficient to effec-
tively parameterize the FAO-56 equation to estimate ET0 globally at the 30 arc seconds scale (~1 km at equator).

The FAO-56 Penman-Monteith equation, described in detail below, has been implemented on a per grid 
cell basis at 30 arc seconds resolution, using the Python programming language (version 3.2). The data to 
parametrize the various components equations required to arrive at the ET0 estimate were obtained from the 
Worlclim 2.158 climatological dataset, which provides values averaged over the time period 1970–2000 for min-
imum, maximum and average temperature; solar radiation; wind speed, and water vapor pressure. Subroutines 
in the program include calculation of the psychrometric constant (aerodynamic resistance), saturation vapor 
pressure, vapor pressure deficit, slope of vapour pressure curve, air density at constant pressure, net shortwave 
radiation at crop surface, clear-sky solar radiation, net longwave radiation at crop surface, net radiation at the 
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crop surface, and the calculation of daily and monthly ET0. This process is described below. Geospatial pro-
cessing and analysis were done using ArcGIS Pro v 2.9 (ESRI, 2020), Python (ArcPy) programming language 
(version 3.2), and Microsoft Excel for further data analysis, graphics and presentation.

Global Reference Evapotranspiration (Global-ET0).  Penman59, in 1948, first combined the radiative 
energy balance with the aerodynamic mass transfer method and derived an equation to compute evaporation 
from an open water surface from standard climatological records of sunshine, temperature, humidity and wind 
speed. This combined approach eliminated the need for the parameter “most difficult” to measure, surface tem-
perature, and allowed for the first time an opportunity to make theoretical estimates of ET from standard meteor-
ological data. Consequently, these estimates could also now be made retrospectively. This so-called combination 
method was further developed by many researchers and extended to cropped surfaces by introducing resistance 
factors. Among the various derivations of the Penman equation is the inclusion of a bulk surface resistance term60, 
with the resulting equation now called the Penman-Monteith equation3, as standardized in FAO-561 and sub-
sequently by the American Society of Civil Engineers - Technical Committee on Standardization of Reference 
Evapotranspiration12,13,49,61. The FAO-56 Penman-Monteith form of the combination equation to estimate ET0 is 
calculated as:

ρ

γ
=

Δ − +

Δ + +

−

( )
ETo

R G c( )

1 (1)

n a p
e e

r

r
r

( )s a

a

s

a

Where
ET0 is the evapotranspiration for reference crop, as mm day−1

Rn is the net radiation at the crop surface, as MJ m−2 day−1

G is the soil heat flux density, as MJ m−2 day−1

cp is the specific heat of dry air
pa is the air density at constant pressure
es is the saturation vapour pressure, as kPa
ea is the actual vapour pressure, as kPa
es - ea is the saturation vapour pressure deficit, as kPa
Δ is the slope vapour pressure curve, as kPa °C−1

γ is the psychrometric constant, as kPa °C−1

rs is the bulk surface resistance, as m s−1

ra is the aerodynamic resistance, as m s−1

Psychrometric Constant (γ).  The Atmospheric Pressure (Pr, [KPa]) is the pressure exerted by the weight 
of the atmosphere and is thus dependent on elevation (elev, [m]). To a certain (and limited) extent evaporation is 
promoted at higher elevations:

= . ∗




− . ∗ 



.

Pr elev101 3 293 0 0065
293 (2)

5 26

Instead, the psychrometric constant, [γ, kPa C−1] is expressed as:
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Where cp is the specific heat at constant pressure [MJ kg−1 °C−1] and is equal to 1.013 10−3, λ is the latent heat of 
vaporization [MJ kg−1] and is equal to 2.45, while ε is the molecular weight ratio between water vapour and dry 
air and is equal to 0.622.

Elevation data has been obtained from the Shuttle Radar Topography Mission (SRTM) aggregated to 30 
arc-second spatial resolution62 and combined with the USGS GTOPO3063 database for the areas north of 60°N 
and south of 60°S where no SRTM data was available (available at https://worldclim.org).

Air Density at Constant Pressure [ρa].  The mean Air Density at Constant Pressure [ρa, Kg m−3] can be 
represented as:

ρ =
∗

Pr
T R (4)a

Kv

While R is the specific heat constant (0.287, KJ Kg−1 K−1), the virtual temperature TKv can be represented as well 
as:

( )T T1 01 273 (5)Kv avg= . ∗ +

With Tavg as the mean daily air temperature at 2 m height [C°].

Saturation Vapor Pressure [KPa].  Saturation Vapor Pressure [KPa] is strictly related to temperature val-
ues (T)
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Values of saturation vapor pressures, as function of temperature, are calculated for both Minimum 
Temperature [Tmin, C°] and Maximum temperature [Tmax, C°]. Due to nonlinearity of the equation, the mean 
saturation vapour pressure [es, KPa] is calculated as the average of saturation vapour pressure at minimum 
[es_min] and maximum temperature [es_max]
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+
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The actual vapour pressure [ea, KPa] is the vapour pressure exerted by the water in the air and is usually 
calculated as function of Relative Humidity [RH]. Water vapour pressure is already available as one of the 
Worldclim 2.1 variables.

= ∗e RH e/100 (8)a s

The vapour pressure deficit (es-ea), [KPa] is the difference between the saturation (es) and actual vapour pres-
sure (ea).

Slope of Saturation Vapor Pressure (Δ).  The Slope of Saturation Vapor Pressure [Δ, kPa C−1] at a given 
temperature is given as function of average temperature:
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Where Tavg [C°] is the average temperature.

Net Radiation At The Crop Surface (Rn).  Net radiation [Rn, MJ m−2 day−1] is the difference between the 
net shortwave radiation [Rns, MJ m−2 day−1] and the net longwave radiation [Rnl, MJ m−2 day−1], and is calcu-
lated using solar radiation (Rs). In Worldclim 2.1 solar radiation (Rs) is given as KJ m−2 day−1. Thus, for compu-
tation of ET0, its unit should be converted to MJ m−2 day−1 and thus its value should be divided by 1000. The net 
accounting of either longwave and shortwave radiation sums up the incoming and outgoing components.

= −R R R (10)n ns nl

The net shortwave radiation [Rns, MJ m−2 day−1] is the fraction of the solar radiation Rs that is not reflected 
from the surface. The fraction of the solar radiation reflected by the surface is known as the albedo [α]. For the 
green grass reference crop, α is assumed to have a value of 0.23. The value of Rns is:

α= ∗ −R R (1 ) (11)ns s

The difference between outgoing and incoming longwave radiation is called the net longwave radiation [Rnl]. 
As the outgoing longwave radiation is almost always greater than the incoming longwave radiation, Rnl repre-
sents an energy loss. Longwave energy emission is related to surface temperature following Stefan-Boltzmann 
law. Thus, longwave radiation emission is calculated as positive in the outward direction, while shortwave radi-
ation is positive in the downward direction. The net energy flux leaving the earth’s surface is influenced as well 
by humidity and cloudiness
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Where σ represent the Stefan-Boltzmann constant (4.903 10-9 MJ K−4 m−2 day−1), Tmax,K and Tmin,K the maxi-
mum and minimum absolute temperature (in Kelvin; K = C° + 273.16), ea is the actual vapour pressure; Rs the 
measured solar radiation [MJ m−2 day−1] and Rso is the calculated clear-sky radiation [MJ m−2 day−1]. Rso is 
calculated as function of extraterrestrial solar radiation [Ra, MJ m−2 day−1] and elevation (elev, m):

= ∗ . + . ∗R R elev(0 75 0 00002 ) (13)so a

The extraterrestrial radiation, [Ra, MJ m−2 day−1], is estimated from the solar constant, solar declination 
and day of the year. It requires specific information about latitude and Julian day to accomplish a trigonometric 
computation of the amount of solar radiation reaching the top of the atmosphere following trigonometric com-
putations as shown in Allen et al.1.

Although the soil heat flux is small compared to Rn, particularly when the surface is covered by vegetation, 
changes of soil heat flux may still be relevant at monthly scale. However, accurate assessments of soil heat flux 
may require computation of soil heat capacity, related to its mineral composition and water content, which in 
turn may be rather inaccurate at global scale at resolution of 30 arc sec. Thus, for simplicity, changes in soil heat 
fluxes are ignored (G = 0).
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Bulk Surface Resistance (rs).  The resistance nomenclature distinguishes between aerodynamic resistance 
and surface resistance factors. The surface resistance parameters are often combined into one parameter, the ‘bulk’ 
surface resistance parameter which operates in series with the aerodynamic resistance. The surface resistance, rs, 
describes the resistance of vapour flow through stomata openings, total leaf area and soil surface. The aerody-
namic resistance, ra, describes the resistance from the vegetation upward and involves friction from air flowing 
over vegetative surfaces. Although the exchange process in a vegetation layer is too complex to be fully described 
by the two resistance factors, good correlations can be obtained between measured and calculated evapotranspi-
ration rates, especially for a uniform grass reference surface.

A general equation for the bulk surface resistance (rs, [s m−1]) describes a ratio between the bulk stomatal 
resistance of a well illuminated leaf (rl) and the active sunlit leaf area of the vegetation:

r
r

LAI (14)
s

l

active
=

The stomatal resistance of a single leaf under well-watered conditions has a value of about 100 s m−1. It can 
be assumed that about half (0.5) of the total LAI is actively contributing to vapour transfer, while it can also be 
roughly generalized that for short crops there is a linear relation between LAI and crop height (h):

LAI h24 (15)= ∗

When the evapotranspiration simulated with the Penman-Monteith method is referred to a specific reference 
crop, denoted as ET0, a simplified computation of the method can occur that defines a priori specific variables 
into constant values. In this case, the reference surface is a hypothetical grass reference crop, well-watered grass 
of uniform height, actively growing and completely shading the ground, with an assumed crop height of 0.12 m, 
and an albedo of 0.23. The surface resistance for this hypothetical grass can be simplified to the following:

=
. ∗ ∗

r
h

100
0 5 24 (16)s

For such reference crop the surface resistance is fixed to 70 s m−1 and implies a moderately dry soil surface 
resulting from about a weekly irrigation frequency.

Aerodynamic Resistance (ra).  The aerodynamic resistance [s m−1] verifies the transfer of water vapour 
and heat from the vegetation surface into the air, and is controlled by both vegetation status but also atmospheric 
turbulence under theoretical aspect as:
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Zm [m] is the height [h] of wind measurements and Zh [m] is the height of humidity measurements. These 
are normally set at 2 meters height, although several climate models may provide them for higher heights (e.g. 
10 m). The zero plane displacement (d [m]) term can be estimated as two thirds of crop height, while Zom is the 
roughness length governing momentum transfer, and can be calculated as Zom = 0.123 * h.

The roughness length governing transfer of heat and vapour, Zoh [m], can be approximated as one tenth of 
Zom. k is the von Karman’s constant, equal to 0.41, and uz [m s-1] is the wind speed at height z.

The reference surface, as stated, is a hypothetical grass reference crop, well-watered grass of uniform height, 
actively growing and completely shading the ground, with an assumed crop height of 0.12 m, and an albedo of 
0.23. For such reference crop the surface resistance is fixed to 70 s m-1 and implies a moderately dry soil surface 
resulting from about a weekly irrigation frequency.

When crop height is equal to 0.12 and wind/humidity measurements are taken at 2 meters height, then the 
aerodynamic resistance can be simplified as:

r
u
208

(18)
a

2
=

Reference Evapotranspiration (ET0).  Given the above, and the specific properties of the standard refer-
ence crop, the FAO-56 Penman-Monteith method to estimate ET0 then can be calculated as:
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Aridity Index (AI).  Aridity is often expressed as a generalized function of precipitation and PET. The ratio 
of precipitation over PET (or ET0). That is, the precipitation available in relation to atmospheric water demand64 
quantifies water availability for plant growth after ET demand has been met, comparing incoming moisture totals 
with potential outgoing moisture65.
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Geospatial analysis and global mapping of the AI for the averaged 1970–2000 time period has been calcu-
lated on a per grid cell basis, as:

=Al MA Prec MA ET_ / _ (20)0

where:
AI = Aridity Index
MA_Prec = Mean Annual Precipitation
MA_ET0 = Mean Annual Reference Evapotranspiration

Mean annual precipitation (MA_Prec) values were obtained from the WorldClim v 2.158, as averaged over 
the period 1970–2000, while ET0 datasets estimated on a monthly average basis by the Global-ET0 (i.e., modeled 
using the method described above) were aggregated to mean annual values (MA_ET0). Using this formulation, 
AI values are unitless, increasing with more humid condition and decreasing with more arid conditions.

As a general reference, a climate classification scheme for Aridity Index values provided by UNEP64 provides 
an insight into the climatic significance of the range of moisture availability conditions described by the AI.

Data Records
The Reference Evapo-Transpiration (Global-ET0) and Aridity Index (Global-AI) datasets included in the 
Global-AI_PET_v3 Database provide high-resolution (30 arc-seconds) global raster climate data for the 
1970–2000 period, related to evapo-transpiration processes and rainfall deficit for potential vegetative growth, 
based upon implementation of a Penman-Monteith Reference Evapo-transpiration (ET0) equation. Dataset files 
include the following geospatial raster datasets (distributed online in GEOTIFF format) covering the entire 
world:

Global-ET0.  Geospatial raster datasets are available as monthly averages (12 data layers, i.e., one layer for each 
month) or as an annual average (1 dataset) for the 1970–2000 period, plus the standard deviation of the annual 
average (1 dataset).

Global-AI.  Geospatial raster datasets are available as monthly averages (12 data layers, i.e. one layer for each 
month) or as an annual average (1 data layer) for the 1970–2000 period.

The ET0 geodataset values are defined as the total mm of ET0 per month or per year.
The AI values reported in the GeoTIFF (.tif) files have been multiplied by a factor of 10,000 to derive and 

distribute the data as integers (with 4 decimal accuracy). This multiplier has been used to increase the precision 
of the variable values without using decimals (real or floating values are less efficient in terms of computing time 
and space compared to integer values). The AI values in the GeoTIFF (.tif) files need to be multiplied by 0.0001 
to retrieve the values in the correct units.

The geospatial dataset is in geographic coordinates; datum and spheroid are WGS84; spatial units are decimal 
degrees. The spatial resolution is 30 arc-seconds or 0.008333 degrees.

The ET0 and AI dataset have been processed and finalized in GeoTIFF data format. These rasters have 
been zipped (.zip) into monthly series or individual annual layers available for online access at: https://doi.
org/10.6084/m9.figshare.7504448.v546.

Prefix is either:

  ai_v3_ Global-AI datasets

  et0_v3_ Global- ET0 datasets

Suffix is either:

  01, 02, … 12 month of the year

  yr mean annual

  yr_ sdstandard deviation of the mean annual

Examples:

  ai_v3_yr is the mean annual AI

  et0_v3_02 is the mean monthly ET0 for the month of February

  et0_v3_yr is the mean annual ET0

  eto_v3_yr_sd is the standard deviation of the mean annual ET0

Aridity Index Value Climate Class

<0.03 Hyper Arid

0.03–0.2 Arid

0.2–0.5 Semi-Arid

0.5–0.65 Dry sub-humid

>0.65 Humid

https://doi.org/10.1038/s41597-022-01493-1
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Technical Validation
The global estimations of ET0 and AI were first evaluated against the FAO “CLIMWAT 2.0 for CROPWAT”47 
(Figs. 1 and 2) global database using long-term monthly mean values of climatic parameters derived from 
weather station data, roughly covering the period of 1970–2000, concurrent with the temporal coverage of the 
WorldClim version 2.0/2.1 database. CLIMWAT 2.0 provides observed agroclimatic data of over 5000 stations 
distributed worldwide (Fig. 3), including monthly averages for seven climatic parameters, namely maximum 
temperature, minimum temperature, relative humidity, wind speed, sunshine hours, radiation balance and ET0 
calculated according to the Penman-Monteith method, as well as the coordinates and altitude of the station.

Input parameters from the three WorldClim spatial datasets (versions: 1.4; 2.0; 2.1) were compared with 
the values extracted from the weather station data to evaluate the accuracy and overlap of the CLIMWAT and 
WorldClim datasets, and the suitability of using the CLIMWAT to evaluate the performance of the ET0 spatial 
estimation, by sampling of the gridded data at the weather station coordinates. An assessment of the digital ele-
vation data (DEM) provided by WorldClim 2.1, and used in our estimation, against that reported by CLIMWAT 
station data (Table 1; Fig. 4) showed a high level of accuracy (r2 = 0.98), providing some confidence in the 
locational accuracy of the weather station data. The elevation data we used in this current analysis was virtually 
identical (r2 = 1.00) to the DEM’s used in previous versions of the Global-AI_PET databases. Likewise, a com-
parison of mean annual temperature data revealed no significant differences in these datasets (r2  > 0.98 for all 
dataset comparisons), with the global average of each being nearly identical (≈ 17.8 °C) Fig. 5, indicating an 
absence of globally systematic bias towards over- or under-estimation of temperature. Annual precipitation as 
identified from the WorldClim 2.1 grids was also found to be highly correlated (r2 = 0.96) with that reported by 

Fig. 1  Global reference evapotranspiration (Global-ET0_v3) calculated using the FAO-56 Penman Monteith 
equation for the entire globe at 1 km spatial resolution.

Fig. 2  Global Aridity Index (Global-AI_v3), based upon the FAO-56 Penman Monteith equation for reference 
evapotranspiration (ET0) calculated for the entire globe. Note that higher AI_ET0 (green/blue colors) represents 
more humid conditions, with low AI (yellow/brown/red colors) representing higher aridity.
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the CLIMWAT weather station data (Table 1; Fig. 6), but with a moderately high stand error (148 mm), although 
more than WorldClim 1.4 (r2 = 0.98), which covered a different temporal span (1960–1990). A comparison of 
the average global mean annual precipitation (MA_Prec) between the CLIMWAT and the WorldClim v. 2.1 data 
showed identical results (990 mm), with version 1.4 averaging slightly less (984 mm). As the input parameters 
from the WorldClim 2.1 showed high levels of accuracy in comparison to the CLIMWAT data, we concluded 
that the CLIMWAT was an appropriate dataset available for evaluating the accuracy of the ET0 and AI estimation 
algorithms.

The calculation used to derive the ET0 estimation was tested against the ET0 estimates provided by 
CLIMWAT, using the CLIMWAT provided parameters from 4242 weather stations to parameterize the esti-
mation algorithm (Table 1; Fig. 7). The calculated ET0 was shown to be highly accurate (r2 = 0.99) with a very 
low standard error (36 mm), providing confidence that the algorithm provides an accurate estimation. When 
the algorithm was implemented geospatially on a per grid cell basis to produce the Global_AI_PET_v3 dataset 
and tested against the CLIMWAT ET0 estimates from 3842 weather stations, the results showed a relatively high 
level of accuracy (r2 = 0.85), sufficient for use within many modeling and other scientific efforts. Local estimates, 
however, may have high variability associated with steep elevation gradients and heterogenous terrain, and/or 
low levels of accuracy at the grid cell level due to interpolation of scattered or less dense weather station data, as 
there is significant potential for error associated with the global input data.

Whereas the ET0 based on the WorldClim 2.1 data was virtually identical to that produced by the 
WorldClim 2.0 (r2 = 1.00, std error = 27 mm), differences were more significant when compared with the pre-
vious Global-AI_PET_v1 of the PET estimation (r2 = 0.65). The ET0 estimates based on the latest version of 
the WorldClim (v. 2.1) showed a significant improvement over the Modified Hargreaves PET estimates of the 
Global-AI_PET_v2 (r2 = 0.85 vs r2 = 0.72), using WorldClim v. 1.4, with the Hargreaves methodology systemat-
ically underestimating higher PET values. Similarly, the AI estimates based on the Global-AI_PET_v3 analysis, 
when compared to AI estimates based on parameters provided by the CLIMWAT weather station data (Table 1; 
Fig. 8), showed a high level of correspondence (r2 = 0.90), statistically the same but nominally slightly less than 
from the Global-AI_PET_v1 estimates (r2 = 0.91).

Similarly, the global estimations of ET0 were evaluated against the calculated PET (ET0) provided by the 
CRU_TS (Climatic Research Unit gridded Time Series version 4.05)48. The CRU_TS is a widely used climate 
dataset on a 0.5° latitude by 0.5° longitude grid over all land domains of the world except Antarctica. It is derived 
by the interpolation of monthly climate anomalies from extensive networks of weather station observations. PET 
values are provided in the CRU_TS dataset, calculated based upon the Penman-Monteith formula25,26, using the 
CRU_TS gridded values of mean temperature, vapour pressure, cloud cover and wind field. For our comparison, 
we averaged the CRU_TS monthly values for PET from 1971–2000 to obtain a global coverage of average annual 
PET for that time period. The same CLIMWAT meteorological stations used in the previous comparisons were 
used as sample points for the comparison with the latest version of the ET0 dataset (based on WorldClim v 2.1), 
and the CLIMWAT ET0 was also compared with the CRU_TS PET dataset (r2 = 0.84) to assess general congru-
ence among the datasets (Fig. 9). The CRU_TS precipitation data for that time period was similarly averaged 
and used to calculate an AI based upon the CRU_TS dataset and compared to the Global-AI_PET_v3. Results 
showed a high level of agreement for both the ET0 and the AI comparison (r2 = 0.89; r2 = 0.83, respectively), 
considering the coarser resolution of the CRU_TS data is a likely source of error in the comparison with finer 
resolution data of the Global-AI_PET_v3.

Although we caution the users on the limitations of the data, we conclude with a high level of confidence 
that this revised ET0/AI dataset produced using our geospatially implemented algorithm based upon the FAO 
Penman-Monteith equation provides an adequate and usable global estimation of PET and AI suitable for a vari-
ety of non-mission critical applications, at scales from local, to national, regional, and global. Local topography, 

Fig. 3  Location of weather stations included in the FAO CLIMWAT dataset, showing ET0_CLIMWAT values 
for Penman-Monteith Reference Evapotranspiration (ET0).
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Regression R Square Standard Error Bias

Elvevation

  Elev_WC_2.1 ve Elev_Climwat 0.98 108 −3.73

  Elev_WC_1.4 vs Elev_Climwat 0.98 108 −2.53

  Elev_WC_1.4 vs ELev_WC_2.1 1.00 13 −1.22

Mean Annual Temperature

  Tmean_WC_1.4 vs Tmean_CLIMWAT 0.99 0.93 0.03

  Tmean_WC_2.0 vs Tmean_CLIMWAT 0.98 1.02 −0.06

  Tmean_WC_2.1 vs Tmean_CLIMWAT 0.98 1.01 −0.06

  Tmean_WC_1.4 vs Tmean_WC_2.1 1.00 0.56 −0.10

Mean Annual Precipitation

  Prec_CLIMWAT vs Prec_WC_1.4 0.98 110 5.23

  Prec_CLIMWAT vs Prec_WC_2.0 0.96 150 −0.95

  Prec_CLIMWAT vs Prec_WC_2.1 0.96 148 −1.61

  Prec_WC_1.4 vs Prec_WC_2.1 0.97 122 −6.84

Potential Evapotranspiration_ET0

  ET0_CLIMWAT_XLS vs ET0_CLIMWAT 0.99 36 −53.71

  Global_PET_v1 vs ETo_CLIMWAT 0.72 221 −132.65

  Global_ET0_v2 vs ET0_CLIMWAT 0.84 221 −385.75

  Global_ET0_v3 vs ET0_CLIMWAT 0.85 219 −389.38

  Global_ET0_v1 vs Global_ET0_v3 0.65 249 −256.73

  ET0_CLIMWAT vs ET0_CRU_TS 0.84 160 −18.74

  Global_ET0_v3 vs ET0_CRU_TS 0.89 136 −408.12

Aridity Index

  Global_AI_v1 vs AI_CLIMWAT 0.91 0.16 0.14

  Global_AI_v2 vs AI_CLIMWAT 0.888 0.18 0.21

  Global_AI_v3 vs AI_CLIMWAT 0.90 0.17 0.21

  Global_AI_v1 vs Global_AI_v3 0.89 0.18 0.07

  AI_CLIMWAT vs AI_CRU_TS 0.77 0.33 −0.02

  Global_AI_v3 vs AI_CRU_TS 0.83 0.22 0.23

** Evaluated datasets Description

Elevation

  Elev_Climwat Elevation data from CLIMWAT station data

  Elev_WC_1.4 Elevation data supplied with WC_1.4

  Elev_WC_2.1 Elevation data suppled with WC_2.0 and WC_2.1

Mean Annual Temperature

  Tmean_ClimWat Temperature data from CLIMWAT station data

  Tmean_WC_1.4 Temperature data from WC_1.4

  Tmean_WC_2.0 Temperature data from WC_2.0

  Tmean_WC_2.1 Temperature data from WC_2.1

Mean Annual Precipitation

  Prec_ClimWat Precipitation data from CLIMWAT station data

  Prec_WC_1.4 Precipitation data from WC_1.4

  Prec_WC_2.0 Precipitation data from WC_2.0

  Prec_WC_2.1 Precipitation data from WC_2.1

PET (ET0)

  ET0_ClimWat ET0 as reported by CLIMWAT station data

  ET0_ClimWat_XLS ET0 calculated using estimation algorithm parameterized with CLIMWAT station data

  ET0_CRU_TS ET0 extracted from CRU_TS PET grid

  Global_PET_v1 PET calculated using WC_1.4 (Modified Hargreaves-Thornton)

  Global_ET0_v2 ET0 calculated using WC_2.0 (Penman-Montieth)

  Global_ET0_v3 ET0 calculated using WC_2.1 (Penman-Montieth)

Aridity Index (AI)

  AI_ClimWat AI calculated using parameters from CLIMWAT station data (Penman-Montieth)

  AI_CRU_TS AI calculated using CRU_TS (Penman-Montieth)

  Global_AI_v1 AI calculated using WC_1.4 (Modified Hargreaves-Thornton)

  Global_AI_v2 AI calculated using WC_2.0 (Penman-Montieth)

  Global_AI_v3 AI calculated using WC_2.1 (Penman-Montieth)

Table 1.  Summary Table of Technical Validation Results.
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landscape heterogeneity, and interpolation of weather station networks all contribute to increasing error at more 
specific levels, such as plot or field level, especially in areas where weather station density is sparse. However, 
based upon this technical evaluation, the authors concur that this current version (Global-AI_PET_v3) dataset 
is improved over previous versions, with a high correlation to real world weather station data, and as such, find 
it to be a valuable publicly available global public good, with comparative advantage as a reference resource, 
and global coverage at 30 arc-second resolution. Developed using the agreed upon standard methodology for 
estimation of ET0, based upon FAO-56 Penman-Monteith, this dataset (and its source code) represents a robust 
tool for a variety of scientific investigations in an era of rapidly changing climatic conditions.

Fig. 4  Validation and comparison of elevation data (m asl) used in the analysis, current and previous.

Fig. 5  Validation and comparison of mean annual temperature data (°C) used in the analysis, current and 
previous.
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Fig. 6  Validation and comparison of mean annual precipitation data (mm) used in the analysis, current and 
previous.

Fig. 7  Validation and comparison of the ET0 estimates (mm) produced by the analysis, current and previous.

https://doi.org/10.1038/s41597-022-01493-1


1 2Scientific Data |           (2022) 9:409  | https://doi.org/10.1038/s41597-022-01493-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 8  Validation and comparison of aridity index data produced by the analysis, current and previous. Values 
are unitless, with higher values indicating increasing moisture availability.

Fig. 9  Validation and comparison of Et0 and AI results, with data and results from the CRU_TS (v. 4.04) dataset.
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Usage Notes
The geospatial datasets are provided online in GeoTIFF (.tif) format, in geographic coordinates; datum and 
spheroid are WGS84; spatial units are decimal degrees. The spatial resolution is 30 arc-seconds or 0.008333 
degrees (approximately 1 km2 at the equator).

The Aridity Index (Global-AI) geodatasets have been multiplied by a factor of 10,000 to derive and distribute 
the data as integers (with 4 decimal accuracy). The AI values in the GeoTIFF (.tif) files need to be multiplied by 
0.0001 to retrieve the values in the correct units.

Data availability
The Global ET0 and Aridity Index Database v3 (Global-AI_PET_v3)46 is archived on the Figshare Open 
Repository: https://doi.org/10.6084/m9.figshare.7504448.v5.

Code availability
Geospatial processing and analysis were done using ESRI ArcGIS Pro (version 2.9), ArcMap (version 10.8), 
Python (versions 2.7 & 3.6) programming language, and Microsoft Excel for further data analysis, graphic and 
presentation. The Python programming code66 used to run the calculation of ET0 and AI is provided and available 
online at: https://doi.org/10.6084/m9.figshare.20005589.
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